
HAL Id: hal-03918191
https://hal.science/hal-03918191

Submitted on 2 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proceedings of the 14th International Conference on
Educational Data Mining

I-Han Sharon Hsiao, Shaghayegh Sherry Sahebi, François Bouchet, Jill-Jênn
Vie

To cite this version:
I-Han Sharon Hsiao, Shaghayegh Sherry Sahebi, François Bouchet, Jill-Jênn Vie. Proceedings of the
14th International Conference on Educational Data Mining. 2021, 978-1-7336736-2-4. �hal-03918191�

https://hal.science/hal-03918191
https://hal.archives-ouvertes.fr

Proceedings of the 14th International Conference on
Educational Data Mining

I-Han (Sharon) Hsiao, Shaghayegh (Sherry) Sahebi, François Bouchet, Jill-Jênn Vie (eds).

Proceedings of the 14th International Conference on Educational Data Mining
I-Han (Sharon) Hsiao, Shaghayegh (Sherry) Sahebi, François Bouchet, Jill-Jênn Vie (eds).
June 29th – July 2nd 2021. Paris, France.
ISBN: 978-1-7336736-2-4

PREFACE

For this 14th iteration of the International Conference on Educational Data
Mining (EDM 2021), the conference was held completely online. EDM is
organized under the auspices of the International Educational Data Mining
Society and was meant to happen in Paris, France. The conference, held June
29th through July 2nd, 2021, follows thirteen previous editions (Online, 2020,
Montreal 2019, Buffalo 2018, Wuhan 2017, Raleigh 2016, Madrid 2015, London
2014, Memphis 2013, Chania 2012, Eindhoven 2011, Pittsburgh 2010, Córdoba
2009, and Montreal 2008).

The official theme of this year’s conference was Shifting Landscape of Education:
Improving Blended and Distance Learning. This theme focused on identifying
learning or teaching strategies that can be used to improve learning in various
formats, such as partially or fully online, synchronous or asynchronous, and
centralized or federated. In addition to the general topics, we welcomed research
in the following areas: receiving implicit and explicit feedback from learners in
BDL environments, interacting with students to ensure no learner is left behind,
integrating and utilizing learning analytics in BDL environments to cope with
switching between in-person and online modes, and addressing emerging privacy
and ethical challenges in the new learning setting. This year’s conference featured
three invited talks: Cristina Conati, Professor at University of British Columbia;
Sidney D’Mello, Associate Professor at University of Colorado Boulder; and
Pierre Dillenbourg, Professor at École Polytechnique Fédérale de Lausanne.

Building on the policy started in 2019, EDM 2021 continued using a double-
blind review process. To continue EDM 2020 efforts, the conference’s Program
Committee was significantly expanded by inviting new committee members from
the past authors of the EDM community and the PC members of the related
conferences. In total, 33 senior and 74 ordinary program committee members, in
addition to the conference and track chairs, contributed to the reviewing process.
This year, we received a total of 100 full-paper submissions and 84 short-paper
submissions. From the full-paper submissions, 22% were accepted as full papers,
25% were accepted as short papers, and 16% were accepted as posters. From
the short-paper submissions, 23% were accepted as short papers and 23% were
accepted as posters.

Review & Decision Processes: For transparency and possible benefit of
future EDM conferences, we are providing a detailed description of the paper

i

https://educationaldatamining.org/edm2021/about-the-conference/
https://educationaldatamining.org/edm2021/about-the-conference/

review and decision processes for the Full and Short paper tracks at EDM 2021:

1. After all papers were submitted, the Program Committee (PC) and Senior
Program Committee (SPC) members directly bid on which papers they would
like to review.

2. If committee members did not bid on papers after several reminders, bids were
assigned to them. This was done automatically via the EasyChair conference
management system.

3. Given the PC and SPC bids, the Program Chairs assigned papers to reviewers
using EasyChair’s automatic assignment option. This assignment maximizes the
total score of the assignment, with high weight on matches where the bid was a
“yes”, medium weight on matches where the bid was a “maybe”, and low weight
on matches where the bid was a “no”. The assignments were checked by the
program chairs to ensure review restrictions of the program committee members
and the number of reviews they would have preferred, if they had any. Each
paper was assigned to one SPC member and two PC members. Considering
the increased number of submissions and the review limitations of PC members,
each PC member received on average 5.2 papers, and each SPC member received
on average 4.1 papers. The maximum number of papers assigned to a program
committee member was 6 papers. The automated reviewing assignment was
manually checked to ensure fairness to reviewers in being primarily assigned
papers for which they had entered positive bids, fairness to papers in being
primarily assigned reviewers who had bid positively on that paper, and that
automatic conflict detection had accurately detected conflicts. A set of changes
was made based on this manual check, either due to assigning a paper to all
reviewers that had bid “no” on it or due to assigning multiple papers to a
reviewer who had assigned a “no” bid on all of them.

4. In an effort to increase the mean and decrease the variance in review quality,
the Program Chairs defined reviewing guidelines, both for the PC and the SPC.
These guidelines were posted to the EDM 2021 website and also linked in emails
sent to reviewers.

5. At the end of the review period, the Program Chairs identified papers that
received fewer than 3 reviews, as well as papers whose reviews were clearly
lacking (e.g., just 1-2 sentences). Emergency reviewers (including the Program
Chairs) were identified, and papers were assigned to them.

6. The Program Chairs examined the meta-reviews and acceptance/rejection
recommendations for all papers. For any papers lacking a meta-review, the
Program Chairs read the reviews and the paper, wrote a meta-review, and
arrived at a recommendation for acceptance/rejection.

7. Papers were ranked by their weighted average review scores. The Program
Chairs then manually identified and examined papers in “critical regions” of
the ranking in which there was large variance in the meta-reviewers’ decision
recommendations (Accept as Full, Accept as Short, Accept as Poster, Reject) or

ii

there was large difference between the weighted and unweighted average review
scores. The goal here was to ensure that, in the opinions of both Program
Chairs, all papers accepted as either Full or Short exhibited sufficient rigor for
publication as such. When in doubt, the more conservative outcome (i.e., Accept
as Short rather than Full, or Accept as Poster rather than Short) was chosen. In
particular:

(a) For the Full paper track, the following range was calculated:
Let mf be the lowest score of any paper recommended by its meta-
reviewer for “Accept as full”, and let ns be the highest score of any
paper recommended by its meta-reviewer for “Accept as short”. For
any paper recommended for “Accept as full” whose score was in
[mf , ns], the Program Chairs discussed the paper and decided jointly
whether to Accept as Full or Short. This deliberation focused on
the question: “Do the reviewers point out important methodological
or other fundamental problems that could significantly threaten
validity?”

(b) The analogous process (both for papers submitted as Full, and for
papers submitted as Short) was applied to papers whose weighted or
unweighted average review scores were in the range [ms, np], where
ms is the lowest score of any paper recommended for Accept as Short
and np is the highest score of any paper recommended for Accept as
Poster.

(c) All other papers – i.e., those whose unweighted average re-
view scores were outside the ranges described above – were ac-
cepted/rejected according to the recommendation of their assigned
meta-reviewer.

During all aspects of both the Review and Decision processes, no Program Chair
examined or handled any paper on which she was a co-author; any such paper
was seen and handled exclusively by the other Chair to avoid a conflict of interest.
(No papers were co-authored by both Program Chairs.)

Note that papers submitted to the Industry, Doctoral Consortium, Poster/Demo,
and Workshop components of EDM 2021 had their own reviewing processes
that were defined by the corresponding chairs in consultation with the Program
Chairs. Papers published in the Poster/Demo track are the union of those
submitted & accepted as Posters/Demos, and those submitted as either the Full
or Short tracks that were accepted as Posters.

Posters/Demos: In addition to the Full or Short paper submissions that were
accepted as posters mentioned above, there was a dedicated Poster/Demo track
to which papers could be submitted directly. This track accepted 10 contributions
out of 20 submissions.

JEDM: Together with the Journal of Educational Data Mining (JEDM), the
EDM 2021 conference held a JEDM Track that provides researchers a venue to

iii

deliver more substantial mature work than is possible in a conference proceeding
and to present their work to a live audience. The papers submitted to this track
followed the JEDM peer review process. Three JEDM papers are featured in
the conference’s program.

Industry: The main conference invited contributions to an Industry Track in
addition to the main track. The EDM 2021 Industry Track received 5 submissions,
of which 4 were accepted.

Doctoral Consortium: The EDM conference continues its tradition of pro-
viding opportunities for young researchers to present their work and receive
feedback from their peers and senior researchers. The doctoral consortium this
year features 4 such presentations.

Paper Topics: In terms of topics of all submitted papers, the tables (Table 1 &
Table 2) below list the top 20 popular keywords associated with papers created
by the EasyChair system:

Keyword Weight
Educational Data Mining 1000
Knowledge Tracing 624
Machine Learning 494
Neural network 426
Learning Analytics 397
Higher education 305
Student performance 299
Intelligent Tutoring System 284
Computer Science 278
Data Mining 259
Self-regulated learning 235
Deep Knowledge Tracing 209
Deep Learning 174
Natural Language Processing 167
Response time 164
Research question 161
Automated Essay Scoring 155
Artificial Intelligence 154
Peer assessment 149

iv

Keyword Weight

Learning environment 142

Table 1. Top 20 keywords associated with submitted papers

Also, the table below lists the top 20 popular keywords associated with the
accepted papers:

Keyword Weight

Educational Data Mining 300
Knowledge Tracing 163
Causal inference 124
Machine Learning 96
Neural network 90
Learning Analytics 88
Educational social network 74
Computer Science 70
Learning Agency 68
Hidden Markov Model 67
Intelligent Tutoring System 66
Knowledge State 66
Data Mining 65
Student performance 58
Stack Overflow 53
Student knowledge state 49
Computational linguistic 46
Problem solving 45
Curricular pattern 42
Student success 38

Table 2. Top 20 keywords associated with accepted papers

Best Paper, Presentation, and Reviewer Awards

Following the past EDM traditions, one best full paper, one best short paper,

v

and one best student paper were selected and awarded. The selection process
included the program chairs reviewing the papers with praised and consistently
high rated papers by the program committee and the recommended papers by
the senior program committee members. After selecting four nominees from all
the full and short papers, a committee of senior EDM members voted, met, and
conferred to select the awardees. The best student paper was selected from the
list of full paper nominees, since all of them has student first-authors. The list
of best paper awardees are:

The best full paper:

Just a Few Expert Constraints Can Help: Humanizing Data-Driven Subgoal
Detection for Novice Programming. By Samiha Marwan, Yang Shi, Ian Menezes,
Min Chi, Tiffany Barnes and Thomas Price

The best student paper:

Early Prediction of Conceptual Understanding in Interactive Simulations. By
Jade Cock, Mirko Marras, Christian Giang and Tanja Käser

The best short paper:

Do Common Educational Datasets contain Static Information? A Statistical
Study. By Théo Barollet, Florent Bouchez-Tichadou and Fabrice Rastello

As the conference moved to the online setting, the program chairs decided to add
best paper presentation and best poster presentation awards to encourage high-
quality presentations by paper authors and engagement and attendance of the
community. These awards were selected by the EDM conference community and
attendees in a rank-based voting system. The attendees could select rank paper
and poster presentations separately via two online Google forms, by selecting
the best, second-best, and third-best presentations during the conference. To
avoid memory availability bias, the forms were extensively advertised in the daily
emails sent to the attendees by the general chairs, and at the end of each session.
The votes were tallied before the closing session to announce the awardees.

The best poster presentation:

Are Violations of Student Privacy “Quick and Easy”? Investigating the Privacy
of Students’ Images and Names in the Context of K-12 Educational Institution’s
Posts on Facebook. By Macy Burchfield, Joshua Rosenberg, Conrad Borchers,
Tayla Thomas, Benjamin Gibbons and Christian Fischer

The best paper presentation:

Early Prediction of Conceptual Understanding in Interactive Simulations. By
Jade Cock, Mirko Marras, Christian Giang and Tanja Käser

In addition to the above, as a way to thank the current program committee
members and to encourage serving as a program committee member and providing
high-quality reviews in the future EDM conferences, the program chairs added
the best reviewer award to the list of awards. These reviewers were selected

vi

by the program chairs after carefully reading all the reviews and meta-reviews
of all papers, focusing on the reviewers providing extraordinary reviews, such
as suggestions on how to improve the authors’ works and mentioning relevant
literature to them, and the ones who have been on-time or volunteering to review
more papers than average. The list of the best reviewers is:

Agathe Merceron, Beuth University of Applied Sciences Berlin

Andrew Olney, University of Memphis

Anna Rafferty, Carleton College

Cheng-Yu Chung, Arizona State University

Christopher Brooks, University of Michigan

Dragan Gasevic, Monash University

Giora Alexandron, Weizmann Institute of Science

James Lester, North Carolina State University

Joshua Gardner, University of Michigan

Julio Guerra, Universidad Austral de Chile

Sébastien Lallé, The University of British Columbia, Department of Computer
Science

Sergey Sosnovsky, Utrecht University

Shalini Pandey, University of Minnesota

Stephen Fancsali, Carnegie Learning, Inc.

Tanja Käser, EPFL

Vincent Aleven, Human-Computer Interaction Institute, Carnegie Mellon Uni-
versity

Test of Time Award: Following in the footsteps of last year’s conference,
EDM 2021 also includes an invited talk by the authors of the 2020 winner of the
EDM Test of Time Award. This year’s talk is delivered by Cristóbal Romero.

Workshops: In addition to the main program, there are six workshops accepted,
including Reinforcement Learning for Education: Opportunities and Challenges;
Causal Inference in Educational Data Mining; Workshop for Undergraduates in
Educational Data Mining and Learning Engineering; A Workshop on Process
Analysis Methods For Educational Data; The Second Workshop of The Learner
Data Institute: Big Data, Research Challenges, & Science Convergence in
Educational Data Science; The 5th Educational Data for Mining in Computer
Science Education (CSEDM).

Coronavirus: This year’s conference was originally arranged to take place in
Paris, France. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2021, as

vii

https://rl4ed.org
https://sites.google.com/umich.edu/causaledm21
https://www.the-learning-agency.com/W4U_EDM_21.html
https://www.the-learning-agency.com/W4U_EDM_21.html
https://sites.google.com/view/process-analysis-edm-2021/
https://sites.google.com/view/process-analysis-edm-2021/
https://sites.google.com/view/learnerdatainstitute/ldiedm
https://sites.google.com/view/learnerdatainstitute/ldiedm
https://sites.google.com/view/learnerdatainstitute/ldiedm
https://sites.google.com/ncsu.edu/csedm-workshop-edm21/
https://sites.google.com/ncsu.edu/csedm-workshop-edm21/

well as most other academic conferences in 2021, had to be changed to a purely
online format. This presented some difficulties, especially of how to engage and
encourage interaction among participants using just Zoom and other online tools
(i.e. Gather Town, SpeakUp, Whova, etc.) rather than face-to-face meetings.
However, it also significantly reduced the costs of conducting and attending the
conference since physical meeting spaces, air travel, and on-site lodging were
no longer necessary – and this arguably increased our conference’s accessibility.
To facilitate efficient transmission of presentations, especially given that not
everyone’s Internet connection could be guaranteed to be stable, we required all
paper presenters to pre-record their presentation as a video and then to host it
online.

Thanks: We thank Direction du numérique pour l’éducation (French MoE), Pix,
CNRS, Inria, Eedi, EvidenceB, Educational Testing Service (ETS), Duolingo as
sponsors of EDM 2021 for their generous support, especially during this financially
difficult time of the coronavirus. We are also grateful to the individual conference
chairs, the senior program committee, regular program committee members,
subreviewers, emergency reviewers, and IEDMS board members, without whose
expert input and hard work this conference would not be possible. Finally, we
thank the entire organizing team and all authors who submitted their work to
EDM 2021.

I-Han (Sharon) Hsiao Santa Clara University, CA, USA Program Chair
Shaghayegh (Sherry) Sahebi University at Albany, NY, USA Program Chair
François Bouchet Sorbonne University, Paris, France General Chair
Jill-Jênn Vie Inria, France General Chair

July 2nd, 2021

Organizing Committee
General Chairs:

• François Bouchet (Sorbonne University, Paris, France)

• Jill-Jênn Vie (Inria, France)

Program Chairs:

• I-Han (Sharon) Hsiao (Santa Clara University, CA, USA)

• Shaghayegh (Sherry) Sahebi (University at Albany, NY, USA)

Workshop & Tutorial Chairs:

• Thomas Price (North Carolina State University, NC, USA)

viii

• Sweet San Pedro (ACT, Inc.)

Industry Track Chairs:

• Giora Alexandron (Weizmann Institute of Science, Israel)

• Niki Gitinabard (North Carolina State University, NC, USA)

Doctoral Consortium Chairs:

• Min Chi (North Carolina State University, NC, USA)

• Gautam Biswas (Vanderbilt University, TN, USA)

JEDM Track Chairs:

• Amal Zouaq (Ecole Polytechnique de Montréal, QC, Canada)

• Olga Santos (UNED, Spain)

Poster & Demo Track Chairs:

• Ange Tato (Université du Québec à Montréal, QC, Canada)

• Hassan Khosravi (University of Queensland, Australia)

Publication/Proceedings Chairs:

• Fatima Harrak (Sorbonne University, Paris, France)

• Cheng-Yu Chung (Arizona State University, AZ, USA)

Sponsorship Chair:

• Benoît Choffin (Paris-Saclay University, France)

Publicity/Social Media Chair:

• Khushboo Thaker (University of Pittsburgh, PA, USA)

Web Chair:

• Paul Salvador Inventado (California State University Fullerton,
CA, USA)

IEDMS Officers:

Kenneth Koedinger, President, Carnegie Mellon University, USA

Mingyu Feng, Treasurer, WestEd, USA

IEDMS Board of Directors:

Ryan Baker, University of Pennsylvania, USA

Mykola Pechenizkiy, Eindhoven University of Technology, Netherlands

Michel Desmarais, École Polytechnique de Montréal, Canada

Tiffany Barnes, North Carolina State Universty, USA

ix

Kalina Yacef, University of Sydney, Australia

Rakesh Agrawal, Data Insights Laboratories, USA

Luc Paquette, University of Illinois Urbana-Champaign, USA

Neil Heffernan, Worcester Polytechnic Institute, USA

Anna Rafferty, Carleton College, USA

Andrew Olney, JEDM Editor, University of Memphis, USA

John Stamper, Carnegie Mellon University, USA

Sidney D’Mello, University of Colorado Boulder, USA

Senior Program Committee Members

Name Affiliation

Agathe Merceron Beuth University of Applied Sciences Berlin
Alex Bowers Columbia University
Andrew Olney University of Memphis
Anna Rafferty Carleton College
Bradford Mott North Carolina State University
Collin Lynch North Carolina State University
Cristóbal Romero University of Córdoba
Dragan Gasevic Monash University
James Lester North Carolina State University
Jesus G. Boticario UNED
John Stamper Carnegie Mellon University
José González-Brenes Chegg
Kenneth Koedinger Carnegie Mellon University
Kristy Elizabeth Boyer University of Florida
Luc Paquette University of Illinois at Urbana-Champaign
Ma. Mercedes T. Rodrigo Ateneo de Manila University
Martina Rau University of Wisconsin - Madison
Min Chi North Carolina State University
Mingyu Feng WestEd
Neil Heffernan Worcester Polytechnic Institute

x

Name Affiliation

Niels Pinkwart Humboldt-Universität zu Berlin
Noboru Matsuda North Carolina State University
Philip I. Pavlik Jr. University of Memphis
Radek Pelánek Masaryk University Brno
Ryan Baker University of Pennsylvania
Sebastián Ventura University of Córdoba
Stefan Trausan-Matu Politehnica University of Bucharest
Stephan Weibelzahl Private University of Applied Sciences Göttingen
Stephen Fancsali Carnegie Learning, Inc.
Steven Ritter Carnegie Learning, Inc.
Vanda Luengo Sorbonne University - LIP6
Vincent Aleven Carnegie Mellon University
Zach Pardos University of California, Berkeley

Program Committee Members

Name Affiliation

Abelardo Pardo University of South Australia
Alexandra Cristea Durham University
Alfredo Zapata González Universidad Autonoma de Yucatan
Amal Zouaq Ecole Polytechnique de Montréal
Amelia Zafra Gómez Universidad de Granada
Anthony F. Botelho Worcester Polytechnic Institute
Armelle Brun LORIA - Université de Lorraine
Benoît Choffin EvidenceB
Burcu Arslan Educational Testing Service
Caitlin Tenison Educational Testing Service
Carol Forsyth Educational Testing Service
Cheng-Yu Chung Arizona State University
Christopher Brooks University of Michigan

xi

Name Affiliation

Chunpai Wang University at Albany - SUNY
Cristian Mihaescu University of Craiova
David Pritchard Massachusetts Institute of Technology
Diego Zapata-Rivera Educational Testing Service
Donatella Merlini Università di Firenze
Ella Haig University of Portsmouth
Erik Hemberg ALFA
Fatima Harrak Sorbonne University - LIP6
Giora Alexandron Weizmann Institute of Science
Guojing Zhou University of Colorado Boulder
Hassan Khosravi The University of Queensland
Irene-Angelica Chounta University of Duisburg-Essen
Ivan Luković University of Novi Sad
Ivon Arroyo University of Massachusetts Amherst
Jacob Whitehill Worcester Polytechnic Institute
Javier Bravo-Agapito Madrid Open University (UDIMA)
Jeremiah Folsom-Kovarik Soar Technology, Inc.
Jiangang Hao Educational Testing Service
Jihyun Park Apple, Inc.
Jina Kang Utah State University
José Raúl Romero University of Córdoba
Joshua Gardner University of Michigan
Juan Alfonso Lara Torralbo Open University of Madrid, UDIMA
Julio Guerra Universidad Austral de Chile
Jun-Ming Su National University of Tainan
Keith Brawner United States Army Research Laboratory
Ling Tan Australian Council for Educational Research
Marcelo Worsley Northwestern University
Maria Luque University of Córdoba
Mehmet Celepkolu University of Florida
Mengfan Yao University at Albany - SUNY

xii

Name Affiliation

Miguel Ángel Conde University of León

Mirko Marras École Polytechnique Fédérale de Lausanne - EPFL
Nicholas Diana Colgate University
Nigel Bosch University of Illinois Urbana-Champaign
Niki Gitinabard North Carolina State University
Olga C. Santos aDeNu Research Group (UNED)
Paul Salvador Inventado California State University Fullerton
Paul Stefan Popescu University of Craiova
Pedro J. Muñoz-Merino Universidad Carlos III de Madrid
Rémi Venant Le Mans Université - LIUM
Renza Campagni Università degli Studi di Firenze
Scott Crossley Georgia State University
Sébastien Lallé The University of British Columbia
Sergey Sosnovsky Utrecht University
Shahab Boumi University of Central Florida
Shalini Pandey University of Minnesota
Shayan Doroudi Carnegie Mellon University
Siqian Zhao University at Albany - SUNY
Sotiris Kotsiantis University of Patras

Tanja Käser École Polytechnique Fédérale de Lausanne - EPFL
Victor Menendez-Dominguez Universidad Autónoma de Yucatán
Vladimir Ivančević University of Novi Sad
Wookhee Min North Carolina State University
Yancy Vance Paredes Arizona State University
Yang Jiang Educational Testing Service
Yolaine Bourda LRI, CentraleSupélec

Subreviewers

xiii

Name Affiliation

Aaron Alphonsus Worcester Polytechnic Institute
Aaron Haim Worcester Polytechnic Institute
Adam Gaweda North Carolina State University
Alberto Jiménez Macías Universidad Carlos III de Madrid
Ana Serrano Mamolar UNED
Anjali Singh University of Michigan
Anshul Aggarwal University of Michigan
Ashish Gurung Worcester Polytechnic Institute
Aubrey Condor University of California, Berkeley
Aurora Ramírez University of Córdoba
Benoît Choffin EvidenceB
Cheng-Yu Chung Arizona State University
David Martin Gomez Universidad Carlos III de Madrid
Effat Farhana North Carolina State University
Eliana Scheihing Universidad Austral de Chile
Erzhuo Shao Tsinghua University
Esha Sharma North Carolina State University
Ethan Prihar Worcester Polytechnic Institute
Fernando Rodriguez University of Florida
Ge Gao North Carolina State University
Guojing Zhou North Carolina State University
Heeryung Choi University of Michigan
Hyunwoo Sohn North Carolina State University
Jialin Yu Durham University
Jing Zhang New York University
Joseph Wiggins University of Florida
Khulood Alharbi Durham University
Kimberly Michelle Ying University of Florida
Machi Shimmei North Carolina State University
Maria Cecilia Verri Università di Firenze
Markel Sanz Ausin North Carolina State University

xiv

Name Affiliation

Nick Lytle University of Florida
Pedro Manuel Moreno-Marcos Universidad Carlos III de Madrid
Ryan Hodson Durham University
Sa’ar Gershon Weizmann Institute of Science
Sami Baral Worcester Polytechnic Institute
Sein Minn Inria
Shruthi Chockkalingam University of California, Berkeley
Sonja Ristic University of Novi Sad
Steven Moore Carnegie Mellon University
Tahani Aljohani Durham University
Tasmia Shahriar North Carolina State University
Warren Li University of Michigan
Xi Yang North Carolina State University
Ye Mao North Carolina State University
Yiqiao Xu North Carolina State University
Yun Huang Carnegie Mellon University
Zhi Li University of California, Berkeley
Zhongtian Sun Durham University

Sponsors
Platinum

Direction du numérique pour l’éducation, ministère de l’Éducation nationale, de
la Jeunesse et des Sports

xv

https://www.education.gouv.fr/direction-du-numerique-pour-l-education-dne-9983
https://www.education.gouv.fr/direction-du-numerique-pour-l-education-dne-9983

Gold

Pix

The French National Centre for Scientific Research (CNRS)

National Institute for Research in Digital Science and Technology (Inria)

Silver

Eedi

EvidenceB

xvi

https://pix.org/en-gb/
https://www.cnrs.fr/en
https://www.inria.fr/en
https://eedi.com/
https://evidenceb.com/index.php?lang=en

Educational Testing Service (ETS)

Duolingo Research

xvii

https://www.ets.org/
https://research.duolingo.com/

Table of Contents

JEDM Presentations

Mapping Python Programs to Vectors using Recursive Neural Encodings 30

Benjamin Paaßen, Jessica McBroom, Bryn Jeffries Grok, Irena Koprinska and Kalina Yacef

Affect, Support and Personal Factors: Multimodal Causal Models of One-on-one Coaching 31

Lujie Karen Chen, Joseph Ramsey and Artur Dubrawski

Extending Adaptive Spacing Heuristics to Multi-Skill Items 32

Benoît Choffin, Fabrice Popineau and Yolaine Bourda

Full Papers

Investigating the Validity of Methods Used to Adjust for Multiple Comparisons in Edu-
cational Data Mining

33

Jeffrey Matayoshi and Shamya Karumbaiah

Student Performance Prediction Using Dynamic Neural Models 46

Marina Delianidi, Konstantinos Diamantaras, George Chrysogonidis and Vasileios Nikiforidis

Say What? Automatic Modeling of Collaborative Problem Solving Skills from Student
Speech in the Wild

55

Samuel Pugh, Shree Krishna Subburaj, Arjun Ramesh Rao, Angela Stewart, Jessica Andrews-Todd and
Sidney D’Mello

Just a Few Expert Constraints Can Help: Humanizing Data-Driven Subgoal Detection
for Novice Programming

68

Samiha Marwan, Yang Shi, Ian Menezes, Min Chi, Tiffany Barnes and Thomas Price

Automatically classifying student help requests: a multi-year analysis 81

Zhikai Gao, Collin Lynch, Sarah Heckman and Tiffany Barnes

Early Prediction of Museum Visitor Engagement with Multimodal Adversarial Domain
Adaptation

93

Nathan Henderson, Wookhee Min, Andrew Emerson, Jonathan Rowe, Seung Lee, James Minogue and
James Lester

Behavioral Testing of Deep Neural Network Knowledge Tracing Models 105
Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Minsam Kim, Yugeun Shim, Seewoo Lee, Hyunbin Loh and Juneyoung Park

Student Strategy Prediction using a Neuro-Symbolic Approach 118

Anup Shakya, Vasile Rus and Deepak Venugopal

Improving Automated Scoring of Student Open Responses in Mathematics 130

Sami Baral, Anthony F Botelho, John A Erickson, Priyanka Benachamardi and Neil T Heffernan

Topic Transitions in MOOCs: An Analysis Study 139

Fareedah Alsaad, Thomas Reichel, Yuchen Zeng and Abdussalam Alawini

Can Feature Predictive Power Generalize? Benchmarking Early Predictors of Student
Success across Flipped and Online Courses

150

Mirko Marras, Julien Tuan Tu Vignoud and Tanja Käser

Early Prediction of Conceptual Understanding in Interactive Simulations 161

Jade Cock, Mirko Marras, Christian Giang and Tanja Käser

Knowing When and Where: Temporal-ASTNN for Student Learning Progression in
Novice Programming Tasks

172

Ye Mao, Yang Shi, Samiha Marwan, Thomas Price, Tiffany Barnes and Min Chi

Exploring Policies for Dynamically Teaming Up Students through Log Data Simulation 183

Kexin Yang, Xuejian Wang, Vanessa Echeverria, Luettamae Lawrence, Kenneth Holstein, Nikol Rum-
mel and Vincent Aleven

Learning from Non-Assessed Resources: Deep Multi-Type Knowledge Tracing 195

Chunpai Wang, Siqian Zhao and Shaghayegh Sahebi

The Effect of an Intelligent Tutor on Performance on Specific Posttest Problems 206

Adam Sales, Ethan Prihar, Neil Heffernan and John Pane

Math Operation Embeddings for Open-ended Solution Analysis and Feedback 216

Mengxue Zhang, Zichao Wang, Richard Baraniuk and Andrew Lan

Which Hammer should I Use? A Systematic Evaluation of Approaches for Classifying
Educational Forum Posts

228

Lele Sha, Mladen Rakovic, Alexander Whitelock-Wainwright, David Carroll, Dragan Gasevic and Guan-
liang Chen

Acting Engaged: Leveraging Player Persona Archetypes for Semi-Supervised Classifica-
tion of Engagement

240

Benjamin Nye, Mark G. Core, Shikhar Jaiswal, Aviroop Ghosal and Daniel Auerbach

Learning student program embeddings using abstract execution traces 252

Guillaume Cleuziou and Frédéric Flouvat

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Student-centric Model of Login Patterns: A Case Study with Learning Management
Systems

263

Varun Mandalapu, Lujie Chen, Zhiyuan Chen and Jiaqi Gong

Generative Grading: Near Human-level Accuracy for Automated Feedback on Richly
Structured Problems

275

Ali Malik, Mike Wu, Vrinda Vasavada, Jinpeng Song, Madison Coots, John Mitchell, Noah Goodman
and Chris Piech

Short Papers

Knowledge Transfer by Discriminative Pre-training for Academic Performance Prediction 287

Byungsoo Kim, Hangyeol Yu, Dongmin Shin and Youngduck Choi

Toward Improving Student Model Estimates through Assistance Scores in Principle and
in Practice

295

Napol Rachatasumrit and Kenneth Koedinger

Learning Expert Models for Educationally Relevant Tasks using Reinforcement Learning 302

Christopher Maclellan and Adit Gupta

Do Common Educational Datasets contain Static Information? A Statistical Study 310

Théo Barollet, Florent Bouchez-Tichadou and Fabrice Rastello

Finding the optimal topic sequence for online courses using SERPs as a Proxy 317

Sylvio Rüdian and Niels Pinkwart

Targeting Design-Loop Adaptivity 323

Stephen Fancsali, Hao Li, Michael Sandbothe and Steven Ritter

Going Online: A simulated student approach for evaluating knowledge tracing in the
context of mastery learning

331

Qiao Zhang and Christopher MacLellan

Effects of Algorithmic Transparency in Bayesian Knowledge Tracing on Trust and Per-
ceived Accuracy

338

Kimberly Williamson and Rene Kizilcec

Automatic short answer grading with SBERT on out-of-sample questions 345

Aubrey Condor, Max Litster and Zachary Pardos

Sentiment Analysis of Student Surveys - A Case Study on Assessing the Impact of the
COVID-19 Pandemic on Higher Education Teaching

353

Haydée Guillot Jiménez, Anna Carolina Finamore, Marco Antonio Casanova and Gonçalo Simões

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Context-aware Knowledge Tracing Integrated with The Exercise Representation and As-
sociation in Mathematics

360

Tao Huang, Mengyi Liang, Huali Yang, Zhi Li, Tao Yu and Shengze Hu

Gaining Insights on Student Course Selection in Higher Education with Community De-
tection

367

Erla Guðrún Sturludóttir, Eydís Arnardóttir, Gísli Hjálmtýsson and María Óskarsdóttir

Automated Claim Identification Using NLP Features in Student Argumentative Essays 375

Qian Wan, Scott Crossley, Michelle Banawan, Renu Balyan, Yu Tian, Danielle McNamara and Laura
Allen

Using Keystroke Analytics to Understand Cognitive Processes during Writing 384

Mo Zhang, Hongwen Guo and Xiang Liu

Embedding navigation patterns for student performance prediction 391

Ekaterina Loginova and Dries Benoit

Assessing attendance by peer information 400

Pan Deng, Jianjun Zhou, Jing Lyu and Zitong Zhao

Fair-Capacitated Clustering 407

Tai Le Quy, Arjun Roy, Gunnar Friege and Eirini Ntoutsi

Combining Cognitive and Machine Learning Models to Mine CPR Training Histories for
Personalized Predictions

415

Florian Sense, Michael Krusmark, Joshua Fiechter, Michael G. Collins, Lauren Sanderson, Joshua
Onia and Tiffany Jastrzembski

Math Multiple Choice Question Solving and Distractor Generation with Attentional GRU
Networks

422

Neisarg Dave, Riley Owen Bakes, Bart Pursel and C. Lee Giles

Linguistic and Gestural Coordination: Do Learners Converge in Collaborative Dialogue? 431

Arabella Sinclair and Bertrand Schneider

Using Student Trace Logs To Determine Meaningful Progress and Struggle During Pro-
gramming Problem Solving

439

Yihuan Dong, Samiha Marwan, Preya Shabrina, Tiffany Barnes and Thomas Price

More With Less: Exploring How to Use Deep Learning Effectively through Semi-
supervised Learning for Automatic Bug Detection in Student Code

446

Yang Shi, Ye Mao, Tiffany Barnes, Min Chi and Thomas Price

Speeding up without Loss of Accuracy: Item Position Effects on Performance in Univer-
sity Exams

454

Leonardo Vida, Maria Bolsinova and Matthieu J. S. Brinkhuis

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Grouping Source Code by Solution Approaches — Improving Feedback in Programming
Courses

461

Frank Höppner

pyBKT: An Accessible Python Library of Bayesian Knowledge Tracing Models 468

Anirudhan Badrinath, Frederic Wang and Zach Pardos

On the Limitations of Human-Computer Agreement in Automated Essay Scoring 475

Afrizal Doewes and Mykola Pechenizkiy

Predicting Student Performance Using Teacher Observation Reports 481

Menna Fateen and Tsunenori Mine

Recommending Knowledge Concepts on MOOC Platforms with Meta-path-based Repre-
sentation Learning

487

Guangyuan Piao

Automatic Assessment of the Design Quality of Python Programs with Personalized Feed-
back

495

Walker Orr and Nathaniel Russell

Exploring the Importance of Factors Contributing to Dropouts in Higher Education Over
Time

502

Hasan Tanvir and Irene-Angelica Chounta

Deep-IRT with independent student and item networks 510

Emiko Tsutsumi, Ryo Kinoshita and Maomi Ueno

Modeling Creativity in Visual Programming: From Theory to Practice 518

Anastasia Kovalkov, Benjamin Paassen, Avi Segal, Kobi Gal and Niels Pinkwart

ALL-IN-ONE: Multi-Task Learning BERT models for Evaluating Peer Assessments 525

Qinjin Jia, Jialin Cui, Yunkai Xiao, Chengyuan Liu, Parvez Rashid and Edward Gehringer

Quizzing Policy Using Reinforcement Learning for Inferring the Student Knowledge State 533

Joy He-Yueya and Adish Singla

From Detail to Context: Modeling Distributed Practice Intensity and Timing by Mul-
tiresolution Signal Analysis

540

Cheng-Yu Chung and I-Han Hsiao

A Novel Algorithm for Aggregating Crowdsourced Opinions 547

Ethan Prihar and Neil Heffernan

Experimental Evaluation of Similarity Measures for Educational Items 553

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Jaroslav Čechák and Radek Pelánek

Analyzing Student Success and Mistakes in Virtual Microscope Structure Search Tasks 559

Benjamin Paaßen, Andreas Bertsch, Katharina Langer-Fischer, Sylvio Rüdian, Xia Wang, Rupali
Sinha, Jakub Kuzilek, Stefan Britsch and Niels Pinkwart

What you apply is not what you learn! Examining students’ strategies in German capi-
talization tasks

566

Nathalie Rzepka, Hans-Georg Müller and Katharina Simbeck

Integrating Deep Learning into An Automated Feedback Generation System for Auto-
mated Essay Scoring

573

Chang Lu and Maria Cutumisu

Investigating SMART Models of Self-Regulation and their Impact on Learning 580

Stephen Hutt, Jaclyn Ocumpaugh, Juliana Ma. Alexandra L. Andres, Nigel Bosch, Luc Paquette,
Gautam Biswas and Ryan Baker

The effects of a personalized recommendation system on students’ high-stakes achieve-
ment scores: A field experiment

588

Nilanjana Chakraborty, Samrat Roy, Walter Leite and George Michailidis

Student Practice Sessions Modeled as ICAP Activity Silos 595

Adam Gaweda and Collin Lynch

LANA: Towards Personalized Deep Knowledge Tracing Through Distinguishable Inter-
active Sequences

602

Yuhao Zhou, Xihua Li, Yunbo Cao, Xuemin Zhao, Qing Ye and Jiancheng Lv

Posters and Demos

Recommendation System for Engineering Programs Candidates 609

Bruno Mota da Silva and Claudia Antunes

Deep learning for sentence clustering in essay grading support 614

Li-Hsin Chang, Iiro Rastas, Jenna Kanerva, Valtteri Skantsi, Sampo Pyysalo and Filip Ginter

To Scale or Not to Scale: Comparing Popular Sentiment Analysis Dictionaries on Educa-
tional Twitter Data

619

Conrad Borchers, Joshua Rosenberg, Ben Gibbons, Macy Alana Burchfield and Christian Fischer

Knowledge Tracing Models’ Predictive Performance when a Student Starts a Skill 625

Jiayi Zhang, Rohini Das, Ryan S. Baker and Richard Scruggs

Analysis of stopping criteria for Bayesian Adaptive Mastery Assessment 630

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Androniki Sapountzi, Sandjai Bhulai, I. Cornelisz and Chris Van Klaveren

Detecting Careless Responding to Assessment Items in a Virtual Learning Environment
Using Person-fit Indices and Random Forest

635

Sanaz Nazari, Walter Leite and Anne Huggins-Manley

Tracing Knowledge for Tracing Dropouts: Multi-Task Training for Study Session Dropout
Prediction

641

Seewoo Lee, Kyu Seok Kim, Jamin Shin and Juneyoung Park

Fine-Grained Versus Coarse-Grained Data for Estimating Time-on-Task in Learning Pro-
gramming

648

Juho Leinonen, Francisco Enrique Vicente Castro and Arto Hellas

The Impact of Learning Analytics on Student Performance and Satisfaction in a Higher
Education Course

654

Dimitrios Tzimas and Stavros Demetriadis

Text Representations of Math Tutorial Videos for Clustering, Retrieval, and Learning
Gain Prediction

661

Pichayut Liamthong and Jacob Whitehill

Predicting Young Students’ Self-Regulated Learning Deficits Through Their Activity
Traces

667

Thomas Sergent, Morgane Daniel, François Bouchet and Thibault Carron

Automatic Domain Model Creation and Improvement 672

Philip I. Pavlik Jr., Luke Eglington and Liang Zhang

Automated Classification of Visual, Interactive Programs Using Execution Traces 677

Wengran Wang, Gordon Fraser, Tiffany Barnes, Chris Martens and Thomas Price

Is It Fair? Automated Open Response Grading 682

John A. Erickson, Anthony F. Botelho, Zonglin Peng, Rui Huang, Meghana V. Kasal and Neil Hef-
fernan

Predicting Executive Functions in a Learning Game: Accuracy and Reaction Time 688

Jing Zhang, Teresa Ober, Yang Jiang, Jan Plass and Bruce Homer

Leveraging Survey and Motion Sensors Data to Promote Gender Inclusion in Makerspaces 694

Edwin Chng, Stephanie Yang, Gahyun Sung, Tyler Yoo and Bertrand Schneider

Early Detection of At-risk Students based on Knowledge Distillation RNN Models 699

Ryusuke Murata, Tsubasa Minematsu and Atsushi Shimada

Mining sequential patterns with high usage variation 704

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Yingbin Zhang and Luc Paquette

Demonstrating REACT: a Real-time Educational AI-powered Classroom Tool 708

Ajay Kulkarni and Olga Gkountouna

Building Interpretable Descriptors for Student Posture Analysis in a Physical Classroom 713

Lujie Karen Chen and David Gerritsen

Using Data Quality to compare the Prediction Accuracy based on diverse annotated Tutor
Scorings

718

Sylvio Rüdian and Niels Pinkwart

Towards Difficulty Controllable Selection of Next-Sentence Prediction Questions 721

Jingrong Feng and Jack Mostow

Sex-Related Behavioral Differences in Online Math Classes: An Epistemic Network Anal-
ysis

726

Yufei Gu and Kun Xu

Read & Improve: A Novel Reading Tutoring System 731

Rebecca Watson and Ekaterina Kochmar

Generate: A NLG system for educational content creation 736

Saad Khan, Jesse Hamer and Tiago Almeida

Catalog: An educational content tagging system 741

Saad Khan, Joshua Rosaler, Jesse Hamer and Tiago Almeida

Are Violations of Student Privacy “Quick and Easy”? Implications of K-12 Educational
Institutions’ Posts on Facebook

745

Macy Burchfield, Joshua Rosenberg, Conrad Borchers, Tayla Thomas, Benjamin Gibbons and Christian
Fischer

Towards Explainable Student Group Collaboration Assessment Models Using Temporal
Representations of Individual Student Roles

750

Anirudh Som, Sujeong Kim, Bladimir Lopez-Prado, Svati Dhamija, Nonye Alozie and Amir Tamrakar

The CommonLit Ease of Readability (CLEAR) Corpus 755

Scott Crossley, Aron Heintz, Joon Choi, Jordan Batchelor, Mehrnoush Karimi and Agnes Malatinszky

Predictive Sequential Pattern Mining via Interpretable Convolutional Neural Networks 761

Lan Jiang and Nigel Bosch

Restructuring Curricular Patterns Using Bayesian Networks 767

Ahmad Slim, Gregory Heileman, Chaouki Abdallah, Ameer Slim and Najem Sirhan

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Towards automated content analysis of feedback: A multi-language study 771

Ikenna Osakwe, Alexander Whitelock-Wainwright, Guanliang Chen, Rafael Ferreira Mello, Anderson
Pinheiro Cavalcanti and Dragan Gašević

Academic Integrity during the COVID-19 Pandemic: a Social Media Mining Study 777

Mohammad Parsa and Lukasz Golab

Analyzing Ranking Strategies to Characterize Competition for Co-Operative Work Place-
ments

782

Shivangi Chopra and Lukasz Golab

AQuAA: Analytics for Quality Assurance in Assessment 787

Manqian Liao, Yigal Attali and Alina A. von Davier

LMS Log Data Analysis from Fully-Online Flipped Classrooms: An Exploratory Case
Study via Regularization

793

Jin Eun Yoo and Minjeong Rho

Measuring the Academic Impact of Course Sequencing using Student Grade Data 799

Tess Gutenbrunner, Daniel Leeds, Spencer Ross, Michael Riad-Zaky and Gary Weiss

Mining Course Groupings using on Academic Performance 804

Daniel Leeds, Tianyi Zhang and Gary Weiss

Identifying Hubs in Undergraduate Course Networks Based on Scaled Co-Enrollments 809

Gary Weiss, Nam Nguyen, Karla Dominguez and Daniel Leeds

Linguistic Features of Discourse within an Algebra Online Discussion Board 814

Michelle Banawan, Renu Balyan, Jinnie Shin, Walter Leite and Danielle McNamara

Feedback and Self-Regulated Learning in Science Reading 820

Effat Farhana, Andrew Potter, Teomara Rutherford and Collin F. Lynch

Analysis of Factors Influencing User Contribution and Predicting Involvement of Users
on Stack Overflow

827

Maliha Mahbub, Najia Manjur, Mahjabin Alam and Julita Vassileva

SimGrade: Using Code Similarity Measures for More Accurate Human Grading 833

Sonja Johnson-Yu, Nicholas Bowman, Mehran Sahami and Chris Piech

Doctoral Consortium

A Time-Aware Approach to Detect Patterns and Predict Help-Seeking Behaviour in
Adaptive Educational Systems

838

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Raquel Horta-Bartomeu and Olga C. Santos

Mixed Data Sampling in Learning Analytics 844

Julian Langenhagen

Towards fair, explainable and actionable clustering for learning analytics 847

Tai Le Quy and Eirini Ntoutsi

Towards a Conception and Integration of an Educational Social Network into an Institu-
tional Learning Platform

852

Romaric Bassole, Frédéric T. Ouedraogo and Laurence Capus

Industry Papers

Benefits of alternative evaluation methods for Automated Essay Scoring 856

Øistein E. Andersen, Rebecca Watson, Zheng Yuan and Kevin Yet Fong Cheung

Methods for Language Learning Assessment at Scale: Duolingo Case Study 865

Lucy Portnoff, Erin Gustafson, Joseph Rollinson and Klinton Bicknell

UPreG: An Unsupervised approach for building the Concept Prerequisite Graph 872

Varun Sabnis, Kumar Abhinav, Venkatesh Subramania, Alpana Dubey and Padmaraj Bhat

Online Estimation of Student Ability and Item Difficulty with Glicko-2 Rating System on
Stratified Data

879

Jaesuk Park

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Mapping Python Programs to Vectors using Recursive
Neural Encodings

Benjamin Paaßen
The University of Sydney
benjamin.paassen
@sydney.edu.au

Jessica McBroom
The University of Sydney

jmcb6755@sydney.edu.au

Bryn Jeffries
Grok Learning

bryn@groklearning.com

Irena Koprinska
The University of Sydney

irena.koprinska
@sydney.edu.au

Kalina Yacef
The University of Sydney

kalina.yacef@sydney.edu.au

Abstract
Educational data mining involves the application of data mining techniques to student activity. However, in the context of
computer programming, many data mining techniques can not be applied because they require vector-shaped input whereas
computer programs have the form of syntax trees. In this paper, we present ast2vec, a neural network that maps Python
syntax trees to vectors and back, thereby enabling about a hundred data mining techniques that were previously not applicable.
Ast2vec has been trained on almost half a million programs of novice programmers and is designed to be applied across learning
tasks without re-training, meaning that users can apply it without any need for deep learning. We demonstrate the generality
of ast2vec in three settings: First, we provide example analyses using ast2vec on a classroom-sized dataset, involving two novel
techniques, namely progress-variance-projection for visualization and a dynamical systems analysis for prediction. In these
examples, we also explain how ast2vec can be utilized for educational decisions. Second, we consider the ability of ast2vec to
recover the original syntax tree from its vector representation on the training data and two further large-scale programming
datasets. Finally, we evaluate the predictive capability of a linear dynamical system on top of ast2vec, obtaining similar
results to techniques that work directly on syntax trees while being much faster (constant- instead of linear-time processing).
We hope ast2vec can augment the educational data mining toolbelt by making analyses of computer programs easier, richer,
and more efficient.

Keywords:
computer science education, computer programs, representation learning, neural networks, visualization, program vectors

Citation
Benjamin Paaßen, Jessica McBroom, Bryn Jeffries, Irena Koprinska, Kalina Yacef. (2021). Mapping Python Programs to
Vectors using Recursive Neural Encodings. Journal of Educational Data Mining (JEDM). (to be publisehd).

Benjamin Paaßen, Jessica McBroom, Bryn Jeffries Grok, Irena Koprinska
and Kalina Yacef “Mapping Python Programs to Vectors using Recursive
Neural Encodings”. 2021. In: Proceedings of The 14th International Con-
ference on Educational Data Mining (EDM21). International Educational
Data Mining Society, 30-30. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

30 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Affect, Support and Personal Factors: Multimodal Causal
Models of One-on-one Coaching

Lujie Karen Chen
University of Maryland

Baltimore County
lujiec@umbc.edu

Joseph Ramsey Carnegie
Mellon University

jdramsey@andrew.cmu.edu

Artur Dubrawski Carnegie
Mellon University

awd@cs.cmu.edu

Abstract
Human one-on-one coaching involves complex multimodal interactions. Successful coaching requires teachers to closely monitor
students’ cognitive-affective states and provide support of optimal type, timing, and amount. However, most of the existing
human tutoring studies focus primarily on verbal interactions and have yet to incorporate the rich aspects of multimodal
cognitive-affective experiences. Meanwhile, the research community lacks principled methods to fully exploit the complex
multimodal data to uncover the causal relationships between coaching supports and students’ cognitive-affective experiences
and their stable individual factors. We explore an analytical framework that is explainable and amenable to incorporating
domain knowledge. The proposed framework combines statistical approaches in Sparse Multiple Canonical Correlation,
causal discovery and inference methods for observations. We demonstrate this framework using a multimodal one-on-one
math problem-solving coaching dataset collected at naturalist home environments involving parents and young children. The
insights derived from our analyses may inform the design of effective technology-inspired interventions that are personalized
and adaptive

Keywords:
multimodal learning analytics, causal discovery, causal inference, parent coaching, affective and cognitive support

Citation
Lujie Karen Chen, Joseph Ramsey, Artur Dubrawski. (2021). Affect, Support and Personal Factors: Multimodal Causal
Models of One-on-one Coaching. Journal of Educational Data Mining (JEDM). (to be publisehd).

Lujie Karen Chen, Joseph Ramsey and Artur Dubrawski “Affect, Support
and Personal Factors: Multimodal Causal Models of One-on-one Coach-
ing”. 2021. In: Proceedings of The 14th International Conference on Ed-
ucational Data Mining (EDM21). International Educational Data Mining
Society, 31-31. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 31

Extending Adaptive Spacing Heuristics to Multi-Skill Items

Benoît Choffin
Université Paris-Saclay,

CNRS, CentraleSupélec,
Laboratoire Interdisciplinaire
des Sciences du Numérique,

91400, Orsay, France
benoit.choffin

@lisn.upsaclay.fr

Fabrice Popineau
Université Paris-Saclay,

CNRS, CentraleSupélec,
Laboratoire Interdisciplinaire
des Sciences du Numérique,

91400, Orsay, France
fabrice.popineau
@lisn.upsaclay.fr

Yolaine Bourda
Université Paris-Saclay,

CNRS, CentraleSupélec,
Laboratoire Interdisciplinaire
des Sciences du Numérique,

91400, Orsay, France
yolaine.bourda

@lisn.upsaclay.fr

Abstract
Adaptive spacing algorithms are powerful tools for helping learners manage their study time efficiently. By personalizing the
temporal distribution of retrieval practice of a given piece of knowledge, they improve learners’ long-term memory retention
compared to fixed review schedules. However, such algorithms are generally designed for the pure memorization of single
items, such as vocabulary words. Yet, the spacing effect has been shown to extend to more complex knowledge, such as the
practice of mathematical skills. In this article, we extend three adaptive spacing heuristics from the literature for selecting the
best skill to review at any timestamp given a student’s past study history. In real-world educational settings, items generally
involve multiple skills at the same time. Thus, we also propose a multi-skill version for two of these heuristics: instead of
selecting one single skill, they select with a greedy procedure the most promising subset of skills to review. To compare these
five heuristics, we develop a synthetic experimental framework that simulates student learning and forgetting trajectories with
a student model. We run multiple synthetic experiments on large cohorts of 500 simulated students and publicly release the
code for these experiments. Our results highlight the strengths and weaknesses of each heuristic in terms of performance,
robustness and complexity. Finally, we find evidence that selecting the best subset of skills yields better retention compared
to selecting the single best skill to review.

Keywords:
Adaptive spacing, skill selection heuristics, knowledge components, multi-skill learning items

Citation
Benôıt Choffin, Fabrice Popineau and Yolaine Bourda. (2021). Extending Adaptive Spacing Heuristics to Multi-Skill Items.
Journal of Educational Data Mining (JEDM). (to be publisehd).

Benoît Choffin, Fabrice Popineau and Yolaine Bourda “Extending Adap-
tive Spacing Heuristics to Multi-Skill Items”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 32-32.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

32 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Investigating the Validity of Methods Used to Adjust for
Multiple Comparisons in Educational Data Mining

Jeffrey Matayoshi
McGraw Hill ALEKS

Irvine, CA, USA
jeffrey.matayoshi@aleks.com

Shamya Karumbaiah
University of Pennsylvania

Philadelphia, Pennsylvania, USA
shamya@upenn.com

ABSTRACT
Research studies in Educational Data Mining (EDM) often
involve several variables related to student learning activi-
ties. As such, it may be necessary to run multiple statisti-
cal tests simultaneously, thereby leading to the problem of
multiple comparisons. The Benjamini-Hochberg (BH) pro-
cedure is commonly used in EDM research to address this
issue, and it has proven to be a useful method. However, the
main limitation of the procedure is that it requires the statis-
tical tests to either be independent or satisfy certain depen-
dency conditions. The Benjamini-Yekutieli (BY) procedure
is an alternative that can be applied under arbitrary depen-
dence assumptions, but this extra flexibility comes with a
loss of statistical power; hence, the BH procedure is pre-
ferred whenever it can be properly applied. Based on these
considerations, in this work we employ simulation studies to
assess the validity of the BH procedure in two scenarios com-
mon to EDM research. The first scenario considers the eval-
uation and comparison of different classification models—
such an analysis might occur, for instance, during the model
tuning and validation stage of a study. Then, in the second
scenario we look at experiments involving the study of state
transitions in sequential data, examples of which occur in
affect dynamics research. We find that the BH procedure
performs as expected when used with simulated classifica-
tion model predictions; however, when applied to simulated
sequential data, it does not perform at the expected level.
Based on these results, as well as previous studies evaluating
the BH and BY methods, we discuss the appropriate usage
of these procedures for the scenarios under examination.

Keywords
Multiple comparisons, false discovery rate, Benjamini-Hochberg,
Benjamini-Yekutieli

1. INTRODUCTION
Consider a statistical analysis that tests several different null
hypotheses, either on a single data set, or on related data

sets. In such a scenario, the probability of making a dis-
covery—i.e., rejecting a null hypothesis—is higher than in
an analysis involving a single null hypothesis. Thus, it fol-
lows that the probability of rejecting a true null hypothesis
increases as well; such errors are variously called false posi-
tives, false discoveries, or type I errors. This is known in the
statistics literature as the multiple comparisons problem.

Studies in Educational Data Mining (EDM) and related
fields are shaping the ongoing research and development of
learning systems that are increasingly becoming part of ev-
eryday classrooms—thus directly impacting student lives.
Greater attention is needed to ensure that the conclusions
drawn from these studies are reliable. Along these lines,
controlling for multiple comparisons is an important consid-
eration, as it has been argued that addressing the issue is a
major factor in ensuring the replicability of scientific results
[2]. Additionally, many exaggerated or even incorrect re-
sults can be explained by the testing of multiple hypotheses
without adjusting for the number of comparisons [34, 40];
while this issue commonly occurs with observational data,
experimental studies are not immune to the problem [30].

The main focus of this study is the Benjamini-Hochberg
(BH) procedure [3], a method that is commonly applied in
EDM research to control the false discovery rate (FDR)—
defined as the expected rate of false discoveries among all the
discoveries made—when multiple statistical tests are used.
One complication with using the BH procedure is that, in
order for the theoretical guarantees on its performance to
hold, the statistical tests must either be independent or sat-
isfy certain dependency conditions [3, 4]. The Benjamini-
Yekutieli (BY) procedure is an alternative method that can
be used under arbitrary dependence assumptions among the
statistical tests [4]. As the BY procedure is more gener-
ally applicable than the BH procedure, it is by necessity
more conservative and thus less likely to classify a result
as being statistically significant; in turn, this causes it to
have lower statistical power compared to the BH procedure.
Thus, the BH procedure is to be preferred over the BY pro-
cedure whenever it can be properly applied.

However, the difficulty is that verifying the conditions for
applying the BH procedure is not always straightforward;
while some scenarios have been mathematically proven to
satisfy these conditions, many common examples have not
been. For instance, as of 2010 the case of pairwise com-
parisons had not been mathematically proven to satisfy the

1

Jeffrey Matayoshi and Shamya Karumbaiah “Investigating the Validity of
Methods Used to Adjust for Multiple Comparisons in Educational Data
Mining”. 2021. In: Proceedings of The 14th International Conference on
Educational Data Mining (EDM21). International Educational Data Mining
Society, 33-45. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 33

conditions for using the BH procedure [1], and to the best of
our knowledge that has not changed in the interim. Because
it’s not always clear if the conditions for applying the BH
procedure are satisfied, it is often used without any theo-
retical guarantees on its performance [15]. In other situa-
tions, researchers may resort to using both the BH and BY
procedures and comparing the results [28]. Motivated by
these issues, in this work we investigate two different sce-
narios that occur within EDM research, with the goal of
understanding if the BH procedure is appropriate for each
situation. In both scenarios, we assume that a researcher
wants to control the FDR, ideally with the BH procedure,
but is unsure if it will work as desired. As we are unable to
provide mathematical proofs for these scenarios, we instead
turn to simulation studies, a procedure that is commonly
used to investigate the performance of multiple comparison
procedures [1, 3, 14, 22, 31, 32, 38, 39].

The outline of the paper is as follows. We first discuss the
specifics of the BH and BY procedures and how to apply
them when performing multiple hypothesis tests; addition-
ally, we also look at how multiple comparisons are handled
in the EDM community by surveying the literature from the
last five EDM conference proceedings. Then, in the remain-
der of the paper we evaluate the BH and BY procedures for
two scenarios that EDM researchers may encounter in their
work. The first scenario concerns the usage of these proce-
dures for evaluating and comparing the performance of clas-
sification models. In this scenario, we make pairwise com-
parisons of simulated classifiers, using both accuracy and the
area under the receiver operating characteristic curve (AU-
ROC) to evaluate their performance; such a situation can
occur, for example, when trying to find the best performing
combinations of model algorithms and hyperparameters.

The next scenario we look at is the analysis of state tran-
sitions in sequential data. In such an analysis, researchers
typically run several hypothesis tests to try and determine
the importance of the various transitions between states.
Examples of this occur in affect dynamics research, where
the BH procedure is commonly used [18, 29]. Here, we run
analyses on simulated sequences of transitions using two dif-
ferent statistical measures, and we then apply the BH and
BY procedures and compare the results. Finally, based on
the results of our numerical experiments, as well as the exist-
ing literature on controlling the FDR, we discuss the usage
of the BH and BY procedures in these scenarios.

2. CONTROLLING FOR MULTIPLE COM-
PARISONS

2.1 Benjamini-Hochberg and
Benjamini-Yekutieli Procedures

In this study we focus on procedures for controlling the false
discovery rate (FDR). The FDR was introduced in [3], and
it has since found widespread use in many scientific fields in-
cluding education research [38], genetics [31, 35], and medi-
cal studies [4]. If we let V be the number of false discoveries
and S be the number of true discoveries, as done in [3] we
can define the quantity Q as

Q =

{
V

V+S
, if V + S > 0,

0, otherwise.
(1)

Then, the FDR is equal to E[Q], the expected proportion of
false discoveries among all the discoveries made.

The family-wise error rate (FWER), which is defined as the
probability of making at least one false discovery when per-
forming a set of hypothesis tests, is another measure com-
monly associated with the problem of multiple comparisons.
Although the Bonferroni correction is probably the most
famous procedure used to control the FWER, there exist
many other alternatives. However, while such procedures
can be useful in situations in which a false discovery must
be avoided at all costs, such as clinical trials of new medical
treatments [16], the downside to these methods is a loss of
statistical power, resulting in an increased likelihood of miss-
ing true discoveries. While procedures for controlling the
FWER are concerned with the occurrence of any false dis-
coveries, FDR controlling procedures are slightly more per-
missive, as they allow a certain proportion of the discoveries
to be false. Thus, the advantage of FDR controlling pro-
cedures is that they typically have greater statistical power
and, as such, a better chance of correctly identifying true dis-
coveries; the resulting trade-off is that false discoveries are
more likely. However, this trade-off can be beneficial when
a large number of hypothesis tests are being conducted,1 or
when the research is of a slightly more exploratory nature.

In addition to introducing the FDR to the scientific litera-
ture, the authors in [3] also outlined the BH procedure. As
shown there, the BH procedure is mathematically proven
to control the FDR at a given level when the statistical
tests—or, equivalently, the test statistics—are independent.
However, in many practical applications the statistical tests
may have some underlying dependence between them. With
these situations in mind, further important work on control-
ling the FDR appeared in [4], where the authors proved that,
in addition to the independent case, the BH procedure is
valid under certain dependency conditions between the sta-
tistical tests. Among other scenarios, it was shown that the
BH procedure properly controls the FDR with multivariate
normal test statistics having nonnegative correlations. Ad-
ditionally, the authors in [4] introduced the BY procedure for
situations in which the BH procedure is not valid, and they
proved that the BY procedure controls the FDR regardless
of the dependence between the tests.

In the remainder of this section we discuss the application
of the BH and BY procedures. Consider a statistical analy-
sis that involves the testing of m null hypotheses. Of these
null hypotheses, m0 ≤ m are true null hypotheses—these
correspond to the hypotheses that we expect a statistical
test to classify as not being significant—while the remaining
m−m0 hypotheses are the false null hypotheses. Note that,
in practice, m0 is an unknown value. Let P1, . . . , Pm be the
p-values for the m statistical tests, with these values being
listed in ascending order; the corresponding null hypothe-
ses are then represented by H1, . . . , Hm. The relationships

1As a relatively extreme example, statistical analyses in ge-
netics research can involve thousands of hypothesis tests,
and in such cases FWER controlling procedures can be
overly restrictive [1].

234 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

between these various terms can be summarized as follows.

Not significant Significant Total
True null U V m0

False null T S m−m0

(2)

• m = total number of hypotheses being tested

• m0 = number of true null hypotheses

• V = number of false positives (i.e., false discoveries or
type I errors)

• S = number of true positives

• T = number of false negatives (i.e., type II errors)

• U = number of true negatives

Let q represent our chosen threshold—or, level—for control-
ling the FDR, and define FDRmax = m0

m
q. If the statistical

tests are independent, or if they satisfy certain dependency
conditions, it was shown in [4] that the FDR resulting from
an application of the BH procedure is at most FDRmax. Such
an application works as follows. Assuming once again that
the p-values are in ascending order, we find the largest in-
teger k such that Pk ≤ k

m
q. Then, we simply reject all the

null hypotheses Hi for which i ≤ k.

Next, as the BY procedure controls the FDR under arbitrary
dependence assumptions, it is necessarily more conservative
when rejecting a null hypothesis. This takes the form of a
lower threshold for the upper bound used to determine the
“significance”of the p-values. Specifically, we find the largest
integer k such that Pk ≤ k

m·c(m)
q, where c(m) =

∑m
i=1

1
i
.

Using this procedure, it was shown in [4] that the resulting
FDR is bounded above by FDRmax = m0

m
q, regardless of the

type of dependence between the statistical tests.

To see how these procedures work, we next look at an exam-
ple. Suppose we run 10 separate statistical tests (m = 10)
that return the following p-values.

0.002, 0.008, 0.011, 0.013, 0.023,

0.028, 0.092, 0.214, 0.647, 0.853

Next, we compare these p-values to the formulas used for
the BH and BY thresholds, using a value of q = 0.1; for
added context, we also include the results for the Bonferroni
correction. For each method, the thresholds that correspond
to statistically significant p-values are in bold.

k Pk
BH BY Bonferroni
k
m
q k

m
∑m

i=1
1
i

q 1
m
q

1 0.002 0.01 0.003 0.01

2 0.008 0.02 0.007 0.01

3 0.011 0.03 0.010 0.01

4 0.013 0.04 0.014 0.01

5 0.023 0.05 0.017 0.01

6 0.028 0.06 0.020 0.01

7 0.092 0.07 0.024 0.01

8 0.214 0.08 0.027 0.01

9 0.647 0.09 0.031 0.01

10 0.853 0.1 0.034 0.01

For the BH procedure, we can see that k = 6 is the largest
value for which Pk ≤ k

m
q, as we have 0.028 < 0.06. Thus,

the BH procedure, using a value of 0.1, would reject the
null hypothesis for the statistical tests corresponding to the
lowest six p-values. Next, for the BY procedure we see that
k = 4 is the largest value for which Pk is less than the cor-
responding threshold; in this case, we have 0.013 < 0.014.
It’s worth noting that, in this example, even though both P2

and P3 are not below the corresponding thresholds, the BY
procedure still classifies them as being statistically signifi-
cant. This is a feature of FDR controlling procedures that,
in many cases, allows them to be more permissive than pro-
cedures for controlling the FWER.

2.2 Applications in EDM Research
To understand how EDM research is controlling for multi-
ple comparisons, we reviewed EDM conference proceedings
from the last five years (2016–2020). We found that, among
the 22 papers that reported controlling for multiple com-
parisons,2 half used the Bonferroni correction and half used
the BH procedure, with no studies using the BY procedure.
Based on the method used to perform the comparisons, the
studies can be partitioned as follows: group comparison (8),
pairwise comparison (8; including pairwise model compari-
son), correlation (4), and regression analysis (2). The studies
involving group comparisons used statistical methods such
as the Mann-Whitney U test, chi-squared test, t-test, and
ANOVA. The studies employing pairwise comparisons used
methods such as the Kruskal-Wallis test, Mann-Whitney U
test, McNemar’s test, chi-squared test, and t-test. Overall,
these 22 studies investigated diverse educational constructs
in virtual learning environments including affect, student
behavior in MOOCs, help-seeking, collaboration, and self-
regulation.

The choice between the Bonferroni correction and the BH
procedure varied in the studies, as the selection was not com-
pletely determined by the study methodology. For instance,
an exploratory study used the more conservative Bonferroni
method for a correlational analysis [61], while an experimen-
tal study with group comparisons used the less conservative
BH procedure [46]. For EDM research, selecting between the
Bonferroni correction and the BH procedure may not be uni-
versal and likely depends on the context of the study. As an
example, consider that an analysis examining student demo-
graphic differences on an important educational construct—
such as self-efficacy, affect, or learning—likely has fewer data
samples from underrepresented minorities [20]. In such a
case, penalizing the statistical power with a more conser-
vative method like the Bonferroni correction may lead to
missed opportunities for critical discoveries related to eq-
uity. On the other hand, contrast this with the evaluation
of an expensive and large-scale educational technology inter-
vention in a public school system; given the costs involved,
both financially and otherwise, it could be argued that such
an evaluation requires a more conservative approach to con-
trol for false discoveries.

More broadly, EDM research may not always involve large
data sets. This is particularly true for educational constructs
that require resource-intensive data collection procedures—

2See Section 8 for the full list of references.

3
Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 35

e.g., training coders, gathering approvals, and conducting
classroom studies. Hence, using the Bonferroni correction
to control for multiple comparisons at the expense of losing
statistical power may not always be affordable. In contrast,
using the BH procedure in scenarios that violate its sta-
tistical assumptions may lead to invalid conclusions. Our
review of EDM studies from the last five years also revealed
that the field may not be taking advantage of the BY proce-
dure, especially in scenarios where it is difficult to meet the
assumptions of the BH procedure. These observations are
what motivated us to investigate the use of the BH and BY
procedures in research settings relevant to EDM.

3. METHODS
In this section we outline the general procedure we follow
for our simulation studies. Since evaluating multiple com-
parison procedures requires knowledge of whether a null hy-
pothesis is true, and as this isn’t typically known with real
data, simulations are commonly used for such analyses. In
all of our experiments, we begin by generating simulated
data according to a given probability distribution. While
the specifics of this procedure vary for the two scenarios we
consider, the common thread is that this must be done in a
way as to have control over whether or not each null hypoth-
esis is true. For example, in our comparisons of simulated
classification models, the performance of each model is con-
trolled by a single parameter; thus, when this parameter
differs for two models, the null hypothesis that the models
perform equally well is false.

Another important detail is that, as we are focusing on two
particular scenarios, we can generate simulated data specific
to these scenarios. That is, for the model comparison exper-
iments we simulate both the classifier predictions and the
ground truth labels; then, for the state transition analysis
we generate simulated sequences of states. By simulating
the underlying data for each scenario, we are attempting to
evaluate the BH and BY procedures in conditions that are
as realistic as possible. In comparison, other studies that
are more general in nature may simulate the distribution of
the test statistics, rather than the underlying data, when
evaluating multiple comparison procedures.

After generating the data for a simulation run, we perform
our statistical tests and compute the corresponding p-values.
Once this is done, we then apply the BH and BY procedures
for various threshold values q—specifically, we use 0.05, 0.1,
and 0.15 in all our evaluations. While a value of 0.05 is
commonly used, it’s been argued that this threshold may
be too low for some applications [26]; thus, we evaluate a
range of values in our simulations. Based on the statisti-
cal significance results from our application of the BH and
BY procedures, we can compute Q, the proportion of false
discoveries among all the discoveries made, using (1). To
obtain our estimate of the FDR, we then compute the av-
erage of Q over a total of 10,000 simulation runs. For the
various values of q, we compare these FDR estimates to the
values of FDRmax as defined in Section 2.1.

At this point, it’s worth mentioning that the value of Q—
and, hence, the estimated FDR value—can be very different

from the false positive rate.3 Using the notation in (2),
the false positive rate can be written as V

V+U
. In compar-

ison, Q is computed with the formula V
V+S

, which has a
different denominator. Thus, while the FDR is the expected
proportion of false discoveries among all the rejected null
hypotheses, the false positive rate is the (expected) propor-
tion of false discoveries among all the true null hypothe-
ses. Consider the following example. Assume we are testing
20 total hypotheses, all of which are true null hypotheses
(m0 = m = 20). Furthermore, assume that one false posi-
tive is recorded. Then, the false positive rate for this set of
tests would be equal to 1

1+19
= 0.05. However, applying (1)

gives a value of Q = 1
1+0

= 1. This discrepancy is some-
thing to keep in mind as we analyze the results from our
simulation studies in subsequent sections.

4. MODEL COMPARISONS
The first scenario we study concerns the comparison of sev-
eral classification models on a fixed set of test or validation
data. A common example of this occurs during the model
building process, where it may be necessary to evaluate the
performance of many different combinations of classification
models and hyperparameters. In such a case, it can be help-
ful for the researcher to run statistical tests to more precisely
quantify the differences in performance. To that end, we
focus on the pairwise comparisons of the classifiers, where
we assume that the classifiers could have different underly-
ing algorithms—e.g., logistic regression vs. random forest—
or the same algorithm with different hyperparameters. We
evaluate each pair of classifiers by looking at both the accu-
racy and the area under the receiver operating characteristic
curve (AUROC). To measure the possible difference between
the accuracy values of the models, we use McNemar’s test
[13, 27]. When conducting pairwise comparisons of classi-
fier accuracy on a fixed set of test data—as opposed to a
procedure such as k -fold cross-validation, where the test set
varies—using McNemar’s test is recommended [10]; for these
evaluations we use the implementation in the statsmodels

[33] Python library. Then, to compare the AUROC values
we use DeLong’s test [9], a method developed to statistically
test for differences in AUROC values; specifically, we apply
the fast version of the algorithm outlined in [36].4

Our simulations use the following procedure. We assume
that we are evaluating the performance of a binary classifier
on a test set containing n data points; for these simulations
we use n-values of 500, 1000, and 5000. For each value of n,
we sample n numbers uniformly at random from 0.01 to 0.99;
we refer to this set of numbers as Un. In each simulation
run, the numbers in Un are used to generate the labels for
our data using the following procedure. Let i be an integer
from 1 to n, and let pi ∈ Un. With probability pi we assign
a label of 1 to yi; otherwise, with probability 1−pi it is then
given a label of 0. Note that the set Un is generated once
for each value of n, and this same set is then used repeatedly
for all of our simulation runs with a test set of size n.

3That is, while “false discovery” and “false positive” are used
interchangeably, the terms “false discovery rate” and “false
positive rate” have different definitions.
4The code for our implementation of the algorithm in [36],
as well as for running all of our experiments, is available at
https://github.com/jmatayoshi/multiple-comparisons.

436 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://github.com/jmatayoshi/multiple-comparisons

Table 1: Accuracy and AUROC values for an example sim-
ulation run using a test set of size n = 1000.

σ 0.1 0.1 0.1 0.5 1 2

Accuracy 0.733 0.724 0.732 0.706 0.651 0.606
AUROC 0.824 0.821 0.824 0.787 0.721 0.655

We next describe our procedure for simulating the classi-
fier predictions. Let cij represent the predicted probability
given by classifier j for the i-th data point in our test set. To
generate cij , we begin by converting pi ∈ Un to a z-score.
Then, to add noise to the classifier’s prediction we randomly
sample a value, sij , from a normal distribution with mean 0
and standard deviation σj , add this to the z-score, and then
convert everything back to a probability; the resulting value
is cij . The size of σj controls the performance of the classi-
fier, with lower values giving predicted probabilities that are
less noisy and more likely to align with the class labels. Let
Φ denote the cumulative distribution function (CDF) of the
standard normal distribution. Our procedure for generating
the classifier predictions can be summarized as follows.

1. zi = Φ−1(pi)

2. Draw sample value sij from N (0, σ2
j)

3. cij = Φ(zi + sij)

To get an idea of the effect of different values of σ on the per-
formance of our simulated classifier predictions, in Table 1
we show the accuracy and AUROC values from one simu-
lation run, using different values of σ and a test set size of
n = 1000. The three classifiers with σ values of 0.1 have the
best performance, with accuracy values from 0.72 to 0.73
and AUROC values around 0.82. The other classifiers, to
varying degrees, perform worse, with the lowest accuracy
and AUROC values at roughly 0.61 and 0.66, respectively.
Our initial analysis simulates the pairwise comparison of six
different classification models, where all the classifiers are
assumed to perform equally; specifically, we use a value of
σ = 0.5 for each model. Using our previously described
procedure, we generate a total of 10,000 simulation runs for
each value of n. Our experimental setup results in

(
6
2

)
= 15

pairwise comparisons (m = 15), and as there are no underly-
ing differences between the simulated classifiers, we have 15
true null hypotheses (m0 = 15). As such, if the conditions
for the BH procedure are satisfied, we expect the FDR to
be less than FDRmax = 15

15
q = q. The results are shown in

Figures 1 and 2, where we display the estimated FDR rates
for the BH and BY procedures, for different combinations
of test set sizes and values of q. Using both McNemar’s test
and DeLong’s test, the BH procedure appears to control the
FDR by keeping it below the corresponding FDRmax value,
shown by the dashed line, in all cases—that is, for all com-
binations of test set sizes and q. In comparison, the BY
procedure is much more conservative, with each estimated
FDR value far below the FDRmax line.

For our second set of simulations, we use the values of σ
that appear in Table 1 to generate six different models. As
there are three models with the same value of σ = 0.1, we
have

(
3
2

)
= 3 true null hypotheses (m0 = 3) out of 15 total

comparisons (m = 15). Thus, under the appropriate condi-
tions the BH procedure should keep the FDR at or below

FDRmax = 3
15
q = 1

5
q. The results are given in Figures 3 and

4, where we can see that the estimated FDR values using the
BH procedure are at or below the value of FDRmax, given
by the dashed line, in all cases—that is, for all combinations
of test set sizes and q. As before, the estimated FDR values
from the BY procedure are very low, with each value again
appearing far below the corresponding FDRmax line.

These results are seemingly consistent with previous works
analyzing the performance of the BH procedure with pair-
wise comparisons [21, 38]. The findings from several of these
studies are summarized in [39], where the author states that
in “all the studies, for all configurations of true and false hy-
potheses simulated, for balanced and for non-balanced de-
signs, normal and non-normal distributions, the BH proce-
dure controlled the FDR.” Thus, combining these previous
results with our experiments from this section, there appears
to be good evidence that the BH procedure properly controls
the FDR in the case of pairwise comparisons of classification
models. We return to this subject in the discussion.

5. TRANSITIONS IN SEQUENTIAL DATA
In our second scenario we look at data that are sequential
in nature, as examples of such data appear in many areas of
educational research. One particular focus with sequential
data is the analysis of transitions between different states—
or events—in these sequences. Researchers are often inter-
ested in understanding if transitions between certain pairs
of states are significant, either because they happen often or
because they rarely appear. Typically in such cases, many
pairs of states are evaluated with statistical tests, thus neces-
sitating a correction for multiple comparisons. For example,
past studies have analyzed logs of student actions in learn-
ing systems, in an attempt to understand the differences
between productive and unproductive transitions between
activities within these systems [5, 6]. Another example is
affect dynamics research, which studies sequences of student
affective states, with the goal of understanding how students
transition between these different states. Previous works in
this area have used the BH procedure to control the FDR
[18, 29], and as such the goal of our next analysis is to in-
vestigate the appropriateness of using this procedure when
analyzing state transitions.

5.1 Experimental Setup
Our numerical experiments for sequential data evaluate the
BH and BY procedures on simulated sequences of states.
Each of these sequences could represent, for example, a stu-
dent’s affective states while working in a learning system.
The states are randomly sampled according to the proba-
bility distribution given in Table 2; each entry in the table
gives the probability of sampling the next state (column)
based on the value of the previous state (row). For exam-
ple, suppose that C is the previous state. In this case, A
has a probability of 0.2 of being the next state, B has a
probability of 0.2− γ of being the next state, and so on.

For our simulations, we use two different values for γ: 0,
which results in all 25 hypotheses being true null hypothe-
ses; and 0.05, which results in 21 true null hypotheses, out of
the 25. For each value of γ, we generate n sequences consist-
ing of 20 states each. To generate these sequences, the first
state in each sequence is sampled randomly from the five

5
Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 37

0 1000 2000 3000 4000 5000
Size of test set

0.00

0.01

0.02

0.03

0.04

0.05

0.06

FD
R

FDRmax
BH
BY

(a) q = 0.05

0 1000 2000 3000 4000 5000
Size of test set

0.00

0.02

0.04

0.06

0.08

0.10

0.12

FD
R

FDRmax
BH
BY

(b) q = 0.1

0 1000 2000 3000 4000 5000
Size of test set

0.00

0.05

0.10

0.15

FD
R

FDRmax
BH
BY

(c) q = 0.15

Figure 1: Comparison of the estimated FDR for the BH and BY procedures, using McNemar’s test and six classifiers with
the same value of σ = 0.5. Vertical lines represent the 99% confidence interval for each estimated FDR value.

0 1000 2000 3000 4000 5000
Size of test set

0.00

0.01

0.02

0.03

0.04

0.05

0.06

FD
R

FDRmax
BH
BY

(a) q = 0.05

0 1000 2000 3000 4000 5000
Size of test set

0.00

0.02

0.04

0.06

0.08

0.10

0.12

FD
R

FDRmax
BH
BY

(b) q = 0.1

0 1000 2000 3000 4000 5000
Size of test set

0.00

0.05

0.10

0.15

FD
R

FDRmax
BH
BY

(c) q = 0.15

Figure 2: Comparison of the estimated FDR for the BH and BY procedures, using DeLong’s test and six classifiers with the
same value of σ = 0.5. Vertical lines represent the 99% confidence interval for each estimated FDR value.

0 1000 2000 3000 4000 5000
Size of test set

0.000

0.002

0.004

0.006

0.008

0.010

0.012

FD
R

FDRmax
BH
BY

(a) q = 0.05

0 1000 2000 3000 4000 5000
Size of test set

0.000

0.005

0.010

0.015

0.020

FD
R

FDRmax
BH
BY

(b) q = 0.1

0 1000 2000 3000 4000 5000
Size of test set

0.00

0.01

0.02

0.03

FD
R

FDRmax
BH
BY

(c) q = 0.15

Figure 3: Comparison of the estimated FDR for the BH and BY procedures, using McNemar’s test and the σ values in Table 1.
Vertical lines represent the 99% confidence interval for each estimated FDR value.

638 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

0 1000 2000 3000 4000 5000
Size of test set

0.000

0.002

0.004

0.006

0.008

0.010

0.012
FD

R

FDRmax
BH
BY

(a) q = 0.05

0 1000 2000 3000 4000 5000
Size of test set

0.000

0.005

0.010

0.015

0.020

FD
R

FDRmax
BH
BY

(b) q = 0.1

0 1000 2000 3000 4000 5000
Size of test set

0.00

0.01

0.02

0.03

FD
R

FDRmax
BH
BY

(c) q = 0.15

Figure 4: Comparison of the estimated FDR for the BH and BY procedures, using DeLong’s test and the σ values in Table 1.
Vertical lines represent the 99% confidence interval for each estimated FDR value.

Table 2: Probability distribution used to generate the sim-
ulated sequences of states. Each entry represents the prob-
ability of making a transition to the next state (column),
given the previous state (row).

prev
next

A B C D E

A 0.2 0.2 + γ 0.2 0.2− γ 0.2
B 0.2 0.2 0.2 0.2 0.2
C 0.2 0.2− γ 0.2 0.2 + γ 0.2
D 0.2 0.2 0.2 0.2 0.2
E 0.2 0.2 0.2 0.2 0.2

Table 3: Marginal model coefficient p-values from one sim-
ulation run using γ = 0.05. With a threshold of q = 0.05,
both the BH and BY procedures give the same statistical
significance results for this example; namely, only the four
transition pairs with sample probabilities modified by γ are
statistically significant.

prev
next

A B C D E

A 0.252 0.000 0.335 0.000 0.703
B 0.496 0.365 0.327 0.864 0.252
C 0.035 0.000 0.527 0.000 0.569
D 0.260 0.652 0.080 0.980 0.889
E 0.581 0.099 0.800 0.869 0.179

choices, and then all subsequent states are sampled accord-
ing to the probability distribution in Table 2. For each set
of n sequences we evaluate our statistical tests (described in
Sections 5.2 and 5.3) and then compute the resulting value
for Q; this constitutes one simulation run. We then perform
10,000 simulation runs for each value of n in order to obtain
an estimate of the true FDR. For this analysis, we use the
following values of n: 50, 100, and 200.

The L statistic, originally introduced in [12], is intended to
be used as a measure of the significance of different pairs
of transitions, and it has been widely applied in the study
of affect dynamics [11, 12, 18]. Given two states A and B,
it measures the likelihood of transitions from A to B while
taking into account the overall frequency at which B occurs.

However, several recent works have revealed issues with the
use of the L statistic for the analysis of state transitions
[7, 18, 19]. Thus, for our simulations we use two newer
methods that have been developed in response to the prob-
lems with the L statistic. First, in Section 5.2 we look at the
performance of the BH procedure when used in combination
with the marginal model approach outlined in [25]. Then,
in Section 5.3 we evaluate the BH procedure when it is used
with the modified version of the L statistic from [24].

5.2 Marginal Model
To estimate the influence that starting in state A has on the
probability of making a transition toB, in this section we use
the marginal model regression procedure from [25]. In this
approach, the regression model has a binary response vari-
able, where the value of this variable is one if the next state
is equal to B, and it is zero otherwise. Based on the binary
response variable, we use the logit as our link function. Our
predictor—or, independent—variable is also binary, with a
value of one if the previous state is equal to A and zero
otherwise. We can summarize this procedure as follows.

• y = yit: one if B is the next state for student i at time
t; zero otherwise

• x = xit: one if A is the previous state for student i at
time t; zero otherwise

Letting S represent the standard logistic function, the re-
gression equation then has the form

P (yit = 1 |xit) = S(β0 + β1xit) =
1

1 + e−(β0+β1xit)
. (3)

When xit = 1 the regression model returns an estimate for
P (B |A), the probability of a transition to B, given that
the starting state is A. Then, when xit = 0 it returns an
estimate for P (B |A), the probability of a transition to B,
given that the starting state is not A. Thus, to measure
the importance of starting in state A, we focus on testing
if the value of β1 is significantly different from zero. This
is done using a two-tailed z -test on the value of β1 for each
individual fit of the regression model.

Finally, as the sequential data used in these analyses typi-
cally take the form of repeated measurements on a student,

7
Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 39

the result is a set of dependent—or correlated—data. To
account for this dependence, as outlined in [25] we use a
marginal model, based on generalized estimating equations
(GEE) [17, 23], to estimate the logistic regression coeffi-
cients; in particular, we use the GEE implementation from
the statsmodels Python library.

As before, let m denote the total number of statistical tests,
with m0 ≤ m representing the number of true null hypothe-
ses. Using the BH procedure with a value of γ = 0, we
have m0 = m; as such, we would expect the FDR to be less
than FDRmax = 25

25
q = q if the BH conditions are satisfied.

Then, for all values of γ > 0 we would expect the FDR to be
less than FDRmax = 21

25
q, assuming the BH conditions are

satisfied, as m0 = 21 of the tests are true null hypotheses.

The first set of results, using a value of γ = 0, is shown in
Figure 5. Here, we can see that in all cases the estimated
FDR values from the BH procedure are above the theoret-
ical upper bound of FDRmax, shown by the dashed line.
The gap is particularly notable with smaller numbers of se-
quences. On the other hand, the BY procedure offers much
more stringent control of the FDR, with all of the estimated
values appearing below the FDRmax line. Figure 6 then
shows the results from using a value of γ = 0.05. Overall,
the picture appears similar to the γ = 0 case, with the esti-
mated FDR values from the BH procedure always appearing
above the FDRmax line, and with the difference again being
more pronounced with smaller numbers of sequences.

5.3 Removing Self-Transitions
Our final set of experiments investigates a specific situa-
tion in sequential data analysis that occurs when researchers
want to remove the influence of repeated states. To do this,
many researchers in the affect dynamics community remove
self-transitions—i.e., transitions where the same state is re-
peated for more than one step—before analyzing the data
[18]. However, this procedure has been shown to overesti-
mate the significance of transitions when used with the L
statistic [19]. Thus, for this analysis we instead use a modi-
fied version of the L statistic, named L∗ [24].

Definition 1. Let A and B be two states, and let

TA = {transitions where the next state is not A}. (4)

Then, we define

L∗(A→ B) :=
P (B |A, TA)− P (B |TA)

1− P (B |TA)
, (5)

where P (B |A, TA) is the probability of a transition to B in
TA, given that the starting state is A, while P (B |TA) is the
overall probability of a transition to B in TA.

The base rate of the state B, given by P (B |TA) in (5),
can be computed either individually for each sequence, or
averaged over the entire set of sequences. For the computa-
tions in the remainder of this work, we compute these rates
individually per sequence.

Our analysis using L∗ applies the statistic to the sequences
from our experiments in Section 5.2. Specifically, we take

each sequence and, for each pair of transition states, com-
pute (5). To test for statistical significance, we follow the
procedure outlined in [24] and apply a two-tailed t-test to
the L∗ values. The results for the γ = 0 and γ = 0.05 se-
quences are shown in Figures 7 and 8, respectively. While
perhaps not quite as prominent as with the marginal model
procedure, there are several examples where the estimated
FDR values from the BH procedure are clearly above the
FDRmax line. As with the marginal model procedure, the
worst cases occur with the smallest number of sequences.

5.4 Dependence of the Statistical Tests
The experiments in this section provide evidence that, when
used in combination with either the marginal model proce-
dure or L∗, the BH procedure does not always control the
FDR at the desired level; in turn, this may indicate that the
conditions for applying the BH procedure are not satisfied.
In the remainder of this section, we outline two arguments
that show the assumption of independence is violated be-
tween the statistical tests used in these analyses. Note that
these are not rigorous mathematical proofs; rather, our goal
here is to simply give some intuition into the relationships
between the statistical tests.

Consider a set of sequential data consisting of possible states
A, B, C, D, and E. For states A and B, let βA,B represent
the value of β1 in (3) for transitions of the form A → B.
Suppose that the following inequalities hold.

βA,A > 0 βA,B > 0

βA,C > 0 βA,D > 0
(6)

Consider, for example, βA,B . The corresponding marginal
model estimates the probability of a transition to B, de-
pending on whether or not the starting state is A—these es-
timates correspond to P (B |A) and P (B |A), respectively.
The inequalities in (6) can then be interpreted as follows.

P (A |A) > P (A |A) P (B |A) > P (B |A)

P (C |A) > P (C |A) P (D |A) > P (D |A)
(7)

Next, consider the following two equalities.

P (E |A) = 1− P (A |A)− P (B |A)− P (C |A)− P (D |A)

P (E |A) = 1− P (A |A)− P (B |A)− P (C |A)− P (D |A)

(8)

Combining (7) and (8), it follows that P (E |A) < P (E |A),
or, equivalently, that βA,E < 0. What this argument il-
lustrates is that it’s not possible—or, at least, it’s highly
unlikely—for βA,E to be positive when the other four coeffi-
cients are positive, which means that the corresponding sta-
tistical tests are not completely independent of each other.

Next, suppose we are in the situation of removing self-transitions
and applying L∗; thus, in what follows assume we are inter-
ested in transitions from A to B and that, following (4) in
Definition 1, all transitions to A have been removed from
our sequence. Suppose the following inequalities hold.

P (B |A) > P (B)

P (C |A) > P (C)

P (D |A) > P (D)

(9)

840 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

50 100 150 200
Number of sequences

0.00

0.02

0.04

0.06

0.08

0.10

FD
R

FDRmax
BH
BY

(a) q = 0.05

50 100 150 200
Number of sequences

0.00

0.05

0.10

0.15

FD
R

FDRmax
BH
BY

(b) q = 0.1

50 100 150 200
Number of sequences

0.00

0.05

0.10

0.15

0.20

0.25

FD
R

FDRmax
BH
BY

(c) q = 0.15

Figure 5: Comparison of the estimated FDR for the BH and BY procedures, using a value of γ = 0 and the marginal model
method. Vertical lines represent the 99% confidence interval for each estimated FDR value.

50 100 150 200
Number of sequences

0.00

0.02

0.04

0.06

0.08

FD
R

FDRmax
BH
BY

(a) q = 0.05

50 100 150 200
Number of sequences

0.000

0.025

0.050

0.075

0.100

0.125

0.150

FD
R

FDRmax
BH
BY

(b) q = 0.1

50 100 150 200
Number of sequences

0.00

0.05

0.10

0.15

0.20

FD
R

FDRmax
BH
BY

(c) q = 0.15

Figure 6: Comparison of the estimated FDR for the BH and BY procedures, using a value of γ = 0.05 and the marginal model
method. Vertical lines represent the 99% confidence interval for each estimated FDR value.

Consider the equalities

P (E |A) = 1− P (B |A)− P (C |A)− P (D |A)

P (E) = 1− P (B)− P (C)− P (D),
(10)

where we’re using the fact that, as we are removing transi-
tions to A, P (A |A) = 0 and P (A) = 0. Combining (9) and
(10), it follows that P (E |A) < P (E). Thus, it’s not possi-
ble for all four of the conditional probabilities to be larger
than the base probabilities—in turn, this means that at least
one of the L∗ values must be negative. As such, it follows
that the corresponding statistical tests are not completely
independent of each other.

6. DISCUSSION
In this paper, we investigated the validity of methods used to
adjust for false discoveries when performing multiple com-
parisons. In two scenarios relevant to EDM research, we
evaluated the performance of the commonly used BH proce-
dure in relation to an alternate method—the BY procedure—
that is more general and is valid to use when the assump-
tions of the BH procedure cannot be met. Our first set
of experiments looked at the performance of these proce-
dures when used with pairwise comparisons of classification
models on a fixed set of test data. In all our experiments,
using both accuracy and AUROC as our performance met-

rics, the BH procedure controlled the FDR at the expected
level. These results are consistent with previous studies in-
vestigating pairwise comparisons, where in all cases the BH
procedure properly controlled the FDR [21, 38, 39]. Com-
bining these previous results with the experiments in this
study, our current view is that the usage of the BH pro-
cedures appears justified in this scenario—that is, one can
reasonably expect the BH procedure to properly control the
FDR when performing pairwise comparisons of classifiers on
a fixed set of test data.

Contrast this with our investigation on sequential data, where
we observed that the BH procedure, when combined with
either the marginal model procedure or L∗, did not control
the FDR at the expected level—this happened with various
experimental conditions and for various threshold values q.
The results could be an indication that the theoretical condi-
tions for applying the BH procedure might not be satisfied in
these situations. Combined with the fact that various issues
involving the analysis of state transitions have recently come
to light [7, 18, 19, 24, 25], we believe that using the more
conservative BY procedure is justified, particularly when the
analysis involves a small number of sequences. To compen-
sate for the fact that it is more conservative, when applying
the BY procedure we suggest the use of a larger value of q,
such as 0.1.

9
Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 41

50 100 150 200
Number of sequences

0.00

0.02

0.04

0.06

0.08

FD
R

FDRmax
BH
BY

(a) q = 0.05

50 100 150 200
Number of sequences

0.000

0.025

0.050

0.075

0.100

0.125

FD
R

FDRmax
BH
BY

(b) q = 0.1

50 100 150 200
Number of sequences

0.00

0.05

0.10

0.15

0.20

FD
R

FDRmax
BH
BY

(c) q = 0.15

Figure 7: Comparison of the estimated FDR for the BH and BY procedures, using a value of γ = 0 and the L∗ statistic.
Vertical lines represent the 99% confidence interval for each estimated FDR value.

50 100 150 200
Number of sequences

0.00

0.02

0.04

0.06

FD
R

FDRmax
BH
BY

(a) q = 0.05

50 100 150 200
Number of sequences

0.00

0.02

0.04

0.06

0.08

0.10

0.12

FD
R

FDRmax
BH
BY

(b) q = 0.1

50 100 150 200
Number of sequences

0.00

0.05

0.10

0.15

FD
R

FDRmax
BH
BY

(c) q = 0.15

Figure 8: Comparison of the estimated FDR for the BH and BY procedures, using a value of γ = 0.05 and the L∗ statistic.
Vertical lines represent the 99% confidence interval for each estimated FDR value.

More generally, it’s worth noting that there are many ex-
amples where the BH procedure performs well without any
theoretical guarantees [14, 22]. Thus, for situations in which
the BH procedure has not been theoretically or empirically
vetted, we offer a couple of suggestions. First, whenever pos-
sible, conducting a simulation study may be helpful; as seen
in this work, the results could give evidence for or against
the usage of the BH procedure. Failing that, and if there
is good reason to doubt the validity of using the BH proce-
dure, we suggest that the BY procedure be considered as a
possible alternative. In these cases, a higher value for q may
be justified in order to compensate for the more restrictive
nature of the BY procedure, and this decision could be made
based on the context of the study. For instance, in studies
that are exploratory in nature or have small sample sizes,
the loss of statistical power might be a larger concern; thus,
the BY procedure using a threshold of 0.1 or larger may
be appropriate. Whereas, in an experimental study looking
for conclusive evidence, it may be preferable to use the BY
procedure with a smaller value of q.

In regards to future work in this area, it would be of interest
to more completely understand why the BH procedure fails
to properly control the FDR in our simulations with sequen-
tial data. While we presented an argument in Section 5.4
that showed the statistical tests are not independent, it’s

an open question whether this argument can be extended to
rigorously show that the assumptions of the BH procedure
are violated—we are currently looking at this in more de-
tail. Furthermore, it’s possible that other elements may also
be at play. For example, as discussed previously there are
known issues with several existing methods commonly used
to evaluate state transitions. While the methods we used
in this study were originally developed in response to these
problems [24, 25], it’s possible that these existing issues, or
perhaps even new ones, are a factor; thus, further adjust-
ments to the marginal model and L∗ methods could lead to
improved control of the FDR with the BH procedure.

There exist other directions for future work that we are cur-
rently exploring. First, as the literature on multiple com-
parisons and controlling the FDR is actively growing, many
methods have been developed over the years. Thus, while
the BH and BY procedures are arguably the most notable of
the FDR controlling procedures, it would be worthwhile to
evaluate some of the newer alternatives, especially for the
analysis of state transitions. Second, our analyses in this
work focused exclusively on false discoveries (Type I errors)
and did not consider false negatives (Type II errors). As
such, in future work we aim to explicitly examine the inter-
action between these two types of errors with respect to the
BH and BY procedures and EDM research.

1042 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

7. REFERENCES
[1] Y. Benjamini. Discovering the false discovery rate.

Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 72(4):405–416, 2010.

[2] Y. Benjamini. Selective inference: The silent killer of
replicability. Harvard Data Science Review, 2(4), 12
2020. https://hdsr.mitpress.mit.edu/pub/l39rpgyc.

[3] Y. Benjamini and Y. Hochberg. Controlling the false
discovery rate: A practical and powerful approach to
multiple testing. Journal of the Royal Statistical
Society: Series B (Methodological), 57(1):289–300,
1995.

[4] Y. Benjamini and D. Yekutieli. The control of the false
discovery rate in multiple testing under dependency.
Annals of Statistics, pages 1165–1188, 2001.

[5] G. Biswas, H. Jeong, J. Kinnebrew, B. Sulcer, and
R. D. Roscoe. Measuring self-regulated learning skills
through social interactions in a teachable agent
environment. Res. Pract. Technol. Enhanc. Learn.,
5:123–152, 2010.

[6] N. Bosch and S. D’Mello. The affective experience of
novice computer programmers. International Journal
of Artificial Intelligence in Education, 27(1):181–206,
2017.

[7] N. Bosch and L. Paquette. What’s next? Edge cases
in measuring transitions between sequential states.
2020. Submitted for publication.

[8] C. Cody, M. Maniktala, D. Warren, M. Chi, and
T. Barnes. Does autonomy help Help? The impact of
unsolicited hints and choice on help avoidance and
learning. In Proceedings of the 13th International
Conference on Educational Data Mining, pages
591–595, 2020.

[9] E. R. DeLong, D. M. DeLong, and D. L.
Clarke-Pearson. Comparing the areas under two or
more correlated receiver operating characteristic
curves: A nonparametric approach. Biometrics, pages
837–845, 1988.

[10] T. G. Dietterich. Approximate statistical tests for
comparing supervised classification learning
algorithms. Neural Computation, 10(7):1895–1923,
1998.

[11] S. D’Mello and A. Graesser. Dynamics of affective
states during complex learning. Learning and
Instruction, 22(2):145–157, 2012.

[12] S. D’Mello, R. S. Taylor, and A. Graesser. Monitoring
affective trajectories during complex learning. In
Proceedings of the Annual Meeting of the Cognitive
Science Society, 29 (29), pages 203–208, 2007.

[13] A. L. Edwards. Note on the correction for continuity
in testing the significance of the difference between
correlated proportions. Psychometrika, 13(3):185–187,
1948.

[14] A. Farcomeni. More powerful control of the false
discovery rate under dependence. Statistical Methods
and Applications, 15(1):43–73, 2006.

[15] W. Fithian and L. Lei. Conditional calibration for
false discovery rate control under dependence. arXiv
preprint arXiv:2007.10438, 2020.

[16] J. J. Goeman and A. Solari. Multiple hypothesis
testing in genomics. Statistics in medicine,
33(11):1946–1978, 2014.

[17] P. J. Heagerty and S. L. Zeger. Marginalized
multilevel models and likelihood inference (with
comments and a rejoinder by the authors). Statistical
Science, 15(1):1–26, 2000.

[18] S. Karumbaiah, J. Andres, A. F. Botelho, R. S. Baker,
and J. S. Ocumpaugh. The implications of a subtle
difference in the calculation of affect dynamics. In
Proceedings of the 26th International Conference on
Computers in Education, pages 29–38, 2018.

[19] S. Karumbaiah, R. S. Baker, and J. Ocumpaugh. The
case of self-transitions in affective dynamics. In
Artificial Intelligence in Education-20th International
Conference, AIED 2019, pages 172–181, 2019.

[20] S. Karumbaiah, J. Ocumpaugh, and R. S. Baker. The
influence of school demographics on the relationship
between students help-seeking behavior and
performance and motivational measures. In
Proceedings of the 12th International Conference on
Educational Data Mining, pages 99–108, 2019.

[21] H. Keselman, R. Cribbie, and B. Holland. The
pairwise multiple comparison multiplicity problem:
An alternative approach to familywise and comparison
wise Type I error control. Psychological Methods,
4(1):58, 1999.

[22] K. I. Kim and M. A. van de Wiel. Effects of
dependence in high-dimensional multiple testing
problems. BMC bioinformatics, 9(1):1–12, 2008.

[23] K.-Y. Liang and S. L. Zeger. Longitudinal data
analysis using generalized linear models. Biometrika,
73(1):13–22, 1986.

[24] J. Matayoshi and S. Karumbaiah. Adjusting the L
statistic when self-transitions are excluded in affect
dynamics. Journal of Educational Data Mining,
12(4):1–23, Dec. 2020.

[25] J. Matayoshi and S. Karumbaiah. Using marginal
models to adjust for statistical bias in the analysis of
state transitions. In LAK21: 11th International
Learning Analytics and Knowledge Conference, pages
449– 455, 2021.

[26] J. McDonald. Handbook of Biological Statistics (3rd
ed.). Sparky House Publishing, 2014.

[27] Q. McNemar. Note on the sampling error of the
difference between correlated proportions or
percentages. Psychometrika, 12(2):153–157, 1947.

[28] G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach,
and M. Hallett. Identifying true brain interaction from
eeg data using the imaginary part of coherency.
Clinical neurophysiology, 115(10):2292–2307, 2004.

[29] J. Ocumpaugh, J. M. Andres, R. Baker, J. DeFalco,
L. Paquette, J. Rowe, B. Mott, J. Lester,
V. Georgoulas, K. Brawner, et al. Affect dynamics in
military trainees using vMedic: From engaged
concentration to boredom to confusion. In
International Conference on Artificial Intelligence in
Education, pages 238–249. Springer, 2017.

[30] S. J. Pocock, M. D. Hughes, and R. J. Lee. Statistical
problems in the reporting of clinical trials. New
England Journal of Medicine, 317(7):426–432, 1987.

[31] A. Reiner-Benaim. FDR control by the BH procedure
for two-sided correlated tests with implications to gene
expression data analysis. Biometrical Journal,
49(1):107–126, 2007.

11
Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 43

[32] A. Reiner-Benaim, D. Yekutieli, N. E. Letwin, G. I.
Elmer, N. H. Lee, N. Kafkafi, and Y. Benjamini.
Associating quantitative behavioral traits with gene
expression in the brain: Searching for diamonds in the
hay. Bioinformatics, 23(17):2239–2246, 2007.

[33] S. Seabold and J. Perktold. Statsmodels: Econometric
and statistical modeling with Python. In 9th Python
in Science Conference, 2010.

[34] G. D. Smith and S. Ebrahim. Data dredging, bias, or
confounding: They can all get you into the BMJ and
the Friday papers, 2002.

[35] J. D. Storey and R. Tibshirani. Statistical significance
for genomewide studies. Proceedings of the National
Academy of Sciences, 100(16):9440–9445, 2003.

[36] X. Sun and W. Xu. Fast implementation of DeLong’s
algorithm for comparing the areas under correlated
receiver operating characteristic curves. IEEE Signal
Processing Letters, 21(11):1389–1393, 2014.

[37] R. Venant and M. d’Aquin. Towards the prediction of
semantic complexity based on concept graphs. In
Proceedings of the 12th International Conference on
Educational Data Mining, pages 188–197, 2019.

[38] V. S. Williams, L. V. Jones, and J. W. Tukey.
Controlling error in multiple comparisons, with
examples from state-to-state differences in educational
achievement. Journal of educational and behavioral
statistics, 24(1):42–69, 1999.

[39] D. Yekutieli. False discovery rate control for
non-positively regression dependent test statistics.
Journal of Statistical Planning and Inference,
138(2):405–415, 2008.

[40] S. S. Young and A. Karr. Deming, data and
observational studies: A process out of control and
needing fixing. Significance, 8(3):116–120, 2011.

8. EDM REVIEW REFERENCES
[41] H. Anderson, A. Boodhwani, and R. Baker. Assessing

the fairness of graduation predictions. In Proceedings
of the 12th International Conference on Educational
Data Mining, 2019.

[42] J. Andrews-Todd, C. Forsyth, J. Steinberg, and
A. Rupp. Identifying profiles of collaborative problem
solvers in an online electronics environment. In
Proceedings of the 11th International Conference on
Educational Data Mining, 2018.

[43] A. Bauer, J. Flatten, and Z. Popovic. Analysis of
problem-solving behavior in open-ended
scientific-discovery game challenges. In Proceedings of
the 10th International Conference on Educational
Data Mining, 2017.

[44] N. Bosch, W. Crues, and N. Shaik. Diverse learners,
diverse motivations: Exploring the sentiment of
learning objectives. In Proceedings of the 11th
International Conference on Educational Data Mining,
2018.

[45] A. F. Botelho, R. Baker, J. Ocumpaugh, and
N. Heffernan. Studying affect dynamics and
chronometry using sensor-free detectors. In
Proceedings of the 11th International Conference on
Educational Data Mining, 2018.

[46] C. Cody, M. Maniktala, D. Warren, M. Chi, and
T. Barnes. Does autonomy help Help? The impact of

unsolicited hints and choice on help avoidance and
learning. In Proceedings of the 13th International
Conference on Educational Data Mining, 2020.

[47] M. Dong, R. Yu, and Z. Pardos. Design and
deployment of a better university course search:
Inferring latent keywords from enrollments. In
Proceedings of the 12th International Conference on
Educational Data Mining, 2019.

[48] M. Eagle, A. Corbett, J. Stamper, and B. McLaren.
Predicting individualized learner models across tutor
lessons. In Proceedings of the 11th International
Conference on Educational Data Mining, 2018.

[49] E. Farhana, T. Rutherford, and C. Lynch.
Investigating relations between self-regulated reading
behaviors and science question difficulty. In
Proceedings of the 13th International Conference on
Educational Data Mining, 2020.

[50] S. C. Fonseca, F. D. Pereira, E. Oliveira,
D. Fernandes, L. S. D. Carvalho, and A. Cristea.
Automatic subject-based contextualisation of
programming assignment lists. In Proceedings of the
13th International Conference on Educational Data
Mining, 2020.

[51] C. Forsyth, J. Andrews-Todd, and J. Steinberg. Are
you really a team player? profiling of collaborative
problem solvers in an online environment. In
Proceedings of the 13th International Conference on
Educational Data Mining, 2020.

[52] P. S. Inventado, P. Scupelli, E. V. Inwegen, K. S.
Ostrow, N. Heffernan, J. Ocumpaugh, R. Baker,
S. Slater, and M. Almeda. Hint availability slows
completion times in summer work. In Proceedings of
the Ninth International Conference on Educational
Data Mining, 2016.

[53] S. Klingler, R. Wampfler, T. Käser, B. Solenthaler,
and M. Gross. Efficient feature embeddings for
student classification with variational auto-encoders.
In Proceedings of the 10th International Conference on
Educational Data Mining, 2017.

[54] Z. Liu, R. Brown, C. Lynch, T. Barnes, R. Baker,
Y. Bergner, and D. McNamara. MOOC learner
behaviors by country and culture; an exploratory
analysis. In Proceedings of the Ninth International
Conference on Educational Data Mining, 2016.

[55] Z. Liu, C. Cody, T. Barnes, C. Lynch, and
T. Rutherford. The antecedents of and associations
with elective replay in an educational game: Is replay
worth it? In Proceedings of the 10th International
Conference on Educational Data Mining, 2017.

[56] I. Pytlarz, S. Pu, M. Patel, and R. Prabhu. What can
we learn from college students’ network transactions?
Constructing useful features for student success
prediction. In Proceedings of the 11th International
Conference on Educational Data Mining, 2018.

[57] S. Slater, J. Ocumpaugh, R. Baker, P. Scupelli, P. S.
Inventado, and N. Heffernan. Semantic features of
math problems: Relationships to student learning and
engagement. In Proceedings of the Ninth International
Conference on Educational Data Mining, 2016.

[58] K. Thaker, Y. Huang, P. Brusilovsky, and H. Da-qing.
Dynamic knowledge modeling with heterogeneous
activities for adaptive textbooks. In Proceedings of the

1244 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

11th International Conference on Educational Data
Mining, 2018.

[59] A. Vail, J. Wiggins, J. F. Grafsgaard, K. Boyer,
E. Wiebe, and J. Lester. The affective impact of tutor
questions: Predicting frustration and engagement. In
Proceedings of the Ninth International Conference on
Educational Data Mining, 2016.

[60] O. Vainas, Y. B. David, R. Gilad-Bachrach,
M. Ronen, O. Bar-Ilan, R. Shillo, G. Lukin, and
D. Sitton. Staying in the zone: Sequencing content in
classrooms based on the zone of proximal
development. In Proceedings of the 12th International
Conference on Educational Data Mining, 2019.

[61] R. Venant and M. d’Aquin. Towards the prediction of
semantic complexity based on concept graphs. In
Proceedings of the 12th International Conference on
Educational Data Mining, 2019.

[62] R. Zhi, S. Marwan, Y. Dong, N. Lytle, T. W. Price,
and T. Barnes. Toward data-driven example feedback
for novice programming. In Proceedings of the 12th
International Conference on Educational Data Mining,
2019.

13
Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 45

Student Performance Prediction Using Dynamic Neural
Models

Marina Delianidi
International Hellenic University, Greece

dmarina@ihu.gr

Konstantinos Diamantaras
International Hellenic University, Greece

kdiamant@ihu.gr
George Chrysogonidis

International Hellenic University, Greece
g.chrysogonidis@ihu.edu.gr

Vasileios Nikiforidis
International Hellenic University, Greece

v.nikiforidis@ihu.edu.gr

ABSTRACT
We address the problem of predicting the correctness of
the student’s response on the next exam question based on
their previous interactions in the course of their learning
and evaluation process. We model the student performance
as a dynamic problem and compare the two major classes
of dynamic neural architectures for its solution, namely the
finite-memory Time Delay Neural Networks (TDNN) and
the potentially infinite-memory Recurrent Neural Networks
(RNN). Since the next response is a function of the knowl-
edge state of the student and this, in turn, is a function of
their previous responses and the skills associated with the
previous questions, we propose a two-part network architec-
ture. The first part employs a dynamic neural network (ei-
ther TDNN or RNN) to trace the student knowledge state.
The second part applies on top of the dynamic part and it
is a multi-layer feed-forward network which completes the
classification task of predicting the student response based
on our estimate of the student knowledge state. Both input
skills and previous responses are encoded using different em-
beddings. Regarding the skill embeddings we tried two dif-
ferent initialization schemes using (a) random vectors and
(b) pretrained vectors matching the textual descriptions of
the skills. Our experiments show that the performance of the
RNN approach is better compared to the TDNN approach in
all datasets that we have used. Also, we show that our RNN
architecture outperforms the state-of-the-art models in four
out of five datasets. It is worth noting that the TDNN ap-
proach also outperforms the state of the art models in four
out of five datasets, although it is slightly worse than our
proposed RNN approach. Finally, contrary to our expec-
tations, we find that the initialization of skill embeddings
using pretrained vectors offers practically no advantage over
random initialization.

Keywords
Student performance prediction, Recurrent neural networks,

Time-delay neural networks, Dynamic neural models, Knowl-
edge tracing.

1. INTRODUCTION
Knowledge is distinguished by the ability to evolve over
time. This progression of knowledge is usually incremen-
tal and its formation is related to the cognitive areas being
studied. The process of Knowledge Tracing (KT) defined as
the task of predicting students’ performance has attracted
the interest of many researchers in recent decades [4]. The
Knowledge State (KS) of a student is the degree of his or
her mastering the Knowledge Components (KC) in a certain
domain, for example “Algebra” or “Physics”. A knowledge
component generally refers to a learnable entity, such as a
concept or a skill, that can be used alone or in combination
with other KCs in order to solve an exercise or a problem
[9]. Knowledge Tracing is the process of modeling and as-
sessing a student’s KS in order to predict his or her ability
to answer the next problem correctly. The estimation of the
student’s knowledge state is useful for improving the educa-
tional process by identifying the level of his/her understand-
ing of the various knowledge components. By exploiting this
information it is possible to suggest appropriate educational
material to cover the student’s weaknesses and thus maxi-
mize the learning outcome.

The main problem of Knowledge Tracing is the efficient man-
agement of the responses over time. One of the factors which
add complexity to the problem of KT is the student-specific
learning pace. The knowledge acquisition may differ from
person to person and may also be influenced by already ex-
isting knowledge. More specifically, KT is predominantly
considered as a supervised sequence learning problem where
the goal is to predict the probability that a student will an-
swer correctly the future exercises, given his or her history
of interactions with previous tests. Thus, the prediction of
the correctness of the answer is based on the history of the
student’s answers in combination with the skill that is cur-
rently examined at this time instance.

Mathematically, the KT task is expressed as the probability
P (rt+1 = 1|qt+1, Xt) that the student will offer the correct
response in the next interaction xt+1, where the students
learning activities are represented as a sequence of interac-
tions Xt = {x1, x2, x3, ..., xt} over time T . The xt interac-
tion consists of a tuple (qt, rt) which represents the ques-

Marina Delianidi, Konstantinos Diamantaras, George Chrysogonidis and
Vasileios Nikiforidis “Student Performance Prediction Using Dynamic
Neural Models”. 2021. In: Proceedings of The 14th International Con-
ference on Educational Data Mining (EDM21). International Educational
Data Mining Society, 46-54. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

46 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

tion qt being answered at time t and the student response
rt to the question. Without loss of generality, we shall as-
sume that knowledge components are represented by skills
from a set S = {s1, s2, ..., sm}. One simplifying assumption,
used by many authors [24], is that every question in the set
Q = {q1, q2, ..., qT } is related to a unique skill from S. Then
the knowledge levels of the student for each one of the skills
in S compose his or her knowledge state.

The dynamic nature of Knowledge Tracing leads to approa-
ches that have the ability to model time-series or sequential
data. In this work we propose two dynamic machine learning
models that are implemented by time-dependent methods,
specifically recurrent and time delay neural networks. Our
models outperform the current state-of-the-art approaches
in four out of five benchmark datasets that we have studied.
The proposed models differ from the existing ones in two
main architectural aspects:

• we find that attention does not help improve the per-
formance and therefore we make no use of attention
layers

• we experiment with and compare between two dif-
ferent skill embedding types: (a) initialized by pre-
trained embeddings of the textual descriptions of the
skill names using standard methods such as Word2Vec
and FastText and (b) randomly initialized embeddings
based on skill ids

The rest of the paper is organized as follows. Section 2 re-
views the related works on KT and the existing models for
student performance prediction. In Section 3 we present our
proposed models and describe their architecture and char-
acteristics. The datasets we prepared and used are present
in Section 4 while the experiments setup and the results
are explained in Section 5. Finally, Section 6 concludes this
work and discusses the future works and extensions of the
research.

2. RELATED WORKS
The problem of knowledge tracing is dynamic as student
knowledge is constantly changing over time. Thus, a variety
of methods, highly structured or dynamic, have been pro-
posed to predict students’ performance. One of the earlier
methods is Bayesian Knowledge Tracing (BKT) [4] which
models the problem as a Hidden Markov chain in order to
predict the sequence of outcomes for a given learner. The
Performance Factors Analysis Model (PFA) [14] proposed to
tackle the knowledge tracing task by modifying the Learning
Factor Analysis model. It estimates the probability that a
student will answer a question correctly by maximizing the
likelihood of a logistic regression model. The features used
in the PFA model, although interpretable, are relatively sim-
ple and designed by hand, and may not adequately represent
the students’ knowledge state [23].

Deep Knowledge Tracing (DKT) [15] is the first dynamic
model proposed in the literature utilizing recurrent neural
networks (RNN) and specifically the Long Short-Term Mem-
ory (LSTM) model [6] to track student knowledge. It uses
one-hot encoded skill tags and associated responses as inputs

and it trains the neural network to predict the next student
response. The hidden state of the LSTM can be considered
as the latent knowledge state of a student and can carry the
information of the past interactions to the output layer. The
output layer of the model computes the probability of the
student answering correctly a question relating to a specific
Knowledge Component.

Another approach for predicting student performance is the
Dynamic Key-Value Memory Network (DKVMN) [24] which
relies on an extension of memory networks proposed in [12].
The model tries to capture the relationship between differ-
ent concepts. The DKVMN model outperforms DKT us-
ing memory slots as key and value components to encode
the knowledge state of students. Learning or forgetting of
a particular skill are stored in those components and con-
trolled by read and write operations through the Least Re-
cently Used Access (LRUA) attention mechanism [16]. The
key component is responsible for storing the concepts and is
fixed during testing while the value component is updated
when a concept state changes. The latter means that when
a student acquires a concept in a test the value component
is updated based on the correlation between exercises and
the corresponding concept.

The Deep-IRT model [23] is the newest approach that ex-
tends the DKVMN model. The author combined the capa-
bilities of DKVMN with the Item Response Theory (IRT)
[5] in order to measure both student ability and question dif-
ficulty. At the same time, another model, named Sequential
Key-Value Memory Networks (SKVMN) [1], tried to over-
come the problem of DKVMN to capture long term depen-
dencies in the sequences of exercises and generally in sequen-
tial data. This model combines the DKVMN mechanism
with the Hop-LSTM, a variation of LSTM architecture and
has the ability to discover sequential dependencies among
exercises, but it skips some LSTM cells to approach previ-
ous concepts that are considered relevant. Finally, another
newly proposed model is Self Attentive Knowledge Tracing
(SAKT) [13]. SAKT utilizes a self-attention mechanism and
mainly consists of three layers: an embedding layer for in-
teractions and questions followed by a Multi-Head Attention
layer [19] and a feed-forward layer for student response pre-
diction.

The above models either use simple features (e.g. PFA)
or they use machine learning approaches such as key-value
memory networks or attention mechanisms that may add
significant complexity. However we will show that similar
and often, in fact, better performance can be achieved by
simpler dynamic models combining embeddings and recur-
rent and/or time-delay feed-forward networks as proposed
next.

3. PROPOSED APPROACH
3.1 Dynamic Models
As referenced in the relative literature, knowledge change
over time is often modeled by dynamic neural networks. The
dynamic models produce output based on a time window,
called “context window”, that contains the recent history of
inputs and/or outputs.

There are two types of dynamic neural networks (Figure 1):

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 47

(a) Time-Delay Neural Networks (TDNN), with only feed-
forward connections and finite-memory of length L equal to
the length of the context window, and (b) Recurrent Neu-
ral Networks (RNN) with feed-back connections that can
have potentially infinite-memory although, practically, their
memory length is dictated by a forgetting factor parameter.

Figure 1: Dynamic model architectures: (a) Time-
Delay Neural Network (b) Recurrent Neural Net-
work.

3.2 The Proposed Models
We approach the task of predicting the student response
(0=wrong, 1=correct) on a question involving a specific skill
as a dynamic binary classification problem. In general, we
view the response rt as a function of the previous student
interactions:

rt = h(qt, qt−1, qt−2, . . . , rt−1, rr−2, . . .) + εt (1)

where qt, is the skill tested on time t and εt is the prediction
error. The response is therefore a function of the current and
the previous tested skills {qt, qt−1, qt−2, . . . }, as well as the
previous responses {rt−1, rt−2, . . . } given by the student.

We implement h as a dynamic neural model. Our proposed
general architecture is shown in Figure 2. The inputs are
the skill and response sequences {q}, {r} collected during
a time-window of length L prior to time t. Note that the
skill sequence includes the current skill qt but the response
sequence does not contain the current response which is ac-
tually what we want to predict. The architecture consists of
two main parts:

• The Encoding sub-network. It is used to represent
the response and skill input data using different em-
beddings. Clearly, embeddings are useful for encoding
skills since skill ids are categorical variables. We found
that using embeddings to encode responses is also very
beneficial. The details of the embeddings initialization
and usage are described in the next section.

• The Tracing sub-network. This firstly estimates the
knowledge state of the student and then uses it to pre-
dict his/her response. Our model function consists of
two parts: (i) the Knowledge-Tracing part, represented
by the dynamic model f , which predicts the student
knowledge state vt and (ii) the classification part g,

which predicts the student response based on the esti-
mated knowledge state:

vt = f(qt, qt−1, qt−2, . . . , rt−1, rr−2, . . .) (2)

r̂t = g(vt) (3)

Depending on the memory length, we obtain two cat-
egories of models:

(a) models based on RNN networks which can poten-
tially have infinite memory. In this case the KT
model is recurrent:

vt = f(vt−1, qt, qt−1, . . . , qt−L, rt−1, . . . , rr−L)

(b) models based on TDNN networks which have fi-
nite memory of length L. In this case the KT
model has finite impulse response L:

vt = f(qt, qt−1, . . . , qt−L, rt−1, . . . , rr−L)

Although RNNs have been used in the relevant literature, it
is noteworthy that TDNN approaches have not been investi-
gated in the context of knowledge tracing. The classification
part is modeled by a fully-connected feed-forward network
with a single output unit.

Figure 2: General proposed architecture. The dy-
namic model can be either a Recurrent Neural Net-
work (with a feedback connection from the output
of the dynamic part into the model input) or a Time
Delay Neural Network (without feedback connec-
tion).

We investigated two different architectures: one based on
recurrent neural networks and another based on time delay
neural networks. The details of each proposed model archi-
tecture are described below.

3.3 Encoding Sub-network
The first part in all our proposed models consists of two
parallel embedding layers with dimensions dq and dr, re-
spectively, which encode the tested skills and the responses
given by the student. During model training the weights of
the Embedding layers are updated. The response embed-
ding vectors are initialized randomly. The skill embedding
vectors, on the other hand, are initialized either randomly
or using pretrained data. In the latter case we use pre-
trained vectors corresponding to the skill names obtained
from Word2Vec [11] or FastText [7] methods.

A 1D spatial dropout layer [18] is added after each Em-
bedding layer. The intuition behind the addition of spatial

48 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

dropout was the overfitting phenomenon that was observed
in the first epochs of each validation set. We postulated that
the correlation among skill name embeddings, that might
not actually exist, confused the model.

3.4 Tracing Sub-network
We experimented with two types of main dynamic sub-net-
works, namely Recurrent Neural Networks and Time Delay
Neural Networks. These two approaches are described next.

3.4.1 RNN Approach: Bi-GRU Model
The model architecture based on the RNN method for the
knowledge tracing task is shown in Figure 3.

Figure 3: Bi-GRU model

The Spatial Dropout rate following the input embedding
layers is 0.2 for most of used datasets. Next, we feed the
skills and the responses input branches into a Convolutional
layer consisting of 100 filters, with kernel size 3, stride 1,
and ReLU activation function. The Convolutional layer acts
as a projection mechanism that reduces the input dimen-
sions from the previous Embedding layer. This is found to
help alleviate the overfitting problem. To the best of our
knowledge, Convolutional layers have not been used in pre-
viously proposed neural models for this task. The two in-
put branches are then concatenated to feed a Bidirectional
Gated Recurrent Unit (GRU) layer with 64 units [3]. Batch
normalization and ReLU activation layers are applied be-
tween convolutional and concatenation layers. This struc-
ture has resulted after extensive experiments with other pop-
ular recurrent models such as LSTM, plain GRU and also
bi-directional versions of those models and we found this
to be the proposed architecture is the most efficient one.

On top of the RNN layer we append a fully connected sub-
network consisting of three dense layers with 50 and 25 units
and one output unit respectively. The first two dense layers
have a ReLU activation function while the last one has sig-
moid activation which is used to make the final prediction
(0 < r̂t < 1).

3.4.2 TDNN Approach
In our TDNN model (Figure 4) we add a Convolutional layer
after each embedding layer with 50 filters and kernel size
equal to 5.

Figure 4: TDNN model

Batch normalization is used before the ReLU activation is
applied. As with the RNN model, the two input branches
are concatenated to feed the classification sub-network. It
consists of four dense layers with 20, 15, 10, and 5 units
respectively, using the ReLU activation function. This fun-
nel schema of hidden layers (starting with wider layers and
continuing with narrower ones) has helped achieve better
results for all datasets we have experimented with. In the
beginning of the classification sub-network we insert a Gaus-
sian Dropout layer [17] which multiplies neuron activations
with a Gaussian random variable of mean value 1. This has
been shown to work as good as the classical Bernoulli noise
dropout and in our case even better.

4. DATASETS
We tested our models using four popular datasets from the
ASSISTments online tutoring platform. Three of them,“AS-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 49

Table 1: Datasets Overview.
Dataset Skills Students Responses Baseline Accuracy

ASSISTment09 110 4,151 325,637 65.84%
ASSISTment09 corrected 101 4,151 274,590 66.31%

ASSISTment12 196 28,834 2,036,080 69.65%
ASSISTment17 101 1,709 864,713 62.67%
FSAI-F1toF3 99 310 51,283 52.98%

SISTment09”, “ASSISTment09 corrected”1, and “ASSIST-
ment12”2 were provided by the above platform. The fourth
dataset, named “ASSISTment17” was obtained from 2017
Data Mining competition page3. Finally a fifth dataset,
“FSAI-F1toF3” provided by “Find Solution Ai Limited” was
also used in our experiments. It is collected using data from
the from the 4LittleTrees4 adaptive learning application.

4.1 Datasets Descriptions
The ASSISTments datasets contain data from student tests
on mathematical problems [2] and the content is organized in
columns style. The student’s interaction is recorded on each
line. There are one or more interactions recorded for each
student. We take into account the information concerning
the responses of students to questions related with a skill.
Thus, we use the following columns: “user id”, “skill id”,
“skill name”, and“correct”. The“skill name”contains a ver-
bal description of the skill tested. The “correct” column con-
tains the values of the students’ responses which are either
1 (for correct) or 0 (for wrong).

The original “ASSISTment09” dataset contains 525,534 stu-
dent responses. It has been used extensively in the KT task
from several researchers but according to [2] data quality
issues have been detected concerning duplicate rows. In
our work we used the “preprocessed ASSISTment09” dataset
found on DKVMN5 and Deep-IRT6 models GitHubs. In this
dataset the duplicate rows and the empty field values were
cleaned, so that finally 1,451 unique students participate
with 325,623 total responses and 110 unique skills.

Even after this cleaning there are still some problems such as
duplicate skill ids for the same skill name. These problems
have been corrected in the ”Assistment09 corrected”dataset.
This dataset contains 346,860 students interactions and has
been recently used in [21].

The “ASSISTment12” dataset contains students’ data un-
til the school year 2012-2013. The initial dataset contains
6,123,270 responses and 198 skills. Some of the skills have
the same skill name but different skill id. The total num-
ber of skill ids is 265. The “Assistment17” dataset contains
942,816 students responses and 101 skills.

1https://sites.google.com/site/assistmentsdata/home/assis
tment-2009-2010-data/skill-builder-data-2009-2010
2https://sites.google.com/site/assistmentsdata/home/2012-
13-school-data-with-affect
3https://sites.google.com/view/assistmentsdatamining/dat
a-mining-competition-2017
4https://www.4littletrees.com
5https://github.com/jennyzhang0215/DKVMN
6https://github.com/ckyeungac/DeepIRT

Finally, the “FSAI-F1toF3” dataset is the smallest dataset
we used. It involves responses to mathematical problems
from 7th grade to 9th grade Hong Kong students and con-
sists of 51,283 students responses from 310 students on 99
skills and 2,266 questions. As it is commonly the case in
most studies using this dataset, we have used the question
tag as the model input qt.

4.2 Data Preprocessing
No preprocessing was performed on the “ASSISTment09”
and “FSAI-F1toF3” datasets. For the remaining datasets
we followed three preparation steps.

First, the skill ids had been repaired by replacement. In par-
ticular, the “ASSISTments09 corrected” dataset contained
skills of the form of “skill1 skill2” and “skill1 skill2 skill3”
which correspond to the same skill names, so we have merged
them into the first skill id, found before the underscore. In
other words, the skill “10 13” was replaced with skill “10”
and so on. Moreover, few misspellings were observed that
were corrected and the punctuations found in three skill
names were converted to the corresponding words. For ex-
ample, in the skill name “Parts of a Polnomial Terms Coef-
ficient Monomial Exponent Variable” we corrected the “Pol-
nomial” with “Polynomial”. Also, in the skill name “Or-
der of Operations +,-,/,*() positive reals” we replaced the
symbols “+,-,/,* ()” with the words that express these sym-
bols, ie. “addition subtraction division multiplication paren-
theses”. The latter preprocessing action was preferred over
the removal of punctuations since the datasets referred to
mathematical methods and operations and without them,
we would lose the meaning of each skill. Similar procedure
has been followed for the “ASSISTments12” dataset. Fur-
thermore, spaces after some skill names were removed i.e.
the skill name “Pattern Finding ” became “Pattern Find-
ing”. In the “ASSISTment17” dataset we came across skill
names as “application: multi-column subtraction” and cor-
rected them by replacing punctuation marks such as “appli-
cation multi column subtraction”. That text preparation op-
erations made to ease the generation of word embeddings of
the skill names descriptions. In addition, in the “ASSIST-
ment17” dataset, the problem ids are used instead of the
skill ids. We had to match and replace the problem ids with
the corresponding skill ids with the aim of uniformity of the
datasets between them.

Secondly, all rows containing missing values were discarded.
Thus, after the preprocessing, the statistics of the data sets
were formulated as described in the Table 1.

Finally, we split the datasets so that 70% was used for train-
ing and 30% for testing. Then, the training subset was fur-
ther split into five train-validation subsets using 80% for

50 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

training and 20% for validation.

5. EXPERIMENTS
In this section we experimentally validate the effectiveness
of the proposed methods by comparing them with each other
and also with other state-of-the-art performance prediction
models. The Area Under the ROC Curve (AUC) [10] metric
is used for comparing the predicting probability correctness
of student’s response.

The state-of-the-art knowledge tracing models we are com-
pared with the DKT, DKVMN and Deep-IRT. We performed
the experiments for our proposed models Bi-GRU, TDNN
as well as for each of the previous model for all datasets, us-
ing the code provided by the authors on their GitHubs. It
is worth noting that the python GitHub code7 used for the
DKT model experiments requires the entire dataset file and
the train/test splitting is performed during the code execu-
tion.

All the experiments were performed on a workstation with
Ubuntu operating system, Intel i5 CPU and 16GB Titan Xp
GPU card.

5.1 Skill embeddings initialization
As mentioned earlier, skill embeddings are initialized either
randomly or using pretrained vectors. Regarding the ini-
tialization of the skill embeddings with pretrained vectors
we used two methods described next. In first method we
used the text files from Wikipedia2Vec8 [22] that is based
on Word2Vec method and contains pretrainable embeddings
for the word representation vectors in English language in
100 and 300 dimensions. In second method we used the“SIS-
TER” (SImple SenTence EmbeddeR)9 library to prepare the
skill name embeddings based on FastText in 300 dimensions
pretrained word embeddings. Each skill name consists of one
or more words. Thus, for the Word2Vec method, the skill
name embeddings vector is created by adding the word em-
beddings vectors, while in case of FastText, the skill name
embeddings are created by taking the average of the word
embeddings.

Especially for the FsaiF1toF3 dataset, the question embed-
dings are initialized either randomly or using the pretrained
word representations of the corresponding skill descriptions
by employing the Wikipedia2Vec and SISTER methods as
described above. Since many questions belong to the same
skill, in this case the corresponding rows in the embedding
matrix are initialized by the same vector.

5.2 Experimental Settings
We performed the cross-validation method for the 5 train-
ing and validation set pairs. This was to choose the best ar-
chitecture and parameter settings for each of the proposed
models. Using the train and test sets we evaluated the cho-
sen architectures for all the datasets.

7https://github.com/lccasagrande/Deep-Knowledge-
Tracing
8https://wikipedia2vec.github.io/wikipedia2vec/
9https://pypi.org/project/sister/

One of the basic hyperparameters of our models that affect
to the inputs is the L. It represents the student’s interaction
history window length. The inputs with L sequence of ques-
tions and L − 1 sequence of responses. The best results we
succeeded are when using L = 50 for the both Bi-GRU and
TDNN models. The batch sizes used in the models during
the training are: 32 in Bi-GRU and 50 in TDNN.

Since specific dimensions of the pretrained word embeddings
are provided, we used the same dimensions in case of random
embedding in order to take the comparable results. Skill
embeddings and responses embeddings set in the same di-
mensions.

The scheduler learning rate is implementing in Bi-GRU start-
ing from 0.001 and reducing over the training operation of
the models that performs for 30 epochs. During training we
applied the following learning rate schedule depending on
the epoch number n:

lr =

{
rinit if n < 10

rinit × e(0.1·(10−n)) otherwise

In case of the TDNN-based model, the learning rate equals
0.001 and is the same during the whole training process for
30 epochs. We used cross-entropy optimization criterion and
the Adam or AdaMax [8] learning algorithms.

Dropout with rate = 0.2 or 0.9 is also applied to the Bi-GRU
model while the dropout rate of the TDNN equals to one of
the (0.2, 0.4, 0.6, 0.9) values through to the Gaussian dropout
layer. We observed a reduction of overfitting during model
training by changing the Gaussian dropout rate relative to
the dataset’s size. Thus, the smaller dataset size is, the
bigger dropout rate has been used.

The various combinations of parameters settings were ap-
plied during the experimental process for all proposed mod-
els presented in Table 2.

5.3 Experimental Results
The experiments results of our models are shown in Table 3.
Comparing our models with each other we can see that the
RNN-based Bi-GRU model outperforms the TDNN-based
model in all datasets. It achieved best results when 100d
embeddings were used either in pretrained or the random
initialization type.

We observed that in both Bi-GRU or TDNN, the embed-
ding type is not the significant parameter that affects the
models performance. The differences between the results of
the experiments showed that the size of embeddings dimen-
sions not particularly contributed to the final result and the
difference in performance of the models was small.

Except for our models, we performed experiments for all
datasets on the previous models we compared. For three
of the datasets, specifically for “ASSISTment09 corrected”,
“ASSISTment12”and“ASSISTment17”there were not avail-
able results in the corresponding papers. In this paper, we
present the results of the experiments we run using that
models codes.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 51

Table 2: Models experiments settings
Parameters Bi-GRU TDNN

Learning rate 0.001 0.001
Learning rate schedule yes no
Training epochs 30 30
Batch size 32 50
Optimizer Adam AdaMax
History window length 50 50
Skill embeddings dim. 100 & 300 100 & 300
Skill embeddings type Random, W2V, FastText Random, W2V, FastText
Responses embeddings dim. Same to skill dim. Same to skill dim.
Responses embeddings type Random Random

Table 3: Comparison between our proposed models - AUC (%). (R) = random skill embedding initialization,
(W) = skill embedding initialization using W2V, (F) = skill embedding initialization using FastText. Datasets:
(a) ASSISTment09, (b) ASSISTment09 corrected, (c) ASSISTment12, (d) ASSISTment17, (e) FSAI-F1toF3

dq = 100(R) dq = 300(R) dq = 100(W) dq = 300(W) dq = 300(F)
Bi-GRU 82.55 82.45 82.52 82.55 82.39
TDNN 81.54 81.67 81.59 81.50 81.53

(a)

dq = 100(R) dq = 300(R) dq = 100(W) dq = 300(W) dq = 300(F)
Bi-GRU 75.27 75.13 75.14 75.09 75.12
TDNN 74.38 74.39 74.40 74.33 74.37

(b)

dq = 100(R) dq = 300(R) dq = 100(W) dq = 300(W) dq = 300(F)
Bi-GRU 68.37 68.37 68.40 68.23 68.27
TDNN 67.95 67.97 67.99 67.95 67.91

(c)

dq = 100(R) dq = 300(R) dq = 100(W) dq = 300(W) dq = 300(F)
Bi-GRU 73.62 73.58 73.76 73.54 73.58
TDNN 71.68 71.75 71.52 71.81 71.83

(d)

dq = 100(R) dq = 300(R) dq = 100(W) dq = 300(W) dq = 300(F)
Bi-GRU 70.47 69.34 70.24 69.80 69.51
TDNN 70.03 69.80 69.80 70.11 70.06

(e)

The best experimental results of the ours models in com-
parison with the previous models for each dataset are pre-
sented in Table 4. The model that has the best performance
for the four of datasets is the Bi-GRU. Except for that, the
TDNN-based model has better performance in comparison
to the previous models for four datasets. The only dataset,
for which the previous models overcomed our models is the
“ASSISTment12”.

5.4 Discussion
Our model architecture is loosely based on the DKT model
and offers improvements in the aspects discussed below. First,
we employ embeddings for representing both skills and re-
sponses. It is known that embeddings offer more useful rep-
resentations compared to one-hot encoding because they can
capture the similarity between the items they represent [20].
Second, we thoroughly examined dynamical neural models
for estimating the student knowledge state by trying both

infinite-memory RNNs and finite-memory TDNNs. To our
knowledge, TDNNs have not been well studied in the litera-
ture with respect to this problem. Third, we used convolu-
tional layers in the inputs encoding sub-net. We found that
this layer functioned as a reducing mechanism of the embed-
ding dimensions and in conjunction with the dropout layer
mitigated the overfitting problem. The use of Convolutional
layers is a novelty in models tackling the knowledge tracing
problem. Fourth, unlike DKT, we used more hidden layers
in the classification sub-net. Our experiments demonstrate
that this gives more discriminating capability to the classi-
fier and improves the results. Finally, our experiments with
key-value modules and attention mechanism did not help
further improve our results and so these experiments are not
reported here. In the majority of the datasets we examined
our model outperforms the state-off the models employing
key-value mechanisms such as DKVMN and Deep-IRT.

In addition to the AUC metric which is typically used for

52 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 4: Comparison test results of evaluation measures - the AUC metric (%)
Dataset DKT DKVMN Deep-IRT Bi-GRU TDNN

ASSISTment09 81.56% 81.61% 81.65% 82.55%(1,2) 81.67%(3)

ASSISTment09 corrected 74.27% 74.06% 73.41% 75.27%(1) 74.40%(2)

ASSISTment12 69.40% 69.26% 69.73% 68.40%(4) 67.99%(4)

ASSISTment17 66.85% 70.25% 70.54% 73.76%(4) 71.83%(5)

FSAI-F1toF3 69.42% 68.40% 68.69% 70.47%(1) 70.11%(2)

(1) dq = dr = 100, Random, (2) dq = dr = 300, W2V, (3) dq = dr = 300, Random,
(4) dq = dr = 100, W2V, (5) dq = dr = 300, FastText

Table 5: Statistical significance testing results of Bi-GRU and TDNN
Dataset P-value
ASSISTment09 7.34 e-59
ASSISTment09 corrected 2.31 e-52
ASSISTment12 1.45 e-203
ASSISTment17 7.96 e-44
FSAI-F1toF3 1.38 e-84

evaluating the performance of our machine learning mod-
els, we applied statistical significance testing to check the
similarity between out Bi-GRU and TDNN models. Specif-
ically, we performed a T-Test between the outcomes of the
two models in all training data using the best configuration
settings as shown in Table 4. The results reported in Table
5 show that the P-value calculated in all cases is practically
zero which proves the hypothesis that the two models are
significantly different.

6. CONCLUSION AND FUTURE WORK
In this paper we propose a novel two-part neural network
architecture for predicting student performance in the next
exam or exercise based on their performance in previous ex-
ercises. The first part of the model is a dynamic network
which tracks the student knowledge state and the second
part is a multi-layer neural network classifier. For the dy-
namic part we tested two different models: a potentially
infinite memory recurrent Bidirectional GRU model and a
finite memory Time-Delay neural network (TDNN). The ex-
perimental process showed that the Bi-GRU model achieves
better performance compared to the TDNN model. De-
spite the fact that TDNN models have not been used for
this problem in the past, our results have shown that they
can be just as efficient or even better compared to previ-
ous state-of-art RNN models and only slightly worse than
our proposed RNN model. The model inputs are the stu-
dent’s skills and responses history which are encoded using
embedding vectors. Skill embeddings are initialized either
randomly or by pretrained vectors representing the textual
descriptions of the skills. A novel feature of our architec-
ture is the addition of spatial dropout and convolutional
layers immediately after the embeddings layers. These ad-
ditions have been shown to reduce the overfitting problem.
We found that the choice of initialization of the skill embed-
dings has little effect on the outcome of our experiments.
Moreover, noting that there is a different use of the same
datasets in different studies, we described in detail the pro-
cess of the datasets pre-processing, and we provide the train,
validation and test splits of the data that were used in our

experiments on our GitHub repository10. The extensive ex-
perimentation with more benchmark datasets as well as the
study of variants of the proposed models will be the subject
of our future work with the aim of even further improving
the prediction performance of the models.

7. ACKNOWLEDGMENTS
We would like to thank NVIDIA Corporation for the kind
donation of an Titan Xp GPU card that was used to run
our experiments.

8. REFERENCES
[1] G. Abdelrahman and Q. Wang. Knowledge tracing

with sequential key-value memory networks. In
Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in
Information Retrieval, pages 175–184, 2019.
https://doi.org/10.1145/3331184.3331195.

[2] AssistmentsData. Assistments data, 2015.
https://sites.google.com/site/assistmentsdata/.

[3] K. Cho, B. Van Merriënboer, C. Gulcehre,
D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using rnn
encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078, 2014.

[4] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction,
4(4):253–278, 1994.

[5] R. K. Hambleton, H. Swaminathan, and J. H. Rogers.
Fundamentals of item response theory. Sage
Publications, Newbury Park, CA, USA, 1991.

[6] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[7] A. Joulin, E. Grave, P. Bojanowski, M. Douze,
H. Jégou, and T. Mikolov. Fasttext.zip: Compressing

10 https://github.com/delmarin35/Dynamic-Neural-Models-
for-Knowledge-Tracing

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 53

text classification models. arXiv preprint
arXiv:1612.03651, 2016.

[8] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[9] K. R. Koedinger, A. T. Corbett, and C. Perfetti. The
knowledge-learning-instruction framework: Bridging
the science-practice chasm to enhance robust student
learning. Cognitive science, 36(5):757–798, 2012.

[10] C. X. Ling, J. Huang, H. Zhang, et al. Auc: a
statistically consistent and more discriminating
measure than accuracy. In Ijcai, volume 3, pages
519–524, 2003.

[11] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

[12] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi,
A. Bordes, and J. Weston. Key-value memory
networks for directly reading documents. arXiv
preprint arXiv:1606.03126, 2016.

[13] S. Pandey and G. Karypis. A self-attentive model for
knowledge tracing. arXiv preprint arXiv:1907.06837,
2019.

[14] P. I. J. Pavlik, C. Hao, and K. R. Kenneth.
Performance factors analysis–a new alternative to
knowledge tracing. In Proceedings 14th Int. Conf.
Artificial Intelligence in Education, Brighton,
England, 2009. ERIC.

[15] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,
L. Guibas, and J. Sohl-Dickstein. Deep knowledge
tracing. Advances in neural information processing
systems, 28:505–513, 2015.

[16] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra,
and T. Lillicrap. Meta-learning with
memory-augmented neural networks. In International
conference on machine learning, pages 1842–1850,
2016.

[17] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. Dropout: a simple way to
prevent neural networks from overfitting. The journal
of machine learning research, 15(1):1929–1958, 2014.

[18] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and
C. Bregler. Efficient object localization using
convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 648–656, 2015.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. Advances in neural
information processing systems, 30:5998–6008, 2017.

[20] S. Wang, W. Zhou, and C. Jiang. A survey of word
embeddings based on deep learning. Computing,
102(3):717–740, 2020.

[21] L. Xu and M. A. Davenport. Dynamic knowledge
embedding and tracing. arXiv preprint
arXiv:2005.09109, 2020.

[22] I. Yamada, A. Asai, J. Sakuma, H. Shindo, H. Takeda,
Y. Takefuji, and Y. Matsumoto. Wikipedia2Vec: An
efficient toolkit for learning and visualizing the
embeddings of words and entities from Wikipedia. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System

Demonstrations, pages 23–30. Association for
Computational Linguistics, 2020.
https://wikipedia2vec.github.io/wikipedia2vec/.

[23] C.-K. Yeung. Deep-irt: Make deep learning based
knowledge tracing explainable using item response
theory. arXiv preprint arXiv:1904.11738, 2019.

[24] J. Zhang, X. Shi, I. King, and D.-Y. Yeung. Dynamic
key-value memory networks for knowledge tracing. In
Proceedings of the 26th international conference on
World Wide Web, pages 765–774, 2017.

54 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Say What? Automatic Modeling of Collaborative Problem

Solving Skills from Student Speech in the Wild
Samuel L. Pugh1, Shree Krishna Subburaj1, Arjun Ramesh Rao1, Angela E.B. Stewart2,

Jessica Andrews-Todd3, Sidney K. D’Mello1

1University of Colorado Boulder; 2Carnegie Mellon University; 3Educational Testing Service

samuel.pugh@colorado.edu; jandrewstodd@ets.org; sidney.dmello@colorado.edu

ABSTRACT
We investigated the feasibility of using automatic speech

recognition (ASR) and natural language processing (NLP) to

classify collaborative problem solving (CPS) skills from recorded

speech in noisy environments. We analyzed data from 44 dyads

of middle and high school students who used videoconferencing

to collaboratively solve physics and math problems (35 and 9

dyads in school and lab environments, respectively). Trained

coders identified seven cognitive and social CPS skills (e.g.,

sharing information) in 8,660 utterances. We used a state-of-the-

art deep transfer learning approach for NLP, Bidirectional

Encoder Representations from Transformers (BERT), with a

special input representation enabling the model to analyze

adjacent utterances for contextual cues. We achieved a micro-

average AUROC score (across seven CPS skills) of .80 using

ASR transcripts, compared to .91 for human transcripts,

indicating a decrease in performance attributable to ASR error.

We found that the noisy school setting introduced additional ASR

error, which reduced model performance (micro-average AUROC

of .78) compared to the lab (AUROC = .83). We discuss

implications for real-time CPS assessment and support in

schools.

Keywords
Collaborative problem solving; natural language processing;

collaborative interfaces

1. INTRODUCTION
The modern world will increasingly require teams of

heterogeneous individuals to coordinate their efforts, share skills

and knowledge, and communicate effectively in order to solve

complex and pressing problems like the global pandemic and

climate change. Accordingly, collaborative problem solving

(CPS) – defined as two or more people engaging in a coordinated

attempt to construct and maintain a joint solution to a problem

[57] – has been identified as a critical skill for the 21st century

workforce [23, 27]. Despite its increasing importance, the most
recent 2015 Programme for International Student Assessment
(PISA) assessment revealed troubling deficiencies in CPS
competency worldwide [49]. As a result, improving CPS
proficiency has become a priority in educational research and
policy [7, 8, 16, 37, 49].

Technology has fundamentally transformed both the modern

workplace and classroom. Co-located teams in shared spaces are

becoming less common, while distributed teams that work and

collaborate remotely through virtual interfaces are on the rise

[22, 36]. In 2020, the COVID-19 pandemic thrust this issue to

the forefront of our attention, as workers and students across the

globe were forced to adapt to a remote environment for extended

periods of time. Accordingly, educational practitioners have

emphasized the importance of providing students with the skills

necessary to effectively collaborate in virtual settings [60].

The rise of videoconferencing in both workplace and learning

environments brings with it the exciting opportunity to develop

next-generation collaborative interfaces that can aid in teaching,

assessing, and supporting CPS. Here we focus on the task of

assessing CPS skills from spoken language with an eye for

downstream applications including reflective feedback and

dynamic interventions to improve CPS skills.

Like any latent construct (e.g., intelligence, knowledge),

assessment of CPS skills entails identifying objective evidence

for those constructs. Because collaboration inherently involves

communication, one promising approach is to analyze

communication between team members [58]. Indeed, the content

of communication during CPS provides information about a

team’s cognitive and affective states, knowledge, information

sharing, and coordination [27], and can serve as evidence of

relevant CPS skills [3, 4].

However, analyzing the large amounts of data generated during

open-ended collaboration is time consuming and costly, requiring

trained human coders to review large corpus and hand code

individual items for indicators of CPS. Previous work [24, 29,

58, 65] has attempted to automate this coding process using

natural language processing (NLP) techniques. However, with

the exception of [65], this has been limited to restricted forms of

communication such as text chat, rather than open-ended verbal

communication, which is characteristic of most real world CPS.

As we elaborate below, the one study [65] that successfully

analyzed spoken communications for evidence of CPS skills used

data collected in a highly controlled lab environment, leaving

open the question as to whether this approach will succeed in the

wild, such as in noisy classroom environments.

In this work, we address the challenge of using speech

recognition and NLP to automatically analyze open-ended

student speech during videoconferencing-enabled collaborative

problem solving in both real-world schools and in lab

environments. Pursuing technologies capable of automatically

capturing and analyzing spoken language during open-ended

verbal CPS in authentic environments, whether face-to-face or

via videoconferencing, is an important avenue of research. These

technologies hold the potential for significantly improving real-

Samuel Pugh, Shree Krishna Subburaj, Arjun Ramesh Rao, Angela Stewart,
Jessica Andrews-Todd and Sidney D’Mello “Say What? Automatic Mod-
eling of Collaborative Problem Solving Skills from Student Speech in the
Wild”. 2021. In: Proceedings of The 14th International Conference on Ed-
ucational Data Mining (EDM21). International Educational Data Mining
Society, 55-67. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 55

time assessment and support of CPS [58], whether by providing

teachers with feedback on CPS in student groups or enabling

just-in-time interventions to steer groups of problem solvers in

the right direction.

1.1 Background and Related Work
We first present a brief discussion on theoretical frameworks of

CPS to situate the CPS skills modeled in this study within the

CPS literature. Then, we discuss prior work on computational

models of CPS, specifically focusing on language-based models.

1.1.1 Frameworks of CPS
CPS has been defined as problem solving activities that involve

interactions among a group of individuals [47]. One early attempt

to conceptualize CPS was by Roschelle and Teasley [57] who

proposed a joint problem space model that emphasized shared

understanding of the task as a central aspect of CPS. More

recently, the Assessment and Teaching of Twenty-First Century

Skills (ATC21S) framework [28, 30] described CPS through a

measurable and teachable set of social and cognitive skills based

on interaction, self-evaluation and goal setting. Relatedly, the

PISA 2015 [49] framework conceptualized CPS as a complex

process involving three collaborative dimensions that overlap

with four problem-solving processes resulting in 12 CPS skills.

Building on these frameworks, Sun et al. [68] proposed a

generalized competency framework for CPS skills based on

interactions among triads, which defines a hierarchical CPS

model involving three high-level facets of CPS, each composed

of sub-facets and associated behavioral indicators. Another

approach, and the framework adopted in this work, is the in-task

assessment framework [34]. Informed by principles of evidence-

centered design [41], this framework characterizes CPS through a

hierarchical ontology [3], which lays out theoretically-grounded,

generalizable CPS skills along with behavioral indicators of

these skills.

1.1.2 Computational Models of CPS
The stream of interactions generated during problem solving is

considered the richest source of information about a team’s

knowledge, skills, and abilities [27, 38]. Accordingly, prior

research has used non-verbal behavioral signals like facial

expressions to detect rapport loss in small groups during open-

ended discussions [43]. Multimodal combinations of facial

expressions, acoustics and prosody, eye gaze, and task context

have been explored to predict CPS outcomes like task

performance [42, 67]. Additionally, learning gains [32, 50],

subjective performance [72] and CPS competence [13, 14] have

been modelled using multimodal signals.

Focusing our review on studies that explored the use of language

and speech based data, researchers have successfully used

language to model CPS processes like idea sharing [24, 29],

negotiation [65], and argumentation [58], as well as CPS

outcomes such as task performance [10, 44, 51] and learning

gains [55]. A common NLP approach involves quantifying the

frequency of words and word phrases (n-grams) [24, 29, 44, 54,

58]. Further, some research has experimented with the use of

additional lexical features like punctuation [24, 29, 58], part-of-

speech tags [21, 44, 58], or emoticons [29]. In addition to using

lexical features from language itself, researchers have derived

features from conversational data which index team and

conversational dynamics (e.g., turn taking). This approach has

been used to provide feedback on collaboration [59], identify

sociocognitive roles [20], and model intra- and interpersonal

dynamics [19] during CPS.

Closely related to our work, Hao et al. [29] used pre-selected n-

grams and emoticons to model four CPS facets of sharing ideas,

negotiating, regulating problem-solving activities, and

maintaining communication. Their study involved data collected

from 1000 participants with at least one year of college

experience randomly grouped into dyads. They used a linear

chain conditional random field and extracted lexical features

from sequential text chats between dyads. They found that

sequential modeling achieved an average accuracy of 73.2%,

which outperformed a majority-class baseline accuracy of 29%,

and slightly outperformed standard classifiers (accuracies of

66.9% to 71.9%).

Whereas the Hao study analyzed text-chats among dyads, Stewart

et al. [65] modeled the three CPS facets of construction of shared

knowledge, negotiation and coordination, and maintaining team

function from spoken trialogues (conversations among triads).

The study involved 32 triads of undergraduate students from a

medium-sized private university, engaged in a 20-minute

computer programming task using video conferencing software in

a lab setting. They used ASR to generate transcripts of the

team’s speech during problem solving, from which they derived

n-gram features for modeling. They obtained area under the

receiver operating characteristic curve (AUROC) scores of .85,

.77 and .77 for the three CPS facets using random forest

classifiers, exceeding chance baselines of 0.5. In a follow-up

study [66], they investigated whether including additional

modalities (facial expression, acoustic-prosodic features, task

context) in addition to language improved classification accuracy.

They found that a combination of language and task context

yielded slight improvement over unimodal language models.

1.2 Current Study and Novelty
There are several novel aspects of this work. First, although

recent work [65, 66] has successfully used ASR and NLP to

automatically analyze speech during CPS in the lab, it is

currently unknown whether this approach can be effective in the

wild, for example in noisy real-world classrooms where CPS

interactions would occur. Lab environments have the advantage

of being free from ambient noises, distractions from other

students, and various other complicating factors present in school

environments.

Further, previous work has been limited to adults, namely

undergraduate students. However, given the importance of CPS,

it is imperative that technologies be developed that can help

instruct and support CPS in middle and high school-aged

students. Therefore, a second important question is whether this

approach can be applied to children, who may have differing CPS

abilities and communication styles. An accompanying question is

whether ASR can provide sufficiently accurate transcripts of

children’s speech, as research has documented the degradation of

ASR performance on children’s speech due to ASR systems

primarily trained on adult speech, and age-dependent spectral

and temporal variability in speech signals [26, 45, 53].

We address these questions by recording audio of remote CPS

among middle and high school students in both the lab and

56 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

computer-enabled classrooms with multiple teams interacting.

We show for the first time that in noisy school environments,

ASR can provide transcripts of sufficient accuracy to model CPS

skills. Additionally, we quantify the decrease in predictive

accuracy that can be attributed to ASR error (vs. NLP error) by

comparing with models trained on human transcripts, and

comparing lab- vs. classroom- environments.

Finally, an open question in this domain is which NLP

algorithms should be used to automatically analyze CPS

language. We explore the use of deep transfer learning for this

NLP problem. Recent advances in state-of-the-art NLP have been

attained by adapting attention-based language models [71], pre-

trained on large amounts of unlabeled data, to specific NLP tasks

(e.g., text classification) [31]. We demonstrate the efficacy of this

approach, using the popular Bidirectional Encoder

Representations from Transformers (BERT) model [18] for our

NLP task, and compare results with a more traditional n-gram

approach using random forest classifiers. We also investigate

whether a sequential classifier, which considers adjacent (i.e.

previous, subsequent) utterances for contextual cues, yields

improved performance over single utterance classifiers. We

present a method, similar to the approaches used in [12, 69], to

capture adjacent utterances for context by constructing a special

input representation for the BERT model, which improves

classification accuracy.

2. METHOD

2.1 Data Collection
2.1.1 Contexts
Our primary data collection occurred in one United States east

coast public middle school and one public high school from the

same district. The study was run over two data collection

periods. The first period included 61 students in the high school

and 44 students in the middle school. Here, students participated

in two 43 minute class periods. The second collection included

18 students from the same middle school. Because we did not

have control over the acoustic environment in the school context,

we also collected supplementary data from 18 students in the lab.

In the second collection, students completed one 90 minute

session. In both collections, students in the school environment

completed the study from a computer lab in the school in which

other students were also participating in the study. Data

collection occurred prior to the COVID-19 pandemic, and as such

classrooms were at normal capacity. Students in both

environments were equipped with a personal headset and

microphone (MPOW 071 USB Headset).

2.1.2 Participants
In all, 141 middle and high school students (age range: 12-15)

completed some or all of the study. However, only a subset of 74

sessions (a session entails one dyad completing one of the tasks)

were included in this analysis. Participants were excluded for the

following reasons: we experienced technical challenges on the

first day of data collection, either team member did not complete

a consent form, one team member did not show up, or there were

quality issues with the recorded audio stream. Our analyzed

dataset consisted of 88 students (65% female; mean age = 13.6,

SD = 0.90). The lab subset contained 18 students (50% female;

mean age = 13.6, SD = 1.01) and the school subset contained 70

students (69% female; mean age = 13.6, SD = 0.87). The sample

of 88 students was quite diverse with 26.1% self-reporting as

Black/African American, 19.3% Hispanic/Latino, 15.9%

Multiracial, 13.6% Asian/Asian American, 12.5% White, 2.3%

American Indian/Alaska Native, 6.8% reported “Other”, and

3.4% did not report ethnicity.

2.1.3 CPS Tasks
The study involved two separate CPS tasks. In one task on linear

functions and argumentation (T-Shirt Math Task [1]), students

worked together through a series of task items in which they

sought to determine which of three t-shirt companies was the

best choice for a student council to purchase t-shirts for

classmates. They compared three companies with differing

variable costs (price per shirt) and fixed costs (upfront fee) to

determine which company should be chosen given the number of

t-shirts to be purchased. Individual questions included populating

the cost equation y = mx + b according to the costs of each

company (see Figure 1B), identifying the correct graph for a

given company’s cost equation, and providing a recommendation

as to which company was the best deal. During this task, only

one student controlled the screen at a time (i.e. to enter responses

to the questions), and the two students could alternate control as

they chose.

Figure 1. Screenshot examples of the videoconferencing setup

and two CPS tasks. (A) Shows a level in Physics Playground,

(B) shows a question from the T-Shirt Math Task

(reproduced with permission from ETS).

The second task (Physics Playground [62]) was an educational

physics game designed to help students learn concepts in

Newtonian physics. In this task, students completed a series of

six game levels in which they were tasked with drawing objects

(e.g., lever, ramp, springboard) to guide a ball to hit a balloon

target (see Figure 1A in which students are drawing a weight

attached to the springboard to launch the ball towards the

balloon). During this task, only one student controlled the game

at a time. One student was selected to control first, and after

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 57

three levels had been completed (or half of the allotted time had

elapsed), control was switched to the other student for the

following three levels. Whereas the math task resembles more

traditional school work and is more constrained by prior

knowledge, the physics game provides more opportunities for

creative exploration [35].

2.1.4 Procedure
Students were randomly assigned to pairs (27 mixed-gender, 17

same-gender pairs) and each student first individually completed

a series of pre-surveys; details are not relevant here. Once both

students in the pair completed the pre-surveys, a researcher

enabled audio and video recording on each student’s computer

using Zoom video conferencing software (https://zoom.us) to

record students’ computer screens, faces, and voices. The student

teams then worked together to complete the two CPS tasks,

either on a different day or the same day (see above). The order

of the tasks was counterbalanced so that half of the teams

completed Physics Playground first and the other half completed

the T-Shirt Math Task first. After completing each task students

individually completed additional questionnaires not analyzed

here.

2.2 CPS Ontology and CPS Skills
2.2.1 CPS Ontology (Framework)
We used a competency model represented as an ontology [3, 4]

(similar to a concept map), which lays out the components of

CPS and their relationships, along with indicators of CPS skills.

The development of the ontology was based on discussions with

subject matter experts as well as a literature review in relevant

areas such as computer-supported collaborative learning,

individual problem solving, communication, and linguistics [30,

39, 46, 48, 49, 64].

Our CPS ontology [3] includes nine high-level CPS skills across

social and cognitive dimensions and sub-skills that correspond to

each high-level skill. The social dimension includes four CPS

skills: (1) Maintaining communication corresponds to content

irrelevant social communications among teammates (e.g.,

greeting teammates or engaging in off-topic conversations); (2)

Sharing information corresponds to task-relevant communication

that is useful for solving the problem (e.g., sharing one’s own

knowledge, sharing the state of one’s understanding); (3)

Establishing shared understanding includes communication used

to learn the perspectives of others and ensure that what has been

said is understood by teammates (e.g., requesting information

from teammates, providing responses that indicate

comprehension); and (4) Negotiating corresponds to

communication used to express agreement, express

disagreement, or resolve conflicts that arise.

The cognitive dimension includes five CPS skills: (1) Exploring

and understanding corresponds to communication and actions

used to explore the environments in which teammates are

working or understand the problem at hand (e.g., rereading

problem prompts); (2) Representing and formulating includes

communication used to build a mental representation of the

problem and formulate hypotheses; (3) Planning corresponds to

communication used to develop a plan for solving the problem

(e.g., determining goals or establishing steps for carrying out a

plan); (4) Executing corresponds to actions and communication

used to carry out a plan (e.g., taking steps to carry out a plan,

reporting to teammates what steps you are taking, or making

suggestions to teammates about what steps they should take to

carry out the plan); and (5) Monitoring includes communication

used to monitor progress towards the goal or monitor teammates

(e.g., checking the progress or status of teammates).

Table 1. The 7 CPS skills modeled, ordered from highest to lowest prevalence

CPS Skill Base

Rate

Dimension Example Human Transcript Corresponding ASR Transcript

Sharing Information

.26

Social

(Math) “Okay so first I think we

should create like three equations to

for each company”

“Okay Sir thank first we should

create like three D creations for

each arm company”

Establishing Shared

Understanding
.25 Social

(Math) “Which one do you think is

the best one”
“Twenty it’s the best”

Negotiating .16 Social

(Physics) “Umm no let’s just do

another idea I don’t think it’s gonna

work anymore”

“Let's just do it another day I don't

think it's going to work anymore”

Executing .14 Cognitive
(Physics) “Okay and now put a

weight down on that”

“Okay and now put a weight down

on the”

Maintaining

Communication
.07 Social

(Physics) “(laughs) Oh no this game

is funny bro yeah I don't know what

to do”

“This came funny I would like to

do”

Monitoring .06 Cognitive (Physics) “That didn't work oh no” “That didn't recall about”

Planning .05 Cognitive
(Math) “Alright now we have to

find a graph for this one now”

“Now we have to find a crusher this

one now”

58 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

2.2.2 CPS Coding
Video recordings of student task sessions were segmented at the

turn (or utterance) level and then coded by three trained raters

using Dedoose qualitative analysis software [17]. For the coding,

raters viewed each turn for each individual in a team and then

labeled the turn as one of the CPS skills from the CPS ontology.

To establish reliability, the three trained raters triple coded 20%

of the videos. Intraclass correlations (ICCs) were used to

estimate interrater reliability across rater judgments, as it can

provide information about the consistency of the judgments

among raters. The median ICC across the CPS skill ratings was

.93, corresponding to excellent agreement [11].

Once reliability was established, the remaining videos were split

among the three raters and coded independently. A total of

10,239 turns were coded across 80 CPS sessions with an average

of 128 turns per session (SD = 70.5). Two CPS skills (exploring

and understanding, and representing and formulating) occurred

very infrequently (base rate < 1%) and were excluded from our

analysis. The remaining seven CPS skills, with their base rate,

cognitive/social dimension, and a sample utterance from the

dataset, are shown in Table 1.

2.3 ASR and Human Transcript Generation
After segmenting and coding each utterance, we used the IBM

Watson speech-to-text service [33] to generate ASR transcripts

for each video. The service outputs transcripts with word-level

start and stop times, as well as word-level confidence (between 0

and 1) for each word recognized. We constructed the transcript

for each coded utterance by concatenating transcribed words

within the utterance’s human segmented time window. The

confidence for each utterance was computed by taking the mean

word confidence over all words in the utterance transcript.

Utterances in which no words were recognized were assigned a

confidence of 0. Because a single audio stream of each session

was recorded (rather than individual audio streams from each

student), the ASR transcripts can contain words from both

speakers if there was overlap (elaborated below).

We also manually transcribed each utterance from the CPS

videos. Human transcribers viewed the video segment (with

audio) of each coded utterance and transcribed the words spoken

by the indicated speaker (each utterance was coded for an

individual student). Speech from the other student, if present in

the segment, was not transcribed. Prior to transcription,

guidelines were established among the human transcribers to

ensure consistency in transcribing informal words or phrases

(e.g., gonna, c’mon).

Because the segmented utterances sometimes contained speech

from both speakers, we had alignment inconsistencies, as the

ASR transcribed all words in a segment while the human

transcripts only contained words spoken by the indicated student.

To better assess ASR accuracy, we randomly sampled 10

utterances from each CPS session (8.5% of the data) and re-

transcribed the utterances to include all words spoken in the

segment, regardless of speaker. We refer to this as the Human

Transcript Subset. We then computed a word error rate (WER)

[9] for each utterance in this subset defined as (substitutions +

insertions + deletions) / (words in human transcript), using the

python package Jiwer [70].

2.4 Analyzed Dataset
Our dataset contains 74 CPS task sessions from 44 teams. This

includes 30 teams with both the math and physics tasks in the

dataset, nine teams with only the math task and five teams with

only the physics task. 18 of the 74 sessions occurred in the lab,

and the remaining 56 sessions occurred in school environments.

The dataset consists of 8,660 utterances coded with CPS skills,

and corresponding transcripts. Of these utterances, 2,751 (32%)

were from lab sessions and the other 5,909 (68%) were from

school sessions.

2.5 Machine Learning
We adopted a supervised classification approach to predict the

ground truth CPS skill for each utterance. We first implemented

a bag-of-n-grams approach using a Random Forest Classifier, as

recent literature [65] has shown this method to be effective for

the classification of CPS utterances. Next, we explored deep

transfer learning as a means to improve upon this method. In

particular, we leveraged pre-trained language models and

employed the popular Bidirectional Encoder Representations

from Transformers (BERT) model [18]. Additionally, we tested a

method (BERT-seq) which takes a sequence of utterances as

input (the utterance to classify plus the previous and subsequent

utterances) to capture contextual information, in order to

determine if including adjacent utterances improves

classification accuracy. We trained separate models (RF, BERT,

and BERT-seq) using the ASR transcripts and human transcripts

as input.

2.5.1 Random Forest N-Grams
We first followed the approach outlined in [65] and trained

Random Forest Classifiers to predict the CPS skill for each

utterance using n-gram features. We used unigrams (words) and

bigrams (two-word phrases) as the features for our Random

Forest classifiers. Trigrams and beyond were not used since very

few unique trigrams (only 6) occurred in >1% of utterances. We

explored excluding n-grams that occurred at less than a minimum

frequency in the training dataset, testing values of 0% (no

filtering), 1% and 2% as hyperparameters. We used the scikit-

learn [52] library’s implementation of the Random Forest

Classifier with 200 estimators.

2.5.2 BERT
We used a transfer learning approach and fine-tuned pre-trained

BERT models to predict the CPS skill for each utterance. This

entailed starting with a BERT model pre-trained on a large

amount of unlabeled data, then fine-tuning it on our dataset of

transcribed utterances and corresponding labels (CPS skills). We

first processed the transcribed utterances using WordPiece

tokenization [61]. This process entailed splitting an utterance

into a sequence of words, or parts of words. Each unique word or

word piece was then converted to an integer (called a token)

according to BERT’s pre-specified vocabulary. Finally, special

tokens ([CLS] and [SEP]) were appended to the beginning and

end of this sequence of integers and the sequence was provided

as input to BERT (see Figure 2A). BERT mapped each input

token to a 768-dimensional embedding, which serves as a

semantic representation of the input token (the embedding of the

special [CLS] and [SEP] tokens capture a semantic

representation of the entire sequence of input tokens).

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 59

Figure 2. (A) The traditional BERT model used for text classification. (B) Our BERT-seq model which captures contextual

information from the previous and subsequent utterances during classification.

For classification, the embedding of the [CLS] token was used as

input to a fully connected layer (classifier), which output

predicted probabilities for the seven CPS skills. We used

multiclass learning, meaning that all seven CPS skills were

predicted by one model.

2.5.3 BERT-seq
We propose a method to incorporate contextual utterances during

classification by creating a special input representation, without

augmenting the BERT architecture. This method takes a

sequence of three utterances as input (the utterance to classify

plus the previous and subsequent utterances), which are used to

train two separate BERT models, each including either the

previous or subsequent utterance in the BERT input (see Figure

2B). To add a pair of adjacent utterances to the input, we first

processed each utterance individually using WordPiece

tokenization as described above. The special [CLS] token was

then added to the beginning of this sequence, and a [SEP] token

was added to the end of both the first and second utterances. To

classify the utterance, the embedding of the corresponding [SEP]

token was used as input to a fully connected layer, which output

predictions for the 7 CPS skills. Finally, the predicted

probabilities of the previous and subsequent utterance models

were averaged. This method of representing a sequence of

utterances enables the self-attention layers of BERT to leverage

contextual information from the previous and subsequent

utterances, while still utilizing the pre-trained BERT weights.

For both BERT and BERT-seq we started with the transformers

[73] library’s implementation of the BertModel with the “bert-

base-uncased” pre-trained weights, and used the BertTokenizer

to process our utterances. We then fine-tuned the models for

three epochs using a batch size of 16. We found that fine-tuning

beyond three epochs did not substantially improve model

performance.

2.5.4 Cross Validation
We used team-level 10-fold cross-validation to assess the

accuracy of our classifiers. With our dataset of 44 teams, this

entailed training a model with utterances from 90% of teams (39

or 40 teams), then evaluating the model’s predictive accuracy on

a test set containing utterances from the 10% of teams withheld

during training (4 or 5 teams). This process was repeated ten

times, such that every team appeared in the test set once. To

compute accuracy metrics, predictions from all ten folds were

aggregated and a single metric was computed on the full dataset.

Team-level cross validation yields a better assessment of the

method’s generalizability to new teams because it ensures each

model is never trained and evaluated on utterances from the

same speaker. We used identical cross-validation folds for the

RF, BERT and BERT-seq models as well as the human and ASR

transcripts to ensure that differences in performance were not an

artifact of the folds used. This experiment was repeated for 5

iterations, and different randomized cross-validation folds were

used for each iteration.

3. RESULTS

3.1 ASR Accuracy
We compared WER in the lab and school subsets in order to

quantify the speech recognition error that could be attributed to

noisy school environments, as opposed to other factors such as

difficulty recognizing children’s speech, whispering or

mumbling, audio quality, or inevitable ASR mistakes. We used

the Human Transcript Subset as described in Section 2.3 for this

comparison. The distributions of WER in the lab and school

environments are shown in Figure 3. We found that WER was

much lower in the lab environment than in schools (mean WER

of .54 and .76, median WER of .50 and .91, respectively),

indicating that significant ASR error is due to noisy school

environments. We performed a non-parametric Kruskal-Wallis

test [40] to statistically compare WER in the lab and school

samples, and found that they differed significantly (χ2(1) = 62.13,

p < .001).

As evident in Figure 3, a large proportion (47%) of the school

utterances had a WER of 1 (compared to 19% for lab data),

meaning no words were correctly recognized. However, WER

was also high in the controlled lab environment, suggesting that

speech recognition error may in part be attributable to factors

beyond the complications of noisy school environments.

60 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 3. Gaussian kernel density estimates of the

distribution of word error rates in the lab and school

environments.

We also investigated the correlation between WER and ASR

confidence to determine whether the confidence values produced

by the ASR provided a good estimate of transcript accuracy. We

found that WER and ASR confidence were significantly

correlated (Spearman rho = -.74, p < .001).

3.2 Model Comparison
Next we compared the performance of our three NLP models

(RF, BERT, BERT-seq). The models output a probability from 0

to 1 that an utterance is coded with each CPS skill. Accordingly,

we report the area under the receiver operating characteristic

curve (AUROC) for each skill, a common accuracy metric for

model performance [6] which takes into account the true positive

and false positive tradeoff across classification thresholds. Mean

AUROC scores (over the five iterations) for the RF, BERT and

BERT-seq models, using both human and ASR transcripts are

reported in Table 2. We also report a chance baseline, created by

randomly shuffling the labels within each CPS session and

computing accuracy accordingly. Because shuffling is within

sessions, the AUROCs for the shuffled models will slightly

deviate from the 0.5 chance baseline. To determine if the three

model’s AUROC scores were significantly different for each CPS

skill, we used a bootstrap method to statistically compare the

AUROC values. Since five iterations of this experiment were

conducted, we selected the model corresponding to the median

AUROC value across the five iterations (for both human and

ASR transcripts) on each CPS skill for statistical analysis. We

performed this analysis in R using the pROC package [56] with

2,000 bootstrap permutations. Finally, we adjusted the resulting

p-values using a false discovery rate (FDR) correction [5] to

account for multiple testing across the seven CPS skills.

Without exception BERT-seq quantitatively yielded the highest

AUROC scores for all seven CPS skills using both human and

ASR transcripts, indicating that our method of incorporating

adjacent utterances improves performance over single utterance

classifiers. On average, BERT outperformed the RF model on

both human and ASR transcripts, although there were some

skills for which the RF AUROC scores were higher. From the

statistical analysis described above, we found that with ASR

transcripts BERT-seq had a significant advantage over the other

two models for most skills (four of seven for BERT, five of seven

for RF). We also found that there was no significant difference

between BERT and RF for six of seven skills.

Table 2. Mean AUROC values (across 5 iterations) of the RF N-gram, BERT, and BERT-seq models on ASR and

Human transcripts for all CPS skills.

CPS Skill ASR Transcripts Human Transcripts

RF BERT BERT-seq RF BERT BERT-seq Shuffled

Sharing Information
0.711 0.745 R 0.756 R 0.837 0.866 R 0.877 R 0.540

Establishing Shared Understanding
0.713 0.724 0.740 RB 0.872 0.894 R 0.907 RB 0.509

Negotiating
0.721 0.719 0.741 B 0.896 0.901 0.916 RB 0.510

Executing
0.745 0.767 0.784 R 0.897 0.914 R 0.926 R 0.574

Maintaining Communication
0.673 0.667 0.750 RB 0.849 0.853 0.901 RB 0.557

Monitoring
0.632 0.594 0.677 RB 0.812 0.792 0.843 RB 0.513

Planning
0.700 0.692 0.718 0.861 B 0.818 0.872 B 0.502

Micro Avg.
0.773 0.782 0.799 0.887 0.895 0.914 0.607

R and B indicate the AUROC score was significantly higher than the RF and/or BERT models, respectively. Neither RF nor BERT ever

outperformed BERT-seq.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 61

We observed a similar pattern on the human transcripts, where

BERT-seq significantly outperformed BERT on five of seven

skills and RF on six of seven skills. Interestingly, on human

transcripts the advantage of BERT over RF increased, with

BERT having significantly higher scores on three skills, while

RF was significantly better on only one. This finding suggests

that with high quality transcripts which accurately capture the

content of an utterance, BERT was the better model, whereas

with noisy ASR transcripts there was no clear difference.

These results indicate that BERT-seq quantitatively

outperformed both the traditional BERT and the RF n-gram

approach for all seven CPS skills, using both the human and

ASR transcripts. However, the statistical analysis revealed that

for some CPS skills, this advantage was not statistically

significant. As BERT-seq was the best model across CPS skills,

we refer to these results in our comparison of human and ASR

transcripts, and throughout the rest of this paper.

3.3 ASR vs. Human Transcripts
We found that using the ASR transcripts as input, our best model

(BERT-seq) was able to accurately classify the seven CPS skills,

yielding a micro-average AUROC score of .799. However, when

the human transcripts were used, this average increased to .914

(see Table 2). We compared the human and ASR transcript

results using the bootstrap method described above, and found

that the human transcript AUROC scores were significantly

(FDR corrected p < .05) higher than the ASR transcript scores

for all seven CPS skills, an unsurprising result given the high

word error rates in the ASR transcripts. However, we note that

despite significant loss in performance due to speech recognition

error, our model easily outperformed a shuffled baseline (micro-

average AUROC of .607), supporting the hypothesis that CPS

skills can be automatically predicted from ASR transcripts.

3.4 Classification Accuracy in Lab and School

Environments
Next we compared classification accuracy in the lab and school

environments in order to investigate the extent to which higher

rates of ASR error in the school subset affected model

performance. We report AUROC scores for the lab and school

environments in Table 3. We found that on average,

classification accuracy was substantially lower in the school

subset compared to the lab subset (micro-average AUROC of

.783 and .830, respectively). Further, for every individual skill,

AUROC scores were quantitatively higher in the lab subset than

in the school subset, with differences in AUROC values for

individual skills ranging from .031 (Executing) to .102

(Negotiating). We again used the bootstrap method to

statistically compare AUROC scores in the lab and school for

each skill and found that scores were significantly higher in the

lab subset for five out of seven CPS skills (see Table 3).

3.5 Classification Accuracy as a Function of

ASR Confidence
Lastly, we examined the relationship between ASR confidence

and classification accuracy. As discussed in section 3.1, the ASR

confidence is a good proxy for word error rate, as the two values

are significantly correlated. Therefore, we separated our 8,660

utterances into ten ASR confidence bins (0.0 – 0.1, etc.) and

computed the micro-average AUROC score for each bin. The

distribution of utterances and corresponding AUROC scores for

each bin are shown in Figure 4A and 4B, respectively. Figure 4B

also shows the human transcript AUROC score as a benchmark

of the accuracy that would be expected under conditions of near-

perfect speech recognition. The shuffled baseline is also shown

to visualize improvement over chance.

Table 3. Mean AUROC scores (across 5 iterations)

for each CPS skill in Lab and School environments. Results

are from the BERT-seq model using ASR transcripts. Values

marked with * were significantly higher in the Lab vs.

School.

CPS Skill Lab School

 AUC Base

Rate

AUC Base

Rate

Sharing Information 0.782* .25 0.743 .27

Establishing Shared

Understanding

0.786* .26 0.716 .25

Negotiating 0.807* .18 0.705 .15

Executing 0.804 .15 0.773 .13

Maintaining

Communication

0.803* .03 0.717 .08

Monitoring 0.701 .05 0.663 .07

Planning 0.760* .06 0.688 .04

Micro Avg. 0.830 0.783

We found that a large proportion of utterances (20%) fall in the

[0.0 - 0.1) bin, indicating that the ASR had little to no confidence

in their content. In fact, nearly all (97%) of the utterances in this

bin have an empty ASR transcript, meaning no words were

recognized during the utterance’s segmented time window. In

many cases, this occurred due to the students whispering or

mumbling, which the ASR was unable to recognize. Excepting

the significant zero inflation, the utterances appeared to be

normally distributed around the [0.6 - 0.7) bin.

We observed a strong correlation between ASR confidence bin

and classification accuracy (Spearman rho = .94, p < .001).

Unsurprisingly, we found that for low confidence transcripts (<

0.3) a substantial gap exists between the ASR transcript AUROC

score and the benchmark human transcript score (see Figure 4B).

On these low confidence transcripts, model performance is near

the shuffled chance baseline. Interestingly, despite many (77%)

of these low confidence transcripts containing no words, the

model was still able to outperform the chance baseline by

learning the distribution of skills among empty transcripts in the

training data. We found that accuracy increases steadily among

the medium confidence transcripts (0.3 - 0.7). For high

confidence transcripts (≥0.7), AUROC scores are near (though

still lower than) the benchmark human transcript values. The

62 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

relationship between ASR confidence and classification accuracy

indicates that it might be viable to filter out utterances with low

confidence to improve reliability for downstream applications.

Figure 4. (A) Distribution of ASR confidence on all 8,660

utterances. (B) Model accuracy as a function of ASR

confidence. Micro-average AUROC scores across the 7 CPS

skills (with 95% CI across 5 iterations) are plotted for

Human and ASR transcripts.

4. DISCUSSION
We investigated the feasibility of using automatic speech

recognition and natural language processing to automatically

classify student speech with CPS skills using data collected in

both lab and real-world school environments. We compared

performance using imperfect ASR transcripts with human

transcripts, investigated differences between the lab and school

environments, and explored three NLP approaches including bag-

of-n-grams and deep transfer learning. In the rest of this section

we discuss our main findings, applications of our models, as well

as limitations and future directions of research.

4.1 Main Findings
We found that it is feasible to use ASR to transcribe middle and

high school student’s speech during CPS in both lab and school

environments. However, we found that significant speech

recognition error is introduced when speech is recorded in

schools (mean WER of .76), likely as a result of noisy

environments and distractions from other students. That said,

speech recognition error was also high in the lab environment

(mean WER of .54), suggesting that there may still be

fundamental limitations associated with using ASR on children’s

speech in the context of remote CPS.

Despite imperfect speech recognition, we demonstrated that it is

possible to automatically predict CPS skills from student speech

in a real-world school environment. We built team-independent

models that were able to predict CPS skills with reasonable

accuracy (micro-average AUROC of .80) using ASR transcripts.

Importantly, this result outperformed a shuffled baseline (micro-

average AUROC of .61) by a significant margin. This finding is

encouraging because it was previously unknown whether ASR

could yield transcripts of sufficient quality to model CPS skills in

noisy environments. Further, we demonstrated that by using

high-fidelity human transcripts, this accuracy could be

significantly improved (micro-average AUROC of .91). We

demonstrated that in the absence of ASR error our NLP models

were highly accurate, suggesting a useful upper bound of what

can be achieved from spoken content alone.

We also improved upon NLP approaches previously used in CPS

literature, demonstrating the advantage of deep transfer learning

over standard classifiers for modeling CPS language. We found

that on average, using both ASR and human transcripts, the deep

transfer learning model (BERT) achieved slightly better accuracy

than the Random Forest n-gram model (though the two were

statistically tied for 3/7 CPS skills with human transcripts and

6/7 skills with ASR transcripts). This finding was unsurprising

given that pre-trained language models have achieved state-of-

the-art performance on many NLP benchmark tasks, including

text classification.

Importantly, we found that we were able to further improve

classification accuracy by constructing an input representation

that enables BERT to capture information from adjacent

utterances. This method showed significant improvement over

the single utterance BERT and RF models, providing preliminary

evidence of its viability. This finding suggests that in CPS, the

context of an utterance (what was said before and after) may be

important for accurate identification of particular CPS skills.

Finally, we examined the relationship between ASR confidence –

a proxy for transcription quality – and classification accuracy.

We found that the two were highly correlated, suggesting that

downstream applications may be able to improve reliability of

predictions by filtering out low confidence transcripts.

4.2 Applications
A key application of this work is the automatic assessment of

CPS skills from open-ended speech in classrooms and beyond.

As previously discussed, analyzing verbal communication for

evidence of CPS skills is a costly and time-intensive process

when trained human coders are used. Our findings suggest that

automated methods using ASR and NLP may provide a viable

alternative to the human-coding process. These automated

methods hold great potential in improving the assessment and

training of CPS skills, a priority of modern education [49].

However, given the imperfect accuracy of our models, and

unanswered questions regarding how this approach may

generalize to students with differing communication styles or

cultural and linguistic backgrounds, this approach should be

limited to formative assessment [63] focused on learning and

improvement, rather than evaluation.

Our approach could advance this goal in several ways. For

example, automatically generated reports could be sent to a

teacher monitoring many groups of students engaged in CPS,

informing the teacher of the extent to which each group is

demonstrating CPS skills. Such a system could help the teacher

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 63

identify which groups need support and allocate their limited

presence toward assisting those groups. Similarly, these reports

could be used to identify individual student’s strengths and

weaknesses, and set appropriate goals for improvement. For

instance, a student who frequently shares information yet seldom

engages in negotiation or establishing shared understanding

could be encouraged to listen to the ideas of their teammates and

work to build on those ideas together.

In addition to passive assessment and off-line feedback, this

approach could be leveraged by next-generation intelligent

systems that actively monitor ongoing CPS and dynamically

intervene in real time to yield improved CPS outcomes [15], or

provide personalized on-line feedback to students. For example,

a group frequently engaging in off-topic conversation could be

prompted by the system to focus back on the problem-solving

task, or a particular student within a group who hasn’t shared

information could be encouraged to share their ideas with the

team. The specific intervention strategies, including when to

intervene, how to present the intervention, and who the

intervention should be targeted at (whole group vs. individual

student) await design, testing, and refinement.

Importantly, a technology devised to assist in the training and

assessment of CPS does little good if it is confined to the lab.

Thus, the present results take a step towards the development of

a system that can support CPS in real-world classrooms by

monitoring open-ended verbal communication for CPS skills.

4.3 Limitations
There were some limitations of this work. First, although we

used an automated approach for utterance transcription and CPS

skill prediction, the sessions were segmented into utterances

beforehand by human coders. This is a limitation because a fully

automated pipeline would require the ASR to automatically

detect and segment recorded speech into individual utterances,

an already difficult task that may be further complicated by noisy

school environments or the peculiarities of children’s speech.

Another related limitation is that due to the utterance

segmentation and ASR transcription process we used, our ASR

transcripts contain all speech that was recognized during an

utterance’s segmented time window. This means that some ASR

transcripts contain words from both speakers, which introduces

alignment inconsistencies between the ASR transcript and the

coded CPS skill because utterances were coded at the individual

student level. In particular, this introduces noise into the ASR

transcripts when student’s utterances overlap.

Another limitation of this work is that we considered only

linguistic features to predict the coded CPS skills. We expect

that model performance can be improved by modeling not only

what students say (language), but considering how they say it

(acoustic-prosodic information) and in the context of what

they’re doing (task-specific information). We hypothesize that

the inclusion of these additional modalities may particularly

improve performance for low confidence ASR transcripts, where

the language transcribed by the speech recognizer is either

missing altogether, or is a poor representation of what was

actually said. Finally, although we demonstrated that our method

for capturing contextual information from adjacent utterances

improved accuracy, we did not compare this with other methods

for incorporating contextual utterances such as conditional

random fields or recurrent neural networks.

4.4 Future Work
The findings and limitations discussed in this section present

several possibilities for improvement in future research. First, in

order to develop a fully automated approach for modeling CPS

skills, we plan to incorporate automatic utterance segmentation

and speaker diarization into our ASR pipeline. Further, we plan

to explore methods for incorporating information from other

modalities in addition to language. For instance, including

features such as acoustic-prosodic information, task context,

facial expression, or body movement may enable more accurate

prediction of CPS skills in cases where ASR fails to capture the

content of an utterance.

Another direction of future research involves further exploration

of how contextual utterances can be used to improve

classification accuracy. We demonstrated a method for

incorporating adjacent utterances in our model input, which

improved performance over single utterance classifiers. In future

work, we will explore methods for capturing contextual

information beyond the previous and subsequent utterances (e.g.,

the five previous utterances). We also plan to investigate how the

approach demonstrated in this paper, which leverages the

model’s attention mechanism to capture context, compares with

other approaches (e.g., recurrent neural networks).

In addition to exploring methods for improving the accuracy of

our models, we plan to investigate the utility of our CPS models.

An open question is how accurate model predictions need to be

to provide useful and actionable estimates for assessment,

feedback, or intervention. Specifically, recent work [2, 25] has

clustered students using the frequency of CPS skills to derive

theoretically grounded profiles of collaborative problem solvers

(e.g., active collaborators, social loafers). We plan to investigate

whether model-derived estimates of CPS skill frequencies will

yield high agreement to the clustering produced using human

codes.

5. CONCLUSION
We combined automatic speech recognition and natural language

processing to automatically predict CPS skills from student

speech during problem solving in both lab and real-world school

environments. Our findings suggest that despite significant

speech recognition error in school environments, it is possible to

predict expert-coded CPS skills using automatically generated

transcripts. These findings open many possibilities for next-

generation technologies that can further the goal of improved

CPS training, assessment, and support in schools.

6. ACKNOWLEDGMENTS
This research was supported by the Institute of Educational

Sciences (IES R305A170432), the NSF National AI Institute for

Student-AI Teaming (iSAT) (DRL 2019805) and NSF DUE

1745442/1660877. The opinions expressed are those of the

authors and do not represent views of the funding agencies.

64 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

7. REFERENCES
[1] Andrews-Todd, J. et al. 2019. Collaborative Problem

Solving Assessment in an Online Mathematics Task.

ETS Research Report Series. 2019, 1 (2019).

DOI:https://doi.org/10.1002/ets2.12260.

[2] Andrews-Todd, J. et al. 2018. Identifying profiles of

collaborative problem solvers in an online electronics

environment. Proceedings of the 11th International

Conference on Educational Data Mining, EDM 2018

(2018).

[3] Andrews-Todd, J. and Forsyth, C.M. 2020. Exploring

social and cognitive dimensions of collaborative

problem solving in an open online simulation-based

task. Computers in Human Behavior. 104, (2020).

DOI:https://doi.org/10.1016/j.chb.2018.10.025.

[4] Andrews-Todd, J. and Kerr, D. 2019. Application of

Ontologies for Assessing Collaborative Problem Solving

Skills. International Journal of Testing. 19, 2 (2019).

DOI:https://doi.org/10.1080/15305058.2019.1573823.

[5] Benjamini, Y. and Hochberg, Y. 1995. Controlling the

False Discovery Rate: A Practical and Powerful

Approach to Multiple Testing. Journal of the Royal

Statistical Society: Series B (Methodological). 57, 1

(1995). DOI:https://doi.org/10.1111/j.2517-

6161.1995.tb02031.x.

[6] Bradley, A.P. 1997. The use of the area under the ROC

curve in the evaluation of machine learning algorithms.

Pattern Recognition. 30, 7 (1997).

DOI:https://doi.org/10.1016/S0031-3203(96)00142-2.

[7] C. Graesser, A. et al. 2018. Challenges of Assessing

Collaborative Problem Solving. Care, E., Griffin, P.,

Wilson, M. (Eds.), Assessment and teaching of 21st

century skills: Research and applications. 75–91.

[8] Care, E. et al. 2016. Assessment of Collaborative

Problem Solving in Education Environments. Applied

Measurement in Education. 29, 4 (2016).

DOI:https://doi.org/10.1080/08957347.2016.1209204.

[9] Chen, S. et al. 1998. Evaluation metrics for language

models. Proceedings of the DARPA Broadcast News

Transcription and Understanding Workshop. (1998).

[10] Chopade, P. et al. 2019. CPSX: Using AI-Machine

Learning for Mapping Human-Human Interaction and

Measurement of CPS Teamwork Skills. 2019 IEEE

International Symposium on Technologies for Homeland

Security, HST 2019 (2019).

[11] Cicchetti, D. V. 1994. Guidelines, Criteria, and Rules of

Thumb for Evaluating Normed and Standardized

Assessment Instruments in Psychology. Psychological

Assessment. 6, 4 (1994).

DOI:https://doi.org/10.1037/1040-3590.6.4.284.

[12] Cohan, A. et al. 2020. Pretrained language models for

sequential sentence classification. EMNLP-IJCNLP

2019 - 2019 Conference on Empirical Methods in

Natural Language Processing and 9th International

Joint Conference on Natural Language Processing,

Proceedings of the Conference (2020).

[13] Cukurova, M. et al. 2020. Modelling collaborative

problem-solving competence with transparent learning

analytics: Is video data enough? ACM International

Conference Proceeding Series (2020).

[14] Cukurova, M. et al. 2018. The NISPI framework:

Analysing collaborative problem-solving from students’

physical interactions. Computers and Education. 116,

(2018).

DOI:https://doi.org/10.1016/j.compedu.2017.08.007.

[15] D’Mello, S. et al. 2019. Towards dynamic intelligent

support for collaborative problem solving. CEUR

Workshop Proceedings (2019).

[16] von Davier, A.A. et al. 2017. Interdisciplinary research

agenda in support of assessment of collaborative

problem solving: lessons learned from developing a

Collaborative Science Assessment Prototype. Computers

in Human Behavior. 76, (2017).

DOI:https://doi.org/10.1016/j.chb.2017.04.059.

[17] Dedoose version 8.0.35 2018. Dedoose: Web applicaiton

for managing, analyzing, and presenting qualitative and

mixed method research data. SocioCultural Research

Consultants, LLC.

[18] Devlin, J. et al. 2019. BERT: Pre-training of deep

bidirectional transformers for language understanding.

NAACL HLT 2019 - 2019 Conference of the North

American Chapter of the Association for Computational

Linguistics: Human Language Technologies -

Proceedings of the Conference (2019).

[19] Dowell, N.M.M. et al. 2020. Exploring the relationship

between emergent sociocognitive roles, collaborative

problem-solving skills, and outcomes: A group

communication analysis. Journal of Learning Analytics.

7, 1 (2020). DOI:https://doi.org/10.18608/jla.2020.71.4.

[20] Dowell, N.M.M. et al. 2019. Group communication

analysis: A computational linguistics approach for

detecting sociocognitive roles in multiparty interactions.

Behavior Research Methods. 51, 3 (2019).

DOI:https://doi.org/10.3758/s13428-018-1102-z.

[21] Emara, M. et al. 2021. Examining Student Regulation of

Collaborative, Computational, Problem-Solving

Processes in Open-Ended Learning Environments.

Journal of Learning Analytics. 8, 1 (2021).

DOI:https://doi.org/10.18608/jla.2021.7230.

[22] Felstead, A. and Henseke, G. 2017. Assessing the

growth of remote working and its consequences for

effort, well-being and work-life balance. New

Technology, Work and Employment. 32, 3 (2017).

DOI:https://doi.org/10.1111/ntwe.12097.

[23] Fiore, S.M. et al. 2018. Collaborative problem-solving

education for the twenty-first-century workforce. Nature

Human Behaviour.

[24] Flor, M. et al. 2016. Automated classification of

collaborative problem solving interactions in simulated

science tasks. (2016).

[25] Forsyth, C. et al. 2020. Are You Really A Team Player  ?

Profiling of Collaborative Problem Solvers in an Online

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 65

Environment. Proceedings of the 13th International

Conference on Educational Data Mining, EDM 2020.

Edm (2020).

[26] Gerosa, M. et al. 2009. A review of ASR technologies

for children’s speech. Proceedings of the 2nd Workshop

on Child, Computer and Interaction, WOCCI ’09

(2009).

[27] Graesser, A.C. et al. 2018. Advancing the Science of

Collaborative Problem Solving. Psychological Science

in the Public Interest. 19, 2 (2018), 59–92.

DOI:https://doi.org/10.1177/1529100618808244.

[28] Griffin, P. et al. 2012. The changing role of education

and schools. Assessment and teaching of 21st century

skills.

[29] Hao, J. et al. 2017. CPS-Rater: Automated Sequential

Annotation for Conversations in Collaborative Problem-

Solving Activities. ETS Research Report Series. 2017, 1

(2017). DOI:https://doi.org/10.1002/ets2.12184.

[30] Hesse, F. et al. 2015. A Framework for Teachable

Collaborative Problem Solving Skills. Assessment and

Teaching of 21st Century Skills.

[31] Howard, J. and Ruder, S. 2018. Universal language

model fine-tuning for text classification. ACL 2018 -

56th Annual Meeting of the Association for

Computational Linguistics, Proceedings of the

Conference (Long Papers) (2018).

[32] Huang, K. et al. 2019. Identifying collaborative learning

states using unsupervised machine learning on eye-

tracking, physiological and motion sensor data. EDM

2019 - Proceedings of the 12th International Conference

on Educational Data Mining (2019).

[33] IBM Watson:

https://www.ibm.com/watson/services/speech-to-text/.

Accessed: 2021-03-02.

[34] Kerr, D. et al. 2016. The In-Task Assessment

Framework for Behavioral Data. The Handbook of

Cognition and Assessment.

[35] Kim, Y.J. and Shute, V.J. 2015. Opportunities and

Challenges in Assessing and Supporting Creativity in

Video Games. Video Games and Creativity.

[36] Kniffin, K.M. et al. 2020. COVID-19 and the

Workplace: Implications, Issues, and Insights for Future

Research and Action. American Psychologist. (2020).

DOI:https://doi.org/10.1037/amp0000716.

[37] Koenig, J.A. 2011. Assessing 21st Century Skills:

Summary of a Workshop.

[38] Lai, E. et al. 2017. Skills for today: What We Know

about Teaching and Assessing Collaboration.

[39] Liu, L. et al. 2015. A tough nut to crack: Measuring

collaborative problem solving. Handbook of Research

on Technology Tools for Real-World Skill Development.

[40] McKight, P.E. and Najab, J. 2010. Kruskal-Wallis Test.

The Corsini Encyclopedia of Psychology.

[41] Mislevy, R.J. et al. 2003. Focus Article: On the

Structure of Educational Assessments. Measurement:

Interdisciplinary Research & Perspective. 1, 1 (2003).

DOI:https://doi.org/10.1207/s15366359mea0101_02.

[42] Miura, G. and Okada, S. 2019. Task-independent

multimodal prediction of group performance based on

product dimensions. ICMI 2019 - Proceedings of the

2019 International Conference on Multimodal

Interaction (2019).

[43] Müller, P. et al. 2018. Detecting low rapport during

natural interactions in small groups from non-verbal

behaviour. International Conference on Intelligent User

Interfaces, Proceedings IUI (2018).

[44] Murray, G. and Oertel, C. 2018. Predicting group

performance in task-based interaction. ICMI 2018 -

Proceedings of the 2018 International Conference on

Multimodal Interaction (2018).

[45] Narayanan, S. and Potamianos, A. 2002. Creating

conversational interfaces for children. IEEE

Transactions on Speech and Audio Processing. 10, 2

(2002). DOI:https://doi.org/10.1109/89.985544.

[46] O’Neil, H.F.. C.G.K.W.K.. B.R.S. 1995. Measurement

of teamwork processes using computer simulation (CSE

Tech. Rep. No. 399).

[47] O’neil, H.F. et al. 2010. Computer-based feedback for

computer-based collaborative problem solving.

Computer-Based Diagnostics and Systematic Analysis

of Knowledge.

[48] OECD 2013. PISA 2012 Assessment and Analytical

Framework: Mathematics, reading, science, problem

solving and financial literacy.

[49] OECD 2015. Pisa 2015 Collaborative Problem Solving

Framework. (2015).

[50] Olsen, J.K. et al. 2020. Temporal analysis of multimodal

data to predict collaborative learning outcomes. British

Journal of Educational Technology. 51, 5 (2020).

DOI:https://doi.org/10.1111/bjet.12982.

[51] Oviatt, S. and Cohen, A. 2013. Written and multimodal

representations as predictors of expertise and problem-

solving success in mathematics. ICMI 2013 -

Proceedings of the 2013 ACM International Conference

on Multimodal Interaction (2013).

[52] Pedregosa, F. et al. 2011. Scikit-learn: Machine learning

in Python. Journal of Machine Learning Research. 12,

(2011).

[53] Potamianos, A. and Narayanan, S. 2003. Robust

Recognition of Children’s Speech. IEEE Transactions

on Speech and Audio Processing. 11, 6 (2003).

DOI:https://doi.org/10.1109/TSA.2003.818026.

[54] Prata, D.N. et al. 2009. Detecting and understanding the

impact of cognitive and interpersonal conflict in

computer supported collaborative learning

environments. EDM’09 - Educational Data Mining

2009: 2nd International Conference on Educational

Data Mining (2009).

[55] Reilly, J.M. and Schneider, B. 2019. Predicting the

66 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

quality of collaborative problem solving through

linguistic analysis of discourse. EDM 2019 -

Proceedings of the 12th International Conference on

Educational Data Mining (2019).

[56] Robin, X. et al. 2011. pROC: An open-source package

for R and S+ to analyze and compare ROC curves. BMC

Bioinformatics. 12, (2011).

DOI:https://doi.org/10.1186/1471-2105-12-77.

[57] Roschelle, J. and Teasley, S.D. 1995. The Construction

of Shared Knowledge in Collaborative Problem Solving.

Computer Supported Collaborative Learning.

[58] Rosé, C. et al. 2008. Analyzing collaborative learning

processes automatically: Exploiting the advances of

computational linguistics in computer-supported

collaborative learning. International Journal of

Computer-Supported Collaborative Learning. 3, 3

(2008). DOI:https://doi.org/10.1007/s11412-007-9034-0.

[59] Samrose, S. et al. 2018. CoCo: Collaboration Coach for

Understanding Team Dynamics during Video

Conferencing. Proceedings of the ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies. 1, 4

(2018). DOI:https://doi.org/10.1145/3161186.

[60] Schulze, J. and Krumm, S. 2017. The “virtual team

player”: A review and initial model of knowledge, skills,

abilities, and other characteristics for virtual

collaboration. Organizational Psychology Review. 7, 1

(2017).

DOI:https://doi.org/10.1177/2041386616675522.

[61] Schuster, M. and Nakajima, K. 2012. Japanese and

Korean voice search. ICASSP, IEEE International

Conference on Acoustics, Speech and Signal Processing

- Proceedings (2012).

[62] Shute, V.J. et al. 2013. Assessment and learning of

qualitative physics in Newton’s playground. Journal of

Educational Research. 106, 6 (2013).

DOI:https://doi.org/10.1080/00220671.2013.832970.

[63] Shute, V.J. 2008. Focus on formative feedback. Review

of Educational Research. 78, 1 (2008).

DOI:https://doi.org/10.3102/0034654307313795.

[64] Spada, H. et al. 2005. A new method to assess the

quality of collaborative process in CSCL. Computer

Supported Collaborative Learning 2005: The Next 10

Years - Proceedings of the International Conference on

Computer Supported Collaborative Learning 2005,

CSCL 2005 (2005).

[65] Stewart, A.E.B. et al. 2019. I say, you say, we say:

Using spoken language to model socio-cognitive

processes during computer-supported collaborative

problem solving. Proceedings of the ACM on Human-

Computer Interaction. 3, CSCW (2019).

DOI:https://doi.org/10.1145/3359296.

[66] Stewart, A.E.B. et al. 2021. Multimodal modeling of

collaborative problem-solving facets in triads. User

Modeling and User-Adapted Interaction. (2021).

DOI:https://doi.org/10.1007/s11257-021-09290-y.

[67] Subburaj, S.K. et al. 2020. Multimodal, Multiparty

Modeling of Collaborative Problem Solving

Performance. ICMI 2020 - Proceedings of the 2020

International Conference on Multimodal Interaction

(2020).

[68] Sun, C. et al. 2020. Towards a generalized competency

model of collaborative problem solving. Computers and

Education. 143, (2020).

DOI:https://doi.org/10.1016/j.compedu.2019.103672.

[69] Suresh, A. et al. 2021. Using Transformers to Provide

Teachers with Personalized Feedback on their

Classroom Discourse: The TalkMoves Application.

AAAI Spring Symposium Series 2021.

[70] Vaessen N 2019. Word error rate for automatic speech

recognition. https: //pypi.org/project/jiwer/.

[71] Vaswani, A. et al. 2017. Attention is all you need.

Advances in Neural Information Processing Systems

(2017).

[72] Vrzakova, H. et al. 2020. Focused or stuck together:

Multimodal patterns reveal triads’ performance in

collaborative problem solving. ACM International

Conference Proceeding Series (2020).

[73] Wolf, T. et al. 2019. Transformers: State-of-the-art

natural language processing. arXiv.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 67

Just a Few Expert Constraints Can Help: Humanizing
Data-Driven Subgoal Detection for Novice Programming

Samiha Marwan, Yang Shi, Ian Menezes, Min Chi, Tiffany Barnes, Thomas W. Price
North Carolina State University, Raleigh, NC, USA

samarwan, yshi26, ivmeneze, mchi, tmbarnes, twprice@ncsu.edu

ABSTRACT
Feedback on how students progress through completing sub-
goals can improve students’ learning and motivation in pro-
gramming. Detecting subgoal completion is a challenging
task, and most learning environments do so either with expert-
authored models or with data-driven models. Both models
have advantages that are complementary – expert models
encode domain knowledge and achieve reliable detection but
require extensive authoring efforts and often cannot capture
all students’ possible solution strategies, while data-driven
models can be easily scaled but may be less accurate and
interpretable. In this paper, we take a step towards achiev-
ing the best of both worlds – utilizing a data-driven model
that can intelligently detect subgoals in students’ correct
solutions, while benefiting from human expertise in edit-
ing these data-driven subgoal rules to provide more accu-
rate feedback to students. We compared our hybrid “hu-
manized” subgoal detectors, built from data-driven subgoals
modified with expert input, against an existing data-driven
approach and baseline supervised learning models. Our re-
sults showed that the hybrid model outperformed all other
models in terms of overall accuracy and F1-score. Our work
advances the challenging task of automated subgoal detec-
tion during programming, while laying the groundwork for
future hybrid expert-authored/data-driven systems.

Keywords
Subgoals, Formative feedback, Data-driven hybrid models

1. INTRODUCTION
Formative feedback has been shown to be an effective form
of automated feedback that can improve students’ learning
and motivation [54, 38, 8, 20]. In programming, immediate
formative feedback during problem-solving is important be-
cause some problems require students to find one of many
correct solutions [16], and novices may be uncertain about
when they are on the right track [62]. This uncertainty may
lead some students to give up [43], and can also negatively

impact student confidence and motivation in computer sci-
ence (CS) [32]. Prior research has shown that immediate
feedback can address this, reducing novices’ uncertainty and
improving their confidence, engagement, motivation, and
learning [42, 8, 33, 21, 38, 39].

One effective form of immediate feedback is subgoal feedback
[40], which indicates students’ progress on specific sub-steps
of the problem. Feedback on subgoals offers special advan-
tages because it demonstrates how a student can break down
a problem into a set of smaller sub-tasks; which is a key to
simplifying the learning process [37, 38], and can promote
students’ retention in procedural domains [35]. To generate
such feedback, learning environments need to be able to do
subgoal detection, which is the process of detecting when a
student completes a key objective or sub-part of a program-
ming task (e.g. receiving and validating user input). How-
ever, subgoal detection during problem-solving is known to
be extremely challenging because it requires assessing stu-
dents’ intended problem solving approach rather than their
program output. In other words, it is difficult to automati-
cally evaluate whether a student completed a subgoal in the
middle of problem-solving due to the many possible strate-
gies that students can approach to solve a problem, even
when using test cases or autograders.

Historically, to provide feedback on subgoals, learning envi-
ronments have used expert-authored models, where human
experts encode a set of rules to predict solution strategies
that students might perform to complete a specific subgoal.
While expert models can generate accurate feedback with
interpretable explanations, they also require extensive hu-
man participation particularly for open-ended programming
tasks, where it becomes unmanageable to capture every pos-
sible correct solution [59]. More recently, data-driven (DD)
models, where the model learns rules from historical data,
have become more prominent models. This is because DD
models reduce the expert-authoring burden, and have the
potential to be easily scaled to more problems and contexts.
Moreover, DD models learn from multiple students’ solu-
tions, which makes it capture code situations that human
experts cannot easily perceive, particularly in open-ended
programming tasks [49, 45]. However, DD models are de-
pendent on the quality of the data, and may have lower accu-
racy than expert models [59, 48]; and, therefore, may some-
times provide misleading feedback in practice [48]. Both
of these models have strengths and weaknesses, and in this
paper we propose an approach that takes advantage of both.

Samiha Marwan, Yang Shi, Ian Menezes, Min Chi, Tiffany Barnes and
Thomas Price “Just a Few Expert Constraints Can Help: Humanizing
Data-Driven Subgoal Detection for Novice Programming”. 2021. In:
Proceedings of The 14th International Conference on Educational Data
Mining (EDM21). International Educational Data Mining Society, 68-80.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

68 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

We present a hybrid approach that leverages both a data-
driven model and expert insights to detect subgoal com-
pletion during problem-solving block-based programs. Our
hybrid model is based on three main steps. First, we used
an unsupervised data-driven model to generate subgoal de-
tectors for a programming task, and represent them as a
set of human-interpretable and human-editable rules. Sec-
ond, this representation allowed us to evaluate the accuracy
of the subgoal detectors; particularly when they have inac-
curate detections. Third, we used human expert insights to
refine and fix rules that led to inaccurate subgoal detections.
These three steps resulted in a hybrid data-driven approach
that generates subgoal detectors with high accuracy, that
target expert-authoring effort only where improvements are
needed, and that can also be easily scaled to various prob-
lems and contexts.

We evaluated our hybrid data-driven model to a block-based
programming problem from an introductory CS classroom
against the same, fully data-driven (DD) model, but without
experts’ intervention. We evaluated the accuracy of both
models by comparing their subgoal detections on a given
programming task, to that of human experts, and we hy-
pothesize that our hybrid model will surpass the accuracy
achieved by the DD model. We found that the expert eval-
uations of subgoal detections achieved significantly higher
agreement with our hybrid model than that achieved with
the DD model. We also found that our hybrid model out-
performs the state-of-the-art supervised models: code2vec
[53], Support Vector Machine (SVM) [14], and XGBoost [9].
In addition, we present case studies of how the hybrid model
led to differing subgoal detections in student programs com-
pared to the DD model. We also discuss how we can close
the loop by applying our hybrid model in block-based pro-
gramming classrooms to provide students with immediate
feedback on subgoals.

In summary, in this paper we investigate this research ques-
tion: RQ: How well does a hybrid data-driven model com-
bined with expert insights perform compared to: 1) a data-
driven model without expert augmentation and 2) baseline
supervised learning approaches that leverage expert subgoal
labels? Our work provides the following contributions: (1)
we present a hybrid subgoal detection approach which com-
bines an unsupervised data-driven model with domain ex-
pertise to achieve the benefits of both data-driven models,
and expert models, and (2) we demonstrate how our hybrid
approach advances the state of the art in subgoal detection
in open-ended programming tasks over supervised and un-
supervised baselines, with an accuracy range of 0.80 - 0.92.

2. LITERATURE REVIEW
In this work, we investigate the challenge of automatically
detecting subgoals effectively. We propose a method that
involves a hybrid approach where human experts modify
data-driven models to build effective subgoal detectors. In
the following, we first review prior work on the immediate
feedback with a focus on subgoal feedback. Then, we review
prior work that involves merging machine and human ex-
pert intelligence to improve performance of machine learned
models. Finally, we review both state-of-the-art supervised
learning models and an unsupervised data-driven model that
we used for subgoal detection in a programming task.

2.1 Feedback and Subgoal Detection
Formative feedback is defined as a type of task-level feed-
back that provides specific, timely information to a student
in response to a particular problem, based on the student’s
current ability [54]. In a review of effective formative feed-
back in education, Shute shows that immediate formative
feedback is effective because it can improve students’ learn-
ing [11, 38] and retention [54, 44], particularly in procedural
skills such as programming [54]. Most intelligent tutoring
systems provide immediate feedback through identifying er-
rors (e.g. error detectors [5, 55], anomaly detectors [31], or
misconception feedback [25, 24]); however far less work has
been devoted to providing feedback on students’ subgoals.
Automated assessment systems (i.e. autograders) can pro-
vide feedback on correct subgoals by showing the passing
test cases using expert-authored models [7, 28, 26, 38]. For
example, most autograders use instructor test cases to check
for correct program output; however they require students
to submit an almost-complete program to obtain feedback
[7, 29]. As a result, this feedback is often not available in the
early stage of programming when timely feedback on sub-
goals is mostly needed. To provide timely subgoal feedback,
prior research has taken two exclusive approaches: expert-
authored approach and data-driven approach.

Expert-authored Approaches: Prior work has explored stu-
dent completion to subgoals by diagnosing students’ solu-
tions against expert models (e.g. constraint-based mod-
els [42]), even when a student has incomplete submissions,
to provide feedback on whether they are on track [27], or
whether they completed key objectives of short program-
ming tasks [38]. However, these systems often require ex-
tensive expert effort to create rules. To address this author-
ing burden, example-tracing tutoring systems infer tutoring
rules based on examples of potential student behaviors. This
still requires an author with some domain expertise, but
it allows rules to be constructed by non-programmers who
have domain expertise [2]. An expert can create different ex-
ample solutions to capture different solution strategies; and
augment them with hints or feedback. Example-tracing tu-
tors have been developed in multiple non-programming do-
mains like genetics [12], mathematics [1], and applied ma-
chine learning, and they have been shown to improve the
problem-solving process and student learning [2]. Despite
the accuracy of expert models in providing feedback on test
cases or correct features, which can be equivalent to sub-
goals, it is unclear how feasible they are in domains with
vast solution spaces and open-ended problems, such as in
programming tasks [59, 39, 25].

Data-driven Approaches: Data-driven approaches refers to
systematically collecting and analyzing various types of ed-
ucational data, to guide a range of decisions to help improve
the success of students [15, 50]. Data-driven models largely
avoid the need for expert authoring altogether by using prior
students’ correct solutions, instead of expert rules or instruc-
tor solutions, to learn patterns of correct solutions. This en-
ables automated assessment feedback on student code [21].
Many data-driven models work by executing a comparison
function that calculates the distance between students’ code
and all the possible correct solutions, and then compares
the path of the most close solution with that of the stu-
dent [47, 49, 59, 39]. While most data-driven methods have

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 69

been used to generate fine-grained feedback – such as hints
in the hint factory [58], little work has used these meth-
ods to generate subgoal feedback. For example, Diana et
al. developed a model that searches for meaningful code
chunks in student code to generate data-driven rubric crite-
ria to automatically assess students’ code [19]. Diana et al
show that a data-driven model can have agreement with that
of the experts [19]. In the iList tutor, Fossati et al. used
a data-driven model to provide feedback on correct steps,
where they assess student code edits as good, if it improves
the student’s probability to reach the correct solution, or
uncertain if a student spent more time than that taken by
prior students at this point [21]. Fossati et al. found that
this feedback was well-perceived by students, and improved
their learning [21]. However, data-driven models are depen-
dent on the similarity of the current student’s approach to
prior student submissions, making it difficult to control the
quality of their feedback [39, 51, 59, 46]. In a case study
paper, Shabrina et al. discuss the practical implications of
data-driven feedback on subgoals, showing that the quality
of feedback is important, even positive feedback, since inac-
curate feedback can cause students to spend more time on
a task even after they were done [51]. Because of such chal-
lenges and perhaps other reasons such as the inability for
individual instructors to augment autograder feedback, few
tools have been built to provide immediate feedback to stu-
dents on whether they have achieved subgoals during their
programming tasks [34].

2.2 Integrating Expert Knowledge into Mod-
els

In recent years, combining machine and human intelligence
has been extensively explored in a wide range of domains in-
cluding artificial intelligence and software engineering. For
example, Chou et al developed a virtual teaching assistant
(VTA) that uses teachers’ answers as human intelligence,
and machine intelligence to use teachers’ answers to locate
student errors, and generate hints [10]. Chou et al found
that these mechanisms reduce teacher tutoring load and re-
duce the complexity of developing machine intelligence [10].
In the software engineering domain, there is an emerging ap-
proach called collective intelligence that merges the wisdom
of multiple developers with program synthesis algorithms,
which has been shown to significantly improve the efficiency
and accuracy of program synthesis [61].

Human-in-the-loop methods are another effective trend that
use human intelligence to improve the efficiency of Machine
Learning models, while the model is learning [23, 56, 30,
63]. For example, Goecks introduces a theoretical founda-
tion that incorporates human input modalities, like demon-
stration or evaluation, to leverage the strengths and mitigate
the weaknesses of reinforcement learning (RL) algorithms
[23]. Their results show that using human-in-the-loop meth-
ods accelerates the learning rate of RL models, with a more
efficient sample, in real time [23]. Our work also uses human
intelligence to improve the accuracy of a machine learning
model; however, it does so after the model is trained.

In the educational domain, expert knowledge is widely ap-
plied to augment data-driven and machine-learned models
for problem solving and feedback. For example, in a logic tu-
tor that provides data-driven hints using students’ solutions,

Stamper et al. used an initial small amount of sample data
generated by human experts to enhance the automatic de-
livery of hints [57]. Moreover, example-tracing tutors allow
experts to specify moderately-branching solutions for open-
ended problems, allowing some intelligent tutors originally
implemented using complex expert systems to be almost
completely replicated to support practical learning needs [2].

2.3 Supervised Learning Models of Code Anal-
ysis

Supervised learning algorithms leverage labels created by
human experts, to guide the model search process. With
available labels, automated learning algorithms can be ap-
plied to the subgoal detection tasks for programming data.
As shown in [6], one baseline is to extract term frequency-
inverse document frequency (TF-IDF) features and uses tra-
ditional machine learning algorithms such as support vector
machines (SVM) [14] and XGBoost [9]. However, as word- or
token-based features such as TF-IDF lose important struc-
tural information from programming data [3], recent work
uses structural representations from code and a more com-
plex model structure to learn more complex features. For
example, Shi et al. applied a code2vec [4] model to detect
the completion of rubrics on student programming data [53].
In this work, we compared our hybrid data-driven model to
these existing supervised learning baseline models to check
our improvement on the subgoal detection task.

2.4 Data-Driven Subgoal Detection Model
Among the various data-driven models for detecting sub-
goals, or rubric items [39, 18, 19], we built our proposed hy-
brid model on top of an unsupervised data-driven subgoal
detection (DD) algorithm, presented in [64]. We applied
this algorithm on a programming task called Squiral (de-
scribed in Section 3) by running the following steps. First,
the algorithm extracts prior student solutions in Squiral as
abstract syntax trees (ASTs) [49, 47]. Then, it applies hier-
archical code clustering for feature extraction and selection
by: (1) extracting common code shapes, which are common
subtrees, in ASTs of correct students’ solutions (Figure 2
shows examples of code shapes); (2) filtering redundant code
shapes; (3) identifying decision shapes, which consist of a
disjunction of code shapes (i.e. C1 ∧ . . . ∧ Cn) that are
usually mutually-exclusive (e.g. a program uses a loop, or
a repeated set of commands, but not both), and (4) hierar-
chically clustering frequently co-occurring code shapes into
subgoals. In [64], the authors found a meaningful Cohen’s
Kappa (0.45) in agreement of the algorithm and expert sub-
goal detection on student data, suggesting that DD subgoals
could be used to generate feedback. However, since the DD
subgoals are typically represented in a regular-expression-
like form, labels are needed to make them meaningful and
usable for students in programming environments.

3. METHOD
This work presents and evaluates a hybrid data-driven model
for generating and detecting subgoals in a block-based pro-
gramming exercise (explained in Section 3.1). To evaluate
our hybrid data-driven approach, we applied our model on
student data collected from an Introduction to Computing
course, and we asked human experts to evaluate the accu-
racy of its subgoal detections (explained in Section 3.2.2).

70 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 1: One possible solution for Squiral with line numbers
on the left, and the script’s output on the right.

We use this dataset to provide examples of how our ap-
proach works, but we also discuss how it can be generalized.
We compared our hybrid model against its underlying data-
driven (DD) model described above in Section 2.4, as well as
state-of-the-art supervised learning models (explained below
in Section 4.1).

3.1 Dataset
Our data is collected from a CS0 course for non-majors in
a public university in the United States that uses Snap!, a
block-based programming environment [22]. This program-
ming environment logs all students actions while program-
ming (e.g. adding, deleting or running blocks of code) with
the time taken for each step. These student logs (i.e. ac-
tions) can also be replayed as a trace of code snapshots of
all students’ edits – allowing us to detect the time and the
code snapshot where a subgoal is completed during student
problem-solving process.

In this work, we collected students’ logs from one homework
exercise named Squiral, derived from the BJC curriculum
[22]. Squiral requires a visual output, where students are
asked to write a procedure that takes one input ‘r’ to draw
a square-like spiral with r rotations. Figure 1 shows a pos-
sible correct solution of Squiral that requires procedures,
variables, and loops. We collected a training dataset from 3
semesters: Spring 2016 (S16), Fall 2016 (F16), and Spring
2017 (S17), which includes data of 174 students, that has a
total log data of 29,574 student actions

3.2 Hybrid Data-Driven Subgoal Detection
Our hybrid data-driven model is based on two main things.
First, the DD model is used to generate data-driven sub-
goals. Second, expert-authored constraints are added to
improve the quality of these subgoals and the accuracy of
their detection. We implemented our hybrid approach by
conducting the following 3 high-level steps:

1. We used the DD model to generate an initial set of sub-
goals, consisting of clusters of code shapes. We then
presented these clusters to experts in an interpretable
form, who combined them to create a concrete set of
meaningful subgoal labels.

2. We integrated DD subgoal detection model into the
students’ programming environment, allowing students
to see when the DD algorithm detected completion of
each subgoal. We then collected student programming

Figure 2: Three code shapes A, B, C, in both the data-driven
and hybrid models. Each code shape represents a false de-
tection and its fix by human experts. Red dashed nodes are
removed and green bold nodes are added.

log data along with DD detections, and asked experts
to evaluate the accuracy of the DD detections.

3. We used human expert insights to fix code shapes that
led to false subgoal detections; and then combined
them again to create a modified set of hybrid subgoals
and evaluated its new accuracy.

3.2.1 Step 1: Interpreting and Editing Data-Driven
Subgoals

The goal of this step is to generate data-driven subgoals
using the DD model and present them in an interpretable
and editable form. We applied the DD model (described
in Section 2.4) on S16, F16, and S17 student datasets to
generate a number of clustered code shapes. Column 1 in
Table 1 shows the description of 7 subgoals corresponding
to code-shape clusters generated from correct solutions (n
= 52). We evaluated each cluster by displaying its code
shapes separately and interpreted their code behavior. For
example, code shape A in Figure 2, on the left, represents a
decision shape that requires student to use the ‘ReceiveGo’

block (i.e. the hat block in Figure 1, line 1, which is used to
start a script) in their main script, or to evaluate a procedure
with one parameter, which is done by creating and snapping
a procedure in the main script (as shown in Figure 1, line 3).
We treated each cluster as a subgoal, and for a subgoal to be
detected, the DD model requires all of its code shapes, and
exactly one component of its decision shapes, to be present
in student code.

While the data-driven clusters can represent appropriate
subgoals, we combined some of them to create a shorter
list of higher-level subgoals similar to the programming task
rubric. Column 2 in Table 1 show the combined subgoals.
It is worth noting that we also took the insights of two in-
structors of the CS0 course on how meaningful these sub-
goals are for students to understand. Additionally, because

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 71

one of our goals is to use these data-driven subgoals in learn-
ing environments, we asked human experts to label them to
make them easily understandable by students, and instruc-
tors. For example, the human label of subgoal 1 is: “Create
a procedure with one parameter, and use it in your code”, as
shown in Table 1. We then developed a data-driven subgoal
detector that takes student code as an input, and outputs
the status of each subgoal. For example, if the input is code
C and the output is {1, 0, 0, 1}, this means the subgoal
detector detects the completion of subgoals 1 and 4, and the
absence of subgoals 2 and 3 in C.

3.2.2 Step 2: Investigating Data-Driven Subgoals
The goal of this step is to investigate the correctness of the
DD subgoal detections. In Spring 2020 (S20), we integrated
the DD subgoal detector into the Snap! programming en-
vironment for the Squiral exercise to provide students with
subgoal feedback [39]. In Snap!, students could see the sub-
goal labels (shown in Table 1), colored gray to start, green
when the subgoal was detected, or red when it became bro-
ken. We collected 4,480 edit logs from 27 student submis-
sions with an average of 166 edits per student in S20. For
each student edit, we recorded the DD subgoal detection
state (e.g. {1, 0, 0, 0} for subgoal 1 being complete). We
asked human experts to manually replay each student’s trace
data and evaluate whether the subgoal labels, as shown to
students, were achieved at the specific timestamps when the
DD algorithm detected them. Importantly, we asked ex-
perts to report when the expert-authored labels for each
subgoal (which students saw) were achieved. Since these
labels do not precisely match the code shape combinations
that the DD subgoal detector used, it was very possible for
the DD model to be “wrong.” In other words, we asked
experts to determine when each student achieved “Create
a Squiral procedure with one parameter and use it in your
code,” and compared that to when the DD detector marked
this subgoal label as complete.

We classified each evaluated instance as either Early, on-

Time, or Late. An instance is classified as Early if the DD
detection is before the human expert detection timestamp,
OnTime if they coincide, and otherwise Late. For example, if
for student Sj , the human expert detected the completion of
subgoal i (SGi) at time t = 5; while the algorithm detected
it at t = 2, then we label SGi for Sj as Early detection.
Then we sorted students in descending order based on the
percentage of false detections in their log data, and we took
the first 66% of this data (∼ 18 students as a data sample)
to investigate the reasons for false detections. We did not
use the full set of false detections, since our primary goal was
to fix the most common mismatches, without overfitting to
the dataset.

We then focus on false detections that occured due to new,
correct solutions, in the S20 dataset, that had no match-
ing code shapes in the training dataset (S16, F16, and S17
datasets). We do not investigate expected false detections
that occured due to known limitations in the DD algorithm
(e.g. the DD algorithm does not differentiate between vari-
able names).

We found three reasons for false detections for subgoals 1,
2, and 4. Inspired by the design of the constraint-based

SqlTutor by Mitrovic et al. [41], we introduce 3 fixes (or
constraints) to resolve them.

Subgoal 1 false detection. As shown in Table 1, subgoal 1 la-
bel requires a student to create a procedure with one param-
eter, and use it (or evaluate it) in the main script. However,
subgoal 1 code shapes consist of the creation and evaluation
of a procedure, or the use of a ‘ReceiveGo’ block (the hat
block used to start a script). This means that whether a
student created and evaluated a procedure, or added a ‘Re-

ceiveGo’ block in the main script, the DD model will detect
the completion of that subgoal, but experts did not inter-
pret the ‘ReceiveGo’ block as meeting this subgoal, yielding
a false detection. To fix this false detection, we simply re-
moved the ‘ReceiveGo’ block as an option for this subgoal.
Code shape A in Figure 2 shows the code shapes of subgoal
1 of the DD model (on the left), and how it is fixed in the
hybrid model (on the right).

Subgoal 2 false detection. As shown in line 6 in Figure 1,
subgoal 2 requires a student to use a ‘repeat block that iter-
ates 4 times the number of rotations to draw a Squiral with
the correct number of sides. While code shapes of this sub-
goal satisfy this definition, they also include a code shape of
adding a ‘pen down’ block, which is necessary to draw, but
only inside a procedure. Therefore, if a ‘pen down’ block
is used outside of a procedure, subgoal 2 will not be de-
tected. To fix this false detection, we added a disjunction
code shape to detect the presence of ‘pen down’ inside or
outside a procedure, as shown in code shape B in Figure 2.

Subgoal 4 false detection. As shown in lines 6-9 in Figure 1,
subgoal 4 requires the use of ‘move’, ‘turn’, and ‘change -
by -’ blocks (which increments a value of a variable), inside
a ‘repeat block’. We found that code shapes of subgoal 4
only include the ‘turnLeft’ block; however, if the student
solution contains a ‘turnRight’ block (which does the same
‘turn’ functionality but from a different direction), the sub-
goal will not be detected. To fix this false detection, we
modified all the code shapes that require the use of ‘turn-

Left’ block to accept either ‘turnRight’ or ‘turnLeft’

blocks, as shown in code shape C in Figure 2.

These three false detections show that prior solutions in S16,
F16, and S17 datasets often used a ‘ReceiveGo’ and ‘turn-

Left’ blocks, and used ‘pen down’ inside a procedure; but
this was not always the case in the S20 data. This shows that
investigating the accuracy of a model, either data-driven or
expert, is necessary since it is impossible to predict how stu-
dents will behave in practice or how the data will change
from one class to another.

3.2.3 Step 3: Improving the Data-Driven Subgoals
with Human Insights

The goal of this step is to apply the human expert con-
straints (explained in Step 2) to mitigate the false detections
of the DD algorithm. To do so, we developed a tool that
iterates over each code shape of the data-driven subgoals,
and allows humans to edit code shapes (i.e. add, delete or
modify) to apply the three constraints (i.e. fixes) explained
in Step 2. Because this tool modifies the code shapes, we
then use the original DD algorithm to re-cluster all code
shapes to ensure that the most similar code shapes remain

72 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 1: Data-driven subgoals (composed of code shape clusters) with their corresponding human labels that were used when
presented to students.

Data-Driven Code Shape Clusters Combined Clusters Subgoal Human Label
C1: Evaluate a procedure with one parameter on
the script area OR Add a ‘ReceiveGo’ block. C1 + C2 = Subgoal 1

Create a Squiral procedure with
one parameter and use it in your code.

C2: Create a procedure with one parameter.
C3: Have a ‘multiply’ block with a variable in
a ’repeat’ block OR two nested ‘repeat’ blocks. C3 + C4 = Subgoal 2

The Squiral procedure rotates
the correct number of times.

C4: Have a ‘pen down’ block inside a procedure
C5: Add a variable in a ‘move’ block inside a
‘repeat‘ block.

C5 = Subgoal 3
The length of each side of the Squiral
is based on a variable.

C6: Have a ‘move’ and ‘turnLeft’ block
inside a ’repeat’ block. C6 + C7 = Subgoal 4

The length of the Squiral increases
with each side.

C7: ‘Change’ a variable value inside a
‘repeat’ block.

clustered together. Figure 2 shows an example of three code
shapes before and after they have been edited by human ex-
perts, that fix false detections that existed for subgoals 1, 2,
and 4, respectively.

In summary, our hybrid model humanizes data-driven sub-
goal detection models through a series of important steps.
First, we apply a data-driven model to correct, historical
student solutions to generate a set of human interpretable
code shape clusters. Second, a human expert labels the
subgoals these clusters represent, in a way that is meant
to align with the original programming assignment. Third,
we collect data from students solving the same task using
a programming environment augmented with subgoal feed-
back (i.e human labels with colors) based on the DD subgoal
detector. Fourth, we had experts examine code traces with
the DD subgoal feedback to determine when the displayed
subgoal labels were actually achieved. Fifth, human experts
modified the code shapes that led to discrepancies between
the data-driven and expert detections for the displayed sub-
goals. This series of steps leverages the natural cycle of a
frequently-offered CS0 class to bootstrap the creation of DD
subgoal detectors in the programming environment.

4. EVALUATION
In this experiment, we applied both the hybrid and the DD
models to detect subgoals in students’ S20 code submissions.
We also asked two human experts to evaluate the presence or
absence of each subgoal in a subset of students’ code snap-
shots (sequential states of student code, corresponding to
their code edits, e.g., the addition or deletion of code blocks)
using the subgoal labels (shown in Table 1) as rubric items
(with 1 for the subgoal’s presence and 0 for its absence),
resulting in an expert (or gold standard) subgoal state.

Because S20 data consists of 4480 code snapshots, it is not
feasible to evaluate the models on every timestamp for two
reasons. First, students mostly need feedback on a given
subgoal when they are making edits towards finishing that
subgoal, not after every single edit they make. Second, stu-
dents break and recomplete subgoals frequently, even when
they are not working on a particular subgoal, and therefore
it is not meaningful to have an expert label at every sin-
gle datapoint. As a result, we evaluate the models at the

most meaningful times when a student is close to finishing
a subgoal, including: (1) the first time a student completed
a subgoal, according to a human expert, (2) up to five code
edits before that subgoal is completed, and (3) any time
when either model (i.e. hybrid, or DD) suggests a change
in a subgoal’s status. While these changes may or may not
be true, we wanted to have experts evaluate the correctness
of how the algorithms may have detected subgoal changes
at these points.

For each subgoal, two human experts evaluated 150, 163,
178, and 196 student snapshots for subgoals 1, 2, 3, and 4,
respectively, making a total of 687 labeled snapshot data-
points. The experts used the subgoals as their rubric; and
they started the labelling process by evaluating the first time
a subgoal is detected. To do so, they divided the data (27
students * 4 subgoals = 108 datapoint) into a set of 6 rounds,
where the first round consists of 2 students and the remain-
ing 5 rounds consists of 5 students. The two experts collabo-
ratively evaluated the first round together to make sure they
have a clear understanding of the rubric subgoals. Then for
the next two rounds, they evaluated the logs independently
and after each, they met to discuss and resolve conflicts.
For these 3 rounds, the two experts had a moderate to sub-
stantial agreement with a Cohen’s kappa ranging from 0.5
to 0.67. The reason why the kappa values are low is that
we considered any disagreement even if it was a difference of
one timestamp, but it does highlight how subgoal detection
can be subjective, which is a challenge for measuring the ac-
curacy of subgoal detection. As a result, for the remaining
data, the two experts continued to evaluate it independently
and then met to discuss and resolve conflicts to produce rel-
atively objective gold standard expert labels. We used these
labelled logs as ground truth to compare the accuracy and
F1-scores of both the DD and the hybrid models. We also
calculated the agreement between the expert detections and
those generated by the hybrid and DD models.

4.1 Supervised Learning Models
We also compared our hybrid humanized model with super-
vised machine learning models as another form of baseline.
The supervised models were trained and tested on the S20
dataset, using the same 687 expert-labeled snapshots de-
scribed above. We trained separate models to detect each of

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 73

the subgoal labels (using training/testing splits discussed
below). This allows us to directly compare these super-
vised methods, which require labeled training data, to the
DD model, which does not, and to our hybrid approach,
where the expert uses some of the labeled data to improve
the model. While we discuss some limitations to this com-
parison in Section 7, these baselines help contextualize the
performance of our subgoal detectors.

The baseline supervised machine learning models we have
chosen are two shallow models (SVM [14] and XGBoost [9])
and one deep learning model (code2vec [4]). We used the
same edits for predictions as the DD and hybrid models, and
extracted the term frequency–inverse document frequency
(TF-IDF) features from the models, thus a vector represen-
tation of an edit is generated, and used for training the two
models. We performed grid search cross validation for both
models. For SVM, we used a parameter space of linear kernel
and Radial Basis Function (RBF) [60] kernel, and searched
the regularization parameters from 1 to 10. For XGBoost,
we searched the subsampling space of 0.1 to 1, with the
number of estimators from 5 to 100, stepping by 5. Ten-
fold cross validation is performed to search the parameter
spaces. The training, validation, and test sets are split by
students to make sure that no students used for testing will
have an edit in training, since edits from one student would
be very similar, and using samples similar to the testing set
in training would lead to an unfair comparison.

We selected one state-of-the-art deep learning model, code2vec
[4], for comparison as well, as the model has recently been
applied in educational code classification tasks [53]. In-
stead of using a vector of term frequency to represent edits,
code2vec uses the structural representations from ASTs to
represent the code, and the representation is learned from
training a neural network1. We used early stopping to avoid
overfitting. To ensure the robustness of our results, we ran
20 times with resampling for all supervised baseline models,
and reported average metrics (e.g. F1-score, accuracy).

5. RESULTS
RQ1a: How well does a hybrid model perform compared to a
data-driven model without expert augmentation?

The prediction results for each subgoal from the DD model
and the hybrid model are shown in Table 2. Our hybrid
model achieves higher accuracy and F1-scores on all subgoals
than the DD model. In particular, it reaches > 0.8 accuracy
for all subgoals, and it reaches > 0.9 accuracy for 2 out of
the 3 subgoals that were modified (i.e. subgoal 1 and 4)
with expert constraints. It is worth noting that the hybrid
model achieves higher accuracy in subgoal 3, which was not
modified with expert constraints. This is possible because
after we modified code shapes for the other subgoals, we
reclustered the code shapes (as described in Section 3.2.3),
and the new code shapes for subgoal 3 were changed. This
is likely because, after reclustering, some code shapes moved
to subgoal 3, resulting in higher recall.

We also measured the agreement between human experts,
DD, and hybrid model subgoal detections. For the four sub-

1We applied code2vec using the process described in [53].

Subgoal 3 Subgoal 4

Subgoal 1 Subgoal 2

0 10 20 0 10 20

−400

−200

0

200

−400

−200

0

200

Students

N
um

be
r

of
 E

di
ts

Model

DD

Hybrid

Figure 3: The number of code edits (y-axis) that occurred
between gold standard expert subgoal detections, and detec-
tions by the DD and Hybrid models, for first-time subgoal
detections for each student trace (x-axis).

goals, we find low to moderate agreement over all student
logs between DD and human expert detections, with Co-
hen’s kappa values ranging between 0.25-0.581. However,
we find substantial or better agreement between the hybrid
model and human expert detections, with Cohen’s kappa
values ranging between 0.6-0.84. It is worth noting that this
agreement is higher than that achieved between the two hu-
man experts (described in Section 4). These results showed
that the addition of just three human constraints to a data-
driven model succeeded in improving its accuracy, making
the hybrid model agree more with the gold standard (that
the experts co-constructed), than the experts’ original agree-
ment with one another.

We also determined the number of false detections (i.e. Early
and Late detections, as described in Section 3.2.2) for both
the hybrid and DD models. We found the DD model de-
tected 40.66%, 10.66%, 5.62% and 5.10% Early detections,
and 2%, 13.5%, 12.36%, and 15.31% Late detections for sub-
goal 1, 2, 3, and 4, respectively. However, our hybrid model
detected 1.33%, 13.5%, 10.67% and 4.6% Early detections,
and 8%, 5.52%, 1.7%, and 2.81% Late detections for subgoal
1, 2, 3, and 4, respectively. To visualize these false detec-
tions, Figure 3 visualized these false detections by presenting
the distance (i.e. how many edits) between the Early and
Late detections by both the DD and hybrid models, and the
gold standard human expert detections of the first time a
subgoal is completed. The x-axis presents the students (n =
27), and the y-axis presents the number of edits a student
makes until they complete a subgoal. We used a negative
number to indicate how much earlier the models were than
the gold standard detection, 0 to show when models agree
with the gold standard, and a positive number to show how
much later the models were. We also used empty circles to
indicate instances where a subgoal is never detected by the
models but it was detected by human experts. While Fig-
ure 3 shows only how early/late the model is in detecting
when a subgoal is first completed, this is likely the most
important detection. Our results suggest a high agreement
between the hybrid model’s detections with the gold stan-
dard, and a strong improvement over the DD model.

74 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 2: Precision, Recall, F1-score and Accuracy observed with Supervised, Data-Driven (DD) and our Hybrid Models.
Precision Recall F1-score Accuracy

SVM
XG-
Boost

Code
2vec

DD
Hyb-
rid

SVM
XG-
Boost

Code
2vec

DD
Hyb-
rid

SVM
XG-
Boost

Code
2vec

DD
Hyb-
rid

SVM
XG-
Boost

Code
2vec

DD
Hyb-
rid

Subgoal 1
(n = 150)

0.71 0.68 0.89 0.44 0.95 0.79 0.75 0.91 0.94 0.76 0.71 0.66 0.89 0.60 0.85 0.82 0.76 0.90 0.57 0.91

Subgoal 2
(n = 163)

0.58 0.61 0.57 0.70 0.69 0.61 0.77 0.79 0.63 0.85 0.55 0.66 0.64 0.66 0.76 0.74 0.75 0.75 0.77 0.81

Subgoal 3
(n = 178)

0.60 0.62 0.69 0.80 0.75 0.54 0.61 0.76 0.64 0.95 0.52 0.59 0.70 0.71 0.84 0.70 0.72 0.79 0.82 0.88

Subgoal 4
(n = 196)

0.62 0.64 0.64 0.79 0.87 0.64 0.75 0.84 0.55 0.93 0.59 0.66 0.69 0.65 0.90 0.76 0.74 0.75 0.80 0.93

RQ1b: How does a hybrid model perform compared to super-
vised learning approaches that leverage expert subgoal labels?

We show our comparison of supervised learning models and
the hybrid model in Table 2. On all subgoals, except one,
the hybrid model has higher accuracy and F1-score than
code2vec, SVM, and XGBoost models, outperforming them
by 0.10, 0.06 and 0.15 percent of F1-score, respectively. In
subgoal 1, we found that code2vec achieved a higher F1-
score than all the other models, and a relatively similar ac-
curacy to the hybrid model (0.903, 0.906). One possible
explanation for this is that subgoal 1 is the simplest sub-
goal, requiring only that the student has defined and used
a procedure, regardless of its content, and this simple code
pattern may have been easier for the supervised approaches
to learn. These results show that a hybrid model iteratively
constructed through cycles of student data collection, ma-
chine learning, along with human labeling and correction
can be used to create accurate automatic subgoal detections
on a novice programming task. Furthermore, these super-
vised learning models, that were mostly outperformed by
our hybrid model, were learned using labels from snapshots
that were strategically chosen to reflect important decision
points for the model, suggesting that the supervised models’
performance may suffer if a random selection of snapshots
were used to create an expert-labeled training set instead.

5.1 Case Studies
In this section, we present case studies to highlight ways the
hybrid model improved upon the original DD model, as well
as the hybrid model’s limitations. These case studies come
from the 33% of students who were not investigated when the
expert identified false detections in S20 from the original DD
model, as discussed in our methods (Section 3.2.2). These
students also used the original DD system, but their data did
not inform our hybrid model. These case studies, therefore,
help us understand the ways our hybrid model might help
new students, as well as limitations of the model. Though
our prior work suggests the DD subgoal detections over-
all were often useful to students [39], our post-hoc analysis
here shows that the false detections may have negatively im-
pacted student programming behavior, suggesting the need
for our hybrid model’s improvements.

5.1.1 Case Study 1 (Em): Inaccurate Data-Driven
Subgoal Feedback

We present here a case study of the student Em2 when they
received an inaccurate subgoal detection based on the DD
model, and how the hybrid model could have mitigated this
false detection.

Em started solving Squiral by snapping the ‘when green flag
clicked block’ (i.e. ‘ReceiveGo’ block) on the main script as
shown in Figure 4A, and the system falsely detected sub-
goal 1. Em then proceeded to work on subgoal 2, without
creating the required procedure, and created a loop using
the ‘repeat’ block nested with ‘move’ and ‘turnLeft‘ blocks
(shown in Figure 4B). This time, the system was correct
in not detecting subgoal 2 because the loop was not in a
procedure, and does not iterate on the ‘rotations’ param-
eter. Afterwards, Em correctly created a procedure with
one parameter as shown in Figure 4C; however, the system
shows no change, since it already falsely detected subgoal
1 earlier, and therefore, no change in the feedback is given
to the student. Em then destroyed the procedure, with-
out ever making it again. Em kept working for the rest of
the time on creating a number of redundant loops, similar
to the one in Figure 4C, with constant values to manually
draw the Squiral shape (rather than using a variable to vary
its length).

Em spent a total of 55 minutes to draw Squiral in an iterative
manner. While the DD system accurately detected subgoals
2-4 as incomplete, this case study highlights potential harm
that may have arisen from the false detection of subgoal 1.
When subgoal 1 was detected early, Em skipped over creat-
ing a procedure. Later, when she did create the procedure
correctly, she got no additional feedback (since the subgoal
was already detected), and promptly deleted it. Preventing
these unneeded deletions is a primary role of correct, pos-
itive subgoal feedback. However, had Em been using the
hybrid model, subgoal 1 would not have been detected early
because the expert edited the faulty code shape. We argue
that this might have allowed Em to keep working on creat-
ing a procedure (as shown in snapshot C in Figure 4), which
would have been detected as complete by the hybrid system
only at this time. It is also possible that receiving inaccu-
rate feedback at the very beginning may have led to Em’s
mistrust in the system, since prior work shows that incorrect
feedback can reduce students’ willingness to use it [48].

Note that, we do not believe this incorrect DD detection

2We provide anonymous names for students.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 75

Figure 4: Code snapshots A, B, and C, implemented by stu-
dent Em in Case Study 1.

means the full data-driven system should not be used since
our prior work shows the system can be helpful to students
[39]. However, we need to explore how to present subgoal
feedback in a way that promotes students to question the
feedback since any such program will inevitably fail to rec-
ognize some correct variants of a subgoal solution.

5.1.2 Case Study 2 (Jo): Cases when Hybrid Sub-
goal Detections could be Incorrect

We present here a case study where the hybrid model would
not have provided accurate subgoal feedback. As evidenced
by the model’s high overall accuracy (Table 2), these in-
stances were rare, but understanding them highlights the
affordances and limitations of our approach. Specifically,
we investigated subgoal 1, where the hybrid model had the
lowest F1-score.

Student Jo correctly created a procedure with a parameter;
however, since Jo had not yet used the procedure in their
main script, subgoal 1 was not detected (accurate detection).
Jo continued programming and completed subgoals 2 and 3,
which were accurately detected by the system. Afterwards,
Jo added a procedure call to the main script, and subgoal 1
was detected as complete (accurate detection). However, Jo
then added a ‘pen up’ block underneath the procedure call,
where unexpectedly, the hybrid model changed subgoal 1’s
status back to incomplete (incorrect detection).

This false detection in the hybrid model was due to an
overly-specific code shape. Specifically, the code shape re-
quired the procedure call to be the last block in the main
script (which was true for 94% of students, but not Jo), lead-
ing to the false detection. This case confirms the importance
of iteratively investigating and refining data-driven subgoal
detections to keep improving their accuracy, which is a com-
mon process in expert-authored models as well. While this
false detection has a straightforward fix, similar to the ones
presented in Section 3.2.2, it shows one limitation of the hy-
brid model: creating these fixes requires the expert to find
and address the false detections in the first place, which is
dependent on finding the bugs in the data inspected. This is
also one reason why the hybrid model performance of sub-
goal 1 has a lower F1-score than the code2vec model (as
shown in Table 2).

6. DISCUSSION
6.1 Automated Subgoal Detection
The key contribution of this paper is tackling the critical
challenge of automated subgoal detection during program-
ming tasks. Our results show that a hybrid data-driven
model meaningfully addresses this goal, with high accuracy

and F1 score when detecting subgoals at key moments dur-
ing students’ work. Our results show that this is a chal-
lenging task: even a state-of-the-art supervised learning ap-
proach with access to labeled data struggled to identify some
subgoals (F1 score as low as 0.64). This agrees with prior
work using expert-authored [13, 38] and supervised learning
models [53], showing that immediate feedback on subgoals
is a hard problem.

While automatically detecting subgoals is challenging, re-
search suggests that the ability to provide automated, im-
mediate feedback on subgoals can significantly improve stu-
dents’ motivation and learning. Providing subgoals for novices
can improve student learning by breaking down the pro-
gramming task into smaller subtasks, which is a challeng-
ing task for novices [36, 38]. In human tutoring dialogues
for programming, tutors provide a combination of corrective
and positive feedback, increasing students’ motivation and
confidence in programming [8, 33, 17]. Automatic subgoal
detection could be used to provide similar corrective and
positive feedback during programming. We know of only
3 systems that can afford such immediate feedback, that
is not based on unit tests, during programming, that have
been shown to promote learning, confidence and persistence
for linked lists [21], database queries [42], and block-based
programming [38]. It is perhaps uncommon to make such
systems due to the difficulty in anticipating all student ap-
proaches, paired with the high potential for inaccuracies and
student reactions to them. Our accuracy results suggest that
our hybrid, humanized approach can be used to build similar
automatic subgoal detection systems that could be deployed
and more easily scaled across problems in real classrooms.

6.2 Affordances of Data-driven, Hybrid and
Expert models

Our results suggest that the hybrid model has good poten-
tial for solving the problem of automated subgoal detection.
Here we discuss the advantages and trade-offs of the hybrid
approach, compared to data-driven and expert models.

6.2.1 RQ1.a: Hybrid versus Data-Driven Models
Our results show that a hybrid, iterative model that lever-
ages data-driven subgoal extraction, human labeling, and
expert refinement based on labeled student data, can greatly
improve model performance compared to a purely data-driven
(DD) model. The expert constraints improved F1-score of
the data-driven model by 0.14-0.25 points, as shown in Ta-
ble 2. Based on our analysis, the hybrid model, reduced the
number of Early and Late subgoal detections and increased
the onTime detections, when compared to the original DD
model, as shown in Figure 3. This is a critical improvement,
since prior work shows that the quality of feedback affects
novices’ programming behavior [48, 51], but also their self-
perceptions, and trust in the learning environment [48].

The hybrid model creation does require additional labelling
effort needed to evaluate the models; however, this effort
seems well worth it, and is needed to evaluate the accuracy
of any data-driven model before deployment. Compared to
prior work, our iterative hybrid model shares similar benefits
of “human-in-the-loop” methods in machine learning [56, 30]
and also represents data-driven rules in an interpretable and

76 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

editable form that simplified the process of merging human
insights into the model. In prior work, Diana et al. found,
qualitatively, that their generated data-driven rubrics are
considerably similar to human-generated rubrics [19]. Sim-
ilarly, in our work, not only did instructors agree with the
hybrid model subgoal detections, we also found these detec-
tions have substantial or better agreement with the human
expert gold standard than the DD model. From these re-
sults, we conclude that a hybrid model can be used to itera-
tively improve and humanize data-driven subgoal detection.

6.2.2 RQ1b: Hybrid versus Supervised Learning Mod-
els that Leverage Expert Subgoal Labels

Our results show that a hybrid model can surpass the per-
formance of supervised learning models. The steps we used
to create our hybrid model were to: (1) apply a data-driven
model, (2) add expert constraints, and (3) determine inter-
esting datapoints consisting of times when subgoals might
be achieved. The steps we used to create supervised learn-
ing models leveraged the interesting datapoints from step 3
of our hybrid model, hand-labeled them, and used them to
build supervised learning models. We highlight this to point
out that it is hard to determine what labeled data to use in a
supervised learning model for subgoal detection, since there
are hundreds of potential snapshots from each student. As
a result, it is unclear whether the supervised model would
have performed as well, compared to one learned from a
labeled dataset selected at random or regular timestamps.
Our results show that, even after using carefully selected
labelled data to train the model, the SVM and XGBoost
baselines did not achieve the level of accuracy of the hybrid
model for all subgoals. Even code2vec, the state-of-the-art
supervised learning model [53], has lower performance for all
subgoals, except subgoal 1, than the hybrid model. Perhaps
the code2vec performed worse due to the size of labelled
dataset (687 datapoints), though recent results suggest the
model is still effective with small datasets [52].

6.2.3 Hybrid versus Expert Models
Our hybrid approach offers distinct advantages and trade-offs
compared to expert-authored models for subgoal detection.
Traditional expert-authored models (e.g. constraint-based
tutors [42]) have the advantage of high accuracy and high
confidence, but the trade-offs of considerable domain expert
time for creation and the potential failure to anticipate some
student strategies and misconceptions. Our hybrid model
has the advantage of incorporating actual student strategies
and misconceptions, and primarily requires human effort to
label data and identify errors, tasks which can potentially be
done by non-experts and distributed across multiple people.
A domain expert is only needed to edit the automatically ex-
tracted rules and is afforded the chance to do so with actual
student data available. A significant tradeoff of the hybrid
model is its reliance on data - so the quality of the dataset
will directly impact the quality of the subgoal detectors.
Furthermore, both models are likely to need refinement as
students use them, and this process is already built into the
hybrid model creation and refinement cycle.

7. LIMITATIONS & CONCLUSION
This work has 5 main limitations. First, while the DD
model can capture small differences in solution approaches

in Squiral (like having whether a ‘turnLeft’ or ‘turnRight’
block), we have not tested it in programming tasks with
larger space of solution approaches. Therefore, it is not
known how well the accuracy results will generalize to other
types of programming tasks or languages. However, the it-
erative process of data collection, DD subgoal extraction,
labeling, and collection of data from students using the sub-
goal labels and detectors, could be applied for other pro-
gramming problems, of the same level as Squiral, and re-
peated until the models achieved high accuracy. Second,
some of S20 data that was used for models’ evaluation was
also used to inform expert constraints in the hybrid model.
However, this was only 66% of the data, and we discussed
above how the added constraints are generalizable, which
should have helped in any semester (see Section 5.1). Ad-
ditionally, our case studies in Section 5.1 show examples of
how the hybrid detector performed on unseen data, though
there was insufficient data for a quantitative evaluation.

Third, we used only the labelled S20 data to train the su-
pervised baseline models, but we also used 3 other semesters
of unlabeled data to train the unsupervised DD and hybrid
models. However, we argue that this ability to leverage a
larger unlabeled dataset is an advantage of the unsupervised
methods, rather than a limitation of our analysis. Fourth,
some of the datapoints that were labeled for the evaluation of
all the models were selected in part by using the hybrid and
DD model detections, as discussed above, and this might
have biased the results. However, all the models were evalu-
ated on these same datapoints that were strategically chosen
for their importance, and there are instances where some of
the supervised models outperformed the original DD model.
It is not clear how a different data selection strategy would
have affected the results, and we argue that training and
testing the supervised models on a dataset of the same size
with randomly selected snapshots would likely decrease the
performance of supervised models. Finally, we did not com-
pare the hybrid model to a purely expert-authored model,
and we did not measure time taken by experts to modify the
data-driven rules. We argue that these comparisons require
hiring experts to author rules and performing time analysis,
which is beyond the scope of this paper.

In summary, this work proposes a new paradigm for ‘hu-
manizing’ data-driven subgoal detection for novice program-
ming. Specifically, we proposed to humanize data-driven
subgoals in an iterative refinement process. We (1) extract
data-driven subgoals from student work, (2) give them hu-
man labels, (3) collect more data from students program-
ming with the labels and subgoal detectors, (4) present ex-
perts with the labels, and interpretable detectors, along with
student behavior data so they can add expert constraints.
This process ensures that humans are involved in every step
of the creation of automatic subgoals, offering the advan-
tages of reflecting real student behaviors, and limiting and
focusing expert authoring time. Our results show that this
hybrid humanized model outperforms fully data-driven mod-
els and state-of-the-art supervised learning models. This
proposed paradigm can be used to create humanized auto-
matic subgoal detection for tasks where it may be too expen-
sive to create full expert models for, but that are important
for student learning, motivation, and retention.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 77

8. REFERENCES
[1] V. Aleven, B. M. McLaren, and J. Sewall. Scaling up

programming by demonstration for intelligent tutoring
systems development: An open-access web site for
middle school mathematics learning. IEEE
transactions on learning technologies, 2(2):64–78, 2009.

[2] V. Aleven, B. M. McLaren, J. Sewall, M. Van Velsen,
O. Popescu, S. Demi, M. Ringenberg, and K. R.
Koedinger. Example-tracing tutors: Intelligent tutor
development for non-programmers. International
Journal of Artificial Intelligence in Education,
26(1):224–269, 2016.

[3] U. Alon, M. Zilberstein, O. Levy, and E. Yahav. A
general path-based representation for predicting
program properties. PLDI’18, 2018.

[4] U. Alon, M. Zilberstein, O. Levy, and E. Yahav.
code2vec: Learning distributed representations of
code. POPL’19, 2019.

[5] J. R. Anderson, A. T. Corbett, K. R. Koedinger, and
R. Pelletier. Cognitive tutors: Lessons learned. The
journal of the learning sciences, 4(2):167–207, 1995.

[6] D. Azcona, P. Arora, I.-H. Hsiao, and A. Smeaton.
user2code2vec: Embeddings for profiling students
based on distributional representations of source code.
In LAK’19, 2019.

[7] M. Ball. Lambda: An Autograder for snap. Technical
report, Electrical Engineering and Computer Sciences
University of California at Berkeley, 2018.

[8] K. E. Boyer, R. Phillips, M. D. Wallis, M. A. Vouk,
and J. C. Lester. Learner characteristics and feedback
in tutorial dialogue. In Proceedings of the Third
Workshop on Innovative Use of NLP for Building
Educational Applications, pages 53–61. Association for
Computational Linguistics, 2008.

[9] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang,
H. Cho, et al. Xgboost: extreme gradient boosting. R
package version 0.4-2, 1(4), 2015.

[10] C.-Y. Chou, B.-H. Huang, and C.-J. Lin.
Complementary machine intelligence and human
intelligence in virtual teaching assistant for tutoring
program tracing. Computers & Education,
57(4):2303–2312, 2011.

[11] A. Corbett and J. R. Anderson. Locus of Feedback
Control in Computer-Based Tutoring: Impact on
Learning Rate, Achievement and Attitudes. In
Proceedings of the SIGCHI Conference on Human
Computer Interaction, pages 245–252, 2001.

[12] A. Corbett, L. Kauffman, B. Maclaren, A. Wagner,
and E. Jones. A cognitive tutor for genetics problem
solving: Learning gains and student modeling. Journal
of Educational Computing Research, 42(2):219–239,
2010.

[13] A. T. Corbett and J. R Anderson. Knowledge
decomposition and subgoal reification in the act
programming tutor. 1995.

[14] C. Cortes and V. Vapnik. Support-vector networks.
Machine learning, 20(3):273–297, 1995.

[15] S. Custer, E. M. King, T. M. Atinc, L. Read, and
T. Sethi. Toward data-driven education systems:
Insights into using information to measure results and
manage change. Center for Universal Education at
The Brookings Institution, 2018.

[16] J. Denner and L. Werner. Computer programming in
middle school: How pairs respond to challenges.
Journal of Educational Computing Research,
37(2):131–150, 2007.

[17] B. Di Eugenio, D. Fossati, S. Ohlsson, and D. Cosejo.
Towards explaining effective tutorial dialogues. In
Annual Meeting of the Cognitive Science Society,
pages 1430–1435, 2009.

[18] N. Diana, M. Eagle, J. Stamper, S. Grover,
M. Bienkowski, and S. Basu. Data-driven generation
of rubric parameters from an educational
programming environment. In International
Conference on Artificial Intelligence in Education,
pages 490–493. Springer, 2017.

[19] N. Diana, M. Eagle, J. Stamper, S. Grover,
M. Bienkowski, and S. Basu. Data-driven generation
of rubric criteria from an educational programming
environment. In Proceedings of the 8th International
Conference on Learning Analytics and Knowledge,
pages 16–20, 2018.

[20] M. L. Epstein, A. D. Lazarus, T. B. Calvano, K. A.
Matthews, R. A. Hendel, B. B. Epstein, and G. M.
Brosvic. Immediate feedback assessment technique
promotes learning and corrects inaccurate first
responses. The Psychological Record, 52(2):187–201,
2002.

[21] D. Fossati, B. Di Eugenio, S. Ohlsson, C. Brown, and
L. Chen. Data driven automatic feedback generation
in the ilist intelligent tutoring system. Technology,
Instruction, Cognition and Learning, 10(1):5–26, 2015.

[22] D. Garcia, B. Harvey, and T. Barnes. The beauty and
joy of computing. ACM Inroads, 6(4):71–79, 2015.

[23] V. G. Goecks. Human-in-the-loop methods for
data-driven and reinforcement learning systems. arXiv
preprint arXiv:2008.13221, 2020.

[24] L. Gusukuma, A. C. Bart, D. Kafura, and J. Ernst.
Misconception-driven feedback: Results from an
experimental study. In Proceedings of the 2018 ACM
Conference on International Computing Education
Research, pages 160–168, 2018.

[25] L. Gusukuma, D. Kafura, and A. C. Bart. Authoring
feedback for novice programmers in a block-based
language. In 2017 IEEE Blocks and Beyond Workshop
(B&B), pages 37–40. IEEE, 2017.

[26] P. Ihantola, T. Ahoniemi, V. Karavirta, and
O. Seppälä. Review of recent systems for automatic
assessment of programming assignments. In
Proceedings of the 10th Koli calling international
conference on computing education research, pages
86–93, New York, NY, 2010. ACM.

[27] J. Jeuring, L. T. van Binsbergen, A. Gerdes, and
B. Heeren. Model solutions and properties for
diagnosing student programs in ask-elle. In
Proceedings of the Computer Science Education
Research Conference, pages 31–40, 2014.

[28] D. E. Johnson. Itch: Individual testing of computer
homework for scratch assignments. In Proceedings of
the 47th ACM Technical Symposium on Computing
Science Education, pages 223–227. ACM, 2016.

[29] D. E. Johnson. Itch: Individual testing of computer
homework for scratch assignments. In Proceedings of
the 47th ACM Technical Symposium on Computing

78 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Science Education, pages 223–227, New York, NY,
2016. ACM.

[30] B. Kim. Interactive and interpretable machine learning
models for human machine collaboration. PhD thesis,
Massachusetts Institute of Technology, 2015.

[31] N. Körber, K. Geldreich, A. Stahlbauer, and
G. Fraser. Finding anomalies in scratch assignments.
arXiv preprint arXiv:2102.07446, 2021.

[32] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen. A
study of the difficulties of novice programmers. Acm
Sigcse Bulletin, 37(3):14–18, 2005.

[33] M. R. Lepper, M. Woolverton, D. L. Mumme, and
J. Gurtner. Motivational techniques of expert human
tutors: Lessons for the design of computer-based
tutors. Computers as cognitive tools, 1993:75–105,
1993.

[34] A. Luxton-Reilly, I. Albluwi, B. A. Becker,
M. Giannakos, A. N. Kumar, L. Ott, J. Paterson,
M. J. Scott, J. Sheard, and C. Szabo. Introductory
programming: a systematic literature review. In
Proceedings Companion of the 23rd Annual ACM
Conference on Innovation and Technology in
Computer Science Education, pages 55–106, 2018.

[35] L. E. Margulieux and R. Catrambone. Finding the
best types of guidance for constructing
self-explanations of subgoals in programming. Journal
of the Learning Sciences, 28(1):108–151, 2019.

[36] L. E. Margulieux, R. Catrambone, and M. Guzdial.
Employing subgoals in computer programming
education. Computer Science Education, 26(1):44–67,
2016.

[37] L. E. Margulieux, M. Guzdial, and R. Catrambone.
Subgoal-labeled instructional material improves
performance and transfer in learning to develop
mobile applications. In Proceedings of the ninth annual
international conference on International computing
education research, pages 71–78, 2012.

[38] S. Marwan, G. Gao, S. Fisk, T. W. Price, and
T. Barnes. Adaptive immediate feedback can improve
novice programming engagement and intention to
persist in computer science. In Proceedings of the 2020
ACM Conference on International Computing
Education Research, pages 194–203, 2020.

[39] S. Marwan, T. W. Price, M. Chi, and T. Barnes.
Immediate data-driven positive feedback increases
engagement on programming homework for novices. In
Educational Data Mining in Computer Science
Education (CSEDM) Workshop @ EDM’20, 2020.

[40] J. McKendree. Effective feedback content for tutoring
complex skills. Human-computer interaction,
5(4):381–413, 1990.

[41] A. Mitrovic and S. Ohlsson. Evaluation of a
constraint-based tutor for a database language. 1999.

[42] A. Mitrovic, S. Ohlsson, and D. K. Barrow. The effect
of positive feedback in a constraint-based intelligent
tutoring system. Computers & Education,
60(1):264–272, 2013.

[43] D. Palmer. A motivational view of
constructivistâinformed teaching. International
Journal of Science Education, 27(15):1853–1881, 2005.

[44] G. D. Phye and T. Andre. Delayed retention effect:
attention, perseveration, or both? Contemporary

Educational Psychology, 14(2):173–185, 1989.

[45] T. W. Price, Y. Dong, and D. Lipovac. iSnap:
Towards Intelligent Tutoring in Novice Programming
Environments. In Proceedings of the ACM Technical
Symposium on Computer Science Education, 2017.

[46] T. W. Price, Z. Liu, V. Catete, and T. Barnes. Factors
Influencing Students’ Help-Seeking Behavior while
Programming with Human and Computer Tutors. In
Proceedings of the International Computing Education
Research Conference, 2017.

[47] T. W. Price, R. Zhi, and T. Barnes. Evaluation of a
Data-driven Feedback Algorithm for Open-ended
Programming. In Proceedings of the International
Conference on Educational Data Mining, 2017.

[48] T. W. Price, R. Zhi, and T. Barnes. Hint Generation
Under Uncertainty: The Effect of Hint Quality on
Help-Seeking Behavior. In Proceedings of the
International Conference on Artificial Intelligence in
Education, 2017.

[49] K. Rivers and K. R. Koedinger. Data-Driven Hint
Generation in Vast Solution Spaces: a Self-Improving
Python Programming Tutor. International Journal of
Artificial Intelligence in Education, 27(1):37–64, 2017.

[50] C. Romero and S. Ventura. Educational data mining
and learning analytics: An updated survey. Wiley
Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 10(3):e1355, 2020.

[51] P. Shabrina, S. Marwan, T. W. Price, M. Chi, and
T. Barnes. The impact of data-driven positive
programming feedback: When it helps, what happens
when it goes wrong, and how students respond. In
Educational Data Mining in Computer Science
Education (CSEDM) Workshop @ EDM’20, 2020.

[52] Y. Shi, Y. Mao, T. Barnes, M. Chi, and T. W. Price.
More with less: Exploring how to use deep learning
effectively through semi-supervised learning for
automatic bug detection in student code. EDM, 2021.

[53] Y. Shi, K. Shah, W. Wang, S. Marwan, P. Penmetsa,
and T. Price. Toward semi-automatic misconception
discovery using code embeddings. In The 11th
International Conference on Learning Analytics
Knowledge (LAK 21), 2021.

[54] V. J. Shute. Focus on formative feedback. Review of
educational research, 78(1):153–189, 2008.

[55] D. Sleeman, A. E. Kelly, R. Martinak, R. D. Ward,
and J. L. Moore. Studies of diagnosis and remediation
with high school algebra students. Cognitive Science,
13(4):551–568, 1989.

[56] R. Souza, L. Neves, L. Azevedo, R. Luiz, E. Tady,
P. R. Cavalin, and M. Mattoso. Towards a
human-in-the-loop library for tracking hyperparameter
tuning in deep learning development. In LADaS@
VLDB, pages 84–87, 2018.

[57] J. Stamper, T. Barnes, and M. Croy. Enhancing the
automatic generation of hints with expert seeding.
International Journal of Artificial Intelligence in
Education, 21(1-2):153–167, 2011.

[58] J. Stamper, T. Barnes, L. Lehmann, and M. Croy.
The hint factory: Automatic generation of
contextualized help for existing computer aided
instruction. In Proceedings of the 9th International
Conference on Intelligent Tutoring Systems Young

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 79

Researchers Track, pages 71–78, 2008.

[59] D. Toll, A. Wingkvist, and M. Ericsson. Current state
and next steps on automated hints for students
learning to code. In 2020 IEEE Frontiers in Education
Conference (FIE), pages 1–5. IEEE, 2020.

[60] J.-P. Vert, K. Tsuda, and B. Schölkopf. A primer on
kernel methods. Kernel methods in computational
biology, 47:35–70, 2004.

[61] D. Wang, W. Dong, and Y. Zhang. Collective
intelligence for smarter neural program synthesis. In
2020 35th IEEE/ACM International Conference on
Automated Software Engineering Workshops (ASEW),
pages 98–104. IEEE, 2020.

[62] L. E. Winslow. Programming pedagogy—a
psychological overview. ACM Sigcse Bulletin,
28(3):17–22, 1996.

[63] D. Xin, L. Ma, J. Liu, S. Macke, S. Song, and
A. Parameswaran. Accelerating human-in-the-loop
machine learning: challenges and opportunities. In
Proceedings of the Second Workshop on Data
Management for End-To-End Machine Learning,
pages 1–4, 2018.

[64] R. Zhi, T. W. Price, N. Lytle, and T. Barnes.
Reducing the State Space of Programming Problems
through Data-Driven Feature Detection. In
Proceedings of the Educational Data Mining in
Computer Science Education Workshop at the
International Conference on Educational Data Mining,
2018.

80 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Automatically classifying student help requests: a
multi-year analysis

Zhikai Gao
North Carolina State

University
zgao9@ncsu.edu

Collin Lynch
North Carolina State

University
cflynch@ncsu.edu

Sarah Heckman
North Carolina State

University
sarah_heckman@ncsu.edu

Tiffany Barnes
North Carolina State

University
tmbarnes@ncsu.edu

ABSTRACT
As Computer Science has increased in popularity so too
have class sizes and demands on faculty to provide sup-
port. It is therefore more important than ever for us to
identify new ways to triage student questions, identify com-
mon problems, target students who need the most help, and
better manage instructors’ time. By analyzing interaction
data from office hours we can identify common patterns,
and help to guide future help-seeking. My Digital Hand
(MDH) is an online ticketing system that allows students
to post help requests, and for instructors to prioritize sup-
port and track common issues. In this research, we have
collected and analyzed a corpus of student questions from
across six semesters of a CS2 with a focus on object-oriented
programming course [17]. As part of this work, we grouped
the interactions into five categories, analyzed the distribu-
tion of help requests, balanced the categories by Synthetic
Minority Oversampling Technique (SMOTE) , and trained
an automatic classifier based upon LightGBM to automat-
ically classify student requests. We found that over 69% of
the questions were unclear or barely specified. We proved
the stability of the model across semesters through leave one
out cross-validation and the target model achieves an accu-
racy of 91.8%. Finally, we find that online office hours can
provide more help for more students.

Keywords
Office Hour, Computer Science Education Research, Text
Analysis, help-seeking request

1. INTRODUCTION
Over the past decade the popularity of CS majors has in-
creased and enrollments have skyrocketed [2]. This has cre-

ated challenges for instructors with increasing demands for
individual support, collaborative learning, and automated
guidance [12, 2, 16, 15]. As the size of courses and cohorts
have increased, the demand for office hours has begun to ex-
ceed the time that instructors and staff have available [12,
13]. To address these needs instructors have adopted a wide
range of innovative support models including virtual office
hours [10], peer support [7], and ticketing systems for help-
seeking interactions [13]. The last approach is exemplified
by My Digital Hand (MDH) [21], an online support sys-
tem for office hours which allows students to queue for office
hours, post questions in advance, and record the outcome
of interactions. MDH assists students in structuring their
help-seeking interactions with teaching staff. It also assists
instructors and teaching assistants (TA) in managing their
courses, by allowing them to triage student questions and
target their effort during office hours to be efficient and meet
group and individual needs. MDH also tracks help-seeking
and interaction data throughout the whole semester. Using
this data, we can identify patterns in students’ help requests
and automatically classify the questions. One common chal-
lenge for help-seeking interaction on large classes arises when
many students ask the same or similar questions but must
be dealt with separately thus eating up limited instructor
time. One approach to address this is to develop automated
Q&A systems which can leverage common problems. In or-
der for this to work however, students must provide sufficient
information about their problems so that they can receive
targeted support.

Our goal is to develop analytical methods to understand
what kinds of help students seek during office hours, how
they frame their questions to the instructors, and whether
or not we can automatically classify questions to support
guidance and time management. By analyzing students’
help requests across course offerings we can better under-
stand what kinds of challenges the students are facing, and
how the teaching staff can better anticipate students’ needs
and target their limited support. Moreover, by automat-
ically classifying help requests we can help teaching staff
to efficiently triage student questions and identify common
problems that may be solved with group support or peer
assistance. Over the long term we will develop summary

Zhikai Gao, Collin Lynch, Sarah Heckman and Tiffany Barnes “Automati-
cally classifying student help requests: a multi-year analysis”. 2021. In:
Proceedings of The 14th International Conference on Educational Data
Mining (EDM21). International Educational Data Mining Society, 81-92.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 81

statistics which can be used to support instructors in course
management, and we will augment our existing ticketing sys-
tem with support for automatic categorization.

In this paper we will address four specific research questions
in the context of a CS2, object-oriented-focused course:

• RQ1: What types of questions do students ask on
MDH during office hours and how do they formulate
their description?

• RQ2: How can we automatically classify student help
requests and tickets?

• RQ3: How robust is our classification model across
different offerings?

• RQ4: Compared to regular office hours, does online
office hours provide more benefits?

In order to address RQ1 we analyzed our dataset to iden-
tify common patterns of student questions and to classify
them into five categories. We then address RQ2 and RQ3 by
training an automated classifier for student questions with
the goal of evaluating its’ stability across semesters. Due
to the COVID-19 pandemic, all courses are operating online
in Fall 2020, which gives us an opportunity to study the
advantages and disadvantages of hosting office hour online.
Therefore we analyzed and compared the data pattern on
Fall 2020(F20) with other regular semesters in RQ4.

1.1 Background
Prior researchers have analyzed student help requests with
the goal of understanding student behaviors. Xu and Lynch,
for example applied deep learning approaches to classify stu-
dent question topics in MOOC discussion forums [24]. In
that work Xu and Lynch collected student posts from two
offerings of a MOOC on Big Data in Education. The authors
classified student questions into one of three types (Course
Content Question, Technique Question, and Course Logic
Question) and developed an automatic classifier using Re-
current Neural Networks to divide questions’ into those three
categories. While the models were successful within a single
offering they Xu and Lynch, found that they did not gener-
alize across offerings. Thus, the system suffered from a cold
start problem on each semester.

Vellukunnel et al. in turn collected Piazza posts from CS2
courses offered at two institutions and analyzed the type
and distribution of the questions students asked [22]. As
part of this work they manually partitioned the questions
into five categories and then analyzed the impact of stu-
dents’ question types on their final grades. They concluded
that asking constructive questions can help students to de-
velop a better understanding of the course materials and in
turn receive better grades. This analysis has informed our
own work. However the Piazza platform, unlike MDH, is
designed to support interactive discussion and online peer
support through the use of threads and replies. By contrast
the MDH system is focused on initial help seeking and not
on collaborative dialogue. Therefore it is unclear whether
our results will align with theirs.

Prior researchers have also studied how instructors man-
age office hours and how to make face to face support time
more efficient and effective. Guzdial, for example, argued
that office hours should incorporate diverse teaching tech-
niques including pair programming, peer instruction, and
backward design. These approaches, he argued, would po-
tentially work to reduce wait times and support enhanced
learning outcomes [8]. In order to provide more convenience
for students, Harvard University introduced virtual office
hours to an introductory programming course CS50 so that
students can interact with teaching staff online [14]. How-
ever, they found that those virtual sessions were often ineffi-
cient and took more time to address the students’ problems.
This research is complicated by the fact that students fre-
quently avoid seeking help from teaching staff when they
need it [1]. Some of the factors behind this help-avoidance
include a lack of trust in the tutor’s abilities, inaccessibil-
ity of office hours due to timing or other constraints, and a
desire for independence in learning [18]. While our research
provides some guidance on the design of office hours and the
need to reach out to students, the impact of how students
frame their help requests has not yet been analyzed exten-
sively. One notable exception is the work of Ren, Krish-
namurthi, and Fisler, who designed a survey-based method
to help track the students’ help-seeking interactions during
office hours in programming-based CS courses [20]. While
informative, their approach is difficult to generalize as it
depends on requiring the teaching staff to complete a de-
tailed form after every interaction. In MDH, by contrast,
we collect much of the data upfront as an integral part of
the process.

2. METHODS
2.1 MDH system
My Digital Hand (MDH) [21], is a ticketing system for office
hours that was developed to facilitate large CS courses. Stu-
dents using MDH request help during office hours by ”raising
a virtual hand”, that is creating a ticket which lists the topic
they need help on, describes the issue they are facing, and
the steps they have taken to address it. Once the ticket is
created it is visible to the teaching staff who can then use it
to prioritize interactions or even group students together for
help. Once the interaction is complete the teaching staff can
close the ticket and describe how the interaction played out.
Students are also given the opportunity to evaluate the help
received. These feedback questions are configurable and set
by instructors at the start of the semester.

This data allows instructors to identify common issues facing
students and to track the time it takes for students to re-
ceive support from the teaching staff as well as the duration
of each help session. A prior analysis of MDH data, Smith
et al. found that 5% of students in a course accounted for
50% of office hour time, and that long individual interaction
times, representing students who needed long and detailed
guidance, served to delay many other short questions [21].
They concluded that a small but critical group of students
are reliant on individual tutoring via office hours, while other
students who need intermittent help are often unable to ob-
tain support. These findings have motivated our own focus
on developing analytical tools which can be used to analyze,
prioritize, and manage help requests so that high-demand
students do not shut out their peers.

82 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

2.2 Data Collection
We analyzed data from seven semesters of a typical second-
semester Object-Oriented programming course [17] at a research-
intensive public university in the south-eastern United States.
Basic descriptive statistics for the dataset are shown in Ta-
ble 1. Students produced an average of 1477 tickets per
semester with higher volumes in the fall semesters due to
larger class sizes. The number of tickets also increased year
over year due in part to larger class sizes, greater emphasis
on tool use by the course instructor, and higher per-capita
demand for office hours.

The course is structured as a single lecture section with 12
small-group lab sessions which are held weekly. Over the
course of the semester students complete weekly lab assign-
ments, 2-3 individual or team Projects (C-Projects), and 3
separate Guided Projects (G-Projects). The G-Projects are
designed to provide a review of prerequisite materials and
introduce students to new concepts. The C-Projects are
generally structured as two sub-assignments, one focused on
design and system testing, and the other on implementa-
tion and unit testing. Students manage their code via the
GitHub platform with integrated support for the Jenkins au-
tomation testing server. When students commit code they
receive automated testing results from instructor-authored
test cases as well as test cases that they supplied. The stu-
dents use feedback from test failures to guide their work and
their help-seeking.[6]

In Fall 2020, this course was moved fully online due to the
pandemic. All office hours were hosted through zoom meet-
ing where students can share their screen with the teaching
staff to show their code or any problems.

Table 1: Number of tickets and students for each semester
(F= Fall, S=Spring)

F17 S18 F18 S19 F19 S20 F20
tickets 1146 609 1224 860 1650 1401 3452

students 208 157 259 174 256 191 303

The interaction data is the most important for our current
analysis. The format of the interaction records, along with
selected examples is shown in Table 2. For this analysis each
ticket consists of three major parts: the participants, time
and duration of interaction, and the context.

2.3 RQ1: Categorization of Questions
Our primary focus in RQ1 is to identify the types of ques-
tions the students are asking and to understand how they
describe their work. MDH allows students to frame their
question topic or description in any way that they wish.
The platform does not provide a list of suggested topics or
mandate content beyond the basic text. This, in turn, lead
students to vary widely in the descriptions and content that
they provide. We therefore studied two features of the ques-
tions with the goal of supporting classification, the students’
topic, as contained in the "I’m working on" field. And the
longer problem description, as stated in the "my problem

is" field.

2.3.1 Classified by Topic

Table 2: Attributes of the interaction data

Attributes Content Explain Example
interaction id Id for each ticket 30072
student id Id for the student

who raised this ticket
1950

teacher id Id for teacher who
deal with the ticket

20810

time raised hand Timestamp for each
tickets that are asked

2019-
03-08
19:34:09

time interaction
began

Timestamp for each
tickets began

2019-
03-08
19:38:39

time interaction
ended

Timestamp for each
tickets ended

2019-
03-08
20:01:02

I’m working on Topic for the ques-
tion of each ticket

Program1Part1

my problem is Detail statement for
the question of each
ticket

Null
Pointer on
TS test

I’ve tried The solution the stu-
dent tried before they
raised the tickets

Debugging

Rapidly identifying, or even anticipating, students’ question
topics would allow teaching staff to anticipate the kinds of is-
sues they should be prepared for and may also allow them to
set up mini-groups within office hours to deal with problems
assignment by assignment, or to separate code questions
from conceptual ones. We therefore performed a manual
analysis of the topics in our study dataset over all semesters
with the goal of determining how students label their topics,
and whether it is possible to either anticipate or sort their
posts as they come in.

Our preliminary analysis showed that in most cases the stu-
dents simply entered the name of their current assignment
or an abbreviation of it and provided no other details. More-
over, due to the structure of the course deadlines almost ev-
ery help request in a given session was focused on the same
assignment. In the newest version of MDH, the question is
now a check box and the instructor can set the assignments.
As a consequence we decided to omit this from our classifi-
cation task and focus on the types of help being sought.

2.3.2 Classified by Description
In the description section (“my problem is”), the students
can provide a rich summary of their problem including a
text description, bug reports, or even code snippets. If it is
possible to automatically classify student posts then we can
use that approach to triage student questions as they come
in, perhaps separating long questions from short. We there-
fore performed a manual analysis of the description content
as well with the goal of identifying useful categories of posts.
We also sought to examine how complex the problem de-
scriptions were. In our prior discussions with the teaching
staff they reported that many students provide too little
information in the description (e.g. a single word such as
”Errors”), provide too much (e.g. a full execution dump and
error log), or they simply type gibberish with the simple

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 83

goal of securing a place in line. All of these strategies are
problematic either because they provide too little informa-
tion to effectively triage posts, or because the dump is too
complex and likely out of date before the student reaches
the head of the line. In our analysis we analyzed both the
length and structure of the students’ submissions as well
with the goal of understanding whether we can provide au-
tomatic scaffolding for useful posts, and automatic triage of
the submissions.

Figure 1: Distribution of the number of words in the ques-
tions’ description

Figure 2: Top 20 Popular words in question description

We examined the length, content, and complexity of the stu-
dents’ problem description including the specific my prob-

lem is prompt. We also grouped common words to find
keywords that are associated with specific types of submis-
sions. We then used this information to inform our under-
standing of the students’ posting behavior and to inform the
design of the posting categories. This preliminary analysis
was consistent with the experience described by the teaching
staff. Figure 1 shows that the average description was less
than five words long. When reviewing those short posts we
noted that many students preferred to use keywords to indi-
cate their question topics and problems rather than spelling
their issues out. For example, when encountering an error
in implementing an add() function, they often put ”add()”
as the problem description assuming that the method name,

together with the assignment information, provided enough
context for the help request.

This led us to focus on the specific terms that students use
in their problem description. In this analysis, we grouped
words by stemming and ignored stopwords to focus on the
primary content information. The top 20 words are shown
in Figure 2, top among them being test. This is consis-
tent with the design of the assignments where students were
provided with tests and required to develop their own. It
is also consistent with the teaching staff’s observation that
many students focus on the tests as a guide for their progress
and for where they need help. Upon closer examination of
questions using this word we found that most interactions
were focused on failed test cases; a typical description for
a question of this type was ”2 test case fail”. It would be
difficult for instructors to interpret these without review-
ing the code and the test results in more detail but such a
review takes time. Another closely-related word that was
common in this dataset is error which was used primarily
when students encounter bugs or other failures. In these
cases in particular, the teaching staff noted that some stu-
dents would simply paste the crash report into the question
with little other context. This kind of behavior is rare in the
data but was also useful for instructors, we therefore used it
as an additional factor.

Based upon this preliminary analysis we defined five cate-
gories of help requests based upon the problem descriptions.
These categories are shown in Table 3. We then labeled
all interactions related to the problem manually. For each
question, we also ranked the clarity or comprehensibility of
student questions based upon the description provided. As
we discuss below, most of the questions provided insufficient
information to diagnose the problem. However as Figure 1
shows, some students did elaborate on their problem thor-
oughly as measured by the number of words in the problem
description.

2.4 Labeling Process
2.4.1 Code book

To investigate the distribution of the above five categories
in our data, we first need to set up a standard to categorize
our data and apply it. All seven semesters’ data was labeled
by one researcher by the following rules:

• Check if there is any text that is clearly an error mes-
sage copied from the compiler or a test failure. If so,
label it as Copied Error. Notice that if the student
describes the error message in their own words, then
it should also be classified as Sufficient.

• Check if there is any text indicating that this is a test
problem, no matter if the description gives you the
detail of their test error or not. If you are sure that it
is a test problem, label it as Test. If it also qualifies as
Copied Error, classified as Copied Error

• If the text does not provide any information about
their question and you cannot understand or deduce
anything that related to their question, classify as Use-
less

84 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 3: Explanation and example for all five categories we developed

Category Explanation Example description(my problem is)
Useless The description contain nothing re-

lated to the question
I would like to check of it

Insufficient The description contains partial in-
formation about the student ques-
tion, but not enough for instructors
to understand the details.

TicketManager getInstanceOf

Sufficient Contains enough detail on the ques-
tion for instructors to understand.
Usually a very clear sentence.

CourseRecordIOTest, I seem to be fail-
ing reading the files, at the moments it
is testing the size of the ArrayLists, but
I am passing writing the files

Copied Error Contains a copied error from the
compiler.

I got this error: TypeError: barh() got
multiple values for argument ’width’

Test Test case fail related problem 2 test cases failed

• If the text does provide what or where the problem is,
but not enough for you to fully understand or identify
what is their question, marked as Insufficient

• If the text only contains one or multiple words of the
method name associated with a problem, it can help to
localize the problem but provides no additional details.
It should be classified as Insufficient

• If the text is in a form of “I don’t understand xxxx”
without further explanation of which part they do not
understand or other details, classify as Insufficient

• If the text is in a form of “I don’t understand xxxx”
with some further explanation, classify as Sufficient

• If the text tells you what their question or describes
how they encounter this problem, classify as Sufficient

2.4.2 Inter rater reliability
After all data was labeled, we randomly generated a subset
of 150 unique questions(30 for each category) and sent it
to another researcher to rate. In this subset, we reveal the
label of 10 questions for each category as example data and
the rater classifies the remaining questions based on those
example data and the code book. Then we compare the
result with the original labels and calculate Kappa to repre-
sent the inter rater reliability. Kappa[4] is widely applied for
measuring the agreement between two coders that accounts
for chance agreement. Generally a score higher than 0.8 is
considered acceptable. In our cases, the final unweighted
Kappa value is 0.815 which is acceptable.

2.5 RQ2: Modeling
In addressing RQ2 we drew on our basic categorization de-
veloped in RQ1 to train automatic classifiers that can triage
posts by topic and content. We used the first six semester
data as training data to train our model and the last semester
(F20) as the testing set to evaluate our model. To train our
classification model, we first extracted training features from
the problem descriptions across our dataset. The features
included content features such as the keywords described
above as well as meta-text features such as length, the num-
ber of stop-words (as a general proxy for specificity), the

punctuation, and the character case. These meta-text fea-
tures have the advantage that they are easy to extract au-
tomatically and can therefore be used for automated triage.
Length, for example, is a suitable proxy for completeness
and coherence while punctuation and case shifting are com-
mon in error messages. The full list of these features is
shown in table 4.

We represented the text features as a tf-idf [19] matrix and
basic word count matrix over the content. The word count
matrix is simply a 2D Array which describe how many times
each term appears in each question text. The tf–idf ma-
trix is the product of two statistics, term frequency and
inverse document frequency. The term frequency uses the
raw count of a term in a text. The inverse document fre-
quency is a measure of how much information the word pro-
vides. Some common words like ”is” or ”that” do not pro-
vide much information but they do usually have a high term
frequency. Those words should have less inverse document
frequency(idf). We can calculate the value as:

idf(t) = ln(
Total number of documents

Number of documentswith term t in it
) (1)

In our preliminary analysis we found that the matrices per-
formed poorly in classification due to the fact that both
were extremely sparse. We therefore opted to compress them
so that they can be compatible with the dense feature ap-
proaches. To that end we built a Naive Bayes model [9]
using the tf-idf sparse features and then use the predictions
features. From this model we generated five shallow predic-
tion features which correspond to the probability that the
question belongs to each category. We followed this same
approach with the word count vector and used those fea-
tures as probabilities. The final list of extracted features is
shown in Table 5.

2.5.1 Model Training
We trained our classification models using LightGBM [11],
a Gradient Boosting Decision Tree (GBDT) algorithm pro-
vided by Microsoft. GBDT is an ensemble model of de-
cision trees trained in sequence. In each iteration, GBDT
learns the decision trees by fitting the negative gradients

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 85

Table 4: Text meta features list

Feature name Explanation value example
length number of words in the problem description 12

character number of characters in the problem description 12
stop words number of stop words in the problem description 2

punctuation number of punctuation in the problem description 0
uppercase number of uppercase words in the problem description 0

Table 5: Text content features lists

Feature name Explanation value example
prob-tf-useless the probability of this tickets belong to category ”useless” using tf-idf 0.75

prob-tf-ins the probability of this tickets belong to category ”insufficient” using tf-idf 0.82
prob-tf-suf the probability of this tickets belong to category ”sufficient” using tf-idf 0.77

prob-tf-error the probability of this tickets belong to category ”copied error” using tf-idf 0.99
prob-tf-test the probability of this tickets belong to category ”test” using tf-idf 0.65

prob-cnt-useless the probability of this tickets belong to category ”useless”using using common word count 0.75
prob-cnt-ins the probability of this tickets belong to category ”insufficient” using common word count 0.82
prob-cnt-suf the probability of this tickets belong to category ”sufficient” 0.77

prob-cnt-error the probability of this tickets belong to category ”copied error” common word count 0.99
prob-cnt-test the probability of this tickets belong to category ”test” common word count 0.65

(also known as residual errors). To reduce the complexity of
GBDT, LightGBM utilize two novel techniques to improve
the algorithm: Gradient-based One-Side Sampling and Ex-
clusive Feature Bundling. This method also utilizes a Leaf-
wise Tree Growth algorithm to optimize the accuracy of the
model and it applies a max depth of the trees to overcome
the over-fitting problem that it might cause. Further, it
optimizes the speed of training by calculating the gain for
each split and uses histogram subtraction. LightGBM is
known for its outstanding performance and relatively good
speed. Thus, many researches applied this method to ma-
chine learning tasks.

The implementation code for LightGBM was provided by
Microsoft[11] in 2013 and we are utilizing its Python li-
brary for modeling process. We applied features and the
label of training data by LightGBM to train a model, and
fit that model on the testing data to predict each question
in those data. By calculating the accuracy of the predic-
tion, we can evaluate the performance of this model. We
ran a series of 20 preliminary experiments to explore the
space of parameters before we settled on the values listed
in Table 6. A list of crucial parameters people generally
need to tune to improve classification model performance is
also in Table 6. Since our goal is to achieve better Accu-
racy, we will tuning toward larger max bin, smaller learn-
ing rate with larger num iterations, larger num leaves and
larger max depth each experiment until the accuracy is not
improving.

2.5.2 SMOTE
During the modeling process, another issue we faced is that
the categories are highly imbalanced. Over half of the ques-
tions are in the Insufficient category and the Copied Er-
ror category contained fewer than one percent of questions.
To address the problem, we applied SMOTE method which
over-samples examples in the minority class. SMOTE [5],
first selects one minority class instance at random, create a
synthetic instance by choosing one of the k nearest neigh-

bors at random and connecting those two instance to form
a line segment in the feature space. We applied this method
with k=5 and oversampling the data to generate the training
datasets and testing datasets for further model training.

2.6 RQ3: Model stability over semesters
For a trained model to be useful however, it must be stable
across semesters or else we suffer from a cold-start problem
[3]. In order to assess the model stability we ran a series
of experiments where we assessed the relative utility of the
models by applying a leave-one-out validation strategy on
a semester-by-semester basis. Showing that all models per-
form at a comparable level provides a strong indication that
the models themselves are consistent and useful, even early
in the semester.

2.7 RQ4: Online Office hour analysis
In Fall 2020, all the office hours were held online, which pro-
vided valuable data about online office hours interactions.
We are very curious to analyze and see whether the stu-
dents behavior changed with the move to online office hours
and if we should keep some online office hours sessions once
we resume in-person instruction.

We first analyzed whether the online session attracted more
students to seek help during office hours. For an in-person
session, students need to physically find the teaching staff
in the office and physically stay in line. For online sessions,
students only need to click the link to join the meeting with
teaching staff. With online office hours, the friction of phys-
ically going to a campus location has been removed. How-
ever, online office hours have additional overhead in creating
a connection between parties and transitioning between stu-
dents. To better understand online office hour help-seeking,
we calculated the average number of tickets per student
and the percentage of students who used office hour in each
semester and compared earlier semesters with in-person of-
fice hours to the Fall 2020 semester with online office hours.

86 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 6: LightGBM common training parameters and the final optimal value after tuning our model

parameter meaning final optimal value
num leaves number of leaves in one tree 1000
max depth Specify the max depth to which tree will grow. 10
max bin max number of bins to bucket the feature values. 150

learning rate learning rate of gradient boost 0.1
num iterations number of boosting iterations to be performed 32

num class number of classes. used only for multi-class classification 5

Table 7: Distribution of labeled questions on those five cat-
egories in all seven semesters

Useless Insufficient Sufficient Copied Error Test
3.01% 69.02% 12.04% 0.10% 15.83%

However, online office hours could have an impact on the effi-
ciency of communication. When teaching staff and students
meet online, it creates more challenges for teaching staff to
indicate problems to the students and to help explain why
their code is failing. Screensharing allows the staff to view
the students’ work, but physical interactions like pointing to
a portion of the screen to indicate which button to click is
lost. The teaching staff member needs to verbally describe
the debugging process and ask students to follow it. There-
fore, we calculated the interaction time and the wait time
for each ticket. The we compare the distribution of inter-
action time and wait time of F20 tickets with the rest of
tickets. Additional overhead is incurred when connecting to
a meeting. There is a lag when a student joins a meeting for
their audio to set up to start the conversation.

3. RESULTS
3.1 RQ1: Categorization Results
Table 7 shows the distribution of question categories across
our dataset. As the figure shows, the most common cate-
gory is Insufficient which occupies over 69 percent of the
questions. The Test category coming next at 15 percent.
Approximately 12 percent of the questions belong to the
Sufficient category while 3 percent were rated as Useless.
Surprisingly, despite comments from the teaching staff, the
least common category was Copied Error with at most 10-
15 questions per semester falling into this group. As our
results show, the students tended to use the system primar-
ily as a way of getting in line and typically provided little
useful information for the teaching staff. These results also
highlight the significance of testing tasks for the assignments
and for students’ help-seeking given the high proportion of
help tickets that are triggered by them.

To assess the stability of these results we also examined the
frequencies within each semester. Figure 3 shows this break-
down. We found that the relative distribution is generally
similar across semesters while the absolute percentages vary.
In more recent semesters the students have authored more
Sufficient tickets than in prior years suggesting that there
has been greater effort by the instructional staff to encour-
age good communication. Yet the persistence of the other
ticket type suggests that automatic classification and triage

Table 8: Average interaction time(in minutes) and standard
deviation of each semester

Useless Insufficient Sufficient
AVG 19.7 21.9 18.3
STD 125.3 237.0 103.6

Copied Error Test
AVG 11.5 24.8
STD 67.5 208.2

remain an important feature.

Table 8 shows the average and standard deviation of inter-
action time (the difference between when the interaction be-
gan and it was closed) of each category across the semesters.
For this calculation we did not consider tickets with an in-
teraction time less than 10 seconds in length or which were
longer than one hour. Our discussion with teaching staff
and the instructors showed that the former were cases that
were never seen as the student set a placeholder but fixed
their problem before their turn came up or changed their
mind, while the latter represents cases where the teaching
staff offered help but did not close the ticket, often until
well after the tutoring session was over. The Useless, In-
sufficient and Sufficient categories averaged around twenty
minutes in length with no meaningful difference in their in-
teraction times. The Copied Error category was slightly
shorter on average which may reflect the specificity of the
students’ problems while the Test category had a slightly
longer average interaction time. This may indicate that this
kind of question is more complex or more substantive rel-
ative to the others. Overall these results indicate that the
amount of information provided does not necessarily affect
the speed with which the issue can be addressed.

3.2 RQ2: Modeling Results
To evaluate the performance of our model, we trained the
model using the first six semesters’ data and tested it on Fall
20 data.The training dataset applied SMOTE method to
oversampling the minority categories and result in each cat-
egory having the same amount(5037) of questions in training
dataset. The model achieved an overall accuracy of 91.8%.
We then conducted a more detailed analysis of the perfor-
mance for precision, recall, and F-score on each question
type. The results are in Table 9. As our results show
the model is relatively balanced across the categories with
the exception of the Test category which had substantially
higher precision and lower recall. This indicates that it was
far more likely for other categories to be erroneously classi-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 87

Figure 3: Frequency of each category for each semester

fied as Tests when the student submitted other information.
One comment that triggered this error was: ”Jenkins errors”.

Table 9: Precision, Recall and F-measure for each category

Useless Insufficient Sufficient Test AVG
Precision 0.902 0.915 0.913 0.967 0.922

Recall 0.901 0.903 0.905 0.877 0.901
F-measure 0.896 0.894 0.901 0.914 0.901

3.3 RQ3:Leave One out Results
Having shown that the model is relatively balanced across
categories we then analyzed the relative accuracy of the
model on each semester. The results are shown in Table
10. With the exception of Fall 2019, the model achieved
an accuracy of at least 0.91 across each semester. Fall 2019
was the largest and busiest semester in our training dataset
which may indicate that students were more diverse in their
habits or posting behavior but even still we achieved an ac-
curacy of 0.899. In light of these results we believe that our
modeling method is sufficiently stable to assist in processing
unseen semesters without a cold-start problem.

Table 10: Leave one out accuracy result

left-out
semester

F17 S18 F18 S19 F19 S20

accuracy 0.913 0.915 0.908 0.907 0.899 0.912

3.4 RQ4: Online Office Hour Analysis Results
Table 11 shows the various summary measures associated
with office hours interactions for the semesters studied. The

Fall 2020 semester had the highest number of average tickets
per student and the largest percentages of students utilizing
office hours. Additionally, the average tickets per student
in Fall 2020 is nearly twice the average tickets per students
in Fall 2019. This suggests that online office hours supports
increased student participation in office hours interactions.
However, this increment could be explained by other fac-
tors. The data shows that in general more students take
advantage of the help each year. This is consistent with the
increasing class sizes but it is important to note that there
are other patterns as well such as regular dips in each spring.
Overall it serves to highlight the need for better course man-
agement. Secondly, since the course lecture also holds online
in F20, the increase of office hour usage supports a general
expectation that students are facing additional challenges
with online classes however we still believe that online office
hours are a practical means to minimize the cost of help-
seeking and thus encourage more students.

The distribution of interaction times shown in Figure 4 in-
dicates that the teaching staff generally took slightly longer
to support students in Fall 2020 than other semesters. The
median interaction time of Fall 2020 is 8.78 minutes while
other semesters are 8.17 minutes. We believe that this is
caused by the inconvenience of remote instruction and de-
bugging. Additionally, the high percentages of interactions
within one minute in all semesters are usually caused by
teaching staff forgetting to open the tickets when the inter-
action begins. In Fall 2020, the percentage of short tickets
was much higher suggesting the teaching staff were more
likely to make such mistakes because they are working with
both MDH and the online interaction tool. After notify the
student, the teaching staff has to waited in the zoom until

88 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 11: Statistic Analysis for each semester

F17 S18 F18 S19 F19 S20 F20
total tickets 1146 609 1224 860 1650 1401 3452

total students 208 157 259 174 256 191 303
students use office hour 104 63 141 84 158 108 209

average tickets per student 5.51 3.88 4.73 4.94 6.44 7.34 11.40
percentage of students using office hour 50.0% 40.1% 54.4% 48.3% 61.7% 56.5% 69.0%

(a) (b)

Figure 4: Histogram of Interaction time (time difference between open time and close time) for tickets in (a) Regular semesters
and (b)Fall 20

(a) (b)

Figure 5: Histogram of wait time (time difference between open time and raised time) for tickets in (a) Regular semesters
and (b)Fall 20

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 89

the student actually join the zoom meeting to start the in-
teraction. It is very common for the teaching staff just start
the interaction in zoom without open ticket in MDH. The
wait time in Fall 2020 is much longer than regular semesters,
as shown in Figure 5. While we had 37 hours of regular office
hour time each week for 17 TAs and 2 instructors, the in-
creased demand in office hour help-seeking did have impact
on student wait time and throughput. We additionally ob-
served an increase in the number of canceled tickets. While
online office hours lowers barriers for student attendance,
additional resources to support demand are needed to en-
sure timely support. As we transition back to in-person
instruction, the course instructor will continue to offer some
online office hours to support access to help-seeking.

4. CONCLUSIONS
The results of our analysis in RQ1 show that students’ use
of the MDH platform does vary substantially from the de-
velopers’ intentions. Far from using it to write complex help
requests many do use it merely to reserve a place in line. Of
the five categories, our labeling showed that most of the help
tickets submitted lack sufficient detail to be clear what the
student is asking about while those that do provide detail
are most commonly focused on test cases which constitute
a major feature of the class. Contrary to our initial expec-
tations, the students rarely use the system to enter specific
error messages, even if they have them. Thus the teaching
staff have relatively little to go on when triaging questions.
Clearly the proportion of useful information in the tickets
increased in more recent years of the course but insufficient
detail remains the most common feature. Despite this how-
ever, our results also show that there are clear categories of
use that we can build upon to assist teaching staff. And our
results show that it may be possible to extend the system
with minimal automated interventions such as detectors for
word counts or grammar that can be used to scaffold, or
simply enforce, good posting behavior.

Informed by our analysis, we were able to address our mod-
eling questions, RQ2 and RQ3 by developing accurate and
robust classification models that achieved an overall accu-
racy of 92.6% and individual accuracy of 0.899% to 0.91%
. Moreover, the results are robust on a per-category basis.
While these results are not perfect, they show that we have
the potential to use models of this type for effective triage of
student questions as well as to provide scaffolding and im-
mediate guidance for students as they author help tickets.
While such guidance has not been evaluated for its’ educa-
tional impact prior work on self-explanation (e.g. [23]) leads
us to conclude that it may help students to diagnose their
own challenges.

For RQ4, the comparison between an online session semester
and regular semester shows both the strength and weakness
of online office hours. The advantages of hosting office hours
online is that it can encourage students to utilize the help-
seeking resources; However, the large amount of help-seeking
requests can be overloaded for teaching staff and the remote
debugging through screen sharing is clearly less efficient than
face-to-face interactions.

5. LIMITATIONS

There are several limitations to our work that must be ac-
knowledged. While our results span semesters, they are still
taken from a single course with a single instructor. As a
consequence our results are necessarily dependant on the
training that students have received and it is not yet clear
whether this stability will be apparent in models created
from interaction data for other courses, particularly those
that are not as large, do not use the same assignment struc-
ture, or rely so heavily on tests.

Additionally, for our analysis toward online office hour, we
did not consider the influence of teaching lectures online
could raise more challenges for students and thus increase
the usage of office hour. Our conclusion of online office hour
encourage students to seek help is based on the assumption
that there is no significant difference of academic difficulty
between F20 and other semesters.

6. FUTURE WORK
This research can support future instructors in course man-
agement and the automatic categorization for MDH system.
We therefore plan to address these limitations, expand our
dataset, and build upon the models that we have obtained.
First, we plan to conduct a more robust process of tagging
and classifying our tickets with the goal of assessing the sta-
bility of our categories with other evaluators and of identify-
ing other important ways of grouping the tickets themselves.

Second, we will extend My Digital Hand to take advantage
of these trained models in supporting both the students and
instructors. We will support instructors by providing auto-
matic triage approaches that can help to guide their plan-
ning. And we will use automated guidance to prompt stu-
dents to produce better tickets in the first place.

Third, we also plan to investigate other aspects of the office
hours that are captured in the MDH data. These include:
whether students in the same office hours post similar tick-
ets, thus highlighting the potential of peer feedback; and the
presence or absence of serial ticketers; that is students who
keep multiple follow-up tickets going to monopolize support.
We plan to build models for these features with the goal of
understanding how help time is being used and by extension
how to better coordinate limited support.

Finally, we plan to apply our models to provide automated
scaffolding for students when they provide insufficient com-
ments or errors. Specifically, we will integrate this model
to the MDH system and every time a student raise a hand,
we will use our model to predict the question category. If
their description is insufficient or useless, then we can im-
mediately notify them to revise it. This will help students
to better frame their questions, and it will help the teaching
staff can be better prepared to answer the students’ ques-
tion. This initial filter can be followed by additional models
to suggest debugging steps or common answers based upon
their revised question.

7. ACKNOWLEDGEMENTS
This research was supported by NSF #1821475 “Concert:
Coordinating Educational Interactions for Student Engage-
ment” Collin F. Lynch, Tiffany Barnes, and Sarah Heckman
(Co-PIs).

90 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

References
[1] Vincent Aleven and Kenneth R Koedinger. “Limita-

tions of student control: Do students know when they
need help?” In: International conference on intelligent
tutoring systems. Springer. 2000, pp. 292–303.

[2] Computing Research Association et al. Generation CS:
Computer Science Undergraduate Enrollments Surge
Since 2006.(2017). 2017.

[3] Tiffany Barnes and John C. Stamper. “Toward Auto-
matic Hint Generation for Logic Proof Tutoring Using
Historical Student Data”. In: Intelligent Tutoring Sys-
tems, 9th International Conference, ITS 2008, Mon-
treal, Canada, June 23-27, 2008, Proceedings. Ed. by
Beverly Park Woolf et al. Vol. 5091. Lecture Notes in
Computer Science. Springer, 2008, pp. 373–382. doi:
10.1007/978- 3- 540- 69132- 7_41. url: https:

//doi.org/10.1007/978-3-540-69132-7%5C_41.

[4] Kenneth J. Berry and Jr. Paul W. Mielke. “A Gen-
eralization of Cohen’s Kappa Agreement Measure to
Interval Measurement and Multiple Raters”. In: Edu-
cational and Psychological Measurement 48.4 (1988),
pp. 921–933. doi: 10.1177/0013164488484007.

[5] N. V. Chawla et al.“SMOTE: Synthetic Minority Over-
sampling Technique”. In: Journal of Artificial Intel-
ligence Research 16 (June 2002), pp. 321–357. issn:
1076-9757. doi: 10.1613/jair.953.

[6] csc 216 software development fundamentals ,Engineer-
ing Online, NC state university. June 2020. url: https:
//www.engineeringonline.ncsu.edu/course/csc-

216-software-development-fundamentals/.

[7] Zhijiang Dong, Cen Li, and Roland H. Untch. “Build
Peer Support Network for CS2 Students”. In: Pro-
ceedings of the 49th Annual Southeast Regional Con-
ference. ACM-SE ’11. Kennesaw, Georgia: Associa-
tion for Computing Machinery, 2011, pp. 42–47. isbn:
9781450306867. doi: 10.1145/2016039.2016058.

[8] Mark Guzdial. “Cutting the Wait for CS Advice”. In:
Commun. ACM 62.8 (July 2019), pp. 12–13. issn:
0001-0782. doi: 10.1145/3339456.

[9] Trevor Hastie, Robert Tibshirani, and Jerome Fried-
man. The elements of statistical learning: data mining,
inference and prediction. 2nd ed. Springer, 2009. url:
http://www-stat.stanford.edu/~tibs/ElemStatLearn/.

[10] Jeremy Johnson et al. “Virtual Office Hours Using
TechTalk, a Web-Based Mathematical Collaboration
Tool”. In: Proceedings of the 6th Annual Conference on
the Teaching of Computing and the 3rd Annual Con-
ference on Integrating Technology into Computer Sci-
ence Education: Changing the Delivery of Computer
Science Education. ITiCSE ’98. Dublin City Univ.,
Ireland: Association for Computing Machinery, 1998,
pp. 130–133. isbn: 1581130007. doi: 10.1145/282991.
283094.

[11] Guolin Ke et al. “LightGBM: A Highly Efficient Gra-
dient Boosting Decision Tree”. In: Advances in Neural
Information Processing Systems 30. Ed. by I. Guyon et
al. Curran Associates, Inc., 2017, pp. 3146–3154. url:
http://papers.nips.cc/paper/6907-lightgbm-a-

highly-efficient-gradient-boosting-decision-

tree.pdf.

[12] Kevin Lin. “A Berkeley View of Teaching CS at Scale”.
In: arXiv preprint arXiv:2005.07081 (2020).

[13] Tommy MacWilliam and David J. Malan. “Scaling Of-
fice Hours: Managing Live Q&A in Large Courses”.
In: J. Comput. Sci. Coll. 28.3 (Jan. 2013), pp. 94–101.
issn: 1937-4771.

[14] David J. Malan. “Virtualizing Office Hours in CS 50”.
In: Proceedings of the 14th Annual ACM SIGCSE Con-
ference on Innovation and Technology in Computer
Science Education. ITiCSE ’09. Paris, France: Asso-
ciation for Computing Machinery, 2009, pp. 303–307.
isbn: 9781605583815. doi: 10.1145/1562877.1562969.

[15] Engineering National Academies of Sciences, Medicine,
et al. Assessing and responding to the growth of com-
puter science undergraduate enrollments. National Academies
Press, 2018.

[16] E. Patitsas, M. Craig, and S. Easterbrook. “How CS
departments are managing the enrolment boom: Trou-
bling implications for diversity”. In: 2016 Research on
Equity and Sustained Participation in Engineering, Com-
puting, and Technology (RESPECT). 2016, pp. 1–2.

[17] Leo Porter et al. “Developing Course-Level Learning
Goals for Basic Data Structures in CS2”. In: Proceed-
ings of the 49th ACM Technical Symposium on Com-
puter Science Education. SIGCSE ’18. Baltimore, Mary-
land, USA: Association for Computing Machinery, 2018,
pp. 858–863. isbn: 9781450351034. doi: 10.1145/3159450.
3159457.

[18] Thomas W. Price et al. “Factors Influencing Students’
Help-Seeking Behavior While Programming with Hu-
man and Computer Tutors”. In: Proceedings of the
2017 ACM Conference on International Computing
Education Research. ICER ’17. Tacoma, Washington,
USA: Association for Computing Machinery, 2017, pp. 127–
135. isbn: 9781450349680. doi: 10 . 1145 / 3105726 .

3106179.

[19] J. Ramos. “Using TF-IDF to Determine Word Rele-
vance in Document Queries”. In: 2003.

[20] Yanyan Ren, Shriram Krishnamurthi, and Kathi Fisler.
“What Help Do Students Seek in TA Office Hours?”
In: Proceedings of the 2019 ACM Conference on In-
ternational Computing Education Research. ICER ’19.
Toronto ON, Canada: Association for Computing Ma-
chinery, 2019, pp. 41–49. isbn: 9781450361859. doi:
10.1145/3291279.3339418.

[21] Aaron J. Smith et al. “My Digital Hand: A Tool for
Scaling Up One-to-One Peer Teaching in Support of
Computer Science Learning”. In: Proceedings of the
2017 ACM SIGCSE Technical Symposium on Com-
puter Science Education. SIGCSE ’17. Seattle, Wash-
ington, USA: Association for Computing Machinery,
2017, pp. 549–554. isbn: 9781450346986. doi: 10.1145/
3017680.3017800.

[22] Mickey Vellukunnel et al. “Deconstructing the Discus-
sion Forum: Student Questions and Computer Science
Learning”. In: Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education.
SIGCSE ’17. Seattle, Washington, USA: Association
for Computing Machinery, 2017, pp. 603–608. isbn:
9781450346986. doi: 10.1145/3017680.3017745.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 91

[23] Arto Vihavainen, Craig S. Miller, and Amber Settle.
“Benefits of Self-Explanation in Introductory Program-
ming”. In: SIGCSE ’15. Kansas City, Missouri, USA:
Association for Computing Machinery, 2015, pp. 284–
289. isbn: 9781450329668. doi: 10 . 1145 / 2676723 .

2677260.

[24] Yiqiao Xu and Collin F Lynch. “What do you want?
Applying deep learning models to detect question top-
ics in MOOC forum posts?” In:

92 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Early Prediction of Museum Visitor Engagement with
Multimodal Adversarial Domain Adaptation

Nathan Henderson, Wookhee Min, Andrew Emerson, Jonathan Rowe, Seung Lee,

James Minogue, and James Lester

North Carolina State University
Raleigh, North Carolina, 27695, USA

{nlhender, wmin, ajemerso, jprowe, sylee, james_minogue, lester}@ncsu.edu

ABSTRACT
Recent years have seen significant interest in multimodal
frameworks for modeling learner engagement in educational
settings. Multimodal frameworks hold particular promise for
predicting visitor engagement in interactive science museum
exhibits. Multimodal models often utilize video data to capture
learner behavior, but video cameras are not always feasible, or even
desirable, to use in museums. To address this issue while still
harnessing the predictive capacities of multimodal models, we
investigate adversarial discriminative domain adaptation for
generating modality-invariant representations of both unimodal and
multimodal data captured from museum visitors as they engage
with interactive science museum exhibits. This approach enables
the use of pre-trained multimodal visitor engagement models in
circumstances where multimodal instrumentation is not available.
We evaluate the visitor engagement models in terms of early
prediction performance using exhibit interaction and facial
expression data captured during visitor interactions with a science
museum exhibit for environmental sustainability. Through the use
of modality-invariant data representations generated by the
adversarial discriminative domain adaptation framework, we find
that pre-trained multimodal models achieve competitive predictive
performance on interaction-only data compared to models
evaluated using complete multimodal data. The multimodal
framework outperforms unimodal and non-adapted baseline
approaches during early intervals of exhibit interactions as well as
entire interaction sequences.

Keywords

Museum learning, visitor engagement, adversarial domain
adaptation, early prediction, multimodal learning analytics.

1. INTRODUCTION
Visitor engagement is critical in museum learning [21].
Engagement defines how visitors experience museums, including
how they move between exhibits, form and express interests, and
acquire knowledge and understanding. Developing computational

models of museum visitor engagement holds significant promise
for identifying salient patterns of visitor behavior as well as
providing insight into how specific exhibits can be designed to
enhance engagement. For example, visitor analytics show potential
for enabling adaptive learning experiences tailored to the
preferences and tendencies of the visitors, leading to highly
engaged interactions with the exhibit. Visitor interactions with
museum exhibits are inherently multimodal. Visitor engagement
manifests through a variety of behaviors such as facial expression,
touch, eye gaze, and body posture. As such, multimodal learning
analytics can model museum visitor engagement by capturing and
analyzing visitor behavior from several different perspectives [2,
16]. Multimodal models of learner engagement have been shown to
be effective in a range of environments, including laboratory [8, 22]
and classroom settings [1, 6, 7]. More recently, multimodal
learning analytics have been the subject of growing attention in
informal education settings, such as museums [16, 20], but this line
of investigation is still in its nascent stages.
Given the multimodal nature of visitor interactions in museums, the
use of multichannel data provides important benefits for modeling
visitor engagement. In particular, multimodal models can be used
to predict visitor engagement early during a visitor’s interaction
with an exhibit [16]. This shows promise for enabling visitor-
adaptive technologies that provide adaptive support for fostering
engaged learning experiences with an exhibit or for notifying
museum educators to inform decisions about staffing the museum
floor. In predictive modeling, it is important that the multimodal
visitor engagement models be evaluated in terms of both predictive
accuracy and the minimum amount of time that the models require
to achieve robust predictive performance.
Multimodal modeling of visitor engagement in museums also poses
significant challenges. Interactions with exhibits are highly variable
due to the free-choice nature of museum learning [12, 25, 28].
Additionally, multimodal frameworks often utilize physical sensors
(e.g., video cameras, motion sensors, eye trackers), which introduce
questions about scalability, privacy, and mistracking. Intrusiveness
is also a concern, as suites of multimodal sensors may be
impractical in some settings, or they may adversely affect the
natural behavior of visitors [32].
Transfer learning presents itself as a natural solution to this issue,
as the various modalities in a multimodal modeling framework
share a common predictive task. In particular, recent years have
seen an increased emphasis on domain adaptation, a type of transfer
learning that investigates the predictive capacity of models that are
pre-trained on one domain (source domain) and are subsequently
reweighted to perform similarly on another domain with a different
distribution (target domain) across a single common task [39]. A

Nathan Henderson, Wookhee Min, Andrew Emerson, Jonathan Rowe, Se-
ung Lee, James Minogue and James Lester “Early Prediction of Museum
Visitor Engagement with Multimodal Adversarial Domain Adaptation”.
2021. In: Proceedings of The 14th International Conference on Educational
Data Mining (EDM21). International Educational Data Mining Society, 93-
104. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 93

primary objective of domain adaptation is to obtain a domain-
invariant representation of the salient features extracted from the
two distinct data sources, where the shared feature space allows for
improved predictive performance on data points from the target
domain while still maintaining strong performance on data from the
source domain. Examples of recent domain adaptation research
include adapting across images extracted from different domains
[34, 42] or across modalities captured from different data channels
such as RGB-to-depth image translation [33, 42].
In this work, we investigate the use of domain adaptation as a
method of translating unimodal, interaction-based data to a
domain-invariant representation that can be used with predictive
models previously trained on multimodal data. We demonstrate the
effectiveness of a multimodal domain adaptation framework for
making early predictions of visitor dwell times at an interactive
museum exhibit. Our multimodal analytics framework is designed
to operate in museum settings where sensor-based data capture may
be restricted or otherwise impractical. We adopt an adversarial
approach to generating domain-invariant representations of
multimodal data (exhibit interactions and facial expression serving
as the source domain) and unimodal data (exhibit interactions
serving as the target domain) that are encoded using stacked
denoising autoencoders. Empirical results of evaluations of the
framework suggests that the use of adversarial discriminative
domain adaptation allows for a unimodal target encoder to be
trained to share a latent feature space with a multimodal source
encoder [42]. The framework achieves higher performance than an
interaction-only baseline model in terms of early prediction and
visitor-level prediction of dwell time, a proxy indicator of visitor
behavioral engagement with an exhibit. Dwell time has been
frequently used to quantify visitor engagement in museum settings
[5, 23]. The framework offers the potential to accurately predict
visitor dwell time in museums, while also allowing for operation
with reduced availability of physical sensor data, or even when no
physical sensor data is available.

2. RELATED WORK
Visitor engagement is a critical aspect of learning in informal
learning environments, such as science centers and museums [21].
Engagement shapes how visitors proceed throughout a museum,
and interact with various exhibits [16]. There has been substantial
work on modeling engagement in formal learning environments
such as classrooms [19] and laboratories [8], and this focus has
expanded in recent years to informal learning environments. This
includes research efforts focused on analyzing engagement in
groups of visitors around interactive tabletop exhibits [5],
investigating the effectiveness of interventions for enhancing group
engagement at different diorama exhibits [23], and predicting
visitor dwell time [16]. However, devising computational models
of museum visitor engagement remains a relatively unexplored area
and presents distinctive challenges due to the free-choice nature of
visitor learning in museums, creating a need for data-rich
engagement modeling techniques.
Multimodal engagement modeling has shown significant promise
as an engagement modeling approach due to its capacity to provide
a data-rich multi-dimensional perspective on learner behavior [2].
In many cases, multimodal models lead to improved performance
compared to models that utilize a single modality [19, 22, 32, 49].
Multimodal models have often utilized several diverse data
channels when deployed in formal learning environments,
including facial expression, posture, eye gaze, dialogue, and
interaction trace data [40]. Facial expression data is commonly used
in multimodal learner models of student affect [7] and performance

[44]. Posture data has also been used for affect detection [22] as
well as predicting learners’ levels of engagement with Massive
Online Open Courses (MOOCs) [9]. Eye gaze data has been
combined with facial expression and head pose data to train models
for continuous emotion prediction [48], while dialogue data has
been utilized to predict dropout in online K-12 courses [26].
Finally, interaction trace logs and keystroke data have been used in
conjunction with facial expression data to detect confusion in
students engaging with an introductory computer science education
learning environment to provide adaptive feedback and support
dynamic adjustment of exercise difficulty levels [6]. While recent
work has investigated multimodal approaches to modeling visitor
engagement in museums [16], multimodal approaches to museum
visitor modeling poses significant challenges, as these frameworks
often necessitate physical, sensor-based data capture. This
introduces various ethical and logistical concerns and may be
impractical or prohibitive in certain informal learning
environments.
Computational methods such as transfer learning, and particularly
domain adaptation, provide a way to harness the predictive
capacities of multimodal learning analytics while allowing visitor
modeling frameworks to operationalize a reduced number of more
intrusive modalities. Domain adaptation and transfer learning have
shown significant potential in a variety of implementations, and
have been utilized within educational contexts for tasks such as
confusion detection in online forums for different online courses
[50] and automated essay scoring across different prompts [35].
Additionally, domain adaptation has been investigated within
multimodal contexts such as RGB and depth images [42], as well
as video and audio modalities [36]. To our knowledge, adversarial
domain adaptation has not been applied to unimodal and
multimodal data to model learner engagement in museums.
Recent domain adaptation work has focused primarily on an
unsupervised or semi-supervised variation of this problem, where
deep learning models trained on a labeled source dataset are
transferred to share latent representations alongside a target domain
that may contain little or no previously labeled data. The issue of
missing labels for the target domain data is addressed by obtaining
a domain-invariant representation through minimizing the distance
between the learned data representations between the two domains
[17, 41, 42]. While prior efforts accomplish this task through
statistical measures such as the Maximum Mean Discrepancy
(MMD) [43] or the deep Correlation Alignment (CORAL) [39],
other work has taken an adversarial approach, with the
simultaneous goals of learning a data representation that is
predictive of the source domain labels while also being
indistinguishable to a domain discrimination model [27, 42]. One
approach involves reversing the gradients of a domain
discrimination model to maximize the model’s loss and guide the
learning to explore a domain-invariant representation [17]. Other
approaches train a source encoder to reduce the source domain data
to a latent representation and use a domain discriminator to
adversarially train a target encoder to produce a latent
representation of the target domain data that is indistinguishable to
the discriminator [42]. The trained target encoder is subsequently
used to process unlabeled data from the target domain to be
classified by a model pre-trained on source data. Another approach
is the Co-GAN approach, which involves two Generative
Adversarial Networks (GANs) that generate source and target data,
respectively [27]. The high layer parameters of the two GAN
models are tied together, allowing the generators of the models to
co-learn a shared latent representation while possibly sharing a
common input noise vector.

94 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Early prediction is an important component of visitor modeling
because it can drive run-time adaptive support to enhance visitor
interest and engagement with interactive exhibits. A critical
objective in early prediction is to reach a certain accuracy threshold
in a timely manner. Early prediction has been investigated in the
context of formal learning environments, such as predicting
middle-grade learner engagement with a game-based learning
environment [47], evolving learning goals throughout students’
interaction trajectories [31], and student success in novice
programming tasks [29]. Early prediction has also been the subject
of prior work on museum learning, such as automatic detection of
visitors’ social behavioral patterns [13, 24] and multimodal
regression-based modeling of visitor engagement in science
museums [16].
The primary contributions of this work are as follows: (1) we
demonstrate improved predictive performance of multimodal
models of museum visitor dwell time using facial expression and
interaction data compared to interaction-only baselines, (2) we
evaluate the effectiveness of adversarial discriminative domain
adaptation as a means of enabling the use of previously-trained
multimodal models with unimodal data, and (3) we investigate the
performance of each visitor engagement model using convergence-
based early prediction metrics and standard predictive performance
measures. Domain adaptation has been relatively underexplored
with educational data, and this is especially true of data from
informal learning environments such as museums. Furthermore,
there has been limited work investigating domain adaptation in the
context of early prediction of learner engagement. Our work shows
that domain adaptation is effective at enhancing prediction of
visitor dwell time by harnessing the capacities of multimodal

visitor modeling, which leads to higher predictive accuracy when
compared to unimodal models.

3. FUTURE WORLDS EXHIBIT
To investigate multimodal predictive models of museum visitor
engagement, we use data collected from visitor interactions with a
game-based museum exhibit, FUTURE WORLDS, which is designed
to introduce visitors to concepts about environmental sustainability
(Figure 1). FUTURE WORLDS runs on a multi-touch display,
enabling visitors to interact with the virtual environment through
touch and gestures on the screen. Visitors are faced with the
challenge of improving the conditions of the virtual environment’s
biosphere through a series of changes such as farming practices and
energy sources within the game. FUTURE WORLDS and its integrated
educational content are targeted towards learners ages 10-11.
Visitors can tap or swipe on the screen to perform certain actions
such as reading about a particular aspect of the virtual environment
and its impact on sustainability or modifying an in-game element
and observing the broader consequences of this decision on the
environment. Upon making a change to the virtual environment, the
visitor is given immediate feedback regarding the positive or
negative impact of the gameplay action. A visitor can “win” by
making the correct decisions to certain in-game elements that
maximize the environmental sustainability of the virtual
environment. Afterwards, the visitor is presented with the option to
restart the game or continue interacting with the virtual
environment in its completed state. Additionally, a visitor is able to
leave the FUTURE WORLDS exhibit having not completed the game
beforehand. Prior work with FUTURE WORLDS found that visitors
improved their understanding of environmental sustainability

Figure 1. Gameplay of the FUTURE WORLDS interactive exhibit, including (A) 3D virtual environment, (B) selecting an element to
modify, (C) viewing information about the selected element, and (D) correctly solving the in-game problem.

C

A B

D

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 95

concepts, while also demonstrating high levels of engagement
throughout their interactions with the exhibit [37].

4. MULTIMODAL DATA COLLECTION
To track visitor engagement and behavior with FUTURE WORLDS,
the exhibit was instrumented with several sensors to collect the
real-time behavior of visitors’ interactions with the exhibit, as
shown in Figure 2. We first describe the visitor population for study
participants and then introduce the two modalities used for the
domain adaptation approach (facial expression, exhibit interaction
trace logs), and the features extracted from each input data channel.

4.1 Study Participants and Procedure
We conducted a study of visitor interactions with the FUTURE
WORLDS exhibit at the North Carolina Museum of Natural Sciences
in Raleigh, North Carolina. The data were collected over a series of
three sessions with different school groups of visitors aged 10-11
(M=10.4, SD=0.57). The school groups came from different socio-
cultural backgrounds (e.g., race/ethnicity), and each school served
student populations where 70% of the students are from low-
income families. In total, 116 visitors interacted with FUTURE
WORLDS. There were 47 female and 55 male participants, with 14
participants who did not provide data on their gender. The visitors
were 32.4% Hispanic or Latino, 21.6% African American, 11.8%
American Indian, 8% Asian, 7.5% mixed race, 3% Caucasian, and
15.7% preferred not to respond. Before interacting with the exhibit,
visitors were asked to complete a series of surveys and
questionnaires, including a demographic survey, sustainability
content knowledge assessment, and the Fascination in Science
scale [11]. Afterward, visitors interacted with the exhibit until they
wanted to stop or after approximately 12 minutes had elapsed
(M=5.8, SD=2.4, Min=1.8, Max=11.8). Visitor dwell times were
captured by the game’s internal logging functionalities. Once
visitors finished their interaction with the exhibit, they were asked
to complete a sustainability content knowledge assessment,
engagement survey, and a short debrief interview. Several visitors
were missing one or multiple data channels (e.g., facial
mistracking), requiring the removal of their data from the final
dataset for analysis. The final dataset that was used for the
predictive models in this paper consisted of multimodal data from
79 visitors.
During the data collections, the visitors’ body movement, eye gaze,
facial expression, and interaction data from the exhibit were
captured. For this study, we focus exclusively on the exhibit
interaction data and the facial expression data. We selected the
exhibit interaction data due to its unintrusive nature and its relative
ease of data capture, as the trace data is captured in the background

with the exhibit software and does not require any physical sensors
or calibration. We selected facial expression data because of its
predictive utility in previous work on unimodal and multimodal
models of learner engagement [14, 15].

4.1.1 Facial Expression
Facial expression is an important indicator of learner emotion, and
it has been widely used in previous studies on modeling learner
engagement [46]. In this work, visitor facial expression was
captured using video data from an externally mounted Logitech
C920 USB webcam. In real time, the video data was processed by
OpenFace, an open-source facial behavior analysis toolkit to detect
facial landmarks, estimate head pose, recognize facial action units
(AUs), and estimate eye gaze [3]. The OpenFace software
automatically detects and analyzes 17 distinct AUs for each
visitor’s face captured within the camera’s field of view.

4.1.2 Interaction Trace Logs
FUTURE WORLDS includes built-in logging functionalities to
capture fine-grained logs of visitor interactions with the exhibit.
The interaction trace logs consist of sequential records (at the
millisecond level) of physical interactions with the multi-touch
display (e.g., taps, swipes, and gestures), as well as specific in-
game learning events (e.g., altering the virtual environment and
accessing an embedded informational resources). The interaction
trace logs are used to investigate how visitors interacted with the
exhibit and progressed through the game.

4.2 Multimodal Features
Using both visitors’ facial expression and exhibit interaction
behavior, we distilled two sets of features to serve as predictors of
visitor dwell time. Many of the extracted features for each modality
were chosen based on their predictive performance in prior work
on multimodal learning analytics [16].

4.2.1 Facial Expression
Using the processed AU data from OpenFace, we calculated the
duration that each AU was exhibited throughout the visitor’s
interaction with FUTURE WORLDS. We first standardized each
visitor’s observed AU intensity values and then calculated the
duration of each AU during time intervals where consecutive AU
intensity values were at least one standard deviation greater than
the mean of that particular visitor-specific AU feature. This
filtering process ensured that only spikes relative to the specific
visitor’s AU values contributed towards the calculation of the total
duration. To further filter the AU durations, we only recorded the
duration if the AU was present for longer than 0.5 consecutive
seconds. This avoided possible micro-expressions that could add
noise to the overall data channel [38]. We performed this filtering
process for all 17 AUs tracked by OpenFace. In addition, we
generated the standard deviation and maximum AU values across
the visitor’s interactions up to the current timestamp. In total, we
extracted and distilled 51 facial expression-related features.

4.2.2 Exhibit Trace Logs
We distilled eight features from the exhibit interaction data: (1) the
total number of times a visitor tapped the FUTURE WORLDS multi-
touch display, (2) the total number of times a visitor tapped
informational tiles about environmental sustainability concepts, (3)
the total duration of time an informational tile was open, (4) the
total duration spent with labeled sustainability images displayed
onscreen, (5) the total duration of time that a visitor spent directly
interacting with the 3D simulated environment in FUTURE WORLDS,
(6) the total number of times a visitor swiped the interface to
explore alternative options for modifying the simulated

Facial Expressions Eye Gaze

Exhibit Interaction Logs Posture

Figure 2. Visitor interacting with FUTURE WORLDS.

96 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

environment, (7) the total number of times the simulated
environment was modified, and (8) a binary feature that indicated
whether a visitor had successfully solved the current environmental
problem scenario in FUTURE WORLDS.

5. DOMAIN ADAPTATION
In this work, we present an unsupervised, adversarial
discriminative domain adaptation approach that enables the use of
multimodal visitor engagement models in settings where only
unimodal data streams are available. In unsupervised domain
adaptation, two datasets are extracted from two separate domains:
(1) a source domain (s), from which data samples Xs and associated
labels Ys are drawn, and (2) a target domain (t), which contains
unlabeled data samples Xt. It is also assumed that there exists a
classifier Cs that has been previously trained on the source data Xs
and source labels Ys by learning a latent mapping Ms. The primary
objective of the unsupervised domain adaptation approach is to
learn a latent mapping Mt so that Mt(Xt) can be correctly classified
by Cs despite the absence of any associated labels for Xt.
The purpose of adversarial training within the domain adaptation
framework is to learn a domain-invariant data representation that
minimizes the distance between Mt(Xt) and Ms(Xs). This is
accomplished through a separate binary discriminator, D, that is
trained to distinguish between latent representations of the source
domain and the target domain. The discriminator is optimized
according to a standard cross-entropy loss function (Equation 1):
ℒ!"#$ 	(𝑋%, 𝑋&, 𝑀%, 𝑀&)

= 	−𝔼'!	~	*!+log𝐷0𝑀%(𝑋%)12																						(1) 	
− 𝔼'"	~	*" 4log 51 − 𝐷0𝑀&(𝑋&)167

Adversarial domain adaptation focuses on two primary objectives
implemented within a minmax framework: the discriminator
attempts to accurately classify a latent data representation as either
from the source domain or the target domain, while a target encoder
attempts to learn a mapping Mt(Xt) that deceives the discriminator,
thus finding a latent representation that is domain-invariant but
retains enough salient characteristics to provide predictive value to
a source classifier Cs. To implement an adversarial loss function
within the framework, a common practice is to simply invert the
loss term when training the target encoder. This essentially reverses
the gradients for the target encoder but can consequently lead to
premature convergence and vanishing gradients [17]. A more stable
training method is to invert the labels used to train the target
encoder. This creates two distinct convergence objectives for the
two elements of the adversarial framework [42]. The discriminator
loss term remains the same as stated in Equation 1 above, while the
loss term for the target encoder becomes:

ℒ+,-	(𝑋%, 𝑋&, 𝐷) = 	−𝔼'"	~	*"+log𝐷0𝑀&(𝑋&)12 (2)

This process is analogous to the process utilized by generative
adversarial networks (GANs) [18]. A GAN attempts to emulate a
fixed data distribution by adversarially training a discriminator to
distinguish between “fake” data, which was produced by a
generator that aims to generate data that is synthetic but realistic
looking using a random noise vector, and “real” data that is
extracted from the prior fixed data distribution. While GANs have
been utilized in domain adaptation tasks [27], they are typically
effective when the source and target domains are relatively similar.
GANs have shown convergence issues in scenarios involving a
high degree of domain shift [42]. As our work involves a domain
shift from a multimodal source domain to a unimodal target
domain, we opt to utilize a non-generative approach for this work
and focus exclusively on discriminative adversarial methods. It is

assumed that a pre-existing distribution of multimodal data (i.e.,
interaction trace logs + facial expression) is available to train the
source encoder and the source classifier, while the target
distribution consists of unlabeled unimodal data (i.e., interaction
trace logs). This is intended to simulate scenarios where visitor
engagement models have been previously trained on multimodal
data but are deployed in situations where only interaction trace log
data is available to generate new predictions of visitor engagement.
While much prior work in adversarial domain adaptation involves
source and target domains of similar or identical dimensionality
(e.g., image-to-image translation), the multimodal aspect of this
work presents a distinct challenge, as the multimodal data in the
source domain inherently contains more features than the unimodal
target domain. To enable the pre-trained multimodal classifier to
handle unimodal data as input, stacked denoising autoencoders [45]
are used to reduce the multimodal and unimodal feature vectors to
the same dimensionality. An autoencoder is an unsupervised
method of using feedforward neural networks to reduce an input
vector X to a latent data representation using an encoder that
contains a mapping function M. The autoencoder then attempts to
use a decoder that uses mapping function N to reconstruct M(X) to
its original input. The encoder and decoder components of the
autoencoder are both optimized by minimizing the reconstruction
loss between X and N(M(X)). A stacked autoencoder is a variation
in which each component contains multiple hidden layers of
autoencoders. A denoising autoencoder builds on the same concept
but corrupts the input vectors using random noise injection, which
allows effective model regularization [45]. In this work, we use a
corruption level of 0.25 on each feature in each input vector, where
a value is set to 0 when the input feature is corrupted. After input
vector X undergoes random noise injection to produce X’, the
denoising autoencoder attempts to reconstruct X from N(M(X’)).
This allows the autoencoder to become more robust against random
noise within the input features while also preventing the
autoencoder from overfitting or simply learning the identity
function. Following the optimization of the autoencoder, the
decoder component is discarded while the encoder component is
retained for dimensionality reduction within our data processing
pipeline. A denoising autoencoder is shown in Figure 3.

Our adversarial domain adaptation process is shown in Figure 4.
Figure 4A illustrates the initial training of the classifier and the
source encoder. The features from the facial expression and
interaction modalities are concatenated together and then used to
train a stacked denoising autoencoder. Following this process, the
trained source encoder is then used to reduce the multimodal input
data to a latent representation that is then used to train a classifier.
The classifier receives the latent data as input and is trained to
predict the target variable, visitor dwell time. To enable the
adversarial training of the target encoder and discriminator (Figure
4B), the weights of the pre-trained source encoder are fixed, and
the target encoder weights are initialized using a pre-trained
autoencoder optimized on the unlabeled, interaction-only data. An

X’ X

M(X’)

N(M(X’))

Encoder Decoder

Reconstruction Loss

Hidden
Visible

Figure 3. A denoising autoencoder.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 97

alternative approach is to initialize the target encoder weights from
the source encoder. However, this can only be accomplished if the
feature vectors extracted from the source domain are the same
dimensions as the target domain. In our work, the multimodal
feature vectors from the source domain have a higher
dimensionality than the unimodal feature vectors from the target
domain, since we remove the facial expression modality from the
training data for the target encoder. The source and target encoders
are used to produce latent representations of the multimodal and
unimodal features, respectively. These representations are assigned
labels of either 1 if the sample originated from the source domain,
and 0 if the sample originated from the target domain. The
data/label pairs are then used to train a feedforward network serving
as the discriminator model. The discriminator is trained to
distinguish between latent data from the source domain and from
the target domain, while the target encoder is simultaneously
trained to produce latent data from the target domain that
consistently deceives the discriminator. To evaluate the target
encoder (Figure 4C), unimodal data is passed through the encoder,
and the resulting encoded data is then forward propagated through
the trained classifier shown in Figure 4A. This procedure provides
a way to evaluate the predictive performance of a multimodal
classifier on unimodal data. It is important to note that some amount
of multimodal data must be present prior to deploying our
adversarial approach in order to train the multimodal classifier as
well as the multimodal autoencoder.

6. METHODOLOGY
In multimodal models of learner engagement, some modalities that
are highly predictive of engagement can also be impractical or
undesirable in certain educational settings, such as sensors that
require a cumbersome calibration process or expensive specialized
equipment. Modalities that involve the capture of video data can
raise concerns about privacy. However, eliminating physical
sensors and exclusive reliance on sensor-free modalities may result
in decreased performance on some tasks and settings. We propose
a solution to this issue that (1) allows the predictive capacities of
multimodal models to be retained, and (2) allows for the reduction
in use of physical sensors. This work operates under the assumption
that multimodal data is available in at least some capacity to

facilitate the training of multimodal models prior to adversarial
domain adaptation. As a result, the ideal setting for the proposed
framework is after an initial multimodal data collection has taken
place, enabling pre-trained multimodal models to be deployed.
Below we describe the methods used to preprocess the multimodal
and unimodal data, the feature selection process utilized to select
the data used in the prediction and adversarial tasks, and the
approach to training and validation of the visitor engagement
models. Finally, we present the early prediction convergence
metrics used to evaluate the final classification models and the
domain encoders.

6.1 Data Preprocessing
6.1.1 Temporal Feature Engineering
To facilitate early prediction of visitor engagement, sequential
representations were produced from the features engineered from
the two modalities as described in Section 4.2. To accomplish this,
feature vectors were engineered for every subsequent 10-second
interval in a single visitor’s interaction session with the exhibit. For
each feature, the average or sum of all values from t=0 to t=10n
seconds was calculated, where n is the number of 10-second
intervals that have elapsed for that feature vector. For example, if a
visitor engaged with the exhibit for one minute, then n=6, and the
feature vectors are generated across time intervals of 10, 20, 30, 40,
50, and 60 seconds from the beginning of their session. This allows
each feature vector to be a representation of a visitor’s behavior
over their entire interaction with an exhibit up to that point.
Additionally, this approach solves the issue of the temporal
alignment of the separate data channels caused by differing
sampling rates of the facial expression modality and the interaction-
based modality. As a result, the early prediction models are able to
make predictions at a consistent frequency across every visitor’s
exhibit interaction trajectory (i.e., every 10 second). To ensure that
the additive nature of the features does not contribute to artificially
inflated model performance, each feature is scaled by the elapsed
time up to the current timestamp. After this process is complete,
2,279 data samples were generated for 79 visitors.

6.1.2 Visitor Dwell Time
The beginning of a visitor’s dwell time takes place after a
calibration process with the eye gaze sensor is completed, and prior
to when they are presented with an on-screen information dialogue
box explaining the problem to be solved. The visitor’s session can
end one of three ways: (1) the visitor opts to end their session prior
to completing the problem-solving task in FUTURE WORLDS, (2) the
visitor solves the problem and chooses to end their session, or (3)
the visitor solves the problem, opts to continue interacting with the
virtual environment, and later chooses to end their session. Each
visitor’s dwell time was captured in total seconds (M=268.83,
SD=137.48, Min=77.11, Max=657.48) and was recorded by the
FUTURE WORLDS exhibit’s built-in logging functionalities. For the
purpose of this work, the dwell time prediction task was converted
to a classification problem by splitting dwell time into three tertile
groups and assigning approximately one-third of the visitors to
each group. We use this classification approach instead of
regression analysis due to the relatively low number of visitors in
the dataset and to accommodate the use of early prediction
convergence metrics. The visitors in the dataset were assigned to
one of three possible groups according to their dwell time d: low (d
<= 193.54, N=26), low (193.54 < d <= 318.82, N=27), and high (d
> 318.82, N=26). We take this approach as a way to prevent a
significant class imbalance while still retaining a higher level of
granularity than a median split. The distribution of visitor dwell
times, including the ternary groups, is shown in Figure 5.

Figure 4. Domain adaptation process, including (A) the
classifier and source encoder training, (B) adversarial training
of the target encoder and discriminator, and (C) evaluation of
the adapted target encoder on the classifier. Dashed lines
indicate fixed model weights.

Facial Expression

Interaction Data
Ms(Xs) Classifier

Source
Encoder

Source
Decoder Class Prediction

Facial Expression

Interaction Data
Ms(Xs)

Discriminator

Source
Encoder

Interaction Data Mt(Xt)
Target
Encoder

Domain Prediction

Training Loss

Mt(Xt) Classifier
Target
Encoder Class PredictionInteraction Data

(A)

(B)

(C)

98 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

6.2 Feature Selection
Because of the large number of features in the multimodal data (51
facial expression features and 8 exhibit interaction features), we
implemented forward feature selection to eliminate features with
little or no predictive value and to reduce potential noise. Forward
feature selection iterates through a list of features in a greedy
manner, training a model on a single feature and continuing to add
features if their inclusion increases the performance of the model
on the target variable. This process continues until a predetermined
number of features are selected or until all available features have
been evaluated. This process has a few shortcomings. Due to the
greedy nature of the algorithm, the features that are evaluated first
have a higher chance of being selected. For example, the first
feature that is evaluated is always retained, regardless of its true
contribution to the predictive performance of the model. One
approach to mitigating this issue is to perform forward feature
selection for every possible combination of features, but this is
often prohibitive as the number of combinations increases
exponentially as the number of features increases, which imposes
significant computational requirements. To mitigate the issue of
bias in greedy feature selection while avoiding an exhaustive search
across all feature combinations, we perform forward feature
selection across a randomized ordering of all available features. We
used a support vector machine (SVM) as the predictive model for
each feature combination due to its effectiveness in high-
dimensional spaces and relatively small computational overhead.
This process was repeated for 100 separate iterations and
randomizations to ensure that each feature had an equal probability
of being placed at a specific point within each feature ordering.
Following this process, the features were sorted according to the
frequency that each feature was selected across all 100 iterations.
To compensate for the difference in the number of features for each
data channel, we performed forward feature selection on the facial
expression modality and selected the ten most frequently selected
features.
It should be noted that because we selected the ten most frequent
features from the facial expression modality, and the interaction-
based modality contained only 8 total features, each feature from
the latter modality was included in the data modeling process. (We
perform forward feature selection on the interaction-based features
for analysis purposes only.) Because certain features such as AU
durations and tile durations increase monotonically throughout a

Table 1. Most frequent features from forward feature
 selection (interaction)

Feature Frequency

Proportional Tile Duration 0.637
Proportional Open Tile Count 0.561
Proportional Info Duration 0.557
Proportional Info Taps 0.554
Proportional Taps 0.511
Proportional Swipe Tiles Count 0.416
Proportional Modify Tile Count 0.341
Beat Game 0.272

Table 2. Most frequent features from forward feature

selection (facial expression)
Feature Frequency

AU05 Max 0.317
AU10 Max 0.276
Proportional AU10 Duration 0.257
AU02 Max 0.237
Proportional AU01 Duration 0.227
AU26 Std 0.218
AU25 Max 0.214
Proportional AU17 Duration 0.208
Proportional AU45 Duration 0.206
Proportional AU26 Duration 0.196

visitor’s exhibit interaction trajectory and can lead to indirect data
leakage with regard to the target variable (dwell time at the exhibit),
the features were scaled by the total elapsed time up to the current
timestamp, so these features were converted to proportional
representations of the elapsed time at each time interval.
This feature selection process took place within each cross-
validation fold, and as a result, each fold produced a different
combination of selected features. We calculated the frequency of
the features across all cross-validation folds and present these in
Table 1 and Table 2.
Based on the results in Table 1, features related to general
interactions (proportional number of times any tile was opened,
proportion of time any tile was open) were the most predictive
interaction-based features. The features related to opening and
viewing embedded graphical and textual science materials were
also frequently selected features. The features representing the
frequency a visitor modified the in-game virtual environment were
less frequently selected as predictive features, as was the binary
indicator of whether the visitor correctly solved the problem at that
particular timestamp.
The most predictive features from the facial expression modality
were primarily maximum values and proportional durations of
certain AUs. AU05 (upper lid raiser) and AU10 (upper lip raiser)
were the most predictive facial action units, followed by AU02
(outer brow raiser) and AU01 (inner brow raiser). AU25 (lips part)
and AU26 (jaw drop) were moderately predictive, followed by
AU17 (chin raise) and AU45 (blinking). Multiple representations

Figure 5. Distribution of visitor dwell times and
ternary groups.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 99

of AU10 and AU26 were frequently selected during the feature
selection process as well. It is notable that the overall frequency of
the facial expression features is significantly lower than many
interaction-based features. This is likely a result of the large number
of facial expression features compared to the interaction-based
features.

6.3 Model Evaluation
The models were evaluated using 10-fold cross-validation, with the
splits for each fold occurring at the visitor level to ensure that a
visitor’s data was contained only within a single training,
validation, or test set. The dataset was standardized within each
cross-validation fold by dividing each feature by subtracting the
feature’s mean and dividing by the feature’s standard deviation, as
determined by the training data. This rescales the data to have a
standard deviation of 1 (unit variance) while centering the mean to
be 0. Following this process, class imbalances within the training
data were resolved using Synthetic Minority Oversampling
Technique (SMOTE) [10]. SMOTE is a common upsampling
approach that resolves class imbalances through a randomized K-
nearest neighbor approach, which brings the class balance to a
uniform distribution while avoiding duplication of any data points.
The upsampled, standardized training data is then used for forward
feature selection as described in Section 6.2.
After feature selection, a classifier model was trained on the
multimodal data and the visitor dwell time labels in each cross-
validation fold to provide a comparison point for the domain-
adapted models. The tertile labels for the target variable were
encoded as one-hot vectors for each model output. We evaluated
five different models: SVM, logistic regression, naïve Bayes,
random forest, and a feedforward neural network. We performed
hyperparameter tuning using a 3-fold nested cross-validation
within the training set for each outer cross-validation fold. The
hyperparameters that were varied for each model included the
regularization parameter and kernel (SVM), regularization
parameter (logistic regression), number of estimators (random
forest), and number of layers and nodes (feedforward neural
network). Additionally, the architecture of the autoencoder used to
train the source encoder was evaluated during the hyperparameter
tuning phase. The autoencoder was a feedforward neural network,
and the hyperparameter values that were evaluated were the number
of layers and nodes in the hidden layers within the encoder and
decoder, as well as the number of latent dimensions. The
feedforward neural network achieved the optimal performance as
the classifier for visitor dwell time, using two hidden layers with 64
nodes each. The source encoder contained three hidden layers with
64, 32, and 16 nodes, respectively, with a latent output of 10.
Additionally, all feedforward neural network models used a
learning rate of 0.001, a dropout rate of 0.5 in the last hidden layer,
and sigmoid activation functions. The loss function used for each
model was categorical cross-entropy. Early stopping was
implemented for each model using the validation data during the
nested cross-validation to protect against overfitting. As a baseline,
we follow the same process previously described, except using only
the interaction modality. We evaluate both a unimodal and
multimodal baseline in order to demonstrate the improved
performance of the multimodal model of visitor dwell time as
compared to the unimodal model, and to show the improved
performance using the domain adaptation framework in situations
where only unimodal data is available.
After the optimal classifier and source encoder for adversarial
domain adaptation were trained for each cross-validation fold, the
models’ weights were fixed to evaluate the classifier performance

on interaction-only data and to encode the multimodal data within
the adversarial framework, respectively. The adversarial
framework used a target encoder that is a feedforward neural
network whose architecture and weights were pre-determined using
the interaction-only baseline model. Although the source encoder
and target encoder weights were not tied together as is common in
other adversarial domain adaptation work [27], there was an
imposed restriction that the latent dimensions be the same for both
domains due to the fixed input size of the discriminator. The
discriminator in the adversarial framework was a feedforward
neural network with two layers of 64 nodes each. The learning rate
of both the discriminator and the target encoder was 0.001, with a
dropout rate of 0.05 in the last hidden layer and hyperbolic tangent
activation functions. The loss functions for the discriminator and
target encoder were based on binary cross-entropy as shown in
Equations 1 and 2, respectively. The adversarial domain adaptation
took place within each cross-validation fold to prevent data leakage
from the test set.
To evaluate the predictive performance of the domain-adapted
representations of the target data, the trained target encoder was
used to encode the interaction-only data from the held-out test set
within each cross-validation fold, and the encoded data was passed
to the classifier model trained with the source data. The predictive
performance of the classifier on this data was used to confirm that
the use of multimodal data to train the classifier induces higher
performance than if the facial expression data was removed from
the dataset entirely. As an additional baseline, the target encoder
trained on the interaction-only modality was used to pass the
encoded data directly to the multimodal classifier without the
domain adaptation procedure, following the source-only baseline
approach of Tzeng et al. [42]. This illustrates that any improvement
due to our method can be attributed to the adjusted weights through
the adversarial adaptation process instead of just compressing the
latent representation of the target domain data to the source
domain’s dimensionality. This specific baseline is called target-
only.

6.4 Early Prediction
To quantify the models’ ability to accurately predict a visitor’s
dwell time early and consistently, we utilize two metrics:
standardized convergence point [30] and convergence rate [4]. The
standardized convergence point calculates an average point of
model convergence to the correct labels, while a particular visitor’s
sequence not converged to a correct prediction is penalized. This
metric extends the conventional convergence point metric to
account for sequences that are ultimately predicted incorrectly and
fail to converge by instituting a penalty term [4]. In this instance,
standardized convergence point is greater than one. In cases of
convergence, a sequence’s standardized convergence point falls
within the range [0, 1]. Equation 3 displays the formula used to
calculate the standardized convergence point across all sequences,
where m is the number of sequences, and ni is the number of data
points in the ith visitor’s sequence. The value of ki is the number of
data points after which the model makes consistently accurate
predictions, otherwise ki equals ni+pi, where pi is the penalty term
for the ith sequence [30]. (pi is set to 1 for all sequences in this work
following the original work.) A lower standardized convergence
point indicates that the model’s predictive accuracy tends to
converge earlier in a visitor’s interaction with the exhibit,
indicating better early prediction performance.

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑	𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒	𝑝𝑜𝑖𝑛𝑡 = 	F
G𝑘.𝑛.

I

𝑚

/

.01

												(3)

100 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

The second metric that we use to quantify a model’s early
prediction performance is the convergence rate. Convergence rate
is the percentage of observed sequences in which the final
prediction is accurate. Any sequence that contains an accurate
dwell time prediction at the last data point is considered to have
converged. Therefore, a higher convergence rate is indicative of
better performance.

7. RESULTS AND DISCUSSION
The results for the unimodal and multimodal models as well as the
unimodal latent representations (i.e., target-only encoding) and
domain-adapted representations are shown in terms of early
prediction and visitor-level predictive performance in Table 3. To
measure visitor-level performance, a single point estimate of the
predictive performance for each individual visitor is obtained by
averaging across the predictions for all data points. The results for
Table 3 are shown in terms of standardized convergence point
(SCP) and convergence rate (CR) for early prediction, and area
under curve (AUC), Cohen’s Kappa, accuracy, and F1 score for
visitor-level performance. Although AUC is commonly used for
binary classification problems, we use this metric for a multi-class
approach using a “one vs. rest” method which treats the correct
class as the “positive” group and combines all other classes as a
single “negative” group. The total AUC for a single model is
calculated by using the unweighted mean of the AUC values across
all three groups.
Based on the results in Table 3, the adversarial domain adaptation
allows the multimodal classifier to outperform all baselines in
terms of early prediction and across all sequences for each visitor.
As expected, the complete multimodal model achieved the highest
performance, achieving an AUC value of 0.660, while also
outperforming the other models in all other evaluation metrics. The
model achieved a standardized convergence point of 64.58%,
indicating that the model achieved and maintained its optimal
predictive performance approximately 64% into a visitor’s total
dwell time at the exhibit, while converging to the correct
predictions more often than other baseline approaches. The
interaction-only modality produced noticeably lower performance,
achieving a convergence point of 75.95%, while also reaching a
0.574 AUC across all sequences. The adversarial domain
adaptation allowed the classifier to achieve higher performance on
the interaction-only data, with an early prediction performance of
67.42% and a visitor-level AUC of 0.585, similar to the full
multimodal model while also outperforming the interaction-only
baseline across all evaluation metrics.
The classifier’s performance on the latent unimodal data (without
domain adaptation) was notably poor, achieving an AUC that was
slightly worse than random chance (0.500). This result is not
surprising, as we are evaluating the model’s performance using
latent representations from a domain that has not been used to train
the model beforehand. Although similar baseline approaches can

achieve moderate performance in instances where the source and
target domains are relatively similar, other work that investigates
cross-modality adaptation or adaptation across dissimilar domains
achieves much lower performance for this specific baseline [42].
While the adversarial domain adaptation proved more effective
than the interaction-only and latent unimodal data baselines, the
performance of our framework did not achieve the same
performance as a framework that contained the full multimodal
data. This could be attributed to the significant difference between
the interaction and facial expression domains. The majority of the
interaction-based modality is comprised of discrete, monotonically
increasing features, which inherently are not as data-rich as the
features from the facial expression modality. Because there are
multiple features for each AU, this modality provides multifaceted
perspectives on multiple AUs, leading to a relatively high number
of continuous features. Adapting between two data channels with
such a discrepancy in dimensionality may be a contributing factor
to the framework’s performance. Second, the relatively small
number of visitors in the dataset may also be a contributing factor,
as the performance of the models could be at risk for overfitting the
classifier, source encoder, or target encoder. Contributing to this
potential issue is the loss induced in the domain adaptation process.
The size of the dataset may prevent the adversarial framework from
reaching optimal convergence. Third, because there is no restriction
regarding how long the visitors could remain at the exhibit, the
target variable has a relatively wide range of values, approximately
from one minute to more than ten minutes. Although this issue is
addressed through the use of a tertile split, additional data could
provide further evidence of behavioral patterns that are able to
induce higher performance with more granular target variables.
Because timestamped interaction trace logs are the basis of one of
the modalities used in this work, the design of the museum exhibit
may play a role in the performance of the visitor models in terms
of early prediction. During the early stages of FUTURE WORLDS,
visitors are prompted to read an information dialog box explaining
the premise of the game and a summary of the problem to be solved
in the virtual environment. Because this event occurs at the
beginning of every visitor’s interaction sequence, it is likely that
more indicative behaviors that allow the classifier to differentiate
between groups occur at later stages of learner interactions with the
exhibit. This is a potential explanation behind the early prediction
performance of each model, as the standardized convergence point
occurs after 60% of the overall exhibit interactions across all
models.
To further investigate the impact that domain adaptation has on the
predictive performance of the multimodal classifier, confusion
matrices based on the target-only encoder and the adversarially-
trained encoder are shown in Figure 6 as is the confusion matrix for
the interaction-only classifier. The purpose of this analysis is to
determine if adversarial domain adaptation results in any changes
relative to the classifier’s sensitivity to certain dwell time groups.

Table 3. Visitor-level predictive performance (all sequences)

 Early Prediction Visitor-Level Prediction

Encoding Classifier SCP CR AUC Kappa Accuracy F1 Score

Interaction-Only Unimodal 75.95% 34.18% 0.574 0.085 0.392 0.355
Multimodal Multimodal 64.58% 48.10% 0.660 0.278 0.519 0.511
Target-Only Multimodal 73.79% 34.18% 0.499 0.015 0.342 0.338
Domain Adaptation Multimodal 67.42% 43.04% 0.585 0.203 0.468 0.468

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 101

Based on the confusion matrix for the target-only classifier (i.e., the
multimodal classifier evaluated on the interaction data without
domain adaptation), the classifier appears to primarily predict high
dwell times for a majority of visitors. The model also appears to
frequently predict visitors with medium dwell time as having low
dwell time. As this particular model performed similarly to a
random chance classifier, it is likely that the interaction-only data
representation was not easily identifiable to the classifier, leading
it to primarily predict a single class and not classify the lower two
groups accurately. The classifier that was trained and evaluated on
interaction-only encodings performed slightly better and appears to
become more accurate in cases of lower dwell time in visitors.
However, it is notable that the model still does not appear to
accurately predict instances of medium dwell time. This indicates
that the interaction-based modality contains salient features
indicative of noticeably low or high engagement but interactions
from visitors with medium dwell time are not easily distinguishable
to the model. Low dwell time may be characterized by a relatively
low number of taps or interactions in the virtual environment, while
high dwell time may be indicated by greater or more frequent
tapping or interactions with the virtual environment. Additionally,
visitors that have a higher dwell time are more likely to beat the
game or read a higher number of information dialogs. However,
this information may not be predictive enough with the ternary
split, causing the interaction model to overfit to the two extremes.
The multimodal classifier that processes the modality-invariant
data representations performs noticeably better for visitors with
medium dwell time and continues to maintain fairly accurate
performance on visitors with high dwell time. This may indicate
that facial expression captures physical cues that allow the model
to more easily distinguish between the medium group and the other
groups, and the domain adaptation allows these features to be
integrated into the interaction-only representations. By
implementing this approach across the two modalities, it appears
that the multimodal model retains its robustness to visitors with a
medium dwell time in particular, while being able to achieve this
performance using only features from the interaction data. This is
significant because it appears that the interaction-only model does
not appear to induce high performance on the medium dwell time
visitors, so it remains important to utilize the multimodal data
representations obtained through domain adaptation as pre-training
for accurately predicting the visitor dwell time.

8. CONCLUSION
Modeling visitor engagement is an important task in museum-based
learning. However, visitor engagement modeling presents
significant challenges, as visitors’ patterns of engagement with
museum exhibits can vary widely. Multimodal frameworks show
promise for the prediction of visitor engagement in museums
because they capture information about visitor behavior that cannot

otherwise be captured through interaction trace logs or similar
unimodal data channels. Although multimodal sensor systems give
rise to concerns about privacy, feasibility, and intrusiveness, the
complete removal of sensor data from visitor engagement models
may result in diminished predictive performance. To address this
issue, we have introduced an adversarial domain adaptation
approach to generating modality-invariant representations of
interaction data and facial expression data from visitor interactions
with the FUTURE WORLDS museum exhibit. The domain adaptation
approach enables multimodal models to be induced in a pre-
training phase while being deployed and evaluated with modality-
invariant representations obtained using interaction-based data
exclusively. We investigate the models’ ability to predict visitor
dwell time during the early stages of a visitor’s interaction with the
museum exhibit. Results indicate that the domain adaptation
approach to modeling visitor engagement achieves higher
performance than a visitor modeling approach using only a single
modality. The domain adaptation approach also outperforms the
unimodal baseline during early sequences of a visitor’s interaction
trajectory as well as across all sequences while demonstrating
competitive performance compared to classifiers utilizing
multimodal data.
There are several promising directions for future work. Alternative
techniques for modeling visitor engagement should be evaluated,
including sequential models like long short-term memory (LSTM)
networks, to improve models’ predictive accuracy and early
prediction. Alternative approaches to the adversarial learning
component of this framework include the use of generative models
such as GANs or variational autoencoders. Attaining reliable
training convergence continues to be a challenging problem within
adversarial learning and investigating solutions to this issue may
enhance the benefits of domain adaptation. The generalizability of
the domain adaptation framework should be evaluated using larger
and more diverse visitor populations on different exhibits and
museum settings. Additionally, the domain adaptation framework
should be evaluated using additional combinations of modalities
(e.g., posture, gaze, speech), and extended to include three or more
modalities simultaneously. Finally, this framework should be
evaluated at run-time by integrating visitor engagement models into
a museum exhibit to enable visitor-adaptive interventions to enrich
visitor engagement and enhance museum-based learning
experiences.

9. ACKNOWLEDGMENTS
The authors would like to thank the staff and visitors of the North
Carolina Museum of Natural Sciences. This research was supported
by the National Science Foundation under Grant DRL-1713545.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

Figure 6. Confusion matrices for classifiers using target-only, interaction-only, and domain adaptation-based representations.

Target-Only Interaction-Only Domain Adaptation

Predicted labelPredicted labelPredicted label

102 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

10. REFERENCES
[1] Aslan, S., Alyuz, N., Tanriover, C., Mete, S., Okur, E.,

D’Mello, S. and Arslan Esme, A. 2019. Investigating the
impact of a real-time, multimodal student engagement
analytics technology in authentic classrooms. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing
Systems. 1–12.

[2] Baltrušaitis, T., Ahuja, C. and Morency, L. 2019. Multimodal
machine learning: A survey and taxonomy. IEEE
Transactions on Pattern Analysis and Machine Intelligence.
41, 2 (Feb. 2019), 423–443.

[3] Baltrusaitis, T., Zadeh, A., Lim, Y.C. and Morency, L. 2018.
OpenFace 2.0: Facial behavior analysis toolkit. In
Proceedings of the 13th IEEE International Conference on
Automatic Face Gesture Recognition. 59–66.

[4] Blaylock, N. and Allen, J. 2003. Corpus-based, statistical goal
recognition. In Proceedings of the 18th International Joint
Conference on Artificial Intelligence. 1303–1308.

[5] Block, F., Hammerman, J., Horn, M., Spiegel, A.,
Christiansen, J., Phillips, B., Diamond, J., Evans, E.M. and
Shen, C. 2015. Fluid grouping: Quantifying group
engagement around interactive tabletop exhibits in the wild.
In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems. 867–876.

[6] Bosch, N., D’Mello, S., Baker, R., Ocumpaugh, J. and Shute,
V. 2015. Temporal generalizability of face-based affect
detection in noisy classroom environments. In Proceedings of
the International Conference on Artificial Intelligence in
Education. 44–53.

[7] Bosch, N., D’Mello, S., Baker, R., Ocumpaugh, J., Shute, V.,
Ventura, M. and Zhao, W. 2016. Detecting student emotions
in computer-enabled classrooms. In Proceedings of the
International Joint Conference on Artificial Intelligence.
4125–4129.

[8] Chan, M., Ochoa, X. and Clarke, D. 2020. Multimodal
Learning Analytics in a Laboratory Classroom. Springer
International Publishing.

[9] Chang, C., Zhang, C., Chen, L. and Liu, Y. 2018. An
ensemble model using face and body tracking for engagement
detection. In Proceedings of the 20th ACM International
Conference on Multimodal Interaction. 616–622.

[10] Chawla, N., Bowyer, K., Hall, L. and Kegelmeyer, W. 2002.
SMOTE: Synthetic minority over-sampling technique.
Journal of Artificial Intelligence Research. 16, 321–357.

[11] Chung, J., Cannady, M., Schunn, C., Dorph, R. and Bathgate,
M. 2016. Measures Technical Brief: Fascination in Science.

[12] Diamond, J., Horn, M. and Uttal, D. 2016. Practical
Evaluation Guide: Tools for Museums and Other Informal
Educational Settings. Rowman & Littlefield.

[13] Dim, E. and Kuflik, T. 2014. Automatic detection of social
behavior of museum visitor pairs. ACM Transactions on
Interactive Intelligent Systems. 4, 4 (Nov. 2014), 17:1-17:30.

[14] D’Mello, S. and Kory, J. 2012. Consistent but modest: A
meta-analysis on unimodal and multimodal affect detection
accuracies from 30 studies. In Proceedings of the 14th ACM
International Conference on Multimodal Interaction. 31–38.

[15] D’Mello, S. and Kory, J. 2015. A review and meta-analysis of
multimodal affect detection systems. ACM Computing
Surveys. 47, 3, 43:1-43:36.

[16] Emerson, A., Henderson, N., Rowe, J., Min, W., Lee, S.,
Minogue, J. and Lester, J. 2020. Early prediction of visitor
engagement in science museums with multimodal learning
analytics. In Proceedings of the 2020 International
Conference on Multimodal Interaction. 107–116.

[17] Ganin, Y. and Lempitsky, V. 2015. Unsupervised domain
adaptation by backpropagation. In Proceedings of the
International Conference on Machine Learning. 1180–1189.

[18] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A. and Bengio, Y. 2014.
Generative adversarial networks. arXiv:1406.2661. (Jun.
2014).

[19] Grafsgaard, J., Wiggins, J., Vail, A., Boyer, K., Wiebe, E. and
Lester, J. 2014. The additive value of multimodal features for
predicting engagement, frustration, and learning during
tutoring. In Proceedings of the 16th International Conference
on Multimodal Interaction. 42–49.

[20] Harrington, M. 2020. Connecting user experience to learning
in an evaluation of an immersive, interactive, multimodal
augmented reality virtual diorama in a natural history museum
& the importance of the story. In Proceedings of the 6th
International Conference of the Immersive Learning
Research Network. 70–78.

[21] Hein, G. 2009. Learning science in informal environments:
People, places, and pursuits. Museums & Social Issues. 4, 1
(2009), 113–124.

[22] Henderson, N., Rowe, J., Paquette, L., Baker, R. and Lester,
J. 2020. Improving affect detection in game-based learning
with multimodal data fusion. In Proceedings of the
International Conference on Artificial Intelligence in
Education. 228–239.

[23] Knutson, K., Lyon, M., Crowley, K. and Giarratani, L. 2016.
Flexible interventions to increase family engagement at
natural history museum dioramas. Curator: The Museum
Journal. 59, 4 (2016), 339–352.

[24] Kuflik, T., Boger, Z. and Zancanaro, M. 2012. Analysis and
prediction of museum visitors’ behavioral pattern types. In
Ubiquitous Display Environments. A. Krüger and T. Kuflik,
Eds. Springer. 161–176.

[25] Lane, H., Noren, D., Auerbach, D., Birch, M. and Swartout,
W. 2011. Intelligent tutoring goes to the museum in the big
city: A pedagogical agent for informal science education. In
Proceedings of the International Conference on Artificial
Intelligence in Education. 155–162.

[26] Li, H., Ding, W., Yang, S. and Liu, Z. 2020. Identifying at-
risk K-12 Students in multimodal online environments: A
machine learning approach. In Proceedings of the 13th
International Conference on Educational Data Mining. 137–
147.

[27] Liu, M.-Y. and Tuzel, O. 2016. Coupled generative
adversarial networks. arXiv:1606.07536. (Sep. 2016).

[28] Long, D., McKlin, T., Weisling, A., Martin, W., Guthrie, H.
and Magerko, B. 2019. Trajectories of physical engagement
and expression in a co-creative museum installation. In
Proceedings of the 2019 Conference on Creativity and
Cognition. 246–257.

[29] Mao, Y., Zhi, R., Khoshnevisan, F., Price, T., Barnes, T., and
Chi, M. 2019. One minute is enough: Early prediction of
student success and event-level difficulty during novice
programming tasks. In Proceedings of the 12th International
Conference on Educational Data Mining. 119-128.

[30] Min, W., Baikadi, A., Mott, B., Rowe, J., Liu, B., Ha, E.Y.
and Lester, J. 2016. A generalized multidimensional
evaluation framework for player goal recognition. In
Proceedings of the 12th AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment. 197-203.

[31] Min, W., Mott, B., Rowe, J., Taylor, R., Wiebe, E., Boyer, K.
and Lester, J. 2017. Multimodal goal recognition in open-
world digital games. In Proceedings of the AAAI Conference

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 103

on Artificial Intelligence and Interactive Digital
Entertainment. 13, 1 (Sep. 2017).

[32] Müller, P.M., Amin, S., Verma, P., Andriluka, M. and
Bulling, A. 2015. Emotion recognition from embedded bodily
expressions and speech during dyadic interactions. In
Proceedings of the 2015 International Conference on
Affective Computing and Intelligent Interaction. 663–669.

[33] Munro, J. and Damen, D. 2020. Multi-modal domain
adaptation for fine-grained action recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition. 122–132.

[34] Murez, Z., Kolouri, S., Kriegman, D., Ramamoorthi, R. and
Kim, K. 2018. Image to image translation for domain
adaptation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 4500–4509.

[35] Phandi, P., Chai, K. and Ng, H. 2015. Flexible domain
adaptation for automated essay scoring using correlated linear
regression. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing. 431–
439.

[36] Qi, F., Yang, X. and Xu, C. 2018. A unified framework for
multimodal domain adaptation. In Proceedings of the 26th
ACM International Conference on Multimedia. 429–437.

[37] Rowe, J., Lobene, E., Mott, B. and Lester, J. 2017. Play in the
museum: Design and development of a game-based learning
exhibit for informal science education. International Journal
of Gaming and Computer-Mediated Simulations. 9, 3 (2017),
96–113.

[38] Sawyer, R., Smith, A., Rowe, J., Azevedo, R. and Lester, J.
2017. Enhancing student models in game-based learning with
facial expression recognition. In Proceedings of the 25th
Conference on User Modeling, Adaptation and
Personalization. 192–201.

[39] Sun, B. and Saenko, K. 2016. Deep CORAL: Correlation
alignment for deep domain adaptation. In Proceedings of the
ICCV Workshop on Transferring and Adapting Source
Knowledge in Computer Vision. 443–450.

[40] Tiam-Lee, T.J. and Sumi, K. 2018. Adaptive feedback based
on student emotion in a system for programming practice. In
Proceedings of the International Conference on Intelligent
Tutoring Systems. 243–255.

[41] Tzeng, E., Hoffman, J., Darrell, T. and Saenko, K. 2015.
Simultaneous deep transfer across domains and tasks. In
Proceedings of the IEEE International Conference on
Computer Vision. 4068–4076.

[42] Tzeng, E., Hoffman, J., Saenko, K. and Darrell, T. 2017.
Adversarial discriminative domain adaptation. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 7167–7176.

[43] Tzeng, E., Hoffman, J., Zhang, N., Saenko, K. and Darrell, T.
2014. Deep domain confusion: Maximizing for domain
invariance. arXiv:1412.3474. (Dec. 2014).

[44] Vail, A., Grafsgaard, J., Boyer, K., Wiebe, E. and Lester, J.
2016. Predicting learning from student affective response to
tutor questions. In Proceedings of the International
Conference on Intelligent Tutoring Systems. 154–164.

[45] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. and
Manzagol, P. 2010. Stacked denoising autoencoders:
Learning useful representations in a deep network with a local
denoising criterion. Journal of Machine Learning Research.
11, 12 (December 2010), 3371-3408.

[46] Whitehill, J., Serpell, Z., Lin, Y., Foster, A. and Movellan, J.
2014. The faces of engagement: Automatic recognition of
student engagement from facial expressions. IEEE
Transactions on Affective Computing. 5, 1 (Jan. 2014), 86–98.

[47] Wiggins, J., Kulkarni, M., Min, W., Mott, B., Boyer, K.,
Wiebe, E. and Lester, J. 2018. Affect-based early prediction
of player mental demand and engagement for educational
games. In Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment. 243-249.

[48] Wu, S., Du, Z., Li, W., Huang, D. and Wang, Y. 2019.
Continuous emotion recognition in videos by fusing facial
expression, head pose and eye gaze. In Proceedings of the
International Conference on Multimodal Interaction. 40–48.

[49] Yang, J., Wang, K., Peng, X. and Qiao, Y. 2018. Deep
recurrent multi-instance learning with spatio-temporal
features for engagement intensity prediction. In Proceedings
of the 20th ACM International Conference on Multimodal
Interaction. 594–598.

[50] Zeng, Z., Chaturvedi, S., Bhat, S. and Roth, D. 2019. DiAd:
Domain adaptation for learning at scale. In Proceedings of the
9th International Conference on Learning Analytics &
Knowledge. 185–194.

104 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Behavioral Testing of Deep Neural Network Knowledge
Tracing Models

Minsam Kim
Riiid

Seoul, South Korea
minsam.kim@riiid.co

Yugeun Shim
Riiid

Seoul, South Korea
yugeun.shim@riiid.co

Seewoo Lee
Riiid

Seoul, South Korea
seewoo.lee@riiid.co

Hyunbin Loh
Riiid

Seoul, South Korea
hb.loh@riiid.co

Juneyoung Park
Riiid

Seoul, South Korea
juneyoung.park@riiid.co

ABSTRACT
Knowledge Tracing (KT) is a task to model students’ knowl-
edge based on their coursework interactions within an Intel-
ligent Tutoring System (ITS). Recently, Deep Neural Net-
works (DNN) showed superb performance over classical meth-
ods on multiple dataset benchmarks. While most Deep
Learning based Knowledge Tracing (DLKT) models are op-
timized for general objective metrics such as accuracy or
AUC on benchmark data, proper deployment of the service
requires additional qualities. Moreover, the black-box na-
ture of DNN models makes them particularly difficult to
diagnose or improve when unexpected behaviors are encoun-
tered. In this context, we adopt the idea of black-box test-
ing / behavioral testing from Software Engineering and (1)
define desirable KT model behaviors to (2) propose a KT
model analysis framework to diagnose the model’s behav-
ioral quality. We test-run the framework using three state-
of-the-art DLKT models on seven datasets based on the
proposed framework. The result highlights the impact of
dataset size and model architecture upon the model’s be-
havioral quality. The assessment results from the proposed
framework can be used as an auxiliary measure of the model
performance by itself, but can also be utilized in model im-
provements via data-augmentation, architecture design, and
loss formulation.

Keywords
Knowledge Tracing, Deep Learning, Behavioral Testing, Model
Validation

1. INTRODUCTION
Assessment is a central task in Education, as it is involved in
meta-cognition [17], tracing the skill trajectory, recommen-
dation of contents [36], adjustment of tutoring strategy [14],

and grading [3, 24, 33, 35]. With the advent of online edu-
cational platforms, there is an increasing demand in build-
ing assessment models using the interaction history data of
users. One approach to track the skill of users is Knowledge
Tracing (KT), which is the task to model students knowledge
based on their coursework interactions within an Intelligent
Tutoring System (ITS) [7].

To tackle the KT problem, the recent EdNet Challenge in
Kaggle has gathered a total of 3,406 teams, 4,412 partici-
pants, to submit 64,678 models. Participants trained KT
models on the EdNet KT dataset [6], and the models were
evaluated by the Area Under the Receiver Operating Char-
acteristic Curve (AUC). The AUC of the top 5 models were
0.820, 0.818, 0.818, 0.817, 0.817, which are very similar, and
all models were based on the Transformer Neural Network
structure [38]. While neural network structures are usu-
ally designed to appropriate human intuitions, most models
lack interpretability compared to classical models. There-
fore, when evaluation results for black-box models do not
vary significantly, it becomes unclear how to choose the best
model for deployment. Also, while small quantitative differ-
ence in the objective function or model AUC might not hurt
the users’ perception of the model reliability, few adversar-
ial decisions of the black-box model can dissuade the user’s
faith. [34] also note that the performances of black-box mod-
els that are trained for general metrics such as classification
accuracy or AUC(Area Under receiving operator character-
istic Curve) can be overestimated.

As a result, Deep Learning based Knowledge Tracing (DLKT)
models are not frequently implemented in the education
community due to potential risks arising from the lack of
model interpretability. In this study, we propose behavioral
testing as an approach to alleviate this problem. The con-
tribution of this work are summarized as follows:

• We propose a novel testing framework to validate DLKT
models using a test on behaviors. The idea is to define
consistent and convincing behaviors to be desired on
DLKT models.

• As an example of applying the framework, we bench-
mark three state-of-the-art DLKT models from the

Minsam Kim, Yugeun Shim, Seewoo Lee, Hyunbin Loh and Juneyoung
Park “Behavioral Testing of Deep Neural Network Knowledge Tracing
Models”. 2021. In: Proceedings of The 14th International Conference on
Educational Data Mining (EDM21). International Educational Data Mining
Society, 105-117. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 105

proposed validation framework. Positive results high-
light the reliability of DLKT models and encourages
the model’s adoption, while negative results point out
the limitations of DLKT models and show spaces for
improvement.

• We introduce methods to utilize evaluations from the
framework to design and improve DLKT models.

2. RELATED WORKS
2.1 Knowledge Tracing
Knowledge Tracing (KT) is the task to predict the expected
correctness of an interaction of a student to a question by
modeling the student’s knowledge from past interactions [7].
In this study, we formulate the KT task as follows: the inter-
action sequence of a user is denoted asXu = {xu1 , xu2 , · · · , xuT }
where u ∈ U is the user index. To simplify the notations, we
omit the user index u unless specified. Each interaction xt =
(qit , ct) at step t is defined by the pair of question qit ∈ Q
and correctness ct ∈ {0, 1} where Q = {q1, q2, · · · , qn} de-
notes the set of all questions and it denotes the question
index of step t. A KT model predicts the correctness proba-
bility P (ct = 1|x1, x2, · · · , xt−1, qit) of an unseen interaction
Xt at step t, where Xt = x1, x2, · · · , xt is the first t interac-
tions of an interaction sequence X.

Notation Description
u ∈ U User index
X Interaction sequence of a single user(= Xu)
xt Interaction at time step t
qj ∈ Q Question
it Question index at time step t
ct Correctness at time step t for question qit
c
(qj)
t Correctness at time step t for question qj
Xt Interaction sequence of X up to time step t

Many KT models utilize domain specific tags such as skill
components of questions [27, 8, 31, 43, 42], difficulty of
questions [32, 10, 37], or knowledge graphs [4]. Item Re-
sponse Theory (IRT) [32] models the correctness probability
of a student responding to a question using custom designed
models, and fits the model parameters using maximum likeli-
hood. For instance, the 4-PL model predicts the correctness
probability of a user with skill level θ solving item i by

pi(θ) = ci +
di − ci

1 + e−ai(θ−bi)
,

where ai, bi, ci, di are parameters that model discrimination,
difficulty, pseudo-guessing, and slip of item i [23].

Another prominent approach is Bayesian Knowledge Tracing
(BKT) [27, 42], which uses Markov process to model diffi-
culty of the question items and learning capability of the
students. Another well known approach is Deep Knowledge
Tracing (DKT) [31], which is the first Deep Learning based
KT model (DLKT). Since the introduction of DKT, many
researchers have worked on different network structures to
capture the complex aspects of the knowledge state. There
are a variety of models based on different structures such as
DKVMN [43], DKT+ [41], SKVMN [1], SAKT [30], GKT

[28], EKT [21], KTM [39], DHKT [40], SAINT [5], AKT
[13], and PEBG [22].

While there exist a variety of different KT models, [12] per-
formed a major experiment on the accuracy of three groups
of KT models (Markov process, Logistic Regression, Deep
Learning) on nine real-world datasets. While deep learning
models do show better AUC and RMSE on some datasets,
other linear models including the authors’ proposed BestLR
approach yielded comparable or superior performances on
most datasets, which also provided better model interpretabil-
ity as well.

2.2 Behavioral Testing in Other Applications
To alleviate unexpected behaviors of black-box models, [2]
introduces behavioral testing (also known as black-box test-
ing) to test different capabilities of a system in the software
engineering perspective. Many studies work on effectively
designing test cases [18, 25, 26]. [29] gives a detailed re-
view on the behavioral testing method applied in various
software testing domains. In Natural Language Processing,
[34] apply the behavioral testing framework to validate the
behaviors of general NLP models. They introduce Check-
List, which is a task agnostic methodology for testing NLP
models. CheckList is a list of general linguistic capabilities
and test type baselines for NLP tasks. It is also a software
tool to generate test cases for NLP models.

2.3 Behavioral Studies in Knowledge Tracing
The expected behaviors of the KT models have been dis-
cussed in some studies, which point out the adversarial be-
haviors of KT models and propose new models to alleviate
the problem. DKT+ [41] raises two problems of the Deep
Knowledge Tracing (DKT) model [31], which are increas-
ing correctness probabilities from false responses, and wavy
prediction transition by time. However, these behaviors can
naturally occur from the educational effects embedded in the
interaction, which we discuss in detail in Section 3.1. The
authors add three regularization terms in DKT+ to enhance
the consistency of the predictions of DKT, and introduce ex-
tra performance measures.

The authors of [19] lists some desirable behaviors based on
the monotonicity of the KT models to improve the general
ability of the models. Then, they perform three types of
novel data augmentation techniques(replacement, insertion,
and deletion) and apply them to the training of KT models.

As examined in these relevant studies, the adversarial be-
haviors and low interpretability of DL models hinders the
AIEd society to adopt Deep Learning based KT (DLKT)
models and sustain on adopting interpretable models based
on BKT, IRT, or Cognitive Diagnosis Models [9]. In this
study, we provide a validation framework of DLKT models
and conduct an extensive set of experiments on the desired
behaviors of DLKT models. Good results highlight the relia-
bility of DLKT models and encourages the model’s adoption
on most datsets. On the other hand, bad results point out
the limitations of DLKT models on some datasets and show
spaces for improvement.

106 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

3. BEHAVIORAL TESTING FOR
KNOWLEDGE TRACING

We propose a black-box behavioral testing framework for
knowledge tracing task. First we define the knowledge state
(KS), and then elaborate on desirable behaviors of KT mod-
els’ KS representation. Finally, in Subsection 3.2, we intro-
duce specific experiment setups to assess whether DLKT
models satisfy those behaviors.

We define the knowledge state to be a vector representa-
tion of a user’s correctness probability on a set of questions
Q′ at a specific time point. Given the first t interactions
Xt = x1, x2, · · · , xt of a user, we define the user’s knowledge
state as:

KSt =
[
P (c

(qj)
t = 1|Xt−1, qj)

]
qj∈Q′

(1)

c
(qj)
t represents the Bernoulli indicator for the event when

the user answers correctly to question qj at time step t,
as defined in Table in Section 2.1, which is updated along
the provision of the user interaction sequence. Note that a
KS is the collection of prediction values of questions, which
either is responded or not. We describe the desired aspects
of DLKT models in the following section.

3.1 Expected Behaviors of
Traced Knowledge State

First we introduce two properties on the change ∆KS of
the knowledge state KS with respect to an atomic change
∆X of the interaction sequence X, which is an insertion or
a deletion of single interaction record.

First, monotonicity insists that the model’s knowledge state
should be updated to a more knowledgeable state when the
student adds another correctly answered question (positive
interaction) or when an interaction record with incorrect
response (negative interaction) of the student is deleted. If
the ∆ is applied in the middle of the interaction record, all
changes after the perturbation should hold the property as
well. Second, robustness insists that a little perturbation in
the interaction history should not yield a dramatic change
in future knowledge states. The details of the two properties
are introduced below.

• Monotonicity: If ∆X is a correctly responded inter-
action (qitp , 1) at perturbation time tp, then we can

track the relation of P (c
(qj)
t = 1|X ∪ ∆X, qj) and

P (c
(qj)
t = 1|X, qj) depending on how qj and ∆X are

correlated. In many cases, a positive correlation in
correctness probabilities is desired due to the relation
of knowledge states:

P (c
(qj)
t = 1|X ∪∆X, qj) > P (c

(qj)
t = 1|X, qj)

for t > tp and qj ∈ Q.

However, there can also be negatively correlated ques-
tions which could be consequences of factors such as
limited learning resource. For instance, a college stu-
dent might sacrifice her studying time on one sub-
ject over another when both subjects’ examinations
are scheduled too closely with each other. This type

of circumstance might cause the model to fit a non-
monotonic relationship between the two fundamentally
unrelated subjects. In most ITS’s, however, the target
study domain is usually restricted to a single subject,
or a set of knowledge components where the student’s
comprehension on the components is usually positively
correlated. Another case is when a negative response
increases the correctness probability of a problem as
described as an adversarial behavior in [41]. However,
the educational effect of consuming a question can give
positive feedback on the knowledge state even if the in-
teraction response was wrong. Therefore, we assume
the described monotonic behavior in general knowl-
edge tracing environments while simultaneously keep-
ing track of the opposite case in the experiments of
Section 4.

• Robustness: For any black-box system, it is gener-
ally desirable that insignificant change in the system’s
input leads to limited change in the output. For a
knowledge tracing model in an ITS, the input refers to
the student’s interaction record and the output refers
to the model prediction on correctness probability for
an encountered question or a set of questions. There-
fore, we formulate the robustness of knowledge tracing
model as below in a general sense, adopting the ∆X
previously defined:

|P (c
(qj)
t = 1|X ∪∆X, qj)− P (c

(qj)
t = 1|X, qj)| < εt

for some εt, a single interaction ∆X, t > tp, and
qj ∈ Q. If we impose the inequality to always hold
on t = tp + 1 and fixed ε1, then it is equivalent to im-
posing continuity on the knowledge state in terms of
time-steps. We treat continuity as a specific case of ro-
bustness and introduce customized test for continuity
separately from the test for robustness.

However, consider a case when qj and qitp in ∆X assess
similar concepts, or when the educational effect from
the interaction with one question affects the student’s
correctness probability on the other question. Then an
insertion or deletion of one question is prone to have a
significant impact upon the predicted correctness prob-
ability value of the other for t > tp. Therefore, the
defined robustness / continuity need not be univer-
sally desirable for all pairs of questions. The impact of
this property would eventually depend on the degree
of dependency among the questions. Therefore, in the
experiments, while assuming robustness for most ques-
tion pairs, we also carefully track where some questions
affect the prediction values of other questions in a no-
table amount.

Next we discuss what constitutes an expected value of knowl-
edge state. Testing whether the knowledge state has accu-
rately captured the user’s interaction history is in line with
the existing quantitative metrics (AUC, ACC) adopted in
KT literature. However, the existing test methods focus
only on a single actual question data provided per each time
step whereas we propose to assess knowledge tracing model
via its knowledge state on a virtual question set in order
to provide a more holistic assessment via knowledge state
representation.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 107

Although tracing knowledge state on a set of questions would
provide a more comprehensive picture of how the user’s
knowledge is traced, it lacks actual label of correctness on
unseen questions at each time step, as discussed in Section
3.1. Therefore, we describe below novel measures to assess
correctness of knowledge state under a few purposefully de-
signed circumstances.

• Approximate Label of User-Independent Initial Knowl-
edge State: At first prediction step, we approximate
correctness label for all questions via their ’global dif-
ficulty’. The initial knowledge state for all users should
represent the model’s prior belief of question difficulty
before encountering any user-specific interaction record
data. It is reasonable to assess the quality of this value
in terms of correlation of model’s prediction on each
question and the question’s global difficulty. However,
this is an approximation at best since the question’s
difficulty might not be accurately captured by simple
average over its occurrences. If the actual interaction
data generated from the ITS provides a very difficult
question only after user’s knowledge is significantly ac-
cumulated, simple average of question correctness la-
bels would not be representative of the question’s in-
herent difficulty. Model’s prediction would be high.

• Ideal Value of Knowledge State after Converged In-
teraction Data: We generate obvious edge-case test
cases where user’s knowledge state on a set of ques-
tion has converged to a value. We create this virtual
dataset by simply repeating an identical interaction
record on each question consecutively. The model’s
prediction value for the question in the repeated in-
teraction should converge to the repeatedly provided
label value.

• Approximate Label of Knowledge State in General:
It’s also possible to approximate a pseudo-label for
unseen questions using rolling/expanding averages or
IRT-like algorithms which demonstrate more stable
and monotonic behavior by design. Although we con-
jecture such training methodology of DLKT models us-
ing pseudo-labels might provide regularization effect,
we do not include this case in the scope of this work.

Table 1: Behavioral Test Summary

Behavior Analysis Method

Monotonicity Perturbation Test: Percentage of interac-
tion samples of which model prediction
changed in expected direction.

Robustness Perturbation Test: Degree of impact from
perturbation across time-steps.

Continuity Continuity Test: Avgerage and maximum
change in knowledge state score per step
and throughout entire sequence.

Initial Value Initial Value Test: Correlation between
question correctness rate and initial
knowledge state.

Convergence Convergence Test: Convergence speed as
in model AUC and average model output
at different time-steps.

3.2 Behavioral Test Setups
Below we describe four behavioral testing setups for DLKT
models. First, perturbation tests aim to test model’s mono-
tonicity and robustness given an atomic perturbation to the
original interaction sequence data. Second, continuity test
aims to check whether model’s knowledge state represen-
tation is continuous along the interaction sequence. Third,
initial knowledge state test checks whether the initial knowl-
edge state reflects each question’s corresponding difficulty
measure. Fourth, convergence test checks whether the knowl-
edge state converges to the expected value and how fast it
converges. Following subsections elaborate each of the test
setup in further detail. Table 1 provides summary of the
tests.

3.2.1 Perturbation Tests
We examine monotonicity and robustness of the model by
perturbation tests. We experiment three types of pertur-
bations: insertion, deletion, and flip. For each original in-
teraction sequence, we determine tp, which is the index of
interaction to be perturbed. For the insertion case, we add
a new interaction between xtp−1 and xtp . For the deletion
case, we remove the interaction xtp . For the flip case, we
flip the correctness of xtp from 1 to 0 and from 1 to 0.

In order to check monotonicity, we assess whether the model’s
predicted correctness probability in the following interaction
sequence X[tp:] changes towards the expected direction. For
insertion / deletion / flip of an interaction to which user re-
sponded correctly, we examine whether the following future
correctness probability P (ct′+1 = 1|Xt′), ∀t′ > tp increases
/ decreases / decreases, respectively. In the experiments, we
fix the perturbation point to be located halfway in the user’s
original interaction sequence, then measure the proportion
of interactions which the model’s predicted correctness prob-
ability changes towards the expected direction.

To assess the model’s robustness, we visualize how the de-
gree of impact from perturbation changes along the time
steps from tp. We expect the degree of impact from per-
turbation upon the model’s prediction to decay gradually as
more interactions are fed into the model after the perturba-
tion point tp.

3.2.2 Continuity Test
We test whether the knowledge state is continuous, in the
manner described in the previous section 3.1. For every
time-step, we provide the model with not only the origi-
nal interaction at the corresponding time-step, but also a
set of questions Q′ simultaneously to construct knowledge
state KSt at the time-step. Although we don’t have actual
correctness label for those virtual interactions, we only in-
quire how the knowledge state or the model prediction on
Q′ evolves along the time-steps.

In the experiments, we approximate a score on the user’s
knowledge state by averaging the model-predicted correct-
ness probability over the sample set of questions Q′ to re-
port: (1) average and maximum student score change per
single time-step and (2) average student score change and
range across 100 time-steps.

3.2.3 Initial Knowledge State Test

108 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 2: Dataset Statistics
Dataset Users Items Skills #Intr. %Crct.

ASSIST15 14228 100 100 656K 73
ASSIST17 1708 3162 411 935K 37
STATICS 282 1223 98 189K 77
Spanish 182 409 221 579K 77
EdNet-small 5000 13156 118 518K 65
EdNet-med 100000 13518 118 11M 64
EdNet 605763 13528 118 138M 66

We assess the quality of the prior knowledge state embedded
by the model by the initial knowledge state test. Without
any user-specific record, the prior knowledge state embedded
in the model should accurately reflect the average difficulty
of the question to all users. Thus, we check Spearman rank
correlation and Pearson correlation between the question’s
average difficulty and the model-predicted prior belief for
each question.

In detail, a trained DLKT model M ’s initial knowledge state
for a question qj can be represented as PM (c = 1|·, qj). We
compare this with the question correctness rate over the
entire dataset as in Eq 2 which is equivalent to the number
of correctly responded qj-interactions over the number of
occurrences of qj based on all user data.

gcqj =

∑
u∈U |{x

(u)
t |qit = qj , ct = 1}|∑

u∈U |{x
(u)
t |qit = qj}|

(2)

Consequently, we measure:

Corr
([
PM (c = 1|·, qj)

]
qj∈Q

,
[
gcqj

]
qj∈Q

)
(3)

This initial knowledge state test pinpoints on whether the
learned question embedding in the DLKT model alone has
captured any information about the corresponding ques-
tion’s difficulty. Moreover, we emphasize the importance
of the initial knowledge state since the state assumed by the
model would likely affect the user’s first impression on the
system to make decisions.

3.2.4 Convergence Test
In convergence test, we assess whether the model’s knowl-
edge state value converges to a target value in a desired
manner. We generate simple virtual interaction sequence
data by repeating an identical interaction for 50 time-steps
for each question for both correctness cases. Therefore, the
virtual dataset would consist of virtual user interaction se-
quences of size twice of the number of questions.

In the experiments, we report the model’s standard AUC
metric at time-steps 5, 10, and 50. We expect significantly
high figures as the inquired interaction sequence is extremely
simple. We also visualize how the average model prediction
value across the questions evolves throughout the 50 time-
steps for each of the correctness case. We expect the values
to quickly converge to 1 / 0 for interaction sequences of
which correctness label is all correct / incorrect, respectively.

4. EXPERIMENTS
In this section, we benchmark three Deep Learning based
Knowledge Tracing models DKT, SAKT, and SAINT on the
proposed behavioral tests. First, we train optimized mod-
els for each architecture-dataset pair by searching hyper-
parameters on the train and validation data split. Second,
we report the classification accuracy and the AUC met-
ric, which are commonly used for model assessments in the
Knowledge Tracing literature. Third, we present the pro-
posed behavioral test results of model instances on well-
known datasets for Knowledge Tracing.

4.1 Datasets
We describe the datasets used in our experiments. All datasets
are open to the public.

ASSISTments[11] is a dataset containing student interac-
tions from an online tutoring system for solving Massachusetts
Comprehensive Assessment System (MCAS) 8th Math test
questions. We use the datasets ASSISTments 2015 (Assist-
ments15) and ASSISTments Challenge 2017 (Assistments17).

STATICS is a dataset containing college student interactions
on a one-semester Statics course. This dataset is available
in the PSLC DataShop web site [16].

Spanish[20] is a dataset containing middle-school student in-
teraction data for Spanish exercises.

EdNet[6] is the largest public benchmark education dataset
containing user interaction data of an online tutoring sys-
tem, for preparing TOEIC (Test of English for Interna-
tional Communication®). For ablation studies on the size
of the dataset, we randomly choose 100,000 users for EdNet-
medium, and 5,000 users for EdNet-small.

Table 3: Model Hyper-parameters
Model Parameter Tuning Details

Common Adam learning rate 0.001, 0.003, 0.01
Dropout rate 0, 0.25, 0.5
Embedding dimension 64, 128, 256
Maximum Seq.Length 100, 200, 400

DKT # Recurrent Layers 1, 2, 4
SAKT # Attention Layers 1, 2, 4
SAINT Warm-up Steps 200, 400, 4000

Attention Head 1,4,8

4.2 Models and Algorithms
We perform hyper-parameter tuning on the training of mod-
els. For each configuration of hyper-parameters, we choose
the model weights with the best validation AUC. In the
training step, an early-stopping policy is applied with pa-
tience 30, which means that we stop the training process
and save the best weights if there is no AUC improvement
in the recent 30 validation steps. Among the best weights
for each configuration, we choose the weight with the best
validation AUC for each dataset, and evaluate the weights
with an independent test set for test metrics.

4.2.1 Training Details

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 109

In this study, we use DKT, SAKT, SAINT in the experi-
ments . DKT models the student’s knowledge state using
a Recurrent Neural Network (RNN) by compressing the in-
teraction history in a hidden layer. SAKT is the first KT
model that used self-attention layers, where in each layer
the question embeddings are queries and interactions em-
beddings are key and values. SAINT is the first KT model
based on Transformers. The sequence of questions is fed into
the encoder, and the sequence of responses are fed into the
decoder with the encoder output.

Our model hyper-parameters are shown in Table 3. We
use the Adam optimizer [15] with default parameters. For
SAKT and SAINT, we used the Noam scheme for scheduling
the learning rate, and tune the number of warmup-steps.

The original SAKT implementation does not include resid-
ual connection from the query. This enforces the first pre-
diction to a same number every time, regardless of the first
question provided to the model. Since 3.2.3 becomes redun-
dant, we use the modified SAKT architecture with residual
connection. For SAINT and SAKT, the dimension of the
feedforward network is set to 4×(model dimension). For
SAINT, we use the same number of attention layers for the
encoder and the decoder.

4.3 Results: Traditional Assessment
AUC and accuracy results are shown in Tables 4 and 5. The
difference of these standard metrics is generally less than
0.01. For KT-based tutoring systems, this difference would
be less important than behavioral performance. AUC shows
the monotonicity of interactions by all users, and accuracy
does not focus on the exact model prediction. On the other
hand, behavioral tests can check the performance of model
prediction for a single user, and analyze the impact of a
single interaction.

Table 4: Standard AUC metric
Model DKT SAKT SAINT

Assistments15 0.7242 0.7226 0.7179
Assistments17 0.7742 0.7650 0.7680

STATICS 0.8269 0.8248 0.8275
Spanish 0.8336 0.8456 0.8364

EdNet-small 0.7332 0.7380 0.7328
EdNet-medium 0.7717 0.7760 0.7722

EdNet 0.7810 0.7905 0.7863
Average 0.7778 0.7804 0.7773

Table 5: Standard Classification Accuracy(%)
Model DKT SAKT SAINT

Assistments15 74.2 74.6 74.4
Assistments17 72.1 71.0 71.8

STATICS 81.4 81.2 81.1
Spanish 81.9 82.6 82.0

EdNet-small 68.2 70.2 69.8
EdNet-medium 72.5 72.6 72.4

EdNet 73.5 74.1 73.9
Average 74.8 75.2 75.1

4.4 Results: Behavioral Testing
4.4.1 Perturbation Tests

We report the test pass rate for insertion, deletion, and flip.
The results are shown in Table 6, 7, and 8, respectively.
Figure 1 describes the average impact on model prediction
from insertion perturbation on each dataset (column) and
correctness label of the inserted interaction (row). Figure 2
describes the degree of maximum impact over user sequences
from insertion perturbation.

Table 6: Insertion Test Pass Rates(%)
Model DKT SAKT SAINT

Assistments15 70.9 70.3 65.3
Assistments17 69.6 55.7 56.7

STATICS 71.1 61.0 58.2
Spanish 80.1 75.6 60.7

EdNet-small 66.3 78.0 75.9
EdNet-medium 83.2 80.6 77.3

EdNet 72.7 71.6 71.2
Average 73.4 70.4 66.5

Table 7: Deletion Test Pass Rates(%)
Model DKT SAKT SAINT

Assistments15 69.0 66.3 62.1
Assistments17 63.7 54.4 54.6

STATICS 60.7 55.9 49.2
Spanish 81.6 81.9 59.7

EdNet-small 65.6 75.3 71.9
EdNet-medium 80.3 76.8 73.5

EdNet 72.3 68.3 69.5
Average 70.4 68.4 62.9

Table 8: Flip Test Pass Rates(%)
Model DKT SAKT SAINT

Assistments15 77.1 96.3 94.7
Assistments17 69.5 86.1 66.4

STATICS 93.4 92.9 84.7
Spanish 87.5 89.1 83.9

EdNet-small 75.2 95.0 95.8
EdNet-medium 87.8 94.8 95.5

EdNet 79.5 83.6 86.0
Average 81.4 91.1 86.7

• In general, deletion and insertion pass rates range from
60% to 80%, and flip pass rates range from 80% to
90%. Note that a flip can be interpreted as a com-
bination of deletion and insertion. Therefore, the im-
pact of perturbation is supposed to be larger, leading
to higher pass rates as compared to insertion/deletion
cases. From Figure 1, Figure 6 (Appendix), and Figure
7 (Appendix), we note that the degree of impact from
replacement is twice of that from insertion or deletion.

• Robustness: From Figure 1, we observe that the de-
gree of average impact from perturbation gradually de-
creases along the time-steps in general, and that the
average impact is limited by only about 2%. There-
fore, the desired robustness holds in terms of average
impact.

• Monotonicity: From Figure 1, the average impact from
positive/negative perturbation tends to remain posi-

110 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 1: Perturbation Test: Average Impact on Model Prediction from Insertion.

Figure 2: Perturbation Test: Maximum Degree of Impact on Model Prediction from Insertion.

tive/negative, respectively, for Assistments15, EdNet-
small, EdNet-medium, and EdNet datasets. On Span-
ish dataset, such trend is more noisy for SAINT net-
work.

• On Assistments17 and Statics dataset, the expected
monotonic behavior from SAKT and SAINT is not
observed as the average impact oscillates across zero.
This can be also seen from DKT’s significantly higher
pass rates on the two datasets in Table 6.

• From Figure 2, we note that there exists questions
which persist to respond in a larger degree (even up
to 80%) after 40 time-steps. Note that on the EdNet
dataset, both transformer-based architectures SAKT
and SAINT allow larger impacts from perturbations
than DKT. This can be explained by the superior per-
formance of the two models on EdNet data over DKT
in terms of standard evaluation metrics AUC and ACC.

4.4.2 Continuity Test
We report average and maximum step-wise change in KS
score over students in Table 9. Apart from the single-step
change, we also measure final change of score from the first
time-step to the last, and the total range of score explored
throughout the time-steps, averaged over all students in Ta-
ble 10. Sum of absolute change in KS coordinates, or Man-
hattan distance of KS’s along time-steps (averaged over all
students) is shown in Figure 3. EdNet-medium was omitted
due to its similarity with the plot from EdNet-small.

• Except for Assistments17 and Statics, average score
change per single time-step or an interaction remains
reasonably low below 5% for all architectures. This
suggests that the knowledge state is fairly stable across
the time-steps.

• On Assistments17 and Statics, we observe significantly
larger changes, especially in DKT. DKT’s maximum

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 111

Figure 3: Continuity Test: Average Change in KS along Time-steps

Table 9: Continuity Test: Average / Maximum Student Score Change(%) per Single Time Step
Model Assist15 Assist17 STATICS Spanish EdNet-small EdNet-med EdNet Average

DKT
Avg 2.45 10.48 6.39 2.93 2.04 2.14 2.27 4.10
Max 16.82 84.97 65.09 20.33 16.98 17.06 33.68 36.42

SAKT
Avg 1.97 3.92 1.15 1.68 1.29 1.19 1.48 1.81
Max 15.65 56.60 20.24 52.92 21.46 19.21 22.53 29.80

SAINT
Avg 4.64 7.99 2.73 3.48 2.02 1.92 1.29 3.44
Max 31.80 53.01 24.18 38.74 16.17 22.12 17.19 29.03

Table 10: Continuity Test: Average Student Score Total Change(%) / Total Range(%) over 100 Interactions
Model Assist15 Assist17 STATICS Spanish EdNet-small EdNet-med EdNet Average

DKT
Diff 10.14 11.50 9.94 18.30 9.23 12.82 10.83 11.82

Range 24.72 63.42 47.54 46.54 22.89 27.41 28.37 37.27

SAKT
Diff 15.96 13.97 15.67 18.36 10.48 13.00 8.95 13.77

Range 30.98 40.16 22.08 53.33 23.70 23.80 20.69 30.68

SAINT
Diff 13.34 11.62 6.97 20.53 11.32 5.30 9.01 11.15

Range 37.98 49.96 26.19 51.51 22.98 24.21 20.59 33.35

score change across a single time-step is as high as 85%
and 65% for Assistments17 and Statics, respectively.

• In general, we observe decreasing marginal impact of
each interaction data as time proceeds.

• From Figure 3 and Table 9, we note that SAKT’s
knowledge state changes significantly less than other
models, consistently throughout all datasets. We also
investigated whether this ’speed’ of change affects to-
tal ’dislocation’ of knowledge state in Table 10. In-
terestingly, SAKT’s knowledge state moved by far-
thest on average (13.77%) while its range explored was
the smallest (30.68%) on average. This suggests that
SAKT’s knowledge state evolution was least volatile.

4.4.3 Initial Knowledge State Test
To assess the validity of initial knowledge states embedded
in the model, we measured the correlation of the predicted
prior knowledge state and the global question difficulty as

described in Section 3.2.3. The results are presented in Table
11. In the scatter plot of Figure 4, we choose the 200 most
frequently answered questions from each data-set to show
how the initial model predictions and question correctness
rates are distributed and correlated.

• We observe from Table 11 that all models’ initial knowl-
edge states are positively correlated with the global
question difficulty with statistical significance.

• The difference in correlation metrics among datasets
is much more significant than that among models.

• Based on the three scatter plots of the first row in the
figure, we note that the correlation becomes stronger
as the size of dataset grows from EdNet Small to full
EdNet data. Table 11 and Table 2 also suggests that
the number of interactions per unique question is pos-
itively correlated with the initial knowledge state test
metric.

112 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

• From the scatter plot, we see that the three models
occupy slightly different clustering regions in the plot.
For instance, in EdNet Medium and EdNet dataset,
SAINT’s initial prediction value is consistently larger
than that of the other two models, which suggests en-
semble of the models to reduce bias.

Table 11: Initial Knowledege State Test: Correlation(%)
Model DKT SAKT SAINT

Assistments15 85.6 84.8 82.5
Assistments17 63.2 52.2 58.2

STATICS 56.1 58.1 54.6
Spanish 56.5 49.1 44.0

EdNet-small 39.0 38.5 31.6
EdNet-medium 75.1 74.2 74.4

EdNet 87.6 86.5 88.2
Average 66.1 63.3 61.9

4.4.4 Convergence Test
As the dataset we generate and use for the convergence test
is extremely simple as described in Section 3.2.4, we expect
the KT models’ standard performance metrics to increase
quickly along the time-steps. For instance, at the fifth time-
step, the model would have already received four equivalent
interaction record with the same question and the same cor-
rectness label for the virtual student. We report the model
AUC at time-step 5, 10, and 50 in Table 12. In Figure 3 we
also visualize the model’s average response across different
questions for each correctness label values assumed. We ex-
pect the average response plot to quickly converge to either
1 or 0 based on the assumed correctness label value.

• In general, all models show fairly high performance
from early time-step of 5, except for Assistments17
dataset.

• Both Table 12 and Figure 5 suggest SAKT consistently
achieves fastest convergence to a reasonable value close
enough to either 1 or 0. DKT, however, consistently
converges to a value farther from the two edges, as
compared to the other two models. In particular, for
the incorrect case (second row) of the Figure 5, we
observe DKT converges to a value higher than 50%
(red dotted horizontal line). For the positive case (first
row), DKT converges to a correctness probability level
around only 70% for Assitments17, EdNet-small, and
EdNet-medium.

• DKT’s convergence pattern is fairly monotonic while
SAKT and SAINT’s patterns go through fluctuation
which likely pertains to noise.

• It is noteworthy that increasing dataset size from EdNet-
small to EdNet-medium and EdNet significantly helps
all three models’ convergence behavior on both target
correctness values, especially for DKT. DKT’s conver-
gence value moved signficantly closer to desired values
of 1 and 0. For SAKT and SAINT, larger dataset size
led to more stable response plot, reducing the degree
fluctuation.

• Convergence in the incorrect case and the correct case
is asymmetric. While the latter closely achieves the

target value of 1, the former case converges around
30% level in most datasets. We attribute this to the
tutorial content embedded in each of the interaction,
along with the question item used for assessment in
the dataset.

4.5 Overview of Experimental Results
Based on the proposed DLKT validation framework, we
conducted a comprehensive investigation of three popular
DLKT models on seven benchmark datasets to scrutinize
the models’ behavioral characteristics. The results high-
light strengths and weaknesses of three DLKT models. Al-
though DLKT models demonstrated stable and robust be-
haviors in line with expectation in most datasets, the results
revealed few major disadvantages for each models: DKT
showed better stability in perturbation tests while the other
architectures occasionally presented volatile fluctuation in
the response curve. In the continuity test, SAKT presented
a significantly smoother evolution of knowledge state, but
other models’ knowledge state representations were seem-
ingly volatile in a few datasets which strongly precludes
DLKT’s adoption. On the other hand, this suggests room
for improving DLKT models based on the specific issue pin-
pointed by this framework. For instance, the volatility of KS
could be alleviated by direct regularization of the change in
the KS. On the other hand, the results from the convergence
test showed that DKT was fragile even to simple edge-case
data which undermines generalization capability of DKT, as
compared to other attention-based architectures.

These behavioral characteristics identified from the proposed
framework show that the two popular architectural paradigms,
RNN and Attention-based, possess different strengths and
weaknesses under KT environment. This also hints that an
architectural combination or ensemble approach might al-
leviate the identified issues to improve both standard KT
model evaluation metrics and behavioral characteristic.

5. CONCLUSION
In this work, we introduced the desired properties of knowl-
edge tracing models and proposed a novel model valida-
tion framework for Deep Learning based Knowledge Tracing
(DLKT) models. Using the framework, we conducted a com-
prehensive analysis of three popular DLKT models’ behav-
ioral characteristics and identify their strengths and weak-
nesses of the models in seven different benchmark datasets.
We believe that the analysis on both strengths and weak-
nesses diagnosed by the framework would serve as a useful
guideline for model enhancement. Also based on the find-
ings from the proposed framework, a customized adoption of
DLKT models fitting to the nature of the data and desired
behaviors as well as accuracy would become possible.

We believe potential future work includes: (1) tackling the
weaknesses of DLKT models identified in this work via ar-
chitectural modification or model combination, (2) explor-
ing the benefit of data augmentation using virtual edge-case
data similar to converging interaction data used in the con-
vergence test, and (3) extending the proposed testing frame-
work beyond the task of knowledge tracing (i.e. student
score prediction and item recommendation).

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 113

Figure 4: Initial Knowledge State Test Scatter Plot

Figure 5: Convergence Test: Average Model Prediction along Converging Interaction Sequence

Table 12: Convergence Test AUC
Step Model Assist15 Assist17 STATICS Spanish EdNet-small EdNet-med EdNet Average

5
DKT 0.867 0.601 0.829 0.688 0.622 0.790 0.845 0.749
SAKT 0.885 0.615 0.903 0.805 0.869 0.853 0.861 0.827
SAINT 0.866 0.609 0.936 0.731 0.628 0.881 0.854 0.786

10
DKT 0.932 0.634 0.924 0.745 0.679 0.874 0.932 0.817
SAKT 0.961 0.782 0.928 0.923 0.953 0.928 0.951 0.918
SAINT 0.947 0.763 0.979 0.856 0.757 0.958 0.954 0.888

50
DKT 0.979 0.695 0.983 0.791 0.744 0.954 0.990 0.876
SAKT 0.998 0.938 0.942 0.993 0.997 0.994 0.995 0.980
SAINT 0.995 0.939 0.999 0.977 0.963 0.997 0.997 0.981

114 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

6. REFERENCES
[1] G. Abdelrahman and Q. Wang. Knowledge tracing

with sequential key-value memory networks. In
Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in
Information Retrieval, pages 175–184, 2019.

[2] B. Beizer. Black-box testing: techniques for functional
testing of software and systems. John Wiley & Sons,
Inc., 1995.

[3] C. G. Brinton and M. Chiang. Mooc performance
prediction via clickstream data and social learning
networks. In 2015 IEEE conference on computer
communications (INFOCOM), pages 2299–2307.
IEEE, 2015.

[4] P. Chen, Y. Lu, V. W. Zheng, and Y. Pian.
Prerequisite-driven deep knowledge tracing. In 2018
IEEE International Conference on Data Mining
(ICDM), pages 39–48. IEEE, 2018.

[5] Y. Choi, Y. Lee, J. Cho, J. Baek, B. Kim, Y. Cha,
D. Shin, C. Bae, and J. Heo. Towards an appropriate
query, key, and value computation for knowledge
tracing. In Proceedings of the Seventh ACM
Conference on Learning@ Scale, pages 341–344, 2020.

[6] Y. Choi, Y. Lee, D. Shin, J. Cho, S. Park, S. Lee,
J. Baek, B. Kim, and Y. Jang. Ednet: A large-scale
hierarchical dataset in education, 2019.

[7] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction,
4(4):253–278, 1994.

[8] R. S. d Baker, A. T. Corbett, and V. Aleven. More
accurate student modeling through contextual
estimation of slip and guess probabilities in bayesian
knowledge tracing. In International conference on
intelligent tutoring systems, pages 406–415. Springer,
2008.

[9] J. De La Torre and J. A. Douglas. Higher-order latent
trait models for cognitive diagnosis. Psychometrika,
69(3):333–353, 2004.

[10] S. E. Embretson and S. P. Reise. Item response theory.
Psychology Press, 2013.

[11] M. Feng, N. Heffernan, and K. Koedinger. Addressing
the assessment challenge with an online system that
tutors as it assesses. User modeling and user-adapted
interaction, 19(3):243–266, 2009.

[12] T. Gervet, K. Koedinger, J. Schneider, T. Mitchell,
et al. When is deep learning the best approach to
knowledge tracing? JEDM| Journal of Educational
Data Mining, 12(3):31–54, 2020.

[13] A. Ghosh, N. Heffernan, and A. S. Lan. Context-aware
attentive knowledge tracing. In Proceedings of the 26th
ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages
2330–2339, 2020.

[14] F. Gutierrez and J. Atkinson. Adaptive feedback
selection for intelligent tutoring systems. Expert
Systems with Applications, 38(5):6146–6152, 2011.

[15] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[16] K. R. Koedinger, R. S. Baker, K. Cunningham,
A. Skogsholm, B. Leber, and J. Stamper. A data

repository for the edm community: The pslc datashop.
Handbook of educational data mining, 43:43–56, 2010.

[17] E. R. Lai. Metacognition: A literature review. Always
learning: Pearson research report, 24:1–40, 2011.

[18] M. Last, S. Eyal, and A. Kandel. Effective black-box
testing with genetic algorithms. In Haifa Verification
Conference, pages 134–148. Springer, 2005.

[19] S. Lee, Y. Choi, J. Park, B. Kim, and J. Shin.
Consistency and monotonicity regularization for
neural knowledge tracing, 2021.

[20] R. V. Lindsey, J. D. Shroyer, H. Pashler, and M. C.
Mozer. Improving students’ long-term knowledge
retention through personalized review. Psychological
science, 25(3):639–647, 2014.

[21] Q. Liu, Z. Huang, Y. Yin, E. Chen, H. Xiong, Y. Su,
and G. Hu. Ekt: Exercise-aware knowledge tracing for
student performance prediction. IEEE Transactions
on Knowledge and Data Engineering, 33(1):100–115,
2019.

[22] Y. Liu, Y. Yang, X. Chen, J. Shen, H. Zhang, and
Y. Yu. Improving knowledge tracing via pre-training
question embeddings. arXiv preprint
arXiv:2012.05031, 2020.

[23] E. Loken and K. L. Rulison. Estimation of a
four-parameter item response theory model. British
Journal of Mathematical and Statistical Psychology,
63(3):509–525, 2010.

[24] M. I. Lopez, J. M. Luna, C. Romero, and S. Ventura.
Classification via clustering for predicting final marks
based on student participation in forums.
International Educational Data Mining Society, 2012.

[25] Y. K. Malaiya. Antirandom testing: Getting the most
out of black-box testing. In Proceedings of Sixth
International Symposium on Software Reliability
Engineering. ISSRE’95, pages 86–95. IEEE, 1995.

[26] L. Mariani, M. Pezze, O. Riganelli, and M. Santoro.
Autoblacktest: Automatic black-box testing of
interactive applications. In 2012 IEEE Fifth
International Conference on Software Testing,
Verification and Validation, pages 81–90. IEEE, 2012.

[27] J. Martin and K. VanLehn. Student assessment using
bayesian nets. International Journal of
Human-Computer Studies, 42(6):575–591, 1995.

[28] H. Nakagawa, Y. Iwasawa, and Y. Matsuo.
Graph-based knowledge tracing: modeling student
proficiency using graph neural network. In 2019
IEEE/WIC/ACM International Conference on Web
Intelligence (WI), pages 156–163. IEEE, 2019.

[29] S. Nidhra and J. Dondeti. Black box and white box
testing techniques-a literature review. International
Journal of Embedded Systems and Applications
(IJESA), 2(2):29–50, 2012.

[30] S. Pandey and G. Karypis. A self-attentive model for
knowledge tracing. arXiv preprint arXiv:1907.06837,
2019.

[31] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,
L. J. Guibas, and J. Sohl-Dickstein. Deep knowledge
tracing. In Advances in neural information processing
systems, pages 505–513, 2015.

[32] G. Rasch. Probabilistic models for some intelligence
and attainment tests. ERIC, 1993.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 115

[33] Z. Ren, X. Ning, A. Lan, and H. Rangwala. Grade
prediction based on cumulative knowledge and
co-taken courses. In Proceedings of the 12th
International Conference on Educational Data Mining
(EDM). ERIC, 2019.

[34] M. T. Ribeiro, T. Wu, C. Guestrin, and S. Singh.
Beyond accuracy: Behavioral testing of nlp models
with checklist. arXiv preprint arXiv:2005.04118, 2020.

[35] C. Romero, M.-I. López, J.-M. Luna, and S. Ventura.
Predicting students’ final performance from
participation in on-line discussion forums. Computers
& Education, 68:458–472, 2013.

[36] H. Tan, J. Guo, and Y. Li. E-learning
recommendation system. In 2008 International
Conference on Computer Science and Software
Engineering, volume 5, pages 430–433. IEEE, 2008.

[37] D. Thissen and M. Orlando. Item response theory for
items scored in two categories. 2001.

[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[39] J.-J. Vie and H. Kashima. Knowledge tracing
machines: Factorization machines for knowledge
tracing. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 750–757, 2019.

[40] T. Wang, F. Ma, and J. Gao. Deep hierarchical
knowledge tracing. In Proceedings of the 12th
International Conference on Educational Data Mining,
2019.

[41] C.-K. Yeung and D.-Y. Yeung. Addressing two
problems in deep knowledge tracing via
prediction-consistent regularization. In Proceedings of
the Fifth Annual ACM Conference on Learning at
Scale, pages 1–10, 2018.

[42] M. V. Yudelson, K. R. Koedinger, and G. J. Gordon.
Individualized bayesian knowledge tracing models. In
International conference on artificial intelligence in
education, pages 171–180. Springer, 2013.

[43] J. Zhang, X. Shi, I. King, and D.-Y. Yeung. Dynamic
key-value memory networks for knowledge tracing. In
Proceedings of the 26th international conference on
World Wide Web, pages 765–774, 2017.

APPENDIX

116 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 6: Perturbation Test: Average Impact on Model Prediction from Deletion.

Figure 7: Perturbation Test: Average Impact on Model Prediction from Flip.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 117

Student Strategy Prediction using a Neuro-Symbolic
Approach

Anup Shakya
University of Memphis

ashakya@memphis.edu

Vasile Rus
University of Memphis

vrus@memphis.edu

Deepak Venugopal
University of Memphis

dvngopal@memphis.edu

ABSTRACT
Predicting student problem-solving strategies is a complex
problem but one that can significantly impact automated
instruction systems since they can adapt or personalize the
system to suit the learner. While for small datasets, learning
experts may be able to manually analyze data to infer stu-
dent strategies, for large datasets, this approach is infeasible.
We develop a Machine Learning model to predict strate-
gies from student data. While Deep Neural Network (DNN)
based methods such as LSTMs can be applied for this task,
they often have long convergence times for large datasets
and like several other DNN-based methods have the inher-
ent problem of overfitting the data. To address these issues,
we develop a Neuro-symbolic approach for strategy predic-
tion, namely a model that combines strengths of symbolic AI
(that can encode domain knowledge) with DNNs. Specifi-
cally, we encode relationships in the data using Markov Logic
and use symmetries among these relationships to train an
LSTM more efficiently. In particular, we use an importance
sampling approach where we sample the training data such
that for clusters/groups of symmetrical instances (instances
where the strategies are likely to be symmetric), we only
pick representative samples for training the model instead
of using the whole group. Further, since some groups may
contain more diverse strategies than the others, we adapt the
importance weights based on previously observed samples.
Through empirical evaluation on the KDD EDM challenge
datasets, we show the scalability of our approach.

Keywords
Intelligent Tutoring Systems, Learning Strategies, Neuro-
Symbolic AI, Markov Logic Networks, LSTMs

1. INTRODUCTION
Intelligent Tutoring Systems (ITSs) [31] and more broadly
adaptive instructional systems (AISs)1 help a diverse pop-

1The main difference between Intelligent Tutoring Systems
and Adaptive Instructional Systems at least in our view is

ulation of students by adapting instruction to each learner
thus accounting for different learning abilities, learning styles
and education goals. Such adaptation leads to more engag-
ing and effective learning. However, in order to build effec-
tive ITSs, it is important to understand how students learn
and what learning and instructional strategies are most ef-
fective for whom and under what conditions. Specifically,
students can follow several different strategies to learn the
same content. For example, consider a simple math problem
about solving a linear system of equations where x+y+z = 9
x = y and y = z. One strategy is to perform systematic sub-
stitutions till there is an equation in terms of one variable
and simply solve for that variable. However, another strat-
egy could be to use transitivity to see that all three variables
have the same value and use this to solve the problem. De-
pending upon the way a student thinks, one strategy could
be easier or harder to grasp compared to the other. Thus,
understanding the various ways in which students approach
an instructional task will not only further our understanding
of how learners learn, e.g., it may help identify the most ef-
fective learning strategies employed by top performers, but
it will also enable ITSs to incorporate knowledge about these
strategies in order to adapt appropriately and help students
maximize their learning gains.

A student’s choice of strategy is a complex function depen-
dent on many factors such as experience with similar prob-
lems, general expertise in the topic, other cognitive abili-
ties, etc. Human experts are exploring all these factors and
how they are related to strategy use and learning. However,
human experts are expensive and limited in the ability to
analyze large data from thousands, tens of thousands, or
millions of students. Advanced data science methods and
access to large computing infrastructure such as the cloud
offer new possibilities to analyze in-depth and at scale such
large learner datasets with the promise of helping us dis-
cover, document, and benefit from the diversity of learning.

Indeed, with the growth of both data and advanced Machine
Learning methods such as Deep Neural Networks (DNNs),
we are able to successfully solve several challenging prob-
lems in domains such as natural language understanding [25]
and visual processing [8]. However, the ability of DNNs
to learn complex functions and representations comes at a
cost. Specifically, DNNs require significant computational

that the former offer full-adaptivity, i.e., both micro- and
macro-adaptivity, whereas the latter can offer any type, e.g.,
just macro-adaptivity.

Anup Shakya, Vasile Rus and Deepak Venugopal “Student Strategy Pre-
diction using a Neuro-Symbolic Approach”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 118-129.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

118 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

resources to scale up to large datasets and at the same time,
as data increases, they may not always yield expected re-
sults since they have a tendency to overfit the data. That
is, they work well on the data on which they were trained
but their generalization performance on unseen data severely
degrades. A paradigm that is gaining significant attention
in the AI/Machine Learning research community is Neuro-
symbolic AI [7] where we augment DNNs with symbolic
models to regularize the DNN. This helps in improving both
scalability and generalization by allowing DNNs to learn
from smaller datasets with higher accuracy. In this paper,
we apply a Neuro-symbolic model to predict student strate-
gies from structured student-interaction data.

Our model works on student data where the student inter-
acts with an ITS in discrete steps. The strategy prediction
task in this case can be formulated as a sequence learning
problem where we want to learn to predict the sequence of
steps a student is likely to follow for a given problem. Know-
ing this sequence will provide the ITS prior information that
it can use to adapt, e.g., by better tailoring the available
hints and feedback. Sequence learning is applicable to many
tasks in general with one of the most popular applications
being machine translation where the goal is to translate a
sequence of words from one language to another language.
A widely used traditional approach that has been applied
in sequence learning is Hidden Markov Models (HMMs).
However, this assumes a one-step dependency where each
step depends only upon the prior step. Student strategies
in problem solving though are much more complex where a
student action in one step can influence several downstream
steps. Long Short-Term Memory (LSTMs) [11] are DNNs
that can model such long-term dependencies in sequences.
However, LSTMs are known to take an extremely long time
to train for large datasets [39]. To address this, we propose
a Neuro-symbolic model where we combine the semantics of
a symbolic AI model called Markov Logic [9] with LSTMs.
Markov Logic encodes domain-knowledge using first-order
logic formulas. The formulas establish relationships in the
data that can be described in the form of a graph structure.
Our approach learns symmetries between instances based
on the graph structure and then uses these symmetries to
train an LSTM more efficiently. Specifically, we use impor-
tance sampling to choose a subset of training instances to
make learning more efficient. While importance sampling-
based learning in DNNs has been used previously to scale
up training [1, 13, 14], most existing approaches determine
the importance of a training instance by estimating the gra-
dient norm which is computationally expensive [14]. In our
case, we determine importance of a training data instance
based on symmetries in the MLN graph. Specifically, the
idea is that if several strategies are likely to be symmetrical
then we can learn more efficiently from a smaller subset of
strategies instead of the whole training set. To do this, we
learn an embedding such that problem instances which have
symmetries in the graph have similar vector representations
in the embedding. We then cluster the embedding vectors
and sample instances from each cluster to train the model.
The idea is to sample a subset with same overall distribution
of strategies as the original dataset. That is, we end up with
a smaller dataset the preserves much if not all the informa-
tion in the original dataset. However, since the clustering is
approximate, we may end up with some clusters where the

strategies are likely to be more diverse than others. There-
fore, we adaptively train the model by updating importance
weights for the clusters in iteration t+1 based on the trained
model in iteration t. Specifically, we sample more data in-
stances from a cluster in t + 1 when the model trained in
iteration t has smaller accuracy for instances sampled from
that cluster.

We evaluate our approach on the publicly available KDD
EDM challenge datasets [34]. We compare our approach
with HMMs and pure LSTM methods that do not use sym-
metries in training the data and show that our proposed
Neuro-symbolic model is more accurate and scalable, where
we obtain high prediction accuracy by focusing on a small
fraction of the training data.

2. RELATED WORK
Ritter et al. [30] provide a comprehensive survey on different
approaches used to identify student strategies. Model trac-
ing based tutors [4] have been previously used to identify
strategies. In such cases, strategies may be pre-specified
and the tutor can recognize correct and incorrect strate-
gies. Model-tracing based methods have also been adapted
to recognize new strategies [29]. Sequence learning has been
widely used for strategy identification. Specifically, in Open
Ended Learning Environments such as Betty’s brain [23],
student activities were captured in logs and sequence pat-
tern mining methods was used on these logs to extract ac-
tion sequences which in principle are similar to sequences
that we consider in this paper. Different types of strategies
based on these sequences were analyzed in multiple stud-
ies [16, 17, 18] which also mapped these sequences to perfor-
mances to compare and analyze strategies followed by high
performers to those followed by low performers. Sequence
learning has also been used to extract strategies for self-
regulated learning [3]. More recently, a study performed
large-scale sequence pattern mining in MOOCs platform to
analyze activity sequences of learners [37]. Further, in the
context of conversational tutors, tutorial dialogues can be
treated as sequence of actions based on language-as-action
theory [2, 33]. These sequences which are akin to strategies
are mapped into a taxonomy by education experts [26]. Ap-
proaches have been developed to recognize these sequences
from natural language interactions to help automated tutors
understand successful strategies to guide a student. In par-
ticular, sequence learning methods have been used for this
task as well [32, 24]. Symbolic models such as Markov Logic
have also been applied for recognizing these sequences us-
ing joint inference [36]. In general, Neuro-symbolic models
have gained prominence recently and have found applica-
tions in problems that have graph structure. In [22], the
authors provide a detailed survey of Neuro-symbolic mod-
els using graph neural networks. In complex problems such
as visual question answering that require connections be-
tween language and image processing, Neuro-symbolic mod-
els have performed better than pure neural network based
methods [38]. Our proposed application in this paper is
further validation that Neuro-symbolic AI is a promising di-
rection to solve complex problems.

3. SEQUENCE LEARNING MODELS
Student strategies can be defined in different ways. In par-
ticular, the definition of what constitutes a strategy also

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 119

depends upon the type of interaction the student has with
the AIS. In our case, we only consider structured interac-
tions with discrete steps. Therefore, we define the student
strategy as a function of the sequence of steps in the in-
teraction. Each step is characterized by the central concept
that is utilized to solve that specific step, i.e., the knowledge
component [20] (KC) used in that step. Therefore, we define
strategy in our case as a sequence of KCs used by a student
in a problem solving session. Note that, this formulation of
strategy as a sequence of discrete components is similar to
the definitions used in prior work [30]. Formally,

Definition 1. Given a student s and a problem p, we

define the strategy as x̄s,p = K
(1)
s,p . . . K

(n)
s,p , where K

(i)
s,p is the

knowledge-component that s uses to solve the i-th discrete
step in p.

We can now formulate a learning problem as follows. Given
training data, {xsi,pj}

n,mi
i=1,j=1, where n is the number of stu-

dents and mi is the number of problems solved by the i-th
student, we learn a model P such that for a student s′ and
problem p′, P generates a sequence of knowledge compo-

nents K
(1)

s′,p′ . . . K
(k)

s′,p′ . Note that students sometimes use
more than one KC per step, in this case, we just unroll these
multiple KCs by repeating the step with each of the KCs.
Therefore, for the rest of this paper, we treat both multiple
KCs in a step and single KC steps without distinguishing
them. Also, to keep notation simpler, instead of adding the
subscripts si, pj each time, we denote the training input and
output pairs as {xi,yi}Ni=1.

3.1 HMM Model
A popular model that is often used to learn from sequential
data is the Hidden Markov Model (HMM), where we assume
that every time-step is dependent on the previous time-step.
HMMs are generative models represented using a dynamic
Bayesian network. Each step in the time series is encoded by
a hidden-state variable in the Bayesian network. We connect
the hidden node corresponding to time-step j to the hidden
node j+1 in the network and the observed feature at step j is
also connected to the hidden node at step j. In our case, we
encode the HMM as follows. Let Ot be the random variable
representing the knowledge component at step t. We encode
the knowledge component at step t as a vector Ot (the value
of the random variable Ot) using a one-hot encoding. Let
Zt be the hidden-state variable corresponding to step t. The
emission probability is given by P (Ot|Zt) and the transition
probability is given by P (Zt|Zt−1), i.e., the hidden state at
time t depends only upon the hidden state at time t−1. The
transition matrix is a k × k matrix that specifies transition
probabilities to a state at time t given any other state at
time t − 1. Here, k which specifies the number of hidden
states is pre-defined in the model.

The learning task in the HMM is to estimate the parameters
of the HMM, namely, the transition matrix and the param-
eters of the emission probability distributions. Note that we
need to estimate conditional probability conditioned on each
possible state of the latent variable. To do this, we assume a
Gaussian distribution represents the probability of each hid-
den state and the emission probabilities are also Gaussian
distributions. Using the EM (Expectation Maximization)

algorithm, we compute the parameters of the distributions
using Max-likelihood estimation which has guarantees on
convergence to a local optima. For predicting the strategy,
we sample a KC at the first time step. Then, given a KC
at any time step t, we generate the KC at time step t + 1
as follows. Based on the observation, i.e., KC at step t, we
predict an equivalent hidden state representation at step t
and using the transition probability matrix, we sample the
hidden state at time step t+ 1. We then predict the KC at
time step t+ 1 using the emission probability.

3.2 LSTM Model
One of the problems with HMMs is that they have restric-
tive assumptions, i.e., each step depends only on the pre-
vious step. Ideally we would like to consider the student’s
activity across several steps to determine what his/her next
step in the strategy is likely to be. For instance, suppose
we have a student who works out a problem using a divide-
and-conquer strategy, then there may be several small sub-
problems that the student solves before combining them to-
gether. In this case, a HMM model that simply looks at the
previous step performed by a student may be able to capture
the local strategy but will typically be unable to infer the
global strategy since the dependencies may run across sev-
eral steps. Therefore, to infer such advanced strategies, we
need a more sophisticated model that captures longer-term
dependencies. Long Short Term Memory (LSTMs) [11] are
a variant of recurrent neural networks that have been used
successfully for several problems like modeling text data.
In particular, LSTMs can exploit longer range dependen-
cies across words/sentences to learn a latent representation
of sentences/documents. In our case, we apply LSTMs to
learn a latent representation of the strategy.

Unlike HMMs, LSTMs are discriminative models that pre-
dict an output for step t based on the features observed
in step t as well as a hidden state vector that summarizes
the information up to step t− 1. Note that a bi-directional
LSTM can also consider information in steps succeeding t.
To learn an LSTM for our task, we construct a tensor T
∈ Rm×n×k, where m is the number of training instances, n
is the number of steps and k is the dimensionality of fea-
tures representing each training instance (s, p). Note that
we can represent variable-length strategies using a special
Start and Stop symbol in the LSTM to denote the start and
end of strategies. The output of the LSTM for the t-th step
is a vector representing the KC at step t. The final hidden
state vector summarizes information for the full strategy for
an input instance.

4. NEURO-SYMBOLIC MODEL
Though an LSTM can be directly used to learn a model
for strategy prediction, it has certain limitations. LSTMs
are known to converge very slowly for large datasets [39].
Further, LSTMs treat each instance in the training data
as i.i.d (independent and identically distributed) which is
limiting when there are underlying relationships among the
instances. For example, problems are related to each other if
solved by the same student, KCs used by the same student in
similar problems are related to each other, etc. We address
these limitations combining LSTMs with a symbolic model.

Neuro-symbolic AI [7], namely, combining symbolic AI mod-

120 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

els with DNNs has gained significant attention in tasks such
as Visual Question Answering [38]. Neuro-symbolic models
augment deep learning with knowledge from symbolic mod-
els. This can help learn deep models more efficiently even
with limited labeled data [35]. Further, augmenting DNNs
with symbolic models also controls overfitting. Specifically,
since DNNs are highly expressive models, they are known to
sometimes overfit the training data, particularly when the
training data is non-diverse and in many problems such as
image classification, data augmentation methods [5] seek to
increase data diversity. In our Neuro-symbolic approach, we
represent relationships in our dataset using the language of
Markov Logic [9]. Based on symmetries in the relationships,
we sample a smaller, more diverse training dataset to train
the LSTM efficiently.

4.1 Markov Logic
Markov Logic [9] is a symbolic AI model designed as a
representation and reasoning language for relational data.
Markov Logic specifies relationships using the language of
first-order logic. Each formula in Markov logic specifies a
logical relationship using variables which can be substituted
by symbols (also called constants or objects) from the data.

For example, we can model the fact that if two problems are
similar then they require the same KC as a formula such as
KC(p1, k) ∧ Similar(p1, p2) ⇒ KC(p2, k). We can substitute
this general formula using symbols in the data, say two prob-
lems P1 and P2 and KC K to obtain the formula, KC(P1,K)
∧ Similar(P1, P2) ⇒ KC(P2,K). The formula that is sub-
stituted with the symbols is called a ground-formula us-
ing terminology from first-order logic. The predicates that
are substituted with symbols are called ground-atoms, e.g.,
KC(P1,K) is a ground atom of predicate KC.

A Markov Logic Network (MLN) can be represented as a
graph where the relationship encoded in each ground for-
mula is represented by a clique in the graph. A clique is
activated if the logical relationship specified by the ground-
formula corresponding to that clique is evaluated to True in
the data. For instance, in the above example, the clique cor-
responding to KC (P1,K), Similar (P1, P2) and KC (P2,K)
is activated if the data asserts the logical relation that prob-
lems P1 and P2 use KC K and problem P1 is similar to
P2. In MLN semantics, each activated clique represents a
function parameterized by a weight attached to the ground
formula. The full graph represents an undirected probabilis-
tic graphical model [21]. For large datasets in real-world
applications such as ours, the number of ground-formulas
become very large resulting in an extremely large graph.
In the standard use of MLNs, we learn parameters for the
MLN based on Max-Likelihood Estimation (MLE). How-
ever, computing the gradient for MLE is infeasible when the
graph is constructed from large datasets such as ours. Note
that though, parameters for the MLN are required only if
we want to use the MLN directly for probabilistic inference,
i.e., when we want to answer queries using the MLN. While
this is certainly desirable, it is well-known that MLN infer-
ence/learning algorithms cannot scale up to large datasets
and perform extremely poorly in such cases [15]. Therefore,
in our case, we make a simplifying assumption in the MLN
that all the parameters for the graphical model have uniform
weights. Thus, in our Neuro-symbolic model, Markov Logic

S1 P1

K1 K2 K3

S2 P2

(a)

K ′
2

S1 P1

K1 K3

S2 P2

K ′′
2

(b)

Figure 1: Illustrating symmetries in the MLN object graph.
The graph represents symbols/objects in the MLN and the
edges represent connection between variables, i.e., if objects
appear together in a formula, they are connected in the
graph. In (a) student S1 can be exchanged with student
S2 and problem P1 with P2 to get an isomorphic graph. In
(b) if the KCs K1 and K2 are similar, then the exchange is
approximate.

is only used as a language for knowledge representation (KR)
and not for inference/learning. That is, formulas specify re-
lationships/connections in the MLN graph between differ-
ent entities in our dataset (e.g. problems, students, etc.)
while the actual learning and predictions are performed by
an LSTM model. Note that in theory, other forms of KR
such as Bayesian networks, arithmetic circuits or probabilis-
tic programs can be used. However, the benefit of MLNs
is that they specify relationships over large data using com-
pact first-order formulas. Next, we describe the formulas in
our MLN followed by how we learn symmetries in the graph
to train the LSTM more efficiently.

4.1.1 MLN Structure
Our first set of MLN formulas relates the KCs to the problem
and the student solving the problem.

Student(s) ∧ Problem(p) ∧ PHierarchy(p, h)⇒ KC(s, p, t, k)

where s is a variable that denotes a student, p denotes a
problem, t is a step, k denotes a knowledge component and h
denotes the problem hierarchy which is the hierarchy of cur-
riculum levels containing the problem, and PHierarchy(p,h)
relates to the problem p in the hierarchy h where the hi-
erarchy contains the curriculum unit name and the section
name that the problem belongs to (e.g. Unit LCM, Section
LCM-2).

Next, we encode the homophily property where the same
KC is likely to be reused by a student for problems that are
related to each other through a common problem hierarchy.

Student(s) ∧ Problem(p1) ∧ Problem(p2)∧
PHierarchy(p1, h) ∧ PHierarchy(p2, h) ∧ KC(s, p1, t1, k)

⇒ KC(s, p2, t2, k)

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 121

Next, we encode transitive dependencies between KCs by
relating KCs that occur close to each other. Specifically, this
encodes local dependencies across KCs (similar to a HMM
model).

KC(s, p, t− 1, k1) ∧ KC(s, p, t, k2)

⇒ KC(s, p, t+ 1, k3)

4.2 Embeddings
Given the formulas, we can define the MLN object graph
by connecting objects that appear in the same ground for-
mula. For instance, consider an example MLN object graph
shown in Fig. 1 (a) with two students (S1, S2), two prob-
lems (P1, P2) and three knowledge components (K1, K2,
K3). The edges indicate that in the graph corresponding
to the MLN, there is a connection that relates the corre-
sponding symbols. Note that S1 works on P1 and S2 works
on P2, where P1 and P2 are related since they correspond
to the same topic. Suppose both S1 and S2 use the same
strategy, K1, K2, K3, then, we can exchange S1 with S2 and
P1 with P2 to get an isomorphic graph structure. Now, sup-
pose S2 uses a strategy K1, K′2, K3 that is slightly different
from the strategy of S1, say, K1, K′′2 , K3, then we obtain a
graph structure shown in Fig. 1 (b), where the new connec-
tions are shown by dotted lines. Now, exchanging S1 with
S2 and P1 with P2 will not give us a graph structure that
is isomorphic to the original graph. However, suppose that
the knowledge components K′2 and K′′2 are similar to each
other, i.e., there are many other problem instances where
students use the KCs K′2 and K′′2 interchangeably, then ex-
changing S1, P1 with S2, P2 will yield an approximation
that is still quite similar to the original graph. This means
that using (S1, P1), it is reasonable to obtain a model that
can predict the strategy for (S2, P2) and vice-versa. The
set {(S1, P1), (S2, P2)} is therefore an equivalence class con-
sisting of approximately symmetrical instances. In general,
if we group together approximately symmetrical instances
in our training data, then we can train our LSTM model
with diverse instances by sampling these groups since each
group represents data that is likely to have a similar effect
in training the model. We do this by learning embeddings
for nodes in the graph structure.

Unfortunately, the size of the graph becomes very large as
we increase dataset size and it is practically infeasible to
construct the graph structure explicitly. Though several ap-
proaches have been developed that identify symmetries in
MLNs using graph automorphism groups [27] using tools
such as saucy [6], these approaches generally work directly
on the graph structure. Further, it is possible to infer sym-
metries in graphs using other neural-network based methods
such as Node2Vec [10] and Graph Convolutional Networks
(GCNs) [19]. However, all these approaches work on general
graphs and considering an MLN graph as a general graph
is problematic since the graph becomes very large even for
smallish datasets. This makes it hard to apply such ap-
proaches to our strategy identification problem since we ex-
pect to have an extremely large graph. Therefore, we instead
use a recent, much more scalable Markov Logic graph spe-
cific approach called Obj2vec [12] that detects symmetries
without explicitly constructing the graph. This approach
is based on identifying approximate symmetries based on
neighborhoods of a node using a neural network without

constructing the actual graph.

4.2.1 Obj2Vec
Obj2Vec is inspired by skip-gram models [25] which are
widely used to learn word embeddings. In skip-gram models,
we learn an embedding for a word based on its context, i.e.,
the neighboring words that it typically appears with in text
documents. For words which have similar contexts, we learn
similar vector representations. Word2vec [25] is arguably
the most popular skip-gram model, where we train a neural
network for learning the embedding. Specifically, for each
word w as input, the neural network learns to predict the
context of w. Typically, The inputs and context words are
encoded as one-hot vectors. The hidden layer in the neural
network typically has a much smaller number of dimensions
as compared to the input/output layers. The hidden-layer
learns a dense, low-dimensional embedding, where similar
words have similar vector representations. This is because,
words that are similar typically have similar contexts in text
documents and therefore the neural network learns a similar
representation in the hidden layer for such words.

Obj2Vec extends the idea of word embeddings to MLNs.
Specifically, recall that each ground formula of an MLN
represents a clique in the MLN graph. For each activated
ground formula, i.e., formula that represents a relationship
that is supported by the data, we predict a symbol/object
in the formula from other symbols/objects in that same for-
mula. For example, suppose our data shows that Alice and
Bob use the knowledge component Slope-Intercept across
several problems. Then, all ground formulas that contain
either Alice or Bob and the KC Slope-Intercept are acti-
vated. In this case, both Alice and Bob are said to share a
common context. Therefore, we predict the symbol Slope-
Intercept from both Alice and Bob. That is, we have an
autoencoder neural network where the input is a one-hot en-
coding of Alice (or Bob) and the output is a one-hot encod-
ing of Slope-Intercept. The neural network must therefore
learn a common representation for both Alice and Bob since
it needs to make similar predictions for both. Thus, suppose
the hidden-vector representation (or embedding) for Alice is
vAlice and that for Bob is vBob, then vAlice ≈ vBob. Note that
the embedding defines a continuous approximation of sym-
metries in relationships specified in the MLN graph. That is,
the distance between the vectors vAlice and vBob quantifies
the symmetry between Alice and Bob based on relationships
specified in the data.

4.3 Scalable Learning using Symmetries
The embedding vectors from Obj2Vec encodes relational
knowledge from the MLN graph. Given the embedding vec-
tors, we now train an LSTM to predict the student’s strat-
egy. Specifically, let our input instances be x1 . . . xN , where
each xi consists of embeddings for a specific student s solv-
ing problem p, and the outputs are y1 . . . yN , where yi is a
sequence of KCs used by the student s to solve the problem
p. The LSTM training objective is given by,

θ∗ = arg min
θ

1

N

N∑
i=1

L(ψ(xi, θ),yi) (1)

where θ∗ and θ represent the parameters of the LSTM, L is
a loss function and ψ(xi, θ) is the sequence of KCs output

122 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

by the LSTM parameterized by θ for input xi. In general, a
stochastic gradient descent (SGD) procedure can be used to
minimize the objective in Eq. (1). In SGD, we sample the
training instances to approximate the gradient. Typically,
SGD assumes that all training instances are equally impor-
tant, and therefore samples them uniformly. That is, the
probability of sampling a specific instance in the training
data is equal to p = 1

N
. However, this approach is expen-

sive particularly if we repeatedly choose training instances
that are similar to each other. For example, suppose all the
training instances that we sample are likely to encode similar
strategies, then our model may take a long time to under-
stand diverse strategies. Further, since the underlying data
encodes symmetries (from the MLN graph), the information
in one training instance may be very similar to the informa-
tion in another symmetrical instance. Therefore, we force
the model to learn from instances with diverse relationships
by imposing an importance distribution over the training
data. Specifically, training instances with larger importance
are more likely to be chosen as compared to training in-
stances with smaller importance.

In general, to focus the training on more important data in-
stances, we can modify the sampling distribution such that
each instance is sampled with a non-uniform probability.
This approach has been explored in prior work, where we
scale up training by replacing the uniform distribution over
the training instances with an importance distribution that
quantifies how important a specific example is for the train-
ing process [14]. Previous work such as [14, 1, 13], have
focused mainly on approximating importance as a function
of the gradient norm which is hard to compute exactly. In
[14], therefore, the authors propose an approximation to the
gradient norm and use this to target important training ex-
amples. The focus in these approaches is to target the train-
ing examples that are likely to induce changes when updat-
ing the model parameters during backpropagation which can
be shown to translate to a reduced variance in the gradient
estimates. However, in our case, we have more informa-
tion apriori in the embeddings to identify importance of a
training example in terms of their relationships. Specifically,
recall that the embeddings are based on symmetries in the
MLN-graph which encodes relational knowledge. Thus, if
two embeddings are similar, then it means that they share
similar relationships. For example, if two student embed-
dings are similar, then it is likely that for the problems both
students have solved, their strategies use similar KCs. Thus,
using embedding-similarities, our model focuses the training
effort on instances that encode diverse relationships.

4.3.1 Adaptive Importance Weighting
Given the instances {xi,yi}Ni=1, we cluster the instances us-
ing K-Means clustering. Each instance internally has two
components, the student embedding as well as the problem
embedding. Since we want to exploit symmetries in both,

we cluster them along both dimensions. Let {C(i)
s }n1

i=1 and

{C(i)
p }n2

i=1 denote the clusters found by K-Means using the
student embeddings and the problem embeddings respec-
tively, where n1 and n2 are the number of clusters. We
now sample from each cluster to obtain a reduced set of
training examples. For each cluster, we assign an impor-
tance weight to quantify how often we need to sample that
cluster. Let qi represent the importance weight of the i-th

Figure 2: Schematic illustration of our proposed approach.
We learn embeddings based on symmetries in the relational
data. We then learn a one-to-many LSTM to map an in-
put instance to a sequence that represents the strategy by
focusing the training on a sample of the data that reflects
symmetries in the data.

cluster. Ideally, we want to quantify qi based on the symme-
tries encoded within the cluster. Specifically, if the cluster
contains highly symmetric instances, then we require fewer
training examples from the cluster. On the other hand, if
the cluster contains diverse instances, we require more train-
ing samples from that cluster. One way to quantify this is
using traditional clustering metrics such as within-cluster
sum of squared errors (SSE) to measure cohesion within the
cluster. That is, if the embedding vectors are close to each
other within a cluster which implies a small SSE, then it is
indicative that we may need fewer samples from that clus-
ter. However, this approach may not necessarily yield the
best results since both the embeddings and the clustering are
simply approximations to true symmetries in strategies. For
example, suppose the embedding vector for Alice is close to
the vector for Bob, this means that considering all problems,
Alice and Bob are approximately symmetrical. Similarly, if
the vector for problem P1 is close to problem P2, this means
considering all students, P1 and P2 are approximately sim-
ilar. However, this may not always necessarily imply that
the strategy followed by Alice for problem P1 is guaran-
teed to be symmetrical to the strategy followed by Bob for
P2. Therefore, we use an adaptive approach to progressively
learn these symmetries.

For training the model, from each cluster, we may require
varying number of samples. That is, from clusters represent-
ing less symmetrical instances, we may require more samples
while from other clusters that contain more symmetrical in-
stances, we may require fewer samples. To account for this,
we adapt the sampling as follows. We define the initial im-

portance weight for the i-th cluster as q
(0)
i = 1

K
, where K is

the number of clusters. Let θ(j) be the parameters learned
by the LSTM in iteration using samples from the clusters
in iteration j. In iteration j + 1, we update the importance

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 123

weight for the clusters as,

q
(j+1)
i =

1

m

m∑
k=1

L(ψ(x
(i)
k , θ(j)),y

(i)
k) (2)

where x
(i)
k is a training example that consists of a randomly

sampled instance from the i-th cluster. For example, if we

are updating the i-th student cluster, x
(i)
k is a randomly sam-

pled student s from this cluster combined with a problem
p, where p is a problem that has been solved by s. Thus, if
the LSTM in iteration j effectively encodes the symmetries
in the i-th cluster, then the loss in Eq. (2) is likely to be

small. Thus, q
(j+1)
i is small. On the other hand, if q

(j+1)
i is

large, then we need more samples from the i-th cluster since
the LSTM trained using the samples collected until iteration
j does not effectively model the instances in the i-th clus-
ter. The importance weights for the i-th cluster adaptively

change from q
(0)
i q

(1)
i . . . q

(T)
i . Note that each iteration adds

training data to the LSTM and thus effectively increases
training time. However, we do not begin the training from
scratch in each iteration. Specifically, for iteration j+ 1, we
consider the LSTM learned until iteration j as the starting
point. This is similar to pre-training that is common in deep
network training. For iteration j+ 1, the θ(j) represents the
pre-trained parameters of the LSTM. We stop adapting the
weights after a fixed number of iterations depending based
on a cutoff for the training time. Note that more advanced
convergence criteria can be explored here which is a part of
our future work. To summarize, Fig. 2 shows a schematic
representation of our overall model.

5. EXPERIMENTS
5.1 Setup
We evaluate our approach on the publicly available KDD
EDM challenge datasets, Algebra 2008, 2009 and Bridge

to Algebra 2008, 2009 [34] which consists of data collected
from the Mathia platform. Each instance consists of several
discrete steps and each step is mapped to a knowledge com-
ponent which is used to solve that step. The statistics for the
two datasets are shown in Table 1. As shown in the table,
these datasets are quite large with over 850K and 1.6M in-
stances respectively. All our experiments were performed on
a 64GB memory machine with a Nvidia GPU and an Intel
Core-I9 processor. For computing accuracy, in each input
instance, we compute the percentage of total steps where
the true KC matches with the predicted KC. The overall
accuracy is computed as the average accuracy across all in-
stances. To measure variance of our estimates, for each of
the results shown, we run the experiments 10 times and com-
pute the mean accuracy and the standard deviation of the
accuracy. Next, we describe the implementation of different
approaches that we use in our experiments. The code and
data for our implementations are available here2.

5.1.1 Hidden Markov Model
We trained a Gaussian Hidden Markov Model (we refer to
this as HMM) using the sklearn package in python. We set the
number of hidden states to 100 and initialized the Gaussian
emission probabilities with a full covariance matrix so that
it has flexibility to generate varied sequences. We trained
the model using the EM algorithm.
2https://github.com/anupshakya07/SSPM

Dataset Total Instances No. of Students No. of Problems No. of unique KCs

algebra 2008 2009 838728 3310 188368 541
bridge to algebra 2008 2009 1624951 6043 52754 933

Table 1: Details of the dataset.

Learning-rate Optimizer Batch-size Dropout-rate LSTM (hidden state) Obj2Vec embedding

0.001 Adam with CCE-Loss 100 0.3 200 dimensions 300 dimensions

Table 2: Parameters for training.

5.1.2 LSTM and Neuro-symbolic Models
We implemented a one-to-many LSTM using TensorFlow
and Keras. For the pure (or vanilla) LSTM, we encode
inputs as one-hot-encoded vectors representing the studen-
tID, problemHierarchy and problemName. For the Neuro-
symbolic model, we vectorize each instance, using a publicly
available implementation of Obj2Vec [12] using the MLN
formulas as specified in the previous section. Obj2Vec in-
ternally uses Gensim [28] to compute the embeddings for
each symbol in the MLN. We use the embedding vectors of
studentID, problemHierarchy and problemName as input to
the LSTM encoder. Special Start and End tokens are used
in the decoder section of the LSTM to identify the start and
end of a prediction. The decoder unit predicts the KC at
each time step, until an End token is found. To train the
models in a feasible manner, we used a timeout of 3 hours.
Within this timeout period, it was infeasible to use the all
the instances since the training for the LSTM did not con-
verge. Therefore, we randomly sampled instances to train
our model within the specified limit. We refer to the trained
models using random sampling as LSTM-Random and LSTM-

NS-Random for the vanilla LSTM and the Neuro-symbolic
models respectively. We further implemented a stratified-
sampling/group based training on students and problems.
For sampling by student, we selected N students from the
student pool and for each selected student, we sampled M
problems solved by that student. For sampling by problems,
we selected N problems from the problem pool and sampled
M students who have solved those problems. By increasing
values of M and N , we progressively increased the instances
as we show later in the results section. We refer to this as
LSTM-NS-NaiveGroup.

5.1.3 Adaptive Training
We implemented K-Means clustering to cluster the data
based on the embeddings and sampled from these clusters.
We implemented a non-adaptive training model as follows.
We independently clustered the students and the problems
to generate C1 student clusters and C2 problem clusters. We
then sampled one student from each student cluster and one
problem from each problem cluster nearest to the cluster
centers to create a training set of at most C1 ∗C2 instances
that effectively covers all instances in our training data. We
increase the number of clusters progressively starting from
100 student clusters and 1000 problem clusters to increase
the number of instances in training as we show later in our
results. We refer to this approach as LSTM-NS-Clustered.
For our proposed adaptive weighting approach, we sample
each cluster according to an importance weight. In each it-
eration, we update the importance weight of a cluster based
on predictions made on a randomly sampled set of instances
that were not used in training from that cluster. Here, we
used 100 student clusters and 1000 problem clusters and

124 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

(a) Train (b) Test (c) Train

(d) Test (e) Train (f) Test

(g) Train (h) Test

Figure 3: Accuracy results, the shaded portions show the standard deviation and the mean accuracy is plotted in the graphs.
(a)-(d) corresponds to Bridge to Algebra 2008, 2009 results and (e)-(h) corresponds to Algebra 2008, 2009 results.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 125

changed the importance weights of the clusters adaptively.
We refer to this approach as LSTM-NS-Adaptive. The pa-
rameters for training our models are shown in Table 2.

5.2 Results
Fig. 3 compares the accuracy for different approaches. Fig. 3
(a), (b) shows the training and test accuracy respectively as
we vary the number of instances used in training the models
for the Bridge to Algebra 2008, 2009 dataset. As we can
see from these plots, LSTM-NS-Adaptive obtains the highest
accuracy compared to the other methods. HMM (not shown
in figures) gave us an accuracy of less than 5%. This low
accuracy indicates that the strategy for diverse (or asymmet-
ric) groups of students (or problems) cannot be represented
by the same transition matrix. One possible approach that
we will explore in future is to integrate our approach with
HMMs, i.e., we learn an ensemble of HMMs where a HMM
learns strategies for a symmetric group. A naive LSTM
without embedding vectors, i.e., where inputs are a simple
one-hot encoding of student and problems, also yields poor
accuracy (less than 10%). This illustrates the importance of
the latent features in the embedding vectors.

Note that we have only shown the results for the best per-
forming model with latent dimension as 200 (experiments
were carried out with different dimensions). As shown in
Fig. 3 (a), (b), LSTM-NS-Adaptive and LSTM-NS-Clustered

require a small fraction of the number of instances to obtain
accuracy that is higher than LSTM-NS-Random and LSTM-NS-

NaiveGroup. Further, the variance in accuracy of LSTM-NS-
Random and LSTM-NS-NaiveGroup is much higher as shown
by the shaded portion around the line plots compared to
the variance of LSTM-NS-Clustered and LSTM-NS-Adaptive.
LSTM-NS-Adaptive also obtains higher accuracy than LSTM-

NS-Clustered as we adapt the weighting. However, note
that the test accuracy starts to dip after the accuracy hits
a peak value for LSTM-NS-Adaptive. This is because the
adaptive cluster weights may focus too strongly on certain
clusters in the training data which causes the LSTM to over-
fit. Therefore, in practice, we can stop the adaptation based
on a validation set. Further, we can clearly see that exploit-
ing symmetries in training leads to better generalization in
Fig. 3 (b) where we see a significant difference between the
accuracy for LSTM-NS-Adaptive and LSTM-NS-Clustered as
compared to LSTM-NS-NaiveGroup and LSTM-NS-Random at
smaller training sizes. Fig. 3 (c) and (d) also show the us-
ing relational symmetries in training results in a significant
improvement in scalability since it shows that we can train
LSTM-NS-Adaptive and LSTM-NS-Clustered in around half
an hour to achieve an accuracy that is higher than the accu-
racy we obtain even after around 3 hours of training time in
approaches where we do not choose training examples based
on symmetries.

The results for the Algebra 2008, 2009 dataset are similar
to the ones for Bridge to Algebra 2008, 2009. As seen
in Fig. 3 (e) and (f), the LSTM-NS-Adaptive model is the
best performing model in terms of accuracy and it uses a
small number of training instances to achieve this accuracy.
Similar to the previous results, the variance for LSTM-NS-

NaiveGroup and LSTM-NS-Random is much larger than that
for LSTM-NS-Adaptive and LSTM-NS-Clustered. The train-
ing time shown in Fig. 3 (g) and (h) follow a similar pat-

Figure 4: T-SNE visualization of strategies. The hidden
layer of the final step in the LSTM is visualized for 100 test
problems over all students. T-SNE reduces the latent LSTM
vector to 2-D for visualization. Data points close together
correspond to approximately similar strategies.

tern where LSTM-NS-Adaptive and LSTM-NS-Clustered can
achieve high accuracy scores even with short training times
since they take advantage of relational structure in the data.

Table 3 shows the accuracy of predicting strategies for differ-
ent problem units. Specifically, each problem in the dataset
corresponds to a specific unit and we evaluate the models
by testing the trained model on problems specific to a unit.
For lack of space, we have not provided an exhaustive set
of results for all units since there were around 50 units in
the dataset. Instead, we provide accuracy results for the
10 units with largest number of data instances from the
Bridge to Algebra 2008, 2009 dataset. We see that on
majority of the units, LSTM-NS-Adaptive has the best accu-
racy score. LSTM-NS-Clustered is the next best performing
method. The difference in accuracy between units was sig-
nificant in some cases. For instance, LSTM-NS-Adaptive had
a very high accuracy for the unit PERCENT CONVERSION but
a much lower accuracy for ONE-STEP-EQUATIONS and TWO-

STEP-EQUATIONS. This may be due to higher complexity in-
volved in solving equations as compared to problems involv-
ing percent conversion which may add to uncertainty in pre-
dicting strategies.

5.2.1 Structure in Strategies.
Finally, Fig. 4 shows a visualization of the strategies through
a T-SNE plot. Specifically, we wanted to analyze if there are
true patterns in the strategies. To do this, we use the LSTM-

NS-Adaptive model to predict the strategy for 100 problems
across all students. We show the results for Bridge to Al-

126 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Unit
LSTM-NS-Random

(%)
LSTM-NS-NaiveGroup

(%)
LSTM-NS-Clustered

(%)
LSTM-NS-Adaptive

(%)

PROBABILITY 67.7 53.48 77.45 70.73

FRACTION-
OPERATIONS-1 74.95 78.23 84.02 90.49

PERCENT-
CONVERSION 99.01 99.18 88.6 99.5

SCI-
NOTATION 66.67 69.39 69.9 70.16

PICTURE-
ALGEBRA-2 90.23 96.17 93.29 95.17

RATIONAL-
NUMBER-

OPERATIONS
30.76 41.85 40.28 66.13

INTEGERS 87.47 78.83 93.52 96.78

ORDER-OF-
OPERATIONS 60.03 50.35 45.53 69.43

ONE-STEP-
EQUATIONS 66.6 53.36 58.86 58.06

TWO-STEP-
EQUATIONS 63.13 63.03 59.42 61.5

Table 3: Comparing accuracy on test sets corresponding to different units in Bridge to Algebra 2008, 2009.

Figure 5: Strategies for different problems that have similar
vector representations.

gebra 2008, 2009. We use the hidden-vector from the last
step of the LSTM as a representation of the strategy for a
specific input instance. That is, this vector encodes infor-
mation summarizing all the steps (or the full strategy) that
the student performs when solving the input instance. We
then plot this using the T-SNE plot that reduces the high-
dimensional representation to a 2-D representation. Fig. 4
shows that there is a separation of different groups of strate-
gies. The presence of such clusters of strategies indicates
that there are indeed structures in student strategies and
the representation learned by LSTM-NS-Adaptive discovers
these symmetric structures.

Fig. 5 and 6 show two examples where the vectors repre-
senting the strategies are close to each other. Fig. 5 shows
a case where the two strategies correspond to two different
problems, one of which is related to proper fractions and the
other to improper fractions. However, at a high level, these
strategies are similar which is reflected in their similar vec-
tor representations. Another example shown in Fig. 6 shows
a case where the two partial strategies shown correspond to
the same problem are inversions of each other. That is, some
of the steps in the two cases are performed in opposite or-
ders. However, at a high-level, the strategies have symmetry
which is reflected in their vector representations.

Figure 6: Strategies for the same problem that have similar
vector representations.

6. CONCLUSION
Predicting student strategies in problem solving can make
AISs more engaging to students since the system can adapt
itself to suit the student’s strategy. In this paper, we de-
scribed a Machine Learning approach to predict student
strategies from large scale, structured student interaction
data. Specifically, we adopted a Neuro-Symbolic approach,
i.e., we combined LSTMs with a relational symbolic model
to perform learning more efficiently. To do this, we encoded
relationships in the data in the language of Markov Logic
and based on relational symmetries in the data, we picked
training instances are diverse. Doing this allowed us to learn
our model to recognize diverse strategies at a smaller com-
putational cost. Our evaluation on the KDD EDM chal-
lenge datasets show that our approach generalizes better
and has significantly smaller training times as compared to
approaches that do not exploit relational symmetries during
learning. In future, we will extend our approach to datasets
with finer-grained learner information and also develop joint
inference models connecting mastery and strategies.

7. ACKNOWLEDGEMENTS
This research was sponsored by the National Science Foun-
dation under the awards The Learner Data Institute (award
#1934745) and NSF IIS award #2008812. The opinions,
findings, and results are solely the authors’ and do not re-
flect those of the funding agencies.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 127

References
[1] G. Alain, A. Lamb, C. Sankar, A. C. Courville, and Y. Ben-

gio. Variance reduction in SGD by distributed importance
sampling. CoRR, abs/1511.06481, 2015.

[2] J. Austin. How to Do Things with Words. Oxford Press,
1962.

[3] M. Bannert, P. Reimann, and C. Sonnenberg. Process
mining techniques for analysing patterns and strategies in
students’self-regulated learning. Metacognition and Learn-
ing, 9(2):161–185, 2014.

[4] A. T. Corbett. Cognitive computer tutors: Solving the two-
sigma problem. In Proceedings of the 8th International Con-
ference on User Modeling 2001, page 137–147, 2001.

[5] E. D. Cubuk, B. Zoph, D. Mané, V. Vasudevan, and Q. V.
Le. Autoaugment: Learning augmentation strategies from
data. In CVPR, pages 113–123, 2019.

[6] P. T. Darga, M. H. Liffiton, K. A. Sakallah, and I. L. Markov.
Exploiting structure in symmetry detection for cnf. In Pro-
ceedings of the 41st Annual Design Automation Conference,
page 530–534, 2004.

[7] A. S. d’Avila Garcez, M. Gori, L. C. Lamb, L. Serafini,
M. Spranger, and S. N. Tran. Neural-symbolic computing:
An effective methodology for principled integration of ma-
chine learning and reasoning. FLAP, 6(4):611–632, 2019.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F.
Li. Imagenet: A large-scale hierarchical image database. In
CVPR, pages 248–255. IEEE Computer Society, 2009.

[9] P. Domingos and D. Lowd. Markov Logic: An Interface
Layer for Artificial Intelligence. Morgan & Claypool, San
Rafael, CA, 2009.

[10] A. Grover and J. Leskovec. Node2vec: Scalable feature learn-
ing for networks. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, page 855–864, 2016.

[11] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

[12] M. M. Islam, S. Sarkhel, and D. Venugopal. On lifted in-
ference using neural embeddings. In AAAI Conference on
Artificial Intelligence, pages 7916–7923, 2019.

[13] T. B. Johnson and C. Guestrin. Training deep models faster
with robust, approximate importance sampling. In Proceed-
ings of the 32nd International Conference on Neural Infor-
mation Processing Systems, page 7276–7286, 2018.

[14] A. Katharopoulos and F. Fleuret. Not all samples are created
equal: Deep learning with importance sampling. In Pro-
ceedings of the 35th International Conference on Machine
Learning, pages 2525–2534, 2018.

[15] T. Khot, N. Balasubramanian, E. Gribkoff, A. Sabharwal,
P. Clark, and O. Etzioni. Exploring markov logic networks
for question answering. In EMNLP, pages 685–694, 2015.

[16] J. S. Kinnebrew and G. Biswas. Identifying learning be-
haviors by contextualizing differential sequence mining with
action features and performance evolution. In International
Conference on Educational Data Mining, pages 57–64, 2012.

[17] J. S. Kinnebrew, K. Loretz, and G. Biswas. A contextu-
alized, differential sequence mining method to derive stu-
dents’ learning behavior patterns. Journal of Educational
Data Mining, 5(1):190–219, 2013.

[18] J. S. Kinnebrew, J. R. Segedy, and G. Biswas. Integrating
model-driven and data-driven techniques for analyzing learn-
ing behaviors in open-ended learning environments. IEEE
Trans. Learn. Technol., 10(2):140–153, 2017.

[19] T. N. Kipf and M. Welling. Semi-supervised classification
with graph convolutional networks. In 5th International
Conference on Learning Representations, ICLR 2017, 2017.

[20] K. R. Koedinger, A. T. Corbett, and C. Perfetti. The
knowledge-learning-instruction framework: Bridging the
science-practice chasm to enhance robust student learning.
Cogn. Sci., 36(5):757–798, 2012.

[21] D. Koller and N. Friedman. Probabilistic Graphical Models:
Principles and Techniques. MIT Press, 2009.

[22] L. C. Lamb, A. S. d’Avila Garcez, M. Gori, M. O. R. Prates,
P. H. C. Avelar, and M. Y. Vardi. Graph neural networks
meet neural-symbolic computing: A survey and perspective.
In IJCAI, pages 4877–4884, 2020.

[23] K. Leelawong and G. Biswas. Designing learning by teaching
agents: The betty’s brain system. Int. J. Artif. Intell. Ed.,
18(3):181–208, Aug. 2008.

[24] N. Maharjan, D. Gautam, and V. Rus. Assessing free student
answers in tutorial dialogues using LSTM models. In Arti-
ficial Intelligence in Education - 19th International Confer-
ence, AIED, pages 193–198. Springer, 2018.

[25] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and phrases
and their compositionality. In Neural Information Process-
ing Systems, pages 3111–3119, 2013.

[26] D. M. Morrison, B. Nye, V. Rus, S. Snyder, J. Boller, and
K. B. Miller. Tutorial dialogue modes in a large corpus of
online tutoring transcripts. In Artificial Intelligence in Edu-
cation - 17th International Conference, volume 9112, pages
722–725. Springer, 2015.

[27] M. Niepert. Markov chains on orbits of permutation groups.
In UAI, pages 624–633. AUAI Press, 2012.

[28] R. Řeh̊uřek and P. Sojka. Software Framework for Topic
Modelling with Large Corpora. In Proceedings of the LREC
2010 Workshop on New Challenges for NLP Frameworks,
pages 45–50, 2010.

[29] S. Ritter. Communication, cooperation and competition
among multiple tutor agents. In Artificial Intelligence in
Education: Knowledge and media in learning systems, pages
31–38, 1997.

[30] S. Ritter, R. Baker, V. Rus, and G. Biswas. Identifying
strategies in student problem solving. Design Recommenda-
tions for Intelligent Tutoring Systems, 7:59–70, 2019.

[31] V. Rus, S. K. D’Mello, X. Hu, and A. C. Graesser. Recent
advances in conversational intelligent tutoring systems. AI
Magazine, 34(3):42–54, 2013.

[32] V. Rus, N. Maharjan, L. J. Tamang, M. Yudelson, S. R.
Berman, S. E. Fancsali, and S. Ritter. An analysis of hu-
man tutors’ actions in tutorial dialogues. In Proceedings
of the Thirtieth International Florida Artificial Intelligence
Research Society Conference, FLAIRS, pages 122–127, 2017.

[33] J. R. Searle. Speech Acts: An Essay in the Philosophy of
Language. Cambridge University Press, 1969.

[34] J. Stamper, A. Niculescu-Mizil, S. Ritter, G. Gordon, and
K. Koedinger. Algebra I 2008-2009. Challenge data set from
KDD Cup 2010 Educational Data Mining Challenge. Tech-
nical report, 2010.

128 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

[35] R. Stewart and S. Ermon. Label-free supervision of neural
networks with physics and domain knowledge. In S. P. Singh
and S. Markovitch, editors, AAAI, pages 2576–2582, 2017.

[36] D. Venugopal and V. Rus. Joint inference for mode iden-
tification in tutorial dialogues. In COLING 2016, 26th In-
ternational Conference on Computational Linguistics, pages
2000–2011. ACL, 2016.

[37] J. Wong, M. Khalil, M. Baars, B. D. Koning, and F. Paas.
Exploring sequences of learner activities in relation to self-
regulated learning in a massive open online course. Comput-
ers & Education, 140:103595, 2019.

[38] K. Yi, J. Wu, C. Gan, A. Torralba, P. Kohli, and J. B.
Tenenbaum. Neural-Symbolic VQA: Disentangling Reason-
ing from Vision and Language Understanding. In Advances
in Neural Information Processing Systems (NIPS), 2018.

[39] Y. You, J. Hseu, C. Ying, J. Demmel, K. Keutzer, and C.-J.
Hsieh. Large-batch training for lstm and beyond. In Proceed-
ings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 129

Improving Automated Scoring of Student Open Responses
in Mathematics

Sami Baral
Worcester Polytechnic Institute

sbaral@wpi.edu

Anthony F Botelho
Worcester Polytechnic Institute

abotelho@wpi.edu

John A Erickson
Worcester Polytechnic Institute

jaerickson@wpi.edu

Priyanka Benachamardi
Worcester Polytechnic Institute
pbenachamardi@wpi.edu

Neil T Heffernan
Worcester Polytechnic Institute

nth@wpi.edu

ABSTRACT
Open-ended questions in mathematics are commonly used
by teachers to monitor and assess students’ deeper concep-
tual understanding of content. Student answers to these
types of questions often exhibit a combination of language,
drawn diagrams and tables, and mathematical formulas and
expressions that supply teachers with insight into the pro-
cesses and strategies adopted by students in formulating
their responses. While these student responses help to in-
form teachers on their students’ progress and understand-
ing, the amount of variation in these responses can make it
difficult and time-consuming for teachers to manually read,
assess, and provide feedback to student work. For this rea-
son, there has been a growing body of research in devel-
oping AI-powered tools to support teachers in this task.
This work seeks to build upon this prior research by in-
troducing a model that is designed to help automate the
assessment of student responses to open-ended questions
in mathematics through sentence-level semantic represen-
tations. We find that this model outperforms previously-
published benchmarks across three different metrics. With
this model, we conduct an error analysis to examine char-
acteristics of student responses that may be considered to
further improve the method.

Keywords
Open responses, Automated scoring, Natural Language Pro-
cessing, Sentence-BERT, Mathematics

1. INTRODUCTION
In many K-12 mathematics classrooms, teachers have come
to rely on the use of open-ended questions to assess their
students’ knowledge and understanding of assigned content.
Unlike close-ended problems, where there is a single or finite-

number of accepted answers (e.g. a multiple-choice ques-
tion), open-ended questions allow students to justify and
express their thinking processes through language; it is com-
mon that students may combine language, images, tables, or
other mathematical expressions, equations, and terminolo-
gies to illustrate their knowledge and understanding of the
material.

While the use of open-ended questions is not found only in
mathematical contexts, aspects of this domain make it par-
ticularly difficult to develop teacher supports for these types
of question. Within computer-based learning platforms, re-
search across fields of study have led to the development of
a multitude of teacher-augmentation tools [1] and method-
ologies that leverage machine learning techniques. Among
these supports, automated methods have been developed
and deployed to help teachers assess student essays and short
answers in several domains [25, 2, 3, 15]. As was highlighted
in [9], the arduous task of manually assessing and providing
feedback to student open-ended work may explain the de-
cline of open-ended questions assigned over the course of a
school year (e.g. Figure 1 which shows the number of open
response questions assigned within the ASSISTments learn-
ing platform, aggregated over the last 10 years). In addition
to this decline, as was also reported in [9], very few student
responses to open-ended questions are ever scored by the
teacher, with even fewer ever receiving feedback. Figure 2
illustrates this, as well as the subsequent plot of these values
from February through October of 2020, during COVID-19
induced remote learning.

There are several notable challenges in developing automated
supports to help teachers assess student open-ended work.
It is also the case that student responses to open-ended
questions differ in the context of mathematical and non-
mathematical domains. One such difference, for example, is
that many non-mathematical domains such as history or lan-
guage arts, student “open-ended” essays and short answers
are often comprised of multiple sentences and paragraphs
[21, 25, 5, 8], whereas in mathematics, responses are gener-
ally shorter (maybe one or two, often incomplete sentences)
[14, 9] that combine language with mathematical symbols,
expressions, or other visuals. Aside from these response-level
characteristics, however, several other student-, problem-,
and even teacher-level factors can make the development of

Sami Baral, Anthony F Botelho, John A Erickson, Priyanka Be-
nachamardi and Neil T Heffernan “Improving Automated Scoring of
Student Open Responses in Mathematics”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 130-138.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

130 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 1: The number of open response problems assigned
over the course of a school year with the ASSISTments learn-
ing platform, aggregated from 2010-2020.

these automated supports more challenging; consider, for
example, the variation in how teachers approach the assess-
ment of student answers, using different inherent rubrics and
pedagogical philosophies [15, 17, 22, 23].

While the examination of student answers to open-ended
poses challenges in developing automated assessment sup-
ports for teachers, prior work has shown promise in this con-
text [9]. In that work, the authors explore several machine-
learning and natural language processing (NLP) methods to
predict teacher-provided scores to open-ended problems, of-
fering an evaluation method and benchmark of comparison
for similar methods1

In this paper, we build upon prior research presented in
[9] to develop and evaluate an automated assessment model
of student open responses in mathematics. We introduce a
modeling approach using a sentence-level semantic represen-
tation of the student open responses to the existing models
through Sentence-BERT (SBERT;[20]), using a novel refor-
mulation of the “score prediction” problem. We compare
our method to the previously-developed scoring models from
[9], and subsequently apply an exploratory error analysis to
identify areas of improvement that may be addressed by fu-
ture iterations of these methods. Toward this, we seek to
address the following research questions:

1. How does a model utilizing Sentence-BERT compare
to previously developed approaches in predicting teacher
given assessment scores for student response to open-
ended problems?

2. What are the characteristics of student answers that
correlate with errors observed in our Sentence-BERT
model?

3. Which of student-, problem-, or teacher-level charac-
teristics most explain the variance of error observed

1The data and evaluation code from [9] was used in this work
with permission from the original authors and in compliance
with IRB.

Figure 2: The percent of student open-response answers that
were scored and given written feedback by a teacher before
and during remote learning in response to COVID-19.

when the model is applied in real learning environ-
ments?

2. BACKGROUND
There have been several works related to the automated
scoring of open-ended responses in the past. Most of such
works utilize a combination of Natural language Processing
(NLP) and machine learning techniques of ranging complex-
ity to process open-ended responses. Much of the existing
work in this area has been applied in the context of non-
mathematical content. Developments such as C-rater[15] is
a well-cited approach that uses such methodologies to es-
timate the assessed correctness of answers to short answer
questions. This method uses grading rubrics and breaks
down scores into multiple knowledge components to eval-
uate each student response. Other works [2, 3] have im-
plemented clustering techniques to grade short textual an-
swers to questions. More recently, studies have based their
approach around deep learning methods, which have led
to promising improvements over previous benchmarked re-
sults [21, 25]. While most of these works have been on
non-mathematical domains, studies like [14] explore mathe-
matical language processing using clustering techniques and
the bag-of-words approaches for automated assessment of
open-ended response in mathematics. However, this study
only considers the mathematical content, discarding the non
mathematical texts.

Many of these more-recent studies have utilized publicly-
released embedding methods trained on large corpuses of
data, including those of Word2Vec [18] and GloVe [19], to
model the semantic meaning of words. However, word em-
beddings capture limited information about the semantics of
a sentence, where the sequence of words may have large im-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 131

Figure 3: Example of an open ended question taken from
openupresources.org

pacts on interpreted meaning. To capture the contextual in-
formation within sentences and further increase the general-
ization capabilities of NLP embedding methods, techniques
such as Universal Sentence Encoders [4] and Sentence-BERT
[20] generate a single embedding that is designed to be rep-
resentative of the entire sentence while preserving the se-
mantic and contextual information of the words within such
sentences.

One of the most commonly-used NLP embedding methods
in recent years has been that of Bidirectional Encoder Rep-
resentations from Transformers (BERT, [7]). Building upon
and distinguishing itself from other methods such as GloVe,
the BERT method is designed to incorporate contextual in-
formation into generated embeddings to distinguish words
that may have the same spelling but different meanings de-
pending on usage (e.g. the word “bank” referring either
a financial institution or perhaps a slope of land near a
river); BERT has been shown to outperform many other
approaches in a number of NLP tasks including, as is im-
portant for this work, semantic textual similarity (STS) [7].
Sentence-BERT, or SBERT [20], modifies the pre-trained
BERT network to reduce the computational overhead of
BERT in order to also generate a sentence-level embedding
of a given series of words.

2.1 A Benchmark Comparison
In this work, we are exploring the use of this SBERT method
to build upon the prior benchmark set in Erickson et al.,
2020 ([9]) in assessing student answers to open-ended prob-
lems in mathematics. In that work, the authors discuss the
challenges in developing models to predict teacher assigned

grades for student open responses in mathematics, using a
dataset of authentic student responses within the ASSIST-
ments [11] learning platform. Erickson et al. compares 6
models utilizing machine learning (e.g. random forest and
XGBoost [6]) and more complex deep learning (e.g. LSTMs
[12]) techniques, combined with natural language process-
ing algorithms to assess responses that are combinations of
mathematical expressions and non-mathematical text. For
the feature extraction process from the open response data,
the study uses the Stanford Tokenizer [16] combined with
Global Vectors for Word Representation (GloVe) [19].

3. METHODOLOGY
In this study, we build upon the work of [9] to develop and
evaluate an automated scoring model based on the SBERT
methodology; as will be detailed further, we refer to this
model as the SBERT-Canberra model throughout the re-
mainder of this work. Then, in a secondary analysis, we
utilize real data collected from a pilot study of our model
running within a computer-based tool that provides teach-
ers with suggested scores to explore the limitations of our
approach through an exploratory error analysis. Our data
and approach to these analyses are described in this section.

3.1 Dataset
In this work, we utilize two datasets2 of student answers to
open-ended questions paired with teacher-provided assess-
ment scores. An example of one of these open-ended math-
ematics questions is shown in Figure 3. In this example,
students are not asked to find the area of the triangles, but
rather explain in their own words what one of the figures is
illustrating an approach to solving the problem.

For the development of our SBERT-Canberra model, we use
the dataset (and evaluation code) from the Erickson et al.
study [9]. This dataset is comprised of student answers to
open response questions within the ASSISTments[11] online
learning platform; the dataset consists of 150,477 total stu-
dent responses from 27,199 unique students to 2,076 unique
problems graded by 970 unique teachers. As was performed
in [9], we omit any case where a student response contained
no characters (e.g. an empty response or one containing only
whitespace characters), or contained nothing but an image
(cases where there was an image accompanied by other text
or non-whitespace characters is not omitted). The removal
of such empty responses resulted in the dataset dropping to
141,612 graded student responses, 25,069 unique students,
2,042 unique problems, and 891 unique teachers. Within this
data, each response is accompanied by a teacher-provided as-
sessment score that follows an integer ordinal 5-point scale
from 0-4; a “4” here is synonymous with a student receiving
a 100% for the response.

Table 1 lists several student answers contained within the
dataset, chosen from across multiple problems for illustra-
tive purposes. As was noted in the introduction, these re-
sponses highlight some of the challenges of this modeling

2The data and code used in this work cannot be publicly
posted due to the potential existence of personally identi-
fiable information contained within student open response
answers. In support of open science, this may be sharable
through an IRB approval process. Inqueries should be di-
rected to the trailing author of this work.

132 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 1: Sample student responses (selected from across multiple problems for illustrative purposes) and the teacher provided
scores on a scale of 0 to 4 to the open ended questions in mathematics.

Sample Responses Score

y=4x-2 4

I counted 4

I multiply -3 and 2x 2

diagram is on paper 3

Yes Because Y=mx+b 0

I got 2/9 by dividing by 4 3

I was not in class for this so I don’t know. 1

I went multiplication first then division then multiplication 3

I got this by doing 45/75. I knew that 75 + 75 = 150

and 150 goes into 450 3 times and 3 x 2 = 6. So the answer is 6.
4

You would need an example and then you would need to draw a line

and find out far away your shape is from the line and mark it and then do that

on the rest of your lines on the shape

4

The distributive property means that a number outside a set of parentheses

can be multiplied by each of the numbers within the parentheses and the answer

will be the same. It works because it would be the same as multiplying each number

by the number outside the parentheses and then adding them together.

1

task. First, the length of responses varies greatly between
students as well as across problems. In addition to this, the
interleaving of mathematics and linguistic text likely makes
it difficult for pre-trained embedding models to interpret.
Similarly, the variation in mathematical representation (i.e.
the use of the term “dividing” rather than the “/” operator),
may lead to confusion in a machine learning model trained
over such data. As the mathematical variables are also rep-
resented by recognized english characters (e.g. “y”), it may
be difficult to derive semantic meaning for such tokens. It is
for this reason that we hypothesize that a contextual-based
embedding approach, such as BERT and SBERT, may be
superior to traditional embedding methods that do not ac-
count for context within the sentence. Finally, the noise in
ground truth labels become evident from the table. The stu-
dent who answered “I counted” but still received full credit,
for example, exemplifies that some teachers may score stu-
dents based on completion or other factors unrelated to their
demonstration of understanding or mastery. This is not to
say that any one scoring method is more correct or valid
than another, but rather that there is likely large variation
in these labels, making it difficult for machine learning mod-
els to effectively learn associations between student answers
and these scores in some cases.

The second dataset used in this work is comprised of stu-
dent responses collected during the pilot testing of a teacher-
augmentation tool designed to aid in the assessment of stu-
dent open response answers within ASSISTments [11]. This
tool, called QUICK-Comments, used our developed model
to predict the scores of student answers to open response
questions in mathematics. Models were trained over the
same open educational resource (OER) curricula from which
the problems used in the first dataset were collected and
produce estimates using the same grading scale as the first
study. During the pilot study, 12 middle school mathematics
teachers were given access to the tool and compensated for
their time to assign, assess, and provide feedback to student

open ended work during the Spring and Fall of 2020. This
dataset consists of 30,371 graded student open responses to
915 unique open response problems solved by 1,628 unique
students.

3.2 SBERT-Canberra Model
The model developed for this work follows a 2-stage process
to generate estimates of teacher-assigned scores for a set of
given student answers. In approaching this model, we pro-
pose a reframing of the initial problem. In [9], the problem
was posed as a traditional supervised learning problem; in
other words, given a set of student answers A, train a model
f(.) such that Y = f(A). Instead, we propose a more unsu-
pervised approach as depicted in Figure 4. If we have a set
of historic answers A0...n−1, and want to predict the score
of a new answer An, a logical choice of score may be that
corresponding with the historic answer that is most similar
to the new answer An. In this way, the problem is posed as a
similarity ranking problem rather than a supervised learning
problem.

There are several potential advantages to this approach.
First, when utilizing a pre-trained model of SBERT, de-
scribed in Section 2, no actual model training is necessary (so
long as a reasonable distance metric is identified). Second,
as SBERT is optimized for contextual similarity tasks, the
problem is better suited to utilize the embedding method’s
strengths. Finally, in a practical sense, as no model train-
ing is necessary (beyond utilizing the pre-trained embedding
model), such a model can be more easily applied at scale,
requiring just a pool of historic answers to compare against.
We hypothesize that this method may also require fewer ex-
ample answers than traditional machine learning methods
as well, but this claim is not deeply explored in this current
work.

In applying this method, the set of historic answers A0...n−1

are fed through the pre-trained SBERT model to produce

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 133

Table 2: Features for the Linear Model of Error analysis of SBERT-Canberra model
Title Description Mean

Answer Length Length of the answer 10.39
Average character per word the average number of characters per words 3.54

Numbers count total number of digits 3.54
Operators count total mathematical symbols in the response 1.47
Equation percent percentage of mathematical equations in answer 0.27

Presence of Images Indicator of presence of images in the answer 0.15

Figure 4: The design of the SBERT-Canberra method, that
suggests scores based on similarity between the answers.

a 768-valued feature vector for each answer; these vectors
are then stored for later access.. Given a new answer, An,
a feature vector is similarly produced. In stage two of our
method, all pairwise comparisons are then made between
An and A0...n−1, calculating Canberra distance [13] for each
pair. Canberra distance, as opposed to other common dis-
tance metrics such as Euclidean or Cosine similarity, is a
distance metric calculated over ranked lists. With this met-
ric calculated for all pairs, the A0...n−1 historic answers are
then min-sorted to identify the most similar historic answer,
As, to our new answer An. The score associated with As is
then used as the prediction for the given answer An. The
design to this approach is outlined in Figure 4.

As an additional component of this model, a “fallback” con-
dition is implemented to be able to produce scoring esti-
mates for problems where there are no historic answers on
which to compare. In this case, we train a single multi-
nomial regression model over all known answers, utilizing 1)
the number of words in the answer and 2) the average length
of each word in the answer; this model produces a probabil-

ity distribution over 5 categorical labels (observing the 0-4
grading scale as a multinomial regression formulation). This
one model is trained over all known answers and used then
only in the case that no historic answers are available for
the SBERT-Canberra model. This component is viewed as
being part of our SBERT-Canberra approach.

3.3 Evaluation of SBERT
To evaluate our SBERT-Canberra scoring method, we utilize
the same data and code presented in [9]. In that paper, the
authors present the usage of a 2-parameter rasch model [24]
(equivalent to a traditional item response theory, or IRT,
model). The purpose of this model is to learn a separate
parameter for each student and problem presented, repre-
senting student ability and problem difficulty, respectively.
The intuition behind the use of this model is to evaluate
an NLP automated scoring model based solely on its abil-
ity to interpret the words in each student answer. As the
score of each answer is likely correlated with student ability
(or knowledge) and problem difficulty (e.g. easy problems
are likely to exhibit higher scores), such a model provides a
reasonable minimum baseline of comparison. By adding a
model’s scoring estimates as covariates to the rasch model
and then comparing the performance of such a model to the
rasch model without covariates, we are able to observe the
true value-added performance of the NLP scoring model.

Following the same procedure as conducted in [9], we are
able to directly compare our Sentence-BERT method to
those presented in that prior work. The models are trained
and evaluated using a 10-fold student-level cross validation,
and model performance is compared based on 3 performance
metrics. First, treating the label as multinomial, rather
than ordinal, AUC is caluclated using the method described
in [10]. Second, the root mean squared error (RMSE), is
calucalted over the ordinal prediction and label. Finally, a
multi-class kappa is calculated, again using the multinomial
label representation. The multinomial representations were
argued to be appropriate due to the likely non-linear distri-
bution of scores, while then RMSE provides insight into a
more linear assumption of the data. Arguably an additional
rank-based metric such as Spearman’s Rho would also be a
suitable metric of comparison, but is not included for more
direct comparisons to the previous work.

3.4 Approach to Error Analysis of the SBERT-
Canberra Method

In evaluating the SBERT-Canberra method, it is impor-
tant to explore limitations of the approach in order to iden-
tify where the model does well and where it may yet im-
prove through future iteration. As such, we also conduct
an exploratory error analysis of the method using the data

134 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 3: Rasch Model Performance compared to the models developed in Erickson et al.[9]

Model AUC RMSE Kappa

Current Paper

Rasch* + SBERT-Canberra 0.856 0.577 0.476

Erickson et al. 2020

Baseline Rasch 0.827 0.709 0.370

Rasch + Number of Words 0.829 0.696 0.382

Rasch* + Random Forest 0.850 0.615 0.430

Rasch* + XGBoost 0.832 0.679 0.390

Rasch* + LSTM 0.841 0.637 0.415

*These rasch models also included the number of words.

collected from the QUICK-Comments pilot study. Toward
this, we observe two regression models that observe absolute
model error as a dependent variable. By exploring charac-
teristics of student answers in the context of this model-
ing error, we can observe which aspects correlate most with
higher prediction error. Similarly, we apply then a multi-
level model to observe which of student-, problem-, and
teacher-level identifiers most explains any observed model-
ing error.

3.4.1 Uni-level Linear Model
The uni-level linear model is based on student answer level
characteristics. The student answer level characteristics are
comprised of a set of six answer-level features extracted from
the student open response data. These features are listed in
Table 2. In calculating these features, the answer is first to-
kenized using the Stanford NLP tokenizer[16], dividing each
textual answer into smaller tokens. For example, if the re-
sponse to a particular problem is “I got 2/9 by dividing by
4”, a simple tokenizer splits this response text by spaces
which would give the list of tokens as: (“I”, “got”, “2/9”,
“by”, “dividing”, “by”, “4”). Then from the tokenized data,
we separate the tokens consisting of either digits or math-
ematical symbols. The number of such tokens is divided
by the total number of tokens to calculate the equation per-
centage3. The average equation percentage calculated by the
procedure mentioned above is 27% across the entire dataset.
For calculating the length of the answer text, we count the
total words in the text simply by splitting them by space.
The average length of answers across the dataset is 10.39.
Similarly, within each response, the number of numeric dig-
its (i.e. Numbers count) and number of operator characters
(i.e. Operators count) are counted independent of the to-
kens.

ASSISTments[11] allows students to upload images as part
of the response to open-ended questions; this is most com-
monly a picture taken of work done on paper. The response
text in such cases includes the URL of the uploaded image to
the system. About 15% of the total responses in the dataset
contains images. Some of such responses are entirely images,
whereas in others, some text is provided as context. Since
these scoring models are not yet designed to support im-
ages, we hypothesize that the images’ presence contributes

3We acknowledge that this feature is a misnomer as it in-
cludes numeric terms, operators, and expressions as well as
equations, but chose this feature name for sake of brevity.

significantly to the modeling error.

A simple linear regression model is fit to the pilot study
student answers, observing absolute model error as the de-
pendent variable. This value is calculated by simply sub-
tracting the predicted score from the teacher-provided label
(as a linear label), and taking the absolute value. In this
case, a value of 0 would indicate a correct estimate, while
higher values (up to 4) represent greater prediction error;
we do not differentiate between under- and over-predicting
in this analysis.

3.4.2 Multi-level Linear Model
The uni-level linear model observes features that describe
characteristics of the student responses, but as described
in Section 3.1, modeling error may not be confined to just
characteristics of the responses themselves. It is very likely
that modeling error can be attributable to other external
factors at the student-, problem-, and teacher-levels.

To explore this possibility, we apply a multi-level linear
model observing the student answer characteristics as fixed
effects, and student, problem, and teacher identifiers as three
separate level-2 random effect variables. As it is the case
that the same student may write multiple answers within our
data, this structure is similar to that of a repeated-measure
analysis.

abs(model error) =Answer Covariates

+ (1|student identifier)

+ (1|problem identifier)

+ (1|teacher identifier)

(1)

Again observing absolute prediction error as the dependent
variable, this analysis will be able to answer 1) whether the
majority of explainable variance exists at the student-answer
level or at a higher level, and 2) which of student-, problem-
, and teacher-level identifiers most explains variance in our
modeling error (e.g. which of these identifiers is most corre-
lated with the error). The equation, expressed as its R code
formulation, is reported as Equation 1.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 135

Table 4: The resulting model coefficients for the uni-level linear regression model and random and fixed effects of the multi-level
linear model of absolute error.

Uni-level Linear Multi-level Linear

Variance Std. Dev. Variance Std. Dev.

Random Effects

Student — — 0.034 0.185

Problem — — 0.313 0.559

Teacher — — 0.048 0.851

B Std. Error B Std. Error

Fixed Effects

Intercept 0.581*** 0.017 0.772*** 0.070

Answer Length -0.008*** 0.001 -0.009*** 0.001

Avg. Word Length -0.014*** 0.003 -0.013** 0.003

Numbers Count <0.001 <0.001 <0.001 <0.001

Operators Count -0.006*** 0.001 0.002 0.001

Equation Percent 0.443*** 0.018 0.080*** 0.022

Presence of Images 2.248*** 0.021 1.858*** 0.028

*p <0.05 **p<0.01 ***p<0.001

4. RESULTS
4.1 SBERT Model
The results of the SBERT model is compared directly to the
results from Erickson et al.[9] as shown in Table 3. As can
be seen in that table, the SBERT-Canberra method outper-
formed the baseline as well as all previous models across all
three metrics. While the difference in AUC values between
our method and the previous best approach is notably small,
the difference in both RMSE and Kappa appears to be com-
paratively larger. To interpret these two metrics, these re-
sults suggest that we should expect teachers to agree with
our method’s estimates 47% of the time accounting for ran-
dom chance, and is likely to be wrong by just over half a
grade-point on average. This also does suggest, however,
that there is still plenty of room for improvement of these
models.

What is also worth noting from the results of Erickson et
al. [9], is the high performance of the baseline rasch model.
This emphasizes the difficulty of this NLP modeling task
in that the baseline model is using nothing other than the
student and problem identifiers; it is able to seemingly pre-
dict teacher-provided scores with an AUC above 0.8 without
using any part of the student response; there is only a 0.03
AUC difference between that baseline model and our current
proposed method. This suggests that these external factors
may be explaining a large portion of the student scores, and
may subsequently explain a large portion of our prediction
error.

4.2 Error Analysis of SBERT
In exploring this further, the results of the error analysis of
the SBERT-Canberra method are presented in Table 4. It
is found that the uni-level linear model explains 38.6% of
the variance of the outcome as given by r-squared. Out of
the six student answer-level features, nearly all were found
to be statistically reliable predictors of model error; in veri-
fying these results, it was found that all included covariates
exhibited inter-correlations less than 0.3 (suggesting a mod-

erately low impact of multicollinearity potentially skewing
the interpretation of these results). In close examination of
the coefficients of these features, however, despite being sta-
tistically reliable, many are found to be close to 0, suggesting
a very little meaningful correlation with the modeling error.
This is not the case, however, for two of these variables,
Equation Percent and Presence of Images, we see a more
meaningful coefficient. This suggests, due to the direction
of this value, that the presence of mathematical elements as
well as the presence of images (unsurprisingly) both corre-
late with higher prediction error. It further follows, then,
that further improvements to the SBERT-Canberra method
should explore methods of better representing and account-
ing for these mathematical terms in student responses; sim-
ilarly, though likely much more difficult, incorporating an
aspect of image recognition could be another area worth ex-
ploring.

In regard to the multi-level linear model, accounting for
student, problem, and teacher identifiers each as random
effects, we see that the inclusion of these level-2 factors ex-
plains some of the impact of the fixed effects (also in Ta-
ble 4). Here it is found that all but two of the fixed effects
are statistically reliable. It is also found that the magnitude
of the coefficients for the Equation Percent and Presence of
Images is also reduced. This suggests that, perhaps, the
student and/or problem identifiers partially explain these
correlations (some problems may be more likely to have re-
sponses with images or mathematical terms in them, or some
students may be more inclined to use images or such terms
more than others). What is worth noting, however, is that
it was found that the level-2 variables account for 55.5% of
the variance of the outcome. This suggests that a majority
of the modeling error can be explained by these factors that
are external to the student answers.

Looking at the variance of the random effects, it can be seen
that the problem level identifiers contribute most in terms
of explaining the variance of the outcome. It is certainly the

136 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

case that the SBERT-Canberra method is accounting for
each individual problem in producing its estimates (e.g. it
only observes historic answers within each unique problem),
but it would seem that there are other problem-level factors
that are not being accounted for within this approach.

5. LIMITATIONS AND FUTURE WORK
In regard to our approach as well as in light of our findings,
there are several limitations and opportunities for future
directions. While the SBERT-Canberra approach, utiliz-
ing sentence-level embeddings, outperforms the previously-
developed models in predicting scores for open responses,
the difference in AUC is rather small; the fact that the
method produces a classification (as opposed to a probabil-
ity as is often the case with such models) likely impacts its
AUC performance. The manner in which the method makes
its prediction can be considered a greedy approach in that
only the closest historic answer is used to predict the score.
Instead, a weighted vote approach using all historic scores
(or a subset of similar scores above an identified threshold)
may improve the model by allowing for some degree of un-
certainty. Similarly, the use of the word count model as
a fallback may further be improved; while it was the case
that there were very few instances of problems not having
enough data within the cross validation, improving this fall-
back method may help to improve the model when applied
in practical settings where the “cold start” problem is more
prevalent; as the method currently relies heavily on having
a sufficiently-sized pool of human-scored historic answers,
future research can focus on utilizing unlabeled student an-
swers or exploring other unsupervised methods that may
additionally support these methods in cases where labeled
data is scarce.

While the SBERT-Canberra model performed arguably well,
the error analysis revealed several areas where this approach,
as well as others, may focus in future works. Most no-
tably, as highlighted, the use of mathematical expressions
and terms were found to be correlated with higher error;
improving the representation of such elements can certainly
be addressed in future work. A limitation of this, however, is
that both models left variance unexplained in the outcome.
We chose to look at these factors based on hypotheses and
anecdotal observations, but there may be other large factors
that can explain more of the error that we are seeing. Sub-
sequent works could conduct more thorough surveys of both
answer-level and higher-level factors. Future works can also
explore additional model structures and language features
that may lead to improvements to performance. The anal-
yses presented in this work, however, can act as a baseline
to further evaluate if future iterations of our approach truly
improve upon these identified areas.

It is also the case that this work focuses only on models that
predict numeric assessment scores, while we strongly believe
that it will be equally, if not more important to additionally
develop methods to suggest or generate directed feedback
for for these student answers; teachers use textual feedback
messages to offer constructive guidance to students, but it
is often a very time-consuming task to write these messages
for each students’ answer. We believe that the SBERT-
Canberra approach can be extended to support this task
as well, where such a model may be able to recommend

feedback to new student answers that has been previously
given to an identified similar historic answer. Future work is
intended to explore these methods further for such feedback-
suggestion tasks.

6. CONCLUSION
In this paper, we have presented a novel approach in address-
ing and formulation of the problem of automating the assess-
ment of student open-ended work. We have illustrated that
our SBERT-Canberra method outperformed a previously-
established benchmark, but still exhibits areas where it may
be able to improve. Through the conducted error analy-
sis, we have identified areas where more advanced meth-
ods of image processing and natural language processing (or
math language processing), may lead to further improve-
ments. With all of this, however, it was also identified that
problem-level features appear to be most impactful in ex-
plaining the variance of modeling error; this is particularly
surprising as variations in teacher grading were previously
hypothesized to be a larger factor in this context.

With the findings from the study, our goal next is to use
them to overcome the limitations mentioned above and guide
our focus on improving the methods for assessment of open-
ended questions in mathematics. It is the goal of this work
to act as a step toward building better teacher supports for
these types of open-ended problems, as well as provide others
with guidance toward the same or similar goals.

7. ACKNOWLEDGMENTS
We thank multiple NSF grants (e.g., 1917808, 1931523,
1940236, 1917713, 1903304, 1822830, 1759229, 1724889,
1636782, 1535428, 1440753, 1316736, 1252297, 1109483,
& DRL-1031398), as well as the US Department of Ed-
ucation for three different funding lines; the Institute for
Education Sciences (e.g., IES R305A170137, R305A170243,
R305A180401, R305A120125, R305A180401, &
R305C100024), the Graduate Assistance in Areas of Na-
tional Need program (e.g., P200A180088 & P200A150306
), and the EIR. We also thank the Office of Naval Research
(N00014-18-1-2768) and finally Schmidt Futures we well as
a second anonymous philanthropy.

8. REFERENCES
[1] P. An, K. Holstein, B. d’Anjou, B. Eggen, and

S. Bakker. The ta framework: Designing real-time
teaching augmentation for k-12 classrooms. In
Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, pages 1–17, 2020.

[2] S. Basu, C. Jacobs, and L. Vanderwende.
Powergrading: a clustering approach to amplify
human effort for short answer grading. Transactions of
the Association for Computational Linguistics,
1:391–402, 2013.

[3] M. Brooks, S. Basu, C. Jacobs, and L. Vanderwende.
Divide and correct: Using clusters to grade short
answers at scale. In Proceedings of the first ACM
conference on Learning@ scale conference, pages
89–98, 2014.

[4] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco,
R. S. John, N. Constant, M. Guajardo-Céspedes,

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 137

S. Yuan, C. Tar, et al. Universal sentence encoder.
arXiv preprint arXiv:1803.11175, 2018.

[5] H. Chen and B. He. Automated essay scoring by
maximizing human-machine agreement. In Proceedings
of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 1741–1752, 2013.

[6] T. Chen and C. Guestrin. Xgboost: A scalable tree
boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery
and data mining, pages 785–794, 2016.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[8] S. Dikli. An overview of automated scoring of essays.
The Journal of Technology, Learning and Assessment,
5(1), 2006.

[9] J. A. Erickson, A. F. Botelho, S. McAteer,
A. Varatharaj, and N. T. Heffernan. The automated
grading of student open responses in mathematics. In
Proceedings of the Tenth International Conference on
Learning Analytics & Knowledge, pages 615–624, 2020.

[10] D. J. Hand and R. J. Till. A simple generalisation of
the area under the roc curve for multiple class
classification problems. Machine learning,
45(2):171–186, 2001.

[11] N. T. Heffernan and C. L. Heffernan. The
ASSISTments ecosystem: Building a platform that
brings scientists and teachers together for minimally
invasive research on human learning and teaching.
International Journal of Artificial Intelligence in
Education, 24(4):470–497, 2014.

[12] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[13] G. Jurman, S. Riccadonna, R. Visintainer, and
C. Furlanello. Canberra distance on ranked lists. In
Proceedings of advances in ranking NIPS 09 workshop,
pages 22–27. Citeseer, 2009.

[14] A. S. Lan, D. Vats, A. E. Waters, and R. G. Baraniuk.
Mathematical language processing: Automatic grading
and feedback for open response mathematical
questions. In Proceedings of the Second (2015) ACM
Conference on Learning@ Scale, pages 167–176, 2015.

[15] C. Leacock and M. Chodorow. C-rater: Automated
scoring of short-answer questions. Computers and the
Humanities, 37(4):389–405, 2003.

[16] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel,
S. Bethard, and D. McClosky. The stanford corenlp
natural language processing toolkit. In Proceedings of
52nd annual meeting of the association for
computational linguistics: system demonstrations,
pages 55–60, 2014.

[17] S. L. Meier, B. S. Rich, and J. Cady. Teachers’ use of
rubrics to score non-traditional tasks: Factors related
to discrepancies in scoring. Assessment in Education,
13(01):69–95, 2006.

[18] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

[19] J. Pennington, R. Socher, and C. Manning. Global
vectors for word representation. 2015.

[20] N. Reimers and I. Gurevych. Sentence-bert: Sentence
embeddings using siamese bert-networks. arXiv
preprint arXiv:1908.10084, 2019.

[21] B. Riordan, A. Horbach, A. Cahill, T. Zesch, and
C. Lee. Investigating neural architectures for short
answer scoring. In Proceedings of the 12th Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 159–168, 2017.

[22] J. Z. Sukkarieh, S. G. Pulman, and N. Raikes.
Automarking: using computational linguistics to score
short ,free- text responses. 2003.

[23] D. R. Thompson and S. L. Senk. Implementing the
assessment standards for school mathematics: Using
rubrics in high school mathematics courses. The
Mathematics Teacher, 91(9):786–793, 1998.

[24] B. D. Wright. Solving measurement problems with the
rasch model. Journal of educational measurement,
pages 97–116, 1977.

[25] S. Zhao, Y. Zhang, X. Xiong, A. Botelho, and
N. Heffernan. A memory-augmented neural model for
automated grading. In Proceedings of the fourth
(2017) ACM conference on learning@ scale, pages
189–192, 2017.

138 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Topic Transitions in MOOCs: An Analysis Study

Fareedah ALSaad
∗

University of Illinois at
Urbana-Champaign

alsaad2@illinois.edu

Thomas Reichel
University of Illinois at
Urbana-Champaign

reichel3@illinois.edu

Yuchen Zeng
University of Illinois at
Urbana-Champaign

yuchenz8@illinois.edu

Abdussalam Alawini
University of Illinois at
Urbana-Champaign

alawini@illinois.edu

ABSTRACT
With the emergence of MOOCs, it becomes crucial to automate the
process of a course design to accommodate the diverse learning
demands of students. Modeling the relationships among educational
topics is a fundamental first step for automating curriculum planning
and course design. In this paper, we introduce Topic Transition Map
(TTM), a general structure that models the content of MOOCs at
the topic level. TTMs capture the various ways instructors organize
topics in their courses bymodeling the transitions between topics. We
investigate and analyze four different methods that can be exploited
to learn the Topic Transition Map: 1) Pairwise Constrained K-Means,
2) Mixture of Unigram Language Model, 3) Hidden Markov Mixture
Model, and 4) Structural Topic Model. To evaluated the effectiveness
of these methods, we qualitatively compare the topic transition maps
generated by each model and investigate how the Topic Transition
Map can be used in three sequencing tasks: 1) determining the
correct sequence, 2) predicting the next lecture, and 3) predicting the
sequence of lectures. Our evaluation revealed that PCK-Means has
the highest performance in the first task, HMMULM outperforms
other methods in task 2, while there is no winning in task 3.

Keywords
Topic Transition Map, Topic Transition, Word Distribution, Mixture
Model, Hidden Markov Model, Clusters, Sequencing Tasks.

1. INTRODUCTION
For many decades, the process of creating courses has been a manual
task that needs to be carefully managed by instructors and experts.
However,with the recent advances in technologies and the emergence
of Massive Open Online Courses (MOOCs), it becomes critical
to automate the process of course design to accommodate the
heterogeneity of online students and their diverse needs. According
to [32], learning on demand is considered one factor that causes
∗King AbdulAziz University, Jeddah, Saudi Arabia.

the high dropout rate in MOOCs. Learners have different learning
demands depending on their motivations and goals. For instance,
learners may seek knowledge about an interdisciplinary domain
and hence need to learn modules from courses in several areas.
This problem requires adopting a model in which MOOCs are used
as modularized resources, rather than a set of pre-designed static
courses. A crucial first step toward developing such a model is the
automation of course plan design by sequencing lectures among
different courses.

The main principle in designing the curriculum of any course is to
organize course content according to some relations between topics.
For instance, to help students to learn the materials, instructors
carefully organize lectures as a sequence, based on the difficulty
levels of topics [10, 27, 1] as well as the dependency relations
between topics [11, 21, 23, 1]. The fundamental sequential structure
of a course design is to place topics that are easy or prerequisite
in earlier lectures while more advanced and dependent topics are
taught in later lectures [1]. Consequently, modeling the relatedness
among educational topics is a very crucial first step for automating
curriculum planning and course design.

Modeling the content structure of MOOCs has recently attracted
much research. Most of the current research has focused on modeling
the prerequisite relationships between courses [29, 15], between lec-
tures or segments of lectures [6, 7], or between concepts discussed
within or across courses [3, 14, 17, 29, 15]. Using concepts to model
MOOCs’ content can be easily generalized to capture the relations
in the concept space. However, because concepts are represented
as keywords or phrases, it is hard to capture the different levels of
granularity between lectures and courses. In addition, modeling pre-
requisite relationships between concepts cannot capture the various
learning paths accommodated by different courses.

In this paper, we introduce the Topic Transition Map, a general
structure that models the educational materials at the topic level.
We model a course as a set of topics, and each topic is a set of
concepts. Modeling content at the topic level is a more natural way
to design custom course plans. We can think of a course as a path in
the generalized Topic Transition Map. Thus, designing a new course
becomes a task of identifying a path in the Topic Transition Map.
Additionally, we investigate four methods that can be leveraged to
construct the Topic Transition Map: Pairwise Constrained K-Means
(PCK-Means) [2],Mixture of Unigram Language Model (MULM),
Hidden Markov Mixture Model (HMMULM), and Structural Topic

Fareedah Alsaad, Thomas Reichel, Yuchen Zeng and Abdussalam Alaw-
ini “Topic Transitions in MOOCs: An Analysis Study”. 2021. In: Pro-
ceedings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 139-149.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 139

Model (strTM) [24]. We analyze and compare the Topic Transition
Maps learned by these methods by studying how to exploit the
Topic Transition Map in three sequencing tasks: 1) determining the
correct sequence, 2) predicting the next lecture, and 3) predicting
the sequence of lectures. To the best of our knowledge, we are the
first work to introduce and investigate the use of Topic Transition
Maps in modeling MOOCs content and sequencing lectures.

To evaluate the effectiveness of allmethods,we use realMOOCs from
three different domains: Python, Structural Query Language, and
Machine Learning Clustering algorithms. Our evaluation revealed
that while the PCK-Means has the highest performance on the task
of finding the best sequence from a list of possible sequences, the
HMMULM achieves the best performance on the task that predicts
the next lecture in the sequence. Additionally, all methods perform
similarly in the task of predicting the whole sequence with MULM
has the lowest performance as it sometimes cannot predict the whole
sequence. In addition to comparing various models in sequencing
tasks, we visualize the Topic Transition Maps generated by different
methods to qualitatively compare the resulted topic transition maps.
We found that PCK-Means has extracted more meaningful topics
with the best word distributions that clearly explain each topic.

The rest of the paper is organized as follows. In section 2, we present
some of the related work. Section 3, defines the topics and topic
transitions and states some applications of the topic transition maps.
In section 4, we formally define our problem before describing the
four different methods we exploit to construct the topic transition
maps in section 5. Section 6 elaborates on our approach for the
evaluation and the analysis of various models. Finally, we conclude
our work in section 7.

2. RELATED WORK
Most of the work that models the content of MOOCs has focused
on capturing the prerequisite relationships using different levels of
granularity such as courses [29, 15], lectures or segments of lectures
[6, 7], or concepts discussed within or across courses [3, 14, 17, 29,
15]. Modeling the relations between courses, lectures, or seqments of
lectures is restricted to these units and cannot be generalized. While
modeling dependency relations between concepts is considered a
general structure that captures the required concepts before learning
any concept, prerequisite relations cannot model the various learning
paths accommodated by different courses. ALSaad and Alawini [2]
have addressed this problem by proposing the precedence graph
that captures the similarities and variations of learning paths among
different courses. We build on their work and introduce the Topic
Transition Map that maps each lecture to a topic and leverages the
sequences of lectures among courses to capture the topic transitions
pattern and hence the likelihood of such a transition. The main
difference between the Topic Transition Map and the precedence
graph is that Topic Transition Map models self transitions between a
topic and itself and also captures how likely each topic to be the first
topic in courses. While ALSaad andAlawini [2] have investigated the
use of PCK-Means in modeling the precedence graph, in this paper,
we explore three more methods in addition to PCK-Mean, namely
MULM, HMMULM, and strTM, for modeling Topic Transition
Maps. We also examine the impact of the learned topic transition
maps on three different sequencing tasks. We believe that we are the
first work that examines the use of topic transitions modeled from
existing MOOCs to learn how to sequence new courses.

Some research has investigated the use of prerequisite relations
between concepts to construct and sequence learning units [1, 16].

Both studies [1, 16] have developed supervised approaches based
on feature engineering that extracted features from some external
knowledge such as Wikipedia [1] and DBpedia [16] to infer the
prerequisite relations between concepts. Our work is different as
instead of modeling the prerequisite relations between concepts
using supervised approaches, we model the Topic Transition Map or
the various paths between topics using unsupervised methods, where
a topic is a set of concepts. In addition, our methods rely only on the
content of MOOCs without using any external knowledge. While
Agrawal et al. [1] used the concept dependency graph to organize
concepts to construct learning units and then sequence the learning
units, we use lectures from existing MOOCs and investigate the
impact of the learned transitions between topics to sequence lectures.

The most relevant research to our study is the work by Shen et al. [22].
Shen et al. [22] have proposed a method for linking similar courses
to construct a map of lectures connected by two types of relations:
similar and prerequisite. The constructed map only captures the
similarity and prerequisite relations between certain units (lectures)
and is not generalized to other lectures and thus cannot be used to
predict the sequence of new lectures. In this paper, we map lectures
to topics and construct the Topic Transition Map that depicts the
precedence relations between topics and hence not tied with any
specific units. Having a generalized Topic Transition Map can help
in finding the sequence of lectures or predict the next lecture in the
sequence as we discuss in section 6.2.

Another related line of research is the work on structural topic
modeling by the Natural Language Processing, NLP, Community.
In NLP, topic transitions have been used to model latent topical
structures inside documents by assuming each sentence is generated
from a topic where topics satisfy the first order Markov property
[12, 25].WhileGruber et al. [12] onlymodeled the transition between
topics as a binary relation (either remain on the current topic or
shift to a new topic with a certain probability), Wang et al. [25]
have developed a Structural Topic Model called strTM to explicitly
model the topic transitions as probabilities that capture how likely
one transits from a topic to another. Modeling transitions have been
used in many applications related to NLP such as sentence ordering
[25], topic segmentation [9], and multi-documents summarization
[28]. In this paper, we investigate the use of topic transitions on
modeling the topical structures in MOOCs by assuming a lectures
is generated by one topic and use the sequences of lectures to learn
the transitions between topics. We also explore the impact of using
the Topic Transition Map to sequence lectures in three different
sequencing tasks.

3. TOPIC TRANSITIONS
Before defining the topic transitions, it is important to briefly explain
our representation of topics used in this paper. Similar to the definition
of topics in the literature of the topic modeling research [5, 13],
we define a topic as a distribution of concepts where concepts
with higher probabilities tend to explain or characterize the topic.
Concepts can be represented as words or phrases of words [3, 18, 26].
Each lecture is a composition of concepts and hence can be mapped
to some topics. Depending on the length of lectures, lectures can
cover one or more topics. Longer lectures usually cover more topics
than shorter lectures. For example, traditional university lectures
tend to be more elaborated and have longer duration than MOOCs
lectures, which are usually concise and short in length. Therefore,
the number of topics per lecture discussed in MOOCs is less than
that of traditional university lectures. In this paper, since our work
focus on learning the topic transitions from MOOCs, we assume

140 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

that each lecture is mapped only to one topic. This assumption is
reasonable as lectures in MOOCs are concise and short in length.
Having this assumption is also very useful as it helps in leveraging
the sequences of lectures to learn the relations between topics.

A topic transition captures the precedence relations between topics.
In other words, it means how likely instructors move or transit from
one topic to another in the course delivery. It models the various
ways of how instructors dynamically assemble concepts from the
concepts space in order to construct the study plan of their courses.
For instance, some instructors decide to start their Python course by
explaining the topics: data types, conditional statements, loops, and
then reading and writing from files. Other instructors may choose a
different order, such as conditional statements, loops, string, and then
lists. By leveraging the sequences of lectures from multiple courses,
we can infer the latent topics of each lecture and hence model the
common transition patters shared by multiple courses as well as the
variations of different transitions or paths. To determine the strength
or how common that transition is, each transition is attached with a
score or a probability. For example, given the topics in Computer
Science Programming: “Conditional Statements”, “Loops”, and
“Arrays”. It is more likely that instructors will explain the topic
“Conditional Statements” immediately before the topic “Loops” and
thus the topic transition score between them would be higher than
the transition score between the topic “Conditional Statements” and
the topic “Arrays”.

Learning the topic transitions can be the initial block to facilitate
several useful applications that can support modern learning. For
instance, we can use the Topic Transition Map to extract the most
common paths of topics in the field or explain the topic space in
the current MOOC offerings. Learners can use transition maps to
get more insights about the structure of topics in MOOC offerings.
On the other hand, instructors can use these maps to improve their
course offerings by examining the topic structure of related courses.

One important application of the Topic Transition Map is to support
automatic curriculum planning and course design. Since courses
consist of topics, learning the relations between topics would be the
initial step to understand how likely instructors transit from one topic
to another. We can think of a course as a path in the generalized
Topic Transition Map. Thus, designing a new course becomes a task
of identifying a path in the Topic Transition Map. In this paper, we
analyze how can we use the learned topic transitions to sequence
new courses.

4. PROBLEM FORMULATION
In this section, we formally formulate our problem. Given a set of
courses C = {X1, X2, X3, . . . , XN} from a particular domain,
where N is the total number of courses. We assume that courses in
C are similar and hence have some content overlaps between them
and also have the same difficulty level (e.g. Beginner, Medium, or
Advance). A courseXi is represented as an ordered list of lectures
Xi = [xi1, xi2, . . . , xi|Xi|], where |Xi| is the total number of
lectures in the courseXi. Each lecture is a composition of concepts
represented in some narrative way. In this paper, we assume a
concept as a single word and hence lectures are represented using a
bag-of-word representation.

Given the number of topicsM , our goal is to map each lecture to a
topic and leverage the sequences of lectures to learn topic transitions
and construct the Topic Transition Map. The Topic Transition Map
is represented as a matrixA, whereA ∈ RM×M . Each entry aij of

the matrix A represents the likelihood of the transition from topic i
to topic j. It reflect how common the precedence relation from topic
i to j in the dataset courses. In addition to the Topic Transition Map,
we also aim to learn the probability of each topic being an initial
topic in courses. We denote the initial probability of each topic as
a vector π, where π ∈ RM . Along with the Topic Transition Map
and the initial probability of each topic, it is important to model
the word distribution of each topic, which represented as a matrix
B ∈ RM×V , where V is the vocabulary size.

5. MODELING TOPIC TRANSITIONS
In this section, we explain the four different models we exploit to
capture topics and Topic Transition Maps.

5.1 Pairwise Constrained K-Means
PCK-Means clustering algorithm [4] is a variation of the standard
K-Means algorithm. To cluster instances, PCK-Means incorporates
distance between points as well as pairwise constraints to guide the
clustering process. Since the purpose of clustering is to capture topic
transition patterns across courses, using PCK-Means helps to restrict
the clustering process to cluster lectures across courses instead
of within courses [2]. To guide the clustering, PCK-Means uses
two types of constraints: Must-Link and Cannot-Link. Must-Link
constraint determines lecture pairs that need to be clustered together,
while Cannot-Link constraint specifies pairs that should not be
grouped into the same cluster. To find the clusters, PCK-Means uses
an objective function that minimizes both: 1) the distance between
points (lectures) and the cluster centroid, and 2) the penalty costs of
violating the constraints. For more information about PCK-Menas,
please refer to [4].

Similar to ALSaad and Alawini [2], we use PCK-Means to build the
Topic Transition MapA. We first construct the list of Must-Link and
Cannot-Link constraints to clusters lectures based on their content
similarity into clusters. We assume that each cluster forms a topic
and hence we need to learn the word distributions of each topic
along with topic transitions. We link clusters by using the precedence
relations between adjacent lectures and capture the strength of the
transition by accumulating the frequency of transitions. To find
the word distribution of each cluster or topic in the matrix B, we
accumulate the vector representations of each lecture that belongs to
the same cluster. For more information, please see [2].

In order to estimate the initial probability π for each topic, we simply
count the number of times of each topic being the first topic in the
set of courses C. Then we do normalization to find the probability.

5.2 Mixture of Unigram Language Models
To capture topics, we use a mixture model ofM unigram language
models (MULM) with a bag-of-words representation. The mixture
model is a generative probabilistic model that has been used for
documents clustering. Thus, it will help in clustering lectures based
on their topics, where each lecture belongs only to one cluster or one
topic. In the mixture model, to generate a document, first one needs
to choose the topic of the document according to the probability
P (θi), whereM is the number of topics, and then generate all the
words in the document using the probability P (w|θi). According
to the model, the likelihoods of a document x and the corpus C are
calculated as follows:

P (x|λ) =

M∑
i=1

P (θi)
∏
w∈V

P (w|θi)c(w,x) (1)

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 141

P (C|λ) =

N∏
j=1

P (xj |λ) (2)

To estimate the model parameters λ = ({θi}, P (θi)), where θi is the
word distribution of topic i from the matrix B , we use Expectation-
Maximization algorithm [8] to find the parameters that maximize
the likelihood of the data:

λ̄ = arg max
λ

P (C|λ) (3)

After learning the parameters, we map each lecture to a cluster or
topic by maximizing the following equation:

c = arg max
zi

P (x|zi) (4)

Using the mixture model can help in clustering lectures according
to their topics, however; it will not capture the transition patterns
between topics or the initial probability of each topic. Therefore,
similar to the PCK-Means method, we leverage the sequences of
lectures to calculate the score of topic transitions and construct the
Topic Transition MapA. Likewise, we count the number of times
courses start with each topic and normalize the results to model the
initial probability π.

5.3 Hidden Markov Mixture Models
Instead of separately clustering lectures and then learning the transi-
tions between them, using a Hidden Markov Model would allow us
to jointly learn the word distributions of each topic (B), the transition
probabilities between topics (A) as well as the initial probability of
each topic (π).

The HiddenMarkovModel, HMM, is a probabilistic graphical model
that describes the process of generating a sequence of observable
events according to some hidden factors [20]. It simulates how the
real world sequence data is generated from hidden states. Particularly,
it consists of two stochastic processes: 1) invisible process, and 2)
visible process [30]. In HMM, invisible process consists of hidden
states whereas visible process is observed sequence of symbols that
are drawn from the probability distributions of the hidden states.
Figure 1 demonstrates the HMMmodel. As you can see from Figure
1, each observable event in the sequence are generated from a hidden
state and observations are conditionally independent given the hidden
state. You can also notice that the hidden states form a Markov chain
where each hidden state depends only on the previous state such as
Zt+1 depends on Zt.

To control the process of generating the observed sequences from
hidden states, HMM has three parameters: π, A, and B. The first
parameter,π = π1, π2, . . . , πM , is the initial probability distribution
of each hidden state. The parameter π determines the probability
of the Markov chain to start at each state and hence controls which
state can be chosen as an initial state for the observed sequence.
The second parameter, A ∈ RM×M , is the transition probability
matrix that specifies how likely the model can transit from one state
to another, denoted by P (Zt+1|Zt) in Figure 1. The third parameter,
B ∈ RM×V , is the emission probability matrix, where V is the total
number of distinct symbols. It determines the likelihood of each
state to produce each symbol, denoted by P (Xt+1|Zt+1) in Figure
1. For example, to generate a sentence, a sequence of words would
be drawn from the HMM model according to the three parameters
π,A, and B.

In MOOCs, we only observe courses, where courses are sequence of
lectures, while the topics of lectures and the transition between them
are invisible or latent. Therefore, HMM would be a great model to
simulate the generation process of courses and hence infer the latent
states that contribute in the evolution of these lectures. In HMM,
each hidden state generates only one symbol or word (see Figure
1). As our goal is to capture topic transitions using sequences of
lectures as observed data, we map each lecture to a topic and assume
each hidden state generates a lecture instead of a word. Our revised
HMM assumes that each hidden state produces one lecture where
each lecture is a bag-of-words. We ignore the sequence of words
in lectures since the order of the words would not contribute to
capturing the topic of each lecture. Figure 2 depicts the HMMULM
utilized to capture the content of MOOCs.

In order to capture both the lectures’ topics and the transitions be-
tween them, we combine the mixture model (MULM) with HMM,
and we call the new model Hidden Markov Mixture of Unigram
Language Model (HMMULM). To do that, we assume the Marko-
vian assumption between topics where in the generation process,
the choice of the next topic depends only on the current topic. Even
though, the choice of the topic in the course delivery depends on the
previous topics discussed so far, this simplified assumption makes
sense due to the locality of reference property [1] of course design.
Based on this property, when an instructor designs a course, a depen-
dent lecture should appear as soon as possible after the prerequisite
lecture to reduce students comprehension burden. Therefore, assum-
ing the dependency between adjacent lectures not only simplifies
the model but also aids in capturing the transitions between highly
related topics. By combining the HMM with mixture model the
likelihood of generating a course is as follow:

P (X|λ) =
∑
all Z

P (Z|λ)P (X|Z, λ)

=
∑
all Z

P (z1)P (x1|z1)

T∏
t=2

P (zt|zt−1)P (xt|zt)

=
∑
all Z

P (z1)
∏
w∈V

P (w|z1)c(w,x1)

T∏
t=2

P (zt|zt−1)
∏
w∈V

P (w|zt)c(w,xt)

=

M∑
i=1

M∑
j=1

π(z1 = si)
∏
w∈V

B(z1 = si, w)c(w,x1)

T∏
t=2

A(zt−1 = si, zt = sj)
∏
w∈V

B(zt = sj , w)c(w,xt)

(5)

To estimate the HMMULM parameters λ = (π,A,B), we use a
modified version of Baum-Welch algorithm in order to model the
observation sequences as a multidimensional categorical events.
Following the work [19], we derived the equations of E-step and
M-step to train the model and infer the transition probability between
topics. In the E-step, we use the equations:

142 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

z1 zt zt+1 zT

x1 xt xt+1 xT

t t+1
Time

Sequence of observation

Sequence of states

Emission probability

Transition probability
P(zt+1 | zt)

P(xt+1 | zt+1)

Figure 1: The graphical model of HMM.

z1 zt zt+1 zT

t t+1
Time

Sequence of
observation

Sequence of states

Emission probability

Transition probability

w|d1|

x1

w1 w|dt|

xt

w1 w|dt+1|

xt+1

w1 w|dT|

xT

w1

Figure 2: The graphical model of HMMULM used to
model the content of MOOCs.

γt(i) = P (zt = si|X,λ)

=
αt(i)βt(i)∑M
j=1 αt(j)βt(j)

(6)

ξt(i, j) = P (zt = si, zt+1 = sj |X,λ)

=
αt(i)Aijβt+1(j)

∏
w∈V Bj(w)c(w,xt+1)∑M

i=1

∑M
j=1 αt(i)Aijβt+1(j)

∏
w∈V Bj(w)c(w,xt+1)

(7)

In the M-step, the following equations are used to choose the pa-
rameters that maximize the likelihood of the observed sequence of
lectures:

π(i) = γ1(i) (8)

Aij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

(9)

Bi(w) =

∑T
t=1 γt(i)c(w, xt)∑V

v=1

∑T
t=1 γt(i)c(v, xt)

(10)

For more information about Baum-Welch algorithm, please see [20].
It is clear that the E-step and M-step equations are very similar
to the standard HMM except that instead of emitting one symbol,
HMMULM emits one lecture represented as a bag-of-words.

5.4 Structural Topic Model
The Structural Topic Model (StrTM) [25] is another probabilistic
graphical model that functions very similar to HMMULM. It has
been used to model the latent topical structures inside documents.
Like HMMULM, it models topics and their transitions as hidden
states that emit lectures as bags-of-words. Unlike HMMULM, strTM
assumes each lecture as a mixture of content topics and functional

Table 1: The dataset utilized in the experiment.

Domain # of Courses # of Lectures Avg # of Lectures
Python 21 460 22
SQL 15 247 16
ML 10 99 10

topic. Functional topic, denoted by zB , is used to filter out document-
independent words that models the corpus background (or general
terms) [31]. Each word in the lecture is either generated by one of
the content topics or the functional topic:

w ∼ θP (w|β, zi) + (1− θ)P (w|β, zB) (11)

where θ is the controlling parameter. According to strTM, the
probability of lecture xj being generated by some topic zi is:

P (xj |zi) =
∏
w∈V

[θP (w|β, zi)+(1−θ)P (w|β, zB)]c(w,xj) (12)

Another difference between strTM and HMMULM, is that strTM
assumes the transition probabilitiesA and the emission probability
B are drawn from Multinomial distributions and use the conju-
gate Dirichlet distribution to impose a prior on the Multinomial
distributions:

αz ∼ Dir(η) (13)

βz ∼ Dir(γ) (14)

Where η and γ are the concentration hyper parameters that control
sparsity of αz and βz respectively.

To estimate the parameters of strTM, we use the expectation-
maximization algorithm as described by [25]. For more information
about strTM, please refer to [25].

6. EVALUATION
In this section, we first demonstrate our dataset and the parameters
settings. Second,we compare differentmodels by studying the impact
of topic transitions learned from various models on three lecture
sequencing tasks. Finally, we qualitatively evaluate the topics and
their transitions.

6.1 Dataset and Parameters Settings
We collected our dataset from real online courses using various
MOOC platforms and in three different domains: Python, Structural
Query Language (SQL), and Machine Learning Clustering algo-
rithms (ML). Table 1 presents the statistic of the dataset. We use
75% of the data as a training set and 25% as a test set. To choose the
number of topics in each domain, we manually inspected the dataset
to choose the number of topics. The number of topics for Python,
SQL, and ML were set to 13, 10, and 9 respectively.

Each course in the dataset is represented as a sequence of lecture video
transcripts. We preprocess lecture transcripts by eliminating stop
words and some rare terms. After cleaning the data, we constructed
the bag-of-word vector representations of all lectures. We only use
lecture transcripts to represent lectures; therefore, we only need to
set two thresholds (K1 andK2) of the PCK-Means method in order
to select the list of Must-link and Cannot-link constraints. Since
we do not have labeled data we chose the thresholds that maximize

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 143

Table 2: The performance of Task 1: Finding the correct sequence using the permutation method. It is clear that PCK-Means
achieves the highest performance.

Dataset Measures Methods
Cosine PCK-Means MULM HMMULM strTM

Python

kendall’s τ(σ) 0.60 0.73 0.49 0.66 0.54
Dir-P 0.37 0.50 0.43 0.28 0.31
Undir-P 0.52 0.56 0.50 0.44 0.35
Lev-Sim 0.60 0.63 0.45 0.49 0.50

SQL

kendall’s τ(σ) 0.58 0.59 0.58 0.55 0.41
Dir-P 0.46 0.43 0.40 0.36 0.41
Undir-P 0.67 0.58 0.49 0.44 0.41
Lev-Sim 0.53 0.57 0.54 0.49 0.37

ML

kendall’s τ(σ) 0.68 0.75 0.63 0.58 0.64
Dir-P 0.34 0.34 0.44 0.34 0.43
Undir-P 0.52 0.52 0.57 0.41 0.53
Lev-Sim 0.61 0.65 0.55 0.43 0.53

the Silhouette Coefficient clustering measure using the training data.
We set K1 = 0.55 and K2 = 0.004 for Python, K1 = 0.8 and
K2 = 0.01 for SQL, and K1 = 0.55 and K2 = 0.01 for ML. To
set the hyper parameters of strTM method, we used a grid search
and chose the values that maximize the likelihood of the training
data. We set θ = 0.2, γ = 0.3, and η = 0.6 for Python, θ = 0.1,
γ = 0.3, and η = 0.1 for SQL, and θ = 0.1, γ = 0.1, and η = 0.6
for ML.

6.2 Sequencing Tasks
In this experiment, our goal is to compare the topic transitions
modeled by different methods in three tasks: 1) Finding the correct
sequence of lectures, 2) Predicting the next lecture given a sequence
of lectures, and 3) Predicting the sequence of a list of lectures
where the first lecture in the sequence is given. An example of real
application for task 1 and task 3 is designing a new course plan by
sequencing lectures before delivering them to students. However,
task 1 and task 3 exploit two different techniques to find the sequence.
In contrast, task 2 can be applied to recommend the next lecture to
learners to customize their learning based on the history of lectures
they already watched. In the evaluation, the purpose of each task is to
compare different methods and evaluate the ability of the parameters
(A,B, and π) of each model to find the correct sequence in the three
different tasks.

6.2.1 Evaluation Measures
To compare different models, we use the sequences of lectures
from courses in the test set as the ground truth sequences and
exploit different measures to do the evaluation. First, we follow
Wang et al. [25] and use kendall’s τ(σ). Kendall’s τ(σ) is an
information retrieval measure that captures the correlation between
two ranked list. It indicates how the predicted order differs from
the ground truth where 1 means perfect match, −1 means total
mismatch, and 0 indicates that the two orders are independent.
Second, we use Levenshtein normalized similarity which is the
opposite of Levenshtein normalized distance that measures the
minimum number of edits (insertions, deletions or substitutions)
required to transform the predicted sequence to the ground truth
sequence. The goal is to find the sequence that has the Levenshtein

normalized similarity close to 1 which indicates that the number
of edits required is minimal. Third, we utilize the directed bigram
precision (see equation 15) that captures the correctness of the order
between adjacent lectures. The intuition behind using this measure is
to evaluate whether the transition maps learned by different models
have the ability to capture the correct direction order between topics
and adjacent lectures. Finally, we use the undirected bigram precision
shown in equation 16 to measure whether the transition map of each
model can recognize adjacent lectures but incorrectly captured the
direction between topics.

PDir−bigram =
of correct(a→ b) in estimated sequence

of correct(a→ b) in ground truth
(15)

PUndir−bigram =
of correct{a, b} in estimated sequence

of correct{a, b} in ground truth
(16)

6.2.2 Task 1: Finding The Correct Sequence
To find the correct sequence of lectures, we follow the permutation
method utilized by [25]. With courses that have large number of
lectures, it is infeasible to find all the orderings of lectures. Therefore,
when the number of the permutations exceeds 500, we randomly
permutated 500 possible orderings of lectures as candidates. We ran
the experiment 20 times for each method and recorded the average
results.

In order to select the optimal sequence from the list of permutations
in strTM and HMMULM, we followWang et al. [25] and choose the
sequence that has the highest generation probability calculated as:

σ̄(m) = arg max
σ(m)

∑
Z

P (xσ[0], xσ[1], . . . , xσ[m], Z|λ) (17)

To choose the best sequence for MULM, we first find the best topic
c that generates each lectures in the test set according to equation
4. After that, we select the sequence that has the highest likelihood

144 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

1 2 3 4 5 6 7 8 9 10 11 12 13
Courses

1.00

0.75

0.50

0.25

0.00

0.25

0.50

K
en

da
ll's

 T
au

s

1 2 3 4 5 6 7 8 9 10 11 12 13
Courses

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Le
ve

ns
ht

ei
n

N
or

m
al

iz
ed

 S
im

ila
rit

y
1 2 3 4 5 6 7 8 9 10 11 12 13

Courses

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
ire

ct
ed

 B
ig

ra
m

 P
re

ci
si

on

1 2 3 4 5 6 7 8 9 10 11 12 13
Courses

0.0

0.2

0.4

0.6

0.8

1.0

U
nd

ire
ct

ed
 B

ig
ra

m
 P

re
ci

si
on

Cosine
MULM
HMMULM
PCKM
strTM

Figure 3: The performance of different methods in Task 3: Predicting the whole sequence. All methods have comparable performance.

based on the equation:

σ̄(m) = arg max
σ(m)

P (C)P (X|C)

= P (c1)P (x1|c1)

|σ(m)|∑
i=2

P (ci|ci−1)P (xi|ci)
(18)

Since PCK-Means is a clustering method that minimizes the distance
between lectures and clusters’ centroids, we assign lectures x of the
test set to the closest clusters zi using Euclidean distances as shown
in equation 19. Then,we select the sequence that maximizes the topic
transitions between lectures in the sequence as well as minimizes the
distance between adjacent lectures (see equation 20). The intuition
behind that is to ensure the topic coherence between adjacent lectures
and also reduces the gaps by minimizing the distance between them.

c(x) = arg min
zi

‖x− µzi‖
2 (19)

σ̄(m) = arg max
σ(m)

π(c(x1))

|σ(m)|∑
i=2

A(xi−1, xi)− ‖xi − xi−1‖2

(20)

As a baseline we accumulate the cosine similarity between adjacent
lectures in the sequence and select the sequence in the permutations
that has the highest similarity score to be the optimal sequence.

Table 2 summarizes the results of Task 1 for each method. We can
notice that PCK-Means has the highest score in kendall’s τ(σ) and
Levenshtein normalized similarity in all datasets which indicates that
PCK-Means has chosen the sequences that are very correlated to the

Table 3: The performance of Task 2: Predicting the next
lecture. It is clear that HMMULM achienes the highest
performance.

Accuracy
Method Python SQL ML

Cosine-Similarity 0.46 0.56 0.42
PCK-Means 0.45 0.49 0.47
MULM 0.41 0.34 0.37
HMMULM(Viterbi) 0.52 0.56 0.60
StrTM(Viterbi) 0.39 0.27 0.43

ground truth sequences and need the minimal edits to be transformed
to the ground sequences. However, PCK-Means only outperforms
other models in the directed and undirected bigram precision in the
Python dataset, indicating that it sometimes not able to capture the
sequence between adjacent lectures.

In general, it is clear that PCK-Means achieves the highest perfor-
mance in most measures and almost in all the datasets. We think that
combining the topic transitions with the Euclidean distance helps
PCK-Means in finding the best sequence from the list of possible
sequences.

6.2.3 Task 2: Predicting The Next Lecture
In task 2, each model predicts the next lecture given a sequence of
lectures. We varied the length of the given sequence starting from
one. As strTM and HMMULM are based on HMM, we utilized the
Viterbi algorithm [20] to find the most probable sequence of hidden
states or topics that generated the lectures in the given sequence.
Then we greedily choose the next probable lecture in the sequence

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 145

HMMULM

MULM

PCK-Means

strTM

HMMULM

PCK-Means

(a) (b)

Figure 4: Qualitative Analysis of Sequencing Task 3. (a) Examples of preferring self transition behaviour when selecting next lecture
in the sequence, (b) Examples of the problem of sequencing adjacent lectures that cover the same topics.

according to the equation:

x̄ = arg max
x

P (zi|zi−1)P (x|zi) (21)

Similar to task 1, for MULM and PCK-Means models we assign
lectures to the best clusters using the equations 4 and 19 respectively.
After that MULM greedily chooses the next lecture that maximizes
the equation 21. On the other hand, PCK-Means model selects the
next lecture that maximizes the topic transition and minimizes the
distance with the last lecture in the given sequence. For the baseline,
we use the cosine similarity where we choose the next lecture that
has the highest similarity score with the last lecture in the given
sequence.

Table 3 summarizes the results of Task 2 for each method. We
can notice that HMMULM achieves the highest accuracy in all
datasets. Using the Viterbi algorithm along with the learned topic
transitions helps in capturing the most probable hidden states or
topics that generate the given sequence of lectures. In addition,
the topic transitions learned by HMMULM help in greedily pick
the next lecture in the sequence. While StrTM also uses Viterbi
algorithm similar to HMMULM, its accuracy scores were far less
than HMMULM. We think the main reason for that due to the
performance of the learned topic transitions as we explain in section
6.3.

6.2.4 Task 3: Predicting The Sequence
Task 3 is very similar to task 2 except that each method needs to find
the whole sequence of given lectures where the first lecture in the
sequence is given. Figure 3 depicts the results of Task 3.

As this task is considered the most challenging task, it is clear that
there is no wining method. However, from the upper left graph that

captures the Kendall’s taus in Figure 3,we can notice that HMMULM
has achieved a taus score ≥ 0.50 in four courses, PCK-Means has
achieved the same score in only two courses, MULM and strTM
in only one course, and Cosine method in non courses. For the
Levenshtein normalized similarity, it is clear that all methods have
comparable results. For the directed and undirected bigram precision,
all methods have also comparable results except MULM. The reason
is that MULM sometimes cannot complete the whole sequence
because it only uses the greedy method which cannot complete the
sequence in the case of the absence of the topic transitions required
to sequence courses in the test set. In the case of other methods,
they always find the whole sequence either because of the Viterbi
algorithm used by HMMULM and strTM or due to the similarity or
distance measures utilized by PCK-Means and Cosine methods.

In addition to quantitatively comparing the methods, we try to quali-
tatively evaluate the results by examining the generated sequences of
each methods. In general, we found two common behaviour shared
by all methods.

First, in most cases almost all the methods prefer self transition when
they pick the next lecture in the sequence. For example, as shown in
Figure 4 (a) , MULM, HMMULM, and PCK-Means select the next
lecture that has the same topic as the current lecture.

Second, all methods cannot sequence lectures that belong to the same
topic. In MOOCs, due to the short length of lectures, instructors
sometimes explain the same topic using multiple lectures. As a result,
it is hard to find the correct sequence of lectures that cover the same
topic. For example, as shown in Figure 4 (b), the last four lectures
of the course explain the “Principal Component Analysis algorithm”
and hence strTM, HMMULM, and PCK-Means cannot predict the
correct sequence of these lectures. In this case, we need to use other

146 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Classes
class, attributes, object, methods, teaching,
classes, method, language, programming,
objects, instance.

Prog.
Language

programming, language, concepts, machine,
hours, learn, tasks, tool, videos, calculations,
languages.

List list, accumulator, state, num, item, append,
accumulate, items, object, position, mutate.

Not Clear expression, area, largest, guess, recursive,
root, expressions, divided, floating, pi, cube.

Not Clear split, api, preview, join, space, image, white,
comma, format, file, words.

List

0.36

String

0.35

CSV File

0.6

Loop &
Condition

0.37

File

0.44

Function

0.39

Dictionary
0.65

Topics Terms

String
string, index, quotes, strings, characters,
quote, double, substring, character, eric,
method.

Function
function, parameters, functions,
arguments, return, parameter, formal,
global, errors, def, scope.

File file, files, open, directory, py, install, text,
read, folder, line, lines.

CSV File csv, phones, file, row, column, table,
columns, delete, format, tabular, menu.

Loop &
Condition

loop, true, false, condition, block, while,
else, equal, statement, greater, boolean,
infinite, elif.

Dictionary
dictionary, key, keys, dictionaries, pairs,
counts, keyvalue, word, values, mapping,
dict.

List list, range, item, element, lists, index,
elements, loop, sequence, items, strings.

Tuples &
Sort

tuple, sorted, random, sort, tuples, sorting,
list, reverse, lambda, function, order.

Tuples
& Sort

0.4

0.12

0.08

0.08
0.08

0.08

0.13 0.19

0.13
0.13

0.06

0.12

0.13

0.07

0.08

0.06

Figure 5: Python topics and their transitions using PCK-
Means method. The table represents the top terms in each
topic.

techniques to predict the sequence. One naive solution is to assume
that all adjacent lectures the belong to the same topic as one atomic
unit and we only need to sequence lectures that have different topics.
Further investigation of solving the sequencing problem of lectures
that belong to the same topic is left for future work.

6.3 Topic Transitions Examples
In this section, we present examples of topics and topic transitions
learned by different methods. Due to space constraint, we present
examples using Python dataset. We try to analyze the words with the
highest probabilities in the word distributions of topics learned by
each methods and manually mapped them to topic words or phrases.
For instance, if the word distribution has the words: list, range,
items, index, and append, then it is clear that this word distribution
captures the topic “List”. The word distributions with topic phrases
of each topic learned by PCK-Means, MULM, HMMULM, and
strTM methods in Python dataset are depicted in Figure 5, 6, 7, and
8 respectively. Since we have 13 topics in the Python dataset, we
only visualize the topic transitions of a subset of these topics and
depicted the transitions that have scores ≥ 0.05.

It is clear from the Figures that all models extract some useful topics
where the top terms of each topic clearly explain the topic. However,
PCK-Means has the best word distributions that clearly explain each
topic followed by HMMULM and then MULM while strTM has the
lowest performance. We also notice from the Figures that PCKMeans
have extracted 11 useful topics with two topics that have unclear
word distributions and cannot be mapped to any useful topics. In
contrast,MULM has modeled 10 meaningful topics with three topics
form noise and cannot be mapped to any topics. On the other hand,
HMMULM and strTM capture 9 topics with four unclear topics that
cannot be mapped to any phrase. In general, this finding indicates
that PCK-Means has the best performance in modeling the topics
of the courses in the Python dataset as it models more useful topics
with clear word distributions. The results also indicate that strTM
achieves the lowest performance because even though it captures the
same number of meaningful topics as HMMULM, strTM has the
lowest performance in the clarity of the word distributions.

Installing
Python

file, install, directory, py, command, tool,
windows, files, window, click, folder, ipython.

Prog.
Language

programming, language, learn, concepts,
tasks, scripts, practice, learning, videos,
script, feel.

Not Clear accumulator, list, guess, state, root, function,
square, cube, dictionary, count, total.

Not Clear
turtle, floor, api, random, comments,
calculations, module, program, errors, stack,
machine.

Not Clear
list, tuple, function, element, range, loop,
global, recursive, tuples, sequence,
parameter.

Loop

Conditional
Statements

Data
Types

File

Dictionary

List
Sort

CSV File
0.58

0.38

0.16

0.38

0.41

0.21

0.6

Topics Terms

CSV File
csv, quotes, file, string, format, row,
quote, column, double, table, comma,
columns.

File file, function, open, lines, line, area,
seconds, files, read, object, close.

Loop
loop, largest, while, infinite, loops,
smallest, break, statement, blah, true,
iteration.

Data Types
float, expression, integer, floating, type,
int, types, floats, expressions, convert,
decimal.

Conditional
Statements

true, false, block, else, condition, equal,
expression, greater, statement,
username, elif, boolean.

Dictionary dictionary, key, keys, dictionaries, pairs,
counts, keyvalue, list, word, tuple, values.

List Sort
sorted, random, sorting, sort, list,
programming, accumulation, language,
loop, lost, lesson.

List &
String

list, index, object, string, method,
methods, class, item, position, strings,
items.

List &
String

0.50

0.05

0.2

0.05

0.21

0.08

0.1

0.12

0.16

0.12

0.13

0.08

0.14

0.21

0.14

0.05

0.12 0.06

Figure 6:Python topics and their transitions usingMULM
method. The table represents the top terms in each topic.

String

Dict,
List, Tuple

& Sort

Loop &
Condition

File

Dictionary

List

Function

0.48

0.86

0.79

0.88

0.68

0.51

0.43

0.08

0.28

0.17

0.13

0.43

0.37

0.06

0.06

0.05

0.09

Topics Terms

String
string, index, character, strings, quotes,
list, substring, characters, preview,
location, slice.

Function
function, float, type, expression, return,
parameter, parameters, integer, int,
parentheses, string.

File file, csv, files, phones, row, format, open,
column, read, table, directory.

Loop &
Condition

loop, true, false, while, condition, loops,
equal, largest, block, infinite, else.

Dictionary dictionary, list, accumulator, key, item,
keys, count, counts, loop, state, num.

List list, object, append, lists, items, position,
lst, reference, strings, mutate, bound.

Dict, List,
Tuple &

Sort
dictionary, list, tuple, key, sorted, function,
keys, sort, expression, item, sorting.

0.06

Classes
class, attributes, methods, instance,
dictionary, method, turtle, classes, module,
objects, concepts.

Prog.
Language

language, programming, learn, script, data,
learning, syntax, tasks, concepts, languages,
scripts.

Not Clear teaching, eric, code, cell, grade, install, button,
messages, errors, error, month.

Not Clear
comments, calculations, floor, input,
algorithms, computers, warm, web, city, hot,
fast.

Not Clear seconds, block, traceback, hours, blah, turtle,
line, code, runs, times, execute.

Not Clear kelvin, temperature, hours, fahrenheit, equal,
program, step, error, loop, celsius, indent.

Figure 7: Python topics and their transitions using HM-
MULM method. The table represents the top terms in each
topic.

List & Dict
list, character, dictionary, item, loop,
accumulator, variable, number, count, index,
items.

Classes list, class, tuple, function, method, set, data,
tuples, index, methods, object.

Not Clear loop, if, true, python, statement, largest, code,
false, run, smallest, variable.

Not Clear python, variable, string, type, if, integer, point,
variables, code, floating, kind.

Not Clear if, loop, guess, root, machine, start, simply,
number, answer, times, cube.

Not Clear
data, dictionary, language, kelvin, keys,
programming, table, row, column, dictionaries,
columns.

String

Conditional
Expression

Loop &
Condition

File
Dictionary

List

Function
0.37

0.44

0.48

0.54

0.45

0.52

0.54

Topics Terms

String
list, string, if, position, index, python,
strings, quotes, character, number, single,
type.

Function
function, return, code, parameter,
expression, square, inside, functions,
print, parameters, statement, arguments.

File file, csv, files, open, line, read, list, row,
lines, data, quotes, table.

Loop &
Condition

if, loop, code, while, run, else, statement,
block, equal, condition, true.

Dictionary
dictionary, key, list, function, keys,
dictionaries, sorted, lists, sort, tuple,
values.

List list, lists, element, item, index, loop,
function, if, count, strings, file.

Conditional
Expression

true, if, false, else, equal, expression,
code, boolean, block, greater,
expressions, operators.

0.05

0.1

0.07

0.05

0.07

0.08
0.08

0.06

0.08

0.13

0.07

0.13

Figure 8: Python topics and their transitions using strTM
method. The table represents the top terms in each topic.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 147

As shown in the Figures 5, 6, 7, and 8, the meaningful topics extracted
by all methods are very similar with some variations. For example,
while PCK-Means and MULM separate “Files” and “CSV Files”,
HMMULM and strTM combines them into one topic. In addition,
while PCK-Means and HMMULM combines “Loops & Condition”,
MULM differentiates between them. StrTM, on the other hand, has
both “Loops & Condition” and “Conditional Statements.”

Regarding the topic transitions, it is clear that all models capture self
transitions with the topic and itself. This indicates that, in MOOCs,
instructors used multiple lectures to explain the same topic. However,
HMMULM gave higher probability to self transitions compared to
other methods. We can notice from the Figures that there are some
consensus between all methods on some transitions between topics
such as: “List”→ “Dictionary” and “String”→ “File.” There are also
some variations of topic transitions between different models. For
instance, wile PCK-Means, HMMULM, and strTM have a transition
between “String”→ “List”, MULM combines these two topics into
one topic or cluster. Another variation is that, PCK-Means, strTM and
MULM have a transition “Loop & Condition”→ “String”, whereas
HMMULM misses this transition.

In general, all methods captures useful topics with clear word dis-
tributions. Regarding the topic transitions, all methods capture self
transitions and also have some consensus on some transitions. There
are also some variations between methods and these differences due
to how each method identify topics of each lecture. Improving the
modeling of topics and the mapping between lectures and topics
clearly would improve the quality of the topic transition maps.

7. CONCLUSION
In this paper, we introduce the Topic Transition Map which is a
general structure that models the content of MOOCs as topics, where
each lecture is mapped to a topic, and captures the transition between
topics. It models the various ways of how instructors organize topics
in order to construct the study plan of their courses. We investigate
four different methods to construct the Topic Transition Map: PCK-
Means, MULM, HMMULM, and strTM. PCK-Means and MULM
separately cluster lectures into topics and then learn the transitions
between topics, by leverage the sequences of lectures in different
courses. In contrast,HMMULMand strTMassume first orderMarkov
property among latent topics and hence jointly learn topics and their
transitions. While the three model, MULM, HMMULM, and strTM
are probabilistic models, PCK-Means is distance-based clustering
algorithm that incorporates some constraints to guide the clustering
process.

We evaluated the generated topic transitions from various methods
using three different tasks: 1) determining the correct sequence,
2) predicting the next lecture, and 3) predicting the sequence of
lectures. Our evaluation revealed that PCK-Means achieves the
highest performance in determining the correct sequence while
HMMULM outperforms other methods in the task of predicting
the next lecture. Since the task of predicting the whole sequence
of lectures is considered the most challenging task, there was no
winning method and all methods have comparable performance with
MULM has the lowest performance as it sometimes fails to predict
the whole sequence. We also visualize the the Topic Transition Maps
generated by different methods to qualitatively evaluate the resulted
maps. We found that PCK-Means has extracted more meaningful
topics with the best word distributions that clearly explain each topic.

In the future, we plan to explore incorporating Topic Transition
Map with concept dependency relations and examine if this can
solve the problem of sequencing lectures that belong to the same
topic. Further, we aim to combine different methods such as PCK-
Means and HMMULM in order to improve the accuracy of the
Topic Transition Map and hence improving the performance of
the sequencing tasks. Finally, we plan to apply our work on other
domains such as traditional University courses or educational books.
To do that, we need to investigate how to divide long lectures or book
sections into segments where each segment is mapped to one topic.

8. REFERENCES
[1] R.Agrawal,B.Golshan,andE. Papalexakis. Towarddata-driven

design of educational courses: A feasibility study. JEDM-
Journal of Educational Data Mining, 8(1):1–21, 2016.

[2] F. ALSaad and A. Alawini. Unsupervised approach for model-
ing content structures of moocs. In Proceedings of The 13th
International Conference on Educational Data Mining (EDM
2020), pages 18–28, 2020.

[3] F. ALSaad,A. Boughoula, C. Geigle, H. Sundaram, and C. Zhai.
Mining mooc lecture transcripts to construct concept depen-
dency graphs. In Proceedings of the 11th International Con-
ference on Educational Data Mining, pages 467–473. EDM,
2018.

[4] S. Basu, A. Banerjee, and R. J. Mooney. Active semi-
supervision for pairwise constrained clustering. In Proceedings
of the 2004 SIAM international conference on data mining,
pages 333–344. SIAM, 2004.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. the Journal of machine Learning research, 3:993–
1022, 2003.

[6] D. Chaplot and K. R. Koedinger. Data-driven automated
induction of prerequisite structure graphs. In Proceedings of
the 9th International Conference on Educational Data Mining,
pages 318–323. EDM, 2016.

[7] W. Chen, A. S. Lan, D. Cao, C. Brinton, and M. Chiang.
Behavioral analysis at scale: Learning course prerequisite
structures from learner clickstreams. In Proceedings of the
11th International Conference on Educational Data Mining,
pages 66–75. EDM, 2018.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the em algorithm. Journal
of the Royal Statistical Society: Series B (Methodological), 39
(1):1–22, 1977.

[9] L. Du, J. K. Pate, and M. Johnson. Topic models with topic
ordering regularities for topic segmentation. In 2014 IEEE
International Conference on Data Mining, pages 803–808.
IEEE, 2014.

[10] L. D. Fink. Creating significant learning experiences: An
integrated approach to designing college courses. John Wiley
& Sons, 2013.

[11] R. M. Gagne and L. J. Briggs. Principles of instructional
design. Holt, Rinehart & Winston, 1974.

[12] A. Gruber, Y. Weiss, and M. Rosen-Zvi. Hidden topic markov
models. In Artificial intelligence and statistics, pages 163–170.
PMLR, 2007.

[13] T. Hofmann. Probabilistic latent semantic analysis. arXiv
preprint arXiv:1301.6705, 2013.

[14] C. Liang, J. Ye, Z. Wu, B. Pursel, and C. L. Giles. Recov-
ering concept prerequisite relations from university course
dependencies. 2017.

[15] H. Liu, W. Ma, Y. Yang, and J. Carbonell. Learning concept

148 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

graphs from online educational data. Journal of Artificial
Intelligence Research, 55:1059–1090, 2016.

[16] R. Manrique, J. Sosa, O. Marino, B. P. Nunes, and N. Car-
dozo. Investigating learning resources precedence relations via
concept prerequisite learning. In 2018 IEEE/WIC/ACM Inter-
national Conference on Web Intelligence (WI), pages 198–205.
IEEE, 2018.

[17] L. Pan,C. Li, J. Li, and J. Tang. Prerequisite relation learning for
concepts in moocs. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 1447–1456, 2017.

[18] A. Parameswaran, H. Garcia-Molina, and A. Rajaraman. To-
wards the web of concepts: Extracting concepts from large
datasets. Proceedings of the VLDB Endowment, 3(1-2):566–
577, 2010.

[19] G. Pfundstein. Hidden markov models with generalised emis-
sion distribution for the analysis of high-dimensional, non-
euclidean data. PhD thesis, Institut für Statistik, 2011.

[20] L. R. Rabiner. A tutorial on hidden markovmodels and selected
applications in speech recognition. Proceedings of the IEEE,
77(2):257–286, 1989.

[21] R. Scheines, E. Silver, and I. M. Goldin. Discovering prereq-
uisite relationships among knowledge components. In EDM,
pages 355–356, 2014.

[22] S.-s. Shen,H.-y. Lee,S.-w. Li,V. Zue, andL.-s. Lee. Structuring
lectures in massive open online courses (moocs) for efficient
learning by linking similar sections and predicting prerequisites.
In Sixteenth Annual Conference of the International Speech
Communication Association, 2015.

[23] A. Vuong, T. Nixon, and B. Towle. A method for finding
prerequisites within a curriculum. In EDM, pages 211–216,
2011.

[24] K.Wagstaff, C. Cardie, S. Rogers, S. Schrödl, et al. Constrained
k-means clustering with background knowledge. In Icml,
volume 1, pages 577–584, 2001.

[25] H. Wang, D. Zhang, and C. Zhai. Structural topic model
for latent topical structure analysis. In Proceedings of the
49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 1526–1535,
2011.

[26] S. Wang, A. Ororbia, Z. Wu, K. Williams, C. Liang, B. Pursel,
and C. L. Giles. Using prerequisites to extract concept maps
fromtextbooks. In Proceedings of the 25th acm international
on conference on information and knowledge management,
pages 317–326, 2016.

[27] K. WAUTERS, P. DESMET, andW. VANDENNOORTGATE.
Acquiring item difficulty estimates: a collaborative effort of
data and judgment. In EDM 2011 4 th International Conference
on Educational Data Mining, page 121.

[28] J. Xu, J. Liu, and K. Araki. A hybrid topic model for multi-
document summarization. IEICE TRANSACTIONS on Infor-
mation and Systems, 98(5):1089–1094, 2015.

[29] Y. Yang, H. Liu, J. Carbonell, and W. Ma. Concept graph
learning from educational data. In Proceedings of the Eighth
ACM InternationalConference onWebSearch andDataMining,
pages 159–168. ACM, 2015.

[30] B.-J. Yoon. Hidden markov models and their applications
in biological sequence analysis. Current genomics, 10(6):
402–415, 2009.

[31] C. Zhai, A. Velivelli, and B. Yu. A cross-collection mixture
model for comparative text mining. In Proceedings of the

tenth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 743–748, 2004.

[32] S. Zheng, M. B. Rosson, P. C. Shih, and J. M. Carroll. Un-
derstanding student motivation, behaviors and perceptions in
moocs. In Proceedings of the 18th ACM conference on com-
puter supported cooperative work & social computing, pages
1882–1895. ACM, 2015.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 149

Can Feature Predictive Power Generalize?
Benchmarking Early Predictors of Student Success

across Flipped and Online Courses

Mirko Marras
EPFL

mirko.marras@acm.org

Julien Tuân Tu Vignoud
EPFL

julien.vignoud@epfl.ch

Tanja Käser
EPFL

tanja.kaeser@epfl.ch

ABSTRACT
Early predictors of student success are becoming a key tool
in flipped and online courses to ensure that no student is left
behind along course activities. However, with an increased
interest in this area, it has become hard to keep track of what
the state of the art in early success prediction is. Moreover,
prior work on early success prediction based on clickstreams
has mostly focused on implementing features and models for
a specific online course (e.g., a MOOC). It remains there-
fore under-explored how different features and models enable
early predictions, based on the domain, structure, and edu-
cational setting of a given course. In this paper, we report
the results of a systematic analysis of early success predic-
tors for both flipped and online courses. In the first part, we
focus on a specific flipped course. Specifically, we investigate
eight feature sets, presented at top-level educational venues
over the last few years, and a novel feature set proposed in
this paper and tailored to this setting. We benchmark the
performance of these feature sets using a RF classifier, and
we provide and discuss an ensemble feature set optimized for
the target flipped course. In the second part, we extend our
analysis to courses with different educational settings (i.e.,
MOOCs), domains, and structure. Our results show that
(i) the ensemble of optimal features varies depending on the
course setting and structure, and (ii) the predictive perfor-
mance of the optimal ensemble feature set highly depends
on the course activities.

Keywords
Flipped Classroom, MOOC, Success Prediction, Early Warn-
ing, Clickstream, At-Risk Students, Learning Analytics.

1. INTRODUCTION
An increasing number of universities are now running blended
courses that combine traditional lectures with online instruc-
tion, providing educational models tailored to the needs of
our society [20]. A popular instructional strategy to enable
blended learning is represented by flipped classrooms, where

students complete pre-class activities before attending face-
to-face lessons [18]. Recent studies have shown the positive
impact and dependency of this strategy on student-centered
variables such as self-efficacy and self-regulation [22, 17, 6,
19]. Pre-class activities usually consist in watching videos
and completing quizzes part of Massive Open Online Courses
(MOOCs) used as supplementary material [27]. Each week,
students are asked to perform these pre-class activities and
to then complete exercises and have discussion in class. Pre-
class activities are fundamental for the success of flipped
courses [12, 21, 28]. However, students often lack skills,
time, and motivation to regulate their pre-class activity; as
a consequence, they may experience difficulties in class and
end up failing the course [10, 14]. To ensure that no learner
is left behind, Early Success Predictors (ESPs) are becom-
ing crucial to support instructors in identifying and timely
acting upon risk factors of failing a course.

So far, there are few studies on analyzing student success in
flipped courses based on pre-class activities. For instance,
Jovanovic et al. [9, 8] clustered interaction sequences in
pre-class clickstreams to identify learning strategies, showing
how strategy-based student profiles differ in course grades.
Beatty et al. [2] found that frequency counts of video us-
age are often correlated with course grades in flipped class-
rooms. In blended, but not flipped settings, Akpinar et
al. [1] showed that student’s strategy counts, with strate-
gies modelled as clickstream event n-grams, are indicative
of course homework grades. Wan et al. [25, 26] trained gra-
dient boosting classifiers on an extensive set of clickstream-
based features to identify at-risk students in a small private
online course delivered in hybrid mode. They also analyzed
the importance of the features, finding that the time spent
in online activities and the stability of time distribution dur-
ing weeks have the highest importance in that course. To
the best of our knowledge, no prior work on flipped courses
specifically focused on ESPs.

Conversely, there is a large body of research on success pre-
diction for fully online courses (e.g., MOOCs). A multitude
of feature sets have been extracted from clickstreams for
this purpose. Recent work proposed video-counting (e.g.,
number of videos viewed per week, rewinds, fastforwards,
pauses, and plays, and the fractional and total amount of
time played and paused for videos) and session-based (e.g.,
number of sessions, mean and standard deviation of the time
for all sessions and between sessions) features [4, 13]. These
features were fed into different commonly used classifiers

Mirko Marras, Julien Tuan Tu Vignoud and Tanja Käser “Can Feature
Predictive Power Generalize? Benchmarking Early Predictors of Stu-
dent Success across Flipped and Online Courses”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 150-160.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

150 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

(e.g., Logistic Regression, Naive Bayes, Decision Tree, RF,
and Neural Networks) to predict success in weekly assign-
ments or in the entire specific MOOC. In [3], several fea-
tures that measure intra-course, intra-week and intra-day
regularity in video watching were proposed, and their corre-
lation with the course grade was shown. Other researchers
leveraged attendance rates, usage rates, and watching ra-
tios [7, 15]. Specifically, they explored how the difference
in these indicators affects academic performance, showing
that students whose indicators are high are more likely to
graduate on schedule. More fine-grained features on video
usage (e.g., total video views, mean and standard deviation
of the proportion of videos watched, re-watched, and inter-
rupted per week, and the frequency and total number of all
video actions and of each type of video action) were pro-
posed in [11]. The authors clustered students according to
their watching behavior and found that such a behavior is
representative of course performance. Similarly, Mubarak
et al. [16] extracted implicit features from video-clickstream
data, and investigated the extent to which neural networks
fed with those features can predict weekly students’ perfor-
mance. For an extensive discussion on success prediction in
MOOCs, we recommend this survey [5].

The above features and classifiers, however, are designed
for fully-online learning contexts, such as MOOCs. Despite
clear connections, there are essential aspects which distin-
guish flipped courses from MOOCs. First of all, flipped
course data includes relatively few students. A large part of
the learning activity happens offline and cannot be tracked,
leading to data only on course segments. Flipped courses
generally have also an intense instructor guidance and per-
formance on them has direct impact on the academic port-
folio. As a motivating example, we consider a flipped course
on Linear Algebra later described in this paper and the reg-
ularity features proposed for MOOCs in [3]. They quan-
tify students’ time regularity by considering their activi-
ties over the course (e.g., studying at the same days of
the week). Boroujeni’s study revealed that the final grade
in the MOOC is correlated with two intra-week regularity
measures and the periodicity of day hour and week hour
(.46 < c < .7, p < 0.001). Conversely, the same features
resulted to have no correlation with the final grade in the
above flipped course (.0 < c < .1, p < 0.001). Therefore,
it remains unexplored whether existing features and classi-
fiers for MOOCs generalize to different educational settings
(e.g., flipped classrooms), and to what extent the feature
importance varies according to the topic, structure, and ed-
ucational setting of the course.

The contribution of this paper is two-fold: we tackle the
problem of ESPs in flipped classroom settings1, and we pro-
vide an extensive analysis and benchmark of classifiers and
features for early success prediction across different types of
courses, namely MOOCs and flipped courses. A schematic
overview of our analysis in this paper is shown in Figure 1.

In a first step, we propose a novel feature set for early suc-
cess prediction in flipped courses. Our feature set mea-
sures students’ alignment, anticipation, and strength in quiz
and video usage. We benchmark our new feature set using

1https://github.com/d-vet-ml4ed/flipped-classroom

a Random Forest (RF) classifier against eight feature sets
presented in previous work on success prediction in online
courses. We retrieved these feature sets by systematically
scanning the recent papers published at major educational
venues (e.g., EDM, AIED, etc.) and reproducing the fea-
tures based on the relevant papers. Our results on data
of 214 students enrolled in a linear algebra flipped course
show that the novel feature set outperforms all previously
suggested feature sets. We also show that predictive per-
formance can be increased by selecting the optimal features
from the ensemble of all feature sets.

In a second step, we extend our analysis to further courses
along three dimensions: domain, structure, and educational
setting. We compute the early predictive performance again
using a RF classifier for three additional courses: a flipped
course on functional programming (where pre-class activities
include videos only), a MOOC on linear algebra (including
video and quiz activities), and a MOOC on functional pro-
gramming (including video activities only). For each course,
we select the optimal features from the ensemble of feature
sets (eight feature sets from prior work and one novel feature
set from this paper) as input features for the RF classifier.
Our results show that the structure of the course signifi-
cantly influences performance. Predictive performance for
courses including quizzes is much higher than for courses in-
cluding only videos. Furthermore, we also show that while
there is some overlap between the optimal features across
courses, the importance of the features highly depends on
the setting and structure of the course.

2. EARLY PREDICTION FORMULATION
The problem addressed in this paper can be framed into a
time series classification task that relies on clickstreams to
predict student success in a course. For clarity and repro-
ducibility, we present and formalize the addressed problem.

Course. Early success predictions are provided in the con-
text of a course (e.g., a MOOC or a course run in a flipped
classroom setting). In what follows, we hence mathemati-
cally define fundamental concepts, such as the course sched-
ule, the learning objects, and their properties. Specifically,
we consider a set of students U who are enrolled in a course
c part of the online educational offering C. Each course
c ∈ C has a pre-defined schedule Sc consisting of N = |Sc|
online activities, such that Sc = {s1, . . . , sN}. We assume
that each online activity sj included in the course schedule
is represented by a tuple (oj , tj), consisting of learning ob-
ject oj ∈ O and its corresponding completion deadline for
students tj ∈ R+, modelled as a timestamp. Each learn-
ing object o ∈ O is characterized by descriptive properties
denoted with an M -dimensional vector fo = (f1, . . . , fM)
over a set of features F = {F1, . . . ,FM} that vary according
to the type of the learning object (e.g., the duration for a
video or the maximum grade for a quiz). Specifically, each
feature Fj ∈ F can be envisioned as a set of discrete or con-
tinuous values describing an attribute of a learning object
o, fo,j ∈ Fj for j = 1, . . . ,M . Our study in this paper as-
sumes that learning objects can be either videos or quizzes,
but the notation can be easily extended to other types (e.g.,
forum posts or readings). The type of a learning object
o ∈ O is returned by a function type : O → {video, quiz}.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 151

https://github.com/d-vet-ml4ed/flipped-classroom

Figure 1: Our Framework. We first analyze a flipped course with videos and quizzes, then investigate differences between courses
in flipped and MOOC settings and with videos only and videos plus quizzes. Eight state-of-the-art feature sets, a novel feature
set, and feature ensembles are computed for each student and each week of the course. Weekly features are averaged and a
success label is attached, according to the course type. Classification is performed using a Random Forest. Observations and
recommendations on the predictive power of features are provided for each course setting, highlighting open challenges.

Based on common log data collected by educational plat-
forms, we assume that learning objects of type video, de-
noted as Ovideo = {o ∈ O | type(o) = video}, are described
by properties associated to the video duration in seconds as
Fvideo = (duration ∈ R+). Learning objects of type quiz, de-
noted as Oquiz = {o ∈ O | type(o) = quiz}, are characterized
by descriptive properties that model the maximum grade
students can achieve in that quiz as Fquiz = (maxgrade ∈
R+). For convenience, we use superscripts to denote a de-
scriptive property of a learning object. For instance, the
duration of a video o ∈ Ovideo can be referred to as oduration.
The same notation applies to other descriptive properties.

Interaction. Students enrolled in an online course interact
with the learning objects included in the course schedule,
generating a time-wise clickstream. We denote a clickstream
in a course c ∈ C for a student u ∈ U as a time series Iu, such
that Iu = {i1, ..., iK}, with K ∈ N (e.g., a sequence of video
plays and pauses, quiz submissions, and so on). We leave
these definitions very general on purpose, in particular allow-
ing the length of each time series to differ, since our models
are inherently capable of handling this. Likewise, we neither
enforce nor expect all time series to be synchronized, i.e.
being sampled at the same time, but rather we are fully ag-
nostic to non-synchronized observations. This configuration
is common in educational time series. We assume that each
interaction ij is represented as a tuple (tj , aj , oj , dj), consist-
ing of a timestamp tj ∈ R+, the action aj ∈ A performed by
the student (e.g., play or pause), the learning object oj ∈ O
involved in the action aj (e.g., a certain video or quiz),
and an L-dimensional descriptive vector dj = (d1, . . . , dL)
over a set of features D = {D1, . . . ,DL}. These descrip-
tive vectors are used to append relevant information to an
action aj performed at time tj , such as the current video
time when the action occurred or the grade received by
the student on a quiz. Based on the type of the learning
object o ∈ O, the student can perform different actions
A. We assume that video interactions, denoted by {ij =
(tj , aj , oj , dj) ∈ Iu | type(oj) = video}, are limited to actions
aj ∈ Avideo = {Load ,Play ,Pause,Stop,SpeedChange,Seek}.
These actions are derived from those commonly allowed to
students in online educational platforms. Conversely, quiz
interactions, denoted by {ij = (tj , aj , oj , dj) ∈ Iu | type(oj) =
quiz}, include actions a ∈ Aquiz = {Submit}.

In online educational platforms, clickstream interactions in-
clude a payload with additional information beyond the times-

tamp, the action, and the involved learning object. For in-
stance, if a student submits a quiz, the resulting interaction
includes also the grade assigned by the system to the stu-
dent’s quiz. Our notation models each dimension Dl ∈ D
of a clickstream interaction as a set of discrete or contin-
uous values describing the interaction ij ∈ Iu, dj,l ∈ Dl
for l = 1, . . . , L. Specifically, we assume that interactions
involving base video actions {ij = (tj , aj , oj , dj) ∈ Iu | aj ∈
{Load ,Play ,Pause,Stop}} include descriptive properties as-
sociated to the current video time the interaction occurred,
i.e. DBase = (current-time ∈ R+). Interactions involving a
speed change in a video, denoted as {ij = (tj , aj , oj , dj) ∈
Iu | aj ∈ {SpeedChange}}, are characterized by descriptive
properties associated to both the old and the new speed
the video has been and will be watched, i.e. DSpeedChange =
(oldspeed ∈ R+, newspeed ∈ R+). Interactions generated
by students while seeking the video backward or forward,
denoted as {ij = (tj , aj , oj , dj) ∈ Iu | aj ∈ {Seek}}, are
modelled by descriptive properties related to the previous
and current video time the student moved on, i.e. DSeek =
(oldtime ∈ R+, newtime ∈ R+). Finally, submit interactions
generated in quiz activities, denoted as {ij = (tj , aj , oj , dj) ∈
Iu | aj ∈ {Submit}}, include descriptive properties on the
grade assigned to the quiz answer and the progressive num-
ber of the attempt made on that quiz, i.e. DSubmit = (grade ∈
R+, subnum ∈ R+), with grade ∈ [0, 1].

For convenience, we denote as Itu the clickstream including
interactions ij ∈ Iu, such that tj < t ∀tj ∈ Itu, namely those
occurred before time t. Similarly, since online activities in
MOOCs and flipped courses are organized on a weekly basis,
tw identifies the time t where the course week w ends. For
instance, the clickstream of user u generated till the end of
the second week can be denoted as It2u .

Success Label. Once interactions are modelled, we need to
associate a success label according to the final grade the cor-
responding student has received for that course. We consider
a dataset G to consist of tuples, i.e. G = {(Iuj , yuj)}, where
Iuj denotes the interactions of student uj and yuj ∈ {0, 1}
the pass-fail label or the above-below average grade label.

Feature Extraction. Machine-learning models rarely receive
raw interaction sequences, as so we abstract such interac-
tions through a feature extraction step. Given the interac-
tions Itwu ⊂ Iu ∈ I, generated by student u till the course
week w ∈ N, we produce fixed-length representations in

152 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

H ⊂ Rw×H , where H ∈ N is the dimensionality of the fea-
ture set. Therefore, we assume that H-dimensional vectors
are extracted for each week. For instance, if the feature set
includes ”number of sessions” and ”number of clicks”, feature
vectors of size H = 2 are extracted each week. Formally, the
extraction process is denoted as H : I → H, from interac-
tions to features.

Model. Given the dataset G with interactions - success label
pairs, an early success predictor E aims to predict the success
label yuj associated to the interactions Iuj . Formally, this
operation can be abstracted as a function ỹuj = E(Iuj |θ),
where ỹuj denotes the predicted label, θ denotes the model
parameters, and E denotes the predictive function that maps
interactions Iuj to the predicted label ỹuj according to θ.

Objective Function. Hence, training an early success predic-
tor E with interactions - success label pairs till course week w
becomes an optimization problem, aimed to find model pa-
rameters θ that maximize the expectation on the following
objective function (i.e., predicting the correct success label,
given the interactions) on a dataset G:

θ̃ = argmax
θ

E
(Iu,yu)∈G

yu = E(H(Itwu) | θ) (1)

In this paper, we focus on feature extraction, which formally
results in the operationalization of the function H.

3. REPRESENTATIVE FEATURE SETS
To make sure that our work is not only based on individual
examples of published research, we systematically scanned
the proceedings of conferences and journals for relevant pa-
pers in a manual process. In our analysis, we considered
papers that appeared in the last years in the top educa-
tional technology conferences (e.g., LAK, EC-TEL, AIED,
and EDM) and journals (e.g., IEEE TLT, Springer EIT,
Journal of Learning Analytics). We considered a paper to
be relevant if it (a) proposed a novel feature set for course
success analysis, and (b) focused on the context of online
courses or courses with online activities. Papers on other
tasks, e.g., prediction of affective state or conceptual un-
derstanding, or other educational contexts, e.g., interactive
simulations or games, were not considered. Moreover, pa-
pers with highly overlapping feature sets were filtered, and
the paper with the most extensive set was used as represen-
tative. Finally, eight papers were included in our study.

In a next step, we reproduced the feature sets described
in the above papers. Our approach was to rely as much
as possible on the artifacts provided by the authors them-
selves, i.e., their source code and the descriptions included
into the papers. In theory, it should be possible to repro-
duce published results using only the technical descriptions
in the papers. In reality, there are many tiny implemen-
tation details with an impact on experiments. Overall, we
could reproduce with reasonable assumptions all eight fea-
ture sets based on the relevant papers. In what follows, we
give a description of each feature set included in our study.

AkpinarEtAl. This feature set consists of consecutive sub-
sequences of n clicks extracted from the session clickstreams
of a blended course [1]. In addition to sub-sequences, the

authors considered four features related to the number of
clicks, the number of session clickstreams, and attendance
information. Note that in comparison to the original pa-
per, we extract sequences from a different set a raw events,
namely only videos and quizzes (e.g., no events on forums).
Hence, in our case the feature set has a size of |Avideo∪Aquiz|n
features per student. Since we expect short patterns to be
un-interpretable and particularly long patterns to be rare,
we choose n = 3 for our analyses.

BoroujeniEtAl. This feature set was originally used to mea-
sure to what extent MOOC students are regular in their
study patterns [3]. Specifically, it is considered whether stu-
dents study on certain hours of the day, day(s) of the week or
similar weekdays. Other features monitor whether students
have the same distribution of study time among weekdays
over weeks, particular amount of study time on each week-
day, and finally to what extent a student follows the sched-
ule of the course. This set includes 9 features per student.
Other papers proposed similar regularity features [23, 24, 8,
9, 2]. We limit our analysis to the feature set listed in [3],
as in our first experiments it exhibited the best predictive
power (among papers focusing on regularity features).

ChenCui. The feature set presented in this paper [4] includes
click countings from a mandatory undergraduate course run
through Moodle. Features include the number of total clicks
and of clicks on campus, the ratio of on-campus to off-
campus clicks, the number of online sessions (with average
and standard deviation), standard deviation of time between
online sessions, number of clicks during weekdays or week-
ends, ratio of weekend to weekday clicks, and the number of
clicks for each type of module (e.g., assignment, forum, and
quiz). To accomodate the scenario presented in Section 2,
our study does not cover the features not easily generaliz-
able to different types of online courses: the number of clicks
on campus, the ratio of on-campus to off-campus clicks, the
number of clicks for modules file, forum, report system. We
therefore obtain a feature set of size 13 for each student.

LalleConati. This paper [11] focuses again on MOOCs. The
presented feature set is composed by video interaction fea-
tures at two levels of granularity. Features on video views
include the total number of videos views (both watches and
rewatches), in addition to the average and standard devi-
ation of the proportion of videos watched, re-watched, and
interrupted per week. On the other hand, features on actions
performed within the videos include the frequency and total
number of all performed video actions, frequency of video
actions for each type of video action, and the average and
standard deviation duration of video pauses, seek lengths,
and so on. This feature set has a size of 22 per student.

LemayDoleck. The next paper [13] is also focused on MOOCs.
Presented features include the number of videos watched
per week, the average time fraction paused, played or spent
watching, the average and standard deviation of the play-
back rate, and the total number of rewinds, pauses, and
fast-forwards. Note that this feature set includes only video-
related measures, resulting in vectors of size 10 per student.

MbouzaoEtAl. In this MOOC paper [15], the authors in-
troduce three novel features, namely attendance rate, uti-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 153

lization rate, and watching ratio. The attendance rate of a
student on a given week is the number of videos the stu-
dent played over to the total number of videos in that week.
The utilization rate is the proportion of video play time ac-
tivity of the student over the sum of video lengths for all
videos on that week. Finally, the watching ratio is defined
as the product between the two former features. This 3-
sized feature set has been tested in MOOCs, extending an
already-existing feature set [7].

MubarakEtAl. This paper [16] is primarily focused on im-
plicit features about video-usage behavior in MOOCs. Com-
posed by 13 features, this set covers fine-grained characteris-
tics, such as the percentage of the video the learner watched
not counting repeated segments, the amount of real time the
learner spent watching the video (i.e. when playing or paus-
ing) compared to the video duration, and the sum of times
a learner viewed a video in its entirety.

WanEtAl. This set was designed for a small private online
course [26]. Features measure the online learning time, the
strength of the learner’s engagement in forums and weekly
assignments, the extent to which students attempt to do
the homework soon, as examples. Table 1 and 2 in the
cited paper provide further details. Given that we do not
cover forum interactions, our study does not consider forum
features. Finally, this set includes 14 features per student.

4. EARLY PREDICTORS IN FLIPPED
COURSE SETTINGS

In this section, we first present a novel feature set for flipped
courses, based on alignment, anticipation, and strength in
content usage. We then describe the experimental setup
and results aimed to assess to what extent the feature sets
(including ours) are predictive of student success.

4.1 Our Feature Set
The feature sets presented so far mainly tackle video-related
features and/or consider only low-level features, with only a
few of them including features related to quizzes or assign-
ments. Considering that predicting the success of a student
based on clickstream data only is a challenging task per sé,
we believe that limiting features to those extracted from
videos may result in inferior predictive performance. We
therefore suggest a number of additional features assessing
students’ knowledge and alignment with the course schedule.

Competency Strength is defined as the average of the in-
verse number of submissions for a quiz, weighted by the
highest grade achieved by the student on that quiz. Given
the inverse term, the value of this feature decreases when
the student attempts the quiz multiple times and if the
grade achieved by the student on the last attempt is not
the highest-possible one. Hence, good-performing students
may use few attempts and reach the maximum quiz grade
fast (value close to 1). Students struggling with the material
may attempt the quiz many times and not reach the max-
imum grade (value close to 0). Given a student u and the
week w of the course, this feature is computed as:

1

|Qu|
∑
q∈Qu

1

Qqu
max(Gqu) (2)

where:

• Qu = {oj |ij = (tj , aj , oj , dj) ∈ Iu ∩ type(oj) = quiz ∩
tj ≤ tw} are the quizzes taken by student u till week w.

• Qqu = |{ij |ij = (tj , aj , oj , dj) ∈ Iu ∩ oj = q ∩ tj ≤ tw}|
is the number of attempts a student had on quiz q.

• Gqu = {dgradej |ij = (tj , aj , oj , dj) ∈ Iu ∩ oj = q ∩ tj ≤
tw} is the set of grades a student got on quiz q.

Competency Alignment is defined as the number of quizzes
the student received the maximum grade until week w, di-
vided by the total number of quizzes scheduled for the period
of consideration. Good-performing students may receive the
maximum grade in all quizzes for the period of consideration
(value close to 1); low-performing students may be behind
the schedule and pass fewer quizzes than those proposed
(value close to 0). Given a student u and the week w of the
course, this feature is computed as:

|Qpass
u ∩ Sleq(tw)|
|Sleq(tw)|

(3)

where:

• Qpass
u = {oj |ij = (tj , aj , oj , dj) ∈ Iu ∩ type(oj) =

quiz ∩ dgradej = omaxgrade
j } is the set of quizzes the

student u received the maximum grade until week w.

• Sleq(tw) = {oj ∈ O|(oj , tj) ∈ Sc ∩ type(oj) = quiz ∩
tj ≤ tw} is the set of quizzes to complete by week w.

Competency Anticipation is defined as the number of quizzes
attempted by the student among those in subsequent weeks
of the current week of study. This feature can be seen as a
proxy of the learning propensity of a student. For instance,
if a quiz is scheduled to be solved in subsequent weeks, we
expect that good-performing students try them earlier, an-
ticipating the deadline stated in the platform (value close to
1). Low-performing students may delay the consumption of
quizzes across weeks or even towards the end of the course
(value close to 0). Given a student u and the week w of the
course, this feature is computed as:

|Qu ∩ Sgt(tw)|
|Sgt(tw)|

(4)

where Qu is the set of quizzes taken by student u until week
w as defined in Eq. 2, and:

• Sgt(tw) = {oj ∈ O|(oj , tj) ∈ Sc ∩ type(oj) = quiz ∩ tj >
tw} is the set of quizzes to complete after week w.

Content Alignment is defined as the number of videos watched
by the student until week w, divided by the total number
of videos scheduled for the period of consideration. Good-
performing students are expected to complete all videos for
the period of consideration (value close to 1), while low-
performing students may complete less videos than those
proposed (value close to 0). Given a student u and the week
w of the course, this feature is computed as:

|Vu ∩ Sleq(tw)|
|Sleq(tw)|

(5)

where:

• Vu = {oj |ij = (tj , aj , oj , dj) ∈ Iu ∩ type(oj) = video}
is the set of videos watched by student u until week w.

154 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

• Sleq(tw) = {oj ∈ O|(oj , tj) ∈ Sc ∩ type(oj) = video ∩
tj ≤ tw} is the set of videos to watch by week w.

Content Anticipation is defined as the number of videos com-
pleted by the student among those in subsequent weeks of
the current week of study. For instance, if a video is due
the next week, we expect that good-performing students
might watch them earlier, anticipating the deadline stated
in the platform (value close to 1). On the other hand, low-
performing students may tend to delay the completion of
videos (value close to 0). Given a student u and the week w
of the course, this feature is computed as:

|Vu ∩ Sgt(tw)|
|Sgt(tw)|

(6)

where Vu is the set of videos watched by student u until
week w as defined in Eq. 5, and:

• Sgt(tw) = {oj ∈ O|(oj , tj) ∈ Sc ∩ type(oj) = video ∩
tj > tw} is the set of videos to watch after week w.

Student Shape is defined as the student’s tendency of re-
ceiving the maximum grade in a quiz at the first attempt
in a row. Good-performing students are expected to con-
secutively receive the maximum grade in quizzes at the first
attempt (value close to 1); students experiencing difficulties
may require multiple attempts on each quiz, before getting
the maximum grade (value close to 0). Given a student u
and the week w of the course, this feature is computed as:

1∑
(pi,li)∈P pi

∑
(pi,li)∈P

pi · li
|{pi|(pi, li) ∈ P ∩ li = 1}|+ ε

(7)

where P = {(p0, l0), . . . , (pn, ln)} represents a series count-
ing how many quizzes the student consecutively receives the
maximum grade (li = 1) or failed (li = 0) at the first at-
tempt in a row. For instance, if a student gets the maximum
grade for the first five quizzes at the first attempt in a row,
then is wrong in two quizzes at the first attempt, and then
receives the maximum grade for ten quizzes at the first at-
tempt in a row, P would be equal to {(5, 1), (2, 0), (10, 1)}.

Student Speed is defined as the average time passed between
two consecutive attempts for the same quiz, among those
taken by the student. This feature captures intrinsic behav-
ior of students who take the quiz, spending less time or more
time to attempt it, on average. Given a student u and the
week w of the course, this feature is computed as:

1

|Qu|
∑
q∈Qu

|tq|∑
i=1

|tiq − ti−1
q |

|tq|
(8)

where Qu is the set of quizzes taken by student u until week
w as defined in Eq. 2, and:

• tq = [tj |(tj , aj , oj , dj) ∈ Iu ∩ oj = q ∩ tj > tj−1)] are
timings between trials for u on q, chronologically.

In the rest of the paper, we will refer to our set by Ours.

4.2 Experimental Evaluation
In this section, we benchmark our new feature set against
the eight feature sets presented in prior work (see Section
3), on early success prediction in flipped courses. For con-
venience, we will use author-based labels to identify feature
sets throughout the paper, but we will be more interested in
contrasting the impact of features in those papers based on
what they implicitly measure (not based on the authors).

4.2.1 Experimental Setup

Protocol. For each dataset, we applied a train-test eval-
uation, i.e. parameters were fit on the training data set
and the performance of the models was evaluated on the
test data set. We performed all experiments using Random
Forest (RF) classifiers, known to achieve a good trade-off
between prediction accuracy and interpretability. Perfor-
mance of all models was computed using a nested student-
stratified (i.e. dividing the folds by students) 10-fold cross
validation. The same folds were used for all experiments,
across feature sets. We optimized the hyper-parameters
of RFs via Grid Search in Scikit-Learn. Specifically, we
tuned the following hyper-parameters: number of estimators
(25, 50, 100, 200, 300, 500), the maximum number of features
(sqrt,None, log2), and the splitting criterion (gini, entropy).
More extensive grids were run, but they did not show any
substantial improvement. To be precise, we determined
the set of optimal hyper-parameters as follows: within each
iteration, we ran an inner student-stratified 10-fold cross-
validation on the training set in that iteration, and selected
the combination of hyper-parameter values yielding the high-
est accuracy on the inner cross-validation. Note that we
trained RFs by weeks: the RF for week w of a given course
was trained on data collected up to week w. To obtain the
input features for RF for week w, we computed the weekly
features for the selected feature set and averaged them.

Data Set: LA-Flip. We consider a Linear Algebra course
for undergraduate students taught in a flipped format for
10 weeks at EPFL. Typical pre-class work included a list
of video lectures and online quizzes from a Linear Algebra
MOOC. The final exam grade, lying between 0 and 6, with 4
as passing threshold, is considered as a measure for students’
performance. The repeating students were filtered out, given
that their repeated exposure to the material might add a
bias to our findings. The final dataset consists of clickstream
data from 214 students, with 41% of them failing the course.
The study was approved by the university’s ethics committee
(HREC No. 058-2020/10.09.2020).

4.2.2 Observations
We evaluated the predictive accuracy of RF classifiers trained
on the different feature sets extracted from LA-Flip under a
binary classification that aims to identify passing and fail-
ing students early, as described in Section 2. We further
also trained RF classifiers only on the most important fea-
tures selected from all features (denoted as EnsembleAll)
and from all features except ours (denoted as EnsembleB-
utOurs). Figure 2 reports the balanced accuracy, the area
under the ROC curve (AUC), and the individual percentage
of passing and failing students correctly identified (recall)
for each feature set over all weeks and folds.

The lowest-performing feature sets appear those monitoring
students’ regularity (orange) and attendance and utilization
rates (blue). Hence, a first conclusion we can draw is:

Highlight #1. Regularity and attendance/utilization fea-
tures, powerful in MOOCs, do not allow to distinguish pass-
ing from failing students in the considered flipped course.

The feature sets mostly related to video-clicking behavior,
such as those from Lemay & Doleck, do not lead to substan-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 155

Figure 2: [LA-Flip]. Effectiveness of a RF classifier trained on
separate feature sets and on ensembles. Our feature set is es-
sential to increase the effectiveness of the classifier, especially
in terms of Non-Succeed (failing students) Recall.

Figure 3: [LA-Flip]. AUC for the best six feature sets. The
ensemble of all features (grey) leads to an increase in effec-
tiveness, with respect to considering feature sets separately.

tial differences from each other and all achieved a balanced
accuracy between 55% and 59% (similarly for AUC). This
finding might reveal an intrinsic limit for video features in
predicting student success from pre-class activities. Our re-
sults also raise the question on how and why a certain type
of video features should be preferred compared to others.

Highlight #2. In this flipped course, there are minimal
differences in performance among video-usage features; an
intrinsic predictive limit for video-usage features exists.

This motivates investigation on the impact of features tar-
geting quiz usage. In this direction, the features proposed
by Wan et al. cover a range of raw counting and timing mea-
sures that target quizzes. Figure 2 shows that this feature
set is even worse that just using video features. Conversely,
by measuring more complex patterns in quiz consumption,
our feature set led to a balanced accuracy of 67% (simi-
larly for AUC). To identify the aspect our features make the
difference at, we considered the percentage of passing and
failing students correctly classified, as shown in the two bot-
tom plots in Figure 2. While there are no substantial differ-
ences among our feature set and the other ones in identifying
passing students (Succeed Recall), a clear improvement is
obtained in the detection of failing students (Non-Succeed
Recall), fundamental to ensure fewer students are left be-
hind. The impact of our features can be also appreciated
across weeks in Figure 3. Our features allowed the ensemble
to be effective in the first weeks, while both ours and other
features jointly led to an improvement in the second part of
the course. Given our results and the characteristics of our
features, we can observe that:

Highlight #3. Extracting fine-grained features that model
alignment, anticipation and strength of video/quiz usage
results in higher predictive power on failing students.

Though considering the feature sets separately allowed us
to perform a fine-grained assessment and have an estima-
tion of their predictive power, it remains unclear how the
effectiveness of early predictors can be improved by training
models with an ensemble of all features and to what extent
the importance of the considered features varies. Hence, on
the right side of the plots in Figure 2, we present the results
achieved by a RF classifier only with the most important
features selected from all features and from all features ex-
cept ours. It can be observed that the optimal ensemble
of features without ours results in lower performance, com-
pared to the optimal ensemble that uses also our features.
The optimal ensemble of all feature has an AUC score con-
sistently higher than 0.70. To inspect what drives success
prediction, we computed the feature importance over weeks
and folds, and reported in Figure 4 the importance of fea-
tures (short description in Table 1) selected by RF. Looking
at importance scores in Figure 4(a), we observe that:

Highlight #4. The extent to which students anticipate con-
tent consumption, the tendency of learning during week-
ends, the proportion of watched videos, and the strength of
their performance in quizzes, had the highest importance.

Figure 4(b) shows that the difference in importance across
features is more evident in the first weeks. This finding
emphasizes the fact that selecting appropriate features is
more crucial when interested in very early predictions.

5. EARLY PREDICTORS OVER COURSES
Our exploratory analysis revealed interesting patterns on
the predictive power and importance of a range of features.
However, it remains under-explored the extent to which the
patterns identified in that flipped course hold also in courses
with other structures and educational settings. To this end,

156 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

(a) Average feature importance across weeks. (b) Feature importance over weeks.

Figure 4: [LA-Flip]. Importance of the best nineteen features selected by a RF classifier from the ensemble of all feature sets.
Four features of our set have been selected as important. Table 1 lists the Feature IDs and the short description of each feature.

Table 1: [LA-Flip]. Description of the most important nineteen features selected by a RF classifier from the ensemble of all
feature sets, showed in decreasing order of importance. Four features of our set have been selected among the top eleven.

ID Set Name Short Description
f0 Ours CompetencyAnticipation The extent to which the student approaches soon a quiz provided in subsequent weeks.
f1 LalleConati WeeklyPropWatched-Avg The proportion of videos the student watched, counting repeating segments.
f2 ChenCui RatioClicksWeekendDay The ratio between clicks happened during weekend and weekdays.
f3 Ours ContentAnticipation The extent to which the student approaches soon a video provided in subsequent weeks.
f4 Ours CompetencyStrength The extent to which a student passes a quiz getting the maximum grade with a low number of trials.
f5 BoroujeniEtAl RegWeeklySim-M2 The extent to which the student has a similar distribution of workload among weekdays across weeks.
f6 LalleConati WeeklyPropInter-Std The standard deviation of the time the student spent while interrupting a video, across videos.
f7 WanEtAl NumSubmissionCor The average number of quizzes attempted and correct.
f8 WanEtAl NumSubmissions-Avg The number of submissions required to pass a quiz, on average.
f9 LalleConati WeeklyPropInter-Avg The average time the student spent while interrupting a video, across videos.
f10 Ours StudentShape The extent to which the student receives the maximum grade in quizzes at the first attempt in a row.
f11 WanEtAl NumSubmissionPerCorrect Percentage of the correct quiz submissions with respect to the total submissions.
f12 LalleConati WeeklyPropReplayed-Avg The proportion of videos the student re-watched, not counting repeating segments.
f13 LalleConati FrequencyEvent-VideoPlay The frequency of the video play action in the students’ online sessions.
f14 AkpinarEtAl QCheck-QCheck-VLoad The amount of times the student checks twice a given quiz and then go to load a video.
f15 AkpinarEtAl VPlay-VPause-VLoad The amount of times the student plays a video, pause and then load the next one.
f16 BoroujeniEtAl RegPeriodicity-M3 The extent to which the daily study pattern is repeating over weeks (e.g., same days of the week).
f17 BoroujeniEtAl RegWeeklySim-M1 The extent to which the student works on the same weekdays.
f18 AkpinarEtAl VStop-PCheck-VLoad The amount of times the student stops a video, attempts a quiz and then load the next video.

we extended our analysis to a flipped course in a different do-
main (Functional Programming, only video data in pre-class
activities), a MOOC in the same domain (Linear Algebra,
both videos and quizzes), and a MOOC from a different do-
main (Functional Programming, only video interactions).

5.1 Experimental Setup
Protocol. In this experiment, we followed the steps described
in Section 4.2.1, with few exceptions. Specifically, for each
data set, we considered only classifiers trained with the opti-
mal ensemble of all features proposed in prior work plus the
ones proposed in this paper. To obtain the input features
for the RF classifier on week w, we computed the weekly
features for all feature sets; then averaged features of the
same week, and finally averaged across weeks till week w.
For each course, we computed the most important features
from the ensemble (eight existing sets and ours) based on the
average importance of the features across folds and weeks.
The study was approved by the university’s ethics commit-
tee (HREC No. 096-2020/09.04.2020).

Data Set: FP-Flip. We consider one stream of a Functional
Programming course taught to EPFL Master’s students in a
flipped manner for 10 weeks. The preparatory work included

a list of videos from a Functional Programming MOOC. Re-
peating students were filtered out. Being a Master’s course
with a failing percentage of only 5%, we considered whether
a student’s final course grade (lying between 0 and 6) was
above the average grade over all students as a success label.
The dataset consists of clickstreams from 218 students, with
38% of them being below average.

Data Set: LA-MOOC. The content used in pre-class activi-
ties within LA-Flip was also provided by EPFL instructors
on an external MOOC platform in form of three separate
MOOCs, with the first MOOC being equivalent to the first
4 weeks of the flipped course, the second MOOC equivalent
to week 5 to week 8, and the third MOOC equivalent to
the last 3 weeks. Given that the first 4 weeks of LA-Flip
were delivered in a traditional manner, we excluded the first
MOOC from our study. We also excluded the third MOOC,
given that the number of enrolled students was barely small.
To sum up, our study in this paper considers only the sec-
ond MOOC that covers the second part (weeks 5 to 8) of the
flipped course. To pass the course, it is mostly necessary to
obtain at least 60% of the total points for each assignment.
Hence, we used this rule as a way to measure success in our
study. The final data set consists of clickstream data from
170 students, with 33% of them failing the course.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 157

Table 2: Features selected as important by RF classifiers for the ensemble of features for each course.

Set Name Short Description LA-Flip FP-Flip LA-MOOC FP-MOOC

AkpinarEtAl

QCheck-QCheck-QCheck The amount of times the student checks three times the same quiz. 3
QCheck-QCheck-VLoad The amount of times the student checks twice the quiz and then go to load a video. 3
VPlay-VPlay-VPlay The amount of times the student clicks for three consecutive times on play for three different videos. 3
VPlay-VPause-VLoad The amount of times the student plays a video, pause and then load another one. 3
VPlay-QCheck-QCheck The amount of times the student plays a video, then checks twice a quiz. 3
VPlay-VStop-VPlay The amount of times the student plays a video, stops, and plays another one. 3
VPause-VSpeedChange-VPlay The amount of times the student pauses a video, changes the speed, and re-plays it. 3
VStop-VPlay-VSeek The amount of times the student stops a video, then re-play it and seek to a given part. 3
VStop-VCheck-VLoad The amount of times the student stops a video, checks a quiz and then load another video. 3

BoroujeniEtAl

DelayLecture The average delay in viewing video lectures, as soon as they are released. 3 3 3
RegWeeklySim-M1 The extent to which the student works on the same weekdays across weeks. 3 3
RegWeeklySim-M2 The extent to which a student has a similar distribution of workload among weekdays across weeks. 3 3 3
RegWeeklySim-M3 The extent to which the time spent on each day of the week is similar for different weeks of the course. 3
RegPeriodicity-M1 The extent to which the hourly pattern of student’s activities is repeating over days. 3
RegPeriodicity-M3 If the daily study pattern is repeating over weeks (e.g. is active on Monday and Tuesday in every week). 3 3
RegPeakTime-M1 The extent to which students’ activities are centered around a particular hour of the day. 3
RegPeakTime-M2 The extent to which students’ activities are centered around a particular day of the week. 3

ChenCui

RatioClicksWeekendWeekdays The ratio between clicks in weekdays and weekends. 3 3 3 3
TimeSession-Avg The average amount of time spent from a login to the end of the session. 3
TimeSession-Std The standard deviation of time spent from a login to the end of the session. 3
TimeBetweenSessions The average amount of time passed between two sessions for a student. 3
TotalClicks-Weekdays The number of clicks performed by a student over weekdays. 3

LalleConati

PauseDuration-Avg The average amount of time spent in pause while interacting with a video. 3
SeekLength-Std The extent to which the seek length varies across videos. 3
PauseDuration-Std The extent to which the pause duration varies across videos. 3
TimeSpeedingUp-Avg The average amount of time spent with higher than 1x speed while playing a video. 3
TimeSpeedingUp-Std The extent to which the time spent speeding up higher than 1x the videos varies. 3
WeeklyPropWatched-Avg The proportion of videos the student watched, counting repeating segments. 3
WeeklyPropInter-Avg The average time the student spent in interrupting a video. 3
WeeklyPropInter-Std The deviation of the time the student spent in interrupting a video. 3
WeeklyPropReplayed-Avg The proportion of videos the student re-watched, counting repeating segments. 3
WeeklyPropReplayed-Std The deviation of the proportion of videos the student re-watched, counting repeating segments. 3
FrequencyEvent-VideoPlay The frequency of the play event in the students’ sessions. 3 3

MubarakEtAl SpeedPlayBack-mean The average speed the student used to play back a video. 3 3

WanEtAl

NumSubmissionsCor The number of quizzes attempted and correct. 3
NumSubmissions-Avg The number of submissions performed for a quiz, on average. 3 3
NumSubmissionPerCorrect The percentage of the correct quiz submissions with respect to the total submissions. 3 3
NumSubmissionDistinct The total number of distinct problems attempted by the student. 3

ours

CompetencyAnticipation The extent to which the student approaches soon a quiz provided in subsequent weeks. 3
ContentAnticipation The extent to which the student approaches soon a video provided in subsequent weeks. 3

Ours CompetencyStrength The extent to which a student passes a quiz getting the maximum grade with a low number of trials. 3 3
StudentShape The extent to which the student receives the maximum grade in quizzes at the first attempt in a row. 3 3
Student Speed The average amount of time passed between two submissions for the attempted quizzes. 3

Figure 5: AUC scores per week for RF classifiers trained on
feature ensembles. Flipped courses (*-Flip) last 10 weeks;
LA-MOOC (FP-MOOC) last 4 (6) weeks.

Data Set: FP-MOOC. The content delivered in pre-class
activities in FP-Flip was also provided by EPFL instruc-
tors on an external MOOC platform in form of two sepa-
rate MOOCs, with the first MOOC being equivalent to the
first 6 weeks of the flipped course and the second MOOC to
the subsequent weeks. No data was available on the second
MOOC, so we limited our study to only the first MOOC
(week 1 to 6 of the flipped period of FP-Flip). To pass this
MOOC, 80% of the total points for each of the five graded
assignments are mostly needed. Hence, we used this rule to
measure success in our study. The dataset consists of click-
streams from 3, 565 students, with 52% failing the course.

5.2 Observations
We evaluated the predictive performance of a RF classifier
across weeks for each course for the best ensemble feature
set for that course. Figure 5 illustrates the predictive per-
formance across weeks for all four courses. Considering the
same course across different settings (flipped or MOOC), it
can be observed that RFs trained on flipped course data

achieved higher AUC scores than their MOOC counterpart.
This difference can be due to multiple reasons, for exam-
ple the different educational setting or the way the passing
rule for the course is set up. Considering courses in the same
setting (LA-Flip VS FP-Flip or LA-MOOC VS FP-MOOC),
the results show that including quizzes in the LA-Flip course
allows to increase the predictive power of the considered clas-
sifiers, compared to FP-Flip, that has no quizzes. This can
be associated to the fact that quizzes are a good source of in-
formation for grasping the students’ performance. The same
observation is, however, less strong on the MOOC counter-
part of the same two courses, highlighting again the high
dependency from the educational setting.

In a second part of this experiment, we analyzed the av-
erage importance across weeks of the features selected by
RFs across courses. Table 2 shows for each feature set and
course, whether a given feature has been selected by the cor-
responding RF classifier. It should be noted that this table
includes only features picked at least by a RF classifier across
courses. In general, we show that while there is some overlap
between the optimal features across courses, the importance
of the features highly depends on the setting and structure of
the course. The ratio of clicks between weekends and week-
days (ChenCui - RatioClicksWeekendWeekdays) is selected
by all classifiers in all settings. Other features with a good
level of generalizability are represented by those measuring
regularity (BoroujeniEtAl). The other features were picked
according to the setting or the structure of the course. In
particular, RFs trained on LA-Flip and LA-MOOC assigned
a higher importance to features that measure behavior in
quizzes (e.g., Ours or WanEtAl). Hence, we can conclude
that when available, features on quizzes are frequently se-
lected, regardless of the setting. For courses with no quizzes,
namely FP-Flip and FP-MOOC, the predictive power of RFs

158 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

is mainly based on regularity and fine-grained video usage
(e.g., features on time spent in a video, e.g., LalleConati).

Highlight #5. When quizzes are included in the schedule,
quiz-related features are frequently selected as important.
This is stronger in flipped than MOOC settings. When only
videos are available, the predictive power mainly derives
from regularity and fine-grained video-related features.

For the same course in different settings, namely LA-Flip VS
LA-MOOC and FP-Flip VS FP-MOOC, the optimal feature
set heavily changed. In LA courses, quiz-related features
were more important in the flipped context, while session-
based features were more important in MOOCs (e.g., those
from ChenCui). The latter finding holds for FP courses as
well. Specifically, RFs trained on the MOOC version con-
sistently selected features related to the students’ session.
Another observation for FP is that in the flipped version,
tri-grams (ApkinarEtAl) and fine-grained video usage fea-
tures (LalleConati) were picked; in the MOOC, regularity
and session-based features were more important. To sum
up, according to Table 2:

Highlight #6. Predictors in flipped settings often rely on
features based on tri-grams and fine-grained video consump-
tion. Conversely, predictors in MOOCs consider regularity
and session-based features as important. Quiz-related fea-
ture are picked in both settings, when quizzes are available.

6. DISCUSSION
In this section, we connect the main findings coming from
the individual experiments and present the implications and
limitations of our study in the early success prediction task.

Course-Related Observations. A challenge, as our work shows,
lies on the generalizability of feature predictive power across
courses. The variability of the results when repeating the
exact same experiment with data from different courses (or
slightly different settings) is very high. It is therefore chal-
lenging to understand when, why, and how a feature tested
on a given course could be re-used for other courses.

Highlight #7. The predictive power of features does not of-
ten generalize across courses with different structures and
educational settings. This observation is stronger with re-
spect to the courses structure than between flipped and
MOOC settings.

This observation affects the scalability of early predictors.
Being so course-dependent, identifying and enabling fea-
tures predictive of student success for a given course can
take hours or days, given that the intellectual and experi-
mental work needs to be replicated on courses, case by case.

Highlight #8. The lack of feature predictive power gener-
alizability questions the extent to which a feature can be
scaled across courses with the same structure/setting.

Our experiments also showed that including quizzes in pre-
class activities leads to substantial improvements in effec-
tiveness. Hence, success prediction is driven by complex re-
lationships between students’ characteristics and the course
domain, structure, and educational setting.

Data-Related Observations. Research in the area of early
success prediction is often conducted on data extracted from

online activities only. Even in our case study (for LA-flip),
we could not rely on data collected in class, missing an im-
portant segment of learning. Moreover, clickstreams in this
study do not cover other relevant interactions such as those
in forums. In flipped courses, most (non-digitalized) dis-
cussions happen in class, and the forum is mainly used by
teachers for announcements.

Highlight #9. Early success prediction in flipped courses
would benefit from including data coming from offline ac-
tivities (e.g., in class).

Workflow-Related Observations. To establish reproducibil-
ity, the description of the proposed features should go be-
yond plain-text only. Our formulation in this paper can be
re-used to define features as formulas, making it easier to
replicate them, especially when no source code is provided.

Highlight #10. Feature descriptions can be accompanied
by their mathematical formulation to ease reproducibility.
When possible, sharing the code can facilitate their re-use.

Though we validated the current features on RFs, other
classifiers were not presented. However, RFs often provide
the best trade-off between effectiveness and interpretability
(the latter was fundamental for our study) and our frame-
work makes it easy to run this analysis on other classifiers.
Given that other classifiers (e.g., Support Vector Machines)
gave worse (or comparable) results in the preliminary exper-
iments we ran, our results depict a valid picture of feature
predictive power.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we analyzed recent features for early success
prediction in flipped and online courses. First, we inves-
tigated the predictive power of eight existing feature sets
and a novel feature set proposed in this paper on a flipped
course. We benchmarked the predictive power of features
using a RF classifier, and discussed the ensemble feature set
optimal for that course. We then extended our analysis to
courses with other settings (MOOCs), domains, and struc-
tures, showing that the optimal ensemble and its predictive
power vary. Our work calls for generalizable early predictors
across courses with different characteristics. To promote re-
search in this field, we also publicly release the source code
developed during our study (see the footnote in Section 1).

In future work, we plan to extend our analysis to other fea-
tures (e.g., based on in-class data), and types of student
success tasks (e.g., grade prediction). We also plan to ana-
lyze more advanced classifiers and to devise robust classifiers
across courses before testing them in the real world.

Acknowledgments We thank Himanshu Verma (TU Delft,
formerly at EPFL) and Patrick Jermann and Francisco Pinto
(EPFL Center for Digital Education) for the valuable input
and support on the data sharing and manipulation.

8. REFERENCES
[1] N. Akpinar, A. Ramdas, and U. Acar. Analyzing

student strategies in blended courses using clickstream
data. In Proceedings of the 13th International
Conference on Educational Data Mining, EDM 2020,
pages 6–17. Int. Educat. Data Mining Society, 2020.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 159

[2] B. J. Beatty, Z. Merchant, and M. Albert. Analysis of
student use of video in a flipped classroom.
TechTrends, 63(4):376–385, 2019.

[3] M. S. Boroujeni, K. Sharma, L. Kidzinski,
L. Lucignano, and P. Dillenbourg. How to quantify
student’s regularity? In Proceedings of the 11th
European Conference on Technology Enhanced
Learning, EC-TEL 2016, volume 9891 of Lecture Notes
in Computer Science, pages 277–291. Springer, 2016.

[4] F. Chen and Y. Cui. Utilizing student time series
behaviour in learning management systems for early
prediction of course performance. Journal of Learning
Analytics, 7(2):1–17, 2020.

[5] J. Gardner and C. Brooks. Student success prediction
in moocs. User Modeling and User-Adapted
Interaction, 28(2):127–203, 2018.

[6] N. Goedhart, N. Blignaut-van Westrhenen, C. Moser,
and M. Zweekhorst. The flipped classroom: supporting
a diverse group of students in their learning. Learning
Environments Research, 22(2):297–310, 2019.

[7] H. He, Q. Zheng, B. Dong, and H. Yu. Measuring
student’s utilization of video resources and its effect
on academic performance. In Proceedings of the 18th
IEEE International Conference on Advanced Learning
Technologies, ICALT 2018, pages 196–198. IEEE
Computer Society, 2018.

[8] J. Jovanović, D. Gašević, S. Dawson, A. Pardo,
N. Mirriahi, et al. Learning analytics to unveil
learning strategies in a flipped classroom. The Internet
and Higher Education, 33(4):74–85, 2017.

[9] J. Jovanovic, N. Mirriahi, D. Gasevic, S. Dawson, and
A. Pardo. Predictive power of regularity of pre-class
activities in a flipped classroom. Computers &
Education, 134:156–168, 2019.

[10] C. Lai and G. Hwang. A self-regulated flipped
classroom approach to improving students’ learning
performance in a mathematics course. Computers &
Education, 100:126–140, 2016.

[11] S. Lallé and C. Conati. A data-driven student model
to provide adaptive support during video watching
across moocs. In Proceedings of the 21st International
Conference on Artificial Intelligence in Education,
AIED 2020, volume 12163 of Lecture Notes in
Computer Science, pages 282–295. Springer, 2020.

[12] J. Lee and H. Choi. Rethinking the flipped learning
pre-class: Its influence on the success of flipped
learning and related factors. British Journal of
Educational Technology, 50(2):934–945, 2019.

[13] D. J. Lemay and T. Doleck. Grade prediction of
weekly assignments in MOOCS: mining video-viewing
behavior. Education and Information Technologies,
25(2):1333–1342, 2020.

[14] G. S. Mason, T. R. Shuman, and K. E. Cook.
Comparing the effectiveness of an inverted classroom
to a traditional classroom in an upper-division
engineering course. IEEE Transactions on Education,
56(4):430–435, 2013.

[15] B. Mbouzao, M. C. Desmarais, and I. Shrier. Early
prediction of success in MOOC from video interaction
features. In Proceedings of the 21st International
Conference on Artificial Intelligence in Education,
AIED 2020, volume 12164 of Lecture Notes in

Computer Science, pages 191–196. Springer, 2020.

[16] A. A. Mubarak, H. Cao, and S. A. M. Ahmed.
Predictive learning analytics using deep learning
model in moocs’ courses videos. Education and
Information Technologies, 26(1):371–392, 2021.

[17] E. M. W. Ng. Integrating self-regulation principles
with flipped classroom pedagogy for first year
university students. Computers & Education,
126:65–74, 2018.

[18] J. O’Flaherty and C. Phillips. The use of flipped
classrooms in higher education: A scoping review. The
Internet and Higher Education, 25:85–95, 2015.

[19] S. Park and N. H. Kim. University students’
self-regulation, engagement and performance in
flipped learning. European Journal of Training and
Development, 2021.

[20] W. W. Porter, C. R. Graham, K. A. Spring, and K. R.
Welch. Blended learning in higher education:
Institutional adoption and implementation. Computers
& Education, 75:185–195, 2014.

[21] A. A. Rahman, B. Aris, M. S. Rosli, H. Mohamed,
Z. Abdullah, and N. Mohd Zaid. Significance of
preparedness in flipped classroom. Advanced Science
Letters, 21(10):3388–3390, 2015.

[22] M. Shih, J. Liang, and C. Tsai. Exploring the role of
university students’ online self-regulated learning in
the flipped classroom: a structural equation model.
Interact. Learn. Environ., 27(8):1192–1206, 2019.

[23] N. A. Uzir, D. Gasevic, W. Matcha, J. Jovanovic, and
A. Pardo. Analytics of time management strategies in
a flipped classroom. Journal of Computer Assisted
Learning, 36(1):70–88, 2020.

[24] J. N. Walsh and A. Risquez. Using cluster analysis to
explore the engagement with a flipped classroom of
native and non-native english-speaking management
students. The International Journal of Management
Education, 18(2):100381, 2020.

[25] H. Wan, J. Ding, X. Gao, and K. Liu. Supporting
quality teaching using educational data mining based
on openedx platform. In Proceedings of the IEEE
Frontiers in Education Conference, FIE 2017, pages
1–7. IEEE Computer Society, 2017.

[26] H. Wan, K. Liu, Q. Yu, and X. Gao. Pedagogical
intervention practices: Improving learning engagement
based on early prediction. IEEE Transactions on
Learning Technologies, 12(2):278–289, 2019.

[27] K. Wang and C. Zhu. Mooc-based flipped learning in
higher education: students’ participation, experience
and learning performance. International Journal of
Educational Technology in Higher Education,
16(1):1–18, 2019.

[28] R. M. Yilmaz and O. Baydas. An examination of
undergraduates’ metacognitive strategies in pre-class
asynchronous activity in a flipped classroom.
Educational Technology Research and Development,
65(6):1547–1567, 2017.

160 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Early Prediction of Conceptual Understanding
in Interactive Simulations

Jade Cock
EPFL

jade.cock@epfl.ch

Mirko Marras
EPFL

mirko.marras@epfl.ch

Christian Giang
EPFL

christian.giang@epfl.ch

Tanja Käser
EPFL

tanja.kaeser@epfl.ch

ABSTRACT
Interactive simulations allow students to independently ex-
plore scientific phenomena and ideally infer the underlying
principles through their exploration. Effectively using such
environments is challenging for many students and there-
fore, adaptive guidance has the potential to improve stu-
dent learning. Providing effective support is, however, also a
challenge because it is not clear how effective inquiry in such
environments looks like. Previous research in this area has
mostly focused on grouping students with similar strategies
or identifying learning strategies through sequence mining.
In this paper, we investigate features and models for an early
prediction of conceptual understanding based on clickstream
data of students using an interactive Physics simulation. To
this end, we measure students’ conceptual understanding
through a task they need to solve through their exploration.
Then, we propose a novel pipeline to transform clickstream
data into predictive features, using latent feature represen-
tations and interaction frequency vectors for different com-
ponents of the environment. Our results on interaction data
from 192 undergraduate students show that the proposed
approach is able to detect struggling students early on.

Keywords
skip-grams, early classification, interactive simulations, con-
ceptual understanding

1. INTRODUCTION
Over the last years, interactive simulations have been in-
creasingly used for science education (e.g, the PhET simu-
lations alone are used over 45M times a year [1]). Interactive
simulations allow students to engage in inquiry-based learn-
ing: they can design experiments, take measurements, and
test their hypotheses. Ideally, students discover the prin-
ciples and models of the underlying domain through their
own exploration [2], but students often struggle to effec-
tively learn in such environments [3, 4, 5]. A possible reason
for this is that interactive simulations are usually complex

and unstructured environments allowing students to choose
their own action path [6]. Providing adaptive guidance to
students has therefore the potential to improve learning out-
comes.

Implementing effective support in interactive learning en-
vironments is a challenge in itself: the complexity of the
environment makes it difficult to define a priori how suc-
cessful student behaviour looks like. Previous research has
focused on leveraging sequence mining and clustering tech-
niques to identify the key features of successful interactions.
For example, [7] have used an information theoretic sequence
mining approach to detect differences in the interaction se-
quences of students with high and low prior knowledge,
while [8] investigated the effects of prior knowledge activa-
tion. Other work [9] focused on detecting behaviours leading
to the design of a correct causal explanation. [10] identified
key factors for successful inquiry: focusing on an unknown
component and building contrastive cases. Similarly, [11]
found that the identification of the dependent variable and
its isolated manipulations lead to a better quantitative un-
derstanding of the phenomena at hand. Another technique
is to manually categorise students’ log data and use the
tags as ground truth for a classifier of successful inquiry
behaviour [12]. [13] developed a dashboard displaying in-
formation about the mined sequences to guide teachers in
building their lessons.

More work has focused on analysing and predicting students’
strategies in different types of open ended learning environ-
ments (OELEs), such as educational games. Prior research
in that domain has, for example, investigated students’ prob-
lem solving behaviour [14], analysed the effect of scaffolding
on students’ motivation [15], extracted strategic moves from
video learning games [16], detected different types of confu-
sion [17], or identified students’ exploration strategies [18].

Most of the previous work on OELEs has performed a pos-
teriori analyses. However, in order to provide students with
support in real-time, we need to be able to detect strug-
gling students early on. Due to the lack of clearly defined
student trajectories and underlying skills, building a model
of students’ learning in OELEs is challenging. A promis-
ing approach for early prediction in OELEs is the use of a
clustering-classification framework [19]: in the (first) offline
step, students are clustered based on their interaction data
and the clustering solution is interpreted. The second step
is online: students are assigned to clusters in real-time. This

Jade Cock, Mirko Marras, Christian Giang and Tanja Käser “Early Pre-
diction of Conceptual Understanding in Interactive Simulations”. 2021.
In: Proceedings of The 14th International Conference on Educational Data
Mining (EDM21). International Educational Data Mining Society, 161-
171. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 161

Voltage: 4 V Separation: 4 mm Area: 200 mm2

Separation: 2 mm Area: 400 mm2

Voltage: 2 V Separation: 8 mm Area: 400 mm2

Separation: 8 mm Area: 400 mm2

Separation: 6 mm Area: 600 mm2

Separation: 10 mm Area: 100 mm2

1

2

3

4

Setup I

Closed circuit configurations Open circuit configurations

A B

C

Setup II

Figure 1: User interface of the PhET Capacitor Lab with different plate parameters for a closed (A) and an open circuit (B).
The two initial closed circuit configurations and the resulting four open circuit configurations presented to the participants in
the capacitor ranking task (C). (Simulation image by PhET Interactive Simulations, University of Colorado Boulder, licensed
under CC-BY 4.0, https://phet.colorado.edu).

framework has been successfully applied to analyse and pre-
dict students’ trajectories in mathematics learning [20], to
differentiate between ‘high’ and ‘low’ learners [21], to build
student models for interactive simulations [22], or to predict
students’ exploration strategies in an educational game [23].

In this paper, we aim at early predicting conceptual un-
derstanding based on students’ log data from an interactive
Physics simulation. All our analyses are based on data col-
lected from 192 undergraduate Physics students interacting
with a PhET simulation. We propose a novel pipeline for
transforming clickstream data into predictive features using
latent feature representations and frequency vectors. Then,
we extensively evaluate and compare various combinations
of predictive algorithms and features on different classifica-
tion tasks. In contrast to previous work using unsupervised
clustering to obtain student profiles [21, 20, 23, 22], our
learning activity with the simulation includes a task specifi-
cally designed to assess students’ conceptual understanding.
With our analyses, we address three research questions: 1)
Can students’ interaction with the data be associated with
the gained conceptual understanding? 2) Can conceptual
understanding be inferred through sequence mining meth-
ods with embeddings? 3) Can the proposed methods be
used for early predicting students’ conceptual understand-
ing based on partial sequences of interaction data?

Our results show that all tested models are able to predict
students’ conceptual knowledge with a high AUC when ob-
serving students’ full sequences (offline). The best models
are also able to detect struggling students early on and to
provide a more fine-grained prediction of students’ concep-
tual knowledge later during interaction.

2. CONTEXT AND DATA
All experiments and evaluations of this paper were con-
ducted using data from students exploring an interactive
simulation. In the following, we describe the learning activ-
ity, the data collection, and the categorisation of students’
conceptual understanding at the end of the learning activity.

Learning Activity. The data for this work was collected in
a user study where participants were asked to engage in
an inquiry-based learning activity with the PhET Capacitor
Lab simulation1. The Capacitor Lab is an interactive sim-
ulation with a simple and intuitive interface allowing users
to explore the principles behind a plate capacitor (Fig. 1A
and B). Specifically, students can load the capacitor by ad-
justing the battery and observe how the capacitance and
the stored energy of the capacitor change when adjusting
the voltage, the area of the capacitor plates or the distance
between them. After loading the capacitor, the circuit can
be opened through a switch, and students can again observe
how manipulation of the different components influences ca-
pacitance and stored energy. Moreover, the simulation pro-
vides a voltmeter, while check boxes in the interface allow
users to enable or disable visualisations of specific measures.

Based on this simulation, a learning activity was designed
in which participants had to explore the relationships be-
tween the different components of the circuit and rank four
different capacitor configurations by the amount of stored
energy. The configurations were generated based on two ini-
tial setups (I and II, respectively) representing capacitors in
a closed circuit with different settings for battery voltage,

1https://phet.colorado.edu/en/simulation/capacitor-lab-
basics

162 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

plate area and separation (Fig. 1C). For each initial setup,
two open circuit configurations were generated (i.e. config-
urations 1 & 2 from setup I and 3 & 4 from setup II) by
opening the switch and then changing the values for plate
area and separation. To complete this ranking task, partici-
pants were allowed to use the simulation for as much time as
they needed. It should be noted that the values in the rank-
ing task were chosen outside the ranges of the adjustable
values in the simulation such that students could not simply
reproduce the four configurations in the simulation, but had
to solve the task by figuring out the relationships between
the different components and the stored energy.

Data Collection. Data was collected from 214 first-year un-
dergraduate Physics students who completed the capacitor
ranking task as part of a homework assignment. While
working with the simulation, students’ interaction traces
(i.e. clicks on check boxes, dragging of components, moving
of sliders) were automatically logged by the environment.
Moreover, it recorded students’ final answers in the rank-
ing task (i.e. the ranking of the four configurations). All
data was collected in a completely anonymous way and the
study was approved by the responsible institutional review
board prior to the data collection (HREC number: 050-
2020/05.08.2020). After a first screening of the data, several
log files (9) were excluded because of inconsistencies in the
data, and another 13 because they had barely any interac-
tion (less than 10 clicks) with the environment. Removing
these data points resulted in a data set of 192 students used
for our analyses.

Categorisation of conceptual understanding. The design of
the ranking task allows to relate students’ responses to their
conceptual understanding of a capacitor. For this purpose,
we analysed the 16 (out of 24 possible) rankings submit-
ted by the students with regards to conceptual understand-
ing and grouped them accordingly. To this end, three con-
cepts of understanding associated with the functioning of
capacitors were evaluated in a top-down approach: answers
were first separated by those representing an understand-
ing of both the open and closed circuit (label both), and
those only representing an understanding of the closed cir-
cuit (label closed). For those answers representing an under-
standing of both the open and closed circuit, two cases were
distinguished. It was assumed that students who chose the
only correct ranking of the configurations (“4213”) gained an
exhaustive understanding of the underlying concepts (label
correct). Students who instead chose one of the other rank-
ings were assumed to know how plate area and separation
influence the stored energy in both the open and closed cir-
cuits, but failed to discover the influence of voltage on stored
energy (label areasep). Within those answers that only rep-
resented an understanding of the capacitor’s functioning in
the closed circuit, we also distinguished between two cases.
The first case represents the answer that would be consid-
ered correct if the task was to order the four configurations
by capacitance instead of energy (“1324”, label capacitance).
Interestingly, 47 students (i.e. 24% of all students) submit-
ted this ranking as an answer. The second case represents all
other possible answers (label other) that could be submitted
if (a part of) the closed circuit was understood.

Based on these three underlying concepts, we generated a

1243 (5)
1342 (3)
3412 (4)
3124 (3)
1234 (27)

Exhaustive
understanding

4213 (38)

Circuit
understanding

Ranking
performed by

4231 (25)
2431 (2)
4321 (10)
2413 (20)
2143 (3)

1324 (47) 4123 (1)
4132 (2)
1432 (1)

134 (1)

Yes No

Open and closed Closed only

Capacitance Other

CORRECT

AREASEP

CAPACITANCE

OTHER

BOTH CLOSED

Figure 2: Tree used to map the 16 different rankings submit-
ted by the students to class labels associated with conceptual
understanding of a capacitor. The different class labels are
indicated in capitalised letters. The numbers in parentheses
indicate the number of submissions for each ranking.

decision tree with four leaves (each representing a group
with similar conceptual understanding) and mapped all 16
rankings submitted by the students to the leaves (Fig. 2).
These generated class labels will serve as ground truth labels
for the classification task presented in the following sections.

3. METHOD
Using our proposed approach, we are interested in predicting
the conceptual understanding students gain from interact-
ing with the simulation. Therefore, we are solving a super-
vised classification problem, i.e. we aim at predicting the
class labels (representing students’ conceptual understand-
ing) based on the observed student interactions. Our model
building process to solve this classification problem consists
of four steps (Fig. 3). We first extract the raw clickstream
events from the logs and process them into action sequences.
We then compute three different types of features for each
action sequence and feed them into our classifiers.

Event Logs. From the simulation logs, we extract the click-
stream data of each student s as follows: anything between
a mouse click/press and a mouse release qualifies as an event,
while anything between a mouse release and mouse click/press
is called break. Each event is then labelled by the compo-
nent the user was interacting with at the mouse click, and
chronologically arranged with the breaks into a sequence.

Action Processing. We distinguish three main components
on the platform, whose values can be changed: 1) the voltage,
2) the separation between the plates, and 3) the area of the
plates. An action on these components can be conducted in
a) an opened circuit or b) a closed circuit, with the stored
energy information display i) on or ii) off. We categorise
each event involving these main actions by the combination
of: the action on the component {1), 2), 3)}, the circuit
state {a), b)}, and the stored energy display {i), ii)}. Any
other event is categorised as 4) other.

The sequence of each student s is now composed of chrono-
logically ordered events (divided into the 13 different cate-
gories listed above) separated by breaks. The breaks may
be caused by the student being inactive due to observing

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 163

Event Logs Action Processing Feature Creation Classification

Student X

Student Y

Student X

Student Y

Three approaches:

Action Counts

Action Span

Pairwise Embeddings

Two approaches:

Random forests
(RF)

Neural networks
(NN)

Figure 3: Schematic overview of the classification pipeline. Raw clickstream events are extracted from log data and processed
into an action sequence per user. Three types of features are computed for each action sequence. Classification is performed
using Random Forests (RF) and Neural Networks (NN).

Figure 4: Distribution of break lengths in seconds, across all
students. The bold gray line denotes the 60% threshold.

the progression of a value, reflecting about an observation,
or taking notes. Due to its definition as the period between
a mouse release and a mouse click/press, a break may also
appear due to logistic reasons, such as moving the mouse
from one component in the simulation to another compo-
nent. Indeed, the students’ event sequences consist of many
short breaks (Fig. 4). Like stop words in natural texts, our
assumption is that these very short breaks, though very fre-
quent in our sequences, do not contain much information.
In fact, our classification over students’ understanding may
be impaired if those noisy states are not removed, like it
is the case for sentiment analysis when stop words are not
deleted [24]. To determine the threshold at which the breaks
are removed, we plot the distribution of inactivity periods,
and cut at the elbow of the curve for each student, which
corresponds to a delimitation at 60%, i.e. for each student
we keep the top 40% of breaks. We then categorise each of
our remaining breaks similarly to our main action events: by
component 5) break, circuit state {a), b)}, and stored energy
display {i), ii)}, resulting in four different break categories.

The resulting sequence rs for student s is the chronological
timeline of the student’s events and breaks, divided into 17
categories. We refer to this timeline rs as the raw sequence
of interactions for the rest of the paper. We denote the
length (corresponding to the total number of interactions of
student s) of rs with Ns, i.e. |rs| = Ns. On average, these
sequences have a length of Ns = 67.86± 42.56. In terms of
seconds, the sequences rs lasted on average 512.18± 435.57

Figure 5: Timeline of an exemplary student for each class la-
bel displaying the chronological sequence of interactions with
the three main components of the simulation. The green and
orange bars indicate whether the student displayed the capac-
itance and stored energy. The background indicates whether
the interactions were conducted in a closed (grey) or open
(white) circuit.

seconds. We also introduce the notion of time, which we de-
fine related to a student’s interactions: at time t the length
of the raw sequence of interactions for student s is t, i.e.
|rs,t| = t. We denote the maximum time of student s with
Ts, corresponding to the full sequence rs. Figure 5 visualises
the timelines for an exemplary student of each class label.
It can be observed that for these examples, certain aspects
of conceptual understanding could be inferred by visual in-
spection (e.g. the capacitance student never activated the
check box to visualise the stored energy). However, other
differences in conceptual understanding are more difficult to
detect by humans (e.g. the differences between the correct
and areasep students).

Feature Creation. Next, we transform the interactions in
each sequence to obtain three different types of features:
Action Counts, Action Span, and Pairwise Embeddings.

To obtain the Action Counts features FAC,s for a student s,
we first transform each interaction within the raw sequence
rs in a one-hot encoded vector, resulting in a 17-dimensional
vector hs,i for each interaction i and hence, a sequence of

164 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

vectors Hs = {hs,i} with i = 1, ..., Ns. To compute fAC,s,t

for student s at time step t, we compute the average over
hs,i with i = 1, ..., t: fAC,s,t = 1

t

∑t
i=1 hs,i. By using this

aggregating technique, our features are translated to the (av-
eraged) number of times each student has interacted in each
of our categories. Therefore, for each student s, we end up
with a feature set FAC,s = {fAC,s,t} with t = 1, ..., Ts.

The computation of the Action Span features FAS,s for a stu-
dent s is very similar. Rather than looking into the number
of times a student s has interacted with each of our compo-
nents in a particular state, we look into the amount of time
(in seconds) s has spent in each of the categories. We first
transform every interaction i within rs into a 17-dimensional
vector hs,i: This vector is 0 for all dimensions but the di-
mension d corresponding to the category the ih interaction
belongs to. This representation is similar to a one-hot en-
coded vector, but instead of filling in a 1 at dimension d,
we fill in the duration (in seconds) of interaction i. This re-
sults in a sequence of vectors Hs = {hs,i} with i = 1, ..., Ns.
We then compute the feature vector fAS,s,t for student s at
time t in two steps. In a first step, we again average over all
vectors hs,i up to time t, leading to f̃AS,s,t = 1

t

∑t
i=1 hs,i.

We then normalise f̃AS,s,t to obtain fAS,s,t. By using this
aggregation technique, our feature vector fAS,s,t represents
the relative amount of time student s has spent in each cat-
egory up to time t. For each student s, we end up with with
a feature set FAS,s = {fAS,s,t} with t = 1, ..., Ts.

The third feature, Pairwise Embeddings, is fundamentally
different from the the two other features: we replace each in-
teraction in the raw sequence by an embedding vector which
we obtain by training a pairwise skip-gram [25]. The archi-
tecture of such a network consists of two dense layers: an
embedding layer followed by a classification layer. Usually
applied to natural language applications (NLP), its primary
goal is to predict the context of a word. Here, our pairwise
skip-gram attempts to predict the behavior of a student in
the simulation before and after performing a specific inter-
action. The skip-gram model can be formulated as:

p = softmax(W2 · (W1 · a)) (1)

It takes a, an interaction we wish to predict the context of
as an input, and outputs p, a probability vector which con-
tains the likelihood of a being surrounded by each possible
interaction. W1 and W2 represent the weight matrices (em-
beddings). For each interaction a, we feed 2 · w pairs into
the network, where w is the so-called window size of the
model (context). The first element of each pair is a. The
second element of each pair, the ground truth label, is one
of the w interactions preceding or following a. For example,
a window size of w = 2 would yield the following pairs for
action a: (a, a−2), (a, a−1), (a, a+1), (a, a+2).

In our case, to obtain the set of pairs Is for a student s,
we first again transform each interaction within the raw se-
quence rs in a one-hot encoded vector, resulting in a 17-
dimensional vector hs,i for each interaction i and, hence,
a sequence of vectors Hs = {hs,i} with i = 1, ..., Ns. We
then build the input pairs for each interaction i, i.e. Ii,s =
{(hs,i,hs,j)} with j ∈ {−w, ..., w} \ 0. We obtain the set of
pairs for all students as I = {Is} with s = 1, .., S, where S
is the total number of students.

Action
a

One hot
input
vector

Hidden
linear layer

Softmax
output
layer

Likelihood
of a being
surrounded

by each
possible
interaction

0

0

1

0

0

0.1

0.02

0.8

0.01

0.03

17-dimensions

D-dimensions

17-dimensions

Figure 6: Skip-gram architecture. After training of the skip-
gram, the corresponding row of the weight matrix W1 repre-
sents a structure preserving embedding of action a.

After training the skip-gram model on I, we build the fea-
tures FPW,s for each student s. The weighs W1 of the hidden
layer represent a structure preserving embedding of the in-
teractions. In our case, W1 has dimensions 17×D (D is the
embedding dimension). For each interaction i of student s,
we get the corresponding row r in W1, i.e. rs,i = W1 · hs,i.
This again results in a sequence of vectors Rs = {rs,i} with
i = 1, ..., Ns. To compute fPW,s,t for student s at time
step t, we compute the average over rs,i with i = 1, ..., t:
fPW,s,t = 1

t

∑t
i=1 rs,i. Therefore, for each student s, we end

up with a feature set FPW,s = {fPW,s,t} with t = 1, ..., Ts.

Classification. To perform the classification task, we explore
two different approaches: Random Forests and Fully Con-
nected Deep Neural Networks.

Random Forests (RFs) are simple, yet powerful machine
learning algorithms. They consist of an ensemble of decision
trees, each trained on a different subset of samples and a dif-
ferent subset of features. The decisions of each tree are then
aggregated to determine the final prediction of a sample.
The strength of this method is that overfitting is prevented
through the randomisation of training samples and features
during the training of each tree and that the strengths of
several good classifiers are exploited. While RF classifiers
are well tested and efficient to train, they require the input
features to have the same dimension for every sample. We
therefore train separate RF models for each time step t. The
input features for the RF model for time step t are {fM,s,t},
with M ∈ AC,AS, PW and s = 1, ..., S, where S denotes
the number of students. The output of the RF is a vector
pRF,M,s,t of dimension C (with C denoting the number of
classes) for each student s, which represents the probability
of each class.

Neural Networks (NNs) were built with the idea of emu-
lating neurons firing in our brain: their nodes are to the
neurons what their edges are to their axons. The advantage
of those deep networks is that they are able to model non-
linear decision boundaries. However, the back propagation
calculations make them relatively slow to train. In this work,
we use a Fully Connected Deep Neural Network consisting
of d hidden dense layers and one classification layer with a
softmax activation. Similar to RFs, our NN model requires
features to have the same dimension for all the samples. We
therefore also train the NN models for fixed points in time.
The input features for the NN model for time step t are

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 165

{fM,s,t}, with M ∈ AC,AS, PW and s = 1, ..., S, where S
denotes the number of students. Due to the softmax activa-
tion, the output of the NN is a vector pNN,M,s,t of dimension
C (with C denoting the number of classes) for each student
s, which represents the probability of each class.

4. EXPERIMENTAL EVALUATION
We evaluated the predictive performance of our classifica-
tion pipeline on the collected data set (see Section 2). We
conducted experiments to compare the performance of dif-
ferent model and feature combinations for the students’ full
data sequences as well as for early classification using partial
sequences of the data, to answer our research questions.

Experimental Setup. We applied a train-test setting for all
the experiments, i.e. parameters were fitted on a training
data set and performance of the methods was evaluated on
a test data set. Predictive performance was evaluated using
the macro-averaged area under the ROC curve (AUC). We
used the AUC as a performance measure as it is robust to
class imbalance.

We performed all our experiments using different levels of
detail for the classification task. As ground truth, we used
the class labels presented in Fig. 2. Given the hierarchical
nature of the decision tree separating the students in classes
based on their conceptual knowledge, we performed the clas-
sification task focusing on three different levels of detail:

• 2-class case: starting at the root of the decision tree
(see Fig. 2), we divide students into two classes based
on their understanding of the circuits: both (98 stu-
dents) and closed (94 students).

• 3-class case: going one step down in the hierarchy of
the tree, we further divide the left branch of the tree
(see Fig. 2) based on whether the students have com-
pletely understood all concepts (leading to a correct
answer in our ranking task) or not. We therefore ob-
tain three different classes: correct (38 students), ar-
easep (60 students), and closed (94 students).

• 4-class case: here, we also split the right branch of
the tree (see Fig. 2) and divide the students into two
groups based on whether they ranked the configura-
tions in the task based on capacitance, resulting in four
classes: correct (38 students), areasep (60 students),
capacitance (47 students), and other (47 students).

For each of those three cases, we trained two types of classi-
fiers (RF and NN) on our three different feature types (Ac-
tion Counts - AC, Action Span - AS, Pairwise Embeddings
- PW), using a stratified 10-fold nested cross validation. We
kept the folds invariant across all experiments and strati-
fied over the classes (according to the class labels of the
4-class case). Because of class imbalance, we used random
oversampling for the training sets. We used a nested cross
validation to avoid potential bias introduced by estimating
model performance during hyperparameter tuning. This al-
lowed us to tune the hyperparameters within the training
folds (by further splitting them) and hold out the test sets
for performance evaluation alone.

Figure 7: AUC for 4-class, 3-class and 2-class cases using dif-
ferent model and feature combinations. Predictions are made
at the end of the interaction with the simulation, i.e. based
on the complete sequential interaction data of the students.

For RF models, we tuned the following hyperparameters
using a grid search: number of trees [5, 7, 9], number of
features used at each decision level [‘auto’, ‘all’], number
of samples [bootstrap resampling of training size samples
and balanced subsamples]. NN models were implemented
using the scikit-learn library, trained for 300 epochs, and
optimised for the log-loss function with the following hy-
perparameters: learning rate [‘adaptive’, ‘invscaling’], initial
learning rate [0.01, 0.001], solver [‘adam’, ‘sgd’], hidden layer
sizes and number [(32, 16), (64, 32), (64, 32, 16), (128, 64,
32, 16)], and activation function [‘relu’, ‘tanh’, ‘identity’].

The skip-gram model providing our pairwise embedding fea-
tures was implemented using the TensorFlow package. We
trained the model for 150 epochs, with a window size of
w = 2, a batch size of 16, and an embedding dimension of
15. We used categorical cross-entropy as the training loss.
Because of its unsupervised nature, we trained the model on
our whole dataset.

Offline Classification. In a first experiment, we were inter-
ested in assessing whether it is possible to associate students’
behaviour in the simulation with their conceptual under-
standing achieved through the learning activity. This will
be referred to as an offline classification task, since we are
using students’ complete interaction sequences rs. The pre-
dictive performance in terms of AUC for the three classifi-
cation problems (4-class case, 3-class case, and 2-class case)
with a distinction between different model and feature com-
binations is illustrated in Fig. 7.

The results of this first experiment showed that for the 2-
class case, all combinations of models and features reached
very high average performances as quantified by their AUC
scores (value range: 0.95 − 0.97). The best mean score
was achieved by the combination of NN with PW features
(AUCNN,PW = 0.97). However, it should be noted that
the performance differences between the combinations were
comparatively small. Using a one-way ANOVA, no statisti-
cally significant differences were found between the different
groups (F (5, 54) = 0.839, p = 0.528). It seems that for
this rather rough classification into groups of students who

166 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
time step

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

2-class case

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
time step

3-class case

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
time step

4-class case

NN with PW
NN with AC
NN with AS

RF with PW
RF with AC
RF with AS

Figure 8: AUC for 4 classes, 3 classes, and 2 classes using different model and feature combinations. Predictions are made over
time, stopping at time step t = 150 as only very few students have longer interaction sequences.

only understood the closed circuit and those who understood
both the open and closed circuits, the different combinations
of models and features perform equally well and with a high
predictive accuracy.

By extending the classification task to the 3-class case, the
AUC scores dropped in comparison to the 2-class case (value
range: 0.86 − 0.90). The lowest score was observed for RF
with AC (AUCRF,AC = 0.86), while best performances were
observed for RF with AS (AUCRF,AS = 0.90), NN with AS
(AUCNN,AS = 0.89), and NN with PW (AUCNN,PW =
0.89). Similar to the 2-class case, no statistically significant
differences were found between the different groups using a
one-way ANOVA (F (5, 54) = 0.740, p = 0.597). This result
illustrates that further dividing those who understood the
functioning of the capacitor in both the open and closed
circuit had a similar impact on the predictive performance
of all model and feature combinations.

Finally, when evaluating the 4-class case, the most complex
classification task, the mean AUC scores further dropped for
all combinations (value range: 0.78− 0.84). The lowest per-
formance was again observed for RF with AC (AUCRF,AC =
0.78). Introducing the fourth class to the classification prob-
lem seemed to have a smaller negative impact on the AUC
scores for NN with AS (AUCNN,AS = 0.83) and NN with
PW (AUCNN,PW = 0.84), which obtain the best perfor-
mances for the 4-class case. This observation was partially
confirmed by a one-way ANOVA that showed a trend to sta-
tistical significance for differences between the combinations
(F (5, 54) = 1.989, p = 0.095): as we increase the amount of
classes, the p-value decreases.

The results of this first experiment show that it is possi-
ble to perform an offline prediction of students’ conceptual
understanding in the capacitor ranking task (see Section 2)
based on the different combinations of models (NN or RF)
and feature generation methods (AC, AS or PW) proposed
in this work. From the entire data sequences of students’
interactions with the simulation, we observed that predic-
tive performance generally decreased when the complexity
of the classification task was increased. While all combina-
tions showed very good performances for the coarse classi-
fication of the 2-class case, AUC scores started to diverge
more among combinations for the 3- and 4-class cases. Es-
pecially for the 4-class case, where differences became more

visible with certain combinations showing a trend of better
predictive performance (i.e. NN with PW and NN with AS)
as compared to others (e.g., RF with AC).

Predicting over Time. In a second experiment, we were in-
terested in assessing, whether we could predict students’
conceptual knowledge for shorter interaction sequences, i.e.
when not using students’ full sequences, but only the first
t interactions. For all three classification cases (2-class, 3-
class, and 4-class), we trained all model (RF, NN) and fea-
ture (AC, AS, PW) combinations for t = 10, 20, ..., 150 time
steps. As described in Section 3, to compute the features
fAC,s,t, fAS,s,t, and fPW,s,t for a student s at time step t,
we only use the student’s interactions i up to that point in
time, i.e. i = 1, ..., t. Similarly, at each time step t, the
models are exclusively used to predict students whose in-
teractions sequences contain a minimum of t elements (i.e.
Ns ≥ t). For students with shorter interaction sequences
(i.e. Ns < t), the last available prediction will be used. For
example, for a student with 30 interactions (Ns = 30), we
would make the first three predictions using the models for
t = 10, t = 20, and t = 30 time steps. For the remain-
ing time steps, the predictions from t = 30 will be carried
over. We chose this approach for predicting because we as-
sume that the student will leave the simulation after Ns

interactions and it therefore does not make sense to update
the prediction afterwards. Figure 8 illustrates the predic-
tive performance in terms of AUC for the different model
and feature combinations and all classification cases.

As expected, for the 2-class case, all models achieve a high
performance for long interaction sequences. The AUC of all
NN models is larger than 0.9, starting at time step t = 70.
Generally, the difference between the models and feature
combinations for t ≥ 70 is small. We also observe some
model differences for earlier time steps, where the RF model
with the action span features performs better than the other
models. It achieves an AUC larger than 0.8 already at
time step t = 30 (AUCRF,AS = 0.82). Moreover, the NN
model with action span is close to that performance at time
step t = 30 (AUCNN,AS = 0.79). Naturally, predicting at
even earlier time steps is more difficult, but some of the
models achieve a decent AUC of 0.7 already after observ-
ing 20 interactions with the simulation (AUCRF,AS = 0.74,
AUCRF,AC = 0.73, AUCNN,AS = 0.71).

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 167

Figure 9: Evolution of confusion matrices over time steps for the 3-class case: NN with PW (top) and RF with AS (bottom).

For the 3-class case, the performances of all algorithms have
decreased from time step t = 10 compared to the above prob-
lem. This is not surprising, as differentiating the correct stu-
dents from the areasep students is not as straightforward as
separating students who did not interact in the open circuit
from the rest. Though, in the 2-class cases, all performances
were close to one another, we notice that for the 3-class
problem at time step t = 40, three model-features combina-
tions take the lead (AUCNN,PW = 0.75, AUCRF,AS = 0.74,
AUCNN,AS = 0.74), while three fall behind (AUCRF,PW =
0.7, AUCRF,AC = 0.69 and AUCNN,AC = 0.68) until t = 70,
where the NN with PW outperforms all other model and
feature combinations with an AUC of 0.87.

The variance across model-feature performances is larger in
the 4-class case. From time step t = 20 already, RF with
AS outperforms all other combinations, reaching an AUC
of 0.8 at time step t = 100. Similarly to the 3-class prob-
lem, the same three models take the lead, while the others
fall behind from time step t = 70 (AUCNN,PW = 0.75,
AUCRF,AS = 0.78, AUCNN,AS = 0.76 and AUCRF,PW =
0.72, AUCRF,AC = 0.72 and AUCNN,AC = 0.73).

Given the fact the predictive performance in terms of AUC
seems to be similar for the best performing models, we per-
formed a more detailed analysis to assess how different the
predictions of the several model and feature combinations
were. In a real-world application (intervention setting), we
would probably use a 2-class classifier to identify a coarse
split (between classes both and closed) already at a rela-
tively low number of time steps and use a 3-class method
to provide a more detailed prediction later on. With the
current model performance for the 4-class case, usage of a
more detailed classifier seems not practicable. We there-
fore investigate the predictions of the two best models for
the 3-class case: NN with PW and RF with AS. Figure 9
shows the confusion matrices for these two models for an
increasing number of time steps. We do not show results
for t > 100, as the predictive performance of the models
does not improve much anymore for longer sequences (see
also Fig. 8). While both models have a very similar predic-
tive performance in terms of AUC up to time step 60, we
can already see that the models evolve differently in terms
of prediction. At time step t = 40, the RF model is al-
ready very accurate in detecting students from class correct
(p̂(correct|ctrue = correct) = 0.78), while the NN model is

less confident (p̂(correct|ctrue = correct) = 0.67). On the
other hand, the NN model is already more accurate in identi-
fying students from class closed (p̂(closed|ctrue = closed) =
0.66), while the RF model cannot identify students from this
class well (p̂(closed|ctrue = closed) = 0.42). At time step
t = 60, both models are almost equally accurate in iden-
tifiying students from class correct (NN: p̂(correct|ctrue =
correct) = 0.76, RF: p̂(correct|ctrue = correct) = 0.80).
The NN model is still better at classifying students from the
class closed. Both models have trouble with correctly identi-
fying students from class areasep. While the NN model tends
to assign these students to class closed (p̂(areasep|ctrue =
closed) = 0.52), the RF model is becoming better at cor-
rectly assigning them (p̂(closed|ctrue = closed) = 0.42).
These observed trends continue to get stronger with an in-
creasing number of time steps. At t = 100, the NN model
is very accurate when it comes to classifying students from
classes correct and closed. Students from class areasep have
only a 35% chance of being correctly classified and a 55%
chance of getting assigned to class closed. In practice, this
would mean that 55% of the students would get more in-
tervention (hints) than necessary. The RF classifier is also
very accurate in detecting students from class correct, but
is, however, not able to distinguish between students from
class closed and class areasep. In practice, this would mean
misclassified students from class closed would get less help
than necessary and misclassified students from class areasep
would get more help than necessary.

This experiment shows that we can (coarsely) classify stu-
dents after observing a relatively low number of interactions.
For the 2-class case, the AUC of the best model (RF with
AS) is larger than 0.8 after t = 30 time steps. Naturally,
the classification task is more complex for the 3-class and
the 4-class cases. The best model on the 3-class case (NN
with PW) achieves an AUC close to 0.8 at time step 50.
The second analysis demonstrates that achieving a similar
predictive performance in terms of AUC does not imply the
same classification behaviour, i.e.the best models on the 3-
class case (NN with PW and RF with AS) have different
strengths. It has, however, one important limitation: stu-
dents spend different amount of times on the simulation and
therefore, the length of their interaction sequences varies.
There are for example students with 80 interactions and
other students with only 50 interactions. Performing the
classification task at time step 40 is early for a student with

168 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

0 25 50 75 100
% interactions

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

2-class case

0 25 50 75 100
% interactions

3-class case

0 25 50 75 100
% interactions

4-class case
NN with PW
NN with AC
NN with AS

RF with PW
RF with AC
RF with AS

Figure 10: AUC on the 2-class, 3-class and 4-class cases for different model and feature combinations. Predictions were made
for 25%, 50%, 75% and 100% of the total number of interactions for each student.

a total of 80 interactions. For a student with only 50 inter-
actions in total, the prediction at time step 40 comes almost
at the end of the interaction time with the simulation.

Online (Early) Classification. The third and last experiment
addresses the limitations of the previous experiment. In this
experiment, we were interested in assessing the ”early” pre-
dictive performances of the different models using only a
part of a student’s sequence. Given the fact that the length
of interaction sequences varies over the students, we did not
align the sequences by absolute time steps, but by percent-
ages of interactions. Specifically, we aimed at making the
prediction for a student after having seen 25%, 50%, 75%,
and 100% of the interaction sequence of this student. Note
that this experiment does not require a re-training of our
models. We just retrieve the predictions of the models for
the corresponding time step t. For our example student with
a total of 80 interactions, we retrieve the predictions of the
models for time steps t = 20, t = 40, t = 60, and t = 80.
Figure 10 shows the AUC of the models for all classification
cases, with an increasing number of interactions (in %).

As expected, all model and feature combinations perform
well for the 2-class case. To achieve a high classification
accuracy, we do not need to observe the full sequence of
a student. For all NN models, obtaining 75% of students’
interactions is enough to achieve an AUC of around 0.9.
With RF, the model using the action span features also ob-
tains an AUC of more than 0.9 at 75% of the interactions
(AUCRF,AS = 0.92). The performance of the two other fea-
ture types is slightly lower (AUCRF,AC = 0.9, AUCRF,PW =
0.88). Naturally, predictive performance of all the models
is lower when observing smaller parts of students’ interac-
tion sequences. If obtaining only the first 25% of students’
interactions, there is more variation in the achieved AUC
between models, with the best model (RF with AS) achiev-
ing an AUC of 0.66 and the worst model achieving an AUC
of 0.57 (RF with PW). It is promising that the best model
at 50% of the interactions exhibits an AUC of almost 0.8
(AUCRF,AS = 0.78), which makes it a valuable candidate
for a coarse early prediction and intervention, i.e. differ-
entiating between students with a high conceptual under-
standing (class both) and students with a low conceptual
understanding (class closed), early on.

Naturally, performance of the models for the 3-class case is

overall lower as we are now differentiating the different levels
of conceptual knowledge in a more fine-grained way. As we
have seen in Fig. 9), it is difficult to differentiate between
students from the left branch of the tree (i.e. correct vs.
areasep in Fig. 2). Performance across models varies more
for the 3-class case. When observing 75% of students inter-
actions, the AUC of the worst model (NN with AS) amounts
to 0.78, while the best model (NN with PW) has an AUC
of 0.84. We also observe that the NN with PW features is
consistently the best model, regardless of the amount of ob-
served interactions, with an increasing gap to the other mod-
els. At 50% of interactions, the gap in performance among
the three best models is still small (AUCNN,PW = 0.699,
AUCRF,AS = 0.7, AUCRF,PW = 0.69). It gets larger at 75%
(AUCNN,PW = 0.84, AUCRF,AS = 0.82, AUCNN,AS =
0.78). When observing the complete sequences of the stu-
dents (i.e. 100% of the interactions), all models reach an
AUC of 0.85 or higher (see also Fig.7).

Again, the performance decreases when moving to four classes,
due to the increasing complexity (in terms of level of detail)
of the classification task. The AUC of the best model (NN
with PW) amounts to 0.83, while for the worst two models
AUC = 0.77 (RF with AC, NN with AC). While all the mod-
els’ AUC is lower than 0.7 when observing only 25% or 50%
of students’ interactions, interestingly there is a large gap be-
tween the best model (RF with AS) and all the other models
(i.e. at 25%: AUCRF,AS = 0.59, AUCRF,AC = 0.56).

With this last experiment, we assessed the capabilities of
our models to make predictions as early as possible during
interaction with the simulation as a basis for intervention.
By evaluating the models at different percentages of total
interactions, we took into account the fact that the defini-
tion of ‘early’ depends on the student. Our results show that
after observing the first 50% of interactions, we are able to
reliably distinguish between students with a high and low
conceptual understanding gained by the end of the learning
activity (both and closed). At 75% of interactions, the best
models are also able to provide a more fine-grained predic-
tion (correct, areasep, and closed).

5. DISCUSSION
Over the last decade, interactive simulations of scientific
phenomena have become increasingly popular. They allow
students to learn the principles underlying a domain through

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 169

their own explorations. However, only few students pos-
sess the degree of inquiry skills and self-regulation necessary
for effective learning in these environments. In this paper,
we therefore explored approaches for an early identification
of struggling students as a basis for adaptive guidance: we
aimed at predicting students’ conceptual knowledge while
interacting with a Physics simulation. Specifically, we were
interested in answering the following three research ques-
tions: 1) Can students’ interaction with the data be associ-
ated with the gained conceptual understanding? 2) Can con-
ceptual understanding be inferred through sequence mining
methods with embeddings? 3) Can the proposed methods be
used for early predicting students’ conceptual understanding
based on partial sequences of interaction data?

To answer the first research question, we analysed data from
192 first-year undergraduate Physics students who used an
interactive capacitor simulation to solve a task in which they
had to rank four capacitor configurations by their stored
energy. Previous research has emphasised the importance
of aligning instructional and assessment activities to imple-
ment pedagogically meaningful learning activities with ed-
ucational technology [26, 27]. Since one objective of auto-
matically detecting student learning behavior is to provide
some kind of assessment (either formative or summative),
the learning task presented in this work was designed to fa-
cilitate the application of sequence mining. The design of
this learning task allowed us to relate all of the students an-
swers to a certain level of conceptual understanding. Using a
decision tree, we were able to map each ranking to one of the
four labels representing groups of similar conceptual under-
standing. Our results show that all evaluated models were
able to correctly associate students’ sequential interaction
data in the simulation with the generated labels, achieving
high predictive performance when fed with full sequences
(2-class case: AUC > 0.9, 3-class case: AUC > 0.85, 4-class
case: AUC > 0.75). This high predictive power was also ob-
served in [22], where they reached an accuracy of 85% when
separating ‘high’ learners from ‘low’ learners based of full
interaction sequences. However, despite their findings of a
potential third cluster, they did not investigate the ternary
classification task. In this paper, we increase the granularity
of the labels in order to target more specific shortcomings in
the knowledge of the students in order to provide them with
more detailed feedback. We therefore conclude that we can
answer research question 1) with yes.

The second research question investigates the benefits of la-
tent features generated by skip-grams for offline classifica-
tion tasks in the context of education. Usually applied to
NLP problems, skip-grams have the ability to learn the con-
text of a word in an unsupervised fashion. In our case,
we use it to find the OELE behaviour of the students sur-
rounding their interaction, and retrieve the embedding ma-
trix of the neural network to create our latent representa-
tions. This approach has already been proven efficient to
analyse student strategies in blended courses [28], but not
for the identification of conceptual understanding. To eval-
uate the predictive power of latent feature representations,
we trained two classifiers (NN and RF) on three types of
feature (Action Counts, Action Span and Pairwise Embed-
dings) on the full sequences of students. At first, we notice
that all model and feature combinations achieve a high AUC

for all classification tasks (2-class case, 3-class case, and 4-
class case). Though the ANOVA revealed no significant dif-
ferences between the predictive performance of models with
different types of features, we can observe that the NN with
PW achieves a higher performance on average than all other
combinations but the NN with AS. What is more, the per-
formances in its first quartile dominate those from the third
quartile of three model and feature combinations. Addi-
tionally, its performance variance is smaller than that of the
NN with AS. This shows that pairwise embeddings gener-
ated by a skip-gram approach can be a valuable asset for
finer-grained classification, even if no statistical difference
was found with respect to the other model-feature combina-
tions. We can therefore answer research question 2) with a
partial yes.

To address the third research question, we assessed predic-
tive performance of the proposed approach when only partial
sequences of the students’ interaction data were observed.
We analysed the performances of our proposed approaches
based on varying proportions of the available data and for
classification tasks with different levels of complexity. The
results of our experiments show that the proposed combina-
tions of models and generated features allowed us to predict
the correct class labels early on. The best models were able
to reliably predict students’ conceptual understanding for
the 2-class case (AUC ≈ 0.8) after having seen 50% of the
students’ interaction data. To reach a similar predictive per-
formance for the more fine-grained 3-class and 4-class cases,
the best models needed about 75% of the data. The findings
from these experiments therefore represent a promising step
towards early prediction of students’ conceptual understand-
ing in OELEs. We can therefore answer research question
3) with yes.

One of the limitations of this work is the unfeasibility to
track whether students used external resources (other than
the simulation) in order to rank the four capacitor configura-
tions. This may bias the inference from the simulation usage
to the extrapolated understanding level. Furthermore, due
to our small sample size, we were able to only train shallow
NN classifiers and skip-grams. Finally, the external valid-
ity of these experiments remains to be evaluated on other
interactive simulations and different types of tasks.

To conclude, the proposed approach represents a promising
step towards early prediction of students’ learning strategies
in interactive simulations, that moreover, can be associated
with their level of conceptual understanding. The proposed
learning activity seems to represent an interesting example
for the design of learning tasks in OELEs that facilitates the
association of detected student strategies with conceptual
understanding through sequence mining. Future work could
explore whether such designs could also be used to identify
conceptual understanding at a more fine-grained level.

6. ACKNOWLEDGMENTS
We thank Kathy Perkins (PhET Interactive Simulations,
University of Colorado Boulder) and Daniel Schwartz (Stan-
ford University) for the valuable input on the study design
and setup and for supporting data collection.

170 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

References
[1] C. E. Wieman, W. K. Adams, and K. K. Perkins,

“PhET: Simulations That Enhance Learning,” Science,
vol. 322, no. 5902, pp. 682–683, 2008.

[2] X. Fan and D. Geelan, “Enhancing students’ scientific
literacy in science education using interactive simula-
tions: A critical literature review,” Journal of Comput-
ers in Mathematics and Science Teaching, vol. 32, no. 2,
pp. 125–171, 2013.

[3] R. E. Mayer, “Should there be a three-strikes rule
against pure discovery learning? the case for guided
methods of instruction,”American Psychologist, vol. 59,
no. 1, pp. 14–19, 2004.

[4] L. Alfieri, P. J. Brooks, N. J. Aldrich, and H. R. Tenen-
baum,“Does discovery-based instruction enhance learn-
ing?” Journal of Educational Psychology, vol. 103,
no. 1, pp. 1–18, 2011.

[5] P. A. Kirschner, S. J., and C. R.E., “Why minimal guid-
ance during instruction does not work: An analysis of
the failure of constructivist, discovery, problem-based,
experiential, and inquiry-based teaching,” Educational
Psychologist, vol. 41, no. 2, pp. 75–86, 2006.

[6] I. Roll, V. Aleven, and K. R. Koedinger, “The invention
lab: Using a hybrid of model tracing and constraint-
based modeling to offer intelligent support in inquiry
environments,” in Proc. ITS, 2010, pp. 115–124.

[7] S. Perez, J. Massey-Allard, D. Butler, J. Ives, D. Bonn,
N. Yee, and I. Roll, “Identifying productive inquiry in
virtual labs using sequence mining,” in Proc. AIED,
2017, pp. 287–298.

[8] C. Brand, J. Massey-Allard, S. Perez, N. Rummel, and
I. Roll, “What inquiry with virtual labs can learn from
productive failure: A theory-driven study of students’
reflections,” 2019, pp. 30–35.

[9] R. Baker, J. Clarke-Midura, and J. Ocumpaugh, “To-
wards general models of effective science inquiry in vir-
tual performance assessments,” Journal of Computer
Assisted Learning, vol. 32, no. 3, pp. 267–280, 2016.

[10] E. Bumbacher, S. Salehi, M. Wierzchula, and P. Blik-
stein, “Learning Environments and Inquiry Behaviors
in Science Inquiry Learning: How their Interplay Af-
fects the Development of Conceptual Understanding in
Physics,” Proc. EDM, pp. 61–68, 2015.

[11] S. Perez, J. Massey-Allard, J. Ives, D. Butler, D. Bonn,
J. Bale, and I. Roll, “Control of variables strategy across
phases of inquiry in virtual labs,” pp. 271–275, 2018.

[12] J. D. Gobert, M. S. Pedro, J. Raziuddin, and R. S.
Baker, “From Log Files to Assessment Metrics: Measur-
ing Students’ Science Inquiry Skills Using Educational
Data Mining,” Journal of the Learning Sciences, vol. 22,
no. 4, pp. 521–563, 2013.

[13] D. Tavares, K. Perkins, M. Kauzmann, and C. Velez,
“Towards a teacher dashboard design for interactive
simulations,” in Journal of Physics: Conference Series,
vol. 1287, no. 1, 2019, p. 012055.

[14] R. Sawyer, J. Rowe, R. Azevedo, and J. Lester, “Fil-
tered time series analyses of student problem-solving
behaviors in game-based learning.” Proc. EDM, 2018.

[15] J. Sabourin, J. Rowe, B. Mott, and J. Lester, “Explor-
ing affect and inquiry in open-ended game-based learn-
ing environments,” in Proc. ITS (Workshop on Emo-
tions in Games for Learning), 2012, pp. 1–8.

[16] E. Rowe, R. Baker, J. Asbell-Clarke, E. Kasman, and
W. Hawkins, “Building Automated Detectors of Game-
play Strategies to Measure Implicit Science Learning,”
in Proc. EDM, 2014, pp. 337–338.

[17] M. Eagle, E. Rowe, D. Hicks, R. Brown, T. Barnes,
J. Asbell-Clarke, and T. Edwards, “Measuring Implicit
Science Learning with Networks of Player-Game Inter-
actions,” in Proc. CHI in Play, 2015, pp. 499–504.

[18] T. Käser and D. Schwartz, “Modeling and analyzing in-
quiry strategies in open-ended learning environments,”
IJAIED, vol. 30, no. 3, pp. 504–535, 2020.

[19] S. Kardan and C. Conati, “A framework for capturing
distinguishing user interaction behaviours in novel in-
terfaces,” Proc. EDM,, pp. 159–168, 2011.

[20] T. Käser, A. G. Busetto, B. Solenthaler, J. Kohn,
M. von Aster, and M. Gross, “Cluster-Based Prediction
of Mathematical Learning Patterns,” in Proc. AIED,
2013, pp. 389–399.

[21] S. Amershi and C. Conati, “Combining Unsupervised
and Supervised Classification to Build User Models for
Exploratory Learning Environments,” 2009, pp. 18–71.

[22] L. Fratamico, C. Conati, S. Kardan, and I. Roll, “Ap-
plying a framework for student modeling in exploratory
learning environments: Comparing data representa-
tion granularity to handle environment complexity,”
IJAEID, vol. 27, no. 2, pp. 320–352, 2017.

[23] T. Käser and D. L. Schwartz, “Exploring Neural Net-
work Models for the Classification of Students in Highly
Interactive Environments,” Proc. EDM, pp. 109–118,
2019.

[24] K. V. Ghag and K. Shah, “Comparative analysis of ef-
fect of stopwords removal on sentiment classification,”
in Proc. IC4. IEEE, 2015, pp. 1–6.

[25] Y. Goldberg and O. Levy, “Word2vec explained: deriv-
ing mikolov et al.’s negative-sampling word-embedding
method,” CoRR, vol. abs/1402.3722, 2014.

[26] T. Lauwers, “Aligning capabilities of interactive educa-
tional tools to learner goals,” Ph.D. dissertation, CMU,
Pittsburgh, PA, May 2010.

[27] C. Giang, “Towards the alignment of educational
robotics learning systems with classroom activities,”
Ph.D. dissertation, EPFL, Lausanne, CH, 2020.

[28] N. Akpinar, A. Ramdas, and U. Acar, “Analyzing stu-
dent strategies in blended courses using clickstream
data,” in Proc. EDM, 2020, pp. 6–17.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 171

Knowing When and Where: Temporal-ASTNN for Student
Learning Progression in Novice Programming Tasks

Ye Mao
North Carolina State Univ.

Raleigh, NC, USA
ymao4@ncsu.edu

Yang Shi
North Carolina State Univ.

Raleigh, NC, USA
yshi26@ncsu.edu

Samiha Marwan
North Carolina State Univ.

Raleigh, NC, USA
amarwan@ncsu.edu

Thomas W. Price
North Carolina State Univ.

Raleigh, NC, USA
twprice@ncsu.edu

Tiffany Barnes
North Carolina State Univ.

Raleigh, NC, USA
tmbarnes@ncsu.edu

Min Chi
North Carolina State Univ.

Raleigh, NC, USA
mchi@ncsu.edu

ABSTRACT
As students learn how to program, both their program-
ming code and their understanding of it evolves over time.
In this work, we present a general data-driven approach,
named Temporal-ASTNN for modeling student learning pro-
gression in open-ended programming domains. Temporal-
ASTNN combines a novel neural network model based on
abstract syntactic trees (AST), named ASTNN, and Long-
Short Term Memory (LSTM) model. ASTNN handles the
linguistic nature of student programming code, while LSTM
handles the temporal nature of student learning progression.
The effectiveness of ASTNN is first compared against other
models including a state-of-the-art algorithm, Code2Vec across
two programming domains: iSnap and Java on the task of
program classification (correct or incorrect). Then the pro-
posed temporal-ASTNN is compared against the original
ASTNN and other temporal models on a challenging task
of student success early prediction. Our results show that
Temporal-ASTNN can achieve the best performance with
only the first 4-minute temporal data and it continues to
outperform all other models with longer trajectories.

Keywords
Student Modeling in Programming, LSTM, ASTNN

1. INTRODUCTION
Learning how to program is like learning how to write in
a second language. As students learn to author code, both
their programming code and their understanding of it evolves
over time. Prior research has either focused exclusively on
developing accurate linguistic models of their artifacts [30,
24, 1, 42], or developing temporal models of students com-
prehension of programming [11, 21, 23]. In this work, we
propose a general data-driven approach named Temporal-
ASTNN, which combines a state-of-the-art neural network

model based on abstract syntax trees (AST) named ASTNN
– addressing the linguistic structure of the students’ artifacts
– along with Long-Short Term Memory (LSTM), which han-
dles their learning progression. In this way we effectively
marry both aspects of the process in a single system.

Much as language is how people communicate, programming
languages are how we communicate with machines, and var-
ious natural language processing (NLP) techniques can be
applied to modeling programming languages [15]. Tradi-
tional approaches for code representation often treat code
fragments as natural language texts and model them based
on their tokens [7, 9]. Despite their simplicity, token-based
methods omit the rich and explicit structural information
[25] in student codes. Until recently, deep learning models
have achieved state-of-the-art results on source code analy-
sis, including code functionality classification [24], method
name prediction [1], code clone detection [42] and so on.
These successful models usually combine Abstract Syntax
Tree (AST) representations with various neural networks to
capture the structural information from the programming
language. Their impressive performance shows that by ad-
dressing the linguistic structural nature of code, syntactic
knowledge is indeed important to learn meaningful code rep-
resentation.

On the other hand, modeling student learning progression
in open-ended programming environments is also a type of
student modeling. Generally speaking, student modeling
has been widely applied to predict the student’s future per-
formance based on historical data. For well-defined learn-
ing environments, student models usually monitor students’
learning progress (correct or incorrect) over time to infer
their knowledge states, such as Bayesian Knowledge Trac-
ing (BKT) [8] and Deep Knowledge Tracing (DKT) [29].
When it comes to open-ended programming environments,
student modeling becomes much more challenging because
1) the correctness evaluation concerning each step taken by
students will not be available, and 2) it is extremely hard to
represent student states. As a result, prior research either
has focused on utilizing other features such as hint usage,
interface interactions to evaluate student learning outcomes
[11], or creating meaningful states by transforming student
click-like log files into fixed feature sets for various student

Ye Mao, Yang Shi, Samiha Marwan, Thomas Price, Tiffany Barnes and
Min Chi “Knowing When and Where: Temporal-ASTNN for Student
Learning Progression in Novice Programming Tasks”. 2021. In: Pro-
ceedings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 172-182.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

172 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

modeling tasks [21]. While such prior work is able to capture
the temporal information from historical data, it ignores the
linguistic, structural property of student code. As an accu-
rate student model is a building block for any educational
system that provides adaptivity and personalization, it is es-
pecially important to model student learning progression in
open-ended programming tasks by addressing both linguis-
tic and temporal characteristics in student code sequences.

In this work, we present a data-driven approach named
Temporal-ASTNN to model student learning progression in
open-ended programming domains. Temporal-ASTNN con-
sists of two main modules: 1) ASTNN [42] for code represen-
tation learning, which can handle the linguistic structure of
student code, and 2) LSTM [16] for temporal learning, which
handles the temporal nature of student learning progression.
In order to explore the effectiveness of our model, we focus
on two types of student modeling tasks. One is the task
of program classification (correct or incorrect), in which the
effectiveness of ASTNN is compared against other models
including a state-of-the-art algorithm, Code2Vec [1] across
two programming domains: an open-ended block-based pro-
gramming environment named iSnap and a textual program-
ming environment for the Java programming language. The
other is the task of student success early prediction in which
the effectiveness of temporal-ASTNN is compared against
the original ASTNN and other models integrating with dif-
ferent feature embeddings on iSnap only because it has tra-
jectories of student codes.

Our main contributions are: 1) To the best of our knowledge,
Temporal-ASTNN is the first model to address both linguis-
tic and temporal properties of student learning progression
in programming tasks; 2) We explored the robustness and
the effectiveness of our model on student success early pre-
diction task and compared it with state-of-the-art temporal
models; and 3) We evaluated the effectiveness of ASTNN
against Code2Vec and various baseline models on student
program classification tasks across two domains, while most
prior research mainly focused on classic tasks of professional
source code analysis instead of novice programming.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the methods. Section 3 and 4 describe the
two types of programming tasks together with experimental
settings and results. Section 5 presents the related work.
Finally, we discuss and conclude our work in Section 6.

2. METHODS
Problem Definition: For the task of student program classi-
fication, our dataset can be represented 〈X,Y 〉 = {〈x1, y1〉,
〈x2, y2〉, ..., 〈xN , yN 〉} where N is the total number of codes
in the dataset where xi represents a code snippet of student
i and binary yi indicates whether the code is correct or not.

For the task of student success early prediction, our dataset
can be represented as X = {x1,x2, ...,xM}, where M is the
number of students. For a given student k, xk = {xk

1 , ...,x
k
Tk
},

where xk
t represents student k’s code at time step t in xk and

Tk is the total number of codes in the student k’s learning
trajectories which varies with different students. For each
xk, we are provided with the outcome label yk for the out-
come of the sequence of codes. yk = 0 indicates the student

Figure 1: An examaple of iSnap code and the AST represent-
ing its syntactic structure. Red highlights a sample path, and
blue highlights a sample ST-tree.

k succeeded, otherwise yk = 1. The goal of student success
early prediction is to predict the yk using the student’s codes
from the beginning up to the certain minutes: xk

1 ,x
k
2 , ...,x

k
t .

For simplicity, we omit index k hereinafter when it does not
cause ambiguity.

2.1 Temporal-ASTNN
Figure 2 shows the detailed structure of Temporal-ASTNN.
Fundamentally, it contains a ASTNN which learns the em-
bedding for student code and a LSTM layer which han-
dles the temporal aspect. It is important to note that in
Temporal-ASTNN, the two modules interact with each other
to control how information flows.

Figure 2: Temporal-ASTNN model structure: the output of
ASTNN connects to the input of LSTM.

2.1.1 ASTNN
ASTNN is one of the state-of-the-art methods in source code
analysis, and it’s main idea is to learn a vector for the code
through statement-level ASTs. Specifically, we split the
large AST of a code fragment by the granularity of state-
ment and extract a sequence of statement trees (ST-trees)
via pre-order traversal. As shown in Figure 1 (highlighted in
blue), we can get a ST-tree rooted at forward, whose child
is literal and grandchild is 100. In this way, we will get a
sequence of ST-trees from the original AST, and feed them
as the raw input of ASTNN. As shown in Figure 2, ST-trees

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 173

Figure 3: Statement Encoder of ASTNN, composing by an
Embedding layer, an Encoding layer and a max-pooling layer.

will first pass Statement Encoder, then go through Bidirec-
tional GRU (Bi-GRU) [2], finally pass max-pooling layer to
get the vector for code representation.

Statement Encoder: Figure 3 shows the detailed structure of
statement encoder. Assuming that there are J total nodes
in a ST-tree si, for each node nj

i ∈ si, j ∈ [1, J], it will
first go through the embedding layer to get initial embed-
dings vji = Wembed

>nj
i , where Wembed ∈ RV×d is the

pre-trained embedding matrix, V is the vocabulary size and
d is the embedding dimension. Then the vector will be up-
dated through a Recursive Neural Network [35] based en-
coder layer: hj

i = σ(Wencode
>vji +

∑
hchild + bji). Here

Wencode ∈ Rd×k is the encoding matrix and k is the encod-
ing dimension. b is the biased term and σ is the activation
function, in this work we followed the original paper to set
σ as identify function. After recursive optimization of the
vectors of all node in the ST-tree, we sample the final rep-
resentation ei via a max-pooing layer:

ei = [max(hj1
i),max(hj2

i), ...,max(h
jk
i)], j ∈ [1, J] (1)

Code Representation: For a set of ST-trees (s1, s2, ..., sL),
where L is the number of ST-trees in the AST, our goal is to
get a code vector z as final representation. After generating
a sequence of vectors (e1, e2, ..., eL) from Statement Encoder,
we will apply Bi-GRU to track the naturalness of statements
sequence:

hi = [
−−−→
GRU(ei),

←−−−
GRU(ei)], i ∈ [1, L] (2)

The statement representation hi ∈ RL×2m, where m is the
embedding dim of Bi-GRU. Finally, similar to Statement
Encoder, a max-pooling layer is used to sample the most im-
portant features on each of the embedding dimension. Thus
we get z ∈ R2m, which is treated as the final vector repre-
sentation of the original code fragment.

In original ASTNN, we can add another linear layer to di-
rectly fit z to the following prediction tasks. While in Temporal-
ASTNN, z will be used as the input for LSTM memory cell.

2.1.2 LSTM
As shown in Figure 2, at each time step t, the output of
ASTNN zt will be used as the input for LSTM cell. Once
ASTNN generates the code representation by learning the
linguistic nature from code xt:

zt = ASTNN(xt) (3)

LSTM is trained utilizing input vector zt to handle the tem-
poral information. There are three major components: a
forget gate, an input gate, and an output gate in a LSTM
memory cell.

Forget Gate: In the first step, a function of the previous
hidden state ht−1 and the new code input zt passes through
the forget gate, indicating what is probably irrelevant and
can be taken out of the cell state. The forget component
will calculate a weight ft between 0 to 1 for each element in
hidden state vector Ct−1. Here Wf and bf are the weights
and bias for the forget component.

ft = sigmoid(Wf · [ht−1, zt] + bf) (4)

Input Gate: There are two steps involved in input compo-
nent’s calculation. In the first step, a tanh layer calculates
a candidate vector C̃t that could be added to the current
hidden state. In the second step, the input components cal-
culate a weight vector it (ranging from 0 to 1) to determine

to what extent C̃t should update the current memory state.

C̃t = tanh(Wc · [ht−1, zt] + bc)
it = sigmoid(Wi · [ht−1, zt] + bi)

(5)

Output Gate: The output component is simply an activation
function that filters elements in memory cell state Ct, where
Ct = Ct−1 · ft + C̃t · it. It calculates a weight vector to
determine how much information is allowed to be revealed:

ot = sigmoid(Wo · [ht−1, zt] + bo) (6)

Finally we get the output of time t: ht = ot ∗ tanh(Ct). In
this work, we used the last-step output from LSTM as the
temporal representation of student code sequence.

2.1.3 Temporal-ASTNN: Truncated vs. Entire
As shown in Figure 2, by combining ASTNN and LSTM,
the final Temporal-ASTNN can be described as:

z1, ..., zT = ASTNN(x1, ..., xT)
hT = LSTM(z1, ..., zT)
ŷ = sigmoid(WlhT + bl)

(7)

where ŷ is the output from Temporal-ASTNN, Wl is the
weight matrix bl is the bias term for the liner layer. The
entire Temporal-ASTNN framework is learned by optimizing
ASTNN and LSTM parameters spontaneously. They are
optimized by minimizing the binary cross-entropy:

L(ŷ, y; Θ) = −(y log(ŷ) + (1− y) log(1− ŷ)) (8)

Prior research on applying ASTNN for source code analysis
only used one snippet of code fragment to extract mean-
ingful representation for following machine learning tasks.
However, when combining ASTNN with LSTM on student

174 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

programming sequences such as iSnap for early prediction,
we have the choices of either using the truncated training
sequences or using the entire sequences. The advantage of
using truncated sequences is that the training data would
be more similar to the testing data and thus, the learned
representations are more likely to emerge and be represen-
tative for the early success task. On the other hand, the
advantage of using entire sequences is that the longer the
sequences, the more meaningful AST patterns can be consid-
ered and discovered. Thus, we explored Temporal-ASTNN
using both the entire and the truncated sequences for rep-
resentation learning and referred as Temporal-ASTNNTrunc

and Temporal-ASTNNEntire respectively.

2.2 Code2Vec
Code2Vec [1] leverages different features and model struc-
tures, and focuses on the dependency of distant components
in code structures to achieve code classification tasks. As
with ASTNN, Code2Vec is designed to address the linguis-
tic structure of programming languages. Fundamentally,
there are two main differences between these two models:
1) ASTNN takes a set of statement-level ASTs as inputs,
while Code2Vec utilizes the syntactic paths of ASTs to learn
the representation (an example path is shown in Figure 1 in
red). And 2) After encoding the vector representations of
ST-trees, ASTNN uses Bi-GRU to handle the sequence of
vectors; while Code2Vec utilizes an attention mechanism to
learn a weighted average of path vectors and thus to produce
the final code representation. With the vector representing
code, Code2Vec can also be used for various prediction tasks.

3. STUDENT PROGRAM CLASSIFICATION
In the task of student program classification, we aimed to
predict the correctness (correct or incorrect) of student sub-
mitted code. The effectiveness of ASTNN is compared against
Code2Vec and other token-based models across two pro-
gramming domains: iSnap and Java.

3.1 Datasets
3.1.1 iSnap

iSnap is an extension to Snap! [13], a block-based pro-
gramming environment, used in an introductory computing
course for non-majors in a public university in the United
States [32]. iSnap extends Snap! by providing students with
data-driven hints derived from historical correct student so-
lutions [31]. In addition, iSnap logs all students actions while
programming (e.g. adding or deleting a block), as a trace,
allowing us to detect the sequences of all student steps, as
well as the time taken for each step. In this work, we focused
on one homework exercise named Squiral, derived from the
BJC curriculum [13]. In Squiral, students are asked to write
a procedure that draws a square-like spiral. As shown in
Figure 4, correct solutions require procedures, loops, and
variables using at least 7 lines of code. We collected stu-
dents’ data for Squiral from Spring 2016, Fall 2016, Spring
2017, and Fall 2017. We excluded students who requested
hints from iSnap to eliminate factors that might affect stu-
dents’ problem-solving progress, leaving a total of 65, 38, 29,
and 39 student code traces from each semester, respectively.

The data collected from iSnap consists of a code trace for
each student’s attempt. This code trace represents a se-

quence of timestamped snapshots of student code. In prior
research, an expert feature detector has been proposed to
automatically detect 7 expert features of a student snap-
shot [43]. Those expert features are binary and indicate
whether the corresponding feature presents or not. We ran
the expert-feature detector to tag each snapshot in all 171
code traces, making a total of 31,064 tagged snapshots. With
the temporal sequences, iSnap data is evaluated not only on
this classification task, but also on the temporal early pre-
diction task as described in Section 4.

Figure 4: The iSnap interface, with the blocks palette on the
left, the output stage on the right, the scripting area in the
middle, and the hints button on top.

3.1.2 CodeWorkout
CodeWorkout1 is an online and open system for program-
ming in Java. It provides a web-based platform on which
students from various backgrounds can practice program-
ming and instructors can offer courses [10]. Different from
iSnap, CodeWorkout doesn’t log students’ traces during pro-
gramming but only their submissions. In this work, we fo-
cused on one programming exercise named isEverywhere,
where the knowledge of loops and array will be mainly eval-
uated. In isEverywhere, students are asked to write a Java
function to check if a value is “everywhere”, that is in the
given array if the value exists for every pair of adjacent ele-
ments. As shown in Figure 5, the system will show detailed
feedback regarding the student’s submission, indicating how
it failed/succeed on the corresponding test cases.

Figure 5: The CodeWorkout interface, with the problem de-
scription on the top, the coding area in the middle, and the
feedback on the right.

The data collected from CodeWorkout is in Progsnap2 [33]
format, and consists of two semesters: Spring 2019 and Fall

1https://codeworkout.cs.vt.edu/

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 175

2019. Similar to iSnap, we processed the data to eliminate
factors that might affect students’ problem-solving progress,
and only kept the first compliable program from each stu-
dent. In total, we have 448 and 307 student submissions
from each semester, respectively. Please note that in Code-
Workout, only submissions from students are recorded and
sequences of student edits are not available, thus it is only
evaluated on the task of student program classification.

3.2 Task Description
For the task of student program classification, the ground
truth labels are generated as follows: in iSnap, a student’s
submission is correct only if it satisfies all rubrics require-
ments, which are based on the expert-designed features and
verified by humans; in CodeWorkout, a submission is cor-
rect if it passes all testing cases. Table 1 shows the number
of correct and incorrect submissions across the semesters in
each dataset. Note that here we include one submission per
student to ensure that all data points are independent in
both datasets. More specifically, for each student, we in-
clude the student’s “own” submission before receiving any
detailed feedback, which means the student’s final submis-
sion for iSnap and the first submission for CodeWorkout.

Table 1: Data overview on Student Program Classification

Semester
iSnap

correct incorrect
S16 24 41
F16 16 22
S17 12 17
F17 11 28

Total 63 108

Semester
CodeWorkout

correct incorrect
S19 156 151
F19 223 265

Total 379 416

3.3 Experiments
3.3.1 Models Configuration

We conducted a series of experiments across both domains
by comparing ASTNN against the state-of-the-art model
Code2Vec and three token-based classic ML models.

Three Token-based ML Models: Three classic ML models,
K-Nearest Neighbors (KNN), Logistic Regression (LG), and
Support-Vector Machine (SVM) are explored. Following
prior token-based approach, we applied TF-IDF to extract
textual features [42, 34]. The input sentence for TF-IDF
is the sequence of AST-tokens, which is generated by the
pre-order traversal of original ASTs. For each of the three
models, we explored different parameters to obtain the best
results. For KNN, we had k = 10, for LG we used L1 reg-
ularization, and for SVM we used linear kernel. Those pa-
rameters are tuned from 10-fold cross-validation with grid
search, and all three models are implemented through the
sklearn library.

Two AST-based Deep Learning Models: Code2Vec takes a
set of AST-based paths as input, where the number of paths
may vary from different student submissions. Thus we man-
ually padded the number of paths to 100 over all code sub-
missions. During the training, we set the maximum train-
ing epochs as 200, with the patience of early stopping set
to 100, tuned learning rate to 0.0002. Linear layer and em-
bedding dimensions are kept default to 100. To ensure a

highest efficiency of the model, we set the batch size as the
full batch. For ASTNN, the inputs are a set of ST-trees,
and we padded the statement sequences to the maximum
length to accommodate the longest sequence before feeding
to Bi-GRU. During the training, we leverage 32 as batch size,
0.001 as learning rate, and keep the max training epoch as
50. The encoding dim for the statement encoder is set to
128, and the number of hidden neurons for Bi-GRU is set to
100. We implemented both ASTNN and Code2Vec in Py-
torch. Same as the classic models, 10-fold cross-validation
was applied for hyperparameter tuning.

For the task of student program classification, we did not
compare ASTNN and Code2Vec against any models that
used expert-designed features for two reasons: one is that
the expert-designed features are only available for iSnap but
not CodeWorkout; and the other reason is that these expert-
designed features are used to determine the ground truth
label of the student’s final submission in iSnap.

3.3.2 Evaluation Metrics
Our models were evaluated using Accuracy, Precision, Re-
call, F1 Score, and AUC (Area Under ROC curve). Accu-
racy represents the proportion of students whose labels were
correctly identified. Precision is the proportion of students
who were predicted to be incorrect by each model were actu-
ally in the incorrect group. Recall tells us what proportion
of students, who will actually be incorrect, were correctly
recognized by the model. F1 Score is the harmonic mean of
Precision and Recall that sets their trade-off. AUC measures
the ability of models to discriminate groups with different
labels. Given the nature of the task, in the following, we
consider Accuracy and AUC as the most important metrics
because the former is most commonly accepted while AUC
is believed to be generally more robust.

Finally, it is important to emphasize that all models were
evaluated using semester-based temporal cross-validation for
both domains in this task, which only applied data from pre-
vious semesters for training and is a much stricter approach
than the standard cross-validation.

3.4 Results
Table 2 and 3 compare the performing of the five models in
iSnap and CodeWorkout respectively. In iSnap, among the
three token-based models, LG and SVM have very similar
performance as both have an accuracy score of 0.6604; more-
over the best AUC and Precision are from LG and the best
Recall and F1 are from SVM. Both LG and SVM outperform
KNN on all metrics. While in CodeWorkout, Table 3 shows
that the best accuracy, AUC, and Precision are from SVM
and the best Recall and F1 are from KNN. Between the two
AST-based models, ASTNN outperforms Code2Vec in both
domains. It suggests that across the two different student
programming environments, ASTNN is more effective than
Code2Vec on the task of student program classification.

The comparisons between AST-based models with token-
based models show the former significantly out-perform the
latter in both domains; the only exception is that SVM with
token has the highest precision in Java (Table 3). Note
that here the difference between the SVM and ASTNN on

176 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 2: Student Program Classification Results in iSnap

Feature Model Accuracy Precision Recall F1 score AUC
Majority Baseline 0.6321 - - - 0.5

Tokens
KNN 0.6132 0.7321 0.6119 0.6667 0.6137
LG 0.6604 0.8298 0.5821 0.6842 0.6885
SVM 0.6604 0.7460 0.7015 0.7231 0.6456

ASTs
Code2Vec 0.6810 0.8038 0.6786 0.7239 0.7017
ASTNN 0.8113** 0.8730** 0.8209** 0.8462** 0.8079**

Note: best models in each group are in bold, and the overall best labeled with **

Table 3: Student Program Classification Results in CodeWorkout

Feature Model Accuracy Precision Recall F1 score AUC
Majority Baseline 0.5430 - - - 0.5

Tokens
KNN 0.8709 0.8915 0.8679 0.8795 0.8712
LG 0.8299 0.8922 0.7811 0.8330 0.8345
SVM 0.8770 0.9437** 0.5093 0.6616 0.8822

ASTs
Code2Vec 0.9241 0.9299 0.9359 0.9329 0.9475
ASTNN 0.9529** 0.9416 0.9736** 0.9573** 0.9509**

Note: best models in each group are in bold, and the overall best labeled with **

Precision is rather small while the former has a much worse
accuracy, F1-score, and AUC than ASTNN.

To summarize, our results show that in both domains, ASTNN
achieves the best performance. These results show that
by capturing the meaningful linguistic structure in student
code, ASTNN is indeed more robust on the task of student
program classification. Given its effectiveness, we further
explored the effectiveness of Temporal-ASTNN which com-
bines ASTNN with powerful temporal model LSTM on the
task of student success early prediction.

4. STUDENT SUCCESS EARLY PREDICTION
For student success early prediction task, Temporal-ASTNN
is compared against the original ASTNN and other tempo-
ral models. As mentioned in Section 3.1.2, here we only
explored the early prediction task in iSnap.

4.1 Task Description
In iSnap, we have a total of 171 students and 31, 064 tem-
poral snapshots. Following the definitions used in prior re-
search [23], the successful students are those who completed
the programming assignment within one hour and got full
credit while the rest are counted as unsuccessful. We have 59
successful and 112 unsuccessful ones. The detailed statistics
for iSnap dataset are shown in Table 4. Note that for the
purpose of learning, unsuccessful students are of interest for
this classification task.

To predict student early success, we are given the first up to
n minutes of a student’s sequence data and our goal is to
predict whether the student will successfully complete the
programming assignment at any given point in the remain-
der of the sequence. To conduct this task, we left-aligned all

the students’ trajectories by their starting times and our ob-
servation window (the part of data used to train and test dif-
ferent machine learning models) includes the sequences from
the very beginning to the first n minutes. If a student’s tra-
jectory is less than n minutes, our observation window will
include their entire sequence except the last one.

It is worth noting that student success early prediction is a
much more challenging task compared to program classifi-
cation: 1) besides the linguistic nature in student code, it
also involves temporal information, and 2) the observation
window is very early and thus student final submissions are
not available for training or testing.

4.2 Experiments
4.2.1 Models Configuration

To further explore the power of ASTNN, we did extensive ex-
periments and compared it with the start-of-the-art expert-
designed features [43] and token-based features on the stu-
dent success early prediction task. For each of the feature
embedding (expert, token, AST), we explored two categories
of models: the last value-based Logistic Regression (LG)
models, and the temporal LSTM models. Note that LG is
selected because, among the three classic ML methods ex-
plored on the task of student program classification in iSnap,
LG has achieved the highest accuracy and AUC.

Last-Value Models: Motivated by prior work, we used a“Last
Value” approach [4, 37, 23] to treat the last measurements
within the given observation window as the input to train
models. For early prediction settings, we truncated all the
sequences in the training dataset in the same way as the
testing dataset. For example, when our observation window
is the first 4 minutes, we will only apply the last values in

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 177

Table 4: Detailed data statistics for iSnap, including total steps, total time spent in minutes, and the success labels distribution
for each of the four semesters.

Semester
Total Steps Total Time (minutes) Success Labels

min max median mean(std) min max median mean(std) successful unsuccessful
S16 10 1024 169 199 (175) 0.533 95.667 20.733 22.777 (17.149) 23 42
F16 28 884 121 167 (168) 3.283 119.083 16.325 22.379 (24.177) 15 23
S17 15 439 75 112 (94) 2.817 62.983 14.167 16.347 (11.872) 12 17
F17 10 2276 100 219 (376) 1.65 189.667 19.1 28.224 (33.869) 9 30

Table 5: iSnap Student Success Early Predictions at First-4-minute Only

Data Feature Model Accuracy Precision Recall F1 score AUC

Majority Baseline 0.6604 - - - 0.5

Last-Value
Expert Expert-LG 0.6226 0.8261** 0.5429 0.6552 0.6603
Tokens Token-LG 0.5566 0.7170 0.5429 0.6179 0.5631
ASTs ASTNN 0.6698 0.7612 0.7286 0.7445 0.6421

Temporal

Expert Expert-LSTM 0.7075 0.7191 0.9143 0.8050 0.6099
Tokens Token-LSTM 0.6792 0.6915 0.9286** 0.7927 0.5615

ASTs
Temporal-ASTNNTrunc 0.7642** 0.7711 0.9143 0.8366** 0.6933**
Temporal-ASTNNEntire 0.7453 0.7722 0.8714 0.8188 0.6857

Note: best models in each group are in bold, and the overall best labeled with **

the sequence within the first-4-minute observation window
and use them as inputs for each model. More specifically,
we used the expert features of the last submission within the
observation window to train and test expert-LG; similarly,
the tokens from the last snapshot within the observation
window to train and test token-LG; and the ASTs of the last
submission within the observation window for both training
and testing the original ASTNN.

Temporal Models: We applied LSTM to handle the tem-
poral sequences of student code. Here we used the tem-
poral sequences in the observation window for early predic-
tions. Specifically for a given first-n-minute observation win-
dow: we used the sequences of expert features to train and
test expert-LSTM; the sequences of token features to train
and test token-LSTM. For Temporal-ASTNN, we explored
Temporal-ASTNNTrunc and Temporal-ASTNNEntire. Both
models would first convert student code sequences in the
observation window into sequences of AST vectors and then
feed them into LSTM. They only differ on how their AST
vectors are trained: the former uses truncated sequences
while the latter uses entire sequences (see Section 2.1.3).

To summarize, we analyze two main model settings: last-
value and temporal, together with three different feature
embeddings: expert, tokens, and ASTs. Thus in total we
explored the effectiveness of six models.

4.2.2 Evaluation Metrics
For student success early prediction, all the models are eval-
uated using Accuracy, Precision, Recall, F1 Score, and AUC.
Similarly to the first task, we consider Accuracy and AUC as
the most important metrics, and the more stringent semester-
based temporal cross-validation was carried out.

4.3 Results
We present our results of student success early prediction by
first comparing the effectiveness of all six models on first-4-
minute early prediction and then by exploring their average

performance across different observation windows up to the
first-10-minute data.

4.3.1 Results at First-4-minute Only
Table 5 shows different performance measures of all the six
models at first-4-minute. In the group of Last-Value mod-
els, ASTNN has the best accuracy, Recall and F1 scores
while the best AUC and Precision are from Expert-LG, and
both of them have better performance than Token-LG. Actu-
ally, in terms of accuracy, Expert-LG and Token-LG perform
worse than the simple majority baseline. This is probably ei-
ther because only relying on the first-4-minute is too early or
because the last snapshot of the first-4-minute does not pro-
vide enough information for these models to make effective
early predictions. The fact that across the five evaluation
metrics, the best performance either comes from Expert fea-
ture or comes ASTNN suggests that ASTNN is comparable
to expert-designed features because of its ability of handling
the linguistic structure of student syntactic code.

In the Temporal group, Temporal-ASTNN based models are
the best. More specifically, both Temporal-ASTNNTrunc

and Temporal-ASTNNEntire outperform Expert-LSTM and
Token-LSTM on accuracy, AUC, precision and F1 scores,
except that the best recall is from Token-LSTM. Between
the two Temporal-ASTNN models, Temporal-ASTNNTrunc

is generally better than Temporal-ASTNNEntire as it achieves
higher accuracy, Recall, F1-score, and AUC. This is proba-
bly because by using the truncated training data for repre-
sentation learning, Temporal-ASTNNTrunc is more likely to
capture the temporal information that are not only predic-
tive of student success but also more likely to be observed
in the testing with only the first-4-minute data.

When further comparing temporal models with last-value
models, we can see that all temporal models achieve better
accuracy than their corresponding last-value models. It is
reasonable since temporal models are able to capture the
temporal information related to student success from the

178 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 6: iSnap Student Success Early Predictions in First-10-minute Overall

Data Feature Model Accuracy Precision Recall F1 score AUC
Majority Baseline 0.6604 - - - 0.5

Last-Value
Expert Expert-LG

0.6566
(0.05)

0.8209**
(0.06)

0.6229
(0.11)

0.7017
(0.06)

0.6725
(0.05)

Tokens Token-LG
0.5528
(0.02)

0.7072
(0.03)

0.5571
(0.07)

0.6203
(0.04)

0.5508
(0.03)

ASTs ASTNN
0.6642
(0.01)

0.7635
(0.03)

0.7200
(0.07)

0.7379
(0.02)

0.6378
(0.03)

Temporal

Expert Expert-LSTM
0.7189
(0.03)

0.7305
(0.05)

0.9343
(0.04)

0.8145
(0.01)

0.6255
(0.07)

Tokens Token-LSTM
0.6887
(0.02)

0.6966
(0.03)

0.9429**
(0.04)

0.8001
(0.01)

0.5687
(0.05)

ASTs
Temporal-ASTNNTrunc

0.7396
(0.02)

0.7597
(0.03)

0.8914
(0.03)

0.8190**
(0.01)

0.6679
(0.04)

Temporal-ASTNNEntire

0.7472**
(0.02)

0.7932
(0.04)

0.8316
(0.04)

0.8110
(0.02)

0.6943**
(0.03)

Note: best models in each group are in bold, and the overall best labeled with **

temporal sequences, but such information is not available to
last-value models.

Generally speaking, Temporal-ASTNN achieves the best per-
formance at the first-4-minute observation window, which
indicates that by combining ASTNN with LSTM, the temporal-
ASTNN is able to learn the temporal and linguistic knowl-
edge from student code sequences.

4.3.2 Results in First-10-minute Overall
Figure 6 (a) and (b) report Accuracy and AUC performance
respectively for four models predicting student success: three
temporal models and the best last-value model, ASTNN.
For each graph, x-axis is the observation window of early
prediction, here we vary the observation window from the
first 2 minutes up to 10 minutes; and y-axis is the Accu-
racy/AUC score. As shown in Table 1, students generally
take 10 to 60 minutes to complete the task and thus we took
a measurement every 2 minutes for the first 10 minutes to
generate the early stage predictions for each model. Table 6
show the comparison of all six models for the student success
early prediction in first-10-minute observation windows, we
reported the mean value and corresponding standard devia-
tion (in parenthesis) for each evaluation metric.

Table 6 shows a similar pattern as we observed earlier in
Table 5. In the group of Last-Value models, ASTNN out-
performs Expert-LG and Token-LG. Specifically, ASTNN
continues to achieve the best accuracy, Recall and F1 scores
in the first 10 minutes, and Expert-LG has the best AUC
and Precision scores. In the group of temporal models,
Temporal-ASTNN based models are still the best overall,
with higher scores on accuracy, AUC, Precison and F1. Ad-
ditionally, Temporal-ASTNNEntire is shown to be slightly
better than Temporal-ASTNNTrunc as it achieves higher ac-
curacy, AUC and Precision.

Both Figures 6 (a) and (b) show that Temporal-ASTNNEntire

is the best model for student success early prediction as it
stays on the top across all sizes of the observation window.
As the length of observation window extends, all temporal
models in general perform better, while the performance of

last-value models fluctuates. This is because that training
data includes more and more information and hereby the
performance of temporal models improves over longer se-
quences. After 6 minutes, Expert-LSTM starts to perform
as good as Temporal-ASTNN, which is not surprising. As
the expert features are designed to detect student state for fi-
nal grading, and student states will be more and more closer
to their final submissions with the longer sequences. The
fact that the best early predictions come from Temporal-
ASTNN really suggests that addressing both linguistic and
temporal nature of student code sequences brings us closer
to the truth of student learning procession during program-
ming, especially for the early stage (first 6 minutes).

5. RELATED WORK
5.1 Linguistic-based Models for Programming
A wide range of work has applied NLP techniques for pro-
gramming. Traditionally, some prior work directly uses the
tokens of ASTs for source code tasks [38, 12], by treating
programming languages as natural languages. Despite some
similarities, programming languages and natural languages
[25] differ in some important aspects. Programming is a
complex activity, and thus programs contain rich and ex-
plicit structural information. Recently, deep learning models
has shown the potential to grasp more information from AST
in many tasks. For example, TBCNN [24] takes the whole
AST of code as input and performs convolution computation
over tree structures, and it outperforms token-based models
in program functionalities classification and bubble-sort de-
tection. In the educational domain, Piech et al. (2015) pro-
posed NPM-RNN to simultaneously encode preconditions
and postconditions into points where a program can be used
as a linear mapping between these points [30]. Gupta et al.
(2019) presented a tree-CNN based method, that can local-
ize the bugs in a student program with respect to a failing
test case, without running the program [14]. More recently,
ASTNN and Code2Vec has shown great success.

Siting at the root of AST, ASTNN [42] was proposed to han-
dling the long-term dependency problems when taking the
large AST as input directly. AST is a form of representing
abstract syntactic structure of the source code [5], and it

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 179

(a) Accuracy performance

(b) Area under ROC performance

Figure 6: Student Success Early Prediction on iSnap, last-
value models are in dashed lines with empty symbols, tem-
poral models are in solid lines with solid symbols, dark grey
lines are from the majority baseline.

has been widely used in the domain of source code analysis.
Similar to long texts in NLP, large ASTs can make deep
learning models venerable to gradient vanishing problems.
To address the issue, ASTNN splits the large AST of one
code fragment into a set of small trees in statement-level and
performs code vector embedding. It achieves state-of-the-art
performance in both code functionalities classification and
clone detection.

Code2Vec [1], on the other hand, utilizes AST-based paths
and attention mechanism to learn code vector representa-
tion. Instead of a set of ST-trees, it takes a collection of
leaf-to-leaf paths as input, and applies an attention layer
to average those vectors. As a result, the attention weights
can help to interpret the importance of paths. Code2Vec
has shown to be very effective in predicting the names for
program entities. Shi et al. (2021) also applied Code2Vec

on a block-based programming dataset and used the learned
embedding to cluster incorrect student submissions [34].

As far as we know, none of prior work has directly compared
the effectiveness of ASTNN against Code2Vec. And in this
work, we did extensive experiments across two programming
domains: one is a block-based novice programming envi-
ronment where the data size is relatively small; the other
is a web programming platform in Java, in which more la-
beled data is available. Our results consistently suggest that
ASTNN is able to capture more insights from student pro-
grams for correctness prediction.

5.2 Student Modeling for Programming
Student modeling has been widely and extensively explored
by utilizing student temporal sequences. For example, BKT
[8] and BKT-based models have been shown to be effective in
predicting students’ overall competence [26], predicting the
students’ next-step responses [41, 3, 27, 20], and the predic-
tion of post-test scores [18, 22]. In recent years, deep learn-
ing models, especially Recurrent Neural Network (RNN) or
RNN-based models such as LSTM have also been explored
in student modeling [29, 36, 17, 39, 40, 19]. Some work
showed that LSTM has superior performance over BKT-
based models [22, 29] or Performance Factors Analysis [28].
However, it has also been shown that RNN and LSTM did
not always have better performance when the simple, con-
ventional models incorporated other parameters [17, 39].

In the programming domain, prior research has explored var-
ious temporal models for modeling student learning progres-
sion. For example, Wang et al. (2017) applied a recursive
neural network similar to [30] as the embedding for student
submission sequence, then feed them into a 3-layer LSTM
to predict the student’s future performance. Please note
that the work is quite different from our proposed Temporal-
ASTNN. In Temporal-ASTNN, all the components are opti-
mized together during training, while they applied a global
embedding to generate the input sequences for LSTM. On
the other hand, Emerson et al. (2019) have utilized four cat-
egories of features: prior performance, hint usage, activity
progress, and interface interaction to evaluate the accuracy
of Logistic Regression models for multiple block-based pro-
gramming activities [11]. In our earlier work, we have used
the expert-designed features for a block-based programming
problem to train various temporal models, then made early
predictions on student learning outcomes [21, 23].

To our best knowledge, while most of the previous studies on
analyzing student programming data treated student code as
either linguistic or temporal, no prior work has combined the
two characteristics of programming data for student learning
progression. Thus our proposed Temporal-ASTNN is the
first attempt to addressing both aspects in student code.

6. CONCLUSIONS
Tracing student learning progression at early stage is a cru-
cial component of student modeling, since it allows tutoring
systems to intervene by providing needed support, such as
a hint, or by alerting an instructor. Both prediction tasks
involved in this work are challenging, especially the early
prediction task because: 1) the open-ended nature of pro-
gramming environment hinders the prediction of student fi-

180 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

nal success, and 2) it is extremely hard to learn a meaningful
representation from student code. In this work, we con-
ducted a series of experiments to investigate the effective-
ness of Temporal-ASTNN for student learning progression.
We first evaluated ASTNN against Code2Vec on the task of
classifying the correctness of student programs across two
domains. Our results show that ASTNN consistently out-
performs the other models including Code2Vec and other
token-based baselines in both domains. And we can also
find that AST-based models generally achieve better per-
formance than token-based models, which is consistent with
prior research [24, 42]. In the second task of student early
prediction, we explored three different categories of features:
expert, tokens, and ASTs. And further compared Temporal-
ASTNN with other temporal models embedded with dif-
ferent feature set, as well as non-temporal baselines. Our
findings can be concluded as follows: 1) temporal models
usually outperforms non-temporal (last-value) models; 2)
token-based models can only capture very limited informa-
tion from student code; and 3) Temporal-ASTNN is the best
out of all models in the early prediction task, it can achieve
good performance with only the first-4-minute data.

Limitations: There are two main limitations in this work.
First, we only explored the effectiveness of Temporal-ASTNN
on one important student modeling task in one programming
environment, and thus it is not clear whether the same re-
sults will hold for different tasks or in other programming do-
mains. Second, time-aware LSTM [6] has shown to outper-
form LSTM on various early prediction tasks [23], while in
this work we only compared our Temporal-ASTNN against
normal LSTM without considering time-awareness. Never-
theless, one of the main goal in this work is to investigate
the robustness of Temporal-ASTNN from both sequential
and temporal embedding. Thus we have two different type
of models (last-value vs. temporal) as well as another two
different features (expert and tokens). Our experiments re-
sults have shown its superiority on both aspects, but still,
we are not clear about the effects of time-awareness.

Future Work: An important direction for future work is to
investigate the time-awareness on Temporal-ASTNN to de-
termine how it contributes to the model in the same task. In
addition, we are planning to employ Temporal-ASTNN to
other temporal tasks or different domains to explore whether
it continues to support improvement for programming envi-
ronments. Also, this work will be applied to larger groups of
students and longer programming tasks, along with integra-
tion of more informative features such as intervention and
demographic features to develop more robust models.

7. ACKNOWLEDGMENTS
This research was supported by the NSF Grants: EXP:
Data-Driven Support for Novice Programmers (1623470),
Integrated Data-driven Technologies for Individualized In-
struction in STEM Learning Environments(1726550), CA-
REER: Improving Adaptive Decision Making in Interactive
Learning Environments (1651909), and Generalizing Data-
Driven Technologies to Improve Individualized STEM In-
struction by Intelligent Tutors (2013502).

8. REFERENCES

[1] U. Alon, M. Zilberstein, O. Levy, and E. Yahav.
code2vec: Learning distributed representations of
code. Proceedings of the ACM on Programming
Languages, 3(POPL):1–29, 2019.

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine
translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473, 2014.

[3] R. S. Baker, A. T. Corbett, and V. Aleven. More
accurate student modeling through contextual
estimation of slip and guess probabilities in bayesian
knowledge tracing. In ITS, pages 406–415, 2008.

[4] I. Batal, D. Fradkin, J. Harrison, F. Moerchen, and
M. Hauskrecht. Mining recent temporal patterns for
event detection in multivariate time series data. In
SIGKDD, pages 280–288. ACM, 2012.

[5] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier. Clone detection using abstract syntax trees.
In Proceedings. International Conference on Software
Maintenance (Cat. No. 98CB36272), pages 368–377.
IEEE, 1998.

[6] I. M. Baytas, C. Xiao, X. Zhang, F. Wang, A. K. Jain,
and J. Zhou. Patient subtyping via time-aware lstm
networks. In Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and
data mining, pages 65–74, 2017.

[7] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. the Journal of machine Learning
research, 3:993–1022, 2003.

[8] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
UMUAI, 4(4):253–278, 1994.

[9] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.
Landauer, and R. Harshman. Indexing by latent
semantic analysis. Journal of the American society for
information science, 41(6):391–407, 1990.

[10] S. H. Edwards and K. P. Murali. Codeworkout: short
programming exercises with built-in data collection. In
Proceedings of the 2017 ACM Conference on
Innovation and Technology in Computer Science
Education, pages 188–193, 2017.

[11] A. Emerson, F. J. Rodŕıguez, B. Mott, A. Smith,
W. Min, K. E. Boyer, C. Smith, E. Wiebe, and
J. Lester. Predicting early and often: Predictive
student modeling for block-based programming
environments. International Educational Data Mining
Society, 2019.

[12] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez,
and M. Monperrus. Fine-grained and accurate source
code differencing. In Proceedings of the 29th
ACM/IEEE international conference on Automated
software engineering, pages 313–324, 2014.

[13] D. Garcia, B. Harvey, and T. Barnes. The Beauty and
Joy of Computing. ACM Inroads, 6(4):71–79, 2015.

[14] R. Gupta, A. Kanade, and S. Shevade. Neural
attribution for semantic bug-localization in student
programs. Network, 1(P2):P2, 2019.

[15] A. Hindle, E. T. Barr, M. Gabel, Z. Su, and
P. Devanbu. On the naturalness of software.
Communications of the ACM, 59(5):122–131, 2016.

[16] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 181

[17] M. Khajah, R. V. Lindsey, and M. C. Mozer. How
deep is knowledge tracing? arXiv preprint
arXiv:1604.02416, 2016.

[18] C. Lin and M. Chi. Intervention-bkt: incorporating
instructional interventions into bayesian knowledge
tracing. In ITS, pages 208–218. Springer, 2016.

[19] C. Lin and M. Chi. A comparisons of bkt, rnn and
lstm for learning gain prediction. In AIED, pages
536–539. Springer, 2017.

[20] C. Lin, S. Shen, and M. Chi. Incorporating student
response time and tutor instructional interventions
into student modeling. In UMAP, pages 157–161.
ACM, 2016.

[21] Y. Mao. One minute is enough: Early prediction of
student success and event-level difficulty during novice
programming tasks. In In: Proceedings of the 12th
International Conference on Educational Data Mining
(EDM 2019), 2019.

[22] Y. Mao, C. Lin, and M. Chi. Deep learning vs.
bayesian knowledge tracing: Student models for
interventions. JEDM, 10(2):28–54, 2018.

[23] Y. Mao and S. Marwan. What time is it? student
modeling needs to know. In In proceedings of the 13th
International Conference on Educational Data Mining,
2020.

[24] L. Mou, G. Li, Z. Jin, L. Zhang, and T. Wang. Tbcnn:
A tree-based convolutional neural network for
programming language processing. arXiv preprint
arXiv:1409.5718, 2014.

[25] J. F. Pane, B. A. Myers, et al. Studying the language
and structure in non-programmers’ solutions to
programming problems. International Journal of
Human-Computer Studies, 54(2):237–264, 2001.

[26] Z. A. Pardos and N. T. Heffernan. Modeling
individualization in a bayesian networks
implementation of knowledge tracing. In UMAP,
pages 255–266. Springer, 2010.

[27] Z. A. Pardos and N. T. Heffernan. Kt-idem:
Introducing item difficulty to the knowledge tracing
model. In UMAP, pages 243–254. Springer, 2011.

[28] P. I. Pavlik, H. Cen, and K. R. Koedinger.
Performance factors analysis –a new alternative to
knowledge tracing. In AIED, pages 531–538, 2009.

[29] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,
L. J. Guibas, and J. Sohl-Dickstein. Deep knowledge
tracing. In NIPS, pages 505–513, 2015.

[30] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati,
M. Sahami, and L. Guibas. Learning program
embeddings to propagate feedback on student code. In
International conference on machine Learning, pages
1093–1102. PMLR, 2015.

[31] T. Price, R. Zhi, and T. Barnes. Evaluation of a
data-driven feedback algorithm for open-ended
programming. International Educational Data Mining
Society, 2017.

[32] T. W. Price, Y. Dong, and D. Lipovac. iSnap:
Towards Intelligent Tutoring in Novice Programming
Environments. In Proceedings of the ACM Technical
Symposium on Computer Science Education, pages
483–488, 2017.

[33] T. W. Price, D. Hovemeyer, K. Rivers, G. Gao, A. C.

Bart, A. M. Kazerouni, B. A. Becker, A. Petersen,
L. Gusukuma, S. H. Edwards, et al. Progsnap2: A
flexible format for programming process data. In
Proceedings of the 2020 ACM Conference on
Innovation and Technology in Computer Science
Education, pages 356–362, 2020.

[34] Y. Shi, K. Shah, W. Wang, S. Marwan, P. Penmetsa,
and T. Price. Toward semi-automatic misconception
discovery using code embeddings. In The 11th
International Conference on Learning Analytics &
Knowledge (LAK 21), 2021.

[35] R. Socher, C. C.-Y. Lin, A. Y. Ng, and C. D.
Manning. Parsing natural scenes and natural language
with recursive neural networks. In ICML, 2011.

[36] S. Tang, J. C. Peterson, and Z. A. Pardos. Deep
neural networks and how they apply to sequential
education data. In L@S, pages 321–324. ACM, 2016.

[37] L. Wang, A. Sy, L. Liu, and C. Piech. Learning to
represent student knowledge on programming
exercises using deep learning. International
Educational Data Mining Society, 2017.

[38] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.
Automatically finding patches using genetic
programming. In 2009 IEEE 31st International
Conference on Software Engineering, pages 364–374.
IEEE, 2009.

[39] K. H. Wilson, Y. Karklin, B. Han, and C. Ekanadham.
Back to the basics: Bayesian extensions of irt
outperform neural networks for proficiency estimation.
arXiv preprint arXiv:1604.02336, 2016.

[40] X. Xiong, S. Zhao, E. Van Inwegen, and J. Beck.
Going deeper with deep knowledge tracing. In EDM,
pages 545–550, 2016.

[41] M. V. Yudelson, K. R. Koedinger, and G. J. Gordon.
Individualized bayesian knowledge tracing models. In
AIED, pages 171–180. Springer, 2013.

[42] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and
X. Liu. A novel neural source code representation
based on abstract syntax tree. In 2019 IEEE/ACM
41st International Conference on Software
Engineering (ICSE), pages 783–794. IEEE, 2019.

[43] R. Zhi, T. W. Price, N. Lytle, Y. Dong, and
T. Barnes. Reducing the state space of programming
problems through data-driven feature detection. In
EDM (Workshops), 2018.

182 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Exploring Policies for Dynamically Teaming Up
Students through Log Data Simulation

Kexin Bella Yang 1 , Vanessa Echeverria 2 , Xuejian Wang 1 ,
LuEttaMae Lawrence 1 , Kenneth Holstein 1 , Nikol Rummel 3 , and Vincent Aleven 1

1 Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15217, USA.
{ kexiny , xuejianw, llawrenc}@andrew.cmu.edu, {kjholste, aleven}@cs.cmu.edu

2 Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
vanechev@espol.edu.ec

3 Ruhr-Uni ver si tät Bo chum Uni ver si täts stra ße 150 D - 44801 Bo chum, Germany
nikol.rummel@rub.de

ABSTRACT

Constructing effective and well-balanced learning groups is
important for collaborative learning. Past research explored how
group formation policies affect learners’ behaviors and
performance. With the different classroom contexts, many group
formation policies work in theory, yet their feasibility is rarely
investigated in authentic class sessions. In the current work, we
define feasibility as the ratio of students being able to find
available partners that satisfy a given group formation policy.
Informed by user-centered research in K-12 classrooms, we
simulated pairing policies on historical data from an intelligent
tutoring system (ITS), a process we refer to as SimPairing . As
part of the process for designing a pairing orchestration tool, this
study contributes insights into the feasibility of four dynamic
pairing policies, and how the feasibility varies depending on
parameters in the pairing policies or different classes. We found
that on average, dynamically pairing students based on their
in-the-moment wheel-spinning status can pair most struggling
students, even with moderate constraints of restricted pairings. In
addition, we found there is a trade-off between the required
knowledge heterogeneity and policy feasibility. Furthermore, the
feasibility of pairing policies can vary across different classes,
suggesting a need for customization regarding pairing policies.

Keywords

Peer tutoring, Learning Group formation (LGF), Pairing Policies,
CSCL

1. INTRODUCTION
Constructing effective, well-balanced learning groups is an
important task in computer-supported collaborative learning

(CSCL) [1–3] . The importance of learning group formation (LGF)
has been validated empirically [4,5] . For instance, Webb et al.’s
experiment proved that group composition had a major impact on
the quality of group discussion and students’ test scores, both
during group work and subsequent individual tests [5] . The
majority of existing approaches to LGF, do not support dynamic
group formation [1] . Dynamic group formation refers to the
process of groups “created on demand while various
domain-specific restrictions have to be considered” [6] , or can
“adapt to and benefit from previous information about group
members and their abilities” [7,8] . Compared to static,
pre-planned LGF, the dynamic composition of groups allows for
quick regrouping of learners based on up-to-date information
regarding their progress and struggle. Dynamic group formation is
an interesting issue, as researchers start envisioning more
sophisticated and personalized classroom interactions [9] and
more fluid social transitions (i.e., student social transitions that
occur not all at the same time for everyone in the class) [10] , that
are more challenging to orchestrate.

In the context of an Intelligent Tutoring System (ITS) that
supports both individual and collaborative learning, it is useful to
investigate whether dynamically switching students between the
two modes, as the need arises, can be effective and feasible.
Pairing policies that work well in practice ideally have
characteristics of both effectiveness and feasibility. By effective
we mean that the pairing policy leads to students’ reaching desired
learning goals, and by feasible we mean that enough partners can
be found under the given grouping policies (i.e., good policy
coverage). Specifically, we defined feasibility as the percentage of
students who can be teamed up under a given pairing policy.

The feasibility of LGF is an important issue to investigate in
designing orchestration tools for teachers, and can be a central
concern at the initial stage of tool design. This is because during
the initial design stages we often do not yet have data to
rigorously evaluate the effectiveness of LGF, given testing the
LGF requires human resources of learners, instructors, materials
resources of devices, systems, and a long time period.
Additionally, an effective pairing policy that only covers a small
percentage of students in a classroom may have limited influence
for the whole class. Thus, the feasibility of LGF can be important
in providing context for the potential coverage of LGF in a class.

Kexin Yang, Xuejian Wang, Vanessa Echeverria, Luettamae Lawrence,
Kenneth Holstein, Nikol Rummel and Vincent Aleven “Exploring Poli-
cies for Dynamically Teaming Up Students through Log Data Simulation”.
2021. In: Proceedings of The 14th International Conference on Educational
Data Mining (EDM21). International Educational Data Mining Society,
183-194. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 183

mailto:kexiny@cs.cmu.edu
mailto:vanechev@espol.edu.ec
mailto:nikol.rummel@rub.de
https://paperpile.com/c/U8IK0d/LWus9+6kmo0+ndVa
https://paperpile.com/c/U8IK0d/FJTDm+DZudL
https://paperpile.com/c/U8IK0d/DZudL
https://paperpile.com/c/U8IK0d/LWus9
https://paperpile.com/c/U8IK0d/UC3gJ
https://paperpile.com/c/U8IK0d/7gBDU+wZAmm
https://paperpile.com/c/U8IK0d/dRDPX
https://paperpile.com/c/U8IK0d/FUWZS

Literature on LGF in collaborative learning is vast. Researchers
have paired students based on gender [11,12] , learning style
[13–16] , students’ social network [17] , and their intelligence or
task proficiency [18–20] . Heterogeneous and homogeneous group
formation are two main approaches in team formation, and many
studies have demonstrated their effectiveness in CSCL
[1,8,18,20–22] . Students’ knowledge level is argued to be the
most suitable and important attribute to form educational groups
[8] . Prior work has also used machine learning or other algorithms
to incorporate multiple factors for optimizing team formation
[23–26] . However, the literature on LGF provides little insight
into the feasibility of these LGF policies, especially in the ITS
context.

Evaluating the feasibility of LGF policies offline, prior to
implementing them in real classrooms, is challenging, given a
lack of readily accessible approaches. To address this problem, we
adopt a process we call “ SimPairing ”, to simulate pairing policies
on authentic data and evaluate their feasibility. In this process, we
used transaction data from several classes of students using an
ITS, collected from classroom studies conducted in U.S. middle
schools. We computed and analyzed how the feasibility of several
LGF policies (described below) changed as each class progressed,
and how the feasibility varied across different classes. Replaying
historical data to simulate possible futures (e.g., Replay
Enactment [27]), has been used as a method by researchers to
design tools with similar data-driven, human-centered approaches
[28] . Diana et al. [29] , for instance, used machine learning (ridge
regression) to predict students’ grades based on historical data in
CS education (i.e., programming). Based on these predicted
grades and simulated students’ “helped” status, they determined
which students needed help and which may be able to provide
help. They then used a network graph of code-state to search for
potential peer tutors who shared a common ancestor node with the
tutee. They found that grouping low-performing students together
and using better model features can increase the number of
students helped. Their findings suggest that using low-level log
data to group and match low-performing students with a peer tutor
may be an effective way to increase the amount of help given in a
classroom. In contrast, we simulated different policies selected
based on literature and teachers’ common practice revealed in
user-centered research with K-12 teachers [10,30,31] , in a
mathematics education context.

The current work is, to the best of our knowledge, the first to look
at dynamic pairing policies that consider students’ in-the-moment
wheel-spinning status. Identifying students who are
unproductively struggling, yet failing to master the skill, (i.e.,
wheel spinning) is a first step to getting them unstuck [32] . While
there has been significant work on modeling and predicting wheel
spinning [33–35] , little work has been dedicated to developing
interventions to get them unstuck, with a few recent exceptions
[36,37] . While a typical classroom has students who are
struggling on problems and those who have excelled on the same
problem, the latter students’ expertise is rarely utilized. Instead,
often the only source of help is the instructor, who is likely unable
to help all the students who need help within the time constraints
of the class period [38] . Peer tutoring (i.e., pairing a struggling
student with a peer tutor) could be an effective way to help get
struggling students unstuck when the instructor has their hands
full.

Lastly, instead of prescribing a specific grouping criterion, our
work envisions that instructors will customize pairing policies and
parameters to their classroom contexts, which prior work argued

to be especially helpful in the LGF process [1,8,30,39] . Amara et
al. found that most of the proposed LGF solutions do not allow
instructors to customize the grouping process [1] . They argued
that it is less helpful to apply a grouping solution for all types of
learners, and more useful to leave the choice to instructors.
Instructors can then form groups according to different learning
objectives, learners’ needs, activity types, and customize the LGF
process according to location and time [1] . Similarly, Echeverria
et al. envision adaptability in an orchestration system, which
“enables teachers to select the best pairing policies based on their
particular goals, needs, and classroom dynamics” [30] , to be
helpful for different classrooms. In the current investigation, three
of the four policies we studied involve an adjustable pairing
threshold or parameter, which we simulated with various values.

In sum, the current work investigates the feasibility of four
dynamic LGF policies derived from user research with math
teachers. We investigate from three angles: overall session
simulation, class-level variance, and session-level contrasting
cases. This work contributes to the feasibility results of the
dynamic pairing policies, recommendations for orchestration tool
design, and highlights future work regarding tools supporting
dynamic LGF.

2. STUDY CONTEXT
2.1 Intelligent Tutoring Systems
This study used student transaction data collected from classroom
studies in U.S. middle schools (dataset link). This data logged
students’ interaction with an ITS called Lynnette, which offers
guided practice to students in basic equation solving. ITS (also
called AI-tutors) are increasingly common in K-12 classrooms to
help teachers more effectively personalize instruction [40] . As
shown in Figure 1, Lynnette provides step-by-step guidance, in
the form of adaptive hints, correctness feedback, and error
specific messages. Lynnette supports personalized mastery
learning, and has been proven to improve students’
equation-solving skills in several classroom studies [41–43] .

Figure 1. Example student interface for the ITS, Lynnette

The transaction data logs detailed events by the timestamp of
students’ interaction with the ITS, including but not limited to
actions they take (e.g., requesting hints or attempting a step),
knowledge components (KC) that a transaction involves, and skill
mastery, calculated based on Bayesian Knowledge Tracing (BKT)
student model, a two-state Hidden Markov Model. BKT is a
popular student model that has been successful for various
applications in the educational technology literature (e.g. [44]).

The current work lays a foundation to (in the future) use Lynnette
in combination with a second ITS, APTA, which extends
Lynnette’s functionality to support reciprocal peer tutoring. APTA
allows two students to respectively take the role of tutor and tutee.
In APTA, the tutee can seek help from their partner, while the
tutor can see the tutee’s progress, and help them to make progress
with the math problem at hand. APTA supports the peer tutor in

 184 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://paperpile.com/c/U8IK0d/RdtYg+SjWga
https://paperpile.com/c/U8IK0d/jBo5m+LWN7T+DG90k+rgCjF
https://paperpile.com/c/U8IK0d/HzMrL
https://paperpile.com/c/U8IK0d/1Y6CQ+mvfOV+T4hWg
https://paperpile.com/c/U8IK0d/hKXpa+bQiCE+T4hWg+1Y6CQ+wZAmm+LWus9
https://paperpile.com/c/U8IK0d/wZAmm
https://paperpile.com/c/U8IK0d/sKKq8+B5VQW+G9guz+WVh6A
https://paperpile.com/c/U8IK0d/gyUBu
https://paperpile.com/c/U8IK0d/gP7k
https://paperpile.com/c/U8IK0d/QDd9d
https://paperpile.com/c/U8IK0d/lR816+FUWZS+IBVe
https://paperpile.com/c/U8IK0d/erhW1
https://paperpile.com/c/U8IK0d/kRvlJ+Cro0i+ZOwil
https://paperpile.com/c/U8IK0d/bgQvD+rRFoM
https://paperpile.com/c/U8IK0d/0Winm
https://paperpile.com/c/U8IK0d/wZAmm+LWus9+lR816+kKxT
https://paperpile.com/c/U8IK0d/LWus9
https://paperpile.com/c/U8IK0d/LWus9
https://paperpile.com/c/U8IK0d/lR816
https://drive.google.com/file/d/1fMpOPCbGaKBOyVkcoCRCPUbr41AVnPSl/view?usp=sharing
https://paperpile.com/c/U8IK0d/hijou
https://paperpile.com/c/U8IK0d/IYzbl+fGBjO+NbCAP
https://paperpile.com/c/U8IK0d/2koU7

tutoring the tutee. Classroom studies with APTA have
demonstrated that its adaptive support can improve the quality of
help peer tutors give and improve students’ domain learning
[45,46] . A future effort for the current work is to implement
feasible student pairing policies in an orchestration tool, to
support teachers in dynamically pairing students to work
collaboratively in APTA. Such a tool plays a key role in our
vision for the smart classroom of the future, in which students
alternate fluidly between individual and collaborative learning.

2.2 Wheel-Spinning Detector
Detectors have been developed to detect student behaviors of
interest (e.g., gaming the system, struggling) from the transaction
data. Such detectors have been used to design dashboards or tools
that can alert teachers of certain student status (e.g., [9]). In our
policies 1 and 2, we paired students based on their struggle status
indicated by a wheel-spinning detector.

Wheel-spinning, as defined by Beck and Gong, denotes students
who are failing to master a specific skill after many attempts in an
intelligent tutoring system [32] . We utilized a detector that
adopted the same criterion as defined by Beck and Gong [32] . The
detector is embedded in LearnSphere, (i.e., a large learning
analytics infrastructure) [47] . The detector considers students who
have over ten practice opportunities yet still failing to reach a skill
mastery on a specific knowledge component (KC) of above 0.95,
to be wheel-spinning on this KC [9] . Such prolonged repeated
struggles are likely to be an inefficient use of time for students
[32] and may contribute to a lack of motivation for future learning
[36] . Wheel-spinning is one type of unproductive struggle, and we
use struggling and wheel-spinning interchangeably in this paper.

3. METHODS
We evaluated how feasible four pairing policies (described below)
are, based on simulation with historical transaction data from
Lynnette. We applied each pairing policy to data from each class
session. For every minute in a session, we calculated the
percentage of students who met the policy’s criterion for being
teamed up. Based on this calculation, we evaluated policy
feasibility using two measures, FI 1 and FI 2 , defined in 3.2. In the
simulation process, we did not make assumptions about how long
simulated collaboration episodes would last. We foresee that in
any of these episodes, students will be given the task of
collaboratively solving several math problems; it is hard to predict
how long that will take them. We thus did not simulate taking
tutors or tutees out of the pool of students available for teaming
up, or returning them to this pool, at the beginning and end of
collaborative episodes, respectively. Although this simplification
might introduce some inaccuracy into the simulation results, it
may be hard to do better. As well, the asymmetric roles that
paired-up students have in the pairing policies may limit the
inaccuracy. For example, simultaneously keeping a struggling
student and a non-struggling in the pool instead of taking them
both out might have offsetting effects in terms of feasibility.

Our simulation involved four pairing policies, namely:

Policy 1 - Struggle with Non-Struggle: Pairing students who are
wheel-spinning (unproductive struggle) with students who are not
wheel-spinning.

Policy 2 - Pairing with Restriction: Pairing students who are
wheel-spinning with those who are not wheel-spinning, with a
varying pairing restriction (PR) rate β . The PR rate simulates
restrictions regarding who can collaborate with whom, which in
real life would be provided by the teacher.

Policy 3 - Knowledge Difference Pairing: Pairing students whose
knowledge levels (as measured by the tutor’s BKT) differ by more
than a certain threshold . α

Policy 4 - Knowledge Similarity Pairing: Pairing students whose
knowledge levels (as measured by the tutor’s BKT) differ by less
than a certain ceiling γ.

The distinction in these policies aligns with Amara et al.’s
categorization for dynamic group formation [1] : intra-session and
inter-session grouping. Intra-session grouping allows for changing
group members during the learning process, which is useful, for
example, for synchronous mobile collaborative learning [1] . In
inter-session grouping, groups are formed only before starting or
after ending the learning process. Specifically, policies 1 and 2 fall
under intra-session grouping since we simulated pairing students
based on their in-the-moment struggle. These two policies also
concern fluid social transitions [10] , since the students in a given
class may transition from individual to collaborative learning at
different times. Our pairing policies 3 and 4 concern inter-session
grouping, and pair students based on their initial knowledge level.
To apply these policies, teachers or the tutoring system would
assess students’ knowledge level, prior to (or at the beginning of)
a class session.

The research questions we aim to answer are:

RQ1: Based on a pairing simulation done with students’ historical
transaction data, how feasible are the four pairing policies?

RQ2: How does varying the parameters in the pairing policies
affect the feasibility of pairing students?

RQ3: Does the feasibility of the pairing policies vary for different
classes or sessions, if so, how?

3.1 The Four Pairing Policies
3.1.1 Policy 1: Struggle with Non-Struggle
Description. Policy 1 utilizes the struggle detector (section 2.2) to
pair students who are wheel-spinning with those who are not. The
struggle detector assumes students’ wheel-spinning status to be a
binary value for a given timestamp. Inspired by the work of Diana
et al. [29] , we categorized students in the Struggle Pool if they
were wheel-spinning on at least one KC, indicating they could
need help from a partner. Students not wheel-spinning on any KC
were categorized in the Tutor Pool and considered as available
tutors. We simulated pairing students in the Struggle Pool with
students in the Tutor Pool . To determine the feasibility of this
policy, we calculated the percentage of struggling students who
had a potential partner (for more detail, see below).

Rationale. Literature suggests that when students are
wheel-spinning, giving them more of the same type of math
problems to solve may not be productive [36] . When
wheel-spinning, students would likely benefit from instructor
attention or extra instruction. However, prior user research in the
classroom (e.g. [9]) found that teachers often cannot help all
struggling students. In this case, wheel-spinning students may
benefit from a peer tutor’s help, which leads to a policy that seeks
to dynamically find them partners [36] .

3.1.2 Policy 2: Pairing with Restriction
Description. Policy 2 is an extension to Policy 1, where we pair a
struggling student with a non-struggling student, while enforcing
a constraint that not all students are eligible for teaming up. The
proportion of ineligible students is captured as the Pairing

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 185

https://paperpile.com/c/U8IK0d/9KgjL+qR8ra
https://paperpile.com/c/U8IK0d/dRDPX
https://paperpile.com/c/U8IK0d/erhW1
https://paperpile.com/c/U8IK0d/erhW1
https://paperpile.com/c/U8IK0d/89PCE
https://paperpile.com/c/U8IK0d/dRDPX
https://paperpile.com/c/U8IK0d/erhW1
https://paperpile.com/c/U8IK0d/bgQvD
https://paperpile.com/c/U8IK0d/LWus9
https://paperpile.com/c/U8IK0d/LWus9
https://paperpile.com/c/U8IK0d/FUWZS
https://paperpile.com/c/U8IK0d/QDd9d
https://paperpile.com/c/U8IK0d/bgQvD
https://paperpile.com/c/U8IK0d/dRDPX
https://paperpile.com/c/U8IK0d/bgQvD

Restriction (PR) rate. The PR rate is used to simulate situations
where the teacher prefers that certain students do not work
together. Specifically, we simulate pairing students in the Struggle
Pool with students in the Tutor Pool, while enforcing the
restriction that β% (0 < β <1, step = 0.1) of students in the Tutor
Pool are ineligible as partners . For example, a PR rate β of 0.2
means 20% of the students in Tutor Pool have been restricted
from working with any students in Struggle Pool . It is important
to know how these restrictions affect the feasibility of the policies.

Rationale. We designed this policy based on results found in a
survey we conducted with 54 middle-school math teachers on
their pairing preferences in collaborative learning [31] and
semi-structured interviews conducted with middle school
teachers. Teachers expressed a desire to set constraints so that
certain pairs of students are restricted from working together.
Previous studies and user research by Olsen et al. and Echeverria
et al. also informed the idea of ruling out certain pairings in
advance [10,30] . Such restrictions usually arise from information
or concerns teachers have about their students’ traits, behaviors
and interpersonal relationships [8] .

3.1.3 Policy 3: Knowledge Difference Pairing
Description. In Policy 3, we pair students who have different
Initial Knowledge (IK) levels. In a practical scenario, teachers
may assess students’ knowledge through quizzes or exams.
Alternatively, if the classrooms use ITS, teachers may have
students practice several math questions individually, prior to
transitioning into collaborative learning activities.

To simulate this policy without having pre-assessment data, we
used data from the tutoring sessions (captured in the log data) to
compute students’ IK levels. Specifically, we computed a
student’s IK for each KC, as the average mastery for their first
three opportunities for this KC. The reason is we want to use up
only a small portion of the data from the tutoring session, so the
measure represents initial knowledge. In our datasets, three
opportunities generally fall in the first quartile (25%) of students’
total number of opportunities for any given KC. Another reason
we chose the cutoff of three is a previous EDM study with
ASSISTments data showed student learning often appeared to
occur, after students have had ten opportunities with the target
knowledge [48] . Thus one may assume learners to have little
learning on their first three times in transaction data practicing a
KC. A student’s overall IK is calculated as the average Sj j) (∈ N
of their IK across KCs. To more accurately calculate students’ IK ,
we limit our simulation to sessions that practiced the first (i.e., the
most basic) level of KCs, involving 25 sessions.

KD was the difference between two students' IK, and denoted as
 , which was calculated as the absolute value of Sjk j,) (k ∈ N

differences between two students’ IK:

) | IK(S) IK (S)| KD(Sjk = j k

Inspired by Huang and Wu’s work that proposed a clustering LGF
method that considers a threshold of learner heterogeneity [49] ,
this work similarly considers a KD threshold. For this policy, the
required KD of two students (S1, S2) should be a minimum of α (0
< α <1, step = 0.1) for them to be eligible to pair up.

Rationale. The heterogenous pairing policy was informed by
findings from user research with math teachers. In the survey
conducted with 54 math teachers, we found the most common
way teachers paired students was pairing those who have a

different level of knowledge (67%, N = 34) [31] . In our study, we
use students’ mastery of knowledge components (i.e., targeted
math skills) calculated based on the BKT model to represent
students’ knowledge. In a systematic literature review on LGF in
CSCL, Maqtary et al. found the knowledge level is the most
commonly used attribute in LGF, which they claim to be the most
suitable and important attribute to form educational groups
because of its effects on the group process [8] .

There is a range of research that shows heterogeneous grouping
can promote positive interdependence, better group performance,
and effective interactions [1,49–52] . Heterogeneous group
composition not only enhances elaborative thinking, but also leads
learners to deeper understanding, better reasoning abilities, and
accuracy in long-term retention [49,50] . Research also suggests
that collaborative learning with heterogeneous group composition
by characteristics such as gender, ability, achievement,
social-economic status (SES), or race, can be beneficial [51] .

3.1.4 Policy 4: Knowledge Similarity Pairing
Description. Policy 4 is analogous to Policy 3, with the same
definition of KD and IK as in Section 3.1.3. To pair students with
similar knowledge, using the same calculation as Policy 3, this
policy simulated pairing students that have a small KD. To be
eligible for students to form a pair under this policy, the KD of
two students (S1, S2) should be less than or equal to γ (0 < γ <1,
step = 0.1). For example, when γ = 0.2, two students with
knowledge of 0.6 and 0.75 (KD = 0.15, below γ) would be
eligible to pair, but another pair with knowledge of respectively
0.5 and 0.8 (KD = 0.3, above γ) would not be eligible.

Rationale. Policy 4 was inspired by prior literature and informed
by user research. Literature suggests that homogenous groups can
be beneficial for students’ learning. For example, Fuchs et al.
found homogenous dyads generated greater cognitive conflict and
produced better quality work than heterogeneous groups [22] .
Additionally, among 54 teachers we surveyed, 43% reported that
they pair students with a similar level of knowledge [31] . This
was the third most popular grouping method that teachers
commonly adopt (43%, N = 23), following strategies of pairing
students with different knowledge (Policy 3) and pairing students
randomly [31] .

3.2 Metrics
In this section, we describe the metrics to evaluate the pairing
policies. We discuss how prior work informed the metric
definitions, and how different metrics could be suitable to
evaluate different policies. We build on Diana et al.’s work [29] ,
who defined an Efficiency Index (EI) as a measure of a pairing
algorithm’s performance, specifically:

EI = LowPerformingStudents
LowPerformingStudentsHelped BeingHelped/

We adapted EI into two metrics of interest for our pairing policies:
Feasibility Index 1 and 2. FI 1 is the percentage of students who
can be paired among all struggling students in a session.

Feasibility Index - 1 (FI 1) = TotalStrugglingStudents
StrugglingStudentsCouldBeHelped

FI 2 is the ratio of paired students among all the students in a
session.

Feasibility Index - 2 (FI 2) = TotalStudents
StudentsPaired

For Policies 1 and 2: Given the goal to pair all struggling students
in the session, FI 1 was a suitable measure for policy feasibility,

 186 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://paperpile.com/c/U8IK0d/IBVe
https://paperpile.com/c/U8IK0d/FUWZS+lR816
https://paperpile.com/c/U8IK0d/wZAmm
https://paperpile.com/c/U8IK0d/4Jeu5
https://paperpile.com/c/U8IK0d/QFRqI
https://paperpile.com/c/U8IK0d/IBVe
https://paperpile.com/c/U8IK0d/wZAmm
https://paperpile.com/c/U8IK0d/QFRqI+AGQK5+4T4m4+LWus9+9JaNF
https://paperpile.com/c/U8IK0d/QFRqI+AGQK5
https://paperpile.com/c/U8IK0d/4T4m4
https://paperpile.com/c/U8IK0d/bQiCE
https://paperpile.com/c/U8IK0d/IBVe
https://paperpile.com/c/U8IK0d/IBVe
https://paperpile.com/c/U8IK0d/QDd9d

showing what percentage of students who are wheel-spinning can
get help. For Policies 3 and 4: Given the goal to pair all students
in the session who satisfied a certain KD, FI 2 was a suitable
measure for policy feasibility, as it calculated the percentage of
the paired students out of the total students.

3.3 SimPairing Approach
There are three main steps in SimPairing : 1) data cleaning and
preprocessing, 2) policy simulation, and 3) policy evaluation. The
data cleaning and preprocessing step consists of clustering student
transaction data into meaningful class sessions based on meta-data
(e.g., student transaction timestamp, classes), and examining the
distribution of students per class session to detect outliers. The
policy simulation step takes the preprocessed transactional data
and applies a pairing policy to class sessions. In the policy
evaluation step, we computed the policy feasibility based on the
simulation results, using the corresponding feasibility index (FI 1
or FI 2). We also observed how the FI changed by varying the
parameters (i.e., KD, and PR rate).
4. ANALYSIS AND RESULTS
4.1 Data Cleaning and Preprocessing
We first clustered student transaction data into meaningful class
sessions, based on timestamp, student ID, and class. We
visualized student engagement for all class sessions based on
transaction data, which allowed us to ensure that the sessions we
analyzed had a continuous student interaction with the system,
and helped us check for outliers (e.g., unusually short sessions).
We excluded four outlier sessions: 2 sessions that had only 1
student, 2 sessions that lasted less than 15 min, as sessions
commonly lasted 40 minutes or more.

Transaction data of a total of 68 sessions, from six middle school
math classes, collected from 2013 to 2014 were used for policy
simulation. It consists of 894 students and 197,234 rows of
transactions. The average number of students in a session was 13
(Min = 5, Max = 24, SD = 25.3); the average duration of class
session was 41.9 minutes (Min = 10, Max = 81, SD = 9.42); the
average number of sessions in a class was 11 (Min = 3, Max = 23,
SD = 9.33).

4.2 Overall SimPairing Analysis
In this section, we present, for each policy, the SimPairing
analysis and the results. The goal for this analysis was to evaluate
the overall feasibility of the four pairing policies (RQ1) and see
how the feasibility depends on policy parameters (RQ2).

4.2.1 Policy 1: Struggle with Non-Struggle
We simulated Policy 1 for every minute in a given class session,
which returned the number of struggling students who did or did
not have a potential partner. Based on this we calculated the FI 1
for every minute in a class session. We then averaged FI 1 across
the length of each class session, to obtain an average FI 1 for a
given session. We refer to it as the Average Number of Struggling
Students (ANSS). We then took the average of the ANSS across
all sessions, to obtain an overall simulation result for all 68
sessions. Figure 2 (green area) shows the average FI 1 for all
sessions was 0.94 (SD = 0.007). Thus, on average, across time,
94% of struggling students could be paired with a partner who
was not struggling.

4.2.2 Policy 2: Pairing with Restriction
The Policy 2 simulation process is similar to Policy 1, with the
addition of enforcing a varying PR rate. PR rate specifies a

percentage of students in Tutor Pool as restricted from partnering
with students in the Struggle Pool . We computed FI 1 with varying
PR rates. As shown in Figure 2 (white area), FI 1 dropped as the
PR rate increased, as expected. However, even with a relatively
high PR rate of, for example, 0.4, meaning, 40% of non-struggling
students are restricted from working with struggling students, we
still get a high average FI 1 of around 0.80, (i.e., 80% of struggling
students could be paired). The simulation result means that
teachers can afford to set moderate restrictions for pairings,
without compromising too much of the pairing policy’s feasibility.

Figure 2. FI 1 for Policies 1 and 2

4.2.3 Policy 3: Knowledge Difference Pairing
Policy 3 requires students to be above a given minimum distance
in their IK to be eligible for pairing up. We simulated this policy
by computing FI 2 with varying values for the KD distance
threshold α. We simulated these sessions to calculate the FI 2 . As in
Figure 3 (blue line), FI 2 dropped rather quickly as the required
knowledge distance threshold went up. For example, the
simulation results show that if we want to ensure an average of
80% of paired ratio, the KD threshold should be set to less than
approximately 0.1 (i.e., a very strict bar).

Figure 3. FI 2 for Policies 3 and 4

4.2.4 Policy 4: Knowledge Similarity Pairing
Policy 4 requires students to be below a maximum distance in
their IK to be eligible for being paired up. We simulated this
policy and computed FI 2 with different values for the KD distance
ceiling γ. We found that this policy would work well even with a
low, strict ceiling for the knowledge distance (Figure 3, red line).
For example, when γ was 0.1, (i.e., two students’ knowledge
distance can be at most 0.1 for them to be teamed up), the
average FI 2 was still 0.81 (SD = 0.08) across the class sessions
involved. When γ was set to above 0.3, 95% of students in class
could find an eligible partner.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 187

4.3 Class-Level Variance Analysis
We explored how the four pairing policies worked for different
classes and whether the pairing policies should be adapted to
class-level differences (RQ3).

4.3.1 Class-level Differences
Based on Echeverria et al.’s insight that pairing support for
teachers should ideally be adaptable to different classroom
contexts [30] , we analyzed, first, if there were systematic
differences between different classroom contexts, and second, if
these differences relate to policy feasibility differences. The main
context variables taken into account by our pairing policies are
students’ struggle status (Policies 1 and 2) and initial knowledge
(Policies 3 and 4). We thus analyzed if the classes had different
struggle statuses and initial knowledge (IK) .

Figure 4. ANSS (a) and ASSRs (b) for Six Classes

Student struggle status : We first calculated the number of
students in wheel-spinning status for every minute within each
class session. We then computed ANSS (section 4.2.1), and the
Average struggling students ratio (ASSR) = ANSS / total number of
students in the session . Histograms for ANSS and ASSR for all
sessions show they follow the normal distribution. We conducted
one-way ANOVAs, respectively taking the ANSS and ASSR as
outcome variables and Class as the explanatory variable. The
results showed a significant difference for ANSS among classes
(Figure 4, a) [F (5,62) = 4.34, p < 0.001]. Post hoc Tukey tests
showed C3 and C1 have significant differences (diff = 2.55, p <
0.001). All post hoc pairwise tests conducted in this study were
corrected for multiple comparisons. The ANOVA result indicated
that the classes differed with marginal significance [F (5,62) =
1.94, p < 0.1] (Figure 4, b). Post hoc Tukey tests showed a
marginal difference in the ASRR between C3 and C2 (diff = 0.10,
p = 0.08). Thus, there were class-level differences with respect to
students’ struggle status.

Figure 5. Initial Knowledge for Six Classes

Initial Knowledge: We calculated each student’s IK for all KCs
involved (defined in section 3.1.3). The histogram for all students’
IK shows it follows the normal distribution. We then conducted
one-way ANOVAs using IK as the outcome variable, and Class as
the categorical explanatory variable. The results indicated a
significant effect of classes on IK for the six classes [F (5, 320) =

5.895, p < 0.05], and the IK for the six classes were not all equal.
From the post hoc Tukey tests comparing knowledge level
between each pair of the classes, we saw significant differences
between classes C2 and C1 (diff = 0.12, p < 0.05), C3 and C2 (diff
= -0.095, p < 0.05), and C4 and C2 (diff = -0.189, p < 0.05). C2
had the highest median of student IK (Figure 5), and a
significantly higher level of IK than C1 and C3, and C4.

Having characterized struggle and IK at a class level, we compare
the policies’ feasibility across classes.

4.3.2 Policies 1 and 2
Policy 1 had an average FI 1 above 0.85 (Figure 6, green area). We
statistically compare if Policy 1 behaved differently for each class
and see whether this policy should be adaptable for each class.
Using session as the unit of analysis, we conducted a one-way
ANOVA using the FI 1 for each session as the outcome variable,
and Class as the categorical explanatory variable. The results
indicated that there was not a significant effect of class on FI 1
[F (5,62) = 1.24, p = 0.30]. This result showed that Policy 1 was
relatively consistent across the six classes, suggesting that Policy
1 may not need to be adaptable to classes.

For Policy 2, with increasing PR rate, the FI 1 decreases at a
different speed for different classes, indicating some degree of
class-level difference (Figure 6, white area). We conducted
ANCOVAs with Class being the categorical explanatory variable,
the PR rate as the quantitative explanatory variable, and FI 1 being
the quantitative outcome variable. We first compared the model
with and without a Class × PR rate interaction term. The model
comparison result showed no evidence of an interaction effect
among explanatory variables (F = 1.63, p = 0.15). We thus
perform ANCOVA using an additive model. Results indicated
there were eight pairs of classes that had significant differences in
FI 1 for this pairing policy (p < 0.05). The eight pairs were C1-C2,
C1-C3, C1-C6, C2-C3, C2-C6, C3-C5, C4-C6, and C5-C6.

 Figure 6. FI 1 of Policies 1 and 2 for Six Classes

Next, we looked at possible relations between the class-level
feasibility variance of policies 1 and 2, and the class-level
differences in struggle status (section 4.3.1). We found that for
classes that differed with respect to the number of struggling
students (C3-C2) and the average ratio of student struggle
(C3-C1), the feasibility of Policy 2 tended to differ as well. This
finding suggests that 1) Policy 2 may benefit from being adaptable
to class-level characteristics, and 2) variables characterizing a
class’s struggle status (e.g., ANSS and ASSR) may have value in
indicating how Policy 2 should be adaptable. On the other hand,
the feasibility of Policy 2 was different in Class 6 compared to all
other classes except C3, yet Class 6 did not differ in number or

 188 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://paperpile.com/c/U8IK0d/lR816

ratio of struggle students from other classes. Thus, students’
struggle status alone may not provide enough information to fully
decide whether and how P2 should be adaptable.

4.3.3 Policies 3 and 4
For Policy 3, the classes shared a downward trend in FI 2 with
different slopes for each class (Figure 7). For example, when the
KD was 0.1, we saw the FI 2 values for class 6 (green dotted-line)
drop to as low as 50%, but the other five classes have FI 2 above
75%. This shows that policy feasibility may be differently
affected by the knowledge heterogeneity threshold in each class.

Figure 7. FI 2 of Pairing Policy 3 for Six Different Classes

To test whether Policy 3 behaved differently for each class, we
conducted ANCOVAs with Class as a categorical explanatory
variable, KD as a quantitative explanatory variable, and FI 2 in
each session as the outcome variable. We first compared the
model with and without a Class × KD interaction term. Results
indicated no evidence supporting the interaction effect (F = 0.81,
p = 0.54). We performed an ANCOVA using an additive model.
Results indicated that three pairs of classes had significant
differences in FI 2 (p < 0.05), and that two pairs of classes were
marginally different (p < 0.1). They were C1-C3, C3-C5, C3-C6
(p < 0.05) and C2-C5, C2-C6 (p < 0.1) .

Figure 8. FI 2 of Policy 4 for Six Different Classes

For Policy 4 (Figure 8), the six classes were more convergent and
clustered closer together than Policy 3 (Figure 7). This indicated
the class level difference may not be as strong as that in Policy 3,
which our ANCOVA tests confirmed. Similar to Policy 3, we
compared whether Policy 4 behaved differently for each class. We
conducted an ANCOVA, with Class as a categorical explanatory
variable, KD as a quantitative explanatory variable, and FI 2 as the
outcome variable. We first compared the model with and without
a Class × KD interaction term. No evidence supporting interaction
effect among explanatory variables (F = 0.13, p = 0.99). We then

performed ANCOVA using an additive model. Results indicated
that there were no significant differences in FI 2 (p > 0.05) for
Policy 4. We confirmed a smaller class-level difference as
compared to Policy 3, in KD’s effect on policy feasibility. From
this result, we conclude Policy 4 performed quite consistently
across classes, and no significant evidence showed that Policy 4
should be adaptable to classes.

Analogous to policies 1 and 2, we then looked at relations
between feasibility variance for policies 3 and 4 and class-level IK
characteristics in Section 4.3.1. We observed significant
differences in IK between C2-C1, C3-C2, and C4-C2. However,
the differences in IK for two classes cannot accurately predict
whether they had different feasibility in Policy 3 and Policy 4, and
other classroom characteristics may be needed to accurately
represent the class-variance of feasibility.
4.4 Analysis of Contrasting Cases
We conducted a case study to understand how policies may
perform dynamically (e.g., across every minute during class time)
and differently in different class sessions (RQ3). For every policy,
we selected a typical case and an extreme case in terms of the
policy feasibility simulation results. For the typical case for all
four policies, we selected a session (Session 1, C1) that had an
average length of time (i.e., 41 minutes), an average number of
students (i.e. 13 students). In the session, policies performed
typically (as by visually comparing the simulation results of each
policy for all sessions). As for the extreme case , we examined the
simulation results for each policy on each session, and identified
different sessions where each policy performed surprisingly or
differently from the common trend. The extreme case can be a
worst case scenario (Policies 1, 2 and 3) or a case that works
surprisingly well (Policy 4). Below, we present the analysis and
results for these contrasting cases for each policy.

4.4.1 Policy 1
In Policy 1, we chose the extreme case (Session 19, C3) as it was
a session that this policy has the worst performance on, and thus it
had the most different FI 1 trend, from examining visualizations of
FI 1 for all sessions involved. We compare the typical case and
extreme case by first contextualizing the struggle status of the two
cases, and comparing the visualization of feasibility (for each
minute) in the two sessions. Figure 9 depicts the ratio of
struggling students (among all students in the class session) for
the contrasting cases. For Policy 1 simulation (Figure 10), we
obtained, for every minute in the class session, three values
regarding policy feasibility: the number of students who were not
wheel-spinning on any KCs (green bar), the number of students
who were struggling, and had a potential partner (yellow bar), and
the number of students who were struggling and did not have a
potential partner (red bar).

Figure 9. Struggle Ratio of a Typical (a) and Extreme (b) Case

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 189

Typical Case. In the typical case, students started to struggle after
10 minutes, as shown in Figure 9 (a) and Figure 10 (a). In all
instances of wheel-spinning, a potential partner was available (i.e.,
FI 1 = 1 for any minute in this session). The typical case aligned
with the overall simulation results from Policy 1, which showed
that, for an average class, most struggling students could find
potential partners, the minute they struggled.

Extreme Case. Among all sessions in our dataset, the per-minute
struggle ratio rarely goes over 50%. By contrast, the extreme case
session had more struggling students than non-struggling students
in 27 out of 46 minutes, indicated by a struggle ratio of above 0.5,
as shown in Figure 9 (b). This resulted in lower feasibility for
Policy 1. The extreme case differs from the typical case in two
aspects. First, unlike the typical case, almost as soon as the class
began, students started wheel-spinning. Second, there were
wheel-spinning students without potential partners in almost every
minute of the session (indicated by red bars in Figure 10 (b)).

Figure 10. Policy 1 for a Typical (a) and an Extreme Case (b)

4.4.2 Policy 2
Same as in Policy 1, we chose this extreme case (Session 19, C3)
as this policy had the worst performance on this session. This
session also had the most different FI 1 trend. We simulated Policy
2 and calculated FI 1 for every minute in the two contrasting class
sessions. Figure 11 showed the typical and extreme case, of how
FI 1 changed when different PR rates were simulated. We plotted
four different PR rates in the figure.

Typical Case. We saw two patterns in the Policy 2 simulation for
the typical case. Firstly, the policy was typically robust in
maintaining high feasibility with a non-zero (albeit low) PR rate.
In Figure 11(a), lines with PR rate 0.1 and PR rate 0 completely
overlapped. With these PR rates, there were no instances of
struggle without a potential partner (i.e., feasibility was 1 across
the whole session). Secondly, when the PR rate was high (0.5 or
0.8), FI 1 exhibited a sharp decrease, when there was an increase in
student struggle. For instance, in Figure 9 (a) at minute 19, the
struggle ratio increased from 0.07 to 0.23, as the number of
wheel-spinning students went from 1 to 3. In Figure 11 (a) at the
same time (t = 19 min), we saw a sharp decrease in FI 1 when the
PR rate was 0.8.

Extreme Case. As shown in Figure 11 (b), the extreme case
exhibited very different patterns compared to the typical case,
mainly in three aspects. First, given it had a higher struggle ratio,
even when there was no pairing restriction (i.e., PR rate = 0), we
observed the FI 1 was not always 1 or even close to 1, as we saw in
the typical case. Second, even a slight PR rate of 0.1 further
worsened the policy feasibility and lowered the FI 1 , unlike the
typical case which showed resistance to a low PR rate. Third, if a
class had a higher struggle ratio, the PR rate had a stronger effect

on worsening FI, than for a session that had a lower struggle ratio.
This effect was especially prominent when the PR rate was high
(e.g., 0.5 or 0.8). This contrast means that the instructors may
afford to set a higher PR rate without affecting the FI 1 too much,
for a common session that has a moderate struggle ratio.
However, the instructors may need to consider lowering the PR
rate for a high-struggle session.

Figure 11. Policy 2 for a Typical (a) and Extreme (b) Case

4.4.3 Policy 3
In Figure 12 we present the results for Policy 3 simulation on two
contrasting cases, plotting FI 2 for every step of the knowledge
distance threshold for that session. The extreme case was chosen
for having the most different FI 2 trend, from examining
visualizations of FI 2 for all sessions involved.

Typical Case. As shown in Figure 12 (a), for the typical case, the
FI 2 dropped gradually as the required KD threshold increased,
which aligned with the overall simulation result. To pair students
based on different knowledge (Policy 3), the instructors need to
balance the required heterogeneity (i.e., higher knowledge
distance threshold) and the desired paired ratio of the whole class.
In this typical case, if a teacher selects a threshold of 0.5 or
higher, none (0%) of students in the class session would be paired.

Figure 12. Policy 3 for a Typical (a) and Extreme (b) Case

Extreme Case. As shown in Figure 12 (b), for the extreme case
(Session 1, C5), while the downward trend was similar, we
observed a more rapid decrease as compared to the typical case.
Specifically, the FI 2 dropped to only 20% when the KD threshold
was as low as 0.2, compared to 60% of FI 2 at the same KD
threshold in the typical case. This comparison indicated that some
class sessions were more heavily influenced by the parameter of
the required knowledge distance threshold, and the effect may
differ from session to session.

4.4.4 Policy 4
From the previous analyses, we noted that Policy 4 performed
reliably and similarly across classes, making it harder to select an

 190 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

extreme case or a worst case scenario. We selected a session
where Policy 4 performed surprisingly well (Session 2, C3). In
Figure 13 we visualized Policy 4 simulation on two contrasting
cases, plotting FI 2 for every step of the knowledge distance ceiling
γ for that session.

Typical Case. The tradeoff between knowledge homogeneity and
policy feasibility was less prominent than under Policy 3. This
means that instructors can afford to choose a stricter (i.e., lower)
ceiling so students have a very small knowledge distance, and still
achieve high feasibility (FI 2). For example, in Figure 12 (a), we
saw that even if the instructor chooses a very strict threshold of γ
= 0.1, nearly 95% of students were able to find a potential partner.

Figure 13. Policy 4 for a Typical (a) and Extreme (b) Case

Extreme Case. In Figure 13 (b), even when the KD ceiling was
set to 0 (which means students must have the same level of
mastery to be paired up), 40% of the students can still be paired,
unlike typical cases where usually no two students have the exact
same IK. Another noteworthy distinction is, while the typical case
did not reach FI 2 = 1 with any ceiling of KD, the extreme case
successfully paired all students (FI 2 = 1) with a relatively low
ceiling of 0.2.

5. DISCUSSION
In line with previous LGF research [8] , this work introduces four
dynamic LGF policies contextualized in ITS and grounded in user
research with K-12 teachers [10,30] . In this section, we discuss
our main findings for research questions, grounded design
recommendation for pairing orchestration tools, and future
research direction for dynamic LGF.

5.1 Main Findings for Research Questions
Regarding the feasibility of the pairing policies (RQ1) and how
the feasibility may depend on parameters of the pairing policies
(RQ2), we found that averaged across time and sessions, it is
generally feasible (93.6%) to team up struggling students with
non-struggling students, the minute they struggle (Policy 1). This
result remains true even when a high percentage of students is
deemed ineligible for being teamed up with struggling students
(Policy 2). Specifically, the average feasibility remains above 80%
of struggling students across all sessions unless the pairing
restriction rate is above 40%. However, as we see in our case
study, there can be sessions and moments with high struggle ratios
(hence, low feasibility) when using Policy 1. Relatedly, sessions
with very high struggle seem more susceptible to the influence of
the PR rate in Policy 2 than a typical session.

When pairing students based on whether their knowledge levels
are different (Policy 3) or similar (Policy 4), the policy feasibility
is highly dependent on the required KD. For Policy 3, there is a
tradeoff between the desired heterogeneity (i.e., the knowledge
distance threshold) and the policy’s feasibility. This means
instructors cannot set a high threshold for the KD if they want to
pair most students. In Policy 4, the corresponding tradeoff

(between homogeneity in knowledge and policy feasibility) is less
prominent. Instructors may choose a stricter ceiling for students’
similarity in knowledge levels and still achieve high policy
feasibility. In the case study, we found that the policy feasibility in
different sessions can be differently influenced by the required
KD threshold or ceiling, depending on how closely clustered
together students’ IK is. For a given, fixed KD threshold (ceiling),
a class of students closely clustered IK may result in higher
feasibility for Policy 4 and lower feasibility for Policy 3.
Presumably, the feasibility of these policies also depends on class
size. For example, from our analysis, we hypothesize that for
larger classes, the feasibility of pairing policies may change less
drastically, when the policy parameters change or as the class
progresses.

Regarding policy feasibility by class (RQ3), our results show no
significant difference among classes for Policy 1 (Struggle with
non-struggle) or Policy 4 (Knowledge similarity pairing).
However, we observed significant differences among classes for
Policy 2 (Pairing with restriction) and Policy 3 (Knowledge
difference pairing). Although different classes have significantly
different initial knowledge and struggle status, these differences in
IK and struggle status are not always correlated with the
feasibility of policies for that class. For example, classes that have
different IK may not always have different feasibility for Policy 3
or 4.

5.2 Recommendations for Tool Design
The current study aims to inform the design of an orchestration
tool that can help pair students dynamically. We aim to lessen
teachers’ orchestration load when managing fluid social
transitions . Such a tool plays a key role in our vision for the smart
classroom of the future, in which students alternate fluidly
between individual and collaborative learning. Here, we highlight
three design implications grounded in findings from the current
work. These design implications may inform tools that aim to help
teachers manage fluid social transitions, and ensure the feasibility
of dynamic LGF policies. It may also offer inspirations, more
broadly, for orchestration tools that aim to team up students in
CSCL.

Firstly, technology could be used to automatically adjust the
parameters used in LGF policies. Our study suggests that the four
pairing policies studied provide a promising foundation for an
orchestration tool, but greater flexibility is needed to deal with a
wide range of circumstances than each individual policy provides.
While some policies (e.g., Policies 1 and 2) explored in this study,
have a good chance of working well during many class sessions,
any given instantiation of a policy (with fixed parameter settings)
does not fully deal with class variability and extreme cases. One
way to compensate might be to have the tool automatically loosen
policy parameters as needed. For example, the tool may gradually
loosen the KD threshold or ceiling for policies 3 and 4, when it
senses the pairing feasibility to be low.

Secondly, technology could use multiple LGF criteria in
cascading fashion, to achieve high feasibility. Specifically, the
tool may start out using the ideal pairing policies, and then
iteratively try “more loose” criteria if the previous one fails to pair
up all students. For example, the tool may first attempt to team up
students based on struggle on specific KCs - a criterion that is
more specific (and restrictive) than Policy 1, but one that could
potentially be more effective for helping struggling students. If
that fails, then it might pair up students based on their general
struggle (Policy 1). If that fails again then the tool could try to

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 191

https://paperpile.com/c/U8IK0d/wZAmm
https://paperpile.com/c/U8IK0d/lR816+FUWZS

pair students based on knowledge distance. The tool could also
customize its pairing criteria such as using students characteristics
that make the most sense in the given classroom context.

Lastly, technology could be used to recommend LGF policies or
policy parameters with high feasibility to teachers. Instead of
relying solely on the teachers to make pairing decisions, the tool
may adopt SimPairing to automatically calculate and maximize
policies’ feasibility based on classroom contexts and recommend
them to teachers. For example, if the tool determined, using
historical transaction data, that students in a given class have
consistently low struggling ratios and fewer wheel-spinning
students than non-wheel-spinning ones, it may advise that
teachers adopt pairing Policy 1 as it has high feasibility. In
addition, our findings open up the potential for the tool to help
teachers make informed decisions about parameter configuration,
by notifying them of expected feasibility. For example, if a
teacher severely restricts the acceptable pairings, the tool could
alert teachers of the low feasibility of the pairing policy, and ask if
the teacher might want to loosen the restrictions. Running such
simulations and providing notification can inform the teachers
about the outcomes of the policy feasibility in their classroom,
prior to implementing them. This may prevent teachers from
choosing policy configurations that are misaligned with their
goals.

5.3 Future Research Directions of Dynamic LGF
Building on our investigation, we outline four potential directions
for how future research could further explore dynamic LGF
policies.

Firstly , in addition to inter-session pairing based on knowledge
distance (Policies 3 and 4), future work could explore
intra-session grouping based on knowledge level, which allows
forming pairings during the learning process. Researchers should
explore how it would differ from our inter-session grouping and
which approach better supports teachers’ needs.

Secondly , the current policies identify the students to be
wheel-spinning if they struggle on any of the KCs. Future work
could explore whether teachers prefer to pair students based on
their KC-specific struggle status. For example, to help a student
struggling on the KC combine constant terms in equation solving,
teachers may prefer to find a partner who has already mastered the
same KC, or at minimum is not struggling on the same KC; they
may (or may not) might find it acceptable, if the partner is
struggling on another KC, e.g., divide by variable coefficient .
Relatedly, teaming up students who are both struggling, but
struggling on different knowledge components, may have
benefits. Such a pair of students may have complementary
knowledge and strength, and may help each other get unstuck and
stop wheel-spinning. Such pairing criterion opens up good
opportunities for tutor-tutee role-switching and mutual peer
tutoring.

Thirdly , analogous to pairing based on KC-specific struggle
status, instead of using the mean of students’ mastery on different
KCs to represent their knowledge, future work could explore to
what extent pairing students based on KC-specific knowledge
distance can be more effective, feasible, or preferable for teachers.
KC-specific knowledge pairing might be useful for Policy 3, if
teachers want two students who have very different skill levels on
one specific KC so that the one with higher mastery on that KC
can tutor the one with lower mastery.

Lastly , in addition to knowledge level and struggle status, which
this work investigated for dynamic grouping, future work can
investigate other student characteristics (e.g., history of
collaborative episodes, preferences for working individually or
collaboratively) or other sources for knowledge level (e.g., exams
or quizzes score) for dynamic pairing. It may also be especially
promising to further study pairing based on dynamic student
behaviors that can be detected real-time by ITS from interaction
data, to allow fluid social transitions and dynamic pairing.

5.4 Limitations
There is uncertainty in the SimPairing process in that we do not
have a good way of estimating how long any given collaborative
episode will last. Thus, SimPairing does not simulate students’
being unavailable for pairing while they are working
collaboratively, until they finish the collaborative episode. There
is some reason to think that the resulting inaccuracy in the
feasibility results is not severe, as argued, but we do not have a
good way of investigating that issue in depth. Additionally,
feasibility of pairing policies, while important, is just one piece of
the puzzle. It is important, as well, to understand if students learn
better with these pairing policies (effectiveness). Future research
should validate these pairing policies in classroom studies, testing
both their effectiveness and feasibility.

6. CONCLUSION
We study the feasibility of pairing policies in the context of ITS,
to inform the design of a tool for orchestrating fluid transitions
between individual and collaborative learning. Our findings show
that on average, dynamically pairing students based on their
in-the-moment wheel-spinning status results in good pairing
feasibility for struggling students on average, even with moderate
restrictions on the allowed pairings. We also found the trade-off
between the required knowledge distance and the policy
feasibility, is more prominent in heterogeneous grouping than in
homogeneous grouping. However, any given instantiation of a
policy (with fixed parameter settings) does not fully deal with
class variability and extreme cases, as policies have different
feasibility for different classes and sessions. This suggests
optimization for policy feasibility (e.g., through gradually
loosening parameters) or classroom customization need to be
taken into consideration. Methodologically, this research extends
previous work (e.g., Replay Enactments) that used authentic data
and algorithms as design materials to augment designers’
intuitions for designing future tools [27] .

This work has several novel elements. First, using the SimPairing
approach, our work explores the feasibility of LGF policies
derived from user research with math teachers. In addition, to the
best of our knowledge, this is the first study that considers
students’ in-the-moment wheel-spinning status in dynamic pairing
policies. Finally, our work addresses a gap in the literature for
dynamic intra-session LGF [1] and envisions how instructors
and/or an orchestration tool will customize pairing policies and
parameters to specific classroom contexts, which prior work
argued to be especially helpful in the LGF process [1,8] .

In sum, theoretically, this work bridges the literature gap on its
investigation of the feasibility of user-centered dynamic pairing
policies. Practically, we contribute grounded design directions for
pairing orchestration tools, and SimPairing as an approach, to
evaluate dynamic LGF policies, which may generalize to other
online educational software that have transaction data.

 192 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://paperpile.com/c/U8IK0d/gyUBu
https://paperpile.com/c/U8IK0d/LWus9
https://paperpile.com/c/U8IK0d/wZAmm+LWus9

7. ACKNOWLEDGEMENTS
This work was supported in part by Grant #1822861 from the
National Science Foundation (NSF). Any opinions presented in
this article are those of the authors and do not represent the views
of the NSF. We thank Yanjin Long and Dr. Zach Branson for their
help, and the anonymous reviewers for their feedback.

8. REFERENCES

[1] S. Amara, J. Macedo, F. Bendella, A. Santos, Group
formation in mobile computer supported collaborative
learning contexts: A systematic literature review. Journal of
Educational Technology & Society. 19 (2016) 258–273.

[2] P. Dillenbourg. Over-scripting CSCL: The risks of blending
collaborative learning with instructional design. P. A.
Kirschner. Three worlds of CSCL. Can we support CSCL?,
Heerlen, Open Universiteit Nederland. 61-91, 2002.

[3] X. Wang, M. Thompson, K. Yang, D. Roy, K.R. Koedinger,
C.P. Rose, J. Reich, Practice-based teacher questioning
strategy training with ELK: A role-playing simulation for
eliciting learner knowledge. Proc. ACM Hum.-Comput.
Interact. 5 (2021) 1–27.

[4] Y.-M. Huang, Y.-W. Liao, S.-H. Huang, H.-C. Chen,
Jigsaw-based cooperative learning approach to improve
learning outcomes for mobile situated learning. Journal of
Educational Technology & Society. 17 (2014) 128–140.

[5] N.M. Webb, K.M. Nemer, A.W. Chizhik, B. Sugrue, Equity
Issues in collaborative group assessment: group
composition and performance. Am. Educ. Res. J. 35 (1998)
607–651.

[6] I. Srba, M. Bielikova, Dynamic group formation as an
approach to collaborative learning support. IEEE Trans.
Learn. Technol. 8 (2015) 173–186.

[7] A. Mujkanovic, D. Lowe, K. Willey, C. Guetl,
Unsupervised learning algorithm for adaptive group
formation: Collaborative learning support in remotely
accessible laboratories. International Conference on
Information Society (i-Society 2012), 50–57.

[8] N. Maqtary, A. Mohsen, K. Bechkoum, Group formation
techniques in computer-supported collaborative learning: A
systematic literature review. Technology, Knowledge and
Learning. 24 (2019) 169–190.

[9] K. Holstein, B.M. McLaren, V. Aleven, Designing for
complementarity: teacher and student needs for
orchestration support in AI-Enhanced classrooms. Artificial
Intelligence in Education. Springer International Publishing,
(2019).157–171.

[10] J.K. Olsen, N. Rummel, V. Aleven, Designing for the
co-orchestration of social transitions between individual,
small-group and whole-class learning in the classroom.
International Journal of Artificial Intelligence in Education.
(2020) 24-56

[11] N. Ding, R.J. Bosker, E.G. Harskamp, Exploring gender and
gender pairing in the knowledge elaboration processes of
students using computer-supported collaborative learning.
Comput. Educ. 56 (2011) 325–336.

[12] M.E. Lockheed, A.M. Harris, Cross-sex collaborative
learning in elementary classrooms. American Educational
Research Journal. 21 (1984) 275–294.

[13] D.A. Sandmire, P.F. Boyce, Pairing of opposite learning
styles among allied health students: effects on collaborative
performance, J. Allied Health. 33 (2004) 156–163.

[14] Y.-C. Kuo, H.-C. Chu, C.-H. Huang, A learning style-based
grouping collaborative learning approach to improve EFL

students’ performance in English courses. Journal of
Educational Technology & Society. 18 (2015) 284–298.

[15] E. Alfonseca, R.M. Carro, E. Martín, A. Ortigosa, P.
Paredes, The impact of learning styles on student grouping
for collaborative learning: a case study. User Model.
User-Adapt Interact. 16 (2006) 377–401.

[16] Y. Taniguchi, Y. Gao, K. Kojima, S. Konomi, Evaluating
learning style-based grouping strategies in real-world
Collaborative Learning Environment, Distributed, Ambient
and Pervasive Interactions: Technologies and Contexts.
(2018) 227–239.

[17] P.-J. Chuang, M.-C. Chiang, C.-S. Yang, C.-W. Tsai, Social
networks-based adaptive pairing strategy for cooperative
learning. Journal of Educational Technology & Society. 15
(2012) 226–239.

[18] E.A. Day, W. Arthur, S.T. Bell, B.D. Edwards, W. Bennett,
J.L. Mendoza, T.C. Tubré, Ability-based pairing strategies
in the team-based training of a complex skill: Does the
intelligence of your training partner matter? Intelligence. 33
(2005) 39–65.

[19] R. Niu, L. Jiang, Y. Deng, Effect of Proficiency Pairing on
L2 Learners’ Language Learning and Scaffolding in
Collaborative Writing. The Asia-Pacific Education
Researcher. 27 (2018) 187–195.

[20] J.A. Sutherland, K.J. Topping, Collaborative creative
writing in eight-year-olds: Comparing cross-ability fixed
role and same-ability reciprocal role pairing. J. Res. Read.
22 (1999) 154–179.

[21] N. Storch, A. Aldosari, Pairing learners in pair work
activity, Language Teaching Research. 17 (2013) 31–48.

[22] L.S. Fuchs, D. Fuchs, C.L. Hamlett, K. Karns,
High-achieving students’ interactions and performance on
complex mathematical tasks as a function of homogeneous
and heterogeneous pairings. American Educational
Research Journal. 35 (1998) 227–267.

[23] H.-W. Tien, Y.-S. Lin, Y.-C. Chang, C.-P. Chu, A genetic
algorithm-based multiple characteristics grouping strategy
for collaborative learning. International Conference on
Web-Based Learning, Springer, (2013) 11–22.

[24] Y. Pang, F. Xiao, H. Wang, X. Xue, A Clustering-Based
Grouping Model for Enhancing Collaborative Learning.
13th International Conference on Machine Learning and
Applications. (2014) 562–567.

[25] B. Chen, G. Hwang, T. Lin, Impacts of a dynamic grouping
strategy on students’ learning effectiveness and experience
value in an item bank-based collaborative practice system.
Br. J. Educ. Technol. 51 (2020) 36–52.

[26] Y.-T. Lin, Y.-M. Huang, S.-C. Cheng, An automatic group
composition system for composing collaborative learning
groups using enhanced particle swarm optimization,
Comput. Educ. 55 (2010) 1483–1493.

[27] K. Holstein, E. Harpstead, R. Gulotta, J. Forlizzi, Replay
Enactments: Exploring possible futures through historical
data. Proceedings of the 2020 ACM Designing Interactive
Systems Conference, Association for Computing
Machinery, New York, NY, USA, (2020)1607–1618.

[28] T. Nagashima, K. Yang, A. Bartel, E. Silla, N. Vest, M.
Alibali, V. Aleven, Pedagogical Affordance Analysis:
Leveraging teachers’ pedagogical knowledge to elicit
pedagogical affordances and constraints of instructional
tools. International Society of the Learning Sciences (2020)

[29] N. Diana, M. Eagle, J. Stamper, Automatic peer tutor
matching: Data-driven methods to enable new opportunities
for help, (n.d.).

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 193

http://paperpile.com/b/U8IK0d/LWus9
http://paperpile.com/b/U8IK0d/LWus9
http://paperpile.com/b/U8IK0d/LWus9
http://paperpile.com/b/U8IK0d/LWus9
http://paperpile.com/b/U8IK0d/ndVa
http://paperpile.com/b/U8IK0d/ndVa
http://paperpile.com/b/U8IK0d/ndVa
http://paperpile.com/b/U8IK0d/ndVa
http://paperpile.com/b/U8IK0d/ndVa
http://paperpile.com/b/U8IK0d/FJTDm
http://paperpile.com/b/U8IK0d/FJTDm
http://paperpile.com/b/U8IK0d/FJTDm
http://paperpile.com/b/U8IK0d/FJTDm
http://paperpile.com/b/U8IK0d/DZudL
http://paperpile.com/b/U8IK0d/DZudL
http://paperpile.com/b/U8IK0d/DZudL
http://paperpile.com/b/U8IK0d/DZudL
http://paperpile.com/b/U8IK0d/UC3gJ
http://paperpile.com/b/U8IK0d/UC3gJ
http://paperpile.com/b/U8IK0d/UC3gJ
http://paperpile.com/b/U8IK0d/7gBDU
http://paperpile.com/b/U8IK0d/7gBDU
http://paperpile.com/b/U8IK0d/7gBDU
http://paperpile.com/b/U8IK0d/7gBDU
http://paperpile.com/b/U8IK0d/7gBDU
http://paperpile.com/b/U8IK0d/wZAmm
http://paperpile.com/b/U8IK0d/wZAmm
http://paperpile.com/b/U8IK0d/wZAmm
http://paperpile.com/b/U8IK0d/wZAmm
http://paperpile.com/b/U8IK0d/dRDPX
http://paperpile.com/b/U8IK0d/dRDPX
http://paperpile.com/b/U8IK0d/dRDPX
http://paperpile.com/b/U8IK0d/dRDPX
http://paperpile.com/b/U8IK0d/dRDPX
http://paperpile.com/b/U8IK0d/FUWZS
http://paperpile.com/b/U8IK0d/FUWZS
http://paperpile.com/b/U8IK0d/FUWZS
http://paperpile.com/b/U8IK0d/FUWZS
http://paperpile.com/b/U8IK0d/FUWZS
http://paperpile.com/b/U8IK0d/RdtYg
http://paperpile.com/b/U8IK0d/RdtYg
http://paperpile.com/b/U8IK0d/RdtYg
http://paperpile.com/b/U8IK0d/RdtYg
http://paperpile.com/b/U8IK0d/SjWga
http://paperpile.com/b/U8IK0d/SjWga
http://paperpile.com/b/U8IK0d/SjWga
http://paperpile.com/b/U8IK0d/jBo5m
http://paperpile.com/b/U8IK0d/jBo5m
http://paperpile.com/b/U8IK0d/jBo5m
http://paperpile.com/b/U8IK0d/LWN7T
http://paperpile.com/b/U8IK0d/LWN7T
http://paperpile.com/b/U8IK0d/LWN7T
http://paperpile.com/b/U8IK0d/LWN7T
http://paperpile.com/b/U8IK0d/DG90k
http://paperpile.com/b/U8IK0d/DG90k
http://paperpile.com/b/U8IK0d/DG90k
http://paperpile.com/b/U8IK0d/DG90k
http://paperpile.com/b/U8IK0d/rgCjF
http://paperpile.com/b/U8IK0d/rgCjF
http://paperpile.com/b/U8IK0d/rgCjF
http://paperpile.com/b/U8IK0d/rgCjF
http://paperpile.com/b/U8IK0d/rgCjF
http://paperpile.com/b/U8IK0d/HzMrL
http://paperpile.com/b/U8IK0d/HzMrL
http://paperpile.com/b/U8IK0d/HzMrL
http://paperpile.com/b/U8IK0d/HzMrL
http://paperpile.com/b/U8IK0d/1Y6CQ
http://paperpile.com/b/U8IK0d/1Y6CQ
http://paperpile.com/b/U8IK0d/1Y6CQ
http://paperpile.com/b/U8IK0d/1Y6CQ
http://paperpile.com/b/U8IK0d/1Y6CQ
http://paperpile.com/b/U8IK0d/mvfOV
http://paperpile.com/b/U8IK0d/mvfOV
http://paperpile.com/b/U8IK0d/mvfOV
http://paperpile.com/b/U8IK0d/mvfOV
http://paperpile.com/b/U8IK0d/T4hWg
http://paperpile.com/b/U8IK0d/T4hWg
http://paperpile.com/b/U8IK0d/T4hWg
http://paperpile.com/b/U8IK0d/T4hWg
http://paperpile.com/b/U8IK0d/hKXpa
http://paperpile.com/b/U8IK0d/hKXpa
http://paperpile.com/b/U8IK0d/bQiCE
http://paperpile.com/b/U8IK0d/bQiCE
http://paperpile.com/b/U8IK0d/bQiCE
http://paperpile.com/b/U8IK0d/bQiCE
http://paperpile.com/b/U8IK0d/bQiCE
http://paperpile.com/b/U8IK0d/sKKq8
http://paperpile.com/b/U8IK0d/sKKq8
http://paperpile.com/b/U8IK0d/sKKq8
http://paperpile.com/b/U8IK0d/sKKq8
http://paperpile.com/b/U8IK0d/B5VQW
http://paperpile.com/b/U8IK0d/B5VQW
http://paperpile.com/b/U8IK0d/B5VQW
http://paperpile.com/b/U8IK0d/B5VQW
http://paperpile.com/b/U8IK0d/G9guz
http://paperpile.com/b/U8IK0d/G9guz
http://paperpile.com/b/U8IK0d/G9guz
http://paperpile.com/b/U8IK0d/G9guz
http://paperpile.com/b/U8IK0d/WVh6A
http://paperpile.com/b/U8IK0d/WVh6A
http://paperpile.com/b/U8IK0d/WVh6A
http://paperpile.com/b/U8IK0d/WVh6A
http://paperpile.com/b/U8IK0d/gyUBu
http://paperpile.com/b/U8IK0d/gyUBu
http://paperpile.com/b/U8IK0d/gyUBu
http://paperpile.com/b/U8IK0d/gyUBu
http://paperpile.com/b/U8IK0d/gyUBu
http://paperpile.com/b/U8IK0d/gP7k
http://paperpile.com/b/U8IK0d/gP7k
http://paperpile.com/b/U8IK0d/gP7k
http://paperpile.com/b/U8IK0d/gP7k
http://paperpile.com/b/U8IK0d/gP7k
http://paperpile.com/b/U8IK0d/QDd9d
http://paperpile.com/b/U8IK0d/QDd9d
http://paperpile.com/b/U8IK0d/QDd9d

[30] V. Echeverria, K. Holstein, J. Huang, J. Sewall, N. Rummel,
V. Aleven, Exploring human–AI control over dynamic
transitions between individual and collaborative learning. In
European Conference on Technology Enhanced Learning,
Springer, Cham. (2020) 230–243.

[31] K.B. Yang, L. Lawrence, V. Echeverria, B. Guo, K.
Holstein, N. Rummel, V. Aleven. (Under Review). “I like
student choice, program insights, but final say from the
teacher”: Teachers’ Preferences regarding Human-AI
Control in Dynamic Student Pairing. Manuscript submitted
to EC-TEL 2021

[32] J.E. Beck, Y. Gong, Wheel-spinning: students who fail to
master a skill, in: Artificial Intelligence in Education,
Springer Berlin Heidelberg, 2013: 431–440.

[33] S. Kai, M.V. Almeda, R.S. Baker, C. Heffernan, N.
Heffernan, Decision tree modeling of wheel-spinning and
productive persistence in skill builders. Journal of
Educational Data Mining. 10 (2018) 36–71.

[34] N. Matsuda, S. Chandrasekaran, J.C. Stamper, How quickly
can wheel spinning be detected? Educational Data Mining,
ERIC (2016) 607–608.

[35] C. Zhang, Y. Huang, J. Wang, D. Lu, W. Fang, J. Stamper,
S. Fancsali, K. Holstein, V. Aleven, Early detection of
wheel spinning: comparison across tutors, models, features,
and operationalizations, International Educational Data
Mining Society. (2019).

[36] T. Mu, A. Jetten, E. Brunskill, Towards suggesting
actionable interventions for wheel-spinning Students. The
13th International Conference on Educational Data Mining,
183–193.

[37] K. Holstein, B.M. McLaren, V. Aleven, Co-designing a
real-time classroom orchestration tool to support teacher–AI
complementarity. Journal of Learning Analytics. 6 (2019)
27–52.

[38] N. Diana, M. Eagle, J. Stamper, S. Grover, M. Bienkowski,
S. Basu, Peer tutor matching for introductory programming:
Data-driven methods to enable new opportunities for help.
International Society of the Learning Sciences. (2018)

[39] K.B. Yang, T. Nagashima, J. Yao, J.J. Williams, K. Holstein,
V. Aleven. Can Crowds Customize Instructional Materials
with Minimal Expert Guidance? Exploring Teacher-guided
Crowdsourcing for Improving Hints in an AI-based Tutor.
Proc. ACM Hum.-Comput. Interact. 5 (2021) 1–24.

[40] S. Ritter, J.R. Anderson, K.R. Koedinger, A. Corbett,
Cognitive tutor: applied research in mathematics education,
Psychon. Bull. Rev. 14 (2007) 249–255.

[41] Y. Long, V. Aleven, Supporting students’ self-regulated
learning with an open learner model in a linear equation
tutor, in: International Conference on Artificial Intelligence
in Education, Springer, (2013) 219–228.

[42] K. Holstein, B.M. McLaren, V. Aleven, Student Learning
Benefits of a Mixed-Reality Teacher Awareness Tool in
AI-Enhanced Classrooms. Artificial Intelligence in
Education, Springer International Publishing, (2018)
154–168.

[43] M. Waalkens, V. Aleven, N. Taatgen, Does supporting
multiple student strategies lead to greater learning and
motivation? Investigating a source of complexity in the
architecture of intelligent tutoring systems, Computers &
Education. 60 (2013) 159–171.

[44] A.T. Corbett, J.R. Anderson, Knowledge tracing: Modeling
the acquisition of procedural knowledge, User Model.
User-Adapt Interact. 4 (1995) 253–278.

[45] E. Walker, N. Rummel, K.R. Koedinger, Adaptive
intelligent support to improve peer tutoring in algebra.
International Journal of Artificial Intelligence in Education.
24 (2014) 33–61.

[46] E. Walker, N. Rummel, K.R. Koedinger, To Tutor the Tutor:
Adaptive Domain Support for Peer Tutoring, Intelligent
Tutoring Systems. 626–635.

[47] K.R. Koedinger, J. Stamper, P.F. Carvalho, Sharing and
Reusing Data and Analytic Methods with LearnSphere,
Hands-On, 2, 30p.

[48] M.V.Q. Almeda, When practice does not make perfect:
Differentiating between productive and unproductive
persistence. (2018). Doctoral dissertation, Columbia
University.

[49] Y.-M. Huang, T.-T. Wu, A systematic approach for learner
group composition utilizing U-learning portfolio,
Educational Technology & Society, Vol. 14, (2011).

[50] D.W. Johnson, R.T. Johnson, Learning together and alone:
Cooperative, competitive, and individualistic learning, 2nd
ed, 2 (1987) 193.

[51] N.M. Webb, A.S. Palincsar, Group processes in the
classroom, in: D.C. Berliner (Ed.), Handbook of
Educational Psychology , (pp, Macmillan Library Reference
Usa; London, England, New York, NY, US, (1996).
841–873.

[52] R. Hübscher, Assigning Students to Groups Using General
and Context-Specific Criteria, IEEE Trans. Learn. Technol.
3 (2010) 178–189.

 194 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

http://paperpile.com/b/U8IK0d/lR816
http://paperpile.com/b/U8IK0d/lR816
http://paperpile.com/b/U8IK0d/lR816
http://paperpile.com/b/U8IK0d/lR816
http://paperpile.com/b/U8IK0d/lR816
http://paperpile.com/b/U8IK0d/erhW1
http://paperpile.com/b/U8IK0d/erhW1
http://paperpile.com/b/U8IK0d/erhW1
http://paperpile.com/b/U8IK0d/kRvlJ
http://paperpile.com/b/U8IK0d/kRvlJ
http://paperpile.com/b/U8IK0d/kRvlJ
http://paperpile.com/b/U8IK0d/kRvlJ
http://paperpile.com/b/U8IK0d/Cro0i
http://paperpile.com/b/U8IK0d/Cro0i
http://paperpile.com/b/U8IK0d/Cro0i
http://paperpile.com/b/U8IK0d/ZOwil
http://paperpile.com/b/U8IK0d/ZOwil
http://paperpile.com/b/U8IK0d/ZOwil
http://paperpile.com/b/U8IK0d/ZOwil
http://paperpile.com/b/U8IK0d/ZOwil
http://paperpile.com/b/U8IK0d/bgQvD
http://paperpile.com/b/U8IK0d/bgQvD
http://paperpile.com/b/U8IK0d/bgQvD
http://paperpile.com/b/U8IK0d/bgQvD
http://paperpile.com/b/U8IK0d/rRFoM
http://paperpile.com/b/U8IK0d/rRFoM
http://paperpile.com/b/U8IK0d/rRFoM
http://paperpile.com/b/U8IK0d/rRFoM
http://paperpile.com/b/U8IK0d/0Winm
http://paperpile.com/b/U8IK0d/0Winm
http://paperpile.com/b/U8IK0d/0Winm
http://paperpile.com/b/U8IK0d/0Winm
http://paperpile.com/b/U8IK0d/kKxT
http://paperpile.com/b/U8IK0d/kKxT
http://paperpile.com/b/U8IK0d/kKxT
http://paperpile.com/b/U8IK0d/kKxT
http://paperpile.com/b/U8IK0d/kKxT
http://paperpile.com/b/U8IK0d/hijou
http://paperpile.com/b/U8IK0d/hijou
http://paperpile.com/b/U8IK0d/hijou
http://paperpile.com/b/U8IK0d/IYzbl
http://paperpile.com/b/U8IK0d/IYzbl
http://paperpile.com/b/U8IK0d/IYzbl
http://paperpile.com/b/U8IK0d/IYzbl
http://paperpile.com/b/U8IK0d/fGBjO
http://paperpile.com/b/U8IK0d/fGBjO
http://paperpile.com/b/U8IK0d/fGBjO
http://paperpile.com/b/U8IK0d/fGBjO
http://paperpile.com/b/U8IK0d/fGBjO
http://paperpile.com/b/U8IK0d/NbCAP
http://paperpile.com/b/U8IK0d/NbCAP
http://paperpile.com/b/U8IK0d/NbCAP
http://paperpile.com/b/U8IK0d/NbCAP
http://paperpile.com/b/U8IK0d/NbCAP
http://paperpile.com/b/U8IK0d/2koU7
http://paperpile.com/b/U8IK0d/2koU7
http://paperpile.com/b/U8IK0d/2koU7
http://paperpile.com/b/U8IK0d/9KgjL
http://paperpile.com/b/U8IK0d/9KgjL
http://paperpile.com/b/U8IK0d/9KgjL
http://paperpile.com/b/U8IK0d/9KgjL
http://paperpile.com/b/U8IK0d/qR8ra
http://paperpile.com/b/U8IK0d/qR8ra
http://paperpile.com/b/U8IK0d/qR8ra
http://paperpile.com/b/U8IK0d/89PCE
http://paperpile.com/b/U8IK0d/89PCE
http://paperpile.com/b/U8IK0d/89PCE
http://paperpile.com/b/U8IK0d/4Jeu5
http://paperpile.com/b/U8IK0d/4Jeu5
http://paperpile.com/b/U8IK0d/4Jeu5
http://paperpile.com/b/U8IK0d/QFRqI
http://paperpile.com/b/U8IK0d/QFRqI
http://paperpile.com/b/U8IK0d/QFRqI
http://paperpile.com/b/U8IK0d/AGQK5
http://paperpile.com/b/U8IK0d/AGQK5
http://paperpile.com/b/U8IK0d/AGQK5
http://paperpile.com/b/U8IK0d/4T4m4
http://paperpile.com/b/U8IK0d/4T4m4
http://paperpile.com/b/U8IK0d/4T4m4
http://paperpile.com/b/U8IK0d/4T4m4
http://paperpile.com/b/U8IK0d/4T4m4
http://paperpile.com/b/U8IK0d/9JaNF
http://paperpile.com/b/U8IK0d/9JaNF
http://paperpile.com/b/U8IK0d/9JaNF

Learning from Non-Assessed Resources: Deep Multi-Type
Knowledge Tracing

Chunpai Wang, Siqian Zhao, Shaghayegh Sahebi
Department of Computer Science

University at Albany-SUNY
Albany, NY 12222

{cwang25,szhao2,ssahebi}@albany.edu

ABSTRACT
The state of the art knowledge tracing approaches mostly
model student knowledge using their performance in as-
sessed learning resource types, such as quizzes, assignments,
and exercises, and ignore the non-assessed learning resources.
However, many student activities are non-assessed, such as
watching video lectures, participating in a discussion forum,
and reading a section of a textbook, all of which poten-
tially contributing to the students’ knowledge growth. In
this paper, we propose the first novel deep learning based
knowledge tracing model (DMKT) that explicitly model stu-
dent’s knowledge transitions over both assessed and non-
assessed learning activities. With DMKT we can discover
the underlying latent concepts of each non-assessed and as-
sessed learning material and better predict the student per-
formance in future assessed learning resources. We compare
our propose method with various state of the art knowledge
tracing methods on four real-world datasets and show its ef-
fectiveness in predicting student performance, representing
student knowledge, and discovering the underlying domain
model.

Keywords
Knowledge Tracing, Multiple Learning Resource Types, Non-
Assessed Learning Resources, Memory Augmented Neural
Networks, Domain Knowledge Modeling, Student Knowl-
edge Modeling

1. INTRODUCTION
As the education landscape shifts toward distance learning,
the online learning systems advance in complexity and ca-
pacity. They can handle more students, evaluate students
through different kinds of assessments, and offer various
types of learning resources to them. In such systems, a
student can study a reading section, take a quiz, watch a
video lecture, and practice programming in an embedded
development environment. As a result, students learn from
heterogeneous types of activities in modern online learning

systems, among which some can be assessed and some can-
not.

Despite this heterogeneity in learning resource types, current
student knowledge tracing models mostly focus on assessed
learning resources, ignoring the non-assessed ones. In the
assessed learning resource types, such as quizzes and assign-
ments, students’ performance can be evaluated given their
answers and solutions. These kinds of learning resources
provide a window to student knowledge through observing
their performance. Conversely, in the non-assessed learning
resources, such as readings and video lectures, such an ob-
servation does not exist. Hence, evaluating student knowl-
edge and performance while interacting with these learning
resources is a difficult task [4, 11, 10].

Indeed, because current knowledge tracing approaches do
not model non-assessed learning resources, identifying their
underlying concepts, finding the similarities between these
learning resources, and in general domain knowledge mod-
eling for such non-assessed learning materials is still a chal-
lenging problem. That is, many modern knowledge tracing
models do not rely on a predefined domain knowledge model,
such as a Q-matrix, and can identify the “latent concepts”
that are being evaluated in problems, quizzes, or assign-
ments [20, 23, 21, 7, 9]. This is particularly useful when
annotating learning materials with their concepts is expen-
sive or infeasible. However, discovering such latent concepts
in non-assessed learning resources is an under-explored re-
search area. Some recent works have aimed in identifying
such latent concepts [19] and similarities [17] between as-
sessed and non-assessed learning materials. However, their
findings were according to static student performance, ig-
noring the sequential learning data of students.

In this paper, we argue that modeling non-assessed learning
materials is essential and non-dispensable in tracing student
knowledge. Students learn from all types of activities and
ignoring a large portion of student activities is a missed op-
portunity in student knowledge tracing. Especially that pre-
vious research has shown that working with various learning
activity types has considerable benefits for student learn-
ing [15, 2, 1, 12]. Hence, modeling both assessed and non-
assessed learning activities should result in a more accurate
estimation of student knowledge state and prediction of their
performance on future assessed learning resources.

Accordingly, we propose Deep Multi-type Knowledge Trac-

Chunpai Wang, Siqian Zhao and Shaghayegh Sahebi “Learning from Non-
Assessed Resources: Deep Multi-Type Knowledge Tracing”. 2021. In:
Proceedings of The 14th International Conference on Educational Data
Mining (EDM21). International Educational Data Mining Society, 195-
205. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 195

ing (DMKT) model, which not only traces student knowl-
edge states over various learning activity types but also pro-
vides a feasible solution to discovering underlying patterns
or concepts for both assessed and non-assessed learning re-
sources. To this end, DMKT estimates student knowledge
gain between every two consecutive assessed learning activi-
ties according to student performance on them. At the same
time, it distributes this estimated knowledge gain among the
in-between non-assessed learning activities and the latest as-
sessed activity. We use an attention mechanism for this dis-
tribution. As a result, DMKT can model the underlying
latent concepts for each of the assessed and non-assessed
learning resources, evaluate student knowledge after inter-
acting with these learning resources and predict student per-
formance on the assessed ones.

We evaluate our proposed model on four real-world datasets,
showing the significant effect of modeling various learning
resource types on the task of student performance predic-
tion. Also, we showcase the interpretability of DMKT by
visualizing student knowledge while working with various
learning resource types. Finally, we demonstrate the power
of DMKT in discovering the learning resources’ similarities
and underlying latent concepts.

2. RELATED WORK
Student knowledge tracing aims to capture the student’s
knowledge state and knowledge state transition patterns,
which could be further used for tasks like students’ perfor-
mance prediction, intelligent curriculum design, and inter-
pretation and discovery of structure in student tasks.

Traditional knowledge tracing methods modeled knowledge
transition on assessed learning resources using predefined
domain knowledge models (concepts of learning resources).
For example, Drasgow et al. proposed IRT that leverages
the structured logistic regression to model student’s dichoto-
mous responses and estimates the student’s ability, learning
resource difficulty [8]. BKT uses binary variables for mod-
eling whether student acquires a concept or not, and a Hid-
den Markov Model is used to update the probability that
student answers a question correctly [6, 22]. However, since
annotating a domain knowledge model can be expensive and
time consuming, in many real-world scenarios, such prede-
fined domain knowledge models are not be provided. To
solve this problem, new approaches turn to investigate mod-
eling student knowledge and domain knowledge at the same
time. For example, Lan et al. utilized the matrix factoriza-
tion to model the student knowledge and concept-question
association, assuming the sparse association between con-
cepts and questions [14]. As another example, Doan et al.
model student learning with a tensor factorization in which
the student knowledge is having an increasing trend using a
rank-based constraint [7].

At the same time, in the past few years with the advance
of deep neural networks, deep knowledge tracing methods
have emerged. For example, DKT [18] utilizes LSTM to
model students’ knowledge transition over time. Recently,
transformer-based neural networks have been successfully
applied to model the different knowledge transitions of dif-
ferent students’ historical interactions on learning resources [5,
9]. SAKT [16] uses the self-attention mechanism to model

the interdependencies among interactions on the sequence.
In [23], Zhang et al. proposed a Dynamic Key-Value Mem-
ory Networks based method (DKVMN), which integrates
the memory augmented neural networks with the attention
mechanism, to exploit the relationships between underly-
ing concepts for better students’ skill acquisition modeling.
Yeung et al. extended DKVMN, by integrating the one-
parameter logistic item response theory to provide better
interpretability [21]. However, none of the deep knowledge
tracing models have focused on modeling the non-assessed
learning activities and tracing student knowledge on such
activities.

Knowledge Tracing using Multiple Learning Resource Types.
Previous approaches ignored the effect of learning activi-
ties on non-assessed learning resources, none of the methods
mentioned above consider both assessed and non-assessed
learning resources at the same time. However, in reality,
students not only learn from practicing assessed learning
resources (such as questions) but also learn by studying
the non-assessed one, such as watching video lectures, read-
ing textbooks, and discussing with others. One reason for
not modeling the non-assessed activities is that reliable stu-
dent performance observations are missing in these activi-
ties. This makes modeling the knowledge transition from
these non-assessed learning activities difficult. To the best
of our knowledge, the only existing work that models non-
assessed learning activities along with the assessed ones is
Multi-View Knowledge Model (MVKM) [25]. MVKM mod-
els multiple learning resources jointly using tensor factoriza-
tion to capture latent students’ features and latent learning
resource concepts, assuming that latent concepts are shared
by different learning resource types. However, this method
can only capture the linear dependencies between variables,
as the latent students’ features and latent learning resource
concepts are multiplied via linear matrix and tensor prod-
ucts. On the other hand, due to the large memory cost of
tensor factorization, MVKM can not handle the datasets
with very large student and learning resource numbers. Un-
like MVKM, our proposed method in this paper considers
the non-linear relationships between variables, and handles
large datasets, while modeling student knowledge gain from
multiple learning resource types (both assessed and non-
assessed).

3. DEEP MULTI-TYPE KNOWLEDGE TRAC-
ING (DMKT)

3.1 Problem Formulation
A standard knowledge tracing (KT) problem is to predict
student performance or response on an upcoming question,
given the learner’s performance records on previously solved
questions. These records typically consist of a sequence of
questions and responses at each discrete time step, denoted
as a tuple (qst , r

s
t) for student s at time step t. Since we

only discuss how to predict future performance for a single
student, we omit the superscript s in the following sections.
Therefore, given students’ past history records up to time t−
1 as {(q1, r1), · · · , (qt−1, rt−1)}, the goal of KT is to predict
their response rt to question question qt at the current time
step t.

In this paper, we aim to incorporate students’ non-assessed

196 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

learning activities and model student knowledge transition
over both assessed and non-assessed learning resources, such
as solving quizzes, watching video lectures, viewing anno-
tated examples or hints, and participating discussion fo-
rums. Therefore, given student’s past historical responses
to assessed learning materials as well as past history of non-
assessed learning activities, we would like to estimate stu-
dent knowledge and predict their performance in the next
assessed learning resource. To do this, assuming L distinct
non-assessed learning resources and Q distinct assessed ones,
we represent students’ historical records up to time t − 1
as {(q1, r1),L1, (q2, r2),L2, · · · , (qt−1, rt−1),Lt−1}, in which
Lt = {l1t , l2t , · · · , ...lnt } at each time step t denotes the se-
quence of n non-assessed learning activities (e.g., watching
video lectures) between the assessed activities (e.g., answer-
ing questions) qt and qt+1. Our goal is to predict student
performance on assessed learning material qt at each time
step t, model student knowledge at and between time steps
in interaction with qt and all lits, and discover the underlying
latent concepts of assessed qs and non-assessed lis.

3.2 The Base Model
We base our DMKT model upon a recent successful deep
knowledge tracing model: DKVMN [23]. DKVMN is a spe-
cial type of memory-augmented neural networks (MANN)
for knowledge tracing which has one static key matrix to
store the knowledge concepts and one dynamic value ma-
trix to store students’ updated mastery levels of those cor-
responding concepts. Assuming that there are N latent con-
cepts {c1, · · · , cN} for each learning resource, and each la-
tent concept can be represented by dh-dimensional embed-
dings, similar to DKVMN, DMKT has the key matrix Mk

of size N×dh to store the N knowledge concepts. Similarly,
the value matrix Mv

t of size N × dh stores the student’s
mastery levels of each concept, at time step t.

However, DKVMN only supports updating knowledge states
Mv

t on assessed learning materials, and lacks the ability to
leverage the abundant of data other than student responses
on assessed learning materials. To overcome this limita-
tion, our proposed DMKT updates Mv

t with an additional
internal component that employs the attention mechanism
to process the non-assessed learning activities between any
two assessed ones and use the updated Mv

t to predict stu-
dent’s performance on upcoming assessed learning resource.
This component contains two functionalities, one is to up-
date student knowledge state on non-assessed learning ac-
tivities, and another is to summarize all activity contexts
before an assessed activity to help accurate prediction of
student performance.

One may think that a straightforward solution to integrate
the non-assessed learning resources would be to consider
them as student interaction features. However, since the
non-assessed learning activities are not explicitly represented
in such models, their contribution to student knowledge
could be assessed. Also, such an approach cannot model stu-
dent’s knowledge transition between different non-assessed
learning activities. In the following, we introduce our novel
updating and summarizing functionalities that help DMKT
to model all learning activity types. An overview of DMKT’s

architecture can be found in Figure 11.

3.3 Learning Resource Attention Weights
For the simplicity of illustration, let us assume that there
is only one non-assessed learning activity, e.g., watching a
video lecture, between solving two problems qt−1 and qt,
that is Lt−1 = {lt−1}. DMKT assumes that student knowl-
edge gets updated as the student interacts with lt−1 and qt,
weighted by their corresponding attention weights. So, in
each step, DMKT uses attention weights from qt and lt−1 to
update the student knowledge in the concepts’ embeddings,
Mv

t .

To compute the attention weights, DMKT first embeds all
questions into an embedding matrix Aq ∈ RQ×dh , and all
video lectures in another embedding matrix Al ∈ RL×dh .
At each time step, DMKT extracts the embedding vector
of qt (kt ∈ Rdh) from Aq, as well as the embedding vector
kl
t−1 ∈ Rdh of lt−1 from Al. Then, it uses these embedding

vectors to query the key memory matrix Mk to obtain the
attention weights wq

t (i) and wl
t(i) respectively as follows:

wq
t (i) = Softmax

(
kq
t
>Mk(i)

)
(1)

wl
t−1(i) = Softmax

(
kl
t−1

>
Mk(i)

)
(2)

The attention weight in wq
t and wl

t−1 can be viewed as re-
spectively the correlation between question qt and lecture
lt−1 with each of the N latent concepts. Notice that, wq

t (i)
and wl

t−1(i) are the i-th element in the attention weight
vectors wq

t and wl
t−1 respectively, and for interpretability

purposes the attention weights sum to one (
∑N

i=1 w
q
t (i) =∑N

i=1 w
l
t−1(i) = 1).

3.4 Student Performance Prediction
At each time step t, DMKT aims to predict the student’s
performance on qt. Since the predicted performance is a
result of student knowledge that is gained by interacting
with both problems and lectures, it is intuitive to aggre-
gate these knowledge gains and predict the student perfor-
mance accordingly. Remember that the memory value ma-
trix Mv

t ∈ RN×dh is used to represent student’s knowledge
state on each concept embedding. So, to summarize the stu-
dent’s mastery level of question qt and lecture lt−1 in the N
concepts, we compute the weighted sum of all memory slots
in the value matrix using attention weight vectors wq

t and
wl

t−1, respectively.

rqt =

N∑
i=1

wq
t (i)Mv

t (i) (3)

rlt−1 =
N∑
i=1

wl
t−1(i)Mv

t (i) (4)

Then, we concatenate the latent knowledge states or mas-
tery levels rqt and rlt−1 on question qt and lecture lt−1 with
question embedding kq

t as well as lecture embedding kl
t−1

1The source code is provided at: https://github.com/
persai-lab/EDM2021-DMKT

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 197

https://github.com/persai-lab/EDM2021-DMKT
https://github.com/persai-lab/EDM2021-DMKT

vertically and pass them into a fully connected layer with a
Tanh activation to obtain a summary vector ft

ft = Tanh
(
W>

1

[
rqt , r

l
t−1,k

q
t ,k

l
t−1

]
+ b1

)
(5)

where [·] denotes concatenation. This summary vector ft
contains a summary of all information, such as student abil-
ity and the relationship between question qt and lecture lt−1,
to predict student response at time t accurately. Finally, the
student’s performance in query question qt is calculated by
passing the feature vector ft through another fully connected
layer with a Sigmoid activation as follows:

pt = Sigmoid
(
W>

2 ft + b2

)
(6)

3.5 Student Knowledge Update
DMKT tracks the student knowledge states by updating the
memory value matrix Mv

t after each learning activity on qt
and lt so as to predict student performance on qt+1 using
the updated Mv

t+1.

For assessed learning activities, we first retrieve an embed-
ding vector of (qt, rt), denoted by vq

t ∈ Rdh , from a response
embedding matrix B of size 2Q × dh. This embedding vt

contains the information about how much student knowl-
edge should be updated after working on question qt with
outcome rqt . We also use the erase-followed-by-add mecha-
nism to update the memory value matrix, that is to erase the
memory first using erase vector eq

t ∈ [0, 1]dh before adding
new information with the add vector aq

t ∈ Rdh . This update
of each value memory slot could be summarized as an erase
step and an add step as follows:

Erase Step:

eq
t = Sigmoid

(
E>vq

t + bq
e

)
M̃v

t (i) = Mv
t−1(i)⊗ [1− wq

t (i)eq
t]

(7)

Add Step:

aq
t = Tanh

(
D>vq

t + bq
a

)T
Mv

t (i) = M̃v
t−1(i) + wq

t (i)aq
t

(8)

where 1 is a vector of all ones, and ⊗ represents the element-
wise multiplication.

For each non-assessed activity, we follow a similar erase-
followed-by-add steps in Eq.(7) and Eq.(8), except that we
use kl

t directly instead of a new response embedding.

Erase Step on Non-assessed Resources:

el
t = Sigmoid

(
H>kl

t + bl
e

)
M̃v

t (i) = Mv
t−1(i)⊗

[
1− wl

t(i)e
l
t

] (9)

Add Step on Non-assessed Resources:

al
t = Tanh

(
G>kl

t + bl
a

)T
Mv

t (i) = M̃v
t−1(i) + wl

t(i)a
l
t

(10)

3.6 Network Architecture and Extension
The neural network architecture of DMKT is shown in Fig-
ure 1. For illustration simplicity, this figure assumes that
there is only one non-assessed learning resource lt between
qt and qt+1. This architecture mainly contains two com-
ponents: read component for making a prediction on input
question qt and write component for updating the value ma-
trix after interacting with lt and qt.

When there are multiple non-assessed learning activities be-
tween qt and qt+1, that is Lt = {l1t , · · · , lnt }, we can simply
extend the model by looping over each activity to generate

kli

t as well as rl
i

t using equation (4) for i ∈ {1, · · · , n}. When

making predictions, we use
∑n

i=1 k
li

t to represent kl
t and∑n

i=1 r
li

t to represent rlt in the architecture. When updat-
ing the knowledge, the value matrix is updated sequentially
over all activities as described in the previous subsection.

3.7 Training
All learnable parameters , i.e. Aq,Al,B, in the entire DMKT
model are trained in end-to-end manner by minimizing the
binary cross-entropy loss of all students’ assessed responses,
i.e.,

`BCE = −
∑
t

(ot log pt + (1− ot) log (1− pt)) (11)

where ot denotes the observation of correctness on assessed
response at time t and pt denotes the prediction of correct-
ness of DMKT at time t.

3.8 Knowledge State Calculation
DMKT is capable of tracing and depicting knowledge con-
cept mastery level for each student. A student’s knowledge
state before each assessed or non-assessed learning activity
can be obtained in the read process using the following steps.

Assume that there are N dummy query questions qis, each
of them only using one concept, for the purpose of knowledge
state calculation. Each of dummy questions can obtain a de-
signed embedding ki such that the correlation weight vector
wi is ”one-hotted”, that is wi = [0, · · · , wi, · · · , 0] where wi

of concept ci is equal to 1. Then, we can use each of these
one-hot correlation weight vectors to access value matrix
state on each slot Mv

t (i) to obtain rit for each concept ci. In
other words, rit = Mv

t (i) for qi.

Then, we can predict the student knowledge purely based on
rit by masking the weight of the input content embedding in
Eq. (5), which ends up as:

f it = Tanh

([
Wri

1 ,0,0,0
]> [

rit, r
l
t−1,k

i
t,k

l
t−1

]
+ b1

)
(12)

where W1 is split into four parts including Wri

1 , Wki

1 = 0,

Wrl

1 = 0, and Wkl

1 = 0. Finally, a scalar value pi is output
as in Eq.(6) to be the predictive mastery level of concept
ci. We repeat this process N times with N numbers of one-
hot correlation weight vectors to obtain student’s knowledge
state vector with size 1×N after each learning activity.

4. EXPERIMENTS

198 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Cat.

embedding
lookup

embedding
lookup

embedding
lookup

 tanh tanh

Figure 1: Neural Network Architecture of DMKT.

To evaluate our proposed model, we conduct three kinds
of experiments. First, we compare it with state-of-the-art
baselines in the student performance prediction task. Sec-
ond, we analyze the discovered student knowledge transition
patterns in terms of assessed and non-assessed learning ac-
tivities. Last but not least, we validate the non-assessed
learning resources’ latent concepts discovered by the pro-
posed method.

4.1 Datasets
We use three real-world datasets to evaluate the proposed
model:
MORF2 is an open online course dataset from Coursera [3].
In this course, students can watch lecture videos and work
on problems. Each problem is a full complex course assign-
ment. These video lectures and assignments are published
in sequential order in this dataset, but students can have
multiple attempts on each assignment and watch any video
at any time. Students’ scores are normalized into [0, 1].
EdNet3 is collected by Santa4, a multi-platform AI tutoring
service for students to prepare TOEIC English testing. We
use the problem explanation documents as the non-assessed
learning resources. There are 297, 915 user records in the
full dataset, and we randomly extract 1, 000 users’ records

2https://educational-technology-collective.github.
io/morf/
3https://github.com/riiid/ednet
4https://aitutorsanta.com/intro

for experiments.
Junyi5 is a dataset that comes from a Chinese e-learning
website. Students work on problems from 8 math areas.
Each problem has several hints, students can request hints
when solving problems. We consider the problems as the as-
sessed learning resources and the associated problem hints as
the non-assessed learning resources. There are 25, 925, 922
records in total from 247, 606 users in the full dataset. We
extract two subsets of this full dataset for experiments. One
is called Junyi2063, which contains 2063 users’ records on
3760 questions and 1432 hints. A smaller dataset named
Junyi1564, which consists of 1564 users’ records on 142 ques-
tions and 116 hints, is extracted to serve the purpose of
visualization on concept discovery results. The descriptive
statistics of these four datasets are shown in the table 1.

4.2 Baseline Methods
In experiments of performance prediction, we compare with
13 baseline methods on the task of student performance pre-
diction on assessed learning resources, including six state-of-
the-art deep learning based knowledge tracing models, one
existing tensor factorization based knowledge tracing model
supporting multiple learning resource types, and seven ex-
tended deep learning based models utilizing non-assessed
learning resources as additional input features. These meth-
ods are:

5https://pslcdatashop.web.cmu.edu/DatasetInfo?
datasetId=1275

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 199

https://educational-technology-collective.github.io/morf/
https://educational-technology-collective.github.io/morf/
https://github.com/riiid/ednet
https://aitutorsanta.com/intro
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1275
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1275

Table 1: Descriptive Statistics of 3 Datasets.

Dataset Users Questions
Question
Records

Mean
Question
Responses

STD
Question
Responses

Correct
Question
Responses

Incorrect
Question
Responses

Non-gradable
Materials

Non-gradable
Records

MORF 686 10 12031 0.7763 0.2507 N/A N/A 52 41980
EdNet 1000 11249 200931 N/A N/A 118767 82184 8324 150821

Junyi1564 1564 142 120984 N/A N/A 86654 34328 116 16389
Junyi2063 2063 3760 290754 N/A N/A 193664 97090 1432 69050

• DKT [18]: is a pioneer deep learning based knowledge
tracing method that uses LSTM to model students’
knowledge transition over time.

• DKVMN [23]: is a variant of memory augmented neu-
ral networks that model the latent knowledge concept
and dynamic student knowledge state over time.

• DeepIRT [21]: is an extension of DKVMN that in-
tegrates the one parameter logistic item response the-
ory (1PL-IRT) to provide better interpretability, which
could reduce the overfitting issue.

• SAKT [16]: is an attention-based method that lever-
ages the self-attention mechanism to model the inter-
dependencies among interactions on the sequence.

• SAINT [5]: is a transformer-based deep knowledge
tracing method, two multi-head attention mechanisms
are used to model exercise and response separately.

• AKT [9]: is a variant of transformer-based deep knowl-
edge tracing method that using a monotonic attention
mechanism to model the different knowledge transition
of students’ each historical performance on questions.

In addition to those baselines that support assessed learning
materials, we also compare our method with some baselines
that either can leverage additional students’ non-assessed
learning activities by design, or we modify them to consider
such non-assessed activities as features of the assessed ones
and predict students’ future performance. These methods
are:

• MLP-M: is a simple multi-layer perceptron that could
take query question ID, user ID, and user’s 3 past his-
torical records on current query question, as well as
3 most recent non-assessed learning activities as in-
put, and output a probability of user’s mastery level
on query question.

• DKT-M [24]: is an enhanced DKT model that could
incorporate additional question features by concate-
nating the feature embeddings with exercise response
embedding as the input of vanilla DKT.

• SAINT-M [5]: is a variant of SAINT that summing
over all embeddings of non-gradable activities along
with position encoding as the input of SAINT.

• MVKM [25]: is state of the art method on modeling
student knowledge transition over multiple learning re-
source types based on multiview tensor factorization.

Inspired by the DKT-M [24], we apply the same strategy to
DKVMN to incorporate additional non-assessed learning ac-
tivities as features to end up with method DKVMN-M. Also,
inspired by the way of SAINT-M [5] to incorporate rich fea-
tures into transformer-based model, we apply same strategy
as described in the paper into SAKT and AKT to incorpo-
rate additional non-assessed learning activities as response
features that ends up with baseline methods SAKT-M and
AKT-M, respectively.

4.3 Implementation Details
For binary response datasets, including EdNet and Junyi
datasets, we convert the response tuple (qt, rt) into a single
value z = qt + rt ×Q ∈ {1, · · · 2Q} as the lookup key of em-
bedding layer. For numerical response MORF dataset, we
feed the tuple (qt, rt) into a linear layer to get the embed-
ding. For the question qt and non-assessed learning resource
lt, we feed their ID into the embedding layers.

For evaluation purpose, we perform the 5-fold user stratified
cross-validation for all models and all datasets. Hence, for
each fold, 60% users are used as the training set, 20% are
validation set, and the rest 20% as test set. For each fold
and every method, we use the validation set to tune the
hyper-parameters and record the optimal training loss as
the condition of early stopping.

We utilize the Gaussian distribution with 0 mean and 0.2
standard deviation to initialize the values of Mk and Mv

0 .
We learn the model using the Adam optimization with a
learning rate of 0.01 and reduce the learning rate by half once
the training loss increases, with the minimal learning 1e-5
for all methods in 200 max epochs. We also utilize the norm
clipping threshold to 50.0 to avoid gradient exploding for all
methods. In addition, we follow the general processing steps
for knowledge tracing that truncate long sequence and pad
short sequence with 0s. The length of sequence is considered
as a hyper-parameter of all models which needs to tune.
In addition, we also tune the max sequence length of non-
assessed learning activities between two assessed learning
activities Lt. If the length of non-assessed learning activities
is over the maximum size, then we take the most recent ones.
Similarly, if the length is less than the required sequence
length, we pad with 0s. The table 2 shows the best hyper-
parameters of our DMKT on 4 datasets.

We implement the models using PyTorch on a computer
with a single NVIDIA Tesla-K80 GPU. For DKT and DKT-
M, our implementation is different from the original paper
[18], and we follow the same idea suggested by [23] that use
norm clipping and early stopping, which could ease the gra-
dient exploding as well as overfitting issues of LSTM. Xavier

200 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 2: Hyperparameters of DMKT

Dataset dh N seq. len. |Lt|
MORF 128 8 50 8
EdNet 128 8 50 2

Junyi1564 256 8 50 2
Junyi2063 256 32 50 2

initialization is also used to initialize the parameters in DKT
and DKT-M. All the baseline methods are implemented in
PyTorch and tested to achieve similar performance as re-
ported in the original paper except the SAINT ans SAINT-
M. For SAINT, we borrow the implementation from github6

and extend it to the SAINT-M, since the authors did not
release the code.

4.4 Student Performance Prediction
The results of predicting students’ performance in the as-
sessed learning resources, including their 95-percentile con-
fidence intervals, are shown in Table 3. The RMSE is mea-
sured to evaluate the prediction performance on MORF dataset
due to numerical user responses, and the AUC is measured
on EdNet and Junyi datasets. A low RMSE score indicates
a high prediction performance. An AUC of 0.5 represents
the model’s performance is equivalent to a random guess
model. A high AUC score accounts for a high prediction
performance. As you can see, our proposed method, DMKT,
achieves the best performance over all baseline methods on
all four datasets. This shows that explicitly modeling non-
assessed learning materials, along with the assessed ones, is
essential in capturing the variations in student performance
data.

We can also see that by simply incorporating the non-assessed
activities between two assessed activities as additional in-
put features (the “-M” models) the prediction performance
is improved in some methods, such as AKT-M on MORF,
EdNet, and Junyi datasets. However, unlike attention-based
methods which could learn interaction correlation in a long
sequence, this kind of simple integration strategy does not
improve and may harm the prediction performance in other
methods, such as in DKT-M and DKVMN-M, which tend
to summarize past historical records as context embeddings.
The reason we believe is this trivial integration of non-assessed
activities not only loses a large amount of sequential infor-
mation to model student knowledge transition over time,
but also could introduce more noisiness on the data. We
conclude that simply adding the non-assessed learning ac-
tivities as features, without modeling them explicitly is not
enough and may even harm the prediction performance in
some models.

SAINT and SAINT-M have transformer based architecture,
which can stack multiple encoders and decoders. However,
in our EdNet dataset that contains only 1, 000 users with
200, 931 records on 11, 249 questions, and without additional
constraints or regularization as proposed in AKT (another
transformer based model), SAINT and SAINT-M can eas-
ily overfit the data. MVKM is the only existing baseline

6https://github.com/Shivanandmn/
Knowledge-Tracing-SAINT

method that can explicitly model multiple learning resource
types. We can see that it can outperform the deep knowl-
edge tracing methods that uses non-assessed learning ma-
terials as features in MORF, which is a mid-size datasets.
However, it cannot efficiently run in the larger datasets as
the memory usage and linear time complexity over number
of interaction records in MVKM limits its applicability on
large datasets, such as EdNet and Junyi. Therefore, due to
long running time on EdNet and Junyi datasets, we only
report its performance in the MORF dataset.

It is worth noting that when our model is fed with assessed
learning resources only, it will be equivalent to DKVMN.
However, as presented in the table, our proposed model
DMKT achieves a better performance over DKVMN as well
as DKVMN-M, because DMKT explicitly models the stu-
dent knowledge transition on non-assessed learning activi-
ties, which provides a more accurate encoded information
to make the predictions accurately.

4.5 Student Knowledge State Visualization
To see how intractable the discovered student knowledge
states are, we visualize the students’ knowledge states. Ba-
sically, knowledge state visualization shows student’s knowl-
edge mastery level on each concept before each attempt on a
non-assessed or an assessed learning activity. This provides
a useful tool to monitor student knowledge coverage over
different concepts and helps instructors to analyze the stu-
dent’s lacking concepts so as to provide tailored instructions
for each student. To visualize student knowledge states, we
follow the steps in section 3.8 to calculate knowledge state
values over all concepts across the student sequence for each
student. We show visualization of one example student’s
knowledge states in the MORF dataset in figure 2. As you
can see in the figure, the top x-ticks are labeled with stu-
dent learning activities. Assessed learning materials (assign-
ments) start with A and non-assessed ones (lecture videos)
are annotated by the week they are scheduled and the se-
quence of video lecture within the week. For example W4V0
means the student has watched week 4 video lecture 0 and
A1B denotes the Assignment-1B in week 1. The bottom x-
ticks are labeled by either student performance (grade) in
the assessed learning materials, or an icon indicating the
non-assessed learning resource type. Each row represents
one latent concept. In the figure, this student starts with a
randomly initialized value memory matrix Mt

0 at time step
0 before working on A1B. After finishing the A1B, student’s
knowledge is updated and increased a little on concept 3 and
6 before working on A3. Student’s knowledge grows gradu-
ally by working on assignments A3 and watching video lec-
tures in week 4. However, student’s knowledge drops a little
before working on assignment A4 and it explains the reason
why that student only receives a score 0.3 at the first at-
tempt. Student’s knowledge on all concepts grow by work-
ing on the assignments until the student started watching
video lecture W6V 1. We can see a slight drop in student’s
knowledge of some of the concepts (e.g., 7) and increase in
other concepts (e.g., 1) while they are watching these videos.
One potential reason for the decrease on concept 7 could be
the lack of practice with assignments. Watching video lec-
tures indeed improve student knowledge on concept 1 and
2. Another reason for the drop in concept 7 could be re-
lated to the student’s problem solving ability which results

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 201

https://github.com/Shivanandmn/Knowledge-Tracing-SAINT
https://github.com/Shivanandmn/Knowledge-Tracing-SAINT

Table 3: Student Performance Prediction Results on 3 Real-World Datasets. Root Mean Square Error (RMSE) and Area Under
Curve (AUC) are used to evaluate performance on datasets with numerical feedback and binary feedback, respectively. The
average performance over 5 folds as well as 95% confidence interval are reported.

MORF EdNet Junyi1564 Junyi2063
Methods RMSE AUC AUC AUC

DKT 0.1870± 0.0191 0.6393± 0.0137 0.8877± 0.0050 0.8635± 0.0059
DKVMN 0.2042± 0.0136 0.6296± 0.0104 0.8843± 0.0065 0.8558± 0.0068
DeepIRT 0.1946± 0.0080 0.6290± 0.0105 0.8749± 0.0053 0.8498± 0.0069

SAKT 0.2113± 0.0275 0.6334± 0.0125 0.8623± 0.0047 0.8053± 0.0075
SAINT 0.2019± 0.0077 0.5205± 0.0064 0.8454± 0.0096 0.7951± 0.0119
AKT 0.2420± 0.0155 0.6393± 0.0104 0.8311± 0.0102 0.8093± 0.0091

MVKM 0.1936± 0.0096 − − −
MLP-M 0.2433± 0.0350 0.6102± 0.0088 0.7055± 0.0191 0.7290± 0.0150
DKT-M 0.1927± 0.0194 0.6372± 0.0120 0.8885± 0.0048 0.8652± 0.0069

DKVMN-M 0.2251± 0.0128 0.6343± 0.0074 0.8948± 0.0054 0.8513± 0.0059
SAKT-M 0.2084± 0.0272 0.6323± 0.0109 0.8305± 0.0071 0.7911± 0.0107
SAINT-M 0.1977± 0.0055 0.5491± 0.0068 0.8454± 0.0096 0.7741± 0.0139
AKT-M 0.2239± 0.0151 0.6404± 0.0067 0.8296± 0.0093 0.8099± 0.0098
DMKT 0.1369± 0.0195 0.6675± 0.0082 0.9440± 0.0061 0.8714± 0.0069

1.
0

0.
1

0.
2

0.
2

0.
2

0.
2

0.
3

0.
4

0.
4

0.
5

0.
6

0.
3

0.
6

0.
6

0.
3

0.
5

0.
5

0.
6

0.
6

0.
3

0.
7

0.
2

1.
0

0.
2

0.
3

0.
4

0.
6

0.
6

0.
6

0.
7

0.
7

0.
8

Figure 2: An Example of Student Knowledge State Visualization on MORF Dataset.

W
1

V0
W

1
V1

W
1

V2
W

1
V3

W
1

V4
W

1
V5

W
1

V6
W

2
V0

W
2

V1
W

2
V3

W
2

V4
W

2
V5

W
2

V6
W

3
V1

W
3

V2
W

3
V3

W
3

V4
W

3
V5

W
4

V1
W

4
V2

W
4

V3
W

4
V4

W
4

V5
W

4
V6

W
4

V7
W

5
V1

W
5

V2
W

5
V3

W
5

V4
W

5
V5

W
6

V1
W

6
V2

W
6

V3
W

6
V4

W
6

V5
W

7
V1

W
7

V2
W

7
V3

W
7

V4
W

7
V5

W
8

V1
W

8
V2

W
8

V3
W

8
V4

W
8

V5

0
1

2
3

4
5

6
7

Co
nc

ep
t

0.2

0.4

0.6

0.8

Figure 3: Concepts Matrix of Video Lectures in MORF Dataset.

in their first attempt on Assignment A7 to have a score of
0.3. Once the student’s first attempt on A7 is done, this stu-
dent quickly masters concept 7 again and their knowledge
on all concepts continues to grow along different activities.
In this example, it seems the assessed learning material im-
proves student knowledge more than watching video lectures,
which is inline with the previous literature [10, 13]. Another
observation is that this student skips watching video lec-
tures in weeks 1, 2, and 3 before working on assignment A3.
Similarly, they did not watch videos in week 5 and 6 before
trying A5 and A6. This may explain that this student is not
interested in watching video lectures and may not be fully
present during watching video lectures which results in tiny

knowledge growth over watching them.

4.6 Concept Discovery
In addition to tracing student knowledge over various types
of learning activities, DMKT can provide a feasible solution
to discovering underlying patterns or concepts for both as-
sessed and non-assessed learning resources. In other words,
the correlation weights w and wl, can be interpreted as the
importance of latent concepts in each assessed, and non-
assessed learning activity respectively. Meaning that, since
the key matrix Mk is used to model the knowledge con-
cepts on the full course, the correlation weight between the
learning resources and the concepts implies the strength of

202 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

0

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

4647

48
49

50

51

52

53

54

55

56

57 58

59

60

61

62

63

64

65
66

67

6869

70

71

72

73

74

75

76
77

78

79

80

81

82
83

8485

86

87

8889 90

91

92

93

94

95

96

97

98
99

100

101
102

103

104

105

106

107

108

109

110

111

112

113

114

115

8 comparing_absolute_values--0
20 recognizing_rays_lines_and_line_segments--line-
segment
30 telling_time_2--set-hands
34 multiplication_2--0
42 multiplying_decimals--0
52 counting_1--fences
58 reading_pictographs_1--read-chart
101 plotting_the_line_of_best_fit--linear
104 reading_bar_charts_3--midrange
112 inverse_trig_functions--0
114 variance--population

6 telling_time--analog
15 subtraction_1--0
25 subtraction_2--subtraction-2
38 adding_and_subtracting_negative_numbers--
MINUS
43 limits_1--3
51 same_side_interior_angles--0
55 reading_tables_1--0
59 measuring_segments--0
91 measuring_and_comparing_angles--compare_4
103 logical_arguments_deductive_reasoning--
detachment
109 independent_probability--0
113 conditional_statements_and_truth_value--
deduce

4 telling_time_0.5--analog
7 divisibility_intuition--0
10 conditional_statements_2--category
21 addition_2--0
40 prime_numbers--0
44 limits_1--2
46 limits_1--1
50 angle_types--right
53 counting_1--page-numbers
54 counting_1--slices
61 square_roots--square
62 similar_triangles_1--similar
70 converse_inverse_and_contrapositive--equations-
and-equations
72 vertical_angles--0
79 reading_line_charts_1--0
82 creating_bar_charts_1--0
84 linear_equations_2--0
90 midpoint_of_a_segment--0
95 converse_inverse_and_contrapositive--elephants-
and-peanuts
96 converse_inverse_and_contrapositive--vertical-and-
congruent-angles
98 surface_area_of_rectangular_boxes--int-box-T
99 conditional_statements_2--event
106 limits_2--n-lt-d
108 derivative_intuition--polynomial

0 representing_numbers--0
23 number_line_2--where-is-point
27 adding_negative_numbers--PLUS
31 axis_of_symmetry--0
36 congruency_postulates--0
48 evaluating_expressions_1--0
49 angle_types--obtuse
57 reading_tables_2--0
64 congruent_segments--0
67 points_lines_and_planes--line-name
80 reading_bar_charts_2--reading
87 areas_of_kites--kite
93 measuring_and_comparing_angles--measure_2
97 quotient_rule--0
102 logical_arguments_deductive_reasoning--
syllogism

1 number_line--0
35 expressing_ratios_as_fractions--0
47 limits_2--a-o-xmk
63 conditional_statements_2--adjective
73 complementary_angles--find-hypotenuse
75 converse_inverse_and_contrapositive--sun-and-
hat
77 reading_stem_and_leaf_plots--less-than
88 lhopitals_rule--polynomial
94 radius_and_diameter--circle-r-to-d

2 addition_1--0
11 area_of_parallelograms--par-bh-to-K
28 combining_like_terms_1--none
29 exponents_2--0
32 perimeter_of_squares_and_rectangles--
rectangle-lw-to-P
33 decimals_on_the_number_line_2--0
37 ordering_negative_numbers--0
39 adding_and_subtracting_negative_numbers--
PLUS
45 limits_1--0
56 exploring_mean_and_median--0
105 limits_2--n-gt-d
107 derivatives_1--quadratic
115 sides_and_angles_of_simple_shapes--
polygonshape_vertex

3 multiplication_0.5--0
5 absolute_value--0
13 division_0.5--0
18 recognizing_rays_lines_and_line_segments--line
19 recognizing_rays_lines_and_line_segments--ray
22 number_line_2--what-is-point
24 number_line_3--0
26 triangle_types--knownAngles
41 composite_numbers--0
68 angle_types--acute
69 combining_like_terms_2--none
85 radians_to_degrees--1
86 degrees_to_radians--degrees-to-radians
89 special_derivatives--0
92 measuring_and_comparing_angles--
measure_w_90
100 counting_2--every-n
110 creating_box_and_whisker_plots--0

9 converse_inverse_and_contrapositive--dessert-and-
pie
12 exponents_1--0
14 multiplication_1--0
16 dividing_decimals_0.5--decimal
17 pythagorean_theorem_1--find-a-leg
60 triangle_types--knownSides
65 measuring_angles--0
66 points_lines_and_planes--name-plane
71 multiplying_and_dividing_scientific_notation--divide
74 converse_inverse_and_contrapositive--rain-and-
soccer-practice
76 reading_stem_and_leaf_plots--greater-than
78 reading_bar_charts_1--0
81 reading_bar_charts_2--most-improved
83 linear_equations_1--0
111 triangle_angles_sum--scalene

Figure 4: Cluster Graph of Non-gradable Learning Materials (Hints) in Junyi1564 Dataset Using t-SNE. The question name
corresponding to each hint is shown in the right table. (Best viewed in color)

0

1

2

34

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

3031
32

3334

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

12 W1 V2: Regressors
15 W2 V0: Intro Video
18 W2 V5: Detector Confidence, part 4
24 W4 V4: Item Response Theory
45 W7 V5: Factor Analysis
30 W5 V2: Casual Mining
34 W6 V0: Intro Video
42 W7 V2: Validation and Selection of K
49 W8 V3: Text Mining0 W1 V4: Classifiers Part 2 - RapidMiner 5.3

3 W1 V5: Classifiers Part 3
7 W3 V2: Data Synchronization and Grain Sizes
9 W3 V4: Automated Feature Generation
10 W3 V5: Knowledge Engineering
19 W2 V6: Types of validity
22 W4 V2: Bayesian Knowledge Tracing
39 W6 V5: Other Awesome EDM Visualizations
44 W7 V4: Clustering Examples

5 W3 V1: Ground Truth for Behavior Detection
6 W3 V0: Intro Video
13 W1 V3: Classifiers Part 1
16 W2 V3: Diagnostic Metrics, part 2
28 W5 V0: Intro Video
31 W5 V3: Association Rule Mining
32 W5 V4: Sequential Pattern Mining
33 W5 V5: Network Analysis
37 W6 V3: Scatter Plots
47 W8 V1: Discovery with Models

17 W2 V4: Detector Confidence, part 3
23 W4 V3: Performance Factors Analysis
29 W5 V1: Correlation Mining
38 W6 V4: State Space Diagrams
46 W8 V0: Intro Video
50 W8 V4: Hidden Markov Models
1 W2 V1: Detector Confidence
2 W1 V1: Big Data in Education
51 W8 V5: Conclusions and Further Directions

4 W2 V2: Diagnostic Metrics, part 1
11 W1 V0 Introduction
20 W4 V0: Intro Video
21 W4 V1: Knowledge Inference
26 W4 V6: Q Matrix
36 W6 V2: Moment by Moment Learning Graphs
40 W7 V0: Intro Video
41 W7 V1: Clustering

8 W3 V3: Feature Engineering
14 W1 V6: Case Study - San Pedro
25 W4 V5: Advanced BKT
27 W4 V7: Other Structures
35 W6 V1: Learning Curves
43 W7 V3: Advanced Clustering Algorithms
48 W8 V2: Discovery with Models - Case Study

Figure 5: Cluster Graph of Video Lectures using t-SNE and Titles of Video Lecture of MORF Dataset. Lectures under the same
concept are labeled in the same color in the left picture and also are put in the same block in the right table. (Best viewed in
color)

their inner relationship. Not only we can use the correla-
tion weight as latent concepts, we can also use them to find
similar learning resources by clustering them over these cor-
relation weights.

For example, in Figure 3, we visualize the importance of
each concept in each of the MORF dataset video lectures.
The X-axis ticks show the video lecture weeks and numbers
and the Y-axis shows the latent concepts. As we can see, the
concept matrix is relatively sparse, showing that most video
lectures strongly belong to 2-3 concepts, while they do have

a soft memberships in other concepts too. Many video lec-
tures in the same week have similar concept structures. For
example videos 3, 4, and 5 of week 5 all have a strong rep-
resentation of concept 0 and videos 0, 1, and 2 of week 1 all
are having high correlation weights with concept 2. Given
that the course schedule is designed by the instructor, such
similarities between the concepts in videos of the same week
are expected. Another interesting observation is the strong
appearance of some concepts in videos of different weeks. For
example, concept 1 can be seen in both video 4 of week 8
and video 4 of week 6. This shows that these two video lec-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 203

tures share some similarities that are not represented in class
schedule. Looking at the video titles from this course (right-
hand side of Figure 5) we can see that the video titles are
State Space Diagrams and Hidden Markov Models, respec-
tively, which are two very closely-related topics To better
understand such similarities, we look at grouping of videos
according to their discovered concepts in the following.

To this end, we follow the clustering procedures as in [23]
to group the learning materials according to the discovered
latent concepts. At the same time, we compare these group-
ings by looking at the problem name associated with each
hints and lecture titles for Junyi1564 and MORF datasets in
Figures 4 and 5, respectively. To do the clustering, we first
assign each learning resource with the concept ID that con-
tains the largest correlation weight as the cluster label. Since
there are 8 concepts in total, it results in 8 clusters. Then,
we use t-SNE to visualize the clusters, which are shown in
the left sides of Figures 4 and 5 for Junyi1564 and MORF
datasets, respectively.

As we can see, the resulting t-SNE clusters are more dis-
tinct in the Junyi1564 dataset compared to MORF. In other
words, most of clusters in Junyi1564 dataset could be easily
separated and distinguished. This implies that the discov-
ered concept matrix of the Junyi1564 dataset is more sparse
than the one from the MORF dataset, leading to more out-
standing clusters than in MORF, as shown in Figure 4. In-
deed we have seen from Figure 3 that each video lecture
in MORF is associated with two to three latent concepts
rather than having only one distinct concept. This finding
matches these datasets’ properties: in the MORF dataset,
each assessed learning material is a full complex course prob-
lem set which is assigned to students every week, and each
non-assessed learning resource is a video lecture that cov-
ers multiple knowledge concepts. On the contrary, the as-
sessed learning materials in Junyi1564 dataset are simple
math problems, with close-to atomic concept coverage, and
the non-assessed resources are hints associated with these
problems.

As another result of this clustering, and similar to our find-
ings in Figure 3, we can see that the more similar or re-
lated non-assessed learning materials are clustered together.
For example, in Figure 5, video lectures from week 5 are
clustered together, showcasing the similarity between latent
concepts in video lectures that are scheduled to be presented
together in week 5 of the course. Additionally, video lectures
that are conceptually similar to each other can be found
grouped together. For example, video lectures from week
6 (V4 - State Space Diagrams) and week 8 (V4 - Hidden
Markov Models), from week 1 (V2 - Regressors) and week 7
(V5 - Factor Analysis), and from week 1 (V6 - Case Study
- San Pedro) and week 8 (V2 - Case Study - Discovery with
models) are grouped together which are conceptually simi-
lar.

These findings are also in accordance with the previous find-
ings in the literature on the MORF dataset [25] and show
that DMKT can efficiently discover the underlying concepts
presented in the non-assessed learning materials, even though
student performance on them is not observable.

5. CONCLUSION AND FUTURE WORK
In this paper, we proposed DMKT, the first deep learning
based knowledge tracing model that can model and trace
student knowledge in both assessed and non-assessed learn-
ing resources, find the underlying connects and similarities
between learning resources, and predict student performance
in the assessed ones. We evaluated DMKT extensively, on
four real world datasets and demonstrated that because of
its explicit modeling of non-assessed learning materials, its
ability in representing non-linear relationships and its ca-
pacity in handling larger amounts of data, it outperforms all
the baselines, in accurately predicting student performance.
We further showcased DMKT’s ability in meaningfully trac-
ing student knowledge over assessed and non-assessed learn-
ing resources, and the potential effect that each of them
can have on student knowledge. In our particular example,
we showed that solving problems is a more effective way to
learn for our selected student, compared to watching video
lectures. Finally, we presented that DMKT can find inter-
pretable latent concepts of non-assessed learning materials,
that can be used to group them into meaningful clusters.
In the future work, we would like to explore this model on
various of learning activities to learn hidden patterns on dif-
ferent learning resources so as to provide tailored learning
resource recommendations.

Acknowledgements. This paper is based upon work sup-
ported by the National Science Foundation under Grant No.
1755910.

6. REFERENCES
[1] R. Agrawal, M. Christoforaki, S. Gollapudi,

A. Kannan, K. Kenthapadi, and A. Swaminathan.
Mining videos from the web for electronic textbooks.
In Proceedings of the 12th International Conference on
Formal Concept Analysis, pages 219–234, Berlin,
Heidelberg, 2014. Springer.

[2] R. Agrawal, S. Gollapudi, A. Kannan, and
K. Kenthapadi. Enriching textbooks with images. In
Proceedings of the 20th ACM International Conference
on Information and Knowledge Management, pages
1847–1856, New York, NY, USA, 2011. ACM.

[3] J. M. L. Andres, R. S. Baker, G. Siemens, D. Gašević,
and C. A. Spann. Replicating 21 findings on student
success in online learning. Technology, Instruction,
Cognition, and Learning, pages 313–333, 2016.

[4] J. E. Beck, K.-m. Chang, J. Mostow, and A. Corbett.
Does help help? introducing the bayesian evaluation
and assessment methodology. In Proceedings of the 9th
International Conference on Intelligent Tutoring
Systems, pages 383–394, Berlin, Heidelberg, 2008.
Springer.

[5] Y. Choi, Y. Lee, J. Cho, J. Baek, B. Kim, Y. Cha,
D. Shin, C. Bae, and J. Heo. Towards an appropriate
query, key, and value computation for knowledge
tracing. In Proceedings of the 7th ACM Conference on
Learning at Scale, pages 341–344, New York, NY,
USA, 2020. ACM.

[6] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User Modeling and User-Adapted Interaction,
4(4):253–278, 1994.

204 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

[7] T.-N. Doan and S. Sahebi. Rank-based tensor
factorization for student performance prediction. In
Proceedings of the 12th International Conference on
Educational Data Mining. International Educational
Data Mining Society, 2019.

[8] F. Drasgow and C. L. Hulin. Item response theory.
Handbook of Industrial and Organizational Psychology,
pages 577–636, 1990.

[9] A. Ghosh, N. Heffernan, and A. S. Lan. Context-aware
attentive knowledge tracing. In Proceedings of the 26th
ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages
2330–2339, New York, NY, USA, 2020. ACM.

[10] R. Hosseini, T. Sirkiä, J. Guerra, P. Brusilovsky, and
L. Malmi. Animated examples as practice content in a
java programming course. In Proceedings of the 47th
ACM Technical Symposium on Computing Science
Education, pages 540–545, New York, NY, USA, 2016.
ACM.

[11] Y. Huang, J. P. González-Brenes, and P. Brusilovsky.
Challenges of using observational data to determine
the importance of example usage. In Proceedings of
the 17th International Conference on Artificial
Intelligence in Education, pages 633–637, Berlin,
Heidelberg, 2015. Springer.

[12] H. Khosravi, G. Demartini, S. Sadiq, and D. Gasevic.
Charting the design and analytics agenda of
learnersourcing systems. In Proceedings of the 11th
International Learning Analytics and Knowledge
Conference, page 32–42, New York, NY, USA, 2021.
ACM.

[13] K. R. Koedinger, J. Kim, J. Z. Jia, E. A. McLaughlin,
and N. L. Bier. Learning is not a spectator sport:
Doing is better than watching for learning from a
mooc. In Proceedings of the 2nd ACM Conference on
Learning at Scale, page 111–120, New York, NY, USA,
2015. ACM.

[14] A. S. Lan, A. E. Waters, C. Studer, and R. G.
Baraniuk. Sparse factor analysis for learning and
content analytics. The Journal of Machine Learning
Research, 15(1):1959–2008, 2014.

[15] A. S. Najar, A. Mitrovic, and B. M. McLaren.
Adaptive support versus alternating worked examples
and tutored problems: Which leads to better learning?
In Proceedings of the 22nd International Conference
on User Modeling, Adaptation, and Personalization,
pages 171–182, Berlin, Heidelberg, 2014. Springer.

[16] S. Pandey and G. Karypis. A self-attentive model for
knowledge tracing. In Proceedings of the 12th
International Conference on Educational Data Mining,
pages 384–389. International Educational Data Mining
Society, 2019.

[17] R. Pelánek. Measuring similarity of educational items:
An overview. IEEE Transactions on Learning
Technologies, 13(2):354–366, 2019.

[18] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,
L. Guibas, and J. Sohl-Dickstein. Deep knowledge
tracing. In Proceedings of the 28th International
Conference on Neural Information Processing Systems
- Volume 1, page 505–513, Cambridge, MA, USA,
2015. MIT Press.

[19] S. Sahebi and P. Brusilovsky. Student performance

prediction by discovering inter-activity relations.
International Educational Data Mining Society, 2018.

[20] S. Sahebi, Y.-R. Lin, and P. Brusilovsky. Tensor
factorization for student modeling and performance
prediction in unstructured domain. International
Educational Data Mining Society, 2016.

[21] C. K. Yeung. Deep-irt: Make deep learning based
knowledge tracing explainable using item response
theory. In Proceedings of the 12th International
Conference on Educational Data Mining, pages
683–686. International Educational Data Mining
Society, 2019.

[22] M. V. Yudelson, K. R. Koedinger, and G. J. Gordon.
Individualized bayesian knowledge tracing models. In
Proceedings of the 18th International Conference on
Artificial Intelligence in Education, pages 171–180,
Berlin, Heidelberg, 2013. Springer.

[23] J. Zhang, X. Shi, I. King, and D.-Y. Yeung. Dynamic
key-value memory networks for knowledge tracing. In
Proceedings of the 26th International Conference on
World Wide Web, pages 765–774, New York, NY,
USA, 2017. ACM.

[24] L. Zhang, X. Xiong, S. Zhao, A. Botelho, and N. T.
Heffernan. Incorporating rich features into deep
knowledge tracing. In Proceedings of the 4th ACM
Conference on Learning at Scale, pages 169–172, New
York, NY, USA, 2017. ACM.

[25] S. Zhao, C. Wang, and S. Sahebi. Modeling knowledge
acquisition from multiple learning resource types. In
Proceedings of The 13th International Conference on
Educational Data Mining, pages 313–324.
International Educational Data Mining Society, 2020.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 205

The Effect of an Intelligent Tutor on Performance on
Specific Posttest Problems

Adam Sales
Worceseter Polytechnic

Institute
asales@wpi.edu

Ethan Prihar
Worceseter Polytechnic

Institute
ebprihar@gmail.com

Neil Heffernan
Worceseter Polytechnic

Institute
nth@wpi.edu

John F. Pane
Rand Corporation

jpane@rand.org

ABSTRACT
This paper drills deeper into the documented effects of the
Cognitive Tutor Algebra I and ASSISTments intelligent tu-
toring systems by estimating their effects on specific prob-
lems. We start by describing a multilevel Rasch-type model
that facilitates testing for differences in the effects between
problems and precise problem-specific effect estimation with-
out the need for multiple comparisons corrections. We find
that the effects of both intelligent tutors vary between problems–
the effects are positive for some, negative for others, and
undeterminable for the rest. Next we explore hypotheses
explaining why effects might be larger for some problems
than for others. In the case of ASSISTments, there is no
evidence that problems that are more closely related to stu-
dents’ work in the tutor displayed larger treatment effects.

Keywords
Causal impact estimates,multilevel modeling,intelligent tu-
toring systems

1. INTRODUCTION: AVERAGE AND ITEM-
SPECIFIC EFFECTS

The past decade has seen increasing evidence of the effec-
tiveness of intelligent tutoring systems (ITS) in supporting
student learning [7][13]. However, surprisingly little detail
is known about these effects such as which students experi-
ence the biggest benefits, under what conditions. This paper
will focus on the question of which areas of learning had the
largest impact in two different year-long randomized trials:
of the Cognitive Tutor Algebra I curriculum (CTA1) [17]
and of the ASSISTments ITS [22].

Large-scale efficacy or effectiveness trials in education re-

search, including evaluations of ITS [17][18][22], often esti-
mate the effect of an educational intervention on student
scores on a standardized test. These tests consist of many
items, each of which tests student abilities in, potentially, a
separate set of skills. Prior to estimating program effects,
analysts collapse data across items into student scores, of-
ten using item response theory models [25] that measure
both item- and student-level parameters. Then, these stu-
dent scores are compared between students assigned to the
intervention group and those assigned to control.

This approach has its advantages, in terms of simplicity
and (at least after aggregating item data into test scores)
model-free causal identification. If each item is a measure-
ment of one underlying latent construct (such as “algebra
ability”) aggregating items into test scores yields efficiency
gains. However, in the (quite plausible) case that posttest
items actually measure different skills, and the impact of
the ITS varies from skill to skill, item-specific impacts can
be quite informative.

In the case of CTA1 and ASSISTments, we find that, indeed,
the ITS affect student performance differently on different
posttest items, though at this stage it is unclear why the
affects differed.

The following section gives an overview of the two large-
scale ITS evaluations we will discuss, including a discus-
sion of the available data and of the two posttests. Next,
Section 3 will discuss the Bayesian multilevel model we use
to estimate item-specific effects, including a discussion of
multiple comparisons; Section 4 will discuss the results—
estimates of how the two ITS impacted different posttest
items differently; Section 5 will present a preliminary ex-
ploration of some hypotheses as to why ASSISTments may
have impacted different skills differently; and Section 6 will
conclude.

2. THE CTA1 AND ASSISTMENTS TRIALS
This paper uses data from two large-scale field trials of ITSs
CTA1 and ASSISTments. The CTA1 intervention consisted
of a complete curriculum, combining the Cognitive Tutor
ITS, along with a student-centered classroom curriculum.
CTA1 was a created and run by Carnegie Learning; an up-

Adam Sales, Ethan Prihar, Neil Heffernan and John Pane “The Effect of
an Intelligent Tutor on Performance on Specific Posttest Problems”. 2021.
In: Proceedings of The 14th International Conference on Educational Data
Mining (EDM21). International Educational Data Mining Society, 206-
215. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

206 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

dated version of the ITS is now known as Mathia. The Cog-
nitive Tutor is described in more detail in [2] and elsewhere,
and the effectiveness trial is described in [17]. ASSISTments
is a free online-homework platform, hosted by Worcester
Polytechnic Institute, that combines electronic versions of
textbook problems, including on-demand hints and imme-
diate feedback, with bespoke mastery-based problem sets
known as “skill builders.” ASSISTments is described in [10]
and the efficacy trial is described in [22].

This section describes the essential aspects of the field trials
and the data that we will use in the rest of the paper.

2.1 The CTA1 Effectiveness Trial
From 2007 to 2010, the RAND Corporation conducted a
randomized controlled trial to compare the effectiveness of
the CTA1 curriculum to business as usual (BaU). The study
tested CTA1 under authentic, natural conditions, i.e., over-
sight and support of CTA1’s use was the same as it would
have been if there was not a study being conducted. Nearly
20,000 students in 70 high schools (n = 13, 316 students) and
76 middle schools (n = 5, 938) located in 52 diverse school
districts in seven states participated in the study. Partici-
pating students in Algebra I classrooms took an algebra I
pretest and a posttest, both from the CTB/McGraw-Hill
Acuity series.

Schools were blocked into pairs prior to randomization, based
on a set baseline, school-level covariates, and within each
pair, one school was assigned to the CTA1 arm and the other
to BaU. In the treatment schools, students taking algebra
I were supposed to use the CTA1 curriculum, including the
Cognitive Tutor software; of course, the extent of compliance
varied widely [12][11].

Results from the first and second year of the study were re-
ported separately for middle and high schools. In the first
year, the estimated treatment effect was close to zero in mid-
dle schools and slightly negative in high schools. However,
the 95% confidence intervals for both these results included
negative, null, and positive effects. In the second year, the
estimated treatment effect was positive–roughly one fifth of
a standard deviation—for both middle and high schools, but
it was only statistically significant in the high school stra-
tum.

In this study, we make use of students’ overall scores on
the pretest, anonymized student, teacher, school, and ran-
domization block IDs, and an indicator variable for whether
each student’s school was assigned to the CTA1 or BaU,
along with item-level posttest data: whether each student
answered each posttest item correctly. For the purposes of
this study, skipped items were considered incorrect.

2.1.1 Posttest: The Algebra Proficiency Exam
The RAND CTA1 study measured the algebra I learning
over the course of the year using the McGraw-Hill Algebra
Proficiency Exam (APE). This was a multiple choice stan-
dardized test with 32 items testing a mix of algebra and
pre-algebra skills. Table 1, categorizes the test’s items by
the algebra skills they require, and gives an example of a
problem that would fall into each category. The categoriza-
tion was taken from the exam’s technical report [6].

2.2 The Maine ASSISTments Trial
From 2012–2014, SRI International conducted an random-
ized field trial in the state of Maine to estimate the effi-
cacy of ASSISTments in improving 7th grade mathemat-
ics achievement. Forty-five middle schools from across the
state of Maine were randomly assigned between two condi-
tions: 23 middle schools were assigned to a treatment condi-
tion; mathematics teachers in these schools were instructed
to use ASSISTments to assign homework, receiving support
and professional development while doing so. The remain-
ing 22 schools in the BaU condition were barred from using
ASSISTments during the course of the study but were of-
fered the same resources and professional development as
the treatment group after the study was over. The study
was conducted in Maine due to the state’s program of pro-
viding every student with a laptop, which allowed students
to complete homework online.

The 45 participating schools were grouped into 21 pairs and
one triplet based on school size and prior state standard-
ized exam scores; one school in each pair, and two schools
in the triplet, were assigned to the ASSISTments condition,
with the remaining schools assigned to BaU. Subsequent to
random assignment, one of the treatment schools dropped
out of the study, but its matched pair did not. Although
the study team continued to gather data from the now-
unmatched control school, that data was not included in the
study. However, we are currently unable to identify which of
the control schools was excluded from the final data analysis,
so the analysis here includes 44 schools, while [22] includes
only 43.

The study measured student achievement on the standard-
ized TerraNova math test at the end of the second year of im-
plementation, and estimated a treatment effect of 0.18±0.12
standard deviations.

In this study, we make use of anonymized student, teacher,
school, and randomization block IDs, and an indicator vari-
able for whether each student’s school was assigned to the
ASSISTments or BaU, along with item-level posttest data:
whether each student answered each posttest item correctly.
For the purposes of this study, skipped items were consid-
ered incorrect. The initial evaluation included a number of
student-level baseline covariates drawn from Maine’s state
longitudinal data system, include prior state standardized
test scores. We do not currently have access to that data;
the only covariate available was an indicator of whether each
student was classified as special education.

2.3 The TerraNova Test
The primary outcome of the ASSISTments Maine trial was
students’ scores on the TerraNova Common Core assessment
mathematics test, published by Data Recognition Corpora-
tion CTB. The TerraNova assessment includes 37 items, 32
of which were multiple choice and 5 of which were open re-
sponse. Unfortunately, we detected an anomaly in the item-
level data for the open-response questions, so this report will
focus only on the 32 multiple choice questions.

The items are supposed to align with the Common Core
State Standards, but the research team was not given a
document aligning CCSS with the test items. Instead, a

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 207

Objective Items Example
Functions and Graphs 6, 8, 19, 20, 22,

23, 27, 31, 32
Which of these points is on the graph of [func-
tion]

Geometry 12, 18, 24, 29 Find the length of the base of the right trian-
gle shown below

Graphing Linear Equations 5, 9, 15, 17, 26 Which of the lines below is the graph of [lin-
ear equation]?

Quadratic Equations and Functions 2, 25, 28, 30 Which of these shows a correct factorization
of [quadratic equation]?

Solving Linear Equations and Linear Inequal-
ities

1, 4, 11, 13, 16 Solve the following system of equations

Variables, Expressions, Formulas 3, 7, 10, 14, 21 Which of these expressions is equivalent to
the one below?

Table 1: Objectives required for the 32 items of the Algebra Proficiency Exam, the posttest for the CTA1 Evaluation

member of the ASSISTments staff with expertise in middle
school education aligned them according to her best judg-
ment. Table 2 gives this alignment. More information on
specific standards can be found at the CCSS website [16].

3. METHODOLOGY: MULTILEVEL EFFECTS
MODELING

In principal estimating program effects on each posttest item
is straightforward: the same model used to estimate effects
on student overall scores could be used to estimate effects
on each item individually (perhaps—but not necessarily—
adapted for a binary response). However, estimating 32 sep-
arate models for each stratum of the CTA1 study, and 32
separate models for the ASSISTments study ignores mul-
tilevel structure of the dataset, and leads to imprecise es-
timates. Moreover, doing so invites problems of multiple
comparisons—between the four strata of the CTA1 study
and the ASSISTments study, there are 160 separate effects
to estimate. If each estimate is subjected to a null hypoth-
esis test at level α = 0.05, even if neither ITS affected test
performance at all, we would still expect to find roughly
eight significant effects.

Instead, we estimated item-specific effects with a multilevel
logistic regression model model [8], based roughly on the
classic “Rasch” model of item response theory [25][20]. That
is, we estimated all item-specific effects for a particular ex-
periment simultaneously, with one model, in which the item-
specific effect estimates are random effects. The separate
effects were modeled as if drawn from a normal distribu-
tion with a mean and standard deviation estimated from
the data. This normal distribution can be thought of as
a Bayesian prior distribution; the fact that its parameters
are estimated from the data puts us in the realm of empir-
ical Bayes [5]. This prior distribution acts as a regularizer,
shrinking the several item-specific effect estimates towards
their mean [15]. Although doing so incurs a small amount
of bias, it reduces standard errors considerably while main-
taining the nominal coverage of confidence intervals [23].

Gelman, Hill, and Masanao [9] argue that estimating a set
of different treatment effects within a multilevel model also
obviates the need for multiplicity corrections. Generally
speaking, the reason for spurious significant results is that
as a group of estimates gets larger, so does the probability
that one of them will exceed the test’s critical value. In

other words, as a the set of estimates grows, so does their
maximum (and their minimum, in magnitude). Multilevel
modeling helps by shrinking the most extreme estimates to-
wards their common mean. Since extreme values are less
likely in a multilevel model, so are spuriously significant ef-
fect estimates.

A small simulation study in the Appendix (mostly) supports
Gelman et al.’s argument. As the number of estimated ef-
fects grows, the familywise error rate (i.e. the probability
of any type-I error in a group of tests) grows rapidly if ef-
fects are estimated and tested separately, but not if they are
estimated simultaneously in a multilevel model. However,
the error rates for the multilevel model effect estimates are
slightly elevated—hovering between 0.05 and 0.075 through-
out. There is good reason to believe that a fully Bayesian
approach will improve these further (see, e.g., [21], p. 425).

3.1 The Model for the CTA1 Posttest
For the CTA1 RCT, we estimated a separate model for high
school and middle school, but we combined outcome data
across the two years. Let Yij = 1 if student i answered item
j correctly, and let πij = Pr(Yij = 1). Then the multilevel
logistic model was:

logit(πij) = β0 + β1Y ear2i + β2Trti + β3Pretesti

+ β4Y ear2iTrti + β5Y ear2iPretesti

+ γj0 + γj1Trti + γj2Y ear2i + γj3Y ear2iTrti

+ δi + ηcls[i] + εsch[i]

(1)

Where Y ear2i = 1 if student i was in the 2nd year of the
study and 0 otherwise, Trti = 1 if student i was in a school
assigned to treatment, and Pretesti is i’s pretest score. The
coefficients β0–β5 are “fixed effects,” that is, they are not
given any probability model. γj0–γj3 vary with posttest
item j, and are modeled jointly as multivariate normal:
γ ∼ MVN(0,Σ), where Σ is a 4 × 4 covariance matrix
for the γ terms. Similarly, the random intercepts δi, ηcls[i],
and εsch[i], which vary at the student, classroom, and school
level, are each modeled as univariate normal with mean 0
and a standard deviation estimated from the data.

Collecting like terms in model (1), note that for a student
in the first year of the study, the effect of assignment to
the CTA1 condition is β2 + γj1 on the logit scale; in other
words, the effects of assignment to CTA1 in year 1 are mod-

208 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

CCSS Items
Expressions and Equations 17,28
Functions (8G) 26,27
Geometry 12,16,19,21,23,31
Make sense of problems and persevere in solving them
(MP)

13

Ratios and Proportional Relationships 22,24,25,29
Reason abstractly and quantitatively (MP) 15,20
Statistics and Probability 10,11,32
The Number System 1,2,3,4,5,6,7,8,9,14,18

Table 2: Common Core State Standards (CCSS) for the 32 multiple choice TerraNova items, as identified by the ASSISTments
team. Standards are from grade 7 except where indicated–grade 8 (8G) or Mathematical Practice (MP)

eled as normal with a mean of β2 and a variance of Σ22.
The variance Σ22 estimates the extent to which the effect of
assignment to the CTA1 condition varies from one problem
to another. If the effect were the same for every posttest
problem, we would have Σ22 = 0. For students year 2, the
effect on problem j is β2 +β4 +γj1 +γj3 on the logit scale—
the effects are normally distributed with a mean of β2 + β4
and a variance of Σ22 + Σ44 + 2Σ24. The Σ matrix also in-
cludes the covariance between the effects of the intervention
on items in year 1 and the effects on the same items in year
2 as

Cov(γj1, γj1 + γj3) = V ar(γj1) +Cov(γj1, γj3) = Σ22 + Σ23

Likelihood ratio tests using the χ2 distribution can test the
null hypothesis that the variance of treatment effects are 0.
For simplicity, we did so using separate models for the two
years, rather than the combined model (1).

The treatment effects themselves are estimated using the
BLUPs (best linear unbiased predictors) for the random ef-
fects γ. In many contexts, random effects are considered
nuisance parameters, and primary interest is in the fixed
(unmodeled) effects β. However, there is a long tradition,
mostly in the Bayesian and empirical Bayes literature, of
using BLUPs for estimation of quantities of interest. The
models were fit in R [19] using the lme4 package [3], which
provides empirical Bayesian estimates of the conditional (or
posterior) variance of the BLUPs, which we use (in combi-
nation with the estimated standard errors for fixed effects)
in constructing confidence intervals for item-specific effects.

3.2 The Model for the ASSISTments Posttest
The model for estimating item-specific effect of ASSIST-
ments on TerraNova items was highly similar to model (1).
There were three important differences: first, there was only
one year of data. Second, we did not have access to pretest
scores, but we did include an indicator for special education
status as a covariate. Lastly, the hierarchical variance struc-
ture for student errors was somewhat different—we included
an error term for teacher instead of classroom, and included
random intercepts for randomization block.1

1In linear models it is typically recommended to include
fixed effects for randomization block [4]. In logistic regres-
sion, including a large number of fixed effects violates the
assumptions underlying the asymptotic [1]. We tried it both
ways and found that it made little difference.

All in all, the model was:

logit(πij) = β0 + β1Trti + β2SpEdi

+ γj0 + γj1Trti

+ δi + ηtch[i] + εsch[i] + ζpair[i]

(2)

where SpEdi = 1 if student i is classified as needing special
education, ηtch[i] is a random intercept for i’s teacher, and
ζpair[i] is a random intercept for i’s school’s randomization
block. The rest of the parameters and variables are defined
the same as in (1). The treatment effect on problem j is
modeled as β1 + γj1 for multiple choice items. The random
effects γ ∼ N(0,Σ) where Σ is a 2× 2 covariance matrix.

4. MAIN RESULTS: ON WHICH ITEMS DID
ITSS BOOST PERFORMANCE?

4.1 CTA1
Figure 1 gives the results from model (1) fit to the middle
school and to the high school sample. Each point on the plot
represents the estimated effect of assignment to the CTA1
condition on the log odds of a correct answer on one posttest
item. The estimates are accompanied by approximate 95%
confidence intervals.

It is immediately clear that the effect of assignment to CT
vary between posttest items–indeed the χ2 likelihood ratio
test rejects the null hypothesis of no treatment effect vari-
ance with p < 0.001 in all four strata.

In the middle school sample, the average treatment effect
across items was close to 0 for both years (-0.08 in year 1
and 0.03 in year 2 on the logit scale), and not statistically
significant. However, the standard deviation of treatment ef-
fects between problems was much higher—0.31 in year 1 and
0.29 in year 2, implying that assignment to CTA1 boosted
performance on some problems and hurt performance on
others. To interpret the standard deviation of effects on the
probability scale, consider that for a marginal student, with
a 1/2 probability of answering an item correctly, a difference
of 0.3 between two treatment effects would correspond to a
difference in the probability of a correct answer of about
7.5% (using the “divide by 4 rule” of [8] p. 82). The ef-
fects are also moderately correlated across the two years,
with ρ ≈ 0.4—items that CTA1 impacted in year 1 were
somewhat likely to be similarly impacted in year 2.

Many of the treatment effects in the upper pane of Fig-
ure 1 are estimated with too much noise to draw strong

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 209

Figure 1: Estimated treatment effects of CTA1 for each level—high school or middle school—implementation year, and posttest
item, with approximate 95% confidence intervals

conclusions—the sample size was substantially smaller in
the middle school stratum than in the high school stratum.
However, some effects are discernible: in year 1, effects were
negative, and on the order of roughly 0.4 on the logit scale
(0.1 on the probability scale for a marginal student) on items
1, 2, 9, 10, 12, 19, 22, and 25, and on the order of approxi-
mately 0.7 for item 17 (which asks students to match a linear
equation to its graph), and similarly-sized positive effects on
items 27, 30, and 32. In year 2 there were fewer clearly neg-
ative effects—on items 1 and 7—and more positive effects,
such as on items 16, 18, 22, 29, and 32. There is a strik-
ing difference between the year 1 and year 2 effects on item
22, which asks students to match a quadratic expression to
its graph—the effect was quite negative in year 2 and quite
positive in year 2.

In the high school sample, the average treatment effect across
items was roughly -0.1 in year 1 and 0.13 in year 2, on the
logit scale, neither statistically significant–though the differ-
ence between the average effect in the two years was signifi-
cant (p < 0.001). The effects varied across items, though less
widely in high school than in middle school—in both years
the standard deviation of item-specific effects was roughly
0.17. Item-specific effects were more highly correlated across
years (ρ ≈ 0.69)—at some points in the lower pane of Fig-
ure 1 it appears as though the curve from year 2 was simply
shifted up from year 1.

The item-specific effects in the high school sample were esti-
mated with substantially more precision than in the middle
school sample, due to a larger sample size. In year 1, there

were striking negative effects on items 2, 14, and 25 which
ask students to manipulate algebraic expressions, and on
item 12, which ask students to calculate the length of the
side of a triangle. In year 2, these negative effects disap-
peared. Instead, there were positive effects, especially on
items 8 and 22, which both ask about graphs of algebraic
functions, and on a stretch of items from 15–22. The differ-
ence in the estimated effects between years was positive for
all items and highest for problems 2, 20, and 25, which ask
students to manipulate or interpret algebraic expressions,
and 12, the triangle problem. In items 2, 12, and 25, the
effect was significantly negative in year 1 and closer to zero
in year 2, while for item 20 the effect was close to zero in
year 1 and positive in year 2.

Figure 2 plots the estimated effect on each posttest item as
a function of the item’s objective in Table 1. Some patterns
are notable. There was a wide variance in the effects on
the four geometry problems for middle schoolers in year 1,
but in year 2 all the effects on geometry items were posi-
tive and roughly the same size. The geometry items in the
high school sample follow a similar, if less extreme, pattern.
Across both middle and high school, the largest positive ef-
fects were for Functions and Graphs problems, especially
item 22 for year 2; on items 23, 27, 31 and 32, middle
schoolers—especially in year 2—saw positive effects while
high schoolers saw effects near 0.

4.2 ASSISTments

210 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 2: Estimated treatment effects of CTA1 posttest items arranged by the group of skills each item is designed to test. See
Table 1 for more detail.

Figure 3: Estimated treatment effects of ASSISTments for each multiple choice posttest item, with approximate 95% confidence
intervals

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 211

Figure 3 gives the results from model (2), plotting item-
specific effect estimates with approximate 95% confidence
intervals for each multiple choice TerraNova posttest item.
The model estimated an average effect of 0.33, with a stan-
dard error of 0.23, for multiple choice problems. The stan-
dard deviation of item-specific effects was positive (p<0.001)
but less than for the CTA1 items: it was estimated as 0.16
on the logit scale. The confidence intervals in Figure 3 are
also much wider than those for CTA1; we suspect that a
large part of the reason is that we did not have access to
pretest scores, an important covariate.

The largest effects on the multiple choice items were 28
and 17, which both required students to plug in values for
variables in algebraic expressions. The confidence intervals
around the effects for items 26 and 32 also exclude 0.

Figure 4 plots item-specific effects for multiple choice Ter-
raNova items grouped according to their CCSS, as in Ta-
ble 2, with the non-grade-7 standards grouped together as
“Other.” Interestingly, the largest effects tended to be for
items in this “Other” category—as did the smallest effect,
for item 13. Effects for problems in the “Number System”
and “Ratios and Proportional Relationships” categories had
the most consistent effects, between 0.2 and 0.4 on the logit
scale.

5. EXPLORING HYPOTHESES ABOUT WHY

ASSISTMENTS EFFECTS DIFFERED
Researchers on the ASSISTments team have built on the
CCSS links of Table 2, linking TerraNova posttest items to
data on student work within ASSISTments, for students in
the treatment condition. This gives us an opportunity to
use student work within ASSISTments to explain some of
the variance in treatment effects.

Like TerraNova items in Table 2, ASSISTments problems
are linked with CCSS. By observing which problems treat-
ment students worked on, and using this linkage, we could
observe which Common Core standards they worked on the
most within ASSISTments. We hypothesized that treat-
ment effects might be largest for the TerraNova problems
that were linked with the Common Core standards students
spent the most time working on. In other words, we linked
TerraNova items with worked ASSISTments problems via
Common Core standards. The Common Core linkage we
used in this segment was finer-grained than Table 2, so Ter-
raNova items in the same category in Table 2 may not be
linked with the same problems in this analysis.

We examined our hypothesis in two ways: examining the
relationships between treatment effects and the number of
related ASSISTments problems students in the treatment
group worked, and the number of related ASSISTments prob-
lems students in the treatment group worked correctly. This
analysis includes two important caveats: first, the linkages,
both between TerraNova items and CCSS, and between AS-
SISTments problems and CCSS, were subjective and error-
prone, possibly undermining the linkage between TerraNova
items and ASSISTments problems. Secondly, student work
in ASSISTments is necessarily a post-treatment variable—it
was affected by treatment assignment. If the treatment ran-
domization had fallen out differently, different schools would

have been assigned to the ASSISTments condition and dif-
ferent ASSISTments problems would have been worked. In-
cluding the number of worked or correct related problems
as a predictor in a causal model risks undermining causal
interpretations [14].

Figures 5 and 6 plot estimated item-specific effects for mul-
tiple choice TerraNova items against the number of ASSIST-
ments problems that students in the treatment arm worked
or worked correctly, respectively, over the course of the RCT.
The X-axis is on the square-root scale, and a loess curve is
added for interpretation. Little, if any, relationship is appar-
ent in either figure, suggesting either the lack of a relation-
ship between specific ASSISTments work and posttest items,
or issues with the linkage. This is hardly surprising, given
both the difficulty in linking ASSISTments and TerraNova
problems, and given the fact that topics in mathematics are
inherently connected, so that improving one skill tends to
improve others as well.

6. CONCLUSIONS
Education researchers are increasingly interested in “what
works.” However, the effectiveness of an intervention is
necessarily multifaceted and complex—effects differ between
students, as a function of implementation [24], and, poten-
tially, as a function of time and location. In this paper we
explored a different sort of treatment effect heterogeneity—
differences in effectiveness for different outcomes—specifically,
different posttest items measuring different skills. Collaps-
ing item-level posttest data into a single test score has the
advantage of simplicity (which is nothing to scoff at, espe-
cially in complex causal scenarios) but at a cost. Analysis
using only summary test scores squanders a potentially rich
source of variability and information about intervention ef-
fectiveness that is already at our fingertips. There is little
reason not to examine item-specific effects.

In this paper, we showed how to estimate item specific effects
using a Bayesian or empirical Bayesian multilevel modeling
approach that, we argued, can improve estimation precision
and avoid the need for multiplicity corrections. The esti-
mates we provided here combine maximum likelihood esti-
mation and empirical Bayesian inference; there is good rea-
son to suppose that a fully Bayesian approach would provide
greater validity, especially in standard error estimation and
inference. However, fitting complex multilevel models using
Markov Chain Monte Carlo methods is computationally ex-
pensive, and can be very slow, even with the latest software.
We hope to explore this option more fully in future work.

While estimating item-specific effects is relatively straight-
forward, interpreting them presents a significant challenge.
This is due to a number of factors: first, when looking for
trends in treatment effects by problem attributes, the sam-
ple size is the number of exam items, not the number of
students, so patterns can be hard to observe and verify.
Secondly, there is a good deal of ambiguity and subjectiv-
ity involved in defining and determining item attributes and
features, which is exacerbated by the fact that standardized
tests generally cannot be made publicly available. Lastly,
since student ITS work over the course of a study is nec-
essarily post-treatment assignment, careful causal modeling
(such as principal stratification [24]) may be necessary. Ex-

212 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 4: Estimated treatment effects of ASSISTments for each multiple choice posttest item, arranged according to CCSS, as
in Table 2. The “Other” category includes Functions and the two Mathematical Practice standards, “make sense of problems
and persevere in solving them” and “reason abstractly and quantitatively”.

Figure 5: Estimated effects on multiple-choice TerraNova items plotted against the number of related ASSISTments problems
that students in the treatment arm worked over the course of the study. The X-axis is plotted on the square-root scale, and a
non-parametric loess fit is added for interpretation.

Figure 6: Estimated effects on multiple-choice TerraNova items plotted against the number of related ASSISTments problems
that students in the treatment arm worked correctly over the course of the study. The X-axis is plotted on the square-root scale,
and a non-parametric loess fit is added for interpretation.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 213

amining heterogeneity between item-specific treatment ef-
fects may play a larger role in helping to generate hypotheses
about ITS effectiveness than in confirming hypotheses.

Despite those difficulties, the analysis here uncovered impor-
tant information about the CTA1 and ASSISTments effects.
First, the discovery that the effects vary between items is
notable in itself. In our analysis of CTA1 we noticed that
some of the largest effects—and differences between first and
second-year effects— were for posttest items involving ma-
nipulating algebraic expressions and interpreting graphs. In
our analysis of ASSISTments, we discovered a large differ-
ence between negative effects on open-ended questions and
positive effects on multiple choice questions, and also that
the largest effects were on problems requiring students to
plug numbers into algebraic expressions.

We hope that this research will serve as a proof-of-concept
and spur further work delving deeper into data we already
have.

7. REFERENCES
[1] A. Agresti. Categorical data analysis, volume 482.

John Wiley & Sons, 2003.

[2] J. R. Anderson, A. T. Corbett, K. R. Koedinger, and
R. Pelletier. Cognitive tutors: Lessons learned. The
journal of the learning sciences, 4(2):167–207, 1995.

[3] D. Bates, M. Mächler, B. Bolker, and S. Walker.
Fitting linear mixed-effects models using lme4.
Journal of Statistical Software, 67(1):1–48, 2015.

[4] H. S. Bloom, S. W. Raudenbush, M. J. Weiss, and
K. Porter. Using multisite experiments to study
cross-site variation in treatment effects: A hybrid
approach with fixed intercepts and a random
treatment coefficient. Journal of Research on
Educational Effectiveness, 10(4):817–842, 2017.

[5] G. Casella. An introduction to empirical bayes data
analysis. The American Statistician, 39(2):83–87,
1985.

[6] CTB/McGraw-Hill. Acuity algebra proficiency
technical report. Monterey, CA, 2007.

[7] M. Escueta, V. Quan, A. Nickow, and P. Oreopoulos.
Education technology: An evidence-based review.
NBER Working Paper, (w23744), 2017.

[8] A. Gelman and J. Hill. Data analysis using regression
and multilevel/hierarchical models. Cambridge
university press, 2006.

[9] A. Gelman, J. Hill, and M. Yajima. Why we (usually)
don’t have to worry about multiple comparisons.
Journal of Research on Educational Effectiveness,
5(2):189–211, 2012.

[10] N. T. Heffernan and C. L. Heffernan. The assistments
ecosystem: Building a platform that brings scientists
and teachers together for minimally invasive research
on human learning and teaching. International
Journal of Artificial Intelligence in Education,
24(4):470–497, 2014.

[11] A. Israni, A. C. Sales, and J. F. Pane. Mastery
learning in practice: A (mostly) descriptive analysis of
log data from the cognitive tutor algebra i
effectiveness trial, 2018.

[12] R. Karam, J. F. Pane, B. A. Griffin, A. Robyn,

A. Phillips, and L. Daugherty. Examining the
implementation of technology-based blended algebra i
curriculum at scale. Educational Technology Research
and Development, 65(2):399–425, 2017.

[13] J. A. Kulik and J. Fletcher. Effectiveness of intelligent
tutoring systems: a meta-analytic review. Review of
educational research, 86(1):42–78, 2016.

[14] J. M. Montgomery, B. Nyhan, and M. Torres. How
conditioning on posttreatment variables can ruin your
experiment and what to do about it. American
Journal of Political Science, 62(3):760–775, 2018.

[15] C. N. Morris. Parametric empirical bayes inference:
theory and applications. Journal of the American
statistical Association, 78(381):47–55, 1983.

[16] National Governors Association Center for Best
Practices, Council of Chief State School Officers.
Common core state standards: Mathematics, 2010.

[17] J. F. Pane, B. A. Griffin, D. F. McCaffrey, and
R. Karam. Effectiveness of cognitive tutor algebra i at
scale. Educational Evaluation and Policy Analysis,
36(2):127–144, 2014.

[18] J. F. Pane, D. F. McCaffrey, M. E. Slaughter, J. L.
Steele, and G. S. Ikemoto. An experiment to evaluate
the efficacy of cognitive tutor geometry. Journal of
Research on Educational Effectiveness, 3(3):254–281,
2010.

[19] R Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2020.

[20] G. Rasch. Probabilistic models for some intelligence
and attainment tests. ERIC, 1993.

[21] S. W. Raudenbush and A. S. Bryk. Hierarchical linear
models: Applications and data analysis methods,
volume 1. sage, 2002.

[22] J. Roschelle, M. Feng, R. F. Murphy, and C. A.
Mason. Online mathematics homework increases
student achievement. AERA open,
2(4):2332858416673968, 2016.

[23] A. Sales, T. Patikorn, and N. T. Heffernan. Bayesian
partial pooling to improve inference across a/b tests in
edm. In Proceeding of the Educational Data Mining
Conference, 2018.

[24] A. Sales, A. Wilks, and J. Pane. Student usage
predicts treatment effect heterogeneity in the cognitive
tutor algebra i program. In Proceedings of the 9th
International Conference on Educational Data Mining.
International Educational Data Mining Society, pages
207–214, 2016.

[25] W. J. van der Linden and R. K. Hambleton. Handbook
of modern item response theory. Springer Science &
Business Media, 2013.

APPENDIX

A. A SIMULATION STUDY OF MULTIPLE
COMPARISONS

We ran a small simulation study testing [9]’s assertion that
multiplicity corrections are unnecessary when estimating dif-
ferent effects from BLUPs in a multilevel model. [9] stated
their case in terms of fully Bayesian models, whereas we used
an empirical Bayesian approach that may differ somewhat.

214 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

0.00

0.25

0.50

0.75

1.00

10 20 30 40
Experiments

Fa
m

ily
w

is
e

E
rr

or
 R

at
e

Separate Together

Figure 7: United we stand: results from a simulation of fam-
ilywise error rate using separate t-tests for each experiment
or using multilevel modeling.

In our simulation, in each simulation run, we generated
data on Nexpr experiments, where Nexpr was a param-
eter we varied. In each experiment, there were n = 500
simulated subjects, half assigned to treatment and half to
control. They were given “outcome” data Y ∼ N(0, 1), with
no treatment effect.

We analyzed the experiment data in two ways. First, we
estimated a p-value for each experiment separately, using
t-tests. This is the conventional approach. Then, we we
estimated a multilevel model:

Yij = β0 + γ1jExprj + γ2jTrti + εij

where β0 is an intercept, γ1j are random intercepts for exper-
iment, γ2j is the treatment effect for experiment j, and εij is
a normally-distributed error term. γ ∼ MVN ({0, γ20},Σ)
where γ20 is the average effect across all experiments. The
number of experiments in each simulation run, Nexpr, was
varied from 5 to 40, in increments of 5. In each case, we
estimated the familywise error rate, the probability of at
least one statistically significant effect estimate (at α = 0.05)
across the Nexpr experiments.

The results are in Figure 7. As expected, the familywise
error rate increased rapidly when effects were estimated and
tested separately in each of the Nexpr experiments. When
effects were estimated jointly in a multilevel model, in a
way analogous to the method described in Section 3, the
familywise error rate remained roughly constant as Nexpr
increased. However, the familywise error rate in the multi-
level modeling approach was slightly elevated, ranging from
roughly 0.05 to 0.075.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 215

Math Operation Embeddings for Open-ended Solution
Analysis and Feedback

Mengxue Zhang1, Zichao Wang2, Richard Baraniuk2, Andrew Lan1∗

1University of Massachusetts Amherst, 2Rice University

ABSTRACT
Feedback on student answers and even during intermediate
steps in their solutions to open-ended questions is an im-
portant element in math education. Such feedback can help
students correct their errors and ultimately lead to improved
learning outcomes. Most existing approaches for automated
student solution analysis and feedback require manually con-
structing cognitive models and anticipating student errors
for each question. This process requires significant human
effort and does not scale to most questions used in home-
works and practices that do not come with this information.
In this paper, we analyze students’ step-by-step solution pro-
cesses to equation solving questions in an attempt to scale
up error diagnostics and feedback mechanisms developed for
a small number of questions to a much larger number of
questions. Leveraging a recent math expression encoding
method, we represent each math operation applied in so-
lution steps as a transition in the math embedding vector
space. We use a dataset that contains student solution steps
in the Cognitive Tutor system to learn implicit and explicit
representations of math operations. We explore whether
these representations can i) identify math operations a stu-
dent intends to perform in each solution step, regardless of
whether they did it correctly or not, and ii) select the ap-
propriate feedback type for incorrect steps. Experimental
results show that our learned math operation representa-
tions generalize well across different data distributions.

Keywords
Embeddings, Feedback, Math expressions, Math operations

1. INTRODUCTION
Math education is of crucial importance to a competitive
future science, technology, engineering, and mathematics
(STEM) workforce since math knowledge and skills are re-
quired in many STEM subjects [11]. One important way

∗This work is supported by the National Science Foundation
under grant IIS-1917713.

to help struggling students improve in math is to diagnose
errors from student answers to math questions and deliver
personalized support to help them correct these errors [1].
In short-answer questions, feedback of various types [39] can
be deployed according to the specific incorrect final answers
students submit, while in open-ended questions, feedback
can be deployed at intermediate solution steps according to
the specific actions they take and their outcomes [22]. In
traditional educational settings, this feedback process relies
on teachers going over student work, identifying errors, and
providing feedback [15], which results in a labor-intensive
process and a slow feedback cycle for students. Such a set-
ting is even more limited as a result of the COVID-19 pan-
demic, which introduced new barriers to face-to-face inter-
actions between teachers and students.

In intelligent tutoring systems, a more scalable approach to
math feedback is to automatically deploy feedback based on
students’ final answers or certain incorrect intermediate so-
lution steps. For example, in ASSISTments [12], teachers
can create hints and feedback messages for specific incorrect
student answers to short-answer questions that they antici-
pate [28], which the system can automatically deploy when
students submit these incorrect answers. This crowdsourc-
ing approach efficiently scales up teachers’ effort so that they
can benefit a large number of students without putting in
additional effort. In many other systems such as Cognitive
Tutor [34] and Algebra Notepad [27], researchers use cogni-
tive models to anticipate student errors as results of buggy
production rules or insufficient knowledge on key math con-
cepts [20, 24]. They then develop corresponding feedback
for intermediate solution steps in multi-step questions (e.g.,
those on equation solving). This cognitive model-based ap-
proach requires significant effort by domain experts and has
shown to be highly effective in large-scale studies.

However, these approaches for student feedback are still lim-
ited in their generalizability to many math questions de-
ployed in daily homeworks and practices. For the teacher
crowdsourcing approach, hint and feedback messages have
to be written for each individual question (or group of ques-
tions generated from the same template with different nu-
merical values). For the cognitive model-based approach, a
rigorous solution process has to be specified for each ques-
tion with annotations on the math operations that should
be applied at each solution step. However, questions used
in many real-world educational settings do not come with
such information; teachers simply adopt them from sources

Mengxue Zhang, Zichao Wang, Richard Baraniuk and Andrew Lan “Math
Operation Embeddings for Open-ended Solution Analysis and Feedback”.
2021. In: Proceedings of The 14th International Conference on Educational
Data Mining (EDM21). International Educational Data Mining Society,
216-227. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

216 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

such as textbooks and open education resources and assign
them to students without developing corresponding feedback
mechanisms. Moreover, past research has shown that a large
portion of incorrect student answers cannot be anticipated
by cognitive models [43], teachers/domain experts [8], or nu-
merical simulations [37]. Therefore, it may be hard for high-
quality feedback developed for questions used in intelligent
tutoring systems to generalize to questions in the wild.

1.1 Contributions
In this paper, we develop data-driven methods that enable
us to analyze step-by-step solutions to open-ended math
questions. In contrast to existing methods that rely on a
top-down approach, i.e., defining the structure of the so-
lution process and anticipating student errors, we propose
a bottom-up approach, i.e., using learned representations of
math expressions and math operations to predict i) math
operations in student solution steps and ii) the appropriate
feedback for incorrect solution steps. We restrict ourselves
to the specific domain of equation solving where the solu-
tion process consists of applying specific math operations
between math expressions in consecutive steps; other sub-
domains of math such as algebra word problems [45] and
questions involving graphs and geometry [16] are left as fu-
ture work. Specifically, our contributions are:

• First, we characterize math operations by how they
transform math expressions in the math embedding
space in each solution step. We leverage recent work
on learning math symbol embeddings from large-scale
scientific formula data [46] to encode math expressions
in student solutions: each math expression is mapped
to a point in the math embedding vector space. We use
synthetically generated data as well as solution steps
generated by real students to learn the representation
of each math operation. We explore several meth-
ods for learning both implicit and explicit math op-
eration representations: a classification-based method
that does not explicitly impose a structure on math op-
erations, a linear model that assumes each operation is
characterized by an additive vector in the embedding
space, and a nonlinear model where math operations
live in their own, interconnected embedding spaces.

• Second, we apply these math operation representation
learning methods to a real-world student step-by-step
solution dataset collected while student learn equation
solving in an intelligent tutoring system, Cognitive Tu-
tor [34]. We validate our math operation representa-
tion learning methods via two tasks: i) predicting the
specific math operation the student intended to ap-
ply in a solution step from the math expressions be-
fore and after the step and ii) predicting the appro-
priate feedback deployed to students from the incor-
rect math expressions they enter. Quantitative results
show that tree embedding-based math expression en-
coding methods outperform other encoding methods
since they are able to explicitly capture the seman-
tic and structural characteristics of math expressions.
They also have better generalizability across different
data distributions and remain effective across different
question difficulty levels and even when student solu-
tions steps contain errors.

 1. COMBINE_ADD (100%)

 2. COMBINE_ADD (60%), ADD_SIDE (40%)

 3. DIV_SIDE (100%)

 4. COMBINE_MUL (92%), COMBINE_ADD (8%)

 5. CHECK_SIGN (71%),
 SIMPLIFY_FRACTION_WRONG (28%)

1

2

3

4

5

Solution steps Predicted math operations
and feedback

...
... ...

Question
Solve for :

Figure 1. Demonstration of the generalizability of our math
operation representations to other data sources for a solution
process provided on Algebra.com. Our methods can success-
fully predict the math operations applied in each step and
the appropriate feedback type in an incorrect step.

1.2 Use Case
Before diving into the technical details, we first illustrate
a potential use case for our math operation representation
learning methods and corresponding operation/feedback
classifiers. Our goal is to transfer expert designs in intel-
ligent tutoring systems for math education to questions in
the wild. Specifically, we apply the math operation rep-
resentations learned from student solution steps and corre-
sponding labels (step name, feedback message) in the highly
structured Cognitive Tutor system to environments that are
not highly structured. Figure 1 shows the solution process
to an equation solving question on Algebra.com1 and the
corresponding math operation and feedback predictions at
each step. We see that our math operation representation
learning methods can accurately predict the math opera-
tions applied in solution steps 1, 3, and 4 using the opera-
tion names provided in the Cognitive Tutor system. Even
in step 2 where two different math operations are combined
into a single step, i.e.,

7x+ 9 = 7− x
↓ ADD x TO BOTH SIDES

7x+ 9 + x = 7− x+ x

↓ COMBINE TERMS ON RIGHT SIDE

7x+ 9 + x = 7,

despite only training on steps in Cognitive Tutor that involve
only one math operation, the classifier is able to recognize
both of them with high predictive probability for both. We

1The original question and the solution process can be
found at https://www.algebra.com/algebra/homework/
equations/Equations.faq.question.4872.html.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 217

also change one of the solution steps, i.e., step 5, to make
it incorrect and test our feedback classifier. In this case,
the classifier is able to recognize the error in this step and
find the corresponding feedback types in Cognitive Tutor.
This potential use case demonstrates the utility of our math
operation representation learning methods: by transferring
knowledge learned in well-designed, highly-structured sys-
tems such as Cognitive Tutor, especially on what feedback
to deploy for each student error, to other domains such as
online math Q&A sites, we are scaling up the effort domain
experts put into the design of these feedback mechanisms.

2. RELATED WORK
One related body of work in math education that studies
student solution processes to identify student strategies and
assess errors. Specifically, [33] uses inverse Bayesian plan-
ning to learn solution strategies (i.e., policies) in equation
solving and capture student misunderstandings in a Markov
decision process framework. Our work focuses on a differ-
ent aspect of the solution process: the representation of the
math expressions at each solution step and the modeling
of the transitions between different math expressions under
math operations. [9] uses basic math operations to con-
struct programs to understand errors that students make in
their solutions to arithmetic questions. Our work focuses
on equation solving, which is a more difficult problem in
which students responses are are more diverse and are less
structured than arithmetic calculations.

Another related body of work focuses on learning representa-
tions of student answers to short-answer questions. [21] an-
alyzes incorrect student answers across multiple questions,
learn representations of errors, and generalize misconception
feedback across questions. Our work analyze the full math
expressions in intermediate solution steps while their work
represents short answers according to the frequency they
occur in an answer pool. [8] uses trained word embeddings
to represent short answers for automated grading purposes.
Our work focuses on learning transitions of math expressions
across solution steps instead of learning representations of
only the final answer.

In domains other than math education, there exist methods
for automated feedback generation, including programming
[30, 31, 40] and essays [35]. However, transferring these
methods to math solutions is not trivial since i) open-ended
math solutions are less structured than programming code
and ii) data-driven representations of math symbols have not
been developed until recently [46] whereas such representa-
tions have been studied for a long time in natural language
processing [6, 7, 26].

Another body of remotely-related work focuses on using
computer vision techniques to identify math expressions
from images for similar math expression retrieval [29], turn-
ing hand-written math expressions into LATEX [47], and au-
tomatically identifying and correcting student errors [14].
These works often bypass the inherent structure of math
expressions and directly use an end-to-end model for their
tasks, which means that they cannot be used to analyze
student knowledge. Nevertheless, these techniques can be
used to build large-scale datasets containing hand-written
student solutions which we can use in the future.

3. BACKGROUND: EMBEDDING MATH
EXPRESSIONS INTO VECTOR SPACES

In this section, we provide an overview of a recent method
that we developed to embed math expressions into a vec-
tor space, i.e., a math embedding space. Doing so turns
discrete, symbolic math expression representations into con-
tinuous, distributed representations [2], which enables us to
manipulate math expressions in a manner compatible with
modern machine learning methodologies.

Our embedding method is a tree-structured encoder illus-
trated in Figure 2. The key observation is that any math
expression has a corresponding symbolic tree-structured rep-
resentation in the operator tree format. In the operator tree,
the non-terminal (non-leaf) nodes are math operators, i.e.,
addition and subtraction, and terminal (leaf) nodes are num-
bers or variables; See Figure 2 for an illustration. Thus, an
operator tree explicitly captures the semantic and structural
properties of a math expression. A number of existing works
have demonstrated the superior performance of using oper-
ator tree representations of math expressions compared to
other math expression representations in applications such
as automatic math word problem solving [32, 48, 51] and
math formulae retrieval [5, 25, 49, 50].

Therefore, we built a math expression encoder that lever-
ages the operator tree representation of math expressions.
Specifically, during the encoding process, it first converts a
math expression into its corresponding tree format, using the
parser introduced in [5]. It then linearizes the tree by depth
first search that enables us to process nodes as a sequence in
which each math symbol is associated with its own trainable
embedding. Next, it leverages positional encoding, similar
to [44, 38], to retain the relative position of each node in the
tree. The output of our encoder is a fixed-dimensional em-
bedding vector that represents the input math expression,
which we will use to learn representations of math operations
for the math operation classification and feedback prediction
tasks. We pretrain the encoder on a large corpus of math
expressions extracted from Wikipedia and arXiv articles and
demonstrated superior performance in reconstructing math
expressions (and scientific formulae) and retrieving similar
expressions. See the anonymized version of our work at [46].
We will refer to the trained encoder as the math expression
encoding method in what follows.

4. LEARNING REPRESENTATIONS OF
MATH OPERATIONS

In this section, we detail methods we use to learn both im-
plicit and explicit math operation representations by study-
ing how they transform math expressions in each solution
step in the math embedding space. In these methods, we
leverage the math expression encoding method developed in
our prior work that we reviewed above to embed math ex-
pressions into vectors and work with these embedding vec-
tors. However, since these embeddings are trained on math
expressions that are very different from those occurring in
actual student solution steps, we use an additional train-
able, fully-connected neural network to adapt these embed-
dings to our dataset, following a popular approach in natural
language processing [13]. Specifically, we have e = gγ(m)
where m and e are the embedded vector of a math expression

218 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 2. Illustration of the math expression encoding method that we employ in this work.

in our dataset before and after the adaptation, respectively.
γ denotes the set of parameters in the fully-connected net-
work that we will learn during the training process.

We define a step in a student’s solution to open-ended math
questions as a tuple (E1, E2, z), where z ∈ Z is the math
operation applied in this step, with Z denoting the set of
possible math operations. E1 ∈ E and E2 ∈ E denote the
math expressions involved in this step before and after ap-
plying this math operation, i.e., the step can be expressed as
E1

z−→ E2. E denotes the set of all unique math expressions
(across all steps in a dataset). For simplicity, we assume that
only one math operation is applied in each step; an extension
to cases where multiple math operations is trivial and will
be discussed in what follows. e1 ∈ RD and e2 ∈ RD are the
fine-tuned embedding vectors that correspond to math ex-
pressions E1 and E2, respectively, where D is the dimension
of the embedding.

4.1 Math Operation Classification
The first task we will study in this paper is to classify the
math operation applied in a solution step given the math
expression embeddings before and after appliying it, e1 and
e2. The same notations and approaches also apply to our
second task, feedback classification. This task can simply be
solved using a supervised learning method, e.g., a regression
model where the predicted probability of predicting a math
operation ẑ is given by

p(ẑ = z) = softmax(vTz [eT1 , e
T
2]T),

where softmax(·) is the softmax function for multi-label clas-
sification [10]. vz is a parameter vector associated with each
math operation z, which is used to compute an inner product
with the concatenation of e1 and e2 before being fed into the
softmax function. On a training dataset with given tuples
(e1, e2, z), we can learn the parameters (vz) by minimizing
the cross-entropy loss [10] between the predicted math op-
eration ẑ and the actual math operation. This approach can
be seen as learning implicit representations of math expres-
sions since they are captured by the classifier parameters.

4.2 Learning Math Operation
Representations

The classification approach we detailed above can help us
classify the math operation applied in a solution step but
falls short on learning explicit representations of math oper-
ations. The latter is important, however, to help us under-
stand students’ math solution processes and diagnose their
errors. We now detail a series of methods for us to learn
explicit representations of math operations.

4.2.1 Translating embeddings

Figure 3. Illustration of the TransE and TransR frameworks.
TransE puts the embeddings of equations e1, e2, and math
operation z in the same embedding space, whereas TransR
puts them in their own embedding spaces.

We will leverage the translating embedding (TransE) frame-
work [3] that has found success in embedding entities
and characterizing relationships between entities in multi-
relational data. Our key assumption here in this framework
is that math operations are linear and additive, i.e., the rela-
tionship between math expressions before and after a math
expression satisfy

e2 ≈ e1 + hz,

where hz ∈ RD is the embedding of the math operation z. In
other words, we assume that the effect of a math operation
is characterized by the difference in the embedding vectors
between the math expressions before and after it in a single
step; adding it to the embedded vector of E1 results in the
embedded vector of E2 after the step.

To learn these math operation embeddings from data, we
use two loss functions. The first loss function promotes this
linear and additive relationship between embeddings of the
math expressions and operations on the training data. To
this end, we define a distance function as d(e1, e2,hz) =
‖e1 + hz − e2‖22 and define the loss function as

L1 =
∑

(E1,E2,z)

d(e1, e2,hz).

The second loss function pushes counterfeit step tuples that
are generated by replacing elements in an observed step tu-
ple with other ones in the dataset to not satisfy the afore-
mentioned linear and additive relationship. To this end, we
minimize the pairwise marginal distance ranking-based loss

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 219

given by

L2 =
∑

(E1,E2,z)∈S

∑
(E′1,E

′
2,z

′)∈S′
(E1,E2,z)

[γ + d(e1, e2,hz)− d(e′1, e
′
2,h
′
z)]+,

where [x]+ = x when x > 0 and 0 otherwise and γ > 0
is a hyper-parameter that controls the margin of the dis-
tance ranking. S denotes the set of steps in the dataset and
S′(E1,E2,z) is a set of counterfeit steps that are perturbed ver-
sions of the actual step (E1, E2, z), generated by randomly
replacing one of the triplet elements in the step by a differ-
ent math expression or math operation from another step,
i.e.,

S′(E1,E2,z) ∼ A ∪B ∪ C,
where A = {(E ′1, E2, z) : E ′1 6= E1 ∈ E}

B = {(E1, E ′2, z) : E ′2 6= E2 ∈ E}
C = {(E1, E2, z′) : z′ 6= z ∈ Z}.

Intuitively speaking, our objective encourages the distance
function calculated on an actual tuple in the dataset to be
smaller than that calculated on a perturbed version of it.
Figure 3 illustrates the whole process.

The final loss function that we minimize is simply the combi-
nation of these two loss functions as L = L1 +L2. Using the
learned embeddings of each math operation, we can classify
them from the math expressions E1 and E2 using the nearest
neighbor classifier, i.e., ẑ = argminzd(e1, e2,hz).

4.2.2 Learning Entity and Relation Embeddings
Despite potentially exhibiting excellent interpretability,
TransE’s assumption that math operations are linear and
additive in the math expression embedding space may be
too restrictive. This assumption puts math operations are
vectors in the same latent space where similar math expres-
sions will be close to each other. However, different math
operations are fundamentally different and can transform
the same math expression into dramatically different math
expressions that are far apart in the embedding space. For
example, different math operations can focus on transform-
ing different parts of the same math expression. The steps
(3 + 5 + 2x = x+ 1, 8 + 2x = x+ 1, combine similar terms)
and (3 + 5 + 2x = x + 1, 3 + 5 + 2x − x = x + 1 −
x, subtract from each side) have the same starting math ex-
pression E1. In the first step, only similar terms on the left
hand side of the equation are combined, regardless of the
other side of the equation. In the second step, we subtracted
x from both sides of the equation, which is a consequence
of the equality symbol in the equation, which means that
subtracting the same term on both sides of the equation but
not what exactly is on each side. Therefore, TransE’s lin-
ear and additive assumption means that the resulting E2 in
these steps will be very different due to the different math
operations applied, which conflicts with the observation that
they are very similar. To address this limitation, we explore
the Learning Entity and Relation Embeddings (TransR) [23]
model, which models math expressions and math operations
in different spaces, i.e., there will be a shared embedding
space for all math expressions but separate relation spaces
for different math operations.

TransR learns the embeddings of math operations by pro-
jecting them to their corresponding relation spaces and then
learning translations between those projected expressions.
For each math operation z, we set a projection matrix
Mz ∈ RD×D that projects a math expression to its rela-
tion space. To make this projection nonlinear, we apply the
rectified linear unit (ReLU) activation function [10] to it and
define the corresponding distance function as

dz(e1, e2,hz) = ‖ReLU(Mze1) + hz − ReLU(Mze2)‖22.

Correspondingly, the two loss functions in the TransR frame-
work are given by

L1 =
∑

(E1,E2,z)

dz(e1, e2,hz),

L2 =
∑

(E1,E2,z)∈S

∑
(E′1,E

′
2,z

′)∈S′
(E1,E2,z)

[γ + dz(e1, e2,hz)− dz(e′1, e′2,h′z)]+.

The projection matrices Mz, ∀z ∈ Z are included as part of
the trainable parameters. The rest of the training and re-
sulting math operation classification procedure remains un-
changed from the TransE framework.

5. EXPERIMENTS
We now detail a series of quantitative and qualitative exper-
iments that we have conducted to validate the learned rep-
resentations of math operations. Using the Cognitive Tutor
2010 equation solving (CogTutor) dataset,2 we focus on two
tasks: i) classifying the math operation a student applies in
a solution step and ii) classifying the feedback category cor-
responding to certain types of incorrect steps, from the math
expressions the student enters before and after the step.

5.1 Dataset
We use the CogTutor dataset which we accessed via the
PSLC DataShop [19]. The dataset contains detailed tu-
tor logs generated as students in a school use the Cog-
nitive Tutor system [34] for their Algebra I class. These
logs contain the students’ step-by-step solutions to equa-
tion solving problems, where each step is a tuple with
three elements: a math expression E1 at the beginning of
the step, the step name z, i.e., the math operation the
student selected to apply to this math expression, and
the resulting math expression E2 after the step. Students
can select math operations from a built-in list in Cogni-
tive Tutor: COMBIN ADD, COMBINE MUL, ADD SIDE,
SUB SIDE, MUL SIDE, DIV SIDE, and DISTRIBUTE; see
Table 1 for an illustration of these operations and some ex-
amples of the corresponding math operations before and af-
ter them in a step.

There are a total of 50, 406 steps in this dataset that can be
further divided into three subsets according to their out-
comes: OK (43, 413 steps), ERROR (6, 377 steps), and BUG

(5, 744 steps). The OK subset contains steps that are cor-
rect, i.e., the student both selected the correct math op-
eration and arrived at the correct math expression. The
BUG and ERROR subsets contain incorrect student steps, ei-
ther because the operation they selected was incorrect or

2https://pslcdatashop.web.cmu.edu/DatasetInfo?
datasetId=660

220 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Step (Math operation) Description Example

COMBINE ADD combine two similar terms with add/sub operator 3x+ 2x→ 5x

COMBINE MUL combine two similar terms with multiply/divide operator x ∗ x→ x2

ADD SIDE add a math term on each side x = 1→ x+ 1 = 1 + 1
SUB SIDE subtract a math term on each side x = 1→ x− 1 = 1− 1
MUL SIDE multiply a math term on each side x = 1→ x ∗ 2 = 2
DIV SIDE divide a math term on each side x = 1→ x/2 = 1/2
DISTRIBUTE distribute(expand) the terms (x+ 1)x→ x ∗ x+ x

Table 1. Detailed descriptions and examples for each math operation in the CogTutor dataset.

because they selected the correct operation but did not ap-
ply it correctly, i.e., arriving at an incorrect math operation
after the step. The difference between these two subsets is
that BUG contains steps that fit one of the predefined er-
ror templates in the Cognitive Tutor system; in this case,
the system can automatically diagnose the error and deploy
a predefined feedback. On the other hand, ERROR contains
incorrect steps that Cognitive Tutor could not automati-
cally diagnose the underlying error. The OK subset can be
further split into six predefined difficulty levels (named as
ES 01,ES 02, ES 03 ,ES 04, ES 05, and ES 07), with 2, 068,
7, 546, 8, 183, 13, 393, 5, 484, and 2, 801 steps, respectively.
We do not further split the BUG and ERROR subsets for the
math operation classification task due to their limited sizes.

To learn the representation of math operations, we need
examples of how they transform one math expression into
another. However, the CogTutor dataset may not contain
enough data that is rich in both quantity and diversity for
neural network-based models to learn from. Therefore, we
designed a synthetic data generator stemming from the math
question answering dataset created by DeepMind [36]. The
generator can generate steps by first generating the initial
math expression and then applying math operations listed
in Table 1 to arrive at a resulting math expression. We
have full control over the generated steps through the en-
tropy, degree, and flip parameters. Increasing entropy intro-
duces more complexity to the math expressions as numer-
ical constants generated get larger. Increasing the degree
parameter introduces monomials of higher degrees and also
adds more terms in the math expression. Finally, the flip
parameter allows us to control which side of an equation
has a higher chance to be more complicated than the other.
Tuning these parameters within this flexible synthetic data
generation method enables us to generate a large amount of
steps that closely resembles those in the CogTutor dataset.

5.2 Methods
To fully evaluate the effectiveness of our math operation
representations, we also experiment with two other ways of
encoding math expressions commonly used in natural lan-
guage processing tasks, in addition to the tree embedding-
based and translation-based encoder that we introduced in
Section 4.2. These two encoders include a gated recurrent
unit (GRU)-based encoder [4] and a convolutional neural
network (CNN)-based encoder [17]; we will use the output
of these encoders to replace [eT1 , e

T
2]T as input to the clas-

sifier detailed in Section 4.1.

Specifically, these two encoders first concatenates the two
math expressions before and after the step, i.e., E = [E1, E2].

For each character xt in E , we compute its embedding

xt = WT onehot(xt) ,

where W is a trainable embedding matrix. Using these char-
acter embeddings, the GRU encoder computes

ht = GRUθ(xt,ht−1) ,

where θ represents all the trainable parameters in GRU. We
then replace [eT1 , eT2]T with hT as input to the classifier
where T is the total number of characters in E . Similarly,
the CNN encoder computes

h = max pool(CNNφ([x1, · · · ,xT])) ,

where CNNφ represents a 2D CNN with parameters φ and
max pool is a 1D max pooling operator. Combined, they
return a fixed dimensional feature vector h that replaces
[eT1 , eT2]T as input to the classifier. For each of these two
models, we learn its parameters jointly with the classifica-
tion task using the cross-entropy loss that we described in
Section 4.1.

Overall, we test five different methods for the math oper-
ation classification and feedback classification tasks. The
first three methods use different encoding methods in con-
junction with a classifier: i) using the GRU encoder to en-
code math expressions as input to the classifier, which we
dub GRU+C, ii) using the tree embedding-based encoder in-
stead, which we dub TE+C, and iii) using the CNN encoder
instead, which we dub CNN+C. These methods do not learn
explicit representations of math operations. The next two
methods use the TransE and TransR frameworks to learn
these representations using tree embeddings: iv) using tree
embedding-based encoder as input to the TransE framework
in conjunction with a nearest neighbor classifier, which we
dub TE+TransE, and v) using the TransR framework in-
stead of the TransE framework to study math operations in
multiple relation spaces, which we dub TE+TransR.

5.3 Experimental Setup
We first test our math operation representation learning
methods on the OK subset via 5-fold cross-validation, i.e.,
training on 80% of steps in the subset to learn representa-
tions of math operations and testing them on the remaining
20%. We also test the generalizability of the learned repre-
sentations to incorrect steps, i.e., replace the test set with
the ERROR and BUG subsets, and check whether we can still
recognize the math operation a student applied in an incor-
rect step. The results are detailed in Section 5.4.1.

Since the distribution of math expressions in the OK, ERROR
and BUG data subsets are mostly similar with minor differ-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 221

OK ERROR BUG

GRU+C 99.18± 0.23 93.87± 0.66 95.89± 0.63
TE+C 99.82± 0.04 93.30± 0.65 95.38± 0.62
CNN+C 95.37± 0.44 86.82± 1.38 91.02± 0.59
TE+TransE 96.27± 0.17 86.32± 1.23 84.21± 2.13
TE+TransR 99.17± 0.21 91.28± 1.12 91.31± 1.87

Table 2. Math operation classification accuracy for all meth-
ods training on the OK subset of the CogTutor dataset and
testing on different data subsets. Accuracy is high across
the board, while GRU-based encoding and tree embedding-
based encoding in conjunction with a classifier result in the
best performance.

ences, the previous experiment does not give us a good idea
on the generalization ability of our math operation repre-
sentation learning methods. Therefore, we further divide
the OK subset into six smaller subsets, each corresponds to
a different difficulty level (with different structure and com-
plexity) according to questions within it, and test the gen-
eralizability of the learned math operation representations.
The results are detailed in Section 5.4.2. In practice, so-
lution step data generated by real students is often limited.
Therefore, we conduct two more experiments to test whether
synthetically generated steps can help us learn math opera-
tion representations that generalize to real data. First, we
repeat the experiments above using synthetically generated
steps as the training set. This synthetic training set consists
of 1, 000 steps for each math operation defined in Table 1
(adding up to a total of 7, 000 across different difficulty lev-
els). The results are detailed in Section 5.4.3. Second, to
study the impact of synthetically generated data when real
data is limited, we pre-train the math operation represen-
tations with synthetic data, fine-tune on a small amount of
real data from each difficulty level in the OK subset, and test
on the rest. The results are detailed in Section 5.4.4.

To test the ability of our learned math operation representa-
tions on recognizing student errors, we use them to classify
feedback types provided by CogTutor in the BUG data subset.
Examples of such errors include when a student calculated
the wrong simplification result, used the wrong sign in front
of terms, and applied useless/unlogical steps to solve the
problem, etc. The results are detailed in Section 5.4.5.

We use Adam optimizer [18] with learning rate 0.001, batch
size 64 and run 10 training epochs for each experiment.
The math expression encoder outputs length-512 embed-
ding vectors for each math expression, which we adapt to
length-32 embedding vectors dimensions using a trainable
fully-connected neural network. All of our experiments were
conducted on a server with a single Nvidia RTX8000 GPU.

5.4 Results and Discussion
5.4.1 Generalizing to incorrect steps

Table 2 shows the averages and standard deviations of math
operation classification accuracy for every method we ex-
perimented with using the OK subset as the training set. As
expected, testing on the ERROR and BUG subsets result in
slightly lower (5-10%) math operation classification accu-
racy for all methods since the training set does not contain

incorrect steps. However, even on steps that are incorrect,
these methods can still effectively identify the math opera-
tion a student intended to apply (with up to 95% accuracy),
suggesting that they may be applicable to fully open-ended
question solving solutions that are not highly structured, un-
like those in Cognitive Tutor, to provide feedback to teachers
on students’ solution approaches.

We observe that using GRUs and tree embeddings as repre-
sentations for math expressions and applying a classification
method on top of these representations result in similar per-
formances; GRUs slightly outperform tree embeddings in
cases where we use the ERROR and BUG subsets as the test
set while tree embeddings slightly outperform GRUs in the
case where we use a part of the OK subset as the test set.
Using CNNs to encode math expressions as input to a clas-
sifier results in worse performance, suggesting that they do
not capture the semantic and structural information in math
expressions as well as GRUs and tree embeddings. As ex-
pected, using tree embeddings under the TransE and TransR
frameworks leads to worse performance than the first two
methods, with TransE achieving low performance (especially
on the BUG subset) and TransR achieving comparable per-
formance to the classification-based methods on the OK sub-
set but lower performance on the ERROR and BUG subsets.
This result can be explained by the additional structural
restriction that math operations are represented as linear
and additive in some embedding space in the TransE frame-
work, which makes it less robust against incorrect student
solution steps. Using the TransR framework mitigates this
problem due to its use of different relation spaces for each
math operation.

These methods perform similarly in the math operation clas-
sification task on real data largely due to the limited varia-
tion and complexity in the math expressions. The Cognitive
Tutor system limits the degrees of freedom in a students’
response by splitting an open-ended step into the separate
actions of selecting a single math operation and entering
the resulting math expression, which limits the variability
in the data. In the next experiment, we see that when we
control against different levels of complexity in these math
expressions and forcing these methods to generalize across
complexities, their performance vary significantly.

Figure 4 visualizes the confusion matrix for math operation
classification on the OK subset and the pairwise euclidean
distances between math operation embeddings learned via
the TransE framework using tree embeddings for math ex-
pressions. Rows correspond to the true math operations
applied in steps and columns correspond to predicted ones.
Percentages in the confusion matrix (Figure 4a) are nor-
malized w.r.t. the number of appearances of each math
operation. We see that our math operation representa-
tion learning method captures some meaning of these op-
erations (Figure 4b); the learned math operation embed-
dings capture the structural changes in math expression in
ways that match our intuition. For instance, both COM-
BINE ADD and COMBINE MUL can be considered types
of simplifications, so the Euclidean distance between the
learned embeddings for these two operations is low. This
observation is not surprising due to the similar nature
of these operations. Moreover, COMBINE ADD, COM-

222 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

(a) Confusion matrix of math operations classification.

(b) Euclidean distance between learned math
operation embedding vectors.

Figure 4. Details of TE+TransE for the math operation
classification task on the OK subset. These results match
our intuition on how these math operations are related.

BINE MUL, and DISTRIBUTE are often confused with one
another. These results are also validated by a 2-D visu-
alization (using t-SNE [42] as a dimensionality reduction
method) of the learned math operation embeddings in Fig-
ure 5, where different math operations are mostly well sep-
arated except for COMBINE ADD, COMBINE MUL, and
DISTRIBUTE. One possible explanation is that these op-
erations are all applied to one side of the equation during
a solution step, leaving one side of the equation unchanged,
while the other operations, such as ADD SIDE, SUB SIDE,
MUL SIDE, and DIV SIDE are all applied to both sides
of the equation. Therefore, this result suggests that tree
embeddings enable us to characterize a math operation by
the structural change in math expressions before and after
a solution step where it is applied. Furthermore, the classi-
fication accuracy for the DISTRIBUTE operation is signif-
icantly lower than that for other operations. This result is
likely due to the fact that the number of steps with this op-
eration is significantly lower than that for other operations.

5.4.2 Generalizing to different difficulty levels
In this experiment, we test the ability of our learned math
operation representations to generalize to math expressions
with different levels of complexity in questions at differ-

Figure 5. Visualization of learned math expression change
for a randomly sampled subset of student solution steps in
2-D and corresponding operations (best viewed in color).

ent levels of difficulty. Although they are all about equa-
tion solving, questions at different difficulty levels in Cog-
nitive Tutor involve math expressions that look very differ-
ent. For example, in the easiest level (ES 01), the equation
that needs to be solved in a question looks like x + 5 = 9,
with only a single variable and without numbers with dec-
imals. In contrast, in the hardest level (ES 07), a ques-
tion may contain coefficients with several decimal places
and multiple variables, such as solve for m in the equation
m(k − n) = gs. We only compare the GRU-based encoder
and the tree embedding-based encoder in conjunction with
a classifier since they are the best performing methods in
the previous experiment. Table 3 lists the math operation
classification accuracy for both methods after training on
steps at different difficulty levels in the OK subset and testing
on steps at other difficulty levels (including incorrect ones).
We see that TE+C overall outperforms GRU+C in almost
every case. This results suggest that tree embeddings are
effective at capturing the structural property of a math ex-
pression. As a result, math operation representations based
on tree embeddings excel at capturing the structural change
in math expressions before and after applying a math op-
eration, leading to better generalizability than GRU-based
encoding that do not explicitly account for this change.

5.4.3 Generalizing to different data distributions
In this experiment, we test the ability of our methods to
generalize from synthetically generated data to real student
data. We train different math operation classification meth-
ods on the 2, 000 synthetically generated steps and test them
on steps generated by real students in the CogTutor dataset.
Table 4 shows the mean and standard deviation for each
method on each real data subset. We see that TE+C signif-
icantly outperforms GRU+C and CNN+C on all data sub-
sets, which is in stark contrast to the previous experiment
where the difference in performance across all methods is
much smaller. This observation suggests that tree embed-
dings are more effective at capturing the semantic/structural
effect of math operations on math expressions, thus general-
izing better to different data distributions. Indeed, although
the synthetically generated steps and the real steps have the
same set of math operations, the distributions of numbers

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 223

Train
on

Method OK ERROR BUG

ES 01
GRU+C 58.82± 1.12 63.74± 1.13 66.02± 1.12
TE+C 76.51± 0.62 84.24± 0.87 67.49± 1.10

ES 02
GRU+C 71.05± 1.12 76.66± 1.11 69.01± 1.14
TE+C 87.89± 0.34 93.96± 0.72 80.44± 0.78

ES 03
GRU+C 82.39± 3.93 79.24± 1.47 80.01± 1.67
TE+C 90.79± 1.12 93.83± 1.32 84.70± 1.54

ES 04
GRU+C 76.72± 0.14 71.35± 6.12 83.32± 2.24
TE+C 94.65± 0.12 92.72± 1.32 90.99± 1.72

ES 05
GRU+C 81.74± 0.33 73.36± 1.69 78.36± 1.07
TE+C 87.66± 0.25 80.00± 1.32 77.81± 0.99

ES 07
GRU+C 76.25± 3.21 73.15± 3.42 67.35± 3.62
TE+C 79.44± 0.62 79.29± 0.72 72.53± 2.26

Table 3. Math operation classification accuracy after train-
ing on steps with different difficulty levels and testing on the
OK ERROR, and BUG subsets. Tree embedding-based encoding
outperforms GRU-based encoding.

Figure 6. Math operation classification accuracy for the
TE+C method when real data is limited. Using synthet-
ically generated steps as a starting point, we already start
with acceptable classification accuracy even with few real
steps generated by students. The performance steadily im-
proves after more real data becomes available.

(1, 0.5,−7, etc.) and variables (x, u, t, etc.), resulting in a
mismatch between the data distributions. Tree embedding-
based methods benefit from the tree-based representations
of math expressions that can effectively capture structural
information, making it easy for the learned embeddings of
math expressions to generalize to unseen data.

5.4.4 Generalizing from synthetic data
Ideally, if there is a large amount of training data, i.e., steps
generated by real students containing different types of math
expressions and detailed labels on these steps such as the
math operation(s) applied, the error(s) if a step is incorrect,
and corresponding feedback, we can simply use that data
to learn our math operation representations. However, in
practice, the amount of real data is often limited. Figure 6
plots the performance of TE+C on all subsets of the Cog-
Tutor dataset, training on a portion of steps in the subset
for training and testing on the rest. We see that the perfor-
mance on math operation classification suffers considerably
when we only have limited training data. Therefore, syn-

OK ERROR BUG

GRU+C 62.89± 3.93 64.06± 4.70 62.94± 2.24
TE+C 83.79± 0.14 75.49± 0.90 75.16± 0.55
CNN-C 51.12± 1.64 45.52± 0.98 59.82± 1.68
TE + TransE 80.17± 2.32 71.86± 3.24 72.32± 2.72
TE + TransR 82.22± 2.88 73.83± 3.46 74.85± 3.23

Table 4. Math operation classification accuracy for all meth-
ods training on 7, 000 synthetically generated steps and test-
ing on different subsets of the CogTutor dataset. Tree
embedding-based methods significantly outperform other
methods, showing better ability to generalize to different
data distributions.

Figure 7. Math classification accuracy (difference in per-
centage) for TE+C, pre-training on synthetic data before
fine-tuning on real data versus training only on real data.
When real data is limited, pre-training on synthetic data
results in significantly better performance.

thetically generated data can play a vital role in improving
their performance under this circumstance; the strategy of
fine-tuning models trained on synthetically generated data
using a small amount of real data can be effective. Specif-
ically, we start with a pre-trained math operation classifi-
cation model on the 7000 synthetically generated steps and
fine tune it on a small number of real steps by doing gradi-
ent descent on these steps for 10 epochs. Figure 7 plots the
improvement in math operation classification accuracy for
the fine-tuned model over the model that trains on only real
data of various amounts on all data subsets. We see that
the pre-trained models always performs better, with signif-
icant improvement when the real data is extremely limited.
This result suggests that i) effectively leveraging synthet-
ically generated data can mitigate the problem of limited
real data and ii) our math operation representation learn-
ing methods are capable of generalizing across different data
distributions (synthetic → real).

5.4.5 Feedback type classification
In this experiment, we evaluate our math operation rep-
resentation learning methods on the feedback type classi-
fication task. These feedback items were automatically de-
ployed by Cognitive Tutor for incorrect steps in the BUG sub-
set. We pre-processed these steps and grouped the detailed
feedback items according to the students’ errors that each

224 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Method Accuracy

GRU+C 75.35± 1.41
TE + C 78.71± 1.74
CNN+C 67.23± 1.54
TE + TransE 69.15± 1.13
TE + TransR 73.21± 1.63

Table 5. Feedback type classification accuracy for all meth-
ods on the BUG subset. Tree embedding-based encoding out-
performs other encoding methods while TransE and TransR
frameworks do not reach similar performance levels due to
shortage of training data.

feedback item addresses and narrowed it down to a total
of 24 types that occur multiple times. We perform 5-fold
cross validation on this subset. Table 5 shows the averages
and standard deviations of feedback classification accuracy
for all methods on this task across the five folds. We see
that due to the limited size of the BUG subset (only 5, 744
steps) and the high number of classes (24), all method per-
form worse than they do on the math operation classification
task. Specifically, we see that the tree embedding-based en-
coder in conjunction with a classifier performs best while
GRU-based encoding also performs well. This result shows
that although tree embeddings are superior at capturing the
meaning of math expressions, their advantage over simple
encoding methods such as GRU-based encoding decreases
due to increased noise in the data; some math expressions
submitted by students in incorrect steps are ill-posed and
do not make sense. Using the TransE and TransR frame-
works result in slightly worse performance than classifiers
since these methods explicitly learn a representation for each
math operation, which limits their performance on this task
due to the shortage of training data. However, since they
capture the structural difference in math expressions before
and after the step, they can cancel out some of the noise in
erroneous steps, resulting in acceptable performance.

5.5 Discussions
Overall, we find that the GRU-based and tree embedding-
based math expression encoders in conjunction with a classi-
fier perform almost equally well in most situations, while the
CNN-based encoder performs worse. The tree embedding-
based encoder has stronger generalizability across different
data distributions. We believe that as the math expressions
and operations get more complicated, methods that lever-
age the tree structure of math expressions would be more
advantageous. We also observe that TransR outperforms
TransE most of the time, although in some experiments us-
ing TransE and TransR to explicitly learn math operation
embeddings lead to slightly worse performance than clas-
sifiers using implicit representations of math expressions.
However, TransE and TransR are much more powerful and
enable us to study more tasks such as clustering solution
steps and identifying typical student errors and learning so-
lution strategies; See Section 6 for a detailed discussion.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we developed a series of methods to learn
representations of math operations by observing how math
expressions change as a result of these operations in step-by-

step solutions to open-ended math questions. Our methods
leverage math expression encoding methods that map tree-
structured math expressions into a math embedding vector
space. We demonstrated the effectiveness of our methods
on a dataset containing detailed student solution steps to
equation solving questions in the Cognitive Tutor system on
two tasks: i) classifying the math operation applied in each
step and ii) classifying the feedback the system deploys for
each incorrect step. Results show that our learned math
operation representations are meaningful and can often ef-
fectively generalize across different data distributions such
as questions with different difficulty levels.

However, the success of our methods heavily depends on the
availability of diverse large-scale training data. The Cogni-
tive Tutor dataset that we used in this work represents a
heavily restricted solution process since the list of math op-
erations a student can apply in a step is pre-defined. There-
fore, additional work has to be done to extend our method
to truly open-ended step-by-step solution processes that are
less structured. Moreover, our methods are restricted to a
single solution step only and do not consider the relation-
ship across multiple steps, which is related to another im-
portant aspect of solving open-ended math questions: the
overall solution strategy, i.e., which math operation to apply
next. Furthermore, in both classification tasks, using tree
embeddings to encode math expressions in conjunction with
a classifier outperforms explicitly learning vectorized repre-
sentations of math operations in the TransE and TransR
frameworks. However, these explicit representations may
enable us to perform other tasks such as Nevertheless, our
work provides a series of tools to analyze the math expres-
sions students write down in their solutions by bridging the
gap between symbolic math representations with continuous
representations in vector spaces, enabling the use of state-
of-the-art neural network-based methods. We believe that
this work can potentially open up a new line of research that
studies how to automatically analyze student solutions for
grading and feedback purposes.

There are many avenues of future work. First, since most
real-world open-ended solutions contain a mixture of math
expressions and text, there is a need to learn a joint represen-
tation of math expressions and text in a shared embedding
space. Second, this joint representation will enable us to
train automated feedback generation methods in an end-to-
end manner, using sequence-to-sequence learning methods
[41]. Third, using learned math expression representations
as the states and learned math operation representations
from the TransE and TransR frameworks as the state transi-
tion model, we can apply reinforcement learning and inverse
reinforcement learning methods to learn solution strategies,
i.e., which math operation to apply in the next step. We can
also study solution strategies employed by real students [33]
and diagnose their errors and design corresponding feedback
mechanisms to improve their learning outcomes. These fu-
ture work directions will enable us to tap into the full poten-
tial of explicit math operation representations, which is not
fully demonstrated in this paper: on the CogTutor dataset,
the only relevant real-world dataset we found, we could only
evaluate these explicit representations on the math opera-
tion and feedback prediction tasks, where they may not out-
perform tree embedding-based classification-based methods.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 225

7. REFERENCES
[1] D. M. Adams, B. M. McLaren, K. Durkin, R. E.

Mayer, B. Rittle-Johnson, S. Isotani, and
M. Van Velsen. Using erroneous examples to improve
mathematics learning with a web-based tutoring
system. Computers in Human Behavior, 36:401–411,
2014.

[2] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin.
A neural probabilistic language model. J. Mach.
Learn. Res., 3:1137–1155, 2003.

[3] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston,
and O. Yakhnenko. Translating embeddings for
modeling multi-relational data. In Advances in neural
information processing systems, pages 2787–2795,
2013.

[4] K. Cho, B. van Merrienboer, C. Gulcehre,
D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using rnn
encoder–decoder for statistical machine translation. In
Proc. Conf. Empirical Methods Natural Language
Process., pages 1724–1734, October 2014.

[5] K. Davila and R. Zanibbi. Layout and semantics:
Combining representations for mathematical formula
search. In Prof. Intl. ACM SIGIR Conf. Res. Develop.
Info. Retrieval, page 1165–1168, 2017.

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
Bert: Pre-training of deep bidirectional transformers
for language understanding. In Proc. Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, 2019.

[7] S. T. Dumais. Latent semantic analysis. Annual review
of information science and technology, 38(1):188–230,
2004.

[8] J. A. Erickson, A. F. Botelho, S. McAteer,
A. Varatharaj, and N. T. Heffernan. The automated
grading of student open responses in mathematics. In
Proceedings of the Tenth International Conference on
Learning Analytics & Knowledge, pages 615–624, 2020.

[9] M. Q. Feldman, J. Y. Cho, M. Ong, S. Gulwani,
Z. Popović, and E. Andersen. Automatic diagnosis of
students’ misconceptions in k-8 mathematics. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, pages 1–12, 2018.

[10] I. Goodfellow, Y. Bengio, and A. Courville. Deep
Learning. MIT Press, 2016.

[11] S. Grover and R. Pea. Computational thinking in
k–12: A review of the state of the field. Educational
researcher, 42(1):38–43, 2013.

[12] N. T. Heffernan and C. L. Heffernan. The assistments
ecosystem: Building a platform that brings scientists
and teachers together for minimally invasive research
on human learning and teaching. International
Journal of Artificial Intelligence in Education,
24(4):470–497, 2014.

[13] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone,
Q. De Laroussilhe, A. Gesmundo, M. Attariyan, and
S. Gelly. Parameter-efficient transfer learning for NLP.
In International Conference on Machine Learning,
pages 2790–2799. PMLR, 2019.

[14] Y. Hu, Y. Zheng, H. Liu, D. Jiang, Y. Liu, and

B. Ren. Accurate structured-text spotting for
arithmetical exercise correction. In Proceedings of the
AAAI Conference on Artificial Intelligence,
volume 34, pages 686–693, 2020.

[15] K. Kelly, N. Heffernan, S. D’Mello, J. Namais, and
A. Strain. Adding teacher-created motivational video
to an its. In Proceedings of 26th Florida Artificial
Intelligence Research Society Conference, pages
503–508. Citeseer, 2013.

[16] A. Kembhavi, M. Seo, D. Schwenk, J. Choi,
A. Farhadi, and H. Hajishirzi. Are you smarter than a
sixth grader? textbook question answering for
multimodal machine comprehension. In Proceedings of
the IEEE Conference on Computer Vision and
Pattern recognition, pages 4999–5007, 2017.

[17] Y. Kim. Convolutional neural networks for sentence
classification. In Proc. Conf. Empirical Methods
Natural Language Process.), pages 1746–1751, Oct.
2014.

[18] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. In Proc. Int. Conf. on Learn.
Representations, 2015.

[19] K. R. Koedinger, R. S. Baker, K. Cunningham,
A. Skogsholm, B. Leber, and J. Stamper. A data
repository for the edm community: The pslc datashop.
Handbook of educational data mining, 43:43–56, 2010.

[20] K. R. Koedinger, A. Corbett, et al. Cognitive tutors:
Technology bringing learning sciences to the classroom.
na, 2006.

[21] J. Kolb, S. Farrar, and Z. A. Pardos. Generalizing
expert misconception diagnoses through common
wrong answer embedding. International Educational
Data Mining Society, 2019.

[22] A. S. Lan, D. Vats, A. E. Waters, and R. G. Baraniuk.
Mathematical language processing: Automatic grading
and feedback for open response mathematical
questions. In Proceedings of the Second (2015) ACM
Conference on Learning@ Scale, pages 167–176, 2015.

[23] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. Learning
entity and relation embeddings for knowledge graph
completion. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 29, 2015.

[24] R. Liu, R. Patel, and K. R. Koedinger. Modeling
common misconceptions in learning process data. In
Proceedings of the Sixth International Conference on
Learning Analytics & Knowledge, pages 369–377, 2016.

[25] B. Mansouri, S. Rohatgi, D. W. Oard, J. Wu, C. L.
Giles, and R. Zanibbi. Tangent-cft: An embedding
model for mathematical formulas. In Proc. Intl. ACM
SIGIR Conf. Res. Develop. Info. Retrieval, page
11–18, 2019.

[26] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In Proc.
Conference on Advances in Neural Information
Processing Systems, pages 3111–3119, Dec. 2013.

[27] E. O’Rourke, E. Butler, A. D. Tolentino, and
Z. Popović. Automatic generation of problems and
explanations for an intelligent algebra tutor. In
International Conference on Artificial Intelligence in
Education, pages 383–395. Springer, 2019.

[28] T. Patikorn and N. T. Heffernan. Effectiveness of

226 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

crowd-sourcing on-demand assistance from teachers in
online learning platforms. In Proceedings of the
Seventh ACM Conference on Learning@ Scale, pages
115–124, 2020.

[29] L. Pfahler, J. Schill, and K. Morik. The search for
equations–learning to identify similarities between
mathematical expressions. In Joint European
Conference on Machine Learning and Knowledge
Discovery in Databases, pages 704–718. Springer, 2019.

[30] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati,
M. Sahami, and L. Guibas. Learning program
embeddings to propagate feedback on student code. In
International conference on machine Learning, pages
1093–1102. PMLR, 2015.

[31] T. W. Price, Y. Dong, and T. Barnes. Generating
data-driven hints for open-ended programming.
International Educational Data Mining Society, 2016.

[32] J. Qin, L. Lin, X. Liang, R. Zhang, and L. Lin.
Semantically-aligned universal tree-structured solver
for math word problems. In Proc. Conf. Empirical
Methods Natural Lang. Process., pages 3780–3789,
Nov. 2020.

[33] A. N. Rafferty, R. A. Jansen, and T. L. Griffiths.
Assessing mathematics misunderstandings via
bayesian inverse planning. Cognitive science,
44(10):e12900, 2020.

[34] S. Ritter, J. R. Anderson, K. R. Koedinger, and
A. Corbett. Cognitive tutor: Applied research in
mathematics education. Psychonomic bulletin &
review, 14(2):249–255, 2007.

[35] R. D. Roscoe, E. L. Snow, L. K. Allen, and D. S.
McNamara. Automated detection of essay revising
patterns: Applications for intelligent feedback in a
writing tutor. Grantee Submission, 10(1):59–79, 2015.

[36] D. Saxton, E. Grefenstette, F. Hill, and P. Kohli.
Analysing mathematical reasoning abilities of neural
models, 2019.

[37] D. Selent and N. Heffernan. Reducing student hint use
by creating buggy messages from machine learned
incorrect processes. In International conference on
intelligent tutoring systems, pages 674–675. Springer,
2014.

[38] V. Shiv and C. Quirk. Novel positional encodings to
enable tree-based transformers. In Proc. Intl. Conf.
Neural Info. Process. Syst., pages 12081–12091, 2019.

[39] V. J. Shute. Focus on formative feedback. Review of
educational research, 78(1):153–189, 2008.

[40] R. Singh, S. Gulwani, and A. Solar-Lezama.

Automated feedback generation for introductory
programming assignments. In Proc. 34th ACM
SIGPLAN Conf. on Programming Language Design
and Implementation, volume 48, pages 15–26, June
2013.

[41] I. Sutskever, O. Vinyals, and Q. Le. Sequence to
sequence learning with neural networks. In Proc.
Advances in Neural Information Processing Systems,
pages 3104–3112, 2014.

[42] L. Van der Maaten and G. Hinton. Visualizing data
using t-sne. Journal of machine learning research,
9(11), 2008.

[43] K. VanLehn. Bugs are not enough: Empirical studies
of bugs, impasses and repairs in procedural skills. The
Journal of Mathematical Behavior, 1982.

[44] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin. Attention is all you need. In Proc. Intl.
Conf. Neural Info. Process. Syst., volume 30, 2017.

[45] L. Wang, D. Zhang, L. Gao, J. Song, L. Guo, and
H. T. Shen. Mathdqn: Solving arithmetic word
problems via deep reinforcement learning. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[46] Z. Wang, A. Lan, and R. Baraniuk. Mathematical
formula representation via tree embeddings. Online:
https://people.umass.edu/~andrewlan/papers/

preprint-forte.pdf, 2021.

[47] J.-W. Wu, F. Yin, Y.-M. Zhang, X.-Y. Zhang, and
C.-L. Liu. Handwritten mathematical expression
recognition via paired adversarial learning.
International Journal of Computer Vision, pages 1–16,
2020.

[48] Z. Xie and S. Sun. A goal-driven tree-structured
neural model for math word problems. In Proc. Int.
Joint Conf. Artificial Intell., pages 5299–5305, 7 2019.

[49] W. Zhong, S. Rohatgi, J. Wu, C. Giles, and
R. Zanibbi. Accelerating substructure similarity search
for formula retrieval. In Proc. European Conf. Info.
Retrieval, pages 714–727, 2020.

[50] W. Zhong and R. Zanibbi. Structural similarity search
for formulas using leaf-root paths in operator subtrees.
In L. Azzopardi, B. Stein, N. Fuhr, P. Mayr, C. Hauff,
and D. Hiemstra, editors, Proc. Intl. Conf. Neural
Info. Process. Syst., pages 116–129, 2019.

[51] Y. Zou and W. Lu. Text2Math: End-to-end parsing
text into math expressions. In Proc. Conf. Empirical
Methods Natural Lang. Process. and Intl. Joint Conf.
Natural Lang. Process., pages 5327–5337, Nov. 2019.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 227

Which Hammer should I Use? A Systematic Evaluation of
Approaches for Classifying Educational Forum Posts

Lele Sha
Centre for Learning Analytics

Faculty of Information
Technology

Monash University, Australia
lele.sha1@monash.edu

Mladen Raković
Centre for Learning Analytics

Faculty of Information
Technology

Monash University, Australia
mladen.rakovic@monash.edu

Yuheng Li
Faculty of Engineering and

Information Technology
University of Melbourne,

Australia
yuhengleeeee@gmail.com

Alexander
Whitelock-Wainwright

Centre for Learning Analytics
Portfolio of the Deputy

Vice-Chancellor Education
Monash University, Australia

alex.wainwright@monash.edu

David Carroll
Centre for Learning Analytics

Portfolio of the Deputy
Vice-Chancellor Education

Monash University, Australia
david.carroll@monash.edu

Dragan Gašević
Centre for Learning Analytics

Faculty of Information
Technology

Monash University, Australia
dragan.gasevic@monash.edu

Guanliang Chen∗

Centre for Learning Analytics
Faculty of Information

Technology
Monash University, Australia

guanliang.chen@monash.edu

ABSTRACT
Classifying educational forum posts is a longstanding task
in the research of Learning Analytics and Educational Data
Mining. Though this task has been tackled by applying
both traditional Machine Learning (ML) approaches (e.g.,
Logistics Regression and Random Forest) and up-to-date
Deep Learning (DL) approaches, there lacks a systematic
examination of these two types of approaches to portray
their performance difference. To better guide researchers
and practitioners to select a model that suits their needs
the best, this study aimed to systematically compare the
effectiveness of these two types of approaches for this spe-
cific task. Specifically, we selected a total of six repre-
sentative models and explored their capabilities by equip-
ping them with either extensive input features that were
widely used in previous studies (traditional ML models)
or the state-of-the-art pre-trained language model BERT
(DL models). Through extensive experiments on two real-
world datasets (one is open-sourced), we demonstrated that:
(i) DL models uniformly achieved better classification re-
sults than traditional ML models and the performance dif-
ference ranges from 1.85% to 5.32% with respect to differ-

∗Corresponding author.

ent evaluation metrics; (ii) when applying traditional ML
models, different features should be explored and engineered
to tackle different classification tasks; (iii) when applying
DL models, it tends to be a promising approach to adapt
BERT to the specific classification task by fine-tuning its
model parameters. We have publicly released our code at
https://github.com/lsha49/LL_EDU_FORUM_CLASSIFIERS

Keywords
Educational Forum Posts, Text Classification, Deep Neural
Network, Pre-trained Language Models

1. INTRODUCTION
In the past two decades, researchers have developed a num-
ber of online educational systems to support learning, e.g.,
Massive Open Online Courses, Moodle, and Google Class-
room. Though being widely recognized as a more flexible
option compared to campus-based education, these systems
are often limited by their asynchronous mode of delivery
that may hinder effective interaction between instructors
and students and between students themselves [27, 20]. As
a remedy, the discussion forum component is often included
to support communication between instructors and class-
mates, so students can create posts for different purposes,
e.g., to ask questions, express opinions, or seek technical
help. Moreover, in certain cases, instructors rely heavily on
the use of a discussion forum to promote peer-to-peer col-
laboration, e.g., specifying a topic to spur discussions among
students.

In this context, the timeliness of an instructor’s response to a
student post becomes critical. A group of studies has demon-
strated that students’ learning performance and course ex-

Lele Sha, Mladen Rakovic, Alexander Whitelock-Wainwright, David Car-
roll, Dragan Gasevic and Guanliang Chen “Which Hammer should I Use?
A Systematic Evaluation of Approaches for Classifying Educational Forum
Posts”. 2021. In: Proceedings of The 14th International Conference on Ed-
ucational Data Mining (EDM21). International Educational Data Mining
Society, 228-239. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

228 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

perience were greatly affected by the timeliness of the re-
sponses they received from instructors [2, 24, 14]. It is,
therefore, critical that instructors monitor the discussion fo-
rum to provide timely help to students who need it and
ensure the discussion unfolds in a way that benefits all stu-
dents. However, nowadays, up to tens of thousands of stu-
dents can enroll in an online course and create a variety of
posts that differ by importance, i.e., not all of them warrant
instructors’ immediate attention. Therefore, it becomes in-
creasingly challenging for instructors to timely identify posts
that require an urgent response or to understand how well
students collaborate in the discussion space.

To tackle this challenge, various computational approaches
have been developed across different courses and domains to
classify educational forum posts, e.g., to distinguish between
urgent and non-urgent posts [2, 24] or to label posts for dif-
ferent levels of cognitive presence [11, 52]. Typically, these
approaches relied upon traditional Machine Learning (ML)
models, such as Logistic Regression, Support Vector Ma-
chine (SVM), and Random Forest. These models yielded a
high level of accuracy, most often due to the extensive efforts
that domain experts made to engineer input features. For
post classification tasks, such features are linguistic terms
describing the post content (e.g., words that represent nega-
tive emotions) and the post metadata (e.g., a creation times-
tamp) [31, 38, 19].

In recent years, Deep Learning (DL) models have emerged
as a powerful strand of modeling approaches to tackle data-
intensive problems. Compared to traditional ML models,
DL models no longer requires the input of expert-engineered
features; instead, they are capable of implicitly extracting
such features from data with a large number of computa-
tional units (i.e., artificial neurons). Particularly, DL models
have achieved great success in solving various Natural Lan-
guage Processing (NLP) problems, e.g., machine translation
[48], semantic parsing [22], and named entity recognition
[60]. Driven by this, a few studies have been conducted and
demonstrated the superiority of DL models over traditional
ML models in classifying educational forum posts [24, 10,
59]. For instance, Guo et al. [24] showed that DL models
can outperform a decision tree based ML model proposed
in [2] by 0.1 (measured by F1 score) in terms of identifying
urgent post, while [59] demonstrated that, when determin-
ing whether a post contains a question or not, the perfor-
mance difference between SVM and DL models was up to
0.68 (measured by Accuracy).

Though achieving high performance, DL models have not
been justified as an always-more-preferable choice compared
to traditional ML models. The reasons are threefold. Firstly,
studies investigating the difference in performance between
traditional ML and DL models have mostly harnessed a
limited set of traditional ML models for comparison, with-
out making extensive feature engineering efforts to empower
those traditional ML models. As an example, [59] compared
only SVM to a group of DL models, and the SVM model
in this study incorporated only one type of features, i.e.,
the term frequency–inverse document frequency (TF-IDF)
score of the words in a post. This implies that the potential
of the traditional ML models used in existing studies was
not fully explored and the actual performance difference be-

tween the two types of models might be smaller than the
studies to date have reported on. Secondly, researchers and
practitioners often need to deliberately trade off several rel-
evant factors before determining which model they should
use in practice, and classification performance is only one of
these factors. Other important factors are the availability
of human-annotated training data and computing resources
[29]. For instance, compared to traditional ML models, DL
models demand a much larger amount of human-annotated
training data, whose creation can be a time-consuming and
costly process. Besides, efficient training of DL models re-
quires access to strong computing resources (e.g., a GPU
server), which may be unaffordable to researchers and prac-
titioners with a limited budget. Most traditional ML mod-
els, on the other hand, can be easily trained on a laptop.
Thirdly, the feature engineering required by traditional ML
models plays an important role in contributing to a theoret-
ical understanding of constructs that are not only useful for
classification of forum posts, but are also informative about
students’ discussion behaviors, offering instructors insights
on whether their instructional approach works as expected
[45, 12, 58].

To assist researchers and educators select relevant models for
post classification, this study aims at providing a systematic
evaluation of the mainstream ML and DL approaches com-
monly used to classify educational forum posts. Throughout
this evaluation, we advance research in the field by ensur-
ing that: (i) sufficient effort is allocated to design as many
meaningful features as possible to empower traditional ML
models; (ii) an adequate number of representative ML and
DL models is included; (iii) the effectiveness of selected mod-
els is examined by using more than one dataset, thus adding
to the robustness of our approach to different educational
contexts; (iv) all models are compared in the same exper-
imental setting, e.g., with same training/test data splits,
and performance reported on widely-used evaluation met-
rics to provide common ground for model comparison; and
(v) the coding schemes used labeling discussion posts are
made publicly available to motivate the replication of our
study. Formally, the evaluation was guided by the following
two Research Questions:

RQ1 To what extent can traditional ML models accu-
rately classify educational forum posts?

RQ2 What is the performance difference between tradi-
tional ML models and DL models in classifying ed-
ucational forum posts?

To answer the RQs, we chose two human-annotated datasets
collected at two educational institutions: Stanford Univer-
sity and Monash University. We further conducted the
evaluation as per the following two classification tasks: (i)
whether a post requires an urgent response or not; and (ii)
whether the post content is related to knowledge and skills
taught in a course. Specifically, to answer RQ1, we first
surveyed relevant studies that reported on applying tradi-
tional ML models to classify educational forum posts. We
hence selected four models that were commonly utilized, i.e.,
Logistics Regression, Näıve Bays, SVM, and Random For-
est. In particular, we collected features frequently employed

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 229

in the reviewed studies and incorporated them as an input
to empower the four traditional ML models in our experi-
ment. Given that these features may play different roles in
different classification tasks, we further conducted a feature
selection analysis to shed light on the features that must be
included in the future application of these models for similar
classification tasks.

To answer RQ2, we selected the two widely-adopted DL
models, Convolutional Neural Network coupled with Long
Short-Term Memory (CNN-LSTM) and Bi-directional LSTM
(Bi-LSTM), and compared them to the four selected tradi-
tional ML models. Recent studies in DL suggested that the
performance of a model adopted for solving an NLP task
(CNN-LSTM or Bi-LSTM in our case, denoted as the task
model for simplicity) can be greatly improved with the aid
of state-of-the-art pre-trained language models like BERT
[16] in two ways. Firstly, BERT can be used to transform
the raw text of a post into a set of semantically accurate
vector-based representations (i.e., word embedding), which
comprise the input information for the task model and en-
able the model to distinguish among multiple characteristics
of a post. Secondly, BERT can adapt itself to capture the
unique data characteristics of the task at hand. To this end,
BERT couples with the task model and learns the model
parameters. In particular, such flexibility has been demon-
strated as extremely helpful in the contexts where training
data was not sufficient. Therefore, we explored the effective-
ness of BERT in empowering the two DL models selected for
the experiment. We provide details in Section 3.

Performance of the four traditional ML and two DL models
were examined by four evaluation metrics commonly used in
classification tasks, i.e., Accuracy, Cohen’s κ, Area Under
the ROC Curve (AUC), and F1 score. In summary, this
study contributed to the literature of the classification of
educational forum posts with the following main findings:

• Compared to other traditional ML models, Random
Forest is more robust in classifying educational forum
posts;

• Both textual and metadata features should be engi-
neered to empower traditional ML models;

• Different features should be designed when applying
traditional ML models for different classification tasks;

• DL models tend to outperform traditional ML models
and the performance difference ranges from 1.85% to
5.32% with respect to different evaluation metrics;

• Using the pre-trained language model BERT benefits
the performance of DL models.

2. RELATED WORK
2.1 Content Analysis of Forum Posts
Across disciplines, educators widely utilize online discussion
forums to accomplish different instructional goals. For in-
stance, instructors often provide an online discussion board
as a platform for students to ask questions and get answers
about course content [12, 57], argue for/against a particu-
lar issue and, in that way, engage deeply with course topics

[43, 42] or work collaboratively on a course project [49, 13].
In this process, instructors monitor student involvement by
reading their posts. At the same time, instructors judge
student contributions in the discussion task, e.g., whether
students asked a question that relates to course content vs.
a question about semester tuition; described their feelings
about the discussed problem vs. just rephrased the prob-
lem; or clearly communicated their ideas to classmates in
a collaborative learning task. Upon identifying posts that
do not contribute to the forum at the expected level, the
instructor may intervene accordingly. Sometimes, such an
intervention needs to be provided immediately (e.g., in a
case of a post pointing out the error in the practice exam
key).

With the increasing popularity of online discussion forums in
the instructional context, educational researchers have be-
come interested in conducting content analysis of students’
posts to find evidence and extent of learning processes that
instructors aimed to elicit in online discussion. To this end,
researchers utilize coding scheme, a predefined protocol that
categorizes and describes participants’ behaviors represen-
tative of the observed educational construct [47, 37], e.g.,
knowledge building [23, 35], critical thinking [39, 35], argu-
mentative knowledge construction [55], interaction [26, 43],
social cues, cognitive/meta-cognitive skills and knowledge,
depth of cognitive processing [26, 25], and self-regulated
learning in collaborative learning settings [50]. As per the
analytical procedure, researchers read student postings and
apply a code over a unit of analysis that can be determined
physically (e.g., entire post), syntactically (e.g., paragraph,
sentence) or semantically (e.g., meaningful unit of text) [15,
47]. Content analysis clearly demonstrated a potential to
capture relevant, fine-grained discussion behaviors and pro-
vide researchers and educators with warranted inferences
made from coding data [46, 47, 28].

Manual content analysis is time-consuming [25], especially in
high-enrollment courses with thousands of discussion posts
that students create. To automate the process of content
analysis and support monitoring of student discussion activ-
ity, various computational approaches have been developed
for post classification. These approaches relied upon tradi-
tional ML models and DL models and handled four common
types of post classification tasks: content, confusion, senti-
ment, and urgency. Below, we expand upon the studies that
reported on these tasks.

2.2 Traditional Machine Learning Models
Educational researchers have applied traditional ML mod-
els to automate content analysis of online discussion posts
for different instructional needs. The ML models we iden-
tified in this review are predominantly based on supervised
learning paradigm and can be categorized into four general
methodological approaches: regression-based (e.g., Logistics
Regression [1, 61, 57, 2, 62, 36]), Bayes-based (e.g., Naive
Bayes, [5, 4, 36]), kernel-based (e.g., SVM [45, 12, 5, 18,
36, 58, 40, 30]), and tree-based (e.g., Random Forest [5,
2, 36, 31, 19, 38]). These models were designed to predict
an outcome variable that represented the meaning of dis-
cussion posts across different categories such as confusion,
sentiment or urgency. For instance, [12] created an SVM
classifier to differentiate between content-related and non-

230 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

content-related questions in a discussion thread to help in-
structors more easily detect content-related discourse across
an extensive number of student posts in MOOC, while [1]
implemented a Logistic Regression classifier to detect confu-
sion in students’ posts and automatically recommend task-
relevant learning resources to students who need it. [58]
applied SVM to detect student achievement emotions [41]
in MOOC forums and studied the effects of those emotions
on student course engagement.

In recent years, researchers became increasingly interested
in analyzing the expression of urgency (e.g., regarding course
content, organization, policy) in a discussion post [2]. For
example, [2] developed multiple ML classifiers to identify
posts that need prompt attention from course instructors.
While researchers mostly implemented supervised ML mod-
els, here we also note a small group of studies that reported
on using unsupervised methods to classify forum posts, e.g.,
a lexicographical database of sentiments [36] and minimizing
entropy [8].

Traditional ML models built upon textual and non-textual
features extracted from students’ posts. Textual features
characterize content of the discussion post, e.g., presence of
domain specific words [61, 44], presence of words reflective
of psychological processes [31, 38, 19], term frequency [2, 5],
emotional and cognitive tone [12, 57, 40, 58, 7, 34, 1], pres-
ence of predefined hashtags [21], text readability index [62],
text cohesion metrics [31, 38, 19], and measures of similar-
ity between message text [31, 38, 19]. Non-textual features,
on the other hand, include post metadata, e.g., popularity
views, votes and responses [12, 45, 36], number of unique
social network users [45, 1, 18], timestamp [45, 36], type
(post vs. response) [36], variable that signals whether the
issue has been resolved or not [61], the relative position of
the most similar post [51], variable that signals whether the
author of the post is also the initiator of the thread [51],
page rank value of the author of current post [51], indicator
if a message is the first or last in a thread [38, 31, 19], and
structure of the discussion thread [53, 31, 19, 38].

Researchers computed a variety of evaluation metrics to as-
sess performance of these models. Classification accuracy
was commonly applied in studies that we reviewed (e.g., [12,
61, 36]). Generally, models achieved classification accuracy
of 70% to 90% in classifying forum posts across different
levels of content identification, urgency, confusion, and sen-
timent. We also note that some authors opted for different
or additional evaluation metrics, e.g., precision/recall [12, 1,
62], AUC [12, 18], F1 [1, 2], kappa [1, 61, 57]. Across the
models, authors utilized a wide range of different validation
strategies (e.g., cross validation, train/test split).

We identified two major challenges researchers should be
aware of when using traditional machine learning approaches
to detect relevant content, confusion, sentiment and/or ur-
gency in a discussion forum. First, traditional machine
learning approaches usually involve extensive feature engi-
neering. In the context of post classification, a huge num-
ber of textual and non-textual features of a post is practi-
cally available to researchers. Features can be generated us-
ing different text mining approaches (e.g., dictionary-based,
rule-based) and can be even produced using other classi-

fiers (e.g.,[1]). Researchers thus often face a challenge to
decide which feature subset to choose to best capture educa-
tional problems (e.g., off-topic posting, misinterpreting the
discussion task, unproductive interaction with peers) and/or
learning process of interest (e.g., knowledge building, criti-
cal thinking, argumentation). For this reason, domain and
learning experts, including course instructors, learning sci-
entists, and educational psychologists are often needed to
define a feature space that aligns with the purpose of an
online discussion. Second, works in [12, 57, 4, 2] took a va-
riety of different approaches to validate the classifiers they
developed in terms of metrics, datasets, and training param-
eters which makes it hardly possible to directly compare the
performance of these ML models.

2.3 Deep Learning Approaches
To our knowledge, relatively fewer studies attempted to ex-
plore the effectiveness of DL approaches in classifying edu-
cational forum posts [54, 59, 10, 24, 8, 3, 6]. The DL models
adopted by these studies, typically, relied on the use of CNN,
LSTM, or a combination of them. For instance, [54] devel-
oped a DL model called ConvL, which first used CNN to
capture the contextual features that are important to discern
the type of a post, and then applied LSTM to further utilize
the sequential relationships between these features to assign
a label to the post. Through extensive experiments, ConvL
was demonstrated to achieve about 81%∼87% Accuracy in
classifying discussion posts of different levels of urgency, con-
fusion, and sentiments. In a similar vein, [59] proposed to
use Bi-LSTM to better make use of the sequential relation-
ships between different terms contained in a post (i.e., from
both of the forward and backward directions). By compar-
ing with SVM and a few DL models, this study showed that
Bi-LSTM performed the best in determining whether a post
contained a question or not (72%∼75% Accuracy).

It is worth noting that the success of DL models often de-
pends on the availability of a large-amount human-annotated
data for model training (typically tens of thousands at least).
This, undoubtedly, limits the applicability of DL models in
tackling tasks with only a small amount of training data
(e.g., a few thousand). Fortunately, with the aid of pre-
trained language models like BERT [16], we can still exploit
the power of DL models [10]. Pre-trained language mod-
els aim to produce semantically meaningful vector-based
representations of different words (i.e., word embeddings)
by training on a large collection of corpora. For instance,
BERT was trained on English Wikipedia articles and Book
Corpus, which contain about 2,500 million and 800 million
words, respectively. Two distinct benefits were brought by
such pre-trained language models: (i) the word embeddings
produced by them encode a rich contextual and semantic
information of the text and can be well utilized by a task
model (e.g., ConvL described above) to distinguish different
types of input data; and (ii) a pre-trained language model
can be adapted to a specific task by concatenating itself to
the task model and further fine-tuning/learning their param-
eters as a whole with a small amount of training data. For
example, [10] showed that BERT was able to boost classifi-
cation Accuracy up to 83%∼92% when distinguishing posts
of different levels of confusion, sentiment, and urgency.

Though gaining some impressive progress, the studies de-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 231

Table 1: The features used as input for traditional ML models. The features used to train models are denoted as Yes under
the column Included

Category Feature Description # features Studies used this feature Included

Textual

unigrams
and bigrams

Only the top 1000 most frequent unigram/bigrams
are included.

2000 [12, 57, 40, 2, 56, 62, 51]

Yes

Post length # words contained in a post. 1 [58, 45, 36, 62]

TF-IDF
The term frequency-inverse document frequency
(TF-IDF) of the top 1000 most frequent unigrams.

1000 [2, 5]

Automated
readability index

A score ∈ [0, 100] specifying the post readability. 1 [62]

LIWC

A set of features denoted as scores ∈ [0, 100]
indicating the characteristics of a post from various
textual categories including: language summary,
affect, function words, relativity, cognitive process,
time orientation, punctuation, personal concerns,
perceptual process, grammar, social and drives.

84 [2, 58, 7, 34, 31, 38, 19]

Word overlap
The fraction of words that appeared previously in
the same post thread.

- [7]

No# domain-specific
words

Words selected by expert to characterize a specific
subject, e.g., “equation” and “formula” for Math.

- [61, 44]

LDA-identified
words

Words that are specific to topics discovered by
applying the topic modeling method Latent Dirichlet
allocation.

- [62, 4, 44]

Coh-Metrix

A set of features indicating text coherence (i.e.,
co-reference, referential, causal, spatial, temporal,
and structural cohesion) linguistic complexity,
text readability, and lexical category.

- [31, 38]

LSA similarity
A score indicating the average sentence similarity
within a message.

- [31]

Hashtags
Hashtags pre-defined by instructors to characterize
the type of a post, e.g., #help and #question for
confusion detection.

- [21]

Metadata

views The number of views that a post received. 1 [45, 12, 36, 62, 18]

YesAnonymous post
A binary label to indicate whether a post is
anonymous to other students.

1 [45, 1, 18]

Creation time The day and the time when a post was made. 2 [45, 36, 18]

votes The number of votes that a post received. 1 [45, 12, 36, 62, 18]

Post type
A binary label to indicate whether a post is
a response to another post.

1 [36, 2]

Response time The amount of time before a post was responded. - [18]

No
responses The number of responses that a post received. - [45, 12, 36, 18]

Discussion status
A binary label to indicate whether the issue has
been resolved or not.

- [61]

Comment Depth
A number assigned to a post to indicate its
chronological position within a discussion thread.

- [53]

First and Last Post
A binary label to indicate whether the post is the
first or the last in a discussion thread respectively.

- [51, 53]

scribed above were often limited in providing a systematic
comparison between the proposed DL models and existing
traditional ML models. In other words, these studies either
did not include traditional ML models for comparison [10,
54] or only compared DL models with only one or two tra-
ditional ML models and the potential of these traditional
ML models might be suppressed due to a limited amount of
efforts spent in feature engineering [59]. This necessitates
a systematic evaluation of the two strands of approaches so
as to better guide researchers and practitioners in selecting

models for classifying educational forum posts.

3. METHODS
We open this section by describing the datasets used in our
study. Then, we introduce the representative traditional
ML models, including the set of features we engineered to
empower those models (RQ1), and then describe the two
DL models we chose to compare to the four traditional ML
models (RQ2).

232 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

3.1 Datasets
To ensure a robust comparison between traditional ML and
DL models in classifying educational forum posts, we adopted
two datasets in the evaluation, briefly describe below.

Stanford-Urgency consists of 29,604 forum posts collected
from eleven online courses at Stanford University. These
courses mainly cover subjects like medicine, education, hu-
manities, and sciences. To our knowledge, this dataset is one
of the few open-sourced datasets for classifying educational
forum posts and was widely used in previous studies [57, 2,
5, 10, 56, 24, 21]. In particular, Stanford-Urgency contains
three types of human-annotated labels, including the degree
of urgency of a post to be handled by an instructor, the
degree of confusion expressed by a student in a post, and
the sentiment polarity of a post. In line with the increasing
research interest in detecting urgent posts [2, 10, 24, 3], we
used Stanford-Urgency and focused on determining the lev-
els of urgency of posts in this study. The count of urgent
and non-urgent posts is 6,418 (22%) and 23,186 (78%), re-
spectively. Originally, the urgency label was assigned on a
Likert scale of [1, 7], with 1 denoting being not urgent at all
and 7 denoting being extremely urgent, respectively. Sim-
ilar to previous studies [2], we pre-processed the data by
treating those of value larger than or equal to 4 as urgent
posts and those less than 4 as non-urgent posts, and the
classification task became a binary classification problem.
It is worth pointing out two notable benefits of including
Stanford-Urgency: (i) the large number of posts contained
in Stanford-Urgency provided sufficient training data for DL
models; and (ii) in addition to the text contained in a post,
Stanford-Urgency contains rich metadata information about
the post, e.g., the creation time of a post, whether the cre-
ator of a post was anonymous to other students, the number
of up-votes a post received, which enabled us to explore the
predictive utility of different types of data.

Moodle-Content was collected by Monash University, the
dataset contains 3,703 forum posts that students generated
in the Learning Management System Moodle during their
coursework in courses like arts, design, business, economics,
computer science, and engineering. The posts were first
manually labelled by a junior teaching staff and then in-
dependently reviewed (and corrected if necessary) by two
additional senior teaching staff to ensure the correctness of
the assigned labels. In contrast to Stanford-Urgency, this
dataset contains labels to indicate whether a post was re-
lated to the knowledge and skills taught in a course or not,
e.g., “What is poly-nominal regression?” (relevant to course
content) vs. “When is the due date to submit the second as-
signment?” (irrelevant). The count of content-relevant and
content-irrelevant posts is 2,339 (63%) and 1,364 (37%), re-
spectively. Therefore, similar to the adoption of Stanford-
Urgency, we also tackled a binary classification problem
here. However, it should be noted that, compared to Stanford-
Urgency, the metadata of posts were not available in Moodle-
Content.

3.2 Traditional Machine Learning Models
Model Selection. To ensure our evaluation is systematic,
we included representative models that emerged in previ-
ous studies. As summarized in Section 2.2, the traditional

ML models commonly investigated to date can be roughly
grouped into four categories, i.e., regression-based, Bayes-
based, kernel-based, and tree-based. Therefore, we selected
one model from each group and explored their capabilities
in classifying educational forum posts, namely Logistics Re-
gression, Näıve Bayes, SVM, and Random Forest.

Feature Engineering. Different from previous studies [59,
5], we argued that traditional ML models should involve an
extensive set of meaningful features to fully unleash their
predictive potential before being compared to DL models,
specifically, we expected that ML models demonstrate im-
proved performance when utilising more features. There-
fore, we surveyed studies that reported on applying tradi-
tional ML models to classify educational forum posts, engi-
neered features following previous studies and incorporated
those features into the four traditional ML models, as sum-
marized in Table 1. These features can be classified into
two broad categories: (i) textual features that are extracted
from the raw text of a post with the aid of NLP techniques;
and (ii) metadata features about a post. As the metadata
of posts was not available in Moodle-Content, only textual
features were engineered for this dataset, while both tex-
tual and metadata features were engineered for Stanford-
Urgency. We excluded several types of features from the
evaluation, mainly due to the unavailability of the data re-
quired to engineer those features, e.g., # domain-specific
words, and Hashtags. As for LDA-identified words, Coh-
Metrix, and LSA similarity, we have left these features to
be explored in our future work.

Feature Importance Analysis. Previous studies [12, 57, 56]
have demonstrated the benefits of feature importance anal-
ysis in providing a theoretical understanding of the underly-
ing constructs that are useful to classify educational forum
posts, e.g., identifying features that are useful across differ-
ent classification tasks. Therefore, we adopted the following
approach to identify the top k most important features of
an ML model:

1. the Chi-squared statistics between engineered features
and the target classification labels were computed;

2. each time, the feature of the highest Chi-squared statis-
tic was fed into the model and the feature was kept in
the set of input features only if the classification per-
formance had increased;

3. we repeated (2) until k most important features were
identified.

3.3 Deep Learning Models
Existing studies on developing DL models to characterize
different types of forum posts, typically, involved the use of
CNN or LSTM, which motivated us to include the following
two DL models to our evaluation:

• CNN-LSTM [54, 24, 59]. This model consists of: (i)
an input layer, which learns an embedding representa-
tion for each word contained in the input test; (ii) a
CNN layer, which performs a one-dimensional convo-
lution operation on the embedding representation pro-
duced by the input layer and captures the contextual

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 233

information related to each word; (iii) an LSTM layer,
which takes the output of the CNN layer to make use
of the sequential information of the words; and (iv) a
classification layer, which is fully-connected layer tak-
ing the output of the LSTM layer as input to assign a
label to the input text.

• Bi-LSTM [59, 24, 6]. Though LSTM has been demon-
strated as somewhat effective in utilizing the sequential
information of long input text, they are limited in only
using the previous words to predict the later words in
the input text. Therefore, Bi-directional LSTM was
proposed, which consists of two LSTM layers, one rep-
resenting text information in the forward direction and
the other in the backward direction to better capture
the sequential information between different words. For-
mally, this model consists of: (i) an input layer (same
as CNN-LSTM); (ii) a Bi-LSTM layer; and (iii) a clas-
sification layer (same as CNN-LSTM).

Both CNN-LSTM and Bi-LSTM use an input layer to learn
the representation of the input text, i.e., embeddings of the
words in a post. Instead of learning word embeddings dur-
ing training, previous studies [17, 33, 32] suggested that pre-
trained language models like BERT can be used to initialize
embeddings. Such embedding initialization has been demon-
strated as an effective way to facilitate a task model to ac-
quire better performance. Therefore, we adopted BERT to
initialize the input layer of both CNN-LSTM and Bi-LSTM
and, correspondingly, the implemented models are denoted
as Emb-CNN-LSTM, and Emb-Bi-LSTM, respectively.

In addition to word embeddings initialization, as suggested
in recent studies in the field of NLP [17, 33], we can fur-
ther couple BERT with a task model (i.e., CNN-LSTM or
Bi-LSTM) and adapt BERT to suit the unique character-
istics of a task by training BERT and the task model as
a whole. In other words, the task model is often concate-
nated on top of BERT’s output for the [CLS], which is a
special token used in BERT to encodes the information of
the whole input text. The co-training of BERT and the
task model enables BERT to fine-tune its parameters to
produce task-specific word embeddings for the input text,
which further facilitates the task model to determine a suit-
able label for the input. In fact, this fine-tuning strategy,
compared to being used for embedding initialization, has
been demonstrated as a more promising approach to make
use of BERT. For instance, [10] showed that, even by sim-
ply coupling with a classification layer (i.e., the last layer
of CNN-LSTM and Bi-LSTM), BERT was capable of ac-
curately classifying 92% forum posts. Most importantly, it
should be noted that the parameters of the coupled model
can be well fine-tuned/learned with only a few thousand
data samples. That means, this fine-tuning strategy enables
CNN-LSTM and Bi-LSTM to be also applicable to tasks
that deal with only a small amount of data, e.g., Moodle-
Content in our case. In summary, we fine-tuned BERT after
coupling it with CNN-LSTM (CNN-LSTM-Tuned) and Bi-
LSTM (Bi-LSTM-Tuned), respectively. Besides, to gain a
clear understanding of the effectiveness of this fine-tuning
strategy, we coupled BERT with only a single classifica-
tion layer (denoted as SCL-Tuned) and compared it with
CNN-LSTM-Tuned and Bi-LSTM-Tuned. Table 2 provides

a summary of the DL models implemented in this study.

Table 2: The DL models used in this study. Here, SCL
denotes Single Classification Layer.

Models
Usage of BERT Task Model

Embedding
Initialization

Fine-tuning CNN-LSTM Bi-LSTM SCL

Emb-CNN-LSTM
√ √

Emb-Bi-LSTM
√ √

CNN-LSTM-Tuned
√ √

Bi-LSTM-Tuned
√ √

SCL-Tuned
√ √

3.4 Experiment Setup
Data pre-processing. Training and testing data were ran-
domly split in the ratio of 8:2. The Python package NLTK

was applied to perform lower casing and stemming on the
raw text of a post after removing the stop words.

Evaluation metrics. In line with previous works in classify-
ing educational forum posts, we adopted the following four
metrics, i.e., Accuracy, Cohen’s κ, AUC, and F1 score, to
examine model performance. We ran each model three times
and reported the averaged results.

Model implementation and training. The traditional ML
models (i.e., Logistics Regression, Näıve Bays, SVM, and
Random Forest) were implemented with the aid of the Python
package scikit-learn and their parameters were determined
by applying grid search and fit the grid to the training
data. Note all model hyper-parameters will be documented
in the released GitHub repository. The ML models were
trained with textual and metadata features for the Stanford-
Urgency dataset, and trained with textual features for the
Moodle-Content dataset. When applying the method de-
tailed in 3.2 to perform feature importance analysis, we used
F1 score as the metric to measure the changed model per-
formance. For both CNN-LSTM and Bi-LSTM, the model
parameters are selected to be comparable with similar pre-
vious works in [54, 24, 59, 10]. To this purpose, the size of
the BERT embeddings used in the input layer was 768 and
the number of hidden units used in the final classification
layer was 1. We used the activation function sigmoid and
L2 regularizer. In CNN-LSTM, the CNN layer was set to
have 128 convolution filters with filter width of 5, while the
LSTM layer was set to have 128 hidden states and 128 cell
states. In Bi-LSTM, the number of the hidden states and
cell states in the LSTM cells was both set to 128. For all DL
models, (i) 10% of the training data was randomly selected
as the validation data; (ii) the batch size was set to 32 and
the maximum length of the input text was set to 512; (iii)
the optimization algorithm Adam was used; (iv) the learning
rate was set by applying the one cycle policy with maximum
learning rate of 2e-05; (v) the dropout probability was set
to 0.5; and (vi) the maximum number of training epochs
was 50 and early stopping mechanisms were used when the
model performance on the validation data starts to decrease,
and data shuffling was performed at the end of each epoch.
The best model is selected based on validation error. For
BERT, we used the service provided by Bert-as-service1.

1https://github.com/hanxiao/bert-as-service

234 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 3: The performance of traditional ML models. The results in bold represent the best performance in each task.

Stanford-Urgency Moodle-Content

Methods Accuracy Cohen’s κ AUC F1 Accuracy Cohen’s κ AUC F1

Näıve Bays 0.7536 0.5071 0.7762 0.7844 0.7183 0.4736 0.7210 0.6870
SVM 0.8627 0.7347 0.8630 0.8185 0.7536 0.5900 0.7536 0.7530
Random Forest 0.8915 0.7892 0.8916 0.8918 0.7544 0.5927 0.7551 0.7661
Logistic Regression 0.8068 0.6287 0.8068 0.7638 0.7339 0.5251 0.7357 0.7547

Table 4: The performance of Random Forest on Stanford-Urgency when using different types of features as input. The results
in bold represent the best performance.

Types of Features Accuracy Cohen’s κ AUC F1

Textual 0.8639 0.7368 0.8642 0.8652
Metadata 0.8150 0.6442 0.8152 0.8136
Textual + Metadata 0.8915 0.7892 0.8916 0.8918

Table 5: The performance of Random Forest when only using the top-10 most important features (Table 6) as input. The
fractions within brackets indicate the decreased performance compared to those with all available features as input (Table 3).

Stanford-Urgency Moodle-Content

Accuracy Cohen’s κ AUC F1 Accuracy Cohen’s κ AUC F1
0.8610 (-3.42%) 0.7315 (-7.31%) 0.8617 (-3.35%) 0.8628 (-3.25%) 0.7175 (-4.89%) 0.5577 (-5.91%) 0.7186 (-4.83%) 0.7358 (-3.96%)

4. RESULTS

Results on RQ1. The performance of the four traditional ML
models is presented in Table 3. Across both classification
tasks, Random Forest achieved the best performance, as per
the calculated evaluation metrics, followed by SVM and Lo-
gistics Regression. Näıve Bayes, on the other hand, achieved
the lowest performance. Specifically, Random Forest was ca-
pable of accurately classifying almost 90% of the forum posts
in Stanford-Urgency, and reached an AUC and F1 score of
0.8916 and 0.8918, respectively. Besides, Cohen’s κ score
achieved by Random Forest for the same dataset was 0.7892,
which indicates a substantial (and almost perfect) classifica-
tion performance. In terms of classifying Moodle-Content,
we noticed the overall performance of all models was lower
than in Stanford-Urgency. This may be attributed to the
lack of metadata features and significantly fewer posts in
Moodle-Content than in Stanford-Urgency, making it harder
for the models to reveal characteristics of different types of
posts in Moodle-Content. Still, Random Forest achieved an
overall accuracy, AUC, and F1 score of 0.7544, 0.7551, and
0.7661, respectively, and Cohen’s κ score was very close to
0.6, which indicates an almost substantial classification per-
formance.

Before delving into the identification of the most predictive
features, we submitted each group of the textual and meta-
data features to the best-performing ML model (i.e., Ran-
dom Forest) to depict their overall predictive power. The
results are given in Table 4, derived only from Stanford-
Urgency due to the unavailability of the metadata features
in Moodle-Content. We observe that both textual and meta-
data features were useful in boosting classification perfor-
mance, and textual features seem to have had a stronger ca-
pacity in distinguishing urgent from non-urgent posts. For
instance, when only taking textual features into considera-

tion, the AUC score was 0.8462, which is about 6% higher
than that of metadata features (0.8152) and only 5% lower
than that when considering both textual features and meta-
data features.

To gain a deeper understanding of the predictive power of
different features, we further applied the method described
in Section 3.2 to select the top 10 most important features
in both Stanford-Urgency and Moodle-Content, described in
Table 6. Here, several interesting observations can be made.

Firstly, almost all of the identified features were textual fea-
tures, with only one exception observed in Stanford-Urgency,
i.e., the metadata feature # views. This is in line with the
findings we observed in Table 4, i.e., compared to meta-
data features, textual features tended to make a larger con-
tribution in classifying forum posts. Among those textual
features, we should also notice that most of them were ex-
tracted with the aid of LIWC. This corroborates with the
findings presented in previous studies [31, 38, 19], i.e., LIWC
is a useful tool in identifying meaningful features for char-
acterizing educational forum posts.

Secondly, there is little overlap regarding the top ten most
important features in the two tasks (only two shared feature,
i.e., LIWC: pronoun and LIWC: posemo). In particular,
we note that the number of features was highly related to
the context of a classification task. In the Stanford-Urgency
case, a number of top features were associated with a sense of
stimulation (e.g., anxiety, affect, drive), which represents a
subjective representation of urgency. In the Moodle-Content
case, features were more associated with a sense of investi-
gation (e.g., Analytic and Understand). This shows that dif-
ferent classification tasks (i.e., Urgency vs. Content-related)
require task-specific features to best capture the task-specific
information (i.e., whether the post expressed a sense of ur-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 235

Table 6: The top 10 most important features used in Random Forest. Features shared by the two tasks are in bold.

Stanford-Urgency Moodle-Content

Features Description Features Description

Metadata: # views The number of views that a post received. Post length # words contained in a post.

LIWC: pronoun
of the occurrence of all pronouns (e.g., personal
and impersonal pronouns)

LIWC: Analytic
A score indicating the formal, logical, and
hierarchical thinking patterns in a post

Unigram: they # of the occurrence of the word “they” LIWC: Tone
A score indicating the emotional tone
conveyed in a post

LIWC: number # of the occurrence of the digital numbers LIWC: pronoun
of the occurrence of all pronouns (e.g., personal
and impersonal pronouns)

LIWC: affect
A score indicating the overal emotion (positive and
negative) of a post

LIWC: ppron
of the occurrence of all personal pronoun
(e.g., he, she, me) in a post

LIWC: posemo A score indicating the positive emotion of a post Unigram: I # of the occurrence of the word “I ”

LIWC: drives
A score indicating the needs, motives, and drives of
a post (e.g., references to success and failure)

LIWC: posemo A score indicating the positive emotion of a post

LIWC: power
A score indicating the power of a post (e.g.,
reference to dominance)

TF-IDF: understand The TF-IDF score of the word “understand”

LIWC: anx A score indicating the anxiety conveyed in a post LIWC: affiliation
A score indicating the capacity for enjoying close,
harmonious relationships conveyed in a post

LIWC: QMark # of the occurrence of question mark LIWC: Exclam # of the occurrence of exclamation mark

Table 7: The performance of DL models. The results in bold represent the best performance in each task. The fractions
within brackets indicate the increased performance compared to the best performance achieved by Random Forest (Table 3).

Models Accuracy Cohen’s κ AUC F1

Stanford-
Urgency

1. Emb-CNN-LSTM 0.9203 (3.23%) 0.8192 (3.80%) 0.9201 (3.20%) 0.9203 (3.20%)
2. Emb-Bi-LSTM 0.9159 (2.73%) 0.8051 (2.01%) 0.9153 (2.66%) 0.9159 (2.71%)

3. CNN-LSTM-Tuned 0.9211 (3.32%) 0.8210 (4.02%) 0.9221 (3.42%) 0.9221 (3.40%)
4. Bi-LSTM-Tuned 0.9210 (3.30%) 0.8196 (3.85%) 0.9208 (3.28%) 0.9210 (3.27%)
5. SCL-Tuned 0.9210 (3.31%) 0.8206 (3.98%) 0.9215 (3.35%) 0.9219 (3.38%)

Moodle-
Content

6. CNN-LSTM-Tuned 0.7934 (5.17%) 0.6230 (5.11%) 0.7952 (5.32%) 0.7993 (4.33%)
7. Bi-LSTM-Tuned 0.7854 (4.11%) 0.6220 (4.93%) 0.7901 (4.64%) 0.7913 (3.29%)
8. SCL-Tuned 0.7716 (2.29%) 0.6092 (2.77%) 0.7733 (2.42%) 0.7803 (1.85%)

gency).

Moreover, when solely using the top 10 features as an input,
the performance of Random Forest was 3.25%∼7.31% lower
than the performance obtained after incorporating all avail-
able features (Table 5). This finding hence confirms that
while the traditional ML models can achieve good classifica-
tion performance using only the top 10 best features, there
is still potential for improvement when using more features.
Hence, researchers should attempt to apply more features to
fully unleash traditional ML models’ capability.

Results on RQ2. The performance of the implemented DL
models is presented in Table 7. As Moodle-Content con-
tained only 3,703 labeled posts, that was likely to be insuffi-
cient to support the training of CNN-LSTM or Bi-LSTM
from scratch. Therefore, we only implemented the fine-
tuned models, i.e., CNN-LSTM-Tuned, Bi-LSTM-Tuned, and
SCL-Tuned on Moodle-Content. Several observation can be
derived based on the results in Table 7.

Firstly and unsurprisingly, DL models uniformly achieved a
better performance than traditional ML models. This cor-
roborates findings reported in [59, 54, 33, 24]. DL models

are, therefore, superior to traditional ML models in terms
of capturing the characteristics of a dataset and obtaining
better classification results. However, we should note that
the performance difference between traditional ML models
and DL models was not that large. Specifically, the best-
performing model CNN-LSTM-Tuned achieved an improve-
ment of only 3.32% in Accuracy, 4.02% in Cohen’s κ, 3.42%
in AUC, and 3.40% in F1 score. In particular, the Cohen’s
κ score was 0.8210, which suggests an almost perfect classi-
fication performance.

Secondly, contrasting findings reported in [59], we found that
CNN-LSTM slightly outperform Bi-LSTM in most cases (i.e.,
Row 1 vs. Row 2, Row 3 vs. Row 4, and Row 6 vs. Row 7 in
Table 7). Thirdly, instead of using BERT for embedding ini-
tialization, the classification model would achieve better per-
formance by fine-tuning BERT by coupling it with the task
model and training the coupled model as a whole (i.e., Row
1-2 vs. Row 3-4 in Table 7), though the improvement was
rather limited, e.g., less than 1% when comparing to that
of Emb-CNN-LSTM and CNN-LSTM-Tuned on Stanford-
Urgency. Fourthly, we showed that in Stanford-Urgency,
by simply coupling BERT with a single classification layer
(SCL-Tuned, Row 5 in Table 7), the classification perfor-

236 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

mance was almost as good as those derived by coupling
BERT with more complex DL models like CNN-LSTM and
Bi-LSTM (Row 3-4 in Table 7). This implies that, BERT
can capture the rich semantic information hidden behind a
post, which can be used to deliver adequate classification
performance even by employing a single classification layer.

5. DISCUSSION AND CONCLUSION
The classification of educational forum posts has been a
longstanding task in the research of Learning Analytics and
Educational Data Mining. Though quite some previous stud-
ies have been conducted to explore the applicability and ef-
fectiveness of traditional ML models and DL models in solv-
ing this task, a systematic comparison between these two
types of approaches has not been conducted to date. There-
fore, this study set out to provide such an evaluation with
aiming at paving the road to researchers and practitioners
to select appropriate predictive models when tackling this
task. Specifically, we compared the performance of four rep-
resentative traditional ML models (i.e., Logistics Regression,
Näıve Bays, SVM, and Random Forest) and two commonly-
applied DL models (i.e., CNN-LSTM and Bi-LSTM) on two
datasets. We further elaborate on several implications that
our work may have on the development of classifiers for edu-
cational forum posts. We also list limitations to be addressed
in future studies.

Implications. Firstly, the performance difference between
traditional ML models and DL models was not as large as
reported by previous studies (e.g., [59]). More specifically,
we showed that traditional ML models were often inferior
to DL models in terms of only 1.85% to 5.32% decrease in
classification performance measured by Accuracy, Cohen’s
κ, AUC, and F1 score. This finding implies that, when re-
searchers and practitioners have no access to strong comput-
ing resources and, for this reason, cannot utilize DL models,
they can still achieve acceptable classification performance
by using traditional ML models, as long as those ML models
incorporate carefully-crafted features.

Secondly, our results demonstrate that the performance of
Random Forest classifier is more robust compared to other
traditional ML models. This implies that other more ad-
vanced tree-based ML models (e.g., Gradient Tree Boosting
[9]) might be worth exploring to achieve even higher clas-
sification performance. Besides, given that the most im-
portant feature in Stanford-Urgency was # views (Table 6)
and the models’ performance in Moodle-Content might be
suppressed due to the unavailability of metadata features,
it may be worth paying special attention to acquiring and
using metadata features when applying traditional ML mod-
els. Another finding suggests that little overlap was detected
between the top 10 most important features selected in each
of the two classification tasks (Table 6). This implies when
tackling a classification task, features should be designed to
suit the unique characteristics of the task and fit the theo-
retical model utilized to annotate data (e.g., with predefined
coding scheme). This aligns with findings presented in [31,
38, 19], in different phases of cognitive presence, different im-
portance scores were obtained for the same features. Lastly,
researchers and practitioners may wish to take advantage
of pre-trained language models like BERT when develop-
ing DL models. Our experiment showed that BERT can be

effectively used in two ways, i.e., (i) to initialize the word
embeddings of the post text as the input for a task model;
or (ii) to suit the needs of the specific classification task
by coupling itself with the task model and then fine-tuning
model parameters. Particularly, the second way enables DL
models to be applicable to tasks that deal with only a small
amount of human-annotated data, like in Moodle-Content).

Limitations. Firstly, the evaluation presented in this study
focused only two classification tasks, i.e., Stanford-Urgency
and Moodle-Content. To further increase the reliability of
the presented findings, more tasks should be included and
investigated, e.g., determining the level of confusion that
a student expressed in a forum post or whether the senti-
ment contained in the post is positive or negative [10, 54].
Secondly, a few types of features were not included when ex-
ploring the capabilities of traditional ML models in our eval-
uation, e.g., # domain-specific words and LDA-identified
words. To accurately depict the upper bound of the perfor-
mance of traditional ML models in classifying educational
forum posts, it would be worthy to recruit domain experts
to further engineer and make use of these features. Thirdly,
we should notice that the DL models used in our evaluation
(i.e., CNN-LSTM and Bi-LSTM) only utilized the raw text
of a post as input and left the metadata features untapped.
Given that metadata features have been demonstrated of
great importance in the application of traditional ML mod-
els, future research efforts should also be allocated to design
more advanced DL models that are capable of using both
the raw text of a post and the metadata of the post for
classification.

Lastly, we acknowledge that, due to the scope of this study,
we did not attempt to investigate the reasons causing the
performance difference between traditional ML models and
DL models, e.g., whether the two categories of models mis-
classified the same types of messages. In the future, we
will further investigate whether the performance difference
between traditional ML models and DL models can be at-
tributed to their model structures and explore potential meth-
ods to boost their classification performance, e.g., collecting
additional forum posts to continue the pre-training of BERT
before coupling it with a downstream classification model.

6. REFERENCES
[1] A. Agrawal, J. Venkatraman, S. Leonard, and

A. Paepcke. Youedu: addressing confusion in mooc
discussion forums by recommending instructional
video clips. 2015.

[2] O. Almatrafi, A. Johri, and H. Rangwala. Needle in a
haystack: Identifying learner posts that require urgent
response in mooc discussion forums. Computers &
Education, 118:1–9, 2018.

[3] L. Alrajhi, K. Alharbi, and A. I. Cristea. A
multidimensional deep learner model of urgent
instructor intervention need in mooc forum posts. In
Intelligent Tutoring Systems, pages 226–236. Springer
International Publishing, 2020.

[4] T. Atapattu, K. Falkner, and H. Tarmazdi. Topic-wise
classification of mooc discussions: A visual analytics
approach. EDM, 2016.

[5] A. Bakharia. Towards cross-domain mooc forum post

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 237

classification. In Learning@Scale, pages 253–256, 2016.

[6] F. Brahman, N. Varghese, and S. Bhat. Effective
Forum Curation via Multi-task Learning. page 8, 2020.

[7] A. Caines, S. Pastrana, A. Hutchings, and P. J.
Buttery. Automatically identifying the function and
intent of posts in underground forums. Crime Science,
7(1):19, 2018.

[8] J. Chen, J. Feng, X. Sun, and Y. Liu. Co-training
semi-supervised deep learning for sentiment
classification of mooc forum posts. Symmetry, 12(1):8,
2020.

[9] T. Chen and C. Guestrin. Xgboost: A scalable tree
boosting system. In KDD, pages 785–794, 2016.

[10] B. Clavié and K. Gal. Edubert: Pretrained deep
language models for learning analytics. arXiv preprint
arXiv:1912.00690, 2019.

[11] A. Cohen, U. Shimony, R. Nachmias, and T. Soffer.
Active learners’ characterization in mooc forums and
their generated knowledge. British Journal of
Educational Technology, 50(1):177–198, 2019.

[12] Y. Cui and A. F. Wise. Identifying content-related
threads in mooc discussion forums. In Learning@Scale,
pages 299–303, 2015.

[13] D. D. Curtis and M. J. Lawson. Exploring
collaborative online learning. Journal of Asynchronous
learning networks, 5(1):21–34, 2001.

[14] M. Dascalu, S. Trausan-Matu, D. S. McNamara, and
P. Dessus. Readerbench: Automated evaluation of
collaboration based on cohesion and dialogism.
International journal of computer-supported
collaborative learning, 10(4):395–423, 2015.

[15] B. De Wever, T. Schellens, M. Valcke, and
H. Van Keer. Content analysis schemes to analyze
transcripts of online asynchronous discussion groups:
A review. Computers & education, 46(1):6–28, 2006.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[17] J. Dong, F. He, Y. Guo, and H. Zhang. A commodity
review sentiment analysis based on bert-cnn model. In
2020 5th International Conference on Computer and
Communication Systems (ICCCS), pages 143–147.
IEEE, 2020.

[18] L. Feng, G. Liu, S. Luo, and S. Liu. A transferable
framework: Classification and visualization of mooc
discussion threads. In International Conference on
Neural Information Processing, pages 377–384.
Springer, 2017.

[19] M. Ferreira, V. Rolim, R. F. Mello, R. D. Lins,
G. Chen, and D. Gašević. Towards automatic content
analysis of social presence in transcripts of online
discussions. In LAK, pages 141–150, 2020.

[20] E. L. Fu, J. van Aalst, and C. K. Chan. Toward a
classification of discourse patterns in asynchronous
online discussions. International Journal of
Computer-Supported Collaborative Learning,
11(4):441–478, 2016.

[21] S. A. Geller, N. Hoernle, K. Gal, A. Segal, A. X.
Zhang, D. Karger, M. T. Facciotti, and M. Igo. #
confused and beyond: detecting confusion in course

forums using students’ hashtags. In LAK, pages
589–594, 2020.

[22] E. Grefenstette, P. Blunsom, N. De Freitas, and K. M.
Hermann. A deep architecture for semantic parsing.
arXiv preprint arXiv:1404.7296, 2014.

[23] C. N. Gunawardena, C. A. Lowe, and T. Anderson.
Analysis of a global online debate and the
development of an interaction analysis model for
examining social construction of knowledge in
computer conferencing. Journal of educational
computing research, 17(4):397–431, 1997.

[24] S. X. Guo, X. Sun, S. X. Wang, Y. Gao, and J. Feng.
Attention-based character-word hybrid neural
networks with semantic and structural information for
identifying of urgent posts in mooc discussion forums.
IEEE Access, 7:120522–120532, 2019.

[25] N. Hara, C. J. Bonk, and C. Angeli. Content analysis
of online discussion in an applied educational
psychology course. Instructional science,
28(2):115–152, 2000.

[26] F. Henri. Computer conferencing and content analysis.
In Collaborative learning through computer
conferencing, pages 117–136. Springer, 1992.

[27] K. F. Hew and W. S. Cheung. Students’ and
instructors’ use of massive open online courses
(moocs): Motivations and challenges. Educational
research review, 12:45–58, 2014.

[28] D. H. Jonassen and H. Kwon. Communication
patterns in computer mediated versus face-to-face
group problem solving. Educational technology
research and development, 49(1):35, 2001.

[29] M. I. Jordan and T. M. Mitchell. Machine learning:
Trends, perspectives, and prospects. Science,
349(6245):255–260, 2015.

[30] A. Khan, I. Ibrahim, M. I. Uddin, M. Zubair,
S. Ahmad, A. Firdausi, M. Dzulqarnain, and
M. Zaindin. Machine learning approach for answer
detection in discussion forums: An application of big
data analytics. Scientific Programming, 2020, 2020.

[31] V. Kovanović, S. Joksimović, Z. Waters, D. Gašević,
K. Kitto, M. Hatala, and G. Siemens. Towards
automated content analysis of discussion transcripts:
A cognitive presence case. In LAK, pages 15–24, 2016.

[32] X. Li, L. Bing, W. Zhang, and W. Lam. Exploiting
bert for end-to-end aspect-based sentiment analysis.
arXiv preprint arXiv:1910.00883, 2019.

[33] X. Li, H. Zhang, Y. Ouyang, X. Zhang, and W. Rong.
A shallow bert-cnn model for sentiment analysis on
moocs comments. In 2019 IEEE International
Conference on Engineering, Technology and Education
(TALE), pages 1–6. IEEE, 2019.

[34] M. Lui and T. Baldwin. Classifying user forum
participants: Separating the gurus from the hacks,
and other tales of the internet. In Proceedings of the
Australasian Language Technology Association
Workshop 2010, pages 49–57, 2010.

[35] R. M. Marra, J. L. Moore, and A. K. Klimczak.
Content analysis of online discussion forums: A
comparative analysis of protocols. Educational
Technology Research and Development, 52(2):23, 2004.

[36] P. M. Moreno-Marcos, C. Alario-Hoyos, P. J.
Muñoz-Merino, I. Estévez-Ayres, and C. D. Kloos.

238 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Sentiment analysis in moocs: A case study. In 2018
IEEE Global Engineering Education Conference
(EDUCON), pages 1489–1496. IEEE, 2018.

[37] J. Mu, K. Stegmann, E. Mayfield, C. Rosé, and
F. Fischer. The acodea framework: Developing
segmentation and classification schemes for fully
automatic analysis of online discussions. International
journal of computer-supported collaborative learning,
7(2):285–305, 2012.

[38] V. Neto, V. Rolim, R. Ferreira, V. Kovanović,
D. Gašević, R. D. Lins, and R. Lins. Automated
analysis of cognitive presence in online discussions
written in portuguese. In Proceedings of the 13th
European Conference on Technology Enhanced
Learning, pages 245–261. Springer, 2018.

[39] D. R. Newman, B. Webb, and C. Cochrane. A content
analysis method to measure critical thinking in
face-to-face and computer supported group learning.
Interpersonal Computing and Technology, 3(2):56–77,
1995.

[40] A. Ntourmas, N. Avouris, S. Daskalaki, and
Y. Dimitriadis. Comparative study of two different
mooc forums posts classifiers: analysis and
generalizability issues. In 2019 10th International
Conference on Information, Intelligence, Systems and
Applications (IISA), pages 1–8. IEEE, 2019.

[41] R. Pekrun. The control-value theory of achievement
emotions: Assumptions, corollaries, and implications
for educational research and practice. Educational
psychology review, 18(4):315–341, 2006.

[42] R. Rabbany, S. Elatia, M. Takaffoli, and O. R. Zäıane.
Collaborative learning of students in online discussion
forums: A social network analysis perspective. In
EDM, pages 441–466. Springer, 2014.

[43] M. Raković, Z. Marzouk, A. Liaqat, P. H. Winne, and
J. C. Nesbit. Fine grained analysis of students’ online
discussion posts. Computers & Education, 157:103982,
2020.

[44] A. Ramesh, S. H. Kumar, J. Foulds, and L. Getoor.
Weakly supervised models of aspect-sentiment for
online course discussion forums. In Proceedings of the
53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 74–83, 2015.

[45] L. A. Rossi and O. Gnawali. Language independent
analysis and classification of discussion threads in
coursera mooc forums. In Proceedings of the 2014
IEEE 15th International Conference on Information
Reuse and Integration (IEEE IRI 2014), pages
654–661. IEEE, 2014.

[46] L. Rourke and T. Anderson. Exploring social
communication in computer conferencing. Journal of
Interactive Learning Research, 13(3):259–275, 2002.

[47] L. Rourke and T. Anderson. Validity in quantitative
content analysis. Educational technology research and
development, 52(1):5, 2004.

[48] S. P. Singh, A. Kumar, H. Darbari, L. Singh,
A. Rastogi, and S. Jain. Machine translation using
deep learning: An overview. In 2017 international
conference on computer, communications and
electronics (comptelix), pages 162–167. IEEE, 2017.

[49] H.-J. So. When groups decide to use asynchronous
online discussions: collaborative learning and social
presence under a voluntary participation structure.
Journal of Computer Assisted Learning,
25(2):143–160, 2009.

[50] M. Sobocinski, J. Malmberg, and S. Järvelä. Exploring
temporal sequences of regulatory phases and
associated interactions in low-and high-challenge
collaborative learning sessions. Metacognition and
Learning, 12(2):275–294, 2017.

[51] C. Sun, S.-w. Li, and L. Lin. Thread structure
prediction for mooc discussion forum. In International
Conference of Pioneering Computer Scientists,
Engineers and Educators, pages 92–101. Springer,
2016.

[52] X. Wang, D. Yang, M. Wen, K. Koedinger, and C. P.
Rosé. Investigating how student’s cognitive behavior
in mooc discussion forums affect learning gains. EDM,
2015.

[53] Z. Waters, V. Kovanović, K. Kitto, and D. Gašević.
Structure matters: Adoption of structured
classification approach in the context of cognitive
presence classification. In Proceedings of the 11th Asia
Information Retrieval Societies Conference, pages
227–238. Springer, 2015.

[54] X. Wei, H. Lin, L. Yang, and Y. Yu. A
Convolution-LSTM-Based Deep Neural Network for
Cross-Domain MOOC Forum Post Classification.
Information, 8(3):92, Sept. 2017. Number: 3
Publisher: Multidisciplinary Digital Publishing
Institute.

[55] A. Weinberger and F. Fischer. A framework to analyze
argumentative knowledge construction in
computer-supported collaborative learning. Computers
& education, 46(1):71–95, 2006.

[56] A. F. Wise, Y. Cui, W. Jin, and J. Vytasek. Mining
for gold: Identifying content-related mooc discussion
threads across domains through linguistic modeling.
The Internet and Higher Education, 32:11–28, 2017.

[57] A. F. Wise, Y. Cui, and J. Vytasek. Bringing order to
chaos in mooc discussion forums with content-related
thread identification. In LAK, pages 188–197, 2016.

[58] W. Xing, H. Tang, and B. Pei. Beyond positive and
negative emotions: Looking into the role of
achievement emotions in discussion forums of moocs.
The Internet and Higher Education, 43:100690, 2019.

[59] Y. Xu and C. F. Lynch. What do you want? applying
deep learning models to detect question topics in mooc
forum posts? In Wood-stock’18: ACM Symposium on
Neural Gaze Detection, pages 1–6, 2018.

[60] V. Yadav and S. Bethard. A survey on recent advances
in named entity recognition from deep learning
models. arXiv preprint arXiv:1910.11470, 2019.

[61] D. Yang, M. Wen, I. Howley, R. Kraut, and C. Rose.
Exploring the effect of confusion in discussion forums
of massive open online courses. In Learning@Scale,
pages 121–130, 2015.

[62] Z. Zeng, S. Chaturvedi, and S. Bhat. Learner affect
through the looking glass: Characterization and
detection of confusion in online courses. EDM, 2017.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 239

Acting Engaged: Leveraging Play Persona Archetypes for
Semi-Supervised Classification of Engagement

Benjamin D. Nye
∗

Inst. for Creative Technologies
Univ. of Southern California

nye@ict.usc.edu

Mark G. Core
∗

Inst. for Creative Technologies
Univ. of Southern California

core@ict.usc.edu

Shikhar Jaiswal
∗ †

Microsoft Research
Bangalore, India

t-sjaiswal@microsoft.com

Aviroop Ghosal †
Amazon.com, Inc.

Detroit, Michigan, USA
aviroopg41@gmail.com

Daniel Auerbach
Inst. for Creative Technologies

Univ. of Southern California
auerbach@ict.usc.edu

ABSTRACT
Engaged and disengaged behaviors have been studied across
a variety of educational contexts. However, tools to ana-
lyze engagement typically require custom-coding and cali-
bration for a system. This limits engagement detection to
systems where experts are available to study patterns and
build detectors. This work studies a new approach to clas-
sify engagement patterns without expert input, by using a
play persona methodology where labeled archetype data is
generated by novice testers acting out different engagement
patterns in a system. Domain-agnostic task features (e.g.,
response time to an activity, scores/correctness, task diffi-
culty) are extracted from standardized data logs for both
archetype and authentic user sessions. A semi-supervised
methodology was used to label engagement; bottom-up clus-
ters were combined with archetype data to build a classi-
fier. This approach was analyzed with a focus on cold-start
performance on small samples, using two metrics: consis-
tency with larger full-sample cluster assignments and sta-
bility of points staying in the same cluster once assigned.
These were compared against a baseline of clustering with-
out an incrementally trained classifier. Findings on a data
set from a branching multiple-choice scenario-based tutoring
system indicated that approximately 52 unlabeled samples
and 51 play-test labeled samples were sufficient to classify
holdout sessions at 85% consistency with a full set of 145 un-
supervised samples. Additionally, alignment to play persona
samples for the full set matched expert labels for clusters.
Use-cases and limitations of this approach are discussed.

∗Denotes equal contribution.
†Shikhar Jaiswal and Aviroop Ghosal contributed to this
research as student researchers at the University of Southern
California.

Keywords
Engagement, Machine Learning, Semi-Supervised, Cluster-
ing, Classification, Archetypes, Play Personas

1. INTRODUCTION
Engagement represents a necessary (though not sufficient)
condition for learning. Engagement has been shown to im-
pact learning [4] and persistence [9]. Research has also found
that engagement is actionable and can be increased [25].
This is a particularly important topic for computer-based
learning: unlike in a classroom, where engagement can be
assessed and acted on by an instructor in real-time, patterns
of engagement are often not visible [10].

However, building engagement analytics for a new system
is time consuming. Custom metrics are typically developed
and then require substantial data to identify patterns (i.e.,
the cold-start problem). Worse, the extensive effort to de-
sign such analytics is buried in application-specific code.
While heuristics are available to infer disengagement, such as
response times under 3 seconds [6], applying these to differ-
ent systems requires benchmarking and calibrating detectors
for the content and system. Efforts to analyze engagement
often start almost from scratch. This is unfortunate, since
research on behavioral engagement has identified patterns
which appear to generalize across systems [3, 4, 6, 14, 15].

To address this gap, we are researching a service for analyz-
ing and classifying engagement that relies on a standards-
based learning record store [1]. This effort is called the Ser-
vice for Measurement and Adaptation to Real-Time Engage-
ment (SMART-E). Rather than being optimized to analyze
a specific system or data set, SMART-E targets three high-
level goals: 1) Cold-Start Calibration: ability to identify and
benchmark engagement behaviors, which does not require
large data sets or in-depth expert analysis; 2) Re-Usability :
reliance on standards and data available from most learning
environments; and 3) Actionability : generation of action-
able insights, which an instructor or adaptive system could
leverage or investigate further.

SMART-E is influenced by two techniques: 1) semi-supervised
learning, which trains with a small set of labeled data and

Benjamin Nye, Mark G. Core, Shikhar Jaiswal, Aviroop Ghosal and Daniel
Auerbach “Acting Engaged: Leveraging Player Persona Archetypes for
Semi-Supervised Classification of Engagement”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 240-251.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

240 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

a larger set of unlabeled data and 2) play persona, behav-
ioral archetypes commonly used for testing and analysis of
video games [7, 32]. Our paper describes the process and
findings from applying this approach to a data set from a
scenario-based tutoring system for training counseling skills.
Contributions from this work include a) reviewing features
that generalized engagement analytics should consider, b)
developing a pipeline for analyzing engagement which does
not require expert labeling or application-specific feature en-
gineering, and c) demonstrating the effectiveness of a semi-
supervised approach with reasonable data requirements (e.g.,
about 50 samples each of labeled and unlabeled data) to ap-
proximate inferences that experts might make given similar
data. As such, this research represents a step toward a gen-
eralized framework for diagnosing learner engagement that
does not require an expert researcher analyzing data or ob-
serving subjects.

2. BACKGROUND AND THEORY
Across the learning science community, engagement is de-
fined and measured in vastly different ways, ranging from
split-second physiological responses (e.g., eye tracking, fa-
cial affect) to long-term trends lasting months or years (e.g.,
returning to a system, building social ties) [2, 13]. The re-
search in this paper targets behavioral engagement at the
task level (e.g., time spent working through a problem) and
session level (e.g., sustained effort to improve performance
and learning).

A key reason for this focus is data availability and data in-
terpretability. Most systems collect data logs at these levels
and, as described next, substantial research has also iden-
tified common behavioral patterns. Research on lower-level
affective cues (e.g., facial affect) has found certain action-
able events that generalize (e.g., gaze inattention [15]), but
other patterns are not trivial to generalize due to differences
between individuals or across contexts [28]. Moreover, facial
data is often unavailable due to the privacy issues involved
with recording learning. Larger time scales are not the focus
of this work because engagement levels over those time scales
would require longitudinal data and also are more likely to
be visible to instructors (e.g., absences).

2.1 Patterns of Behavioral Engagement
Behavioral engagement analysis from log files has shown re-
peated evidence of useful, actionable patterns, such as re-
sponse time, response time vs. accuracy/correctness inter-
actions, approach vs. avoidance behaviors relative to prob-
lem difficulty (e.g., skipping hard problems), and noisiness
of answer quality (e.g., carelessness) [5]. Response time, par-
ticularly very fast response time, is one of the most obvious
features linked to behaviors associated with disengagement
(e.g., guessing, skipping, straight-lining). For scored tasks,
the interaction between response time and correctness has
been extensively researched in the study of basic cognition
as well as authentic learning tasks [6]. The relationship be-
tween correctness and time is frequently a logistic relation-
ship (assuming that time does not directly impact scoring):
with very fast responses, correctness is approximately ran-
dom, increasing rapidly to better than chance for more ordi-
nary response time, and approaching an individual skill-level
asymptote as time increases. At very large times, answer

quality may once again decrease, either due to distraction
(e.g., multi-tasking) or difficulty selecting a final answer [27].

More complex interactions often require understanding the
relative problem difficulty. Research indicates that students
with poor learning outcomes tend to avoid or abuse hints
on problems that they find difficult [5]. Conversely, self-
regulated learners may be more likely to skip or “game”
through problems that that are easier relative to their skill
level but dedicate more time to harder problems [33]. While
not yet investigated, this might also imply that more self-
regulated learners may be less likely to demonstrate wheel-
spinning [18] since they are more actively monitoring the
usefulness of tasks.

Estimates of answer correctness versus expected correctness
have also been used, though these are likely most clear when
the learner is close to mastery. Of these, carelessness and
“slips” are the most well-established mechanisms [12]. More
generally, there may be value in investigating any situation
where correctness appears decoupled from traditional fac-
tors (e.g., little correlation between time and answer quality,
little correlation between expect mastery and later perfor-
mance). However, such decoupling could be due to poor
task design (e.g., item response issues [20]) or problems un-
related to engagement (e.g., attention or memory problems),
so additional context may be needed to interpret this.

2.2 Archetypes for Behavioral Engagement
When considering these different patterns of behavioral en-
gagement and disengagement, we posit that engagement has
at least two dimensions: a) passiveness vs. activeness and
b) avoidance vs. approach. For example, passive avoidance
represents disengagement commonly associated with bore-
dom such as distraction or skipping through material. By
comparison, other learners employ short-cut strategies to
cheat or cherry-pick tasks to minimize effort while still pro-
viding acceptable performance (active avoidance). A simi-
lar division exists for engaged learners, in that some study
almost exclusively on assigned content (passive approach)
while others monitor and self-regulate their effort to focus
their learning (active approach).

These latent engagement factors may be evident through
different observed patterns. For example, while distraction
and racing through material both represent disengagement,
their data patterns will look very different. In considering
these patterns, we developed the following candidates which
may be evident across a variety of systems:

• Diligent (Active Engagement): Spends somewhat more
time on tasks and shows correspondingly better per-
formance, and more likely to complete optional tasks.

• Self-Regulated (Active Engagement): Seeks out and
spends greater time on harder tasks, but may skip or
disengage on easier tasks. [22, 33].

• Cherry Picking (Active Disengagement): Seeks out
easier tasks or abuses features to make tasks easier
(e.g., hint abuse), and avoids harder tasks [3].

• Nominal Engagement (Passive Engagement): Com-
pletes tasks as recommended or assigned, with ordi-
nary time-on-task and performance.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 241

• Expert/Recall (Passive Engagement): Regardless of
difficulty level, completes tasks very rapidly and with
high performance. Possibly an expert on the content,
but might also be shallow recall or lookup.

• Racing/Guessing (Passive Disengagement): Rapidly
answers (potentially multiple times) despite relatively
poor performance [26].

• Distracted/Slow (Passive Disengagement): Uncommonly
delayed or irregular answers, particularly when extra
time does not appear to improve performance [27].

As with prior research on engagement, we do not assume
that these archetypes are necessarily stable for a specific user
across all content, but that they represent modes of interac-
tion during learning. Additionally, these candidate patterns
are not exhaustive and the specific evidence for each pattern
may not be identical: while racing through material might
involve rapid guessing in one system, in another it might in-
volve skipping material entirely. Historically, this has meant
that detectors are tuned using expert-labeled observations
and/or expert feature engineering.

2.3 Play Persona as a Labeling Methodology
This work applies a new approach to generating engagement
labels for user sessions. While substantial research has been
conducted on engagement, existing methods for determining
engagement during computer-based learning are challeng-
ing to scale. Our research is intended to complement three
methods currently in-use: expert observers, sensor-based af-
fect detection, and self-report [13].

Expert observers can be trained on a specific coding manual
until they reach high levels of agreement. Using techniques
such as BROMP [29], a trained observer can monitor and
label engagement events for multiple students. The primary
barriers to collecting this data are the number of trained ob-
servers required and issues of privacy and technology (e.g.,
observing students in online courses). Automated affect de-
tection (e.g, automated facial affect detection) has also been
used to analyze engagement [28, 19]. While in principle fa-
cial affect scales to a large number of learners, engagement is
hard to interpret without also analyzing behavioral patterns
(e.g., screen recordings, log files). As with human observers,
privacy issues may prevent the necessary recording of data.
Moreover, for both human and automated labeling, while
learner states may be recorded, they do not include any in-
terpretation about what strategies a learner is using (e.g.,
focusing on hard vs. easy problems). Self-report offers a
different type of engagement label. Users can report their
overall engagement and may also be able to describe the
learning strategies that they are using [13]. However, self-
reported engagement can be affected by reporting bias (e.g.,
claiming to be more engaged) or subjectivity of engagement
ratings.

To address these limitations, we identified play persona as
a way to generate labeled engagement data. Play persona
are behavioral archetypes often used for testing and analy-
sis of video games, that reflect different goals and behavior
patterns [35, 32]. For example, in a strategy game there are

recognized archetypes such as the Builder (invest in long-
term expansion) versus Greedy-Optimizer (take quick wins)
[34]. Likewise, research on Massive Multiplayer Games (e.g.,
[36]) has identified behavior archetypes such as competitors
who focus on head-to-head tasks and explorers who focus on
exploring the world. Artificial game players can be crafted
to mimic these play persona for procedural play-testing [21].

We hypothesize that play persona methods can also be use-
ful to identify and label engagement patterns with the mod-
ification that human testers will act out these roles (e.g.,
diligent) which would be difficult to simulate artificially. If
this approach is useful, it has at least three advantages over
existing methods. First, it ensures rapid data collection of
labels, since rather than having unbalanced labels (i.e., 80%
of real users might be in one bin), testers can be directed
to act out a variety of roles. Second, play-test labels should
be interpretable since the intent of the learner is known, as
opposed to purely bottom-up patterns or self-reported la-
bels, which require experts to infer underlying strategies.
Finally, despite some constraints (e.g., difficulty in faking
more or less knowledge), dedicated testers may be able to
play out multiple archetypes and do so repeatedly, reducing
the need to recruit new testers.

3. RESEARCH QUESTIONS
This work investigates techniques to leverage play-testing
data for detecting engagement patterns. However, this ap-
proach will only be feasible if testers reasonably approximate
the behavior of real users. It also relies on the assump-
tion that while systems may differ, the main engagement
archetypes will be fairly predictable (e.g., some users will
be highly invested in learning every piece of content, others
will be trying to get through as fast as possible). In this
work, we examine the feasibility of play-testing to help clas-
sify engagement patterns, and in particular investigate the
following questions:

• Q1 (Distinctiveness): Are the data patterns for a set
of play-tester archetypes distinct (different testers act
similarly, given similar instructions)?

• Q2 (Alignment): Will play-test archetypes align with
unsupervised clusters producing labeled clusters simi-
lar to how experts would label them?

• Q3 (Semi-Supervised Comparison): Will a semi-supervised
approach that builds a classifier from play-test and
aligned data label individual learners more consistently
than relying only on bottom-up clusters?

• Q4 (Basic Features): Will average response time and
scores, in simple systems, be sufficient for reasonable
engagement labels?

• Q5 (Expanding Features): Will increasing the number
of features to include task difficulty and feature inter-
actions lead to greater consistency in fewer samples?

These questions investigate the strengths and limitations of
the approach. Specifically, Q1 and Q2 focus on the reliability
of play-test labels to label unsupervised data, as compared
to human ratings. Q3 examines if building a semi-supervised

242 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 1: SMART-E Analytics Pipeline Phases

classifier is useful as opposed to simply using archetypes to
label bottom-up clusters. Q4 and Q5 query the effectiveness
of feature sets identified in the literature for classifying en-
gagement, starting with a very minimal set (response time
and scores) and then analyzing an expanded set of features
for their impact on cold-start performance.

4. METHODS
To examine these questions, an analytics pipeline was devel-
oped and then applied to a data set from a scenario-based
intelligent tutoring system. This section will briefly describe
the pipeline, then the learning system that produced the
data set, and finally the techniques used to investigate each
research question.

4.1 Engagement Analytics Pipeline
While this paper focuses on a specific data set, the tech-
niques applied here are designed to be generalizable and re-
usable as part of the SMART-E pipeline, shown in Fig. 1.
This pipeline starts by standardizing the data available, record-
ing data from an arbitrary learning system as learning records
that meet the xAPI standard [1]. This“Raw xAPI”data may
either be sent directly by the system (e.g., through an API
for logging) or generated by running a converter on system
logs after-the-fact. Raw xAPI data logs are then cleaned by
a script (partially system-specific) which corrects common
data problems, such as sessions that terminated improperly
or missing data fields that can be inferred from other data.
This ensures that the Canonical xAPI data store does not
have missing data.

All xAPI records contain metadata which allow them to be
structured into an activity tree, representing both sequen-
tial and parallel tasks. While the tree can be nested ar-
bitrarily, four levels are analyzed to generate raw metrics
tables: steps, tasks, lessons, and sessions. Raw metrics pri-
marily record time-based information (e.g., duration of a
task, response time for first step), score-based information
(e.g., numerical score and/or correctness), and support used
(e.g., hint counts, retrying a problem).

Metrics related to task skills are not calculated, since the ma-
jority of systems do not tag their tasks with a consistent on-

tology of knowledge components. Intermediate metrics are
generated using feature construction calculations based on
raw metrics, without analyzing the xAPI logs. For this work,
the most important intermediate metrics are averages across
attempts (e.g., average scores, average task duration), the
average difficulty for each task (inferred from first-attempt
scores), z-scores for task metrics (e.g., time-on-task for the
learner relative to other users) and a Laplace-smoothed log-
arithm of each task duration (i.e., ln(t + 1)). Additional
metrics can be added fairly rapidly, if they rely on raw met-
rics.

Based on these metrics, feature vectors are generated that
represent each learner’s performance in the system. In the
current work, these vectors rely on all of the learner task
data for a session, though one could generate similar fea-
tures for specific tasks, across multiple sessions, or for re-
cent tasks in a session (i.e., any collection of tasks). First,
two simple features were calculated: average response time
across tasks (Avg. RT) and average task performance (Avg.
Score). These were considered the minimal information to
potentially infer engagement.

Next, a more complex feature set was developed to model
interactions between task response time (RT), task scores,
and task difficulty. Based on z-score cutoffs, the value of
each variable was placed into one of three categories (low,
medium or high) when possible, and into the most cate-
gories available when not (i.e., only medium if all values
equal; only low and high if only two types of values). This
was done based on a one-dimensional Gaussian distribution,
with cutoff values at <33% (low), 33-66% (medium), and
>66% (high). Further we ensured that each variable had at
least 4 corresponding data-points in order to arrive at ro-
bust cutoffs (i.e., each unique task had been attempted by
at least 4 different learners, to judge its difficulty, score and
time distribution). Each scored task increments a bin asso-
ciated with its three variables (e.g., RT=fast, score=high,
difficulty=high will increment exactly one out of 27 possible
bins). This binning approach is fairly general, and can be
inferred using only standard logging data.

Since 27 bins will often be fairly sparse for an individual

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 243

learner, these were aggregated to form 7 bins which align
to behavioral engagement patterns from the literature: Ex-
pert, Cherry Picking, Engagement/Diligent, Self-Regulated,
Distracted, Racing, and Careless. These bins roughly cor-
respond to the patterns we introduced earlier except we
omitted Nominal Engagement, roughly equivalent to av-
erage, and we added a Careless bin focused on errors on
easier tasks. The Expert bin was increased whenever high
scores were obtained for difficult problems with only a nor-
mal or low delay or for high scores on ordinary problems
done quickly. The Cherry Picking bin incremented for high
scores with a low delay (regardless of problem difficulty).
Engagement/Diligent was incremented when difficult prob-
lems were completed after a high delay. Self-Regulated was
incremented when the amount of time spent on the problem
was at least as high as the difficulty level, even if the score
was not high. Distracted was triggered in the opposite case,
where the time to respond was overly long for the difficulty
of the problem. Racing was incremented for fast responses,
either with low scores or with medium / high scores on eas-
ier problems. The Careless bin included only low scores on
easy problems or low scores on medium difficulty problems
when completing them quickly.

These bins were not mutually exclusive, since more than
one behavior might explain a given interaction. Addition-
ally, they are not validated and should be thought of as
noisy constructs to bin low-level features, rather than neces-
sarily predictive of their given labels. However, since these
aggregation patterns are derived from the literature, these
features are candidates that may be relevant across different
systems, users, or data sets.

4.2 User Data: ELITE Scenarios
We use data from the system, ELITE Lite Counseling, de-
signed for U.S. Army officers in training to learn leadership
counseling skills, such as active listening, checking for un-
derlying causes, and responding with a course of action [11].
Learners select what to say to virtual subordinates from a
menu leading to different points in a branching graph repre-
senting the possible conversations. The virtual subordinates
speak using pre-recorded audio and act via 3D animations.

Each learner choice can have both positive and negative an-
notations. Positive annotations correspond to correctly ap-
plying a skill such as active listening, and negative annota-
tions correspond to omissions or misconceptions. Based on
these annotations, a choice can be fully correct (only positive
annotations) or two forms of incorrect: fully incorrect (only
negative annotations) or mixed (both positive and negative
annotations). For the pipeline, this was converted to two
forms: a correctness category and a numerical score in which
mixed answers were given partial credit (0.5) compared to
correct answers (1.0) and incorrect answers (0.0).

Each simulated conversation is also followed by an After
Action Review (AAR) in which learners are asked multiple-
choice questions about all of their dialogue choices that were
mixed or incorrect. For these AAR questions, if the first
attempt to answer was successful the learner earned a score
of 1; otherwise, the learner earned a score of 0 but had to
keep trying until they selected the correct response.

The ELITE data set for this research included a corpus of
145 subjects from experiments described here [17] which we
consider user data. Each “user” completed three scenarios:
Scenario 1, Scenario 1 (Repeated), and Scenario 2. Due to
the dialog trees, users did not all see the same decision tasks
when completing the same scenarios. However, substantial
overlap was observed for tasks and a majority of tasks were
attempted by a significant number of users. For the pur-
pose of estimating task difficulty, a threshold of 5 attempts
was used, below which the difficulty and metrics relying on
difficulty (e.g., binning) could not be calculated.

4.3 Play Persona Data
Play-testers were students and employees of the lab who
volunteered their time, and generally were not familiar with
the scenario content. For the ELITE system, only 5 play-
test archetypes were reasonable to classify: Expert, Diligent,
Nominal Engagement, Racing, and Distracted. Play-testers
followed the same protocol (i.e., scenario 1, scenario 1 re-
peated, scenario 2) used to collect the user data. Thus, they
had no direct control over the tasks they encountered, and
so some patterns were unlikely to be observed (e.g., Self-
Regulated and Cherry Picking).

Each play-tester was able to generate data for up to three
archetypes, by attempting them in a specific sequence. First,
they could play as either Diligent or Distracted. These roles
could only be played at the beginning of testing to simulate
a novice seeing the system for the first time. Next, a Racing
run was completed; fast response times meant testers would
still make errors despite their previous practice. Expert runs
were collected in two ways: either an actual expert gener-
ated the data (2 sessions), or a tester carefully reviewed the
correct answers (e.g., in the AAR) and/or was coached by
an expert (13 sessions). These different methods for “ex-
pert” data produced similar results, though actual experts
were slightly faster. In the unlabeled data, an archetype for
Nominal Engagement was generated by extracting five clus-
ters and assigning Nominal Engagement to the cluster not
aligning with the other four archetypes.

Instructions for each play-test archetype were as follows.
Diligent: spend as much time as you need on each choice
to try to get the best answer, including reading carefully,
and double-checking answers. Distracted: engage in one
or more competing activities, including checking email and
responding when relevant, browsing social media, engaging
in a conversation, and eating. Racing: pretend you don’t
care much about the content, so you are doing the bare mini-
mum and are fine with a so-so score to get done quickly. Ex-
pert: review content in-depth immediately ahead of time,
and approach it with as many answers memorized or quickly-
available as possible (e.g., in notes, from an expert) so you
can answer well quickly. Of these, all except Distracted were
easily understood by testers. Due to the lack of standard-
ization for Distracted, some testers struggled to find a com-
peting distraction task (e.g., did not use much social media,
did not have high email volume, already ate lunch). In this
case, a member of the research team asked the user questions
or other requests to distract them. A total of 51 archetype
sessions were collected, which may be more than necessary,
since preliminary analyses found similar results with about
25 points balanced across classes.

244 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 2: Semi-Supervised Classifier Training

4.4 Cluster Alignment Testing
As shown earlier in Fig. 1, both the real user data and the
play-tester archetype data were processed by SMART-E to
generate feature vectors that represent each individual. A
number of techniques were then applied to generate labeled
clusters. This cluster-labelling process allowed us to classify
a learners’ engagement coarsely on the basis of the cluster
that they were assigned to.

First, user feature data was clustered bottom-up into five
distinct clusters using k-means and Gaussian mixture mod-
els (GMM) methodologies as implemented in the scikit-learn
package [30]. The number of clusters was verified through an
elbow-curve analysis of variance explained (elbow at k=5).
Exploration of k=4 and k=6 found both to be less stable;
cluster assignments were often very different for subsamples
of data points, with k=4 being particularly unstable.

For this analysis of the full sample, we associated each user
cluster with a unique archetype (i.e., alignment of the smaller
archetype clusters with the user clusters). The alignment
was determined using the Hungarian Method (Kuhn-Munkres
algorithm)[24], which is a global, optimal-matching algo-
rithm which minimized the sum of the Euclidean distances
between these user cluster centroids and archetype centroids.
As noted previously, the Nominal cluster was determined
as the cluster remaining after all archetype groups were
matched. As a result, each of the user clusters (and con-
sequently the points within that cluster) had an associated
unique archetype which additionally served as its label. When
this cluster alignment process is used as the only technique
to label points, it will be referred to as Clustering Alone.

4.5 Semi-Supervised Classification
This technique of clustering alignment was compared against
a semi-supervised approach that built a classifier using the
play-test and user clusters. The high level concept of this
semi-supervised classifier is shown in Fig. 2. The first two
steps of the semi-supervised approach are the same as Clus-
tering Alone. This generates a pool of weakly-labeled can-
didate labeled points. The points in this pool can be either

taken as a full set to train a classifier model such as SVM or
they can be sampled to incrementally train a classifier using
active learning techniques until a stopping rule is hit (e.g.,
entropy sampling).

To compare the classifier against cluster-level labels based on
archetype alignment alone, we calculated two quality met-
rics for the labels given to user sessions, which we will term
consistency and stickiness. Consistency refers to the frac-
tion of sessions that are labeled with the same engagement
archetype which they would receive when the full data set
is available. This is important because as data gets larger,
unsupervised clusters are more likely to reflect the true dis-
tributions.

Stickiness refers to the likelihood that a user session retains
the same engagement label after a batch of new data is added
(similar to intra-rater reliability). This is important for ac-
tionable engagement metrics: if Student A is classified as
Diligent, it will be confusing if Student B who completes an
identical run is classified differently due to data that arrived
in between. While this cannot be fully avoided, approaches
that tend to keep the same label for an identical session will
appear more fair and reliable, so that an instructor could be
more confident in using the classifications.

That said, neither consistency or stickiness alone are suffi-
cient for useful classification. For example, always assign-
ing all users to the same category maximizes both metrics.
However, assuming clusters for the full data set are reliable,
then these measures help to identify how quickly and reli-
ably labels approximate the final labels. This is important
for addressing the cold start problem, so that engagement
patterns can be quickly identified in a new system.

To calculate the number of samples to reach a given level of
cold start performance, random splits were made of the user
data set into train-test subsets (115 train, 30 test). For each
random split, the classifier was trained using the archetype
data set (51 samples) and increasingly larger subsets of the
user training data in increments of 5. When evaluating cold-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 245

start performance, a consistency of 85% was considered a
reasonable target threshold for reliability against the full
sample. While the actual consistency required will depend
on the specific application, this cutoff should give some in-
sight into how quickly different approaches converge toward
their larger-sample performance.

Since the pipeline parameterizes the specific algorithms, follow-
up exploratory analyses were conducted with different types
of clustering algorithms (e.g., k-means, GMM), classifica-
tion algorithms (e.g., logistic regression, support vector ma-
chines), and semi-supervised sampling algorithms (e.g., full
sampling, margin sampling with stopping rules to exclude
certain unsupervised samples). Different combinations of
these algorithms did not show qualitatively different end-
results on these metrics, and any differences were not conclu-
sive (e.g., GMM clusters appeared slightly more stable than
k-means as data was added, but within random variation).
As a result, this paper presents results for the GMM clus-
tering with a Support Vector Classifier, where these results
are representative for the different approaches explored.

5. RESULTS
Focusing on GMM clustering, we revisit the alignment of the
five user clusters with the play-tester archetype groups. The
clusters were generated using the average of the logarithms
for task response time (Log-RT) and average of task scores
(Scores). Fig. 3 plots the real user data with unsupervised
clusters. Table 1 shows feature means and standard de-
viations for each archetype, above its most closely-aligned
bottom-up cluster. Note that while Log-RT was used for
clustering, the actual time in seconds is given in the table
and figure for easier interpretation.

Despite being generated independently, the play-test data
closely resembles the real bottom-up clusters. As a trend,
the play-tester archetypes tend to be more extreme (i.e., far-
ther from the average user) than the clusters they align to.
This is likely due to play-testers acting out more exagger-
ated or consistent patterns than real users. However, this
may actually be an advantage, since play-test archetype data
points may be more likely to be outliers in the vector space
and good anchors for distinct clusters. The results from Ta-
ble 1 support research question Q1, in that play-testers were
able to act out similar patterns as real users and that the
play-tester data showed fairly distinct groupings (as evident
in the standard deviation values). One exception was the
Distracted archetype, which had a very high variance for
time compared to real users in the corresponding cluster.
However, despite the high variance, the Distracted archetype
data remained distinct from other archetypes’ data.

5.1 Reliability vs. Expert Labels
The validity of this alignment on the full data set was eval-
uated by surveying a set of external engagement experts
(N=5) to label the same bottom-up clusters obtained from
the user feature data, based on the descriptions of the en-
gagement archetypes. Selection criteria for experts required
a Ph.D. in a relevant area, publishing at least one substan-
tial paper researching learner engagement, and having no
prior experience with the data set.

Experts labeled cluster graphs (e.g., Fig. 3) generated by

Group N Avg. RT (s) Avg. Score

Expert (Arch) 15 8.53± 2.43 0.95± 0.04
Cluster 1 25 8.10± 1.00 0.93± 0.03
Diligent (Arch) 14 13.15± 3.83 0.89± 0.07
Cluster 2 75 11.06± 1.61 0.90± 0.03
Nominal (Arch) - - -
Cluster 3 13 8.63± 1.11 0.82± 0.02
Distracted (Arch) 12 22.27± 13.80 0.77± 0.17
Cluster 4 28 15.81± 3.43 0.83± 0.07
Racing (Arch) 10 7.18± 2.47 0.56± 0.17
Cluster 5 4 7.98± 1.08 0.55± 0.09

Table 1: Cluster vs. Archetype Centers (µ± σ)

Figure 3: GMM User Clusters for Response Time and Score
Features

both k-means and GMM, and maintained quite similar la-
bels across each (76% agreement). Since the clusters and la-
bels for both GMM and k-means were very similar, all labels
were treated as examples from the same task. Inter-rater re-
liability metrics were moderate between experts: 55% Agree-
ment; Fleiss’ kappa = 0.44; Krippendorff’s alpha = 0.45.
Expert raters had very high reliability for Expert and Rac-
ing labels, but approximately half of experts demonstrated
a consistently different interpretation for Diligent, Nominal
(phrased as “Average” in the survey), and Distracted. Based
on open response comments, this may have been the result of
interpreting minor wording differences in the prompts (e.g.,
“novice learners” for Diligent vs. “learners” in Distracted).

The human labels for clusters were then compared pair-
wise against the automated alignments, resulting in Agree-
ment, Fleiss’ Kappa and Krippendorff’s alpha metrics which
were higher than within-experts though still in the moderate
range: 66% Agreement; Fleiss’ kappa = 0.57; Krippendorff’s
alpha = 0.58. Given these results and expert sensitivity to
the wording of archetype descriptions, we conclude that the
automatic alignment appears to be at least as useful as ex-
pert consensus ratings for labeling engagement clusters. We
anticipate automatic alignment to be even more advanta-
geous when the feature space expands beyond 3 dimensions,
making it difficult for human experts to visualize or evaluate.

246 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

(a) Consistency: Semi-Supervised SVM (b) Label Stickiness: Semi-Supervised SVM

(c) Consistency: Clustering Alone (d) Label Stickiness: Clustering Alone

Figure 4: Consistency and Stickiness for Semi-Supervised vs. Clustering Alone

5.2 Consistency of Semi-Supervised vs.
Clustering Alone

To evaluate how play-test data can be used to classify new
user sessions, a semi-supervised approach was explored which
trained a Support Vector Machine (SVM) classifier using
both the play-test archetype data and the data from the
bottom-up cluster that best aligned to each archetype, with
test-set labels determined by the classifier. For the cluster-
ing alone comparison case, bottom-up clusters were directly
aligned against archetype data to determine their labels and
test-set labels were determined based on their closest clus-
ter. 20 random splits were made of the user data set into
train-test subsets (115 train, 30 test). For each random split,
the classifier was trained using the archetype data set (51
samples) and increasingly larger subsets of the training data
set in increments of 5, and then evaluated.

Consistency was calculated against the test set of 30 sam-
ples. Stickiness of labels was calculated for each set of la-

bels against the prior set (e.g., model trained on N sam-
ples vs. N-5 samples). Due to the higher level of noise
for clustering alignment alone, 100 runs were conducted in-
stead of 20 for a smoother average. These results indicated
that training a classifier which combined both types of data
produced higher consistency and less variation. Specifically,
on the basic features (avg. RT and performance only), the
semi-supervised SVM reached 85% average consistency at
52 samples (Fig. 4a), while aligned clusters alone required
95 samples to reach this level (Fig. 4c). Clustering alone
was more consistent with the full-data cluster labels until
approximately 25 samples (i.e., when the user data reached
approximately half of the archetype data).

Likewise, the stickiness of labels as data increased reached
an average of 85% by 45 samples for the semi-supervised
classifier (Fig. 4b). Clustering alone never reached 85% and
remained less than 70% on average (Fig. 4d). For both
metrics, the variance (blue bars) were larger for clustering
alone. One reason for greater variability for clustering alone

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 247

is that sparse data for certain cluster regions (e.g., Rac-
ing, with only 4 real users), so alignment alone may try to
align a non-existent cluster given limited data. However,
the semi-supervised classifier appears to mitigate this issue
since training is anchored by play-test data points.

These analyses were performed using both the basic features
and the expanded feature set (e.g., bins that count instances
of engagement behavior patterns based on response time,
score, and difficulty categories). Both feature sets required
a similar number of samples to reach the same level of consis-
tency (e.g., about 85% consistency after 50 samples). While
it is possible that the expanded feature set might produce
more valid labels for an instructor (e.g., better reflecting the
categories of users who an instructor might follow-up with),
this will not be due to improved cold-start performance.

5.3 Semi-Supervised Class-wise Consistency
An analysis of the consistency for labels in individual clus-
ters (Fig. 5) shows similar insights to the overall clustering
label consistency. Points in larger clusters (e.g., Diligent,
Expert) are consistent fairly quickly. However, small clusters
(Racing) may have few/zero examples even when consider-
ing as many as 40 data points, and even with 100 data points
have poor consistency. As such, classes with few examples
might only be useful for a smaller set of use-cases (e.g., suf-
ficient to share with an instructor, but possibly not reli-
able enough to take an automated action confidently). We
also note that based upon the stickiness analysis (Fig. 4d),
performance may be limited by the instability of clustering
(points moving between clusters even with nearly full data).

Figure 5: Class-wise Consistency for Semi-Supervised SVM

5.4 Semi-Supervised vs. Final Clusters
The semi-supervised results were compared for their agree-
ment with the labels obtained via alignment with the final
clusters generated using the full data set. This final-clusters
reference point (see Fig. 3) was used to calculate average ac-
curacy, precision, recall and F-scores (Fig. 6), as a function
of the increasing dataset size. While final clusters are not
a perfect reference, it shows that accuracy versus final clus-
ters increases fairly rapidly, but that precision, recall and
F-scores are consistently lower.

Figure 6: Agreement of Semi-Supervised SVM vs. Final
Cluster Labels

6. DISCUSSION
Based on the results presented, this work demonstrates the
feasibility of using a play-testing methodology for detect-
ing behavioral patterns of engagement. Moreover, this work
also found that a classifier could be developed using this
approach without engineering application-specific features.
The classifier also offered reasonable cold-start performance
and labeled engagement data fairly consistently for 5 cate-
gories after 52 unlabeled samples and 51 archetype samples.

Of the five research questions investigated, there was posi-
tive support for four answers, with one left indeterminate.
For Q1, play-tester data was distinctive and archetype data
followed coherent patterns on features (e.g., response time,
correctness). Archetype data did not show substantial over-
lap between archetypes, even though play-testers received
only limited instructions. This may be due to the limited
degrees of freedom for the task. In a more complex or open-
ended system, increased variation might lead to less coherent
archetype data. With that said, many systems have simi-
lar characteristics to the ELITE scenarios studied here (i.e.,
sequential linear or branching choice tasks, mixed with pas-
sive content such as videos or animations). Moreover, these
kinds of systems are often problematic for engagement, such
as mandatory corporate training modules.

For Q2, it was demonstrated that automated matching of
play-test archetypes against pre-defined clusters performed
comparably to expert labels for the same clusters. While
refining instructions might improve inter-rater reliability on
this specific task, the features presented to experts were al-
ready chosen to be simple and visualizable so this repre-
sented an optimistic scenario for expert cluster labeling. On
more complex feature sets or systems, expert analysis might
not even be possible. The broader question not explored
in this work is the machine vs. human play-test agreement
if they were not given pre-defined clusters (i.e., a data ex-
ploration task). However, this would be challenging to con-
duct: it requires a deep analysis by each expert researcher
and the types of engagement categories might be highly un-
even. Alternatively, archetypes might be determined from
already-analyzed data sets (e.g., such as for hint-abuse), to

248 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

see how effectively traces of play-test disengagement might
match authentic disengagement patterns.

For Q3, it was established that training a classifier with
both play-test data and unsupervised cluster data showed
advantages over simply re-clustering with new unsupervised
data and then aligning clusters to archetype data. In some
respects, this is not surprising: while the consistency met-
ric used for evaluation is based on the unsupervised results
from the full data set, the classifier is able to train with
more data up-front (as much as double initially). More im-
portantly, since all key archetypes are present in the play-
test data, no category will start unrepresented. This par-
ticularly helps for classifying points from relatively rare but
distinctive categories (e.g., Racing). However, despite this
advantage, points in small classes remained substantially less
consistent than those in larger classes.

As a long term issue, it is an open question about the best
way to mix this data. Neither data source represents ground
truth. The archetype data demonstrates coherent engage-
ment patterns, but these patterns might not reflect the ways
real users experience the system (e.g., in the current re-
search, they were exaggerated/overly extreme). The real
user data is authentic, but may slowly wash out the classi-
fier with unremarkable samples (e.g., overly ordinary). Ex-
ploratory work was conducted where stopping rules were
applied to balance the number of archetype vs. authentic
samples (derived from active learning techniques, such as
margin sampling and entropy sampling), but this has not
yet produced obvious improvements. Similarly, techniques
for weighting samples might be applied. However, the ideal
balance between these data sources probably depends on
the target use-case for the classifier. A recommender sys-
tem may want a classifier that acts on labels regardless of
their confidence scores. By comparison, a human instructor
might prefer a narrowly-scoped but highly-actionable classi-
fier, which might detect clear outliers but allow the majority
of user sessions to be in a non-descript “Nominal” category
or not confidently classified.

On questions about the features required to classify en-
gagement, we found that basic features for the log of re-
sponse times and scores were sufficient in this case (Q4) but
did not show improvement with the expanded feature set
including task difficulty and feature interactions improved
classification (Q5). These features helped to detect engage-
ment behavior that matched patterns observed from play-
testing: Expert/Recall, Diligent, Racing, and Distracted
as well as Nominal (i.e., matched by exclusion). However,
both k-means and GMM tended to split up the mass of
points in the region of Expert, Diligent, and Nominal despite
these clusters being adjacent to each other. The cluster-
alignment approach used in this work was selected primar-
ily for the ability to interpret cold-start trends, while more
advanced methods should further improve performance. It
might be preferred to investigate techniques such as anomaly
detection, which would favor a larger central cluster and
smaller outliers which could correspond to atypical behavior
which is actionable. Alternatively, alternate semi-supervised
techniques are available, such as applying specialized semi-
supervised support vector machines (which optimize mar-
gins for both labeled and unlabeled data) [8, 31] or more

advanced techniques for integrating cluster data [16]. While
expanded features did not improve consistency or stickiness
metrics (Q5), other systems may still benefit from expanded
features. However, additional features also increase the re-
quired data and may result in overfitting, need attenuat-
ing/filtering features during clustering, or other trade-offs.
As such, further research is needed on this problem.

7. CONCLUSIONS AND FUTURE WORK
Based on these findings, this work contributes a number of
novel approaches to analyzing engagement. First, this re-
search demonstrates the utility of play persona data gath-
ered during professional or quality assurance testing for train-
ing useful data mining algorithms. Since there is no defini-
tive metric for engagement, play-test data offers an addi-
tional distinct data source to help recognize engagement and
disengagement. To our knowledge, this approach has not
been applied to analyzing engagement in learning.

Second, this approach offers advantages over current ap-
proaches for cold-start labels. Since the behavioral inten-
tions of the play-test users is known with confidence, these
labels offer a good data set to help overcome cold start prob-
lems. As compared to traditional approaches such as train-
ing observers or collecting in-the-moment self-reported en-
gagement [13, 29], play persona data can be collected prior
to real system users. This approach also allows balanced
sampling for important but lower-frequency engagement be-
haviors (such as racing, in this analysis).

Third, we have demonstrated that semi-supervised classi-
fiers trained based on a combination of play-test labels and
unlabeled data offer more consistent labels than relying on
clustering alone, which has been used to analyze engagement
behaviors [23]. Moreover, as shown by agreement with ex-
pert labels at the cluster level, the alignment approach can
provide similar insights without manually interpreting clus-
ters. While expert interpretation is still ideal, this allows
immediate insights without waiting for an expert analysis.

This approach is also pragmatic: System developers should
already test and perform quality assurance on their soft-
ware and content [35]. Behavioral archetype data can be
collected during this process, by having testers play out en-
gagement styles in a prescribed order based on their ex-
pected learning. Moreover, this work is not unique to spe-
cific archetypes: if learners are expected to engage in dif-
ferent patterns, play-testers may be able to produce those
patterns instead. However, not all archetypes may be re-
alistically playable by testers. For example, experts cannot
typically generate novice answers. As such, this approach
may be most effective when testers are similar to authentic
users. As such, future work will explore how expert observer
labels and self-report data might complement this play per-
sona data.

8. ACKNOWLEDGMENTS
This research was sponsored by U.S. Army through the USC
ICT University Affiliated Research Center (W911NF-14D-
0005). However, all statements in this work are the work of
the authors alone and do not necessarily reflect the views of
sponsors, and no official endorsement should be inferred.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 249

9. REFERENCES
[1] Advanced Distributed Learning. xAPI Specification,

2020.

[2] R. D. Axelson and A. Flick. Defining student
engagement. Change: The magazine of higher
learning, 43(1):38–43, 2010.

[3] R. S. Baker, A. T. Corbett, K. R. Koedinger,
S. Evenson, I. Roll, A. Z. Wagner, M. Naim,
J. Raspat, D. J. Baker, and J. E. Beck. Adapting to
when students game an intelligent tutoring system. In
International Conference on Intelligent tutoring
systems (ITS), pages 392–401. Springer, 2006.

[4] R. S. Baker, S. K. D’Mello, M. M. T. Rodrigo, and
A. C. Graesser. Better to be frustrated than bored:
The incidence, persistence, and impact of learners’
cognitive-affective states during interactions with
three different computer-based learning environments.
International Journal of Human-Computer Studies,
68(4):223–241, 2010.

[5] R. S. Baker and L. M. Rossi. Assessing the disengaged
behaviors of learners. Design recommendations for
intelligent tutoring systems, 1:153–163, 2013.

[6] J. E. Beck. Engagement tracing: using response times
to model student disengagement. In International
Conference on Artificial intelligence in Education
(AIED), pages 88–95. IOS Press, 2005.

[7] O. Chapelle, B. Scholkopf, and A. Zien.
Semi-supervised learning (chapelle, o. et al., eds.;
2006)[book reviews]. IEEE Transactions on Neural
Networks, 20(3):542–542, 2009.

[8] O. Chapelle, V. Sindhwani, and S. S. Keerthi.
Optimization techniques for semi-supervised support
vector machines. Journal of Machine Learning
Research, 9(Feb):203–233, 2008.

[9] S. L. Christenson, A. L. Reschly, and C. Wylie,
editors. Handbook of Research on Student
Engagement. Springer, New York, 2012.

[10] M. Cocea and S. Weibelzahl. Disengagement detection
in online learning: Validation studies and perspectives.
IEEE transactions on learning technologies,
4(2):114–124, 2010.

[11] M. G. Core, K. Georgila, B. D. Nye, D. Auerbach,
Z. F. Liu, and R. DiNinni. Learning, adaptive support,
student traits, and engagement in scenario-based
learning. In Proc. of the Interservice/Industry
Training, Simulation, and Education Conference
(I/ITSEC), 2016.

[12] R. S. d Baker, A. T. Corbett, and V. Aleven. More
accurate student modeling through contextual
estimation of slip and guess probabilities in bayesian
knowledge tracing. In International conference on
intelligent tutoring systems, pages 406–415. Springer,
2008.

[13] M. A. A. Dewan, M. Murshed, and F. Lin.
Engagement detection in online learning: a review.
Smart Learning Environments, 6(1):1, 2019.

[14] S. D’Mello and A. Graesser. Dynamics of affective
states during complex learning. Learning and
Instruction, 22(2):145–157, 2012.

[15] S. D’Mello, A. Olney, C. Williams, and P. Hays. Gaze
tutor: A gaze-reactive intelligent tutoring system.
International Journal of Human-Computer Studies,

70(5):377–398, 2012.

[16] H. Gan, N. Sang, R. Huang, X. Tong, and Z. Dan.
Using clustering analysis to improve semi-supervised
classification. Neurocomputing, 101:290–298, 2013.

[17] K. Georgila, M. G. Core, B. D. Nye, S. Karumbaiah,
D. Auerbach, and M. Ram. Using Reinforcement
Learning to Optimize the Policies of an Intelligent
Tutoring System for Interpersonal Skills Training. In
Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, 2019.

[18] Y. Gong and J. E. Beck. Towards detecting
wheel-spinning: Future failure in mastery learning. In
Proceedings of the second (2015) ACM conference on
learning@ scale, pages 67–74, 2015.

[19] J. F. Grafsgaard, J. B. Wiggins, A. K. Vail, K. E.
Boyer, E. N. Wiebe, and J. C. Lester. The additive
value of multimodal features for predicting
engagement, frustration, and learning during tutoring.
In International Conference on Multimodal Interaction
(ICMI), pages 42–49. ACM, 2014.

[20] R. K. Hambleton, H. Swaminathan, and H. J. Rogers.
Fundamentals of item response theory. Sage, 1991.

[21] C. Holmg̊ard, A. Liapis, J. Togelius, and G. N.
Yannakakis. Evolving models of player decision
making: Personas versus clones. Entertainment
Computing, 16:95–104, 2016.

[22] R. Janning, C. Schatten, and L. Schmidt-Thieme.
Perceived task-difficulty recognition from log-file
information for the use in adaptive intelligent tutoring
systems. International Journal of Artificial
Intelligence in Education, 26(3):855–876, 2016.

[23] M. Khalil and M. Ebner. Clustering patterns of
engagement in massive open online courses (moocs):
the use of learning analytics to reveal student
categories. Journal of computing in higher education,
29(1):114–132, 2017.

[24] H. W. Kuhn. The hungarian method for the
assignment problem. Naval Research Logistics
Quarterly, 2:83–97, 1955.

[25] B. Lehman, S. K. D’Mello, A. C. Strain, M. Gross,
A. Dobbins, P. Wallace, K. Millis, and A. C. Graesser.
Inducing and tracking confusion with contradictions
during critical thinking and scientific reasoning. In
International Conference on Artificial Intelligence in
Education (AIED), pages 171–178, 2011.

[26] D. J. Leiner. Too fast, too straight, too weird: Post
hoc identification of meaningless data in internet
surveys. SSRN Electronic Journal, 2013.

[27] E. Mattheiss, M. Kickmeier-Rust, C. Steiner, and
D. Albert. Approaches to detect discouraged learners:
Assessment of motivation in educational computer
games. Proceedings of eLearning Baltics (eLBa),
10:1–10, 2010.

[28] B. D. Nye, S. Karumbaiah, S. T. Tokel, M. G. Core,
G. Stratou, D. Auerbach, and K. Georgila. Engaging
with the scenario: Affect and facial patterns from a
scenario-based intelligent tutoring system. In
International Conference on Artificial Intelligence in
Education, pages 352–366. Springer, 2018.

[29] J. Ocumpaugh. Baker rodrigo ocumpaugh monitoring
protocol (bromp) 2.0 technical and training manual.
New York, NY and Manila, Philippines: Teachers

250 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

College, Columbia University and Ateneo Laboratory
for the Learning Sciences, 60, 2015.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al. Scikit-learn: Machine
learning in python. Journal of machine learning
research, 12(Oct):2825–2830, 2011.

[31] T. Sakai, M. C. du Plessis, G. Niu, and M. Sugiyama.
Semi-supervised classification based on classification
from positive and unlabeled data. In Proceedings of
the 34th International Conference on Machine
Learning-Volume 70, pages 2998–3006. JMLR. org,
2017.

[32] A. Tychsen and A. Canossa. Defining personas in
games using metrics. In Proceedings of the 2008
Conference on Future Play, 2008.

[33] S. C. Weissgerber, M.-A. Reinhard, and S. Schindler.
Study harder? the relationship of achievement goals to
attitudes and self-reported use of desirable difficulties
in self-regulated learning. Journal of Psychological and
Educational Research, 24(1):42, 2016.

[34] F. Wiltgren. 8 archetypes for break-testing your game,
2015.

[35] B. M. Winn. The design, play, and experience
framework. In Handbook of research on effective
electronic gaming in education, pages 1010–1024. IGI
Global, 2009.

[36] N. Yee. The gamer motivation profile: What we
learned from 250,000 gamers. In Proceedings of the
2016 Annual Symposium on Computer-Human
Interaction in Play, pages 2–2, 2016.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 251

Learning student program embeddings using abstract
execution traces

Guillaume Cleuziou
University of Orléans, INSA Centre Val de Loire,

LIFO EA 4022
Orléans, France

guillaume.cleuziou@univ-orleans.fr

Frédéric Flouvat
University of New Caledonia, ISEA EA 7484

Nouméa, New Caledonia
frederic.flouvat@unc.nc

ABSTRACT
Improving the pedagogical effectiveness of programming trai-
ning platforms is a hot topic that requires the construction
of fine and exploitable representations of learners’ programs.
This article presents a new approach for learning program
embeddings. Starting from the hypothesis that the function
of a program, but also its ”style”, can be captured by analyz-
ing its execution traces, the code2aes2vec method proceeds
in two steps. A first step generates abstract execution se-
quences (AES) from both predefined test cases and abstract
syntax trees (AST) of the submitted programs. The doc2vec
method is then used to learn condensed vector representa-
tions (embeddings) of the programs from these AESs. Ex-
periments performed on real data sets shows that the embed-
dings generated by code2aes2vec efficiently capture both the
semantics and the style of the programs. Finally, we show
the relevance of the program embeddings thus generated on
the task of automatic feedback propagation as a proof of
concept.

Keywords
Representation Learning, Program Embeddings, Neural Net-
works, Educational Data Mining, Computer Science Educa-
tion, doc2vec.

1. INTRODUCTION
Increasingly, programming is being learned through the use
of online training platforms. Typically, learners submit their
code(s) and the platform returns any syntax errors or func-
tional errors (typically based on test cases defined by the
teacher). The exploitation of these data opens up new per-
spectives to monitor and help beginners in learning program-
ming. They can be used, for example, to identify students
who are dropping out, to target bad practices or to prop-
agate teacher feedbacks. These functionalities would allow
the learner to be more autonomous during his learning, and
the teacher to be more reactive and efficient in his interven-
tions. However, this exploitation requires a detailed analysis

of the submitted programs. These training platforms must
go beyond a simple syntactic analysis of the script, and al-
low the associated semantics to be considered. For this pur-
pose, learning program embedding has recently emerged as
a promising area of research [15, 13, 17, 7, 2, 3]. A natural
way to generate such vectorial and condensed representa-
tions is to consider a computer program as a text and to
exploit methodologies inspired by Text Mining.

Text mining has attracted a lot of interest in recent years.
The representation of texts as vectors of real numbers, also
called ”embedding”, has been at the heart of many recent
works. These representations make it possible to project (or
’embed’) a whole vocabulary into a low-dimensional space.
Moreover, such a representation of words allows to exploit
a wide variety of numerical processing methods (neural net-
works, SVM, clustering, etc.). At that stage, one of the
challenges is to capture in these representations the underly-
ing semantic relationships (e.g. similarities, analogies). The
work of [11] based on the use of neural networks has been
a precursor in this area. Their word2vec method is one of
the most referenced in the field. Its principle is based on
the relation between a word and its context (words appear-
ing before and after). To do this, they propose some simple
and efficient architectures to learn word embeddings from a
corpus of texts. For example, the CBOW (Continuous Bag-
Of-Words) architecture trains a neural network to predict
each word in a text given its context. Their results show the
ability of this approach to extract complex semantic rela-
tions (analogies) from simple operations on v() projections,
s.t. v(”king”)− v(”man”) + v(”woman”) ≈ v(”queen”) or
v(”Paris”)− v(”France”) + v(”Italy”) ≈ v(”Rome”).

The transposition of these approaches to computer programs
is not straightforward. The code has certain specificities that
need to be integrated to have such rich representations [1].
Unlike texts, codes are runnable, and small modifications
can have significant impacts on their executions. A pro-
gram can also call other programs that can themselves call
other programs. The context in which an instruction is used
is also particularly important in deducing its role. Finally,
unlike texts, program syntax trees are usually deeper and
composed of repeating substructures (loops). Existing ap-
proaches for building program embeddings only partially in-
tegrate these specificities. They independently exploit the
instructions [3], the inputs/outputs [15], part of the execu-
tion traces [17] or the abstract syntax tree (AST) [2]. They

Guillaume Cleuziou and Frédéric Flouvat “Learning student program
embeddings using abstract execution traces”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 252-262.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

252 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

.py

test case 1

test case 2

test case n

… …

2,4,8,…,7,10

2,…,6,12

2,3,4,…,9

…

If Compare Call_len param1
Eq Constant_int Assign var1
Subscript param1 For var2
Call_range Constant_int
Call_len param1 If Compare
Subscript param1 Lt var1 For
var2 Call_range Constant_int
Call_len param1 If Compare
Subscript param1 Lt var1
Assign var1 Subscript
param1 For var2 Call_range
Constant_int Call_len param1
If Compare Subscript param1
Lt var1 For var2 Call_range
Constant_int Call_len param1
Return var2

AES ID

…
…

…
…

…

…

…
…

test cases
given by teacher execution traces

program from student
to process

AST
AES

feed forward Neural Network
AES embeddings

W

W

U

D

Figure 1: General scheme of the code2aes2vec method for learning program embeddings.

focus more on the function of the program (what it does)
than on its style (how it does). Moreover, most of these ap-
proaches are supervised and build embeddings for a specific
task (e.g. predict errors, predict functionality, etc.).

In view of these limitations, we propose the code2aes2vec
method, exploiting instructions, code structure and execu-
tion traces of programs, in order to build finer program
embeddings. Figure 1 schematizes the overall approach
code2aes2vec we propose. The first step of this method
consists in generating Abstract Execution Sequences (AES)
from traces obtained on test cases executions and program
ASTs. The second step uses the doc2vec1 neural network [8]
to learn program embeddings from AESs. Contrary to ex-
isting approaches, we therefore propose a generic and unsu-
pervised method that learns program embeddings by using
functional, stylistic and execution elements. This aspect is
crucial in our application to be able to differentiate programs
answering to the same exercise (i.e. implementing the same
functionality) but in different ways (in terms of strategy or
efficiency). Our approach is validated on two real data sets,
composed of several thousands of Python programs from
educational platforms. On these datasets, we show that em-
beddings generated with code2aes2vec allow to efficiently
detect the function and the style of a program. In addition,
we present a proof of concept of the use of such embeddings
to propagate teacher feedbacks.

To summarize, the main contributions of this paper are :

1. the definition of a new (intermediate) program repre-
sentation, called Abstract Execution Sequences (AES),
allowing to capture more semantics,

2. exploiting these (intermediate) representations with
doc2vec to build program embeddings in an unsuper-
vised way,

3. the diffusion to the community of two enhanced
datasets from educational platforms in computer sci-
ence,

1a method derived from word2vec that allows to learn a
document embedding from its words.

4. a proof of concept on the use of such program em-
beddings for feedback propagation for educational pur-
poses.

The next section details existing works in the field and
the originality of our approach in relation to it. Section 3
presents our two-steps method: the construction of abstract
execution sequences (AES) and the learning of embeddings
from them. Section 4 is devoted to the qualitative and
quantitative evaluations of the learned representations be-
fore drawing up the many perspectives of this work (sec-
tion 5).

2. RELATED WORKS
Learning representations from programs is at the heart of
many recent works. They aim to embed this data in a se-
mantic space from which further analysis can be conducted,
because the generated representations (vectors of real val-
ues) are directly exploitable by a large part of the learning
algorithms. To do this, recent work relies heavily on meth-
ods developed to build word embeddings in texts, while try-
ing to integrate the specificities of the code.

These program embeddings are then used for prediction
or analysis tasks related to the software development (de-
bugging, API discovery, etc.) and teaching (learning pro-
gramming). Two types of embeddings are more particularly
studied: embeddings of the elements composing a program
(words, tokens, instructions, or function calls) [12, 6, 7] and
embeddings of the programs themselves [15, 17, 3, 4].

Nguyen et al. [12] study API call sequences to derive an
API embedding that is independent of the programming
language (thus allowing translation from one language to
another). This embedding is learned by word2vec [11] from
call sequences from several million methods. This method
allows to build a word embedding from words appearing
nearby in each text (i.e. its context). Two datasets derived
from the Java JDK and from more than 7000 recognized
C# projects from GitHub (more than 10 stars) are used for
learning.

De Freez et al. [6] have a close objective, namely to build
an embedding of functions used in a code in order to find

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 253

synonymous functions. However, the function calls made in
each program are extracted in the form of a graph depending
on the control structures. Random walks are then performed
in this graph for each function, and the extracted paths are
used as input to word2vec [11] to derive an embedding of
functions. An extract of two million lines of the Linux kernel
is used to learn the embedding.

In [7], the authors propose a relatively similar approach but
replace function calls with abstract instructions. Each in-
struction sequence represents a path in the code depending
on conditional instructions. In this way, it is similar to a
trace even if the code is never executed. All possible paths
are extracted but loop repetitions are ignored and only the
most frequent instructions are considered (a threshold of
1000 occurrences is used in the experiments). Moreover,
only certain constant values are considered to limit the size
of the vocabulary. An embedding of these program instruc-
tions is then learned by the GloVe method [14] based on the
co-occurrence matrix of the words. The authors also use a
corpus of 311,670 procedures (in C language) from the Linux
kernel, and evaluate it on a data set of 19,000 pre-identified
analogies.

In many applications, it is not just a matter of consider-
ing the program’s components but the program as a whole.
Recent work has therefore focused on the construction of
program embeddings.

Following a ’teaching’ motivation, Piech et al. [15] construct
student program embeddings and use them to automatically
propagate teacher feedbacks (using the k-means algorithm).
The embedding space is built from a neural network trained
to predict the output of a program using its input. It thus
captures the functional aspect of the code. The authors also
try to capture the style of programs, using a recursive neu-
ral network based on the program’s AST. Contrary to other
approaches, the generated embeddings are matrices, not vec-
tors, thus limiting their exploitation as inputs for next data
analyses. They also don’t consider learner-defined variables.
The obtained representations actually capture quite well the
code function, but fail in capturing the style of codes. The
analyzed programs (from the Hour of Code site and a course
at Stanford) are written in a language similar to Scratch and
allow operations in a labyrinthine world.

In [17], the authors highlight the limitations of syntax-based
approaches to capture the semantics of a program. Instead,
they propose to consider the trace resulting from the code
execution, and more precisely the values of the most fre-
quent variables. Different representations are proposed and
used to train a recurrent neural network whose objective is
to predict errors made by students in a programming course.
The embeddings of the programs corresponds to one of the
neural network’s layers. The authors put forward one rep-
resentation more particularly, considering the trace of each
variable independently and integrating the dependencies be-
tween variables in the structure of the neural network. How-
ever, the obtained embeddings are specific to one task, and
this method requires to redefine the neural network archi-
tecture, with re-training, for each exercise.

Finally, Alon et al. [2] propose a neural network to pre-

dict the name of a method (i.e. the functionality) from its
code. To do this, the program is first decomposed into a
collection of paths (from one leaf to another) in the AST.
Only the most frequent paths in the dataset are used as
features (size constraints are also integrated). Then, the
network learns which one is important for predicting the
method name using the attention principle. The parameters
of the trained neural network correspond partly to the final
embeddings and partly to the weights supposed to quantify
the importance of each (feature) path for the prediction task
(attention principle). Training is performed on a corpus of
more than 13 million Java programs from GitHub’s 10,072
most popular projects. As mentioned by the authors, this
approach requires a large number of input programs. Fur-
thermore, it is not possible to predict the function (and em-
bedding) of a program whose paths do not appear in the
training set. The embeddings produced capture informa-
tion and semantic relationships about the function of the
code, but ignore style variants. Thus, two programs with
the same function will be similar, regardless of how they
have been coded. The quality of the analyzed code also has
an impact on learning. The names given to the variables are
particularly important for prediction.

3. THE code2aes2vec METHOD
Two main strategies emerge for learning program embed-
dings : by observing the results of program execution [15,
17] or by analyzing the script [3] and/or its AST [2]. Our
approach is at the intersection of these two strategies and
thus aims to take advantage of the functional and syntactic
descriptions of the programs to induce relevant embeddings.
We thus propose the code2aes2vec method which proceeds
in two steps :

1. the code2aes step represents a program as an Abstract
Execution Sequence (AES), corresponding to the AST
paths used by the program during its execution on
predefined test cases;

2. the aes2vec step uses a neural network to construct
the embedding of the programs based on their AES
(using the doc2vec approach [8]).

3.1 code2aes: construction of Abstract Execu-
tion Sequences (AES)

Translating a program into an AES requires providing, in
addition to the program itself, a collection of test cases on
which the program will be run in order to exploit its traces.
In our educational context, the preparation of such a collec-
tion of test cases is not an additional effort since test cases
are generally integrated into training platforms to evalu-
ate submitted contributions. Moreover, this approach offers
teachers the possibility of introducing verification choices
and thus to drive the interpretation of his/her learners’ pro-
grams according to his/her own pedagogical choices. For
example, let’s consider an exercise whose objective is to find
a value in a table/list. A teacher wishing to emphasize al-
gorithmic efficiency may choose to integrate a few unit tests
for which the desired value appears early in the table. In
such case, an efficient program stops the loop as soon as the
desired value appears. These test cases will thus make it

254 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

possible to distinguish two (valid) programs based on their
execution trace.

In practice the number of test cases provided by the teacher
is quite small. We generally observe that less than ten test
cases are enough to evaluate whether a program is correct
or not.

Figure 2 illustrates the process of translating a program into
an AES. This example considers as input the code submitted
by a learner in response to the exercise ”write a Python func-
tion that returns the minimum value in an input list”. First,
the AST is constructed. It describes the syntactic struc-
ture of the program in terms of control structures (if-else,
for, while), function calls (call), assignments (assign),
etc. Second, the code is executed on an example (here the
input [12, 1, 25]) and its execution trace is kept, indi-
cating the program lines successively executed. Finally, the
AES is constructed by mapping these two levels of informa-
tion: syntactic and functional. The sequence resulting from
the trace is translated into a sequence of ”words” extracted
from the nodes of the AST.

Three levels of translation (or abstraction) are proposed ac-
cording to the depth considered in the AST:

• AES level 0 : each program line is represented by a
single word corresponding to the head symbol of the
associated sub-tree in the AST (in red in Figure 2),

• AES level 1 : each program line is represented by one
or more words corresponding to the head symbols of
the associated sub-tree and its main sub-trees (in red
and blue in Figure 2),

• AES level 2 : each program line is translated in a se-
quence of words corresponding to all the nodes appear-
ing in the associated sub-tree (in red, blue and black
in Figure 2).

For the last two levels, the names of the variables and pa-
rameters, as well as the values of the constants, have been
normalized so as not to artificially extend the considered
”vocabulary”. Thus, the variable res is renamed var1 and
the variable i is renamed var2.

Note that each execution of a program on one test case gen-
erates a partial AES. A program will finally be represented
by the concatenation of the partial AES obtained on each
test case. An AES can thus be considered as a representa-
tive text of the program. Each partial AES corresponds to
a sentence of this text.

3.2 aes2vec : learning program embeddings
from AES

The word2vec method [11] is based on the distributional hy-
pothesis of words in natural language [16] : a word can be
inferred from its context. For example, the CBOW (Con-
tinuous Bag Of Words) version of word2vec allows to train
an feed-forward Neural Network to predict a (central) word
from its context. In word2vec a context is defined by the
preceding and following words in the text. The structure of

the neural network is reduced to a single hidden layer (en-
coding) ; the matrix W of the weights connecting the input
layer to the hidden layer contains the word embeddings.

word2vec has already been used to learn token embeddings
from a computer program [6, 3]. However the distributional
hypothesis seems less satisfied on the tokens from a program
than on the natural language, in particular because of the
very limited size of the vocabulary and especially a little
constrained compositionality (almost all combinations are
observed).

[8] have proposed a variant of word2vec, aiming to learn
simultaneously the embeddings of the words and the docu-
ments from which they are extracted. The doc2vec method
is still based on the distributional hypothesis allowing to
predict a word knowing its context, but this time the con-
text integrates (in addition to the preceding and following
words) the identifier of the document from which the word
sequence comes from. In doing so, the authors introduce
the idea that there are document specific variations in the
natural/universal distribution of words in the language.

We exploit precisely this hypothesis of document-based dis-
tributional variations for the processing of AES built from
the programs. We consider that each program, during its
execution, generates different sequences of tokens (AES).
We then use the DM (Distibutive Memory) version of the
doc2vec algorithm to train a feed-forward Neural Network
(with one hidden layer) to maximize the following log prob-
ability :

L =

S∑
s=1

Ts−k∑
i=k

log p(ws
i |ws

i−k, . . . , w
s
i+k, ds) (1)

with S the total number of documents (or AESs), Ts the
total number of words (or tokens) in document s, ds the sth

document, ws
i the ith word in document ds and k the size of

the context on either side of the target word.

Figure 3 presents the architecture of the neural network
used for doc2vec as we use it for learning program em-
beddings via their AES. The forward pass consists in first
calculating the values of the hidden layer by aggregating
the encodings of each word of the context and of the docu-
ment : h(ws

i−k, . . . , w
s
i+k;W,D) where h() denotes an ag-

gregation function to be defined (typically a sum, aver-
age or concatenation), W and D denoting the word em-
bedding matrix (weight matrix between word inputs and
hidden layer) and the document embedding matrix (weight
matrix between document input and hidden layer) respec-
tively. The output of the neural network can be interpreted
as a probability distribution on the words of the vocabulary
by applying an activation function (softmax) on the output
yws

i
= b + Uh(ws

i−k, . . . , w
s
i+k;W,D) where b is a bias term

and U the weight matrix between hidden and output layer:

p(ws
i |ws

i−k, . . . , w
s
i+k, ds) =

e
yws

i∑
j e

yj
(2)

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 255

FunctionDef

If

Compare

ConstantCall

len 0liste

Eq

Assign

res

Constant

None

Assign

Return

resFor

res

Subscript

liste

i

Call

range

Constant

0

Call

len

liste

If

Compare

Subscript

liste

Lt

res

Assign

res

Subscript

liste

test

test

else else

corps

body

body

Line 2 Line 3 Line 5 Line 6 Line 7 Line 8 Line 9

1 def minimum(liste):
2 if len(liste) == 0:
3 res = None
4 else:
5 res = liste[0]
6 for i in range(0,len(liste)):
7 if liste[i] < res :
8 res = liste[i]
9 return res

minimum([12,1,25])
2
5
6
7
6
7
8
6
7
6
9

Program execution
on one test case

Abstract Syntax Tree construction
Execution Trace AES obtained from one test case

Program to process If Compare Call_len param1 Eq Constant_int
Assign var1 Subscript param1
For var2 Call_range Constant_int Call_len param1
If Compare Subscript param1 Lt var1
For var2 Call_range Constant_int Call_len param1
If Compare Subscript param1 Lt var1
Assign var1 Subscript param1
For var2 Call_range Constant_int Call_len param1
If Compare Subscript param1 Lt var1
For var2 Call_range Constant_int Call_len param1
Return var2

If Compare
Assign var1 Subscript param1
For
If Compare
For
If Compare
Assign var1 Subscript param1
For
If Compare
For
Return var2

If
Assign
For
If
For
If
Assign
For
If
For
Return

Depth level 0 Depth level 1 Depth level 2

Figure 2: Construction of an AES from a Python program and a given test case.

Finally, the network weights are updated by stochastic gra-
dient descent on the error, defined by the difference between
the obtained output and the one-hot vector encoding the
target word.

We consider programs as textual documents whose word se-
quence is given by an AES obtained by the previous step
(code2aes). Indeed, as for text, the choice and the order
of the ”words” in an AES capture the semantic of the pro-
gram, i.e. what the program does (its function) and how it
operates (its style).

In this learning model, each AES vector (in D) is used only
for predictions of the tokens from this AES, while token vec-
tors (in W) are common to all AESs. The size of the vectors
(for AES and tokens) is fixed and actually corresponds to
the size of the desired representation space (embeddings).

Once the model is trained, the D matrix contains the em-
beddings of the programs. The positioning of a new program
in this embedding space consists in inferring2 a new column
vector in D using the tokens from the new AES. The other
parameters of the model remaining fixed (W as well as the
softmax parameters).

Finally, let us mention that the choice of the aggregation
strategy used in the hidden layer can be decisive. Indeed,
a sum or average will consider each context as a bag-of-
words (without taking into account the order), whereas a

2Inference is made by purshasing the learning on the Neural
Network.

concatenation strategy offers the opportunity to exploit the
order of words within the context. If the sequentiality (inside
the context) is not a determining factor in the construction
of embeddings for natural language, we will confirm in future
experiments that the order of tokens is of high importance
for learning program embeddings using AESs.

4. EVALUATION OF THE APPROACH
4.1 Dataset presentation
Educational data are complex since programs may contain
errors, be small in size, may not fully meet the intended
functions and may be relatively redundant. These data have
very different characteristics from the datasets used in soft-
ware development. For our experiments, we thus built and
use several real educational datasets (see Table 1). They
consist of Python programs submitted by students on two
training platforms in introductory programming courses. In
addition to our (documented) code2aes2vec code for learn-
ing program embeddings, we also make available3 these three
”corpora”of Python programs, the associated test cases, and
the AESs built on each program. All of the results presented
in the rest of this section can thus be fully and easily repro-
duced.

The NewCaledonia-5690 dataset (or NC-5690) includes the
programs created in 2020 by a group of 60 students from the
University of New-Caledonia, on a programming training
platform4. The NewCaledonia-1014 dataset (or NC-1014)

3https://github.com/GCleuziou/code2aes2vec.git
4Platform developed and made available by the CS depart-
ment of the Orléans University Institute of Technology.

256 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

AES Id If Compare var1 Subscript

D W W W W

Assign

…aggregation (sum, average
or concatenation)

classifier

matrix W of
words

wi

wi-2 wi-1 wi+1 wi+2

current AES
vector

matrix D
of AES

word context
vectors

Figure 3: The neural network aes2vec used to predict a word wi from its original AES identifier and its context (here, two
previous and two following words).

Table 1: Characteristics of the three Python datasets col-
lected on programming training platforms. The ’Nb. of
words’ reported is the total size of the AES corpus; the num-
ber in parentheses indicates the size of the ’vocabulary’.

Datasets NC-1014 NC-5690 Dublin-42487

Nb. programs 1,014 5,690 42,487
Avg nb. test cases 13.1 10.4 3.7
per program
Nb. correct 189 1,304 19,961
programs
Nb. exercises 8 66 65
Nb. ’words’ 113,223 761,726 7,4 M
AES-0 (20) (44) (38)
Nb. ’words’ 226,682 1,7 M 15,2 M
AES-1 (42) (57) (83)
Nb. ’words’ 690,019 3,9 M 40,4 M
AES-2 (71) (113) (209)

includes a sub-part of NewCaledonia-5690 composed of con-
tributions associated with 8 exercises selected for their al-
gorithmic diversity (see Table 2) and their balanced vol-
umetry (100 to 150 programs per exercise). We will use
it as a ’toy’ dataset facilitating qualitative analyzes. The
Dublin-42487 dataset includes student programs from the
University of Dublin, carried out between 2016 and 2019.
Although the original corpus [3] contains nearly 600,000 pro-
grams (Python and Bash), we propose here a subset enriched
semi-automatically with test cases (not provided initially).

4.2 Embedding analysis
In the following experiments, each dataset has been divided
into three sub-parts: training (90%), validation (5%) and
test (5%); the validation set being used to select the best
model among those learned during the different iterations
(aes2vec). Unless otherwise stated, the aes2vec algorithm
has been set up to learn embeddings of dimension 100, the
size of the context is set to 2, concatenation is used as ag-

Table 2: Exercises in the NewCaledonia-1014 dataset.
Exercice Statement #test

cases

swapping swap items in a list 4
minimum look for the minimum in a list 8
compareStrings compare two strings 11
fourMore100 return the first four values

greater than 100 from an input
list

7

indexOccurrence return the index of the first oc-
currence of an item in a list

7

compareDates compare two dates from their
day, month and year

30

polynomial return the roots of a polyno-
mial of degree 2

6

dayNight display information about the
period of a day given a time

32

gregation stage and the training is performed over 500 iter-
ations.

In a first step, we evaluate our approach in a qualitative
way on the dataset NewCaledonia-1014 constituted for this
purpose. Figure 4 (left) shows a visualization of the 912
programs of the training set, obtained by a non-linear pro-
jection using the t-SNE dimension reduction algorithm [9].
It can be seen that, although embeddings are learned in an
unsupervised manner, the code2aes2vec method learns, from
a relatively limited number of training data, a representa-
tion space in which the areas identify distinct program func-
tionalities. Thus, the program vectors are organized quite
naturally into 8 clusters that are highly correlated with the
original 8 exercises. Moreover, the topological organization
of the clusters matches well with the algorithm inherent to
the programs. Exercises ’swapping’ and ’minimum’ are close
in the embedding space and correspond to the only two ex-
ercises that iterate over all values of an input list. Exercises
’compareStrings’, ’fourMore100’ and ’indexOccurrence’, in

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 257

the upper part of the space, require to partially iterate over
a list. Finally, the last three exercises do not require loops
and rely only on the use of conditional instructions. The
exercise ’dayNight’ is distinguished by the expected use of a
display function (print) while all the other exercises return
a result (return). This feature may explain the ’isolation’
of the programs from this exercise from other programs.

Stylistic differentiation of programs is difficult to assess
quantitatively. This task would require either objective cri-
teria that can be extracted automatically or expensive ex-
pert labeling. Given the absence of such stylistic knowl-
edge in datasets, we choose to illustrate on an example how
the code2aes2vec method distinguishes different styles in the
writing of a same function. Figure 4 (right) presents in de-
tail the embedding space learned for the exercise ’minimum’.
It’s interesting to notice that program styles are clearly dis-
tinguished, notably the two ways to program a Python for

loop (using indexes vs. elements directly). In a very detailed
way, programs are also grouped according to whether their
loop starts with the first element of the list (range(0,...))
or with the second one (range(1,...)), after initialization
of the minimum to the first element in any cases.

Word order is important in our aes2vec method. For ex-
ample, our approach distinguishes programs having a simi-
lar boolean condition but expressed in a different order (if
liste[i]<res: vs. if res>liste[i]:). This distinction
may seem artificial since these two expressions are strictly
equivalent from the evaluation point of view. However, the
first syntax appears more ’natural’ than the second. It would
be easy to get rid of this phenomenon by normalizing the
expressions at the code2aes step; this option can be left at
teacher’s discretion.

Finally, we draw the reader’s attention on some valid but
atypical programs. In particular a program using the native
Python function min, or the one using the sort function.
Their separation from the rest of the programs is crucial
since it offers a way to detect programs (a priori valid) that a
teacher would like to reject or at least moderate considering
that they deviate from his/her pedagogical objective. More
generally, this analysis seems to confirm that the embedding
spaces learned by the code2aes2vec method correctly cap-
tures not only the function of the programs but also their
style. Their intrinsic quality paves the way for many prac-
tical uses that could significantly improve the efficiency of
learning platforms (detection of atypical solutions, automa-
tion/propagation of feedbacks, student ’trajectory’ analysis,
study of error typologies, etc.).

In a second step, we evaluate the code2aes2vec approach
from a quantitative point of view on the three datasets (Ta-
ble 3). We consider an usual task for program embedding
evaluation, namely the prediction of its function (i.e. exer-
cise identification). For each considered configuration (AES
level), the training data are used first to learn (without su-
pervision) a representation space. Then, these embeddings
are used to learn (with supervision) a SVM classifier (with
polynomial kernel) [5]. Finally, the embeddings are (in-
directly) assessed according to their ability to predict the
function of the code (i.e. the exercise) for test data.

As baselines, random classifier informs about the difficulty
of this task a priori, while doc2vec corresponds to the (naive)
use of the algorithm doc2vec [8] to learn embeddings from
the codes directly (without any intermediate representa-
tion). We also report the results obtained by the (super-
vised) code2vec approach5 [2] executed with default param-
eters.

NC-1014 NC-5690 Dublin-42487
random classifier 0.125 0.015 0.009
code2vec [2] 0.230 0.098 0.037
doc2vec [8]+SVM 0.412 0.495 0.380
code2aes2vec+SVM

(AES-0) 0.882 0.460 0.391
(AES-1) 1.0 0.698 0.544
(AES-2) 1.0 0.832 0.651

Table 3: Quantitative and comparative evaluation of the pro-
duced embeddings, on the task of retrieving the function of a
program (accuracy).

It can be seen that the code2vec model recently proposed
by [2] cannot be trained satisfactorily on any of the three
datasets. This is due to the numerous parameters to
learn and the large number of examples this method re-
quires. In the largest dataset (Dublin-42487), code2vec
“only” has 42,487 programs as inputs. To the opposite, our
code2aes2vec method as several million entries thanks to our
AES intermediate representation.

The comparative results obtained with three different levels
of AES (denoted by AES-0, AES-1 and AES-2 in Table 3)
confirm that the quality of the embeddings is improved when
the level of detail of the AES increases. Level 2 AES (AES-
2) are undeniably leading to the best vector representations
of programs.

In order to take into account the word/token order,
code2aes2vec and doc2vec have been set up so far with con-
catenation as aggregation step. In order to confirm the im-
portance of the order, we compare in Figure 5 embeddings
obtained by the code2aes2vec algorithm with both types of
aggregation (sum vs. concatenation). Unlike for concatena-
tion, we observe a very rapid degradation in the quality of
the embeddings obtained with a sum type aggregation when
the size of the context increases. Indeed, the vocabulary on
which AESs are based is very limited (only a few dozen or
even hundreds of tokens) and the distribution of these words
in AESs is not uniform. Thus it quickly becomes difficult to
differentiate contexts as their size increases without taking
into account the word order.

4.3 Application to feedback propagation
In order to confirm that the learned embeddings are fine
enough to be usefully exploited in an educational context,
we have implemented a first proof of concept on the task of
propagating feedbacks.

We have considered the exercise ’mean’ from the dataset
NewCaledonia-5690 whose instruction was to write a Python

5The other methods presented in the state of the art could
not be compared because of the lack of available operational
implementations.

258 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

fourMore100

compareStrings

indexOccurrence

swapping

polynomial

compareDates minimum

dayNight

path by
the indices

path by the
elements

uses the native
function min()

for i in range(0,len(liste)):
 if liste[i]<res:

for i in range(1,len(liste)):
 if liste[i]<res:

for i in range(0,len(liste)):
 if res>liste[i]:

for i in range(1,len(liste)):
 if res>liste[i]:

uses the native
function sort()

for elem in liste:
 if elem<res:

Figure 4: Visualization of program embeddings obtained by the method code2aes2vec for the 8 exercises of the dataset
NewCaledonia-1014. The colors identify the exercises, with incorrect programs in light and correct ones in dark. The fig-
ure on the left represents all the embeddings and the one on the right details the area associated with the ’minimum’ exercise.

Figure 5: Evaluation of the embeddings on each of the three datasets according to the type of AES, the aggregation method and
the context size (nb. words before/after).

function returning the mean of the values contained in a list
passed as a parameter (and returning None if this list is
empty). For this exercise, 157 programs were submitted to
the platform by 24 different students ; among these sub-
missions 122 programs were evaluated as incorrect by the
platform and on which we sought to propagate teacher feed-
backs based on their embeddings.

For this purpose, we performed a clustering (k-means [10])
on the 122 incorrect programs. We then presented to a
teacher the most representative program (cluster medoid) of
each cluster obtained, asking him to provide one feedback to

help the student correct his proposal6. Once the k feedbacks
were compiled (one per cluster/medoid), we went through
each cluster and asked the teacher, for each program (other
than the medoid), to indicate whether the feedback defined
for the medoid could be applied to that other program. The
objective is thus to assess the extent to which feedback from
one medoid can propagate to all other programs in the same
cluster.

Operationally, clustering is performed on the 122 incorrect

6If more than one error is found, the teacher must choose the
one he/she feels needs to be corrected first. Each feedback
is thus limited to the resolution of a single error.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 259

programs, defined by their embeddings in IR100. For a fixed
number of k clusters, the partition selected to be analyzed
is the one minimizing the MSE (Mean Square Error) among
100 runs (random initializations) of the k-means.

Table 4 presents the partition obtained for 5 clusters (k = 5).
For each cluster we indicate its size, the program associated
with its medoid as well as the feedback provided by the
teacher for this medoid.

Let us first observe that the feedbacks provided by the
teacher may relate to errors different in nature. It can be
either an error in the design of the algorithm (clusters 1 and
3) or an error in the writing of the Python program (clusters
2, 4 and 5).

Figure 6: Propagation of teacher feedback to neighboring pro-
grams in each cluster. Illustration on the exercise mean.

We repeated this work with a partition into 10 clusters, this
time asking the teacher to provide 10 feedbacks. Finally,
we measured the rate of correct feedback when propagating
the feedback from each medoid to its neighboring programs
in the same cluster. Figure 6 shows the evolution of the
correct feedback rate as a function of the neighborhood size
considered for propagation. It can be seen that the further
away from the medoids, the more errors in the automatically
determined feedbacks.

Of course, a small number of feedbacks (5 or 10) is not
enough to cover all the errors present in the 122 incorrect
programs. In practice, it will therefore not be envisaged to
propagate to all the programs in the cluster but only to the
neighboring programs of the medoid. The dashed curves in
Figure 6 indicate the proportion of programs covered as a
function of the size of the neighborhood under considera-
tion. We can see that with a neighborhood radius corre-
sponding to a distance of 1.0, a propagation over 5 clusters
allows to cover 33% of the programs with a precision of 90%;
similarly such a propagation on 10 clusters allows to cover
significantly more programs (43%) with a higher precision
(93%).

The use of embeddings allows in this example to assist the
teacher in his task of accompanying the students. For each
feedback requested, 4 to 5 additional neighboring programs
are automatically processed. Moreover, it is reasonable to
think that over time a sufficiently large collection of feed-
backs will be defined by the teacher to cover almost the
entire embedding space so as to systematically identify one
relevant feedback each time a new incorrect program is sub-
mitted and its embedding will position it in a pre-identified
neighborhood.

5. CONCLUSION AND PERSPECTIVES
This paper studies the problem of learning vector representa-
tions, or embeddings, of programs in an educational context
where the function is just as important as the style. Faced
with this problem, we propose the method code2aes2vec
transforming the code into abstract execution sequences
(AES), and then into embeddings. This approach adapts
the doc2vec method for program application and is based
on the document-based distributional variations hypothesis.

The publication of the source code of the approach is ac-
companied by the availability to the community of a new
enriched ’corpus’ composed of more than 5,000 student pro-
grams (Python). Experiments conducted on these new data
and on a public data set validate the quality of the learned
embeddings, capturing in a fine way the function and the
style of the programs. In addition a promising proof of con-
cept was carried out on a classical task in the field, namely
the propagation of teacher feedbacks.

The perspectives of this work are numerous. First, our
experimentation focus on programs done in introductory
courses, i.e. pretty simple codes. It would be interesting to
analyze more elaborated ones (from more advanced courses)
and to evaluate the impact of code complexity on perfor-
mance.

Then, it seems necessary to complete the results observed
on the stylistic differentiation of programs, by formalizing
the notion of style of a program, in order to quantitatively
evaluate our program embeddings. In the same way, a more
precise analysis of the test cases used will have to be carried
out in order to determine to what extent the constructed
embeddings are sensitive to them.

Finally, to have more exploitable corpora, we plan to extend
our implementation to handle any type of language (the cur-
rent implementation only processes the Python language).

From a more methodological perspective, all the words in
the program have the same weight during the embedding
construction in our approach. Thus, a correct program and
one returning a wrong value (or throwing an error) may have
very similar embeddings, although functionally very differ-
ent. This aspect could be integrated in the construction of
our AES or in the architecture of the neural network used to
generate embeddings. For that, it could also be interesting
to add to our AES the values taken by the variables, in the
same way that [17] but in a generic multimodal approach.
Another perspective would be to allow the expert to inte-
grate part of his knowledge on the language. As discussed
previously, some instruction sequences can be equivalent

260 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Cluster 1 (#31) Cluster 2 (#22) Cluster 3 (#28) Cluster 4 (#9) Cluster 5 (#32)

def mean(l):
if len(l)==0:
res=None

else:
res=0
cpt=0
for elem in l:
res=res+elem
cpt=cpt+1
res=elem/cpt

return res

def mean(l):
if len(l)==0:

res=None
else:

s=0
for elem in l:

s+=elem
res=s//len(l)

return res

def mean(l):
if len(l)==0:

res=None
else:

res=0
cpt=0
avg=0
for elem in l:
res=res+elem
cpt=cpt+1

avg=res/cpt
return avg

def mean(l):
if l==():
res=none

else:
res=0
for i in range(len(l)):
x=res+l[i]
res=x/len(l)

return res

def mean(l):
if len(l)==0:
res=None

else:
res=0
cpt=0
for elem in l:
res=res+elem
cpt=cpt+2
res=res%cpt

return res

The division step
must be performed
once the sum calcu-
lation is completed
(put this instruc-
tion out of the for

loop).

The // operator
corresponds in
Python to the in-
teger division. For
the computation of
a mean a simple
division is required
(operator /).

In the case of an
empty list, your
function does not
return None (as re-
quested).

The null value in Python
is written ’None’ (instead of
’none’).

The % operator cor-
responds in Python
to the modulus. For
the computation of a
mean a simple divi-
sion is required (op-
erator /).

Table 4: Description of the 5 cluster partition generated by k-means on the embeddings of the incorrect programs from the
mean exercise. For each cluster (table column): (1) the number of programs, (2) the program associated with the medoid of
the cluster and (3) the feedback defined by the teacher for this program. Instructions in red are the ones that are questioned
in the feedback.

(e.g., if liste[i] <res: vs. if res> liste[i]:). Se-
mantic relations between words can also be known (e.g., the
relation between for and while statements). This knowl-
edge could be used to constrain the neural network and
guide embedding construction. Finally, these program em-
beddings open up a large number of perspectives for teaching
aid, in addition to the task of feedback propagation. For ex-
ample, they could be used to identify error typologies, alter-
native solutions, or even predict dropout students through
the analysis of their ’trajectories’.

6. REFERENCES
[1] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton.

A survey of machine learning for big code and
naturalness. ACM Computing Surveys, 51(4):1–37,
2018.

[2] U. Alon, M. Zilberstein, O. Levy, and E. Yahav.
code2vec: Learning distributed representations of
code. Proceedings of the ACM on Programming
Languages, 3(POPL):1–29, 2019.

[3] D. Azcona, P. Arora, I.-H. Hsiao, and A. Smeaton.
user2code2vec: Embeddings for profiling students
based on distributional representations of source code.
In Proceedings of the International Conference on
Learning Analytics & Knowledge, pages 86–95, 2019.

[4] R. Bazzocchi, M. Flemming, and L. Zhang. Analyzing
cs1 student code using code embeddings. In
Proceedings of the 51st ACM Technical Symposium on
Computer Science Education, pages 1293–1293, 2020.

[5] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A
training algorithm for optimal margin classifiers. In
Proceedings of the fifth annual workshop on

Computational learning theory, pages 144–152, 1992.

[6] D. DeFreez, A. V. Thakur, and C. Rubio-González.
Path-based function embedding and its application to
error-handling specification mining. In Proceedings of
the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 423–433,
2018.

[7] J. Henkel, S. K. Lahiri, B. Liblit, and T. Reps. Code
vectors: understanding programs through embedded
abstracted symbolic traces. In Proceedings of the ACM
Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, pages 163–174, 2018.

[8] Q. Le and T. Mikolov. Distributed representations of
sentences and documents. In International conference
on machine learning, pages 1188–1196, 2014.

[9] M. LJPvd and G. Hinton. Visualizing
high-dimensional data using t-sne. J Mach Learn Res,
9:2579–2605, 2008.

[10] J. MacQueen et al. Some methods for classification
and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1,
pages 281–297. Oakland, CA, USA, 1967.

[11] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

[12] T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N.
Nguyen. Exploring api embedding for api usages and
applications. In IEEE/ACM International Conference
on Software Engineering, pages 438–449. IEEE, 2017.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 261

[13] H. Peng, L. Mou, G. Li, Y. Liu, L. Zhang, and Z. Jin.
Building program vector representations for deep
learning. In International Conference on Knowledge
Science, Engineering and Management, pages
547–553. Springer, 2015.

[14] J. Pennington, R. Socher, and C. D. Manning. Glove:
Global vectors for word representation. In Proceedings
of the 2014 conference on Empirical Methods in
Natural Language Processing, pages 1532–1543, 2014.

[15] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati,
M. Sahami, and L. Guibas. Learning program
embeddings to propagate feedback on student code. In
Proceedings of the 32nd International Conference on
Machine Learning, ICML’15, page 1093–1102, 2015.

[16] G. Salton, A. Wong, and C.-S. Yang. A vector space
model for automatic indexing. Communications of the
ACM, 18(11):613–620, 1975.

[17] K. Wang, R. Singh, and Z. Su. Dynamic neural
program embeddings for program repair. In
International Conference on Learning Representations,
2018.

262 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Student-centric Model of Login Patterns: A Case Study
with Learning Management Systems

Varun Mandalapu1, Lujie Karen Chen1, Zhiyuan Chen1, Jiaqi Gong2
1University of Maryland Baltimore County, Baltimore, Maryland, USA, 21250

2The University of Alabama, Tuscaloosa, Alabama, USA, 35487

{varunm1, lujiec, zhchen}@umbc.edu, jiaqi.gong@ua.edu

ABSTRACT

With the increasing adoption of Learning Management Systems
(LMS) in colleges and universities, research in exploring the

interaction data captured by these systems is promising in
developing a better learning environment and improving teaching
practice. Most of these research efforts focused on course-level
variables to predict student performance in specific courses.
However, these research findings for individual courses are
limited to develop beneficial pedagogical interventions at the
student level because students often have multiple courses
simultaneously. This paper argues that student-centric models will
provide systematic insights into students’ learning behavior to

develop effective teaching practice. This study analyzed 1651
undergraduate student's data collected in Fall 2019 from computer
science and information systems departments at a US university
that actively uses Blackboard as an LMS. The experimental
results demonstrated the prediction performance of student-centric
models and explained the influence of various predictors related
to login volumes, login regularity, login chronotypes, and
demographics on predictive models. Our findings show that

student prior performance and normalized student login volume
across courses significantly impact student performance models.
We also observe that regularity in student logins has a significant
influence on low performing students and students from minority
races. Based on these findings, the implications were discussed to
develop potential teaching practices for these students.

Keywords

Student-centric Modeling, Learning Management Systems, Login
Variables, Student Performance Prediction.

1. INTRODUCTION
Teaching and learning changed a lot in recent years with the
increasing adoption of new computer-based teaching and learning
technologies in educational institutions worldwide. As education
and learning technology evolves with time, leveraging the
technical advances to improve teaching practice and student
learning will be a prominent research area. The most common
technologies used by instructors to deliver course content include
Learning Management System (LMS), Course Management

Systems (CMS), and Learning Content Management Systems
(LCMS) [1]. Even though these systems seem to be synonymous,
they have their specific use in the education domain. LMS tools
focus on communication, collaboration, content delivery, and
assessment, whereas LCMS is similar to LMS with fewer
administrative functions. CMS, on the other hand, will focus on

the enrollment and performance of students. Of these three
systems, LMS is the one that is best suitable for delivering
learning strategy to students and is the primary focus of this study.

LMS systems provide a unique opportunity to administrators, and
researchers to evaluate student data related to time spent on an
activity, access times and day, grades, interactions, and many
other useful student learning variables. The data logs collected by
LMS systems are analyzed with scientific techniques published in
the Educational Data Mining (EDM) domain. In their study,

Romero and Ventura [2] described that current EDM methods rely
on clustering and pattern recognition techniques to categorize
students into various groups based on their interaction patterns.
Categorization of students using clustering and pattern recognition
supports instructors in making changes for a set of students.
Teaching practices that impact the entire classroom can be
evaluated using predictive analytics that tracks student learning
and achievement from the vast amount of interaction data

collected by LMS.

Existing research in Learning Analytics (LA) and EDM focused
on developing highly accurate predictive models that can estimate
student learning outcomes related to assignment scores, course
grades, and drop-out probability [3,4]. These course-based
predictive models provide early warning to student counselors or
instructors associated with a specific course [5,6]. Even with
considerable success in this area, many of the student performance

prediction models have several shortcomings. One significant
issue with course-based models is the bias introduced by teaching
style and the type of course (descriptive, programming,
mathematical etc.). This bias impacts these models' scalability
across different courses and makes it difficult to understand the
student level factors on their achievement. For example, if a
student enrolls in five courses, developing models to study
students’ progress in these five courses independently is not

realistic and gives different insights based on varying features and
performances. Therefore, these modeling efforts are limited to
reduce different biases introduced by instructor and the diverse
amount of content made available in LMS.

Course level predictions are suitable for supporting instructor
level decision making; however, if intervention is on student level
behaviors such as study habits or self-regulation skills, it is
beneficial to look at student-centered indicators so that
interventions may be more targeted and cost-effective [7,8].

Developing student-centric models that analyze student LMS
interactions across courses in a college/university setting will help

Varun Mandalapu, Lujie Chen, Zhiyuan Chen and Jiaqi Gong “Student-
centric Model of Login Patterns: A Case Study with Learning Management
Systems”. 2021. In: Proceedings of The 14th International Conference on
Educational Data Mining (EDM21). International Educational Data Mining
Society, 263-274. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 263

address the issues with course specific models. This study is the
first step in developing models that supports the identification of
student level indicators.

For colleges that have a high penetration of LMS, LMS activity
may give a holistic indicator of students' engagement level

(behavior engagement specifically). We ask the question to what
extent those holistic indicators predict student term Grade Point
Average (GPA) performance in the future. To explore this, we
specifically focus on student login related features as they can be
generalized across courses and act as proxy variables for time
management [51, 52]. It is also challenging to aggregate other
features like discussions, readings, and assessments across courses
compared to access related LMS variables. This study's data is

drawn from Blackboard Learn, a commercial LMS software
available for colleges and universities to deliver course content
and assessments through internet-enabled computer systems. Most
importantly, the data is drawn from all students in computer
science and information systems at a large public university in the
US during the Fall 2019 semester. In addition to student
interactions from LMS, we also access demographic and prior
student performance data from the university's student

administration system to build and interpret downstream
predictive models. The university's Institutional Review Board
(IRB) approved this study, and all the student specific
demographic and personal information are anonymized by
following General Data Protection Regulation (GDPR) standards.

In this work, we focus on model predictions and explanations to
understand student learning behaviors. First, we apply new
methods to process student interaction data collected across

different courses enrolled in a semester to build student-centric
performance models based on machine learning principles.
Secondly, we utilize a novel approach in local model
explanations, correlation and regression to understand the impact
of various features captured by LMS on student performance. One
primary reason for using Locally Interpretable Model
Explanations (LIME) is its ability to explain the relationship
between predictor variables and predictions, especially the input
variable's impact on the outcome. On the other hand, statistical

correlation analysis will provide the relation between input
predictors and the observed target variable. As correlation
analysis does not consider the interaction effect between input
variables, we also use a linear regression model to study the
output variable's feature importance’s based on the model
coefficients. To address the research gap discussed earlier, we
explore the below three research questions.

RQ１ How different student-centric machine learning models
perform in predicting student end-of-term GPA?

RQ２ How do student login and time interval pattern across
courses influence student learning outcomes?

RQ３ Is there a significant variability in feature importance
for students coming from diverse demographics?

2. RELATED WORK
Universities and colleges around the world adopted LMS systems,
such as Moodle and Blackboard, to provide onsite, hybrid, and
online courses based on their capabilities to support
communication, content creation, administration, and assessment

[9, 10]. Besides the automation and centralization of various
administrative tasks like creating and managing student accounts,
creating syllabus, assignments, assessments, grading, etc., LMS

systems assemble and deliver personalized learning materials and
content quickly [11]. These systems also support the reusability of
materials created by instructors. The systems also enable
instructors to create content structures, deliver them in a sequence,
maintain control access, organize group activities, track student

activities, load and replace learning materials and provide
feedback on assessments. With advanced database software
developed by Oracle, IBM, and Microsoft that emphasize
interconnectedness, data independence, and security, LMS
systems employ various login roles based on user classification.
These roles will permit instructors to create new content or
privately address student issues and create discussion boards to
capture student knowledge on specific topics.

LMS platforms enable students to access learning material in
various formats, such as pdf, PowerPoint presentations, video
lectures, and audio files. The systems also track student activity
related to content downloads, access timestamps to display
student progress in learning to instructors [12]. LMS also provides
both asynchronous and synchronous communication for students
to interact with instructors and encourages group activities.
Combining the tools provided by LMS with innovative learning

strategies like self-directed learning, small group instructions, and
collaborative learning with instructor interventions, a wide variety
of activities can be developed for individual, small groups, or
larger classes [12,13]. Given the simplicity and convenience of
accessing online materials through LMS systems, it is not
surprising to see high student satisfaction scores for courses
delivered through LMS.

In recent years, the data sets related to student learning activities

have drawn significant attention from researchers in academic
communities to develop possible solutions to address student
retention and academic success issues. This type of work has been
called learning analytics and focuses on student activities such as
navigating lecture materials, what information is accessed, how
long it takes to complete an activity, and how students transform
the information in learning materials into measurable learning [14,
15]. Multiple commercial resources like SPSS, google analytics,
Stata and Nvivo can build predictive models on data captured by

LMS to assess student drop-out probabilities to develop targeted
learning courses or model collective learning behaviors. Since
most instructors deliver course assessments and material through
LMS, they can track student activity by processing a digital
footprint during every online interaction captured by system log
files.

2.1 Learning Analytics Research
LMS systems have the ability to capture large data streams related
to user interactions through which administrators and instructors
can develop methods to improve the learning experience. The
collection, analysis, and reporting of data about learning activities
on web-enabled learning platforms to assess student academic
progress, predict performance, and identify potential issues that

need attention is the central proposition of emerging fields like
learning analytics and educational data mining [16, 17]. Outcomes
derived from learning analytics aim to gain insights about student
learning behaviors, real-time information about institutional
practices and support the designing of personalized courses in
CMS. Although there are huge data stores in universities and
colleges that can be used to make data-driven decisions to support
optimal use of both pedagogical and economic resources, to date

there has been minimal application of this data in higher education
[18].

264 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

2.1.1 Student Engagement and Frequency of LMS
Use
An LMS system records student interaction details related to

logins, number of posts written on discussion threads, time spent
on lecture materials, total downloads, etc., in their log files. These
logs can be analyzed to generate reports that help teachers to
observe student progress at a granular level. Once there are
enough student records collected in LMS, they can be used to
develop computational models to predict future student
performances. Multiple works in EDM and LA studied the
relation between the usage of LMS and student academic
achievements. Vengroff and Bourbeau's [19] study showed

evidence that providing additional material in LMS benefited
students at the undergraduate level. They also conclude that
students who used LMS regularly did better in exams than their
peers who have minimal interactions. In their research, Dutt and
Ismail [20] observed that tracking resources students interact with
on LMS supports developing new strategies that make learning
easier and enhance learner progress. Their work also focused on
analyzing thresholds related to student interaction features like

self-assessment tests, time spent on exercises, discussion forums,
and performance outcomes. Another study by Lust et al. [21]
explored the usage variations in different tools used by students
on LMS, such as time on web-link, time on web-lectures, time on
a quiz, time on feedback, postings on discussion board, and
messages read. The results from this study heavily contributed to
the development of adaptive and innovative recommendation
systems. In their work, Hung and Zhang [22] also found patterns

based on six indices that represent student effort: Frequency of
accessing the course material, number of LMS logins, total
interactions in discussion threads, number of synchronous
discussions, number of posts read, and final grades in a course.

While exploring a link between student online activity on LMS
and their grades, Dawson et al. [23] observed a significant
difference in the number of online sessions accessed, total time
spent, and the number of posts in discussion forums between high
and low performing students. Another study by Damainov et al.
[24] developed a multinomial logistic regression model based on
time spent in LMS. This study found a significant relationship

between student time spent and grades, especially in students who
attained lower grades between D and B. Instead of using time
spent online, other works focused on the frequency of course
material access within LMS. A study by Baugher et al. [25] found
that regularity in student hits is a reliable predictor of student
performance compared to the total number of hits. In their study,
Chancery and Haque analyzed student interaction logs of 112
undergraduate students and found students with low LMS access

rates obtained lower grades than their peers with higher access
rates. This study was complemented by Biktimirovan and Klassen
[26] that reported a strong relationship between student hit
consistency and success. Their study counted access to various
LMS activities and found that homework solution access is the
only strong predictor of student performance. However, these
studies are primarily descriptive rather than predictive.

2.1.2 Instructional Design and Student Participation
Online teaching strategies are primarily dependent on instruction
design as each mode of interaction - student/instructor,
student/student, and student/content have their own positive
impacts on student progress. A study by Coldwell et al. [27]
focused on the relationship between student participation in a
fully online course and their final grades. They found a positive
relationship between student participation and final grade.

Dawson et al. [23] examined the impact of various LMS tools and
found a highly positive correlation between discussion forum
activity and student success. They observed more than 80% of
interactions occurred in the discussion forum, which is the
primary interaction tool in LMS. Another study by Greenland [28]

found that asynchronous communication is the primary form of all
online course interactions. Nandi et al. [29] found an increasing
number of posts in discussion forums close to assignment and
exam deadlines. They also found a high correlation between exam
scores and online class participation throughout the semester,
especially in high-achieving students.

All the studies discussed above adopted log files from LMS
systems to extract unbiased details from activity and performance
to identify a relationship between independent interaction
variables and student grades. Most of the discussed studies are
based on univariate analysis focusing on a single variable or a set

of highly impactful variables of a single course or similar courses
on student outcomes. However, student performance is a highly
complex area in education to measure or understand, especially
across various courses offered on-campus in a university setting.
Most of the authors discussed above noted the need for more in-
depth works to investigate student performance across courses and
based on multiple variables. These studies also lack an
explanation about variables used in their studies to track student

performance, and it is evident that the authors selected LMS
variables based on their belief that these variables are highly
correlated with student scores.

2.1.3 Social Factors in Analytics
Factors that influence student academic performance have been
the focus of researchers in LA and EDM domains for many years.

It still remains an active area of education research, indicating the
complex problem in measuring and modeling learner processes,
especially in tertiary education. Positive learning characteristics
have a significant positive impact on learner engagement
improvement in multiple ways. The dispositional language
specifies learning as a combination of self-regulation, learning
inclinations, motivation, behavioral patterns, interactions, and
cognitive ability. In their study, Buckingham et al. [30] proposed

a combination of self-reported data gathered in surveys with
student interaction data generated by LMS to study individual
student performance, learning processes, and group interactions.
These social analytics depend primarily on student self-reported
data to develop toolkits that support a specific learning type,
especially in courses with high diversity [31]. However, our study
focuses on objective identification of student success based on
data that LMS captures. We will also identify the crucial variables
from predictive model output for various student groups based on

their diverse backgrounds (race, gender, and student status).

2.1.4 Multivariate Analysis to Predict Student

Success
Even though there is a common agreement about the purpose of
learning analytics, there are still several varying opinions on what
data needs to be collected and analyzed to improve teaching and
learning processes. A study by Agudo-Peregrina et al. [32] argued
that it is highly complex to identify the net contribution of various
interactions to the learning processes. Their findings show that

peer interaction between students has a lower influence than
student-teacher interaction, which contradicts earlier studies that
showed high importance for student peer interactions. A study by
Dominquez et al. [33] utilized multiple variables like LMS logins,
time stamps, and content access flags captured in a biology course

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 265

to predict student grade at the end of course completion. The
results show that the algorithm predictive accuracy is at 50% in
subsequent semesters. Lerche and Keil's [34] recent study utilized
Moodle log data from 369 students enrolled in three online
courses across three semesters to predict their scores at the end of

the term for each course. Their regression results related to
predicting student scores in a course at the end of the semester
varied from 0.17 to 0.6 for all three courses. This broad range of
performance across courses is due to varying variables utilized in
each course based on the course structures. Studying the
difference in instructional design, variables in extracted data,
statistical inferences, predictive modeling used, interpreting model
outcomes and pattern observations, etc., might explain the

inconsistencies in results shown in earlier studies.

Data captured by LMS systems became prominent in LA and
EDM circles as they capture student interactions in non-intrusive

and ready-to-use settings. Several studies were discussed earlier in
this research that utilized the LMS data to develop models that
track student progress. However, it is still challenging to build
highly accurate models that predict student learning outcomes
across courses and understand the impact of different variables
captured by LMS. Another significant gap in earlier research is
their inability to predict student performance across courses in a
given semester. One primary issue in predicting student

performance across a semester is to find methods that aggregate
student LMS variables across courses. This research shows
methods to address the research gap found in earlier studies.

In this study, we approach the problem of tracking student
achievement by developing student-centric models that build on
aggregated LMS interaction variables collected across a semester
irrespective of student year and course. One unique aspect of our
work is related to the study of model performance on longitudinal
student data. We develop models that predict student end-of-term
GPA based on four cumulative periods in a semester. This work
also focuses on explaining the impact of different aggregated

LMS variables on various student groups categorized based on
performance, race, gender, and student type. The importance of
features is explained by adopting correlation statistics for
univariate importance, a regression model for interaction effect,
and LIME for model-based yet model agnostic explanations.

3. DATA & FEATURE SET

3.1 Dataset
For this study, we chose undergraduate student data captured by
LMS in Fall 2019 from a large public university in the United
States. These students were part of either Information Systems
(IS) or Computer Science (CS) departments. The students from
these departments were chosen as the instruction format and
courses are closely aligned in both of them. Blackboard system is
predominantly used as an LMS to deliver course material,
assessment, and grading. The student demographic data captured

by a standalone Student Information System (SIS) is used to
categorize students based on different demographic variables. A
total of 1651 students were enrolled in these two departments in
the Fall 2019 semester. Based on student distribution, we
categorized students into three ethnicities: White, Asian, and
Minority. This study also researches student performance based
on their admit types, such as four-year regular student or transfer
student. The demographics of student data are provided in the

below table 1. This study was approved by IRB and sensitive
student data was de-identified based on GDPR standards.

Table 1. Student demographics

Demographic Student Count

Total Students (N) 1651

No of unique courses 440

No of unique course instructor

combinations
638

Male : Female 1302 (79%) : 369 (21%)

White : Asian : Minority
630 (38%) : 495 (30%) :

526 (32%)

4 – Year : Transfer 976 (59%) : 675 (41%)

Full Time : Part Time 1446 (88%) : 205 (12%)

IS : CS 934 (57%) : 717 (43%)

1st Yr : 2nd Yr : 3rd Yr : 4th Yr
115 (7%) : 329 (20%) : 515

(31%) : 692 (42%)

<= 3 : 4-5 : >5 (Courses enrolled)
298 (18%) : 1035 (63%) :

318 (19%)

3.2 Feature Extraction
We explored various LMS features related to student logins,

content accesses, time spent, discussion posts, assignment
submissions, and time intervals based on earlier literature. While
exploring these features, we identified that only three features
could be commonly extracted from different courses: Student
Login Counts, Time intervals & prior knowledge.

One of the significant challenges while building a student-centric
model on LMS data is to extract aggregated features that are least
biased. As Blackboard's content is dependent on instructor and

course, it is crucial to mitigate the variations caused by these
factors on aggregate student variables. This work employs
multiple statistical measures to mitigate these issues. The details
are explained in the below sub-sections.

3.2.1 Normalized Login Volume
Earlier studies identified that student performance prediction is
strongly dependent on the volume of student logins. One
challenge with counting the student logins in Blackboard is its
inability to find which course they accessed during each login.
Also, calculating the total login count introduces a hidden bias as
courses with more content on Blackboard prompt students to login
more often than other courses with less content and flexible

deadlines. To mitigate this issue, our work followed the below
steps to extract student login features.

1. Extract all courses enrolled by all students in IS and CS.

2. Count the total number of logins for all students
irrespective of their department in these extracted
courses.

3. Calculate the Z-scores of student logins in each course.
The reason for doing this is to mitigate the bias

introduced by variations in the absolute count of logins
as course logins vary a lot between students. Z-scores
provide a value that helps understand if student logins
are higher or less than average logins in a specific
course.

266 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

4. Once the z-scores are calculated for all courses, we
extract a vector of login z-scores for each student based
on their enrolled courses.

5. As predictive models do not take vectors of variable
length as input, this work extracts seven significant

statistics from the login vector: mean, median,
minimum, maximum, standard deviation, skewness, and
kurtosis.

3.2.2 Login Regularity
Apart from student login volumes, the regularity between logins
also provides valuable insights into student achievement as
regularity is related to self-regulation capabilities. In this work,
we utilize an entropy-based method to extract features that define
student login regularity in each course. In information theory,
entropy is used to define uncertainty or randomness [48]. Entropy
measure will explain if student's logins are regular (less random)

or irregular (more random). Based on this concept, if the entropy
value is high, then a student has an irregular login pattern, and if
the entropy value is low, the student has a regular login pattern.
The steps to calculate student regularity features are given below.

1. Extract all course accesses with timestamps for every
student in IS and CS.

2. Calculate the difference between timestamps. This
difference will give a vector of time intervals for each
course enrolled by a student.

3. Calculate entropy using the KL estimator with the k-
nearest neighbor method proposed by Kozachenko and
Leonenko [45]. KL estimator uses k-nearest neighbor
distances to compute the entropy of distributions. The
reason for adopting this method instead of Shannon
entropy is based on the time interval vector's continuous
characteristic [46].

4. Once the entropies are calculated, we get a vector of

entropies for each student based on the number of
enrolled courses. We then calculate the seven statistics
similar to student logins: mean, median, minimum,
maximum, standard deviation, skewness, and kurtosis.

3.2.3 Login Chronotypes
Studies in chronobiology and chronopsychology showed variation
in different individual active periods at different times of the day
[41, 42]. These studies classify an individual into either morning
type or evening type based on their high activity time. For
example, if an individual is highly active in the morning
compared to the evening, they are considered morning type and

vice versa. Inspired by this work in human psychology, this work
divides a day into four-time bands T1 (12 AM to 6 AM), T2 (6
AM to 12 PM), T3 (12 PM to 6 PM), and T4 (6 PM to 12 AM)
and extract student logins based on these four time bands. In
addition to this, this work also extracts the logins on weekdays
and weekends to study their influence on student performance.

1. Count the number of logins during each time band and
on weekdays and weekends for each course.

2. Calculate the mean of login count vector for each of
these time bands and weekday/weekend.

3. Normalize the login count with the number of courses
enrolled by an individual student. This normalization

will mitigate the bias introduced by the number of
courses enrolled across the student cohort.

This work also utilizes the demographic and prior performance
measured by GPA features captured by the SIS system. These
features were listed in below table 2.

Table 2. Student demographic features

Demographic Values

Start GPA (Prior Performance)
Cumulative GPA available

till the start of semester

Gender Male & Female

Ethnicity White, Asian & Minority

Student Year
Freshman, Sophomore,

Junior & Senior

Admit Type Regular & Transfer

Enrollment Type Full time & Part time

Student Age Continuous variable

4. METHODOLOGY
The methodology section details the predictive modeling
approach to predict student end-of-term GPA in fall 2019. In
addition to this, we also describe the correlation-based LIME
method to explain the features that contribute to model
predictions. The workflow of developing student-centric models is
depicted in figure 1.

4.1 Predictive Modeling
This work studied five of the most common regression models for
comparison purposes. The selected models include Generalized
Linear Model (GLM), Decision Tree (DT), Support Vector
Regressor (SVR), Random Forest (RF), and Gradient Boosted
Regressor (GBR). As model hyperparameter influences their

predictive performance, we utilized a grid search mechanism to
select multiple parameters to predict with high accuracy. We also
adopted a feature selection method based on a multi-objective
evolutionary algorithm in addition to hyperparameter search. This
feature selection algorithm evaluates each feature set based on
pareto-optimal that balances model complexity and accuracy. The
details of models and hyperparameter search criteria are discussed
below.

Generalized Linear Model: GLM is an extension of traditional
linear models that fits input data by maximizing the log-
likelihood. The regularization parameter is set so that the

hyperparameter search space looks for an alpha value that fits
between ridge and lasso regression. An alpha value of 1 represents
lasso regression, and an alpha value of 0 represents ridge
regression. This study searched for the best alpha value using a
grid search between 0 and 1 in increments of 0.1.

Decision Tree: The decision tree algorithm is a collection of
linked nodes intended to estimate the numerical target variable.
Each node in the tree represents a rule used to split on an attribute

value. The node uses a least-squares criterion to minimize the
squared distance between the average value in a node when
compared to the actual value. The hyperparameter search space
for this algorithm evaluates both maximal depth and pruning. The
maximal depth value varies between 1 and 100 in increments of
10. Pruning will make the DT algorithm use multiple criteria like

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 267

minimal gain, minimal leaf size, and pruning alternatives to
decide the stopping criterion.

Support Vector Machines: The SVM used in this study is built
based on Stefan Reupping’s mySVM [47]. This algorithm will
construct a set of hyperplanes in a high dimensional space for
regression tasks. A good hyperplane is decided based on the

functional margin. The hyperparameter search space focused on
both dot and radial kernel functions with a C (SVM complexity)
value range between 10 and 200. The kernel gamma function is
set for a radial kernel with a range of 0.005 and 5 with three
logarithmic increments.

Random Forest: A RF model builds an ensemble of decision trees
on bootstrapped datasets. The splitting criteria are similar to a
decision tree. The regression outcome is the average of the

observed train data GPA present at that end node. We only tuned
the number of trees hyperparameter to reduce the time complexity
of the execution. The number of tree searches varied between 10
and 1000 trees in 10 linear steps.

Gradient Boosted Tree: The GBT model builds multiple
regression trees in a sequence by employing boosting method. By
sequentially applying weak learners on incrementally changed
data, the algorithm builds a series of decision trees that produce

and an ensemble of weak regression models. As GBT is a non-
linear model, we search hyperparameters related to the number of
trees, learning rate, and maximal depth. The number of tree values
varies between 1 and 1000 in five quadratic increments, the
learning rate varies between 0.001 and 0.01 in five logarithmic
increments, and the maximal depth parameter varies between 3
and 15 in three logarithmic increments.

4.2 LIME Explanation
The concept of Locally Interpretable Model Explanations (LIME)
was introduced to explain the predictions made by black-box
models that deal with classification problems. LIME explains
each prediction made by a complex model by training a surrogate
model locally [35]. However, this earlier methodology is not
scalable to deal with categorical variables, tabular data, and

regression problems. In this work, we adopt the correlation-based
LIME method available in RapidMiner to explain machine
learning models' predictions [36, 37, 38].

1. Perturb data in the neighborhood of each sample in the
dataset. The number of simulated samples can be user-
defined. A higher number of simulated samples will
provide higher accuracy of explanations but at the cost
of more run times.

2. Make predictions using the ML model for all the

simulated samples around each original sample in the
dataset.

3. Calculate the correlation between each feature in the
dataset and the target variable.

4. The features that have a positive correlation are
considered supporting features, and features with
negative correlation with predicted outputs are referred
to as contradicting features.

As LIME provides feature importance value for each feature at
each sample, we aggregate the importance value for all samples to
build global importance for each variable. The significant
advantage of this method compared to traditional global
importance methods is its flexibility. As model global
importance’s are calculated across all samples in the data, the
LIME based feature importance’s can be calculated for subsets of
data. This flexibility provides users with a deeper understanding

of each feature's role for different sets of populations present in a
dataset.

In addition to applying the LIME methodology, this work also
studies univariate and multivariate feature importance on student
performances by applying correlation and linear regression
methods. The student dataset used in this study is divided into
multiple subsets containing different student groups based on
various demographics. A correlation value is calculated between
input features and student end-of-term GPA. This value provides

us with an intuition about the impact of various features on
student performances related to different demographics. As
correlation only provides independent variable importance on
student performance, we also adopt a linear regression model to
explore the variation of feature importance based on coefficient
values. Applying a linear regression model will also consider the
interaction effect between input features to fit the outcome
variable.

Figure 1: Student-centric Model Workflow

268 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

5. RESULTS
This results section is divided into three subsections based on the

three research questions we are focusing on in this study. The first
subsection will detail various predictive models' performance on
longitudinal student interaction data collected during the fall 2019
semester. The second subsection will detail the importance of
student logins and regularity on performance predictions based on
LIME methodology. The final subsection will discuss the
importance of input features based on correlation and regression
methods.

5.1 How different student-centric machine

learning models perform in predicting student

end-of-term GPA?
The five machine learning models adopted in this study were
evaluated using a five-fold cross-validation method. In this
method, the student data is divided into five equal folds at a
student level. In every iteration, four of the five folds are used for

model training, and one fold is used for model testing. The
machine learning models are evaluated based on two performance
metrics: R squared (R^2) and Root Mean Squared Error (RMSE).
The output performance metrics are the average of five test fold
performances.

In this study, we divided a semester into four parts to understand
the impact of longitudinal interaction data across the semester on
predictive model performances. This analysis will support the
amount of data needed to balance predictive performance and
early detection for interventions. The performance metrics
evaluated on these four cumulative datasets will help understand

the amount of student data needed to make accurate predictions.
Tables 3, 4, 5, and 6 present the machine learning models' results
evaluated on four cumulative datasets. While differentiating
student performance based on multiple longitudinal datasets, we
also study algorithms' performance without Freshman student
data. This differentiation is to study the impact of missing start

GPA feature values for first-year students as most of the full-time
regular students in US universities start in the Fall semester.

Table 3. Student features from start to end of first month

Model R^2 RMSE

All
Students

Except
Freshman

All
Students

Except
Freshman

GLM 0.213 0.249 0.657 0.633

DT 0.266 0.270 0.638 0.633

SVM 0.216 0.324 0.666 0.607

RF 0.332 0.353 0.607 0.588

GBT 0.338 0.362 0.602 0.581

Table 4. Student features from start to middle of semester

Model R^2 RMSE

All
Students

Except
Freshman

All
Students

Except
Freshman

GLM 0.257 0.266 0.67 0.628

DT 0.263 0.295 0.67 0.618

SVM 0.195 0.315 0.705 0.609

RF 0.360 0.352 0.621 0.591

GBT 0.362 0.361 0.622 0.586

Table 5. Student features from start to end of third month

Model R^2 RMSE

All
Students

Except
Freshman

All
Students

Except
Freshman

GLM 0.25 0.266 0.644 0.626

DT 0.255 0.255 0.658 0.650

SVM 0.335 0.344 0.612 0.597

RF 0.371 0.386 0.589 0.575

GBT 0.374 0.386 0.588 0.572

Table 6. Student features from start to end of semester

Model R^2 RMSE

All
Students

Except
Freshman

All
Students

Except
Freshman

GLM 0.251 0.269 0.644 0.625

DT 0.246 0.274 0.657 0.641

SVM 0.320 0.289 0.616 0.627

RF 0.387 0.410 0.585 0.564

GBT 0.400 0.406 0.575 0.562

From the above tables, we observe that the GBT model performed

better than the other four models based on the tradeoff between R
squared and RMSE values. We also observe that there is no
significant difference in student end-of-term GPA prediction with
and without freshman details. This might be due to less sample

Figure 2. Compare performances of GBT model on

different longitudinal datasets

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 269

size (7%) related to freshman cohort. From figure 2, it is also
evident that there is a gradual increase in the performance of GBT
model as we add data to predictive models as the semester
progresses. Even though there is an increase in performance if we

add all data captured during the semester, it doesn’t help much for
real-world interventions as activities that effects student
performances will be completed by the end of the semester. Based
on this understanding, we focus on data captured until the middle
of the semester for feature importance study.

5.2 How do student login and time interval

pattern across courses influence student

learning outcomes?
To answer research question 2, we adopted a stepwise feature
addition study that inputs features by adding one by one into the
model and evaluates the performance based on R square and
RMSE values. This study is performed on student data collected
until the middle of the semester as models developed during this

stage will help identify student level indicators and give enough
time to deploy interventions that improve student performance.
We first start with inputting student Start GPA (Cumulative GPA
till the start of Fall 2019 semester) as start GPA showed a high
correlation with end-of-term GPA based on our preliminary
analysis. We then add normalized login volumes, login regularity,
and login chronotypes in a step by step method. Figure 3 shows
the R squared performance metric of student-centric models with

different input variables.

 From figure 3, we observe that students start GPA with
normalized student login volumes across courses adds more

predictive power to machine learning models. This observation is
also supported by earlier studies [39, 40] that showed the
importance of student login counts on student course grades and
score predictions. Another observation is related to the importance
of adding student self-regulation capability based on login
regularity measured using entropy statistic. Based on figure 3, we
observe that adding login regularity features with student login
features and start GPA adds slightly more predictive power

compared to model with only login regularity and start GPA
features. In addition to these observations, we also observed that
login counts based on login chronotypes with start GPA did not

add much predictive power to machine learning models. From
these results, we also imply that student aggregated login volumes
might be adding the same information as login chronotypes.

5.3 Is there a significant variability in feature

importance’s for students coming from diverse

demographics?
One limitation of using the earlier mentioned model-based feature
importance study is its inability to explain each feature's
importance on different student cohorts. To address this issue and
understand the importance of login volumes and regularity
features on different student groups, we adopt three approaches:
one based on LIME, the second based on correlation analysis, and

the third based on linear regression.

5.3.1 LIME based importance’s
LIME based approach extract feature importance at the local

level, also called local fidelity. By applying the LIME method
explained in the methodology section, we extract feature
importance’s for different student groups categorized based on
their demographics.

From figure 4, we can observe that cumulative student GPA at the
start of the semester is an important feature to predict student end-
of-term GPA. Student login volumes are the second important
feature set for model predictions on different student
demographics. This study's focus is also on student self-regulation
capability measured by the regularity of logins (entropy). We
observe that for students with GPA values less than 2, the

regularity of logins feature played a key role compared to a
student with a higher GPA. This observation also holds for
students from minority ethnicity. One implication from these
observations This observation suggests that introducing teaching
practices that guide LMS use and time management will
significantly impact students with low GPA and from a minority
race. Start GPA played a slightly less significant role in transfer
students than regular students as transfer students join in different

years and their cumulative GPA might not be available at the start
of the semester, similar to freshman.

Figure 3. Compare performances of GBT model on different input feature sets.

270 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Even though there is a huge imbalance in the number of male and
female students present in the dataset, we do not observe any
significant difference in feature importance’s between these two
genders. One limitation of the LIME method is related to global
importance’s. The importance’s showed by LIME at the local
level do not necessarily correspond to global importance’s. Based

on this limitation, we can infer which feature is essential for
different students' groups but not quantify them as the
importance’s calculated in this study are the aggregate of
importance’s provided by LIME for each individual student.

5.3.2 Correlation based Feature Importance’s
As earlier feature importance methods showed a significant

impact of login volumes and login regularity measured by entropy
statistic to predict student performance, we adopt Pearson
correlation statistic to infer this relationship for different student
groups. To do this, we create subsets of student data based on
different groups: student GPA, gender, ethnicity, and admit type.

From figure 5, we observe that the student logins count and
regularity in logins is highly significant for a student with a GPA
lower than 2. We can also observe that as the entropy increases,
the GPA reduces. This observation holds true as regularity in
student logins represents their self-regulation capabilities. Earlier
research showed that students with good self-regulation

capabilities perform better in class [49, 50]. For other student
groups divided based on gender and admit type, there is no
significant variation in the importance of logins and entropy on
student performances.

Even though the absolute values of correlation observed in figure
5 are not very strong, the comparison between different groups
helps understand which features are significant for students from
different demographics. In addition to this, we also observe a
similar pattern in LIME based importance’s discussed in earlier

sections. We can infer that LIME based method also scales well
for global feature importance in this study.

5.3.3 Regression Modeling for Feature Importance
One significant limitation of earlier methods is their inability to
capture interaction effects as feature importance might change in
the presence of other features. To study the interaction effects, we

apply a linear regression model on different categories of student
login data collected till the middle of semester. These student
categories were divided based on GPA, gender, admit type and
ethnicity of students. Even though linear regression models are
applied on all features discussed in earlier sections, we only report
the coefficients of median login volume and mean login regularity

Figure 5. Correlation values for different student groups

divided based on GPA, ethnicity, admit type and gender.

Figure 4. LIME importance’s for different student groups divided based on GPA, ethnicity, admit type and gender.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 271

in table 7, as these variables are the focus of this study. From table
7, we observe that login volumes, and login regularity features are
following similar direction for students with lower GPA and
students from minority ethnic backgrounds as observed in the
LIME and correlation based analysis. There are some

discrepancies in other observations as there is no statistical
significance (high p values) for coefficients in these cases.
Another reason for focusing on student from these two groups is
their higher attrition rates found in earlier studies [43, 44].
Studying these groups closely will help develop targeted
interventions in the future.

Table 7. Regression coefficients (Significance marked with *)

Student

Demographic
Student

Groups

Median

Logins

Coefficient

Mean Login

Regularity

Coefficient

GPA

GPA <= 2 0.171* -0.398*

GPA >2 &

<= 3
-0.013 0.200

GPA >3 0.065 -0.002

Gender
Male 0.135 0.130

Female -0.021 -0.157

Admit Type
Regular 0.399 -0.004

Transfer 0.611 0.191

Ethnicity

White 0.204 -0.029

Asian -0.085 0.201

Minority

Race
0.201* -0.153*

6. DISCUSSION & CONCLUSION
There is a growing interest in building models that capture student
behavioral patterns while using LMS systems to predict their
performance. Earlier research showed that building efficient
models based on LMS data to predict student performances is not
a simple task as multiple learning and demographic factors impact

student learning processes. Although earlier research in EDM and
LA tried to address different issues related to student performance
tracking, there is still a gap in developing models that accurately
predict overall student performance and explain underlying
factors that improve their academic performance. As a step in this
direction, this study presents a student-centric modeling approach
based on aggregated LMS features to predict and explain the
reasons behind varying student performances. This context is both
relevant and timely given the increase of LMS adoption and a

need for efficient and interpretable model development.

6.1 Key Contributions
One primary contribution in this study is the development of
student-centric models on aggregated student LMS login data that
are least biased towards the diverse course contents and instructor
teaching styles. Using the feature extraction methods developed in
this study, we were able to build efficient GBT model that is able

to predict student end-of-term GPA with an average R squared of
0.37 across the semester. Furthermore, models built at different
durations of a semester showed only slight improvement in
predictive performance after crossing a specific duration (middle
of the semester). This observation helps develop models in the

middle of the semester to estimate student performance
accurately.

In addition to developing student-centric models, this study also
focused on understanding the impact of various LMS features on
student performances. Earlier studies in this domain primarily
focused on volume of logins. In this work, we also studied the
impact of login regularity measured by entropy statistics on

student performance by implementing LIME explanation,
correlation, and linear regression methods. From our
interpretation studies, we observed that students who login
regularly into the LMS system have a positive relationship with
performance improvement. This observation is highly significant
for underperforming students (GPA < 2) and students from
minority races.

We also found no significant difference in the impact of LMS
features on Male and Female students. This observation is valid as
LMS features used in this study are captured objectively rather
than subjectively. This observation also holds for regular and

transfer students.

Our study also extracted student interaction features based on
concepts in chronobiology and chronopsychology to understand if

there is a student performance variation based on different
chronotypes. From the results, we observed no significant
difference in performance. The impact of these features is
negligible in the presence of aggregated student login volume.

6.2 Applications & Limitations
Student performance tracking is a complex process as it depends
on multiple dimensions and facets. Developing student-centric
models to predict student performance models helps student

counselors and educational administrators design student level
interventions that attract students' attention. Also, developing
predictive models that estimate students' overall performance in
the middle of the semester will make them aware of their
predicted end-of-term performance. These predictions might act
as an external intervention to improve their performance in the
remaining part of the semester. By understanding the difference in
the impact of LMS features on students from different

demographics, researchers and administrators can build more
personalized instructional methods that are suitable for diverse
student cohorts.

There were also some limitations in this study. The predictive
performance achieved by using aggregate features across different
courses enrolled by students is moderate at best. It would be more
helpful to explore ways to improve the performance of these
models. One possibility is to add other features that target
independent content access durations, mid-semester assessments,
and other external factors. One major challenge that needs to be
addressed in our future studies is to find an effective method to

aggregate content level features across different courses enrolled
by a student. The dataset used in this study is extracted in a single
semester and students from two departments that are closely
related to each other. To understand if the findings in this study
are scalable to other undergraduate students, we will extend these
models to students from various departments in the university.

To conclude, we built student-centric models to predict student
performances that supports the development of student level
interventions. We then use the LIME explanations to study LMS
features' importance on student performance prediction. Finally,
we study the univariate and multivariate feature importance’s

using correlation and regression methods and assess them with the
feature importance’s extracted in LIME method.

272 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

7. REFERENCES
[1] Ninoriya, S., Chawan, P. M., & Meshram, B. B. (2011).

CMS, LMS and LCMS for elearning. International Journal of
Computer Science Issues (IJCSI), 8(2), 644.

[2] Romero, C., & Ventura, S. (2007). Educational data mining:
A survey from 1995 to 2005. Expert systems with
applications, 33(1), 135-146.

[3] Plak, S., Cornelisz, I., Meeter, M., & Van Klaveren, C.
(2019, March). Early Warning Systems for More Effective
Student Counseling in Higher Education–Evidence from a
Dutch Field Experiment. In Proceedings of the SREE Spring
2019 Conference, Washington, DC, USA (pp. 6-9).

[4] Beck, H. P., & Davidson, W. D. (2001). Establishing an early
warning system: Predicting low grades in college students
from survey of academic orientations scores. Research in
Higher education, 42(6), 709-723.

[5] Conijn, R., Snijders, C., Kleingeld, A., & Matzat, U. (2016).
Predicting student performance from LMS data: A
comparison of 17 blended courses using Moodle LMS. IEEE
Transactions on Learning Technologies, 10(1), 17-29.

[6] Mozahem, N. A. (2020). Using learning management system
activity data to predict student performance in face-to-face
courses. International Journal of Mobile and Blended
Learning (IJMBL), 12(3), 20-31.

[7] Riestra-González, M., del Puerto Paule-Ruíz, M., & Ortin, F.
(2021). Massive LMS log data analysis for the early

prediction of course-agnostic student performance.
Computers & Education, 163, 104108.

[8] Chiu, Y. C., Hsu, H. J., Wu, J., & Yang, D. L. (2018).

Predicting Student Performance in MOOCs Using Learning
Activity Data. J. Inf. Sci. Eng., 34(5), 1223-1235.

[9] Alokluk, J. A. (2018). The Effectiveness of Blackboard

System, Uses and Limitations in Information Management.
Intelligent Information Management, 10(06), 133.

[10] Berechet, L. D., & Georgescu, M. The Road from

Blackboard Learning Management System to Moodle
Learning Management System in Modern Universities.

[11] Shchedrina, E., Valiev, I., Sabirova, F., & Babaskin, D.
(2021). Providing Adaptivity in Moodle LMS Courses.
International Journal of Emerging Technologies in Learning
(iJET), 16(2), 95-107.

[12] Ghilay, Y. (2019). Effectiveness of learning management
systems in higher education: Views of Lecturers with
different levels of activity in LMSs. Ghilay, Y.(2019).
Effectiveness of Learning Management Systems in Higher
Education: Views of Lecturers with Different Levels of
Activity in LMSs. Journal of Online Higher Education, 3(2),
29-50.

[13] Aldiab, A., Chowdhury, H., Kootsookos, A., Alam, F., &
Allhibi, H. (2019). Utilization of Learning Management
Systems (LMSs) in higher education system: A case review

for Saudi Arabia. Energy Procedia, 160, 731-737.

[14] Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018).
The current landscape of learning analytics in higher

education. Computers in Human Behavior, 89, 98-110.

[15] Lang, C., Siemens, G., Wise, A., & Gasevic, D. (Eds.).

(2017). Handbook of learning analytics. New York, NY,
USA: SOLAR, Society for Learning Analytics and Research.

[16] Shum, S. B., & Crick, R. D. (2012, April). Learning
dispositions and transferable competencies: pedagogy,
modelling and learning analytics. In Proceedings of the 2nd
international conference on learning analytics and knowledge
(pp. 92-101).

[17] Shum, S. B., Ferguson, R., & Martinez-Maldonado, R.
(2019). Human-centred learning analytics. Journal of

Learning Analytics, 6(2), 1-9.

[18] Dawson, S., Heathcote, L., & Poole, G. (2010). Harnessing
ICT potential. International Journal of Educational

Management.

[19] Vengroff, R., & Bourbeau, J. (2006, February). In-class vs.
On-line and Hybrid Class Participation and Outcomes:

Teaching the Introduction to Comparative Politics Class. In
annual meeting of the APSA Teaching and Learning
Conference.

[20] Dutt, A., & Ismail, M. A. (2019, June). Can we predict
student learning performance from LMS data? A
classification approach. In 3rd International Conference on
Current Issues in Education (ICCIE 2018) (pp. 24-29).
Atlantis Press.

[21] Lust, G., Vandewaetere, M., Ceulemans, E., Elen, J., &
Clarebout, G. (2011). Tool-use in a blended undergraduate
course: In Search of user profiles. Computers & Education,
57(3), 2135-2144.

[22] Hung, J. L., & Zhang, K. (2012). Examining mobile learning
trends 2003–2008: A categorical meta-trend analysis using
text mining techniques. Journal of Computing in Higher
education, 24(1), 1-17.

[23] Dawson, S., Heathcote, L., & Poole, G. (2010). Harnessing
ICT potential. International Journal of Educational
Management.

[24] Damianov, D. S., Kupczynski, L., Calafiore, P., Damianova,
E. P., Soydemir, G., & Gonzalez, E. (2009). Time spent
online and student performance in online business courses: A

multinomial logit analysis. Journal of Economics and
Finance Education, 8(2), 11-22.

[25] Baugher Varanelli Weisbord, D. A. E. (2003). Student hits in

an internet‐supported course: How can instructors use them
and what do they mean?. Decision Sciences Journal of
Innovative Education, 1(2), 159-179.

[26] Biktimirov, E. N., & Klassen, K. J. (2008). Relationship
between use of online support materials and student
performance in an introductory finance course. journal of
education for business, 83(3), 153-158.

[27] Coldwell, J., Craig, A., Paterson, T., & Mustard, J. (2008).
Online students: Relationships between participation,
demographics and academic performance. Electronic journal
of e-learning, 6(1), 19-30.

[28] Greenland, S. J. (2011). Using log data to investigate the
impact of (a) synchronous learning tools on LMS interaction.
In Proceedings of the Australasian Society for Computers in
Learning in Tertiary Education (ASCILITE) Conference.

[29] Nandi, D., Hamilton, M., Harland, J., & Warburton, G.
(2011, January). How active are students in online discussion
forums?. In Proceedings of the Thirteenth Australasian
Computing Education Conference-Volume 114 (pp. 125-

134).

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 273

[30] Shum, S. B., & Ferguson, R. (2012). Social learning analytics.
Journal of educational technology & society, 15(3), 3-26.

[31] Tempelaar, D. T., Rienties, B., & Giesbers, B. (2015). In
search for the most informative data for feedback generation:
Learning analytics in a data-rich context. Computers in
Human Behavior, 47, 157-167.

[32] Agudo-Peregrina, Á. F., Iglesias-Pradas, S., Conde-González,
M. Á., & Hernández-García, Á. (2014). Can we predict
success from log data in VLEs? Classification of interactions
for learning analytics and their relation with performance in

VLE-supported F2F and online learning. Computers in human
behavior, 31, 542-550.

[33] Dominguez, M., Bernacki, M. L., & Uesbeck, P. M. (2016).

Predicting STEM Achievement with Learning Management
System Data: Prediction Modeling and a Test of an Early
Warning System. In EDM (pp. 589-590).

[34] Lerche, T., & Kiel, E. (2018). Predicting student achievement
in learning management systems by log data analysis.
Computers in Human Behavior, 89, 367-372.

[35] Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). "
Why should i trust you?" Explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data
mining (pp. 1135-1144).

[36] Hofmann, M., & Klinkenberg, R. (Eds.). (2016). RapidMiner:
Data mining use cases and business analytics applications.
CRC Press.

[37] Mandalapu, V., & Gong, J. (2019, January). Studying Factors
Influencing the Prediction of Student STEM and Non-STEM
Career Choice. In Proceedings of the 12th International
Conference on Educational Data Mining.

[38] Mandalapu, V., Gong, J., & Chen, L. (2021). Do we need to
go Deep? Knowledge Tracing with Big Data. arXiv preprint
arXiv:2101.08349.

[39] Kennedy, G., Coffrin, C., De Barba, P., & Corrin, L. (2015,
March). Predicting success: how learners' prior knowledge,
skills and activities predict MOOC performance. In
Proceedings of the fifth international conference on learning

analytics and knowledge (pp. 136-140).

[40] Stapel, M., Zheng, Z., & Pinkwart, N. (2016). An Ensemble

Method to Predict Student Performance in an Online Math
Learning Environment. International Educational Data Mining
Society.

[41] Putilov, A. A., Sveshnikov, D. S., Puchkova, A. N.,
Dorokhov, V. B., Bakaeva, Z. B., Yakunina, E. B., ... &

Mairesse, O. (2021). Single-Item Chronotyping (SIC), a
method to self-assess diurnal types by using 6 simple charts.
Personality and Individual Differences, 168, 110353.

[42] Romo‐Nava, F., Blom, T. J., Guerdjikova, A., Winham, S. J.,
Cuellar‐Barboza, A. B., Nunez, N. A., ... & McElroy, S. L.
(2020). Evening chronotype, disordered eating behavior, and
poor dietary habits in bipolar disorder. Acta Psychiatrica

Scandinavica, 142(1), 58-65.

[43] Kupczynski, L., Gibson, A. M., Ice, P., Richardson, J., &
Challoo, L. (2011). The impact of frequency on achievement

in online courses: A study from a south Texas university.
Journal of Interactive Online Learning, 10(3).

[44] Liu, F., & Cavanaugh, C. (2011). High enrollment course

success factors in virtual school: Factors influencing student
academic achievement. International Journal on E-learning,
10(4), 393-418.

[45] Kozachenko, L. F., & Leonenko, N. N. (1987). Sample
estimate of the entropy of a random vector. Problemy
Peredachi Informatsii, 23(2), 9-16.

[46] Kraskov, A., Stögbauer, H., & Grassberger, P. (2004).
Estimating mutual information. Physical review E, 69(6),
066138.

[47] Ruping, S. (2000). mySVM-manual. http://www-ai. cs. uni-
dortmund. de/SOFTWARE/MYSVM/.

[48] Gray, R. M. (2011). Entropy and information theory. Springer
Science & Business Media.

[49] Kim, J. H., Seodaemun-gu, S., Park, Y., Song, J., & Jo, I. H.

(2014). Predicting students’ learning performance by using
online behavior patterns in blended learning environments:
comparison of two cases on linear and non-linear model.
Korea, 120, 750.

[50] Park, Y., & Jo, I. H. (2015). Development of the learning
analytics dashboard to support students’ learning performance.
Journal of Universal Computer Science, 21(1), 110.

[51] Jo, I. H., Kim, D., & Yoon, M. (2015). Constructing proxy
variables to measure adult learners' time management
strategies in LMS. Journal of Educational Technology &
Society, 18(3), 214-225.

[52] Jo, I. H., Park, Y., Yoon, M., & Sung, H. (2016). Evaluation
of online log variables that estimate learners’ time
management in a Korean online learning context. International
Review of Research in Open and Distributed Learning, 17(1),
195-213.

274 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Generative Grading: Near Human-level Accuracy for
Automated Feedback on Richly Structured Problems

Ali Malik1*, Mike Wu1*,
Vrinda Vasavada1, Jinpeng Song1, Madison Coots1,

John Mitchell1, Noah Goodman1,2, Chris Piech1

1Department of Computer Science, Stanford University
2Department of Psychology, Stanford University

{malikali, wumike, vrindav, jsong5, mcoots, jcm, ngoodman, piech}@cs.stanford.edu

ABSTRACT
Access to high-quality education at scale is limited by the
difficulty of providing student feedback on open-ended as-
signments in structured domains like programming, graph-
ics, and short response questions. This problem has proven
to be exceptionally difficult: for humans, it requires large
amounts of manual work, and for computers, until recently,
achieving anything near human-level accuracy has been unattain-
able. In this paper, we present generative grading: a novel
computational approach for providing feedback at scale that
is capable of accurately grading student work and providing
nuanced, interpretable feedback. Our approach uses gen-
erative descriptions of student cognition, written as proba-
bilistic programs, to synthesise millions of labelled example
solutions to a problem; we then learn to infer feedback for
real student solutions based on this cognitive model.

We apply our methods to three settings. In block-based cod-
ing, we achieve a 50% improvement upon the previous best
results for feedback, exceeding human-level accuracy. In two
other widely different domains—graphical tasks and short
text answers—we achieve improvements over the previous
state of the art by about 4x and 1.5x respectively, approach-
ing human accuracy. In a real classroom, we ran an exper-
iment with our system to augment human graders, yielding
doubled grading accuracy while halving grading time.

Keywords
Generative models, automated feedback, Idea2Text, proba-
bilistic programs, grammars, Zipf distribution, zero shot.

1. INTRODUCTION
Enabling global access to high-quality education is a long-
standing challenge. The combined effect of increasing costs
per student [3] and rising demand for higher education makes
this issue particularly pressing. A major barrier to provid-

Generative model

Inference model

Decision process Output solution

Figure 1: Students solve problems by making decisions that re-
sult in their final solution (generative model). Providing feedback
requires the reverse task of seeing a solution and inferring the stu-
dent decisions that lead to this solution (inference model).

ing quality education has been the ability to automatically
provide meaningful and accurate feedback on student work.

Learning to provide feedback on richly structured problems
beyond simple multiple-choice has proven to be a hard ma-
chine learning problem. Five issues have emerged, many of
which are typical of human-centred AI problems: (1) stu-
dent work is extremely diverse, exhibiting a heavy tailed
distribution where most solutions are rare, (2) student work
is difficult and expensive to label with fine-grained feedback,
(3) we want to provide feedback (without historical data) for
even the very first student, (4) grading is a precision-critical
domain with a high cost to misgrading, and (5) predictions
must be explainable and justifiable to instructors and stu-
dents. Despite extensive research using massive education
data [23, 1, 33, 28, 18, 14], these issues make traditional
supervised learning inadequate for automatic feedback.

Human instructors are experts at providing feedback. When
grading assignments, they have an understanding of the de-
cisions and missteps students might make when solving a
problem, and what corresponding solutions these choices
would result in. For example, an instructor understands
that a student wanting to repeat something in a program-
ming assignment might use a for loop or manually write
out repeated statements. And given that the student uses a
loop, their loop could be correct or off-by-one.

Ali Malik, Mike Wu, Vrinda Vasavada, Jinpeng Song, Madison Coots,
John Mitchell, Noah Goodman and Chris Piech “Generative Grading:
Near Human-level Accuracy for Automated Feedback on Richly Structured
Problems”. 2021. In: Proceedings of The 14th International Conference on
Educational Data Mining (EDM21). International Educational Data Mining
Society, 275-286. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 275

In essence, instructors mentally possess generative models
of student decision-making and how these decisions mani-
fest in a final solution (Fig. 1, forwards). When providing
feedback, the instructor does inference: given a student so-
lution, they use their mental model to try and determine
the underlying student decisions that could have resulted in
this solution (Fig. 1, backwards).

In this paper, we propose an automated feedback system
that mimics the instructor process as closely as possible.
Firstly, the system elicits a literal generative model from
an instructor in the form of a concrete student simulator.
Secondly, it uses deep neural networks and a novel inference
method with this simulator to learn how to do inference on
student solutions, without using any labelled data. Finally,
the inference model is used to provide automated feedback
to real student solutions. We call this end-to-end approach
generative grading.

When used across a spectrum of public education data sets,
our automated feedback system is able to grade student work
with close to expert human-level fidelity. In block-based cod-
ing, we exceed human-level accuracy, achieving a 50% im-
provement over the previous best results for feedback. In two
other widely different domains—graphical tasks and short
text answers—we achieve improvements over the previous
state of the art by about 4x and 1.5x respectively, approach-
ing human accuracy. We used our system in a real classroom
to augment human graders in a CS1 class, yielding doubled
grading accuracy while halving grading time.

1.1 Main contributions
In Sec. 4, we present an easy-to-use and highly expressive
class of generative models called Idea2Text simulators that
allow an instructor to encode their mental models of stu-
dent decision-making. These simulators can succinctly ex-
press student decisions and how these decisions manifest in a
final solution for a broad set of problem domains like graph-
ics programming, short-answer questions, and introductory
programming in Java. We provide a Python implementation
that allows any instructor to easily write these simulators.1

In Sec. 5, we show how to use Idea2Text simulators with
deep neural networks to infer students’ decision processes
from their solutions. This extracted decision process is a
general representation of a student’s solution and can be
used for several downstream tasks such as providing auto-
mated feedback, assisting human grading, auditing and in-
terpreting the model decisions, and improving the quality of
the simulator itself.

In order to do inference successfully on our expressive class
of simulators, we must overcome several interesting technical
challenges (Sec. 5). Learning to map solutions to sequences
of decisions specified by the simulator is a nonstandard ma-
chine learning task, with non-fixed labels, varied sequence
lengths, and unexpected trajectories. Moreover, generating
simulated training data from the simulators requires an in-
telligent sampling method to work effectively.

1All code publicly available at: https://github.com/
malik-ali/generative-grading

In Sec. 6 we show the efficacy of our approach in practice on
a diverse set of richly structured problems. We attain close
to human-level accuracy on providing feedback and surpass
many previous state of the art results. We also discuss sev-
eral interesting extensions in Sec. 7 that use our system to
go beyond just providing automated feedback.

The generative grading system is powerful because it ad-
dresses many of the issues of traditional supervised learning
mentioned above. We find that the cost of writing simula-
tors for a new assignment is orders of magnitude cheaper
for instructors than manually annotating individual student
work. The simulators allow us to sample infinite data, and
our adaptive sampling strategy lets us explore diverse stu-
dent solutions in our training data. It is “zero-shot”, requir-
ing no historical data nor annotation, and thus works for
the very first student. Moreover, our novel inference system
allows for interpretable and explainable decisions.

2. RELATED WORK
“Rubric sampling” [32] first introduced the concept of encod-
ing expert priors in grammars of student decisions, and was
the inspiration for our work. The authors design Probabilis-
tic Context Free Grammars (PCFGs) to curate synthetically
labelled datasets to train supervised classifiers for feedback.
Our approach builds on this, but presents a more expressive
family of generative models of student decision-making that
are context sensitive and comes with new innovations that
enable effective inference. From our results on Code.org, we
see that this expressivity is responsible for significant im-
provements in our model’s performance. Furthermore, this
prior work only used to PCFGs to create simulated datasets
of feedback labels for supervised learning. In contrast, we
learn to infer the entire decision trajectory of a student solu-
tion, allowing us to do things like dense feedback and human-
in-the-loop grading.

We draw theoretical inspiration for our generative grading
system from Brown’s “Repair Theory” which argues that the
best way to help students is to understand the generative
origins of their mistakes [4]. Building systems of student
cognition has been used in K-12 arithmetic problems [16]
and subtraction mistakes [8].

Automated feedback for open-ended richly structured prob-
lems has been studied through a few lenses. In many ap-
proaches, traditional supervised learning is employed to map
solutions to feedback [21, 30, 1, 33]. These methods require
large hand-labelled datasets of diverse student solutions,
which is difficult due to heavy-tailed distributions. Feed-
back specific to computer programming problems has been
explored based on executing student solutions and compar-
ing to a reference solution [13, 19]. An interesting parallel
to our work is found in [13], where the instructor is asked
to specify the kinds of mistakes students can make. These
approaches are limited to code and don’t provide feedback
on the problem-solving process of a student.

Extracting expert-written generative models for inference
has seen enormous use in fields where domain expertise is
critical. Some key example include medical diagnosis, engi-
neering, ecology, and finance, where a generative model like
a Bayesian network is elicited from experts. [20, 22]. In ed-

276 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://github.com/malik-ali/generative-grading
https://github.com/malik-ali/generative-grading

ucation, instructors have domain expertise about students,
and Idea2Text serves as an easy-to-use generative model for
instructors to encode this expertise.

Inference over decision trajectories of Idea2Text simulators
is similar to “compiled inference” for execution traces in
probabilistic programs. As such, our inference engine shares
similarities to this literature [25, 17]. With Idea2Text simu-
lators, we get a nice interpretation of compiled inference as
a parsing algorithm.

3. BACKGROUND
In this section, we introduce the feedback challenge and
what makes it a difficult machine learning problem.

3.1 Feedback as a Prediction Problem
The feedback prediction task is to automatically provide feed-
back to a given student solution. While this is easy to do for
simple multiple-choice problems, we focus on the challeng-
ing task of providing feedback on richly-structured problems
like computer programming or short-answer responses.

Both the type of student solutions and the type of feedback
required for the task can take many forms. A student solu-
tion can be a piece of text, which could represent problems
like an essay, a maths proof, or a code snippet. It could
also be graphical output in the form of an image. Similarly,
feedback can take the form of something simple like classify-
ing solutions to a fixed set of misconceptions, or something
complex such as highlighting and annotating specific parts
of a student solution

3.2 Difficulty of Automated Feedback
Feedback prediction on richly structured problems has been
an extremely difficult challenge in education research. Even
limited to simple problems in computer science like beginner
block-based programming, automated solutions to providing
feedback have been restricted by scarce data and lack of ro-
bustness. We discuss a few of the properties of student work
that make predicting feedback such a difficult challenge.

(1) Heavy-tailed Distributions: Student work in the form
of natural language, mathematical symbols, or code follow
heavy-tailed Zipf distributions. This means that a few so-
lutions are extremely common whereas almost all other ex-
amples are unique and show up rarely. Fig. 2 plots the
log-frequency of unique examples against the log of the rank
across four datasets of student work in block-based program-
ming code, Java code, and free response. For all datasets,
we observe a linear relationship in log-log space, which is a
characteristic property of Zipf distributions.

These heavy-tailed Zipf distributions pose a hard generali-
sation problem for traditional supervised machine learning:
a handful of similar examples appear very frequently in the
training data whereas almost all other examples are unique.
This means at test time, examples are likely to introduce un-
seen tokens, new misconceptions, and novel student strate-
gies. In a Zipf distribution, even if we observe a million
student solutions, there is roughly a 15% chance that the
next student generates a unique solution.

(a) Code.org

0 5 10
log Rank

0

2

4

6

8

10

lo
g

C
ou

nt

(b) Liftoff

0 2 4 6
log Rank

0

1

2

3

lo
g

C
ou

nt

(c) Pyramid

0.0 2.5 5.0 7.5
log Rank

0.0

2.5

5.0

7.5

lo
g

C
ou

nt

(d) Power

0 2 4 6
log Rank

0

2

4

lo
g

C
ou

nt

Figure 2: Student solutions (across many domains) exhibit
heavy-tailed Zipf distributions, meaning a few solutions are ex-
tremely common but all other solutions are highly varied and
show up rarely. This suggests that the probability of a student
submission not being present in a dataset is high, making super-
vised learning on a small data set difficult.

(2) Difficulty of Annotation: Annotating student work with
feedback requires an instructor-level expertise of the domain.
Providing fine-grained feedback also takes effort to read and
understand student solutions before inferring possible mis-
conceptions. In [32], the authors found that it took 26 hours
to label 800 student solutions to block-based programming.

This difficulty, combined with Zipf properties, makes super-
vised learning challenging. As an example, in 2014, Code.org,
a widely used resource for beginners in computer science,
ran an initiative to crowdsource thousands of instructors
to label 55,000 student solutions in a block-based program-
ming language. Yet, despite having access to an unprece-
dented amount of labelled data, traditional supervised meth-
ods failed to perform well on even these “simple” questions.

(3) Limitations on Data Size: Even if the Code.org approach
succeeded, most classrooms do not share the same scale as
Code.org. A method that relies heavily on historical data is
not widely applicable in the average classroom setting. In
our experiments, our data sets contain less than a few hun-
dred examples, again disqualifying the application of super-
vised algorithms. The ideal feedback model will be zero-shot
so that it works even for the very first student.

4. MODELLING STUDENT COGNITION
Having presented the feedback challenge and motivated why
supervised learning cannot solve this problem alone, we dis-
cuss the idea of modelling the cognitive process of student
decision-making when producing a solution.

When an instructor provides feedback on student work, they
often have a latent mental model of student decision making;
this captures the kinds of steps and mistakes they think
students will make and what solutions are indicative of those
steps. The instructor (or TAs) then grade solutions, one at
a time, by essentially inferring the steps in the decision-
making model that lead to the produced solution.

As a concrete example from introductory programming, sup-
pose a student is trying to print a countdown of numbers
from 10 to 1. An instructor understands that as a first step,
a student might use a for loop or manually write ten print

statements. Given that the student uses a loop, they could
increment up or down. And given that they increment down,
their loop comparison could be correct or off-by-one. At each
of these decision points, the instructor can conceive how a
specific choice would manifest in the solution.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 277

We want to allow instructors to capture their mental model
of student decision-making for a given problem and distil
it into a concrete executable simulator that generates solu-
tions. Such a generative model could be used to simulate
unlimited student data, including their decision process and
resulting solutions. This simulated dataset can then be used
for learning how to provide feedback.

In this section, we formalise the idea of a student’s decision
process for generating the solution to a problem and discuss
how we can represent the instructor’s latent model of this
generative process as a concrete simulator.

4.1 Student Decision Process (SDP)
A student’s decision process (SDP) can be seen as the se-
quence of choices the student makes while solving a prob-
lem, and how those choices correspond to different outputs.
The sequence is intended to reflect all of the critical deci-
sions made by the student, and in particular those a teacher
would like to recover from the solution. Importantly, not all
students will encounter the same sequence of decisions since
an early decision choice may determine which decisions are
faced later in problem solving.

We can formally think of a decision point as a categorical
random variable, X, and the specific choices that can be
made as the different values, x ∈ V al(X), that the random
variable can take. The decision process of a student can be
seen as a sequence trajectory (Xt, xt)

T
t=1, of decisions en-

countered and made by the student in solving the problem.

Under this interpretation, specifying a model for an SDP
amounts to defining the space of possible decision trajecto-
ries and a probability distribution over this space. By the
chain rule for probabilities, we can decompose this over-
all distribution as a sequence of conditional probabilities
P(Xt = xt | X<t = x<t). Here xt is the choice made at step
t from domain Xt and X<t is shorthand for the sequence of
decisions before time t.

We want to make this general formulation more tractable
to allow us to specify useful SDPs as generative models we
can sample from. Prior work [32] has attempted to express
SDPs by restricting the class of generative models to prob-
abilistic context free grammars (PCFGs). They found that
instructor-written PCFGs could often be used to emulate
student problem-solving and generate student solutions for
small problems. In this setting, the non-terminal nodes of
the PCFG represent decisions to be made (e.g. syntax con-
fusion) and the production rules represent how decisions are
made and manifested into output (e.g. the code is missing
a semicolon). Instructors create student simulators by spec-
ifying decision points, rules, and probabilities for each rule
(e.g. missing a semicolon is much more likely than missing
a function statement).

A PCFG is compact and useful, but makes the indepen-
dence assumption that that the choice made at time t is
independent of past choices made while solving the problem
i.e. P(Xt = xt | X<t = x<t) = P(Xt = xt). This context-
independence is a strong restriction that severely limits what
instructors can express about the student decision-making
process and fails to faithfully model student reasoning. As

Algorithm 1 Idea2Text Simulation

Input: Idea2Text simulator (D,Σ, S)
Output: Tuple (τ, y) of decision trajectory and output solution.

1: procedure Simulate(D, Σ, S)
2: τ ← []
3: y ← Generate(S, τ) . Begin from start node
4: return (τ, y)

5: procedure Generate(N , τ)
6: a,Xa,Πa ← N . Unpack current decision node
7: xa, y ← Πa(Xa, τ) . Get decision choice and output
8: τ.append((a, xa))
9: for decision node N ′ in y do . In order left to right

10: y′ ← Generate(N ′, τ)
11: y ← Replace(y,N ′, y′) . Replace N ′ with y′

return y

can be seen in even the simple countdown example above,
the off-by-one error would manifest differently in student
output depending on whether the student chose to incre-
ment up or down. Thus, context dependence of decision
making is an important property to model.

4.2 Idea2Text
In this section, we define a broader class of generative mod-
els that is powerful enough to capture more complexities of
expert models of student cognition. Similar to PCFGs we
structure our models around a set of non-terminal symbols
that correspond to student decisions and contribute to the
final output. However, drawing from work on probabilistic
programs [10, 11], we allow these choices to be made depend-
ing on previous choices. While dependence on context leads
to extremely expressive models, we will show that requiring
some text to be generated at each step is enough for infer-
ence to remain tractable. We call this class of generative
models Idea2Text.2

Concretely, an Idea2Text simulator consists of a tuple of
(D,Σ, S) denoting a set of nonterminal decision nodes, a set
of terminal nodes, and a starting root node, respectively.
Intuitively, decision nodes correspond to decisions a student
might make and the terminal nodes correspond to literal text
tokens in the final output. Each run of the simulator also
keeps a global state τ which stores the history of all decisions
made during the execution (often called an execution trace
for probabilistic programs [2, 29]).

Each decision node in D is a tuple (a,Xa,Πa) consisting of
a unique name, a random variable representing the decision
choices, and a production program, which (1) specifies how
this decision should be made based on the decisions made so
far, and (2) produces an output solution for a given decision
choice.

More concretely, the production program is a probabilistic
function that takes the current decision history τ and does
the following:

(1) Samples the random variable xa ∼ Xa, from a dis-
tribution, P(Xa|τ), that can depend on the decision
history.

2A very similar class of models, used in the very differ-
ent domain of customer service, was independently named
Idea2Text by scientists at Gamalon, Inc.

278 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

loop stylefor
loop body

comparefor (int i = 10;
loop body

; i--):

Figure 3: An example decision expansion step in an Idea2Text
simulation. The “loop style” decision node chooses a type of for
loop (e.g. increment vs decrement) and outputs a string contain-
ing the header of the for loop (terminals) plus another decision
node.

(2) Based on the sampled choice, xa, produces an output
string, y, consisting of literal text (terminal nodes) and
incomplete segments (decision nodes). These incom-
plete segments correspond to future decisions that will
be expanded later (see Fig. 3).

(3) Returns the sampled choice and output string: (xa, y).

An output from Idea2Text is a generation from the root node
to a sequence of literal text by recursively expanding the de-
cision nodes, as shown in Algorithm 1. Each output is asso-
ciated with the final decision trajectory, τ = [(at, xat)]

T
t=1,

of random variables encountered during generation. Here, at
denotes the unique name for the random variable encoun-
tered at timestep t, and xat is the sampled value for that
variable.

We point out some important properties of Idea2Text simu-
lators. First, each decision node’s choice can depend on the
decision history τ , allowing past decisions to influence cur-
rent behaviour. This is strictly more expressive than PCFGs
[32] and allows instructors to write highly contextual models
of student problem-solving. Second, production programs
have the full power of programming languages at their dis-
posal and can use arbitrarily complicated transformations to
produce their output sequence. As an example, a production
program can transform terminal nodes into images or use a
machine-learning conjugator to conjugate it’s produced text
into a proper sentence.

5. INFERENCE
In this section we describe how we can use an instructor-
written Idea2Text simulator to learn how to infer the deci-
sions underlying a student solution.

At a high-level, the Idea2Text simulator contains the in-
structor’s mental model for the sequence of decisions stu-
dents make that result in different solutions. For inference
we want to do the reverse: given a student solution, we want
to find a trajectory of decisions in the simulator that would
produce that solution.

A model that could successfully do this inference could be
used to map real student solutions to decision steps in the
simulator. These extracted decisions are a rich and general
representation of a student’s solution and can be used for
downstream tasks such as automated feedback, assisting hu-
man grading, auditing and interpreting the model decisions,
and improving the quality of the simulator.

More formally, let G be a given Idea2Text simulator. Each
execution of G produces a decision trajectory τ and corre-
sponding production y. Since the execution is probabilistic,

the simulator induces a probability distribution pG(τ, y) over
trajectories and productions.

Given a student solution, y, we are interested in the task of
parsing : this is the task of mapping y to the most likely tra-
jectory in the Idea2Text simulator, arg maxτ pG(τ |y), that
could have produced y. This is a difficult search problem:
the number of trajectories grows exponentially even for sim-
ple grammars, and common methods for parsing by dynamic
programming (Viterbi, CYK) are not applicable in the pres-
ence of context-sensitivity and functional transformations.
What’s more, in order to transfer robustly to real student
solutions, we would like to be able to approximately parse
solutions that are not possible to generate from the simula-
tor, but are sufficiently “nearby”.

At a high level, our approach is to construct a large data
set from the simulator and then learn an inverse “inference”
neural net that can reconstruct the decision trajectory from
the solution.

5.1 Adaptive Grammar Sampling
To train our models, we generate a large dataset of N trajec-
tories and their associated productions, D = {(τ (m), y(m))}Nm=1,
by repeatedly executing G.

However, due to the Zipf-like nature of student work (see
Sec. 3.2), standard i.i.d. sampling from the simulator will
tend to over-represent the most probable productions. For
our models, the more diverse student cognition we can sim-
ulate in the training data, the more we expect to generalise
to the long tail of real students. Thus, we need sampling
strategies that prioritise diversity.

A simple but flawed idea for generating diverse solutions
would be to make choices at decision nodes uniformly ran-
domly instead of using the expert-written distributions. This
approach will generate more unique productions, but disre-
garding the expert-written distributions will result in un-
likely and less realistic productions.

Ideally, we want to sample in a manner that covers all the
most likely productions first, and then smoothly transition
into sampling increasingly unlikely productions. This would
generate unique productions efficiently while also retaining
the expert-written distributions specified in the production
programs. With these desiderata in mind, we propose a
method called Adaptive Grammar Sampling. For each deci-
sion node in the simulator, we down-weight the probability
of sampling each choice proportional to how many times it
has been sampled in the past. To avoid overly punishing
decision nodes early in the execution trace, we discount this
down-weighting by a decay factor d that depends on the
depth of the decision in the trajectory.3 This method is in-
spired by Monte-Carlo Tree Search [5] and shares similarities
with Wang-Landau sampling from statistical physics [27].

Fig. 4 shows a comparison of the effectiveness of adaptive
sampling to uniform and i.i.d. sampling. Adaptive sampling
interpolates nicely between sampling likely examples early
on, as i.i.d. sampling does, to sampling unlikely examples

3The details can be found in the code.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 279

0 5000 10000
of samples

0

2000

4000

6000

of

 u
ni

qu
e

pr
og

ra
m

s

(a) Uniqueness

0 2500 5000 7500 10000

0.2

0.4

0.6

0.8

1.0 Standard
Adaptive
Uniform

of Samples

Pr
. o

fU
ns

ee
n

Pr
og

ra
m

(b) Good-Turing

0 2000 4000 6000 8000 10000
of samples

20

15

10

lo
g

pr
ob

. o
f s

am
pl

e

standard
uniform
adaptive (r=0.01, d=0.3)
adaptive (r=0.01, d=0.6)
adaptive (r=0.01, d=0.9)
adaptive (r=0.1, d=0.3)
adaptive (r=0.1, d=0.6)
adaptive (r=0.1, d=0.9)
adaptive (r=1.0, d=0.3)
adaptive (r=1.0, d=0.6)
adaptive (r=1.0, d=0.9)

(c) Likelihood of samples over time

Figure 4: Efficiency of sampling strategies for the Liftoff simu-
lator. (a) Number of unique samples vs total samples so far. (b)
Probability of sampling a unique next program given samples so
far. (c) Likelihood of generated samples over time for different
sampling strategies.

later, as uniform-choice sampling does. Note that adaptive
sampling is customisable: as shown in 4c, the algorithm has
parameters (r and d) that can be adjusted to control how
fast we explore increasingly unlikely productions.

5.2 Neural Approximate Parsing
With good diverse samples available, we now aim to learn
an approximation to the posterior pG(τ |y). We will do so
by training a deep neural network to reconstruct the trajec-
tory step-by-step. We call this approach neural approximate
parsing with generative grading, or GG-NAP.

The challenge of inference over trajectories is a difficult one.
Trajectories can vary in length and contain decision nodes
with different support. To approach this, we decompose
the inference task into a set of easier sub-tasks, similar to
[25, 17]. The posterior distribution over a trajectory τ =
(at, xat)

T
t=1 given a production y can be written as the prod-

uct of individual posteriors over each decision node xat using
the chain rule:

pG(xa1 , . . . xaT |y) =
T∏
t=1

pG(xat |y,x<at) (1)

where x<at denotes previous (possibly non-contiguous) non-
terminals (xa1 , . . . , xat−1). Eqn. 1 shows that we can learn
each posterior p(xat |x<at , y) separately. With an autore-
gressive modelM, we can efficiently represent the influence
of previous nonterminals x<at using a shared hidden repre-
sentation over T timesteps. Since most standard choices for
M (e.g. an RNN) require fixed-dimension inputs, we need to
encode the solution and the history of choices into consistent
vectors.

Firstly, to encode the solution y, we use standard machinery

(e.g. CNNs for images, RNNs for text) with a fixed output
dimension. To represent the nonterminal choices with dif-
ferent support, we define three layers for each random vari-
able xat : (1) a one-hot embedding layer that uses the unique
name at to lexically identify the random variable, (2) a value
embedding layer that maps the value of xat to a fixed dimen-
sion vector and (3) a value decoding layer that transforms
the hidden output state of M into parameters of the pos-
terior for the next nonterminal xat+1. Thus, the input to
the M is a fixed size, being the concatenation of the value
embedding, name embedding, and production encoding.4

To train the GG-NAP, we optimise the objective,

L(θ) = EpG(τ,y)[log pθ(τ |y)] ≈
1

M

N∑
m=1

log pθ(τ (m)|y(m)) (2)

where θ are all trainable parameters and pθ(τ |y) represents
the posterior distribution defined by the inference engine. At
test time, given only a production y, GG-NAP recursively
samples xat ∼ pθ(xat |y,x<at) for t = 1, . . . , T and uses each
sample as the input to the next step in M, as is standard
for sequence generation models [12].

5.3 kNN Baseline
As a strong baseline for the parsing task, we consider a near-
est neighbour classifier. We store our large dataset of sam-
ples D = {(τ (m), y(m))}Nm=1. At test time, given an input
solution to parse, we can find its nearest neighbour in the
samples with a linear search of D, and return its associated
trajectory. Depending on the problem, the solutions y will
be in a different output space (image, text) and thus the dis-
tance metric used for the nearest-neighbour search will be
domain dependent. We refer to this baseline as GG-kNN.
Note that GG-kNN is quite costly in memory and runtime
as it needs to store and iterate through all samples in the
dataset.

6. EXPERIMENTS
We test generative grading on a suite of education data
sets focusing on introductory courses from online platforms
and large universities. For each dataset, we compare our
approach to supervised learning, PCFGs, k-nearest neigh-
bours, and human performance. In Sec. 6.1, we introduce
the data sets, then present results in Sec. 6.3.

6.1 Datasets
We consider four educational contexts. Fig. 5 shows example
student solutions for each problem.

Block-based Programming Code.org released a data set of
student responses to eight Blocky exercises from one of their
curriculums online, which focuses on drawing shapes with
nested loops. We take the last problem in the curriculum
(the most difficult one): drawing polygons with an increas-
ing number of sides—which has 302 human graded responses
with 26 misconceptions regarding looping and geometry (e.g.
“missing for loop” or “incorrect angle”) from [32].

Free Response Language Powergrading [1] contains 700 re-
sponses to a United States citizenship exam, each graded for

4Specific details can be found in the code.

280 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

for from
do

to by3i

Turn Right

do Move forward

i

10

for

i10 x

i360 /

from to0j

2

for from
do

to by3i

Turn Right

do Move forward

i

9

Repeat for

i10 x

i360 /

2 Turn Left

Move backward 30

Move backward 30

Move backward 30

Turn Left

Turn Left

Draw me!

Code.org Problem 8

Write a Java Program to
print the numbers 10 down
to 1 and then write liftoff.
You must use a loop.

		public	void	run()	{
				for(int	i	=	START;	i>0;	i--)	
				{
						println(i);
						pause(1000);
				}
				println("Liftoff!");
		}

		public	void	run()	{
				for	(int	i=START;	i>0;	i	-=1)	
				{
						println(i);
				}
				println("Liftoff");
		}

		public	void	run()	{
				int	x	=	START;
				int	y	=	1;
				int	z	=	9;
				while	(x>=1)	{
						println(x);
						x=z;
						z=x-y;
				}
				println("Liftoff");
		}

CS1: Liftoff

What is one reason the
original colonists came to
America?

• Religuous freedom
• For religious freedom
• Freedom

• declared our independence
from england

• religeous freedom
• as a criminal punishment

• to create a new colony
• to find better economic

prospects
• to break away from the church

in great britain

Powergrading P13

Use the graphics library to
construct a symmetric and centered
pyramid with a base width of 14
bricks.

PyramidSnapshot

Figure 5: We show the prompt and example solutions for our
four datasets.

correctness by 3 humans. Responses are in natural language,
but are typically short (average of 4.2 words). We focus on
the most difficult question, as measured by [24]: “name one
reason the original colonists came to America”. Correct re-
sponses span economic, political, and religious reasons.

Graphics Programming PyramidSnapshot is a university CS1
course assignment intended to be a student’s first exposure
to variables, objects, and loops. The task is to build a pyra-
mid using Java’s ACM graphics library by placing individ-
ual blocks. The dataset is composed of images of rendered
pyramids from intermediary “snapshots” of student work.
[33] annotated 12k unique snapshots with 5 categories rep-
resenting “knowledge stages” of understanding.

University Programming Assignment Liftoff is a second as-
signment from a university CS1 course that tests looping.
Students are tasked to write a program that prints a count-
down from 10 to 1 followed by the phrase“Liftoff”. In Sec. 7,
we will use Liftoff for a human-in-the-loop study where ex-
perts generatively grade 176 solutions from a semester of
students and measure accuracy and grading time.

6.2 Simulator Descriptions
We provide a brief overview of the Idea2Text simulators con-
structed for each domain.

Block-based Programming The primary innovation is to use
the first decision node random variable to represents student
ability. This ability variable will affect the distributions for
random variables later in the trajectory such as deciding the
loop structure and body. The intuition this captures is that
high ability students make very few to no mistakes whereas
low ability students tend to make many correlated misun-
derstandings. This simulator contains 52 decision nodes.

Free Response Language Idea2Text simulators over natural
language need to explain variance in both semantic mean-
ing and prose. We inspected the first 100 responses to gauge
student thinking. Procedurally, the first random variable is
choosing whether the production will be correct or incor-
rect. It then chooses a subject, verb, and noun dependent
on the correctness. Correct answers lead to topics like re-
ligion, politics, and economics while incorrect answers are

about taxation, exploration, or physical goods. Finally, we
add a random variable to decide a writing style to craft a
sentence. To capture variations in tense, we use a conjuga-
tor [7] for the final production. This simulator contains 53
decision nodes.

Graphics Programming The primary decision in this simula-
tor decides between 13 “strategies” (e.g. making a parallel-
ogram, right triangle, a brick wall, etc.) that the instructor
believed students would use. Each of the 13 options leads to
its own set of nodes that are responsible for deciding shape,
location, and colour. The production uses Java to render an
image output. This simulator contains 121 decision nodes,
and required looking at 200 unlabelled student solutions in
its design.

University Programming Assignment To model student think-
ing on Liftoff, this simulator first determines whether to use
a loop, and, if so, chooses between “for” and “while” loop
structures. It then formulates the loop syntax, choosing a
condition statement and whether to count up or count down.
Finally, it chooses the syntax of the print statements. No-
tably, each choice is dependent on previous ones. For exam-
ple, choosing an end value in a for loop is sensibly condi-
tioned on a chosen start value. This simulator contains 26
decision nodes.

6.3 Results for Feedback Prediction
We show the results of generative grading for each of the
datasets above.

For each dataset, we have access to a set of real student so-
lutions and corresponding human-provided feedback labels,
which we use for evaluation. We measure human accuracy
relative to the majority label.

We ask instructors to create an Idea2Text simulator for each
dataset, and train the deep inference network GG-NAP us-
ing simulated student solutions. At test time, we pass a real
student solution into the inference model, and get back a
trajectory of the simulator. This trajectory contains deci-
sion node choices that correspond to the human-provided
feedback labels, and we use these as the predicted feedback.

Our performance metric for evaluating the model’s predicted
feedback labels is accuracy or F1 score, depending on the
convention of prior work. Computing an average of the
metric across the evaluation dataset would over-prioritise
examples that appear frequently; this is particularly impor-
tant to avoid for the Zipf distributed solutions. Since we
care about providing feedback to struggling students in the
tail of the distribution, we separately calculate performance
for different “regions” of the Zipf. Specifically, we define the
head as the k most popular solutions, the tail as solutions
that appear only once or twice, and the body as the rest. As
solutions in the head can be trivially memorised, we focus
on performance on the body and tail.

Training Details We report averages over three runs; error
bars are shown in Fig. 6. We use a batch size of 64, train for
20 epochs on 100k unique samples adaptively sampled from
the simulator. We optimise using Adam [15] with a learning
rate of 5e-4 and weight decay of 1e-7. For PyramidSnap-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 281

0.0 0.2 0.4 0.6 0.80.0 0.2 0.4 0.6 0.80.0 0.2 0.4 0.6 0.8

Hu
m

an
G

G
-N

A
P

O
ld

SO
TA

0.68
0.69

0.69
0.78

0.51
0.48

0.81
0.80

0.79
0.67

0.20
0.21 0.58

Model Body F1 Tail F1
Output CNN [26] 0.10 0.10
Program RNN [23] 0.27 0.22
MVAE [24] 0.38 0.26
Rubric Sampling [26] 0.51 0.48
GG-kNN 0.31 0.33
GG-NAP 0.69 0.78
Human 0.68 0.69

Model Body Acc Tail Acc
kNN [28] 0.20 0.12
NeuralNet [28] 0.20 0.21
GG-kNN timeout timeout
GG-NAP 0.79 0.67
Human 0.81 0.80

Model Avg F1 Tail F1
Handcrafted [6] 0.58 -
T&N Best [17] 0.55 -
GG-kNN 0.78 0.63
GG-NAP 0.93 0.76
Human 0.97 0.90

(a) Code: Code.org P8 (c) Sentences: Powergrading P13(b) Graphical output: PyramidSnapshot

F1 F1Accuracy

Human level Human (tail)
Human (body)

Human (avg)
GG-NAP (tail)
GG-NAP (body)

GG-NAP (avg)
Old SOTA (tail)
Old SOTA (body)

Old SOTA (avg)

0.97

0.93

Figure 6: Summary of results for providing feedback to student work in three educational contexts: block-based programming, graphics
programming, and free response language. Generative grading shows strong performance in all three settings, closely approximating
human-level performance in two data sets, and surpassing human-level performance in the other.

shot, we use VGG-11 [26] with Xavier initialisation [9] as
the encoder network. For other data sets, we use a Recur-
rent Neural Network (RNN) with 4 layers, a hidden size of
256. The deep inference network itself is an unrolled RNN:
we use a gated recurrent unit with a hidden dimension of
256 and no dropout. The value and index embedding layers
output a vector of dimension 32. These hyperparameters
were chosen using grid search.

Code.org As feedback for Code.org exercises has been stud-
ied in prior work [32], we compare generative grading to
a suite of baselines including supervised models trained to
classify misconceptions from the hand-labelled dataset (Out-
put CNN [28] + Program RNN [32]), unsupervised models
that learn a latent vector representation of student work
(MVAE), to the k-nearest neighbours baseline GG-kNN from
Sec. 5. Most relevant to our approach is the “rubric sam-
pling” [32] comparison, which uses a PCFG to simulate stu-
dents and generate a supervised data set to train a RNN
classifier. Human accuracy is measured by comparing the
feedback of multiple annotators to the majority label.

As shown in Fig. 6, generative grading is able to provide
accurate feedback (historically measured as F1) beyond the
level of individual human annotators, setting the new state-
of-the-art. We observe a large improvement over prior work,
which perform significantly worse than human graders. Com-
pared to rubric sampling, we find a 18% (absolute) improve-
ment in the body and a 30% (absolute) improvement in the
tail. This clearly demonstrates the practical importance of
being context-sensitive. The global state of Idea2Text simu-
lators allow us to easily write richer generative models that
are capable of better simulating real students. The poten-
tial impact of a human-level autonomous grader is large:
Code.org is used by 610 million students, and our approach
could save thousands of human hours for teachers by pro-
viding the same quality of feedback at scale.

Powergrading We find similarly strong performance on the
Powergrading corpus of short answer responses to a citizen-

ship question. Fig. 6 shows that generative grading reaches a
F1 score of 0.93, an increase of 0.35 points above prior work
that used hand-crafted features to predict correctness [6],
and 0.38 points above supervised neural networks [24]. We
were unable to compare to rubric sampling [31] as it was too
difficult to write a faithful PCFG to describe free response
language. Generative grading takes a large step towards
closing the gap to human performance (F1 = 0.97). We are
especially optimistic about these results as Powergrading re-
sponses contain natural language, this is promising signal
that ideas from generative grading could generalise beyond
computer science education.

PyramidSnapshot Investigating a third modality of image
output from a graphics assignment, we find similar results
comparing generative grading to the k-nearest neighbour
baseline and a VGG image classifier presented in [33], out-
performing the latter by nearly 50% absolute.

Unlike other datasets, the PyramidSnapshot dataset includes
student’s intermediary work, showing stages of progression
through multiple attempts at solving the problem. With our
near-human level performance, instructors could use GG-
NAP to measure student cognitive understanding over time
as students work. This builds in a real-time feedback loop
between the student and teacher that enables a quick and
accurate way of assessing teaching quality and characteris-
ing both individual and classroom learning progress. From a
technical perspective, since PyramidSnapshot only includes
rendered images (and not student code), generative grad-
ing was responsible for parsing student solutions from just
images alone, a feat not possible without the flexibility of
probabilistic programs used in Idea2Text. For this reason,
we could not apply rubric sampling in this context either.

7. EXTENSIONS
Our results show that generative grading is a powerful tool
for the feedback prediction task. However, our system is
much more general than this and has many interesting ex-
tensions that we discuss in this section.

282 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

Token edit distance

Fr
eq

ue
nc

y
Random

GG-kNN

GG-NAP
(adapt)

GG-NAP
(std)

15%

55%

Figure 7: CDF of Levenshtein edit distance between student
programs and nearest-neighbours using various algorithms.

7.1 Nearest In-Simulator Neighbour
As described in Section 5, our inference model learns to map
a given solution, y, to a decision trajectory in the simula-
tor. So far, we have used this only to provide feedback with
a fixed set of labels. However, the decision trajectory has
a much more powerful interpretation; it represents the se-
quence of decisions in the simulator that the inference model
thinks will produce y. Since we have the simulator in hand,
we can actually execute it with these predicted sequence of
decisions and inspect the simulated output, ŷ.

If the simulated output is exactly equal to the original input
solution, i.e. if y = ŷ, then we can make a strong claim: the
predicted trajectory from the inference model was provably
correct and the corresponding labels can be assigned with
100% confidence. This is a claim that is seldom possible
with traditional supervised learning methods and advances
efforts towards creating explainable AI.

What about when y 6= ŷ? In this case, the simulated output
is not an exact match to the student solution, but we can still
treat it as a “nearest in-simulator neighbour” to y. Fig. 7
shows the quality of these nearest neighbours to the student
solutions using a distance metric like edit distance.

As we show below, these nearest neighbours can be used for
powerful forms of feedback mechanisms.

7.2 Human-in-the-loop Grading
In a real-world setting, predicting feedback labels could be
unreliable due to the high risk of giving students incorrect
feedback. Beyond automated feedback, we explore how gen-
erative grading can be used to make human graders more
effective using a human-in-the-loop approach.

To do this, we created a human-in-the-loop grading system
using GG-NAP. For each student solution, we use the in-
ference model to find the nearest in-simulator neighbour
(Sec. 7.1); this nearest neighbour already has associated la-
bels that are correct for the nearest neighbour. A human
grader is presented with the original student solution, as
well as a diff to the nearest neighbour; the grader then ad-
justs the labels of the nearest neighbour based on the diff to
determine grades for the real solution. We show an image
of the user-interface of this system in Fig. 8.

We investigated the impact of this human-in-the-loop sys-

Figure 8: Human-in-the-loop Generative Grading UI

tem on grading accuracy and speed in a real classroom set-
ting. We hired a cohort of expert graders (teaching as-
sistants for a large private university) who graded 30 real
student solutions to Liftoff. For control, half the graders
proceeded traditionally, assigning a set of feedback labels
by just inspecting the student solutions. The other half of
graders additionally had access to (1) the feedback assigned
to the nearest neighbour by GG-NAP and (2) a code differ-
ential between the student program and the nearest neigh-
bour. Some example feedback labels included “off by one
increment”, “uses while loop”, or “confused > with <”. All
grading was done on a web application that kept track of
the time taken to grade a problem.

We found that the average time for graders using our sys-
tem was 507 seconds while the average time using tradi-
tional grading was 1130 seconds, a more than double in-
crease. Moreover, with our system, only 3 grading errors
(out of 30) were made with respect to gold-standard feed-
back given by the course professor, compared to the 8 errors
made with traditional grading. Fig. 9a shows these results
for each of the 30 solutions.

The improved performance stems from the semantically mean-
ingful nearest neighbours provided by GG-NAP. Having ac-
cess to graded nearest neighbours helps increase grader ef-
ficiency and reliability by allowing them to focus on only
“grading the diff” between the real solution and the near-
est neighbour. By halving both the number of errors and
the amount of time, GG-NAP can have a large impact in
classrooms today, saving instructors and teaching assistants
unnecessary hours and worry over grading assignments.

7.3 Highlighting feedback in student solutions.
The inferred decision trajectory for a student solution can
also be used to provide “dense” feedback that highlights the
section of the code or text responsible for each misunder-
standing. This would be much more effective for student
learning than vague error messages currently found on most
online education platforms.

To achieve this, we leverage the fact that each decision node
in the simulator gets recursively expanded to produce the
final solution. This means it is easy to track the portions of
the output that each decision node is responsible for. For
decision nodes related to student confusions, we can high-
light the portion of the output in the student solution which
corresponds to this confusion. Fig. 9b shows a random pro-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 283

0 5 10 15 20 25 30
Student (sorted by grading time)

0

20

40

60

80

G
ra

di
ng

 T
im

e
(s

ec
.)

Traditional Grading
GGNAP

0

20

40

60

80 N
N

 T
oken E

dit D
istance

Token Edit Distance

(a) Classroom Experiment Results

private static final int START = 10;
public void run() {

int i = START;
while(i >= 0) {

println(i);
i = i - 1;

}
}

Off-by-one loop

Uses >= operator
Correct
variable type

Uses constant

while loop
solution

loop counting down

(b) Automated Dense Feedback

0 5 10 15 20
NonTerminal Index

0.0

0.1

p(
im

pr
ov

e)

Loop NonTerminal other

(c) Auto-improving Simulators

Figure 9: (a) Plot of average time taken to grade 30 student solutions to Liftoff. Generative grading reduces grading time for 26 out of
30 solutions. The amount of time saved correlates with the token edit distance (yellow) to the nearest neighbour in the simulator. (b)
Our approach allows for automatically highlighting which part of the student solution is responsible for a predicted misconception. (c)
Given a Liftoff simulator that is missing a key “decrement loop” decision, we can automatically find decision nodes where inference often
fails on real student solutions. The highest scoring decision nodes are all correctly related looping.

gram with automated, segment-specific feedback given by
GG-NAP. This level of explainability is sorely needed in both
education and AI.

7.4 Automatically Improving Simulators
Building Idea2Text simulators is an iterative process; a user
wishing to improve their simulator would want a sense of
where it is lacking. Fortunately, given a set of difficult exam-
ples where GG-NAP does poorly, we can deduce the decision
nodes in the simulator that consistently lead to mistakes and
use these to suggest components to improve.

To do this, for each nearest neighbour to a student solu-
tion we can find decision nodes that cause substring mis-
matches in the student solution, using regular expressions.
This is possible because each decision node is responsible for
a scoped substring in the nearest neighbour output solution
(Sec. 7.3). By finding the decision nodes where the sub-
string often differs between the neighbour and the solution,
we can identify decisions that often causes mismatches.

To illustrate this, we took the Liftoff simulator, which con-
tains a crucial decision node that decides between increment-
ing up or down in a “for” loop, and removed the option of
incrementing down. We trained GG-NAP on this smaller
simulator, and used a scoring mechanism to identify rele-
vant decision nodes responsible for failing to parse student
solutions that “increment down”. Fig. 9c shows the distribu-
tion over which nodes GG-NAP believes to be responsible
for the failed parses. The top 6 decisions that GG-NAP
picked out all rightfully relate to looping and increments.

8. LIMITATIONS AND FUTURE WORK
Cost of writing good simulators. One of the most critical
steps in our approach is the ability to write good Idea2Text
simulators. Writing a good simulator does not require spe-
cial expertise and can be undertaken by a novice in a short
time. For instance, the PyramidSnapshot simulator that
sets the new state of the art was written by a first-year un-
dergraduate within a day. Furthermore, many aspects of
simulators are re-usable: similar problems will share non-
terminals and some invariances (e.g. the nonterminals that
capture different ways of writing for loops are the same ev-
erywhere). This means every additional grammar is easier
to write since it likely shares a lot in structure with exist-
ing grammars. Moreover, compared to weeks spent hand-

labelling data, the cost of writing a grammar is orders of
magnitude cheaper and leads to much better performance.

That being said, we believe there is room for interesting
future work that explores how to make grammars easy to
write and improve, with the extension in Sec. 7.4 already
making some headway in this direction. There is also room
for better formalising which types of problem domains can
be faithfully modelled with Idea2Text simulators, and which
domains are infeasible, like general essay writing. Lastly,
more sophisticated inference approaches could be explored
for handling semantic invariances in student output such as
code reordering or variable renaming.

Connections to IRT. We find an interesting parallel of our
work to Item Response Theory (IRT). IRT is essentially an
extremely simple generative model that relates a student
parameter θ to the probability of getting a question correct
or incorrect. Some of our Idea2Text simulators also incor-
porate a student ability parameter θ to dictate likelihoods
of making mistakes at different decisions, and can thus be
seen as a more expressive and nuanced extension of the IRT
generative model. Exploring this further is an interesting
direction of research.

Generating questions with Idea2Text. We use Idea2Text sim-
ulators to model student decision-making and corresponding
example solutions. This could be used to automatically gen-
erate example solutions with known issues to show students
for pedagogical purposes. The Idea2Text library can also
been used to generating questions corresponding to confu-
sions instead of solutions corresponding to confusions.

9. CONCLUSION
We proposed a method for providing automated student
feedback that showed promising results across multiple modal-
ities and domains. Our proposed feedback system is capable
of predicting student decisions corresponding to a given so-
lution, allowing us to do nuanced forms of automated feed-
back. With it, “generative grading” can be used to automate
feedback, visualise student approaches for instructors, and
make grading easier, faster, and more consistent. Although
more work needs to be done on making powerful grammars
easier to write, we believe this is an exciting direction for the
future of education and a step towards combining machine
learning and human-centred artificial intelligence.

284 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

References
[1] S. Basu, C. Jacobs, and L. Vanderwende. Powergrading:

a clustering approach to amplify human effort for short
answer grading. Transactions of the Association for
Computational Linguistics, 1:391–402, 2013.

[2] E. Bingham, J. P. Chen, M. Jankowiak, F. Ober-
meyer, N. Pradhan, T. Karaletsos, R. Singh, P. Szerlip,
P. Horsfall, and N. D. Goodman. Pyro: Deep universal
probabilistic programming. Journal of Machine Learn-
ing Research, 20(28):1–6, 2019.

[3] W. G. Bowen. The ‘cost disease’in higher education: is
technology the answer? The Tanner Lectures Stanford
University, 2012.

[4] J. S. Brown and K. VanLehn. Repair theory: A gen-
erative theory of bugs in procedural skills. Cognitive
science, 4(4):379–426, 1980.

[5] H. S. Chang, M. C. Fu, J. Hu, and S. I. Marcus. An
adaptive sampling algorithm for solving markov de-
cision processes. Operations Research, 53(1):126–139,
2005.

[6] J. Daxenberger, O. Ferschke, I. Gurevych, and T. Zesch.
Dkpro tc: A java-based framework for supervised learn-
ing experiments on textual data. In Proceedings of
52nd Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations, pages 61–
66, 2014.

[7] S. Diao. mlconjug: A python library to conjugate
verbs using machine learning techniques. GitHub:
https://github.com/SekouD/mlconjug, 2018.

[8] M. Q. Feldman, J. Y. Cho, M. Ong, S. Gulwani,
Z. Popović, and E. Andersen. Automatic diagnosis of
students’ misconceptions in k-8 mathematics. In Pro-
ceedings of the 2018 CHI Conference on Human Factors
in Computing Systems, pages 1–12, 2018.

[9] X. Glorot and Y. Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In
Proceedings of the thirteenth international conference
on artificial intelligence and statistics, pages 249–256,
2010.

[10] N. Goodman, V. Mansinghka, D. M. Roy, K. Bonawitz,
and J. B. Tenenbaum. Church: a language for genera-
tive models. arXiv preprint arXiv:1206.3255, 2012.

[11] N. D. Goodman and A. Stuhlmüller. The design and im-
plementation of probabilistic programming languages,
2014.

[12] A. Graves. Generating sequences with recurrent neural
networks. CoRR, abs/1308.0850, 2013.

[13] S. Gulwani and R. Singh. Automated feedback gen-
eration for introductory programming assignments. In
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2013), pages 15–26,
July 2013.

[14] Q. Hu and H. Rangwala. Reliable deep grade pre-
diction with uncertainty estimation. arXiv preprint
arXiv:1902.10213, 2019.

[15] D. P. Kingma and J. Ba. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980, 2014.

[16] K. R. Koedinger, N. Matsuda, C. J. MacLellan, and
E. A. McLaughlin. Methods for evaluating simulated
learners: Examples from simstudent. In AIED Work-
shops, 2015.

[17] T. A. Le, A. G. Baydin, and F. Wood. Inference compi-
lation and universal probabilistic programming. arXiv
preprint arXiv:1610.09900, 2016.

[18] J. Liu, Y. Xu, and L. Zhao. Automated essay
scoring based on two-stage learning. arXiv preprint
arXiv:1901.07744, 2019.

[19] X. Liu, S. Wang, P. Wang, and D. Wu. Automatic grad-
ing of programming assignments: An approach based
on formal semantics. In Proceedings of the 41st Inter-
national Conference on Software Engineering: Software
Engineering Education and Training, ICSE-SEET ’19,
page 126–137. IEEE Press, 2019.

[20] T. G. MARTIN, M. A. BURGMAN, F. FIDLER,
P. M. KUHNERT, S. LOW-CHOY, M. MCBRIDE, and
K. MENGERSEN. Eliciting expert knowledge in con-
servation science. Conservation Biology, 26(1):29–38,
2012.

[21] H. Nilforoshan and E. Wu. Leveraging quality predic-
tion models for automatic writing feedback. In Proceed-
ings of the International AAAI Conference on Web and
Social Media, volume 12, 2018.

[22] A. O’Hagan. Eliciting expert beliefs in substantial prac-
tical applications. Journal of the Royal Statistical So-
ciety: Series D (The Statistician), 47(1):21–35, 1998.

[23] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,
L. J. Guibas, and J. Sohl-Dickstein. Deep knowledge
tracing. In Advances in neural information processing
systems, pages 505–513, 2015.

[24] B. Riordan, A. Horbach, A. Cahill, T. Zesch, and C. M.
Lee. Investigating neural architectures for short answer
scoring. In Proceedings of the 12th Workshop on In-
novative Use of NLP for Building Educational Applica-
tions, pages 159–168, 2017.

[25] D. Ritchie, P. Horsfall, and N. D. Goodman. Deep
Amortized Inference for Probabilistic Programs. Tech-
nical report, 2016.

[26] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[27] F. Wang and D. Landau. Efficient, multiple-range ran-
dom walk algorithm to calculate the density of states.
Physical review letters, 86:2050–3, 04 2001.

[28] L. Wang, A. Sy, L. Liu, and C. Piech. Learning to
represent student knowledge on programming exercises
using deep learning. In EDM, 2017.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 285

[29] D. Wingate, A. Stuhlmueller, and N. Goodman.
Lightweight implementations of probabilistic program-
ming languages via transformational compilation. In
G. Gordon, D. Dunson, and M. Dud́ık, editors, Pro-
ceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, volume 15 of Pro-
ceedings of Machine Learning Research, pages 770–778,
Fort Lauderdale, FL, USA, 11–13 Apr 2011. JMLR
Workshop and Conference Proceedings.

[30] B. Woods, D. Adamson, S. Miel, and E. Mayfield. For-
mative essay feedback using predictive scoring models.
In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’17, page 2071–2080, New York, NY, USA, 2017.
Association for Computing Machinery.

[31] M. Wu, M. C. Hughes, S. Parbhoo, M. Zazzi, V. Roth,
and F. Doshi-Velez. Beyond sparsity: Tree regular-
ization of deep models for interpretability. In Thirty-
Second AAAI Conference on Artificial Intelligence,
2018.

[32] M. Wu, M. Mosse, N. Goodman, and C. Piech.
Zero shot learning for code education: Rubric sam-
pling with deep learning inference. arXiv preprint
arXiv:1809.01357, 2018.

[33] L. Yan, N. McKeown, and C. Piech. The pyramidsnap-
shot challenge: Understanding student process from vi-
sual output of programs. In Proceedings of the 50th
ACM Technical Symposium on Computer Science Ed-
ucation, SIGCSE ’19, pages 119–125, New York, NY,
USA, 2019. ACM.

286 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Knowledge Transfer by Discriminative Pre-training for
Academic Performance Prediction

Byungsoo Kim, Hangyeol Yu, Dongmin Shin, Youngduck Choi
Riiid! AI Research

{byungsoo.kim,hangyeol.yu,dm.shin,youngduck.choi}@riiid.co

ABSTRACT
The needs for precisely estimating a student’s academic per-
formance have been emphasized with an increasing amount
of attention paid to Intelligent Tutoring System (ITS). How-
ever, since labels for academic performance, such as test
scores, are collected from outside of ITS, obtaining the labels
is costly, leading to label-scarcity problem which brings chal-
lenge in taking machine learning approaches for academic
performance prediction. To this end, inspired by the recent
advancement of pre-training method in natural language
processing community, we propose DPA, a transfer learn-
ing framework with Discriminative Pre-training tasks for
Academic performance prediction. DPA pre-trains two mod-
els, a generator and a discriminator, and fine-tunes the dis-
criminator on academic performance prediction. In DPA’s
pre-training phase, a sequence of interactions where some to-
kens are masked is provided to the generator which is trained
to reconstruct the original sequence. Then, the discrimi-
nator takes an interaction sequence where the masked to-
kens are replaced by the generator’s outputs, and is trained
to predict the originalities of all tokens in the sequence.
We conduct extensive experimental studies on a real-world
dataset obtained from a multi-platform ITS application and
show that DPA outperforms the previous state-of-the-art
generative pre-training method with a reduction of 4.05%
in mean absolute error and more robust to increased label-
scarcity.1

Keywords
Academic Performance Prediction, Deep Learning, Transfer
Learning, Discriminative Pre-training

1. INTRODUCTION
Predicting a student’s future academic performance is a fun-
damental task for developing modern Intelligent Tutoring
System (ITS) which aims to provide personalized learning

1For more detailed descriptions of experimental settings and
results, please refer the arXiv version of this paper.

3. Report a
 score

Automatically

collected

Database

Interactive
Features

Test Score

ITS
Response

Elapsed time
...

Student

Test Center
Student

1. Take a test

2. Report a score

Figure 1: Interactive features, such as student response and
elapsed time for the response, are automatically recorded to
the database whenever a student interacts with ITS. On the
other hand, more complicated steps are necessary to obtain a
test score: a student should take the test in the designated
test center, receive the test score, and report the score to
ITS.

experience by supporting educational needs of each individ-
ual. However, labels for academic performance, such as test
scores, are often scarce since they are external to ITS. For
example, as shown in Figure 1, test scores are not automati-
cally collected inside of ITS. Obtaining a test score requires a
student to take the test in the designated test center, receive
the score, and report the score to ITS. Transfer learning is
a commonly taken approach to address such label-scarcity
problems across different domains of machine learning. In
this framework, a model is first pre-trained to optimize aux-
iliary objectives with abundant data, and then fine-tuned
on the task of interest. In Artificial Intelligence in Educa-
tion (AIEd) community, [3] introduced Assessment Model-
ing (AM), a set of pre-training tasks for label-scarce educa-
tional problems including academic performance prediction.
AM proposed a pre-training method where first, a masked
interaction sequence is generated by replacing a set of in-
teractive features which can serve as criteria for pedagogi-
cal evaluation with artificial mask tokens. Then, given the

Byungsoo Kim, Hangyeol Yu, Dongmin Shin and Youngduck
Choi “Knowledge Transfer by Discriminative Pre-training for
Academic Performance Prediction”. 2021. In: Proceedings of
The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 287-294.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 287

masked interaction sequence, a model is pre-trained to pre-
dict the masked interactive features. The idea was borrowed
from the Masked Language Modeling (MLM) pre-training
method proposed in [7]. In the MLM pre-training method,
given a masked word sequence where some words in the se-
quence are replaced with an artificial mask token, a model is
pre-trained to predict the masked words. However, recently,
[6] pointed out that the MLM pre-training method has poor
sample efficiency and suffers from pre-train/fine-tune dis-
crepancy due to the artificial mask token, and proposed a
new discriminative pre-training method. Considering the
problems are also inherent in AM, potential gains are ex-
pected to be obtainable when the discriminative pre-training
method is applied to academic performance prediction.

To this end, we propose DPA, a transfer learning framework
with Discriminative Pre-training tasks for Academic perfor-
mance prediction. There are two models in DPA: a generator
and a discriminator. In DPA’s pre-training phase, the gen-
erator is trained to predict the masked interactive features
in the same way as AM. Then, given a replaced interac-
tion sequence which is generated by replacing the masked
features with the generator’s outputs, the discriminator is
trained to predict whether each token in the sequence is the
same as the one in the original interaction sequence. After
the pre-training, the generator is thrown away and only the
discriminator is fine-tuned on academic performance predic-
tion. Also, we investigate diverse pre-training tasks for the
generator and show that pre-training the generator to pre-
dict a student’s response is more effective than to predict
the correctness and timeliness of their response which were
considered as the most pedagogical interactive features in
AM. Extensive experimental studies conducted on a real-
world dataset collected from a multi-platform ITS appli-
cation show that DPA outperforms AM with a reduction
of 4.05% in Mean Absolute Error (MAE) and more robust
when the degree of label-scarcity increases.

2. SANTA: A SELF-STUDY SOLUTION
EQUIPPED WITH AN AI TUTOR FOR
ENGLISH EDUCATION

In this paper, we conduct experiments on a real-world dataset
obtained from Santa2, a multi-platform ITS with more than
a million users in South Korea available through Android,
iOS, and Web that exclusively focuses on the Test of English
for International Communication (TOEIC) standardized ex-
amination. The publicly accessible version of the dataset
was released under the name EdNet [4]. The TOEIC con-
sists of two timed sections, Listening Comprehension (LC)
and Reading Comprehension (RC). There are a total of 100
multiple choice exercises in each section, and the total score
for each section is 495 in steps of 5 points. Santa provides
learning experiences of solving exercises, studying explana-
tions, and watching lectures. When a student consumes a
specific learning content, Santa diagnoses their current aca-
demic status based on their learning activities records and
recommends another learning content appropriate for their
current position. Santa records diverse types of interactive
features, such as student response, the duration of time the
student took to respond, and the time interval between the
current and previous learning activities. However, unlike

2https://aitutorsanta.com

the interactive features automatically collected from Santa,
obtaining the official TOEIC score requires more steps: a
student should register and pay for the test, take the test
in the designated test center, receive the test score from the
Educational Testing Service, and report the score to Santa
(Figure 1). Santa collected students’ TOEIC score data by
offering small gifts to students when they report their scores.

3. TRANSFER LEARNING FOR ACADEMIC
TEST PERFORMANCE PREDICTION

To overcome the label-scarcity problem in academic test per-
formance prediction, we consider burgeoning machine learn-
ing discipline of transfer learning. There is an open issue of
what information to transfer or which pre-training task is
the most effective for academic test performance prediction.
Previous studies proposed two types of pre-training meth-
ods for AIEd Tasks: interaction-based method which mod-
els students’ dynamic learning behaviors [13, 15, 8, 3], and
content-based method which learns representations of learn-
ing contents [14, 23, 19, 24, 29]. [3] showed that interaction-
based pre-training method outperforms content-based pre-
training methods when the pre-trained model is fine-tuned
on several label-scarce educational tasks including academic
test performance prediction. Following this line of research,
we propose a transfer learning framework where a model is
pre-trained using only student interaction data, and fine-
tune the pre-trained model on academic test performance
prediction. In this paper, we consider the following interac-
tive features:

• eid : A unique ID assigned to an exercise solved by a
student. There are a total of 14419 exercises in the
dataset.

• part : Each exercise belongs to a specific part that rep-
resents the type of the exercise. There are a total of 7
parts in the TOEIC.

• response: Since the TOEIC consists of multiple choice
exercises and there are four options for each exercise,
a student response for a given exercise is one of the
options, ‘a’, ‘b’, ‘c’, or ‘d’.

• correctness: Whether a student responded correctly
to a given exercise. Note that correctness is a coarse
version of response since correctness is processed by
comparing response with a correct answer for a given
exercise.

• elapsed time: The amount of time a student spent on
solving a given exercise.

• timeliness: Whether a student responded to a given
exercise under the time limit. Note that timeliness is
a coarse version of elapsed time since timeliness is pro-
cessed by comparing elapsed time with the time limit
recommended by domain experts for a given exercise.

• exp time: The amount of time a student spent on
studying an explanation for an exercise they had solved.

• inactive time: The time interval between the current
and previous interactions.

288 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://aitutorsanta.com

Pre-training

Generator

Masked
Sequence

Loss
Back-propagation

e419
part4
b

e23
part3
mask

e4324
part3
mask

e5233
part1
a

cls

e419
part4
b

e23
part3
c

e4324
part3
a

e5233
part1
a

Original
Sequence

b

a

c

a

Discriminator

e419
part4
b

e23
part3
b

e4324
part3
a

e5233
part1
a

cls

Replaced
Sequence

original

replaced

replaced

original

original

original

replaced

original

original

originalcls

Loss
Back-propagation

Original
Identities

Discriminator

e228
part2
a

e3134
part1
d

e767
part1
d

e1099
part3
c

cls

415

390

475

385

Loss
Back-propagation

LC Score

RC Score

Fine-tuning

Figure 2: The overall pre-training/fine-tuning process of DPA when each token in an interaction sequence is a set of eid, part,
and response, and response is a feature being masked. mask and cls are special tokens for mask and classification, respectively,
which are the same as the ones used in [7].

In our experiments, we normalize the values of elapsed time,
exp time, and inactive time so they are between 0 and 1 to
stabilize the training process.

4. PROPOSED METHOD
Figure 2 depicts our proposed method. There are two mod-
els in DPA: a generator and a discriminator. In pre-training
phase, given a sequence of interactions I = [I1, . . . , IT],
where each interaction It = {f1

t , . . . , f
k
t } is a set of inter-

active features f i
t , such as eid, part, and response, a masked

interaction sequence IM = [IM1 , . . . , IMT] is generated by
first randomly selecting a set of positions to mask M =
{M1, . . . ,Mm} (m < T), and for the masked position Mi,
masking out a fixed set of features {f1

Mi
, . . . , fn

Mi
} (n < k).

For instance, in Figure 2, if the original interaction sequence
is [(e419, part4, b), (e23, part3, c), (e4324, part3, a), (e5233,
part1, a)] where each token in the sequence is a set of eid,
part, and response, a masked interaction sequence where
M = {2, 3} and response as a masked feature is [(e419,
part4, b), (e23, part3, mask), (e4324, part3, mask), (e5233,
part1, a)]. Then, the generator takes the masked interac-
tion sequence IM as an input, and outputs predicted values
OG

ij for the masked features f j
Mi

. After that, a replaced

interaction sequence IR = [IR1 , . . . , I
R
T] is generated by re-

placing the masked features f j
Mi

with the generator’s pre-

dictions OG
ij . In Figure 2, since the generator’s outputs

for the masked features are ‘b’ and ‘a’, a replaced inter-
action sequence is [(e419, part4, b), (e23, part3, b), (e4324,
part3, a), (e5233, part1, a)]. Then, the discriminator takes
the replaced interaction sequence IR as an input, and pre-
dicts whether each token in the sequence is the same as the
one in the original interaction sequence (original) or not (re-
placed). After the pre-training, we throw away the generator
and fine-tune the pre-trained discriminator on academic test
performance prediction. We provide detailed explanations of
each component in the generator and the discriminator, and
training objective functions in the following subsections.

4.1 Interaction Embeddings

The embedding layer produces a sequence of interaction em-
bedding vectors by mapping each interactive feature to an
appropriate embedding vector. We take two different ap-
proaches to embed the interactive features depending on
whether they are categorical (eid, part, response, correctness,
and timeliness) or continuous (elapsed time, exp time, and
inactive time) variables. If an interactive feature is a cate-
gorical variable, we assign unique latent vectors to possible
values of the feature including special values for mask (mask)
and classification (cls). Take response as an example, there
is an embedding matrix Eresponse ∈ R6×demb where each row
vector is assigned to one of ‘a’, ‘b’, ‘c’, ‘d’, mask, and cls.
If an interactive feature is a continuous variable, we assign
a single latent vector to the feature. Then, an embedding
vector for the feature is computed by multiplying the latent
vector and a value of the feature. For instance, we compute
an embedding vector for elapsed time as et ∗ Eelapsed time,
where et is a specific value and Eelapsed time ∈ Rdemb is
a latent vector assigned to elapsed time. Also, mask and
classification for the continuous interactive features are in-
dicated by setting their values to -1 and 0, respectively. Not
only embeddings for interactive features, positional embed-
dings are also incorporated into Transformer-based models
[27] to consider chronological order of each token. Rather
than using conventional positional embeddings which stores
an embedding vector for every possible position, we adopt
axial positional embeddings [17] to further reduce memory
usage. The final interaction embedding vector of dimension
demb for each time-step is the sum of all embedding vectors
in the time-step. The interaction embedding layer is shared
by both the generator and the discriminator.

4.2 Performer Encoder
Since its successful debut in Natural Language Processing
(NLP) community, Transformer’s attention mechanism has
become a common recipe adopted across different domains of
machine learning including speech processing [18], computer
vision [1, 9], and AIEd [21, 2, 11, 22]. Compared to Recur-
rent Neural Network (RNN) family models, Transformer’s
attention mechanism has benefits of capturing longer-range

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 289

Chunk

+

+

Concat

ScaleNorm

Multi-head Attention
with FAVOR+

Feed-forward

ScaleNorm

x N

Figure 3: The reversible layer in the Performer encoder is
composed of the FAVOR+-based multi-head attention layer
and the point-wise feed-forward layer.

dependencies and allowing parallel training, which enables
the model to achieve better performance with less training
time. However, despite these advantages, the time and mem-
ory complexities of computing the attention grow quadrat-
ically with respect to input sequence length, requiring de-
manding computing resources for training the model on long
sequences. For instance, if L is input sequence length and d
is dimension of query, key, and value vectors, Transformer’s
attention is computed as follows:

Attention(Q,K, V) = softmax
(QK>√

d

)
V,

where Q,K, V ∈ RL×d. The time and memory complexities
for computing QK> in the above equation are O(L2d) and
O(L2), respectively. Therefore, the cost for training Trans-
former becomes prohibitive with large L, preventing training
the model even on a single GPU.

The problem of improving the efficiency of Transformer’s at-
tention mechanism is a common concern of machine learn-
ing community. Recent studies have proposed several meth-
ods to reduce the computing complexities lower than the
quadratic degree with respect to input sequence length [17,
28, 16, 25, 5]. In this paper, we adopt Performer [5] since
it uses reasonable memory and makes a better trade-off be-

tween speed and performance [26]. Performer approximates
attention kernels through Fast Attention Via positive Or-
thogonal Random features (FAVOR+) approach. For those
who want to know more about FAVOR+, please refer [5].

With the efficient attention mechanism by FAVOR+, we
propose the Performer encoder which is stacks of several
identical reversible layers described in Figure 3. The re-
versible layer is based on Reversible Transformer [12, 17]
architecture to further improve memory efficiency in back-
propagation. An input of the reversible layer x ∈ RL×dhidden

is first chunked to x1, x2 ∈ RL×dhidden/2. Then, scaled l2
normalization (ScaleNorm) [20] and FAVOR+-based multi-
head attention layer (MultiHeadAttn) are applied to x2, and

the result is added to x1 to compute y1 ∈ RL×dhidden/2.

y1 = x1 + MultiHeadAttn(ScaleNorm(x2)).

After that, the scaled l2 normalization and point-wise feed-
forward layer (FeedForward) are applied to y1, and the result

is added to x2, computing y2 ∈ RL×dhidden/2.

y2 = x2 + FeedForward(ScaleNorm(y1)).

An output of the reversible layer y ∈ RL×dhidden is a con-
catenation of y1 and y2. We stack the reversible layer mul-
tiple times to allow the final model to sufficiently represent
underlying data distribution.

4.3 Generator
The generator computes hidden representations [hG

1 , . . . , h
G
T]

by feeding the masked interaction sequence IM to a se-
ries of the interaction embedding layer (InterEmbedding), a
point-wise feed-forward layer (GenFeedForward1), the Per-
former encoder (GenPerformerEncoder), and another point-
wise feed-forward layer (GenFeedForward2):

[IME
1 , . . . , IME

T] = InterEmbedding([IM1 , . . . , IMT])

[hGF
1 , . . . , hGF

T] = GenFeedForward1([IME
1 , . . . , IME

T])

[hGP
1 , . . . , hGP

T] = GenPerformerEncoder([hGF
1 , . . . , hGF

T])

[hG
1 , . . . , h

G
T] = GenFeedForward2([hGP

1 , . . . , hGP
T]),

where IME
t , hG

t ∈ Rdemb and hGF
t , hGP

t ∈ Rdgen hidden . Then,
depending on whether the masked features are categorical
or continuous variables, generator outputs are computed dif-
ferently. If the masked features are categorical variables, the
outputs are sampled from a probability distribution defined
by the following softmax layer:

OG
ij ∼ PG(f j

Mi
|IM) = softmax(Ejh

G
Mi

).

If the masked features are continuous variables, the outputs
are computed by the following sigmoid layer:

OG
ij = sigmoid(E>j h

G
Mi

).

Similar to the case of categorical masked features, one can
sample the outputs from a probability distribution defined
by IM and parameters of the generator when the masked fea-
tures are continuous variables. For instance, the outputs can
be sampled from the Gaussian distribution where the mean
and the variance are determined by IM and the generator’s
parameters. However, we make the outputs deterministic
because sampling the outputs underperforms in our prelim-
inary experiments when the masked features are continuous
variables.

290 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

4.4 Discriminator
In pre-training, outputs of the discriminator OD = [OD

1 , . . . ,
OD

T] is computed by applying a series of the interaction em-
bedding layer (InterEmbedding), a point-wise feed-forward
layer (DisFeedForward1), the Performer encoder (DisPer-
formerEncoder), and another point-wise feed-forward layer
(DisFeedForward2) to the replaced interaction sequence IR:

[IRE
1 , . . . , IRE

T] = InterEmbedding([IR1 , . . . , I
R
T])

[hDF
1 , . . . , hDF

T] = DisFeedForward1([IRE
1 , . . . , IRE

T])

[hDP
1 , . . . , hDP

T] = DisPerformerEncoder([hDF
1 , . . . , hDF

T])

[OD
1 , . . . , O

D
T] = DisFeedForward2([hDP

1 , . . . , hDP
T]),

where IRE
t ∈ Rdemb , hDF

t , hDP
t ∈ Rddis hidden , OD

t ∈ R, and
the sigmoid is applied to the last layer of the discriminator.
After the pre-training, we slightly modify the discriminator
by replacing the last layer with a layer having appropriate
dimension for academic test performance prediction.

4.5 Training Objectives
The objective for pre-training is to minimize the following
loss function:

m∑
i=1

n∑
j=1

GenLoss(OG
ij , f

j
Mi

) + λ

T∑
t=1

DisLoss(OD
t ,1(IRt = It)),

where GenLoss is the cross entropy (or mean squared error)
loss function if the masked features are categorical (or con-
tinuous) variables, DisLoss is the binary cross entropy loss
function, and 1 is the identity function. For ease of nota-
tion, we omit an index for each input sample in the above
equation. If there are more than one masked features in
each time-step (n > 1), the generator is trained under the
multi-task leaning scheme. The objective for fine-tuning is
to minimize the mean squared error loss between the model’s
predictions and score labels.

5. EXPERIMENTS
5.1 Effects of Generator’s Pre-training Tasks
There are multiple interactive features to be masked in each
token of the interaction sequence, which raises a question
of how to construct a set of masked interactive features,
and accordingly, which pre-training task for the generator is
the most effective for academic test performance prediction.
By default, all interactive features listed in Section 3 are
taken as inputs for both the generator and discriminator.
However, if response (or elapsed time) is masked, correctness
(or timeliness) is excluded from the inputs and vice versa
since there is an overlap of information that the features
represent. For example, when both response and correctness
are taken as inputs, and correctness is masked, the generator
can predict the masked correctness by only looking at eid
and response without considering other interactions, which
leads to poor pre-training. The results are described in Table
1.

The best result was obtained under the pre-training task of
predicting response alone, which is slightly better than that
of predicting correctness, and both response and correctness.
Predicting correctness of student response is an important
task in AIEd as can be seen from the large volume of stud-
ies about Knowledge Tracing. Also, [3] empirically showed

Table 1: Comparison between different pre-training tasks.

Pre-training task MAE

response 50.65± 1.26
response + elapsed time 54.86± 1.64
response + timeliness 52.91± 1.38
response + exp time 57.54± 1.47
response + inactive time 60.69± 1.74
correctness 51.36± 0.97
correctness + elapsed time 53.36± 1.43
correctness + timeliness 52.60± 1.20
correctness + exp time 54.36± 1.62
correctness + inactive time 55.04± 1.58
response + correctness 51.13± 1.60
response + correctness + elapsed time 52.15± 1.43
response + correctness + timeliness 53.05± 1.81
response + correctness+ exp time 53.09± 1.25
response + correctness + inactive time 56.41± 1.72

that student response correctness is the most pedagogical
interactive feature for academic test performance predic-
tion. However, rather than pre-training a model to predict
whether a student correctly responded to a given exercise,
the pre-training task of predicting student response itself
injects more fine-grained information into the model, which
leads to the more effective pre-training for academic test
performance prediction. Interestingly, the underperformed
results were obtained when predicting elapsed time or time-
liness in pre-training despite the benefits their information
bring to several AIEd tasks [10, 30, 22]. We hypothesize that
elapsed time and timeliness may introduce irrelevant noises
and thus guide the model towards a direction inappropri-
ate for academic test performance prediction. In the case of
exp time and inactive time, we observed that the generator
failed to learn to predict their values when only given the
interactive features listed in Section 3, which leads to unsta-
ble pre-training. From these observations, in the following
subsections, we conduct experimental studies based on the
pre-training task of predicting response alone.

5.2 DPA vs. Baseline Methods
We compare DPA with the following pre-training methods:

• No pre-training: We train the fine-tuning models only
on the fine-tuning dataset.

• Autoencoding: Autoencoding (AE) is a generative pre-
training method widely used across different domains
of machine learning including AIEd [13, 8]. Given an
unmasked interaction sequence, AE pre-trains a model
to reconstruct the input interaction sequence.

• Assessment Modeling: Assessment Modeling (AM) [3]
is the previous state-of-the-art generative pre-training
method for academic test performance prediction. In
AM, a model takes a masked interaction sequence as
an input and is pre-trained to predict masked features.
AM is exactly the same as fine-tuning the pre-trained
generator in DPA.

Also, we investigate whether DPA is effective with the fol-
lowing different fine-tuning models:

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 291

Table 2: Comparison of DPA with baseline methods.

Pre-training method Fine-tuning model MAE

No pre-training MLP 82.89± 3.23
BiLSTM 84.05± 2.06
Transformer encoder 107.06± 2.52
Performer encoder 81.76± 1.24

AE MLP 79.46± 1.15
BiLSTM 85.64± 1.89
Transformer encoder 75.13± 3.10
Performer encoder 64.80± 1.43

AM MLP 77.17± 2.14
BiLSTM 58.16± 1.28
Transformer encoder 57.16± 2.08
Performer encoder 52.79± 1.39

DPA MLP 77.24± 1.59
BiLSTM 57.59± 1.76
Transformer encoder 55.99± 1.62
Performer encoder 50.65± 1.26

• MLP: Multi-Layer Perceptron (MLP) is stacks of sim-
ple fully-connected layers. Given an interaction se-
quence, interaction embedding vectors of all time-steps
are summed together to compute a fixed-dimensional
vector which is fed to a series of the fully-connected
layers.

• BiLSTM: Bi-directional Long Short-Term Memory (BiL-
STM) is a model widely used for time series data pre-
diction tasks. The global max pooling layer is ap-
plied on top of the BiLSTM layer to obtain a fixed-
dimensional intermediate representation from an input
sequence of varying length.

• Transformer Encoder: Transformer Encoder is a series
of several identical layers composed of a multi-head
self-attention layer with the softmax attention kernel
and a point-wise feed-forward layer. We set the Trans-
former encoder’s attention window size to 512 due to
the out of GPU memory occuring when training the
Transformer encoder of 1024 attention window size on
our single GPU machine.

As described in Table 2, transferring the pre-trained knowl-
edge brings better results in most cases, and the best result
is obtained from DPA. Especially, when the Performer en-
coder, the best performing fine-tuning model, is used as the
fine-tuning model, DPA reduces MAE by 4.05%, 21.84%,
and 38.05% compared to AM, AE, and No pre-training, re-
spectively. Among the baseline pre-training methods ex-
cluding No pre-training, the worst result is obtained from
AE beacuse the pre-training task of AE is much easier than
that of AM and DPA. We observed that the loss curve of
AE converged to near zero within the first pre-training eval-
uation.

5.3 Robustness to Increased Label-scarcity
Since the motivation behind our proposal of DPA is the
label-scarcity problem, we investigate how MAE changes
at varying degrees of label-scarcity. Figure 4 and Table 3

0.13 0.25 0.5 1
50

55

60

65

70

75

80

85

90

95

Ratio of fine-tuning training samples (N)

M
A

E

No pre-training

AM

DPA

Figure 4: The black, blue, and red lines represent MAEs
for No pre-training, AM, and DPA, respectively, when the
number of fine-tuning training samples becomes 1/2, 1/4,
and 1/8 of the entire dataset.

Table 3: Comparison of DPA with AM and No pre-training
at varying degrees of label-scarcity.

N No pre-training AM DPA

1/8 94.21± 8.40 60.22± 1.86 55.90± 1.97
1/4 89.01± 2.14 57.08± 1.75 53.46± 1.45
1/2 85.37± 1.15 54.29± 1.50 51.38± 1.16
Full 81.76± 1.24 52.79± 1.39 50.65± 1.26

describe the results when using 1/2, 1/4, and 1/8 of the
total number of fine-tuning training samples. In all de-
grees of label-scarcity, DPA consistently outperforms AM.
Also, DPA fine-tuned on 1/2, 1/4, and 1/8 of the dataset
outperforms AM fine-tuned on the entire dataset, 1/2, and
1/4 of the dataset, respectively, which shows that DPA is
more robust to label-scarcity than AM. Compared with No
pre-training, the gap between No pre-training and the other
two pre-training methods increases as the number of labels
becomes scarce. Furthermore, the other two pre-training
methods fine-tuned on 1/8 of the dataset outperform No
pre-training fine-tuned on the entire dataset.

6. CONCLUSION
In this paper, we proposed DPA, a transfer learning frame-
work with discriminative pre-training tasks for academic
performance prediction. Our experimental results showed
the effectiveness of DPA for the label-scarce academic per-
formance prediction task over the previous state-of-the-art
generative pre-training method. Avenues of future research
include investigating more effective pre-training tasks for
academic performance prediction and pre-train/fine-tune re-
lations in AIEd.

7. REFERENCES
[1] M. Chen, A. Radford, R. Child, J. Wu, H. Jun,

D. Luan, and I. Sutskever. Generative pretraining

292 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

from pixels. In International Conference on Machine
Learning, pages 1691–1703. PMLR, 2020.

[2] Y. Choi, Y. Lee, J. Cho, J. Baek, B. Kim, Y. Cha,
D. Shin, C. Bae, and J. Heo. Towards an appropriate
query, key, and value computation for knowledge
tracing. In Proceedings of the Seventh ACM
Conference on Learning@ Scale, pages 341–344, 2020.

[3] Y. Choi, Y. Lee, J. Cho, J. Baek, D. Shin, S. Lee,
Y. Cha, B. Kim, and J. Heo. Assessment modeling:
Fundamental pre-training tasks for interactive
educational systems. arXiv preprint arXiv:2002.05505,
2020.

[4] Y. Choi, Y. Lee, D. Shin, J. Cho, S. Park, S. Lee,
J. Baek, C. Bae, B. Kim, and J. Heo. Ednet: A
large-scale hierarchical dataset in education. In
International Conference on Artificial Intelligence in
Education, pages 69–73. Springer, 2020.

[5] K. Choromanski, V. Likhosherstov, D. Dohan,
X. Song, A. Gane, T. Sarlos, P. Hawkins, J. Davis,
A. Mohiuddin, L. Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794,
2020.

[6] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning.
Electra: Pre-training text encoders as discriminators
rather than generators. arXiv preprint
arXiv:2003.10555, 2020.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[8] M. Ding, Y. Wang, E. Hemberg, and U.-M. O’Reilly.
Transfer learning using representation learning in
massive open online courses. In Proceedings of the 9th
international conference on learning analytics &
knowledge, pages 145–154, 2019.

[9] A. Dosovitskiy, L. Beyer, A. Kolesnikov,
D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al.
An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[10] M. Feng, N. Heffernan, and K. Koedinger. Addressing
the assessment challenge with an online system that
tutors as it assesses. User modeling and user-adapted
interaction, 19(3):243–266, 2009.

[11] A. Ghosh, N. Heffernan, and A. S. Lan. Context-aware
attentive knowledge tracing. In Proceedings of the 26th
ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages
2330–2339, 2020.

[12] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse.
The reversible residual network: Backpropagation
without storing activations. arXiv preprint
arXiv:1707.04585, 2017.

[13] B. Guo, R. Zhang, G. Xu, C. Shi, and L. Yang.
Predicting students performance in educational data
mining. In 2015 International Symposium on
Educational Technology (ISET), pages 125–128. IEEE,
2015.

[14] Z. Huang, Q. Liu, E. Chen, H. Zhao, M. Gao, S. Wei,
Y. Su, and G. Hu. Question difficulty prediction for
reading problems in standard tests. In Proceedings of

the AAAI Conference on Artificial Intelligence,
volume 31, 2017.

[15] X. J. Hunt, I. K. Kabul, and J. Silva. Transfer
learning for education data. In Proceedings of the
ACM SIGKDD Conference, El Halifax, NS, Canada,
volume 17, 2017.

[16] A. Katharopoulos, A. Vyas, N. Pappas, and
F. Fleuret. Transformers are rnns: Fast autoregressive
transformers with linear attention. In International
Conference on Machine Learning, pages 5156–5165.
PMLR, 2020.

[17] N. Kitaev, L. Kaiser, and A. Levskaya. Reformer: The
efficient transformer. arXiv preprint arXiv:2001.04451,
2020.

[18] N. Li, S. Liu, Y. Liu, S. Zhao, and M. Liu. Neural
speech synthesis with transformer network. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 6706–6713, 2019.

[19] Q. Liu, Z. Huang, Y. Yin, E. Chen, H. Xiong, Y. Su,
and G. Hu. Ekt: Exercise-aware knowledge tracing for
student performance prediction. IEEE Transactions
on Knowledge and Data Engineering, 33(1):100–115,
2019.

[20] T. Q. Nguyen and J. Salazar. Transformers without
tears: Improving the normalization of self-attention.
arXiv preprint arXiv:1910.05895, 2019.

[21] S. Pandey and G. Karypis. A self-attentive model for
knowledge tracing. arXiv preprint arXiv:1907.06837,
2019.

[22] D. Shin, Y. Shim, H. Yu, S. Lee, B. Kim, and Y. Choi.
Saint+: Integrating temporal features for ednet
correctness prediction. arXiv preprint
arXiv:2010.12042, 2020.

[23] Y. Su, Q. Liu, Q. Liu, Z. Huang, Y. Yin, E. Chen,
C. Ding, S. Wei, and G. Hu. Exercise-enhanced
sequential modeling for student performance
prediction. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[24] C. Sung, T. I. Dhamecha, and N. Mukhi. Improving
short answer grading using transformer-based
pre-training. In International Conference on Artificial
Intelligence in Education, pages 469–481. Springer,
2019.

[25] Y. Tay, D. Bahri, L. Yang, D. Metzler, and D.-C.
Juan. Sparse sinkhorn attention. In International
Conference on Machine Learning, pages 9438–9447.
PMLR, 2020.

[26] Y. Tay, M. Dehghani, S. Abnar, Y. Shen, D. Bahri,
P. Pham, J. Rao, L. Yang, S. Ruder, and D. Metzler.
Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020.

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[28] S. Wang, B. Li, M. Khabsa, H. Fang, and H. Ma.
Linformer: Self-attention with linear complexity.
arXiv preprint arXiv:2006.04768, 2020.

[29] Y. Yin, Q. Liu, Z. Huang, E. Chen, W. Tong,
S. Wang, and Y. Su. Quesnet: A unified
representation for heterogeneous test questions. In
Proceedings of the 25th ACM SIGKDD International

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 293

Conference on Knowledge Discovery & Data Mining,
pages 1328–1336, 2019.

[30] L. Zhang, X. Xiong, S. Zhao, A. Botelho, and N. T.
Heffernan. Incorporating rich features into deep
knowledge tracing. In Proceedings of the fourth (2017)
ACM conference on learning@ scale, pages 169–172,
2017.

294 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Toward Improving Student Model Estimates through
Assistance Scores in Principle and in Practice

Napol Rachatasumrit
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213
napol@cmu.edu

Kenneth R. Koedinger
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213

koedinger@cmu.edu

ABSTRACT
Student modeling is useful in educational research and tech-
nology development due to a capability to estimate latent
student attributes. Widely used approaches, such as the
Additive Factors Model (AFM), have shown satisfactory re-
sults, but they can only handle binary outcomes, which may
yield potential information loss. In this work, we propose
a new partial credit modeling approach, PC-AFM, to sup-
port multi-valued outcomes. We focus particularly on the
amount of assistance, that is, the number of error feedback
and hint messages, a student needs to get a problem step
correct. Because errors and hint requests may not only de-
rive from student ability, but also from non-cognitive fac-
tors (e.g., students may game the system), we first test PC-
AFM on synthetic data where this source of variation is not
present. We confirm that PC-AFM is indeed better than
AFM in recovering the true student and knowledge com-
ponent (KC) parameters and even predicts student error
rates better than a model fit to error rates. We then ap-
ply the approach to six real-world datasets and find that
PC-AFM outperforms AFM in reliable estimation of KC
parameters and produces better generalization to new stu-
dents, which requires better KC estimates. However, con-
sistent with the hypothesis that student assistance behavior
is driven by motivational or meta-cognitive factors beyond
their ability, we found that PC-AFM was not better in reli-
able estimation of student parameters nor in generalization
across items, which requires accurate student estimates. We
propose cross-measure cross-validation as a general method
for comparing alternative measurement models for the same
desired latent outcome.

Keywords
Additive Factors Model, Student Modeling, Model Compar-
ison, Learning Curves

1. INTRODUCTION
Student modeling has been an important tool that researchers
can use to estimate latent student abilities. Similarly, in-
telligent tutoring systems also depend on how accurately
we can predict student mastery to deliver efficient adap-
tive learning. Current popular approaches, such as Additive
Factors Model (AFM) [4, 18, 13] and Bayesian Knowledge
Tracing (BKT) [5, 13], perform reasonably well by includ-
ing the growth factors in their models. However, they are
restricted by using only binary student performance (e.g.
correct/incorrect response), which could suffer from an in-
formation loss due to its dichotomized nature.

For example, many existing intelligent tutoring systems (ITS)
support step-by-step interactions [22], which usually allow
students to try multiple attempts or request for hints un-
til they are able to complete the step correctly. These in-
teractions are important for an ITS because it allows the
system to provide immediate feedback or support an adap-
tive experience, while collecting a rich interaction dataset
on student actions. However, since AFM and BKT can only
handle binary outcomes, the student data is needed to be
aggregated through a rollup procedure before we can use it
in student modeling. This means only success on students’
first attempt on each step will be included in the data, and
the rest of the actions (e.g. other attempt or hint requests)
will be ignored. To illustrate how this could be problem-
atic, let’s imagine student A who had one incorrect attempt
on a step before correctly completing it and student B who
had multiple incorrect attempts and asked for multiple hints
on the same step before getting it right. The dichotomous
model like AFM and BKT would treat both students as the
same on this particular step, but we can see that it is more
likely that student A has demonstrated better knowledge
than student B.

In our case, we are concerned with having a raw measure
of student success at each assessment opportunity. There
are different functions for producing or deriving an outcome
measure for the data available in a tutoring system. Perhaps
the most typical function is: first transaction correct = 1;
otherwise = 0 where both hints and incorrect responses are
both counted as a failure. While there are multiple ways
to elicit polytomous outcomes from ITS student data, in
this work we focus on an assistant score, which is a total
number of incorrect attempts and hint requests combined
for each step. From our preliminary analysis, we found that

Napol Rachatasumrit and Kenneth Koedinger “Toward Improving Student
Model Estimates through Assistance Scores in Principle and in Practice”.
2021. In: Proceedings of The 14th International Conference on Educational
Data Mining (EDM21). International Educational Data Mining Society,
295-301. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 295

there are correlations between assistance scores and AFM’s
predicted error rate, which suggests that there could be an
extra information in assistance scores compared to a binary
correctness outcome.

In this work, we are interested in whether or not an assis-
tance score model could be a better predictor of student’s
change in performance than a dichotomous model like AFM.
Particularly, our research questions are: (1) How can we de-
velop an effective statistical measurement model that uses
assistance scores? and (2) How do we compare two different
response models?

A popular approach to compare different cognitive models
in Educational Data Mining is to use goodness-of-fit (e.g.
Bayesian Information Criterion), but it is not applicable in
our scenario because our model is based on different out-
comes (correctness vs assistance score). Alternative versions
of measures of predictor variables can be contrasted through
cross validations, but it becomes inadequate when the out-
come variables are different. We also discuss a set of strate-
gies for addressing the general problem of how to compare
alternative measurement models for the same desired latent
outcome. Particularly, how do we compare a binary correct-
ness model with a polytomous Assistance Score model?

We propose a new cognitive modeling approach to support
polytomous outcomes and demonstrated its ability to re-
cover parameters and predict student error rates better than
AFM in synthetic data. We then evaluated our model to six
real-world datasets spanning five different domains from the
DataShop repository [10]. We found that our model outper-
forms AFM in most Student-blocked CVs and estimating
KC parameters, but it falls short at estimating student in-
tercepts. We hypothesize that our model is struggling to es-
timate student parameters in the real-world datasets due to
variance in students’ help-seeking behavior, such as gaming-
the-system, that leads to the extra variance in Assistance
Scores above and beyond the variance associated with stu-
dent ability.

2. RELATED WORK
2.1 Item Response Theory with Partial Credit
Item Response Theory (IRT) models [6] is the preferred
method used in several state assessments in the United States
and international assessments [8]. The goal of the IRT model
is to estimate the latent construct (e.g. student ability) and
item characteristics (item difficulty) based on only a collec-
tion of responses.

The simplest variation of IRT is the Rasch model (1PL
model) [19], which is characterized by a single parameter
representing item difficulty (dj), and a single parameter rep-
resenting student ability (ai). As Eq.1 is equivalent to a
logistic function, the Rasch model is essentially a logistic
regression model.

p(rij = 1) =
1

1+−(ai−dj)
(1)

Other variations increase the complexity by introducing ex-
tra parameters. For example, the 2PL model adds a discrim-

ination parameter for each item that controls the slope of
the logistic function, and the 3PL model that also includes
a pseudo-guessing parameter for each item. Even though,
these models are characterized by a different number of pa-
rameters, they are all based on dichotomous response data
(e.g. correctness). There is another class of IRT models
that can be applied to polytomous outcomes, where each
response can be a different value [17, 21]. An example of re-
sponses that is applicable to this class of models are Likert
scale. There are different variations of polytomous IRT mod-
els, such as Partial Credit Model (PCM) [14], Generalized
Partial Credit Model (GPCM) [15], and Graded Response
Model (GRM) [20].These polytomous models are generalized
from the dichotomous IRT models and can be reduced to the
dichotomous IRT models when there are only two response
categories. Our model extends the polytomous model to in-
clude growth factor by applying a similar approach to PCM
to AFM.

2.2 Knowledge Tracing Approaches
Intelligent tutoring systems (ITS) have been shown to be
effective in improving student learning outcomes across dif-
ferent domains [2, 9], and mastery learning strategies have
been an important component in these systems. To im-
plement mastery learning, knowledge tracing techniques are
regularly utilized by ITSs [7] to adaptively assess students’
knowledge states, which is used to decide when students have
mastered skills and are ready to move on to other skills.

In many existing ITSs, such as Cognitive Tutor Authoring
Tools (CTAT) [1], students are given a number of practice
opportunities for each skill , and students are usually allowed
to try multiple attempts or request for hints until they are
able to successfully complete the step on each practice op-
portunity. The goal of a knowledge tracing algorithm when
used for mastery learning is to determine when to stop giv-
ing students practice opportunities for the given skill.

Knowledge tracing is often performed by a statistical model
of student learning that could be fit to data. There are
two popular families of methods [12]: Bayesian Knowledge
Tracing (BKT) [5, 13] and Additive Factors Model (AFM)
[4, 18, 13]. Both methods include growth factors in order to
estimate students’ performance as it is changing with learn-
ing. BKT models student knowledge as a latent variable
in a Hidden Markov Model. AFM is an extension of the
IRT model that includes learning opportunity counts in the
model. Even though these methods have been proven to
work well in many scenarios, they are based on the binary
error measurement model (correct or incorrect) and thus do
not make use of potential added information from the num-
ber of error and hint messages a student may receive. Our
approach explores this opportunity by extending AFM to
use such multi-valued or polytomous outcomes in hopes of
better estimating student knowledge. While other variations
on AFM, such as Performance Factor Analysis (PFA) [18]
and individualized AFM (iAFM) [13], have been shown in
some cases to produce better prediction fit than AFM, we
chose to use AFM to simplify the contrast between binary
and polytomous measurement models and with the goal of
producing more parsimonious and interpretable parameter
estimates. Future work can explore alternatives.

296 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

2.3 DataShop Data Features
In this work, we use a variety of real world datasets across
different domains from the DataShop repository [10]. Learn-
Lab’s DataShop (http://learnlab.org/datashop) is an open
data repository of educational data with associated visual-
ization and analysis tools, which has data from thousands of
students derived from interactions with on-line course ma-
terials and intelligent tutoring systems.

In DataShop terminology, Knowledge Components (KCs)
are used to represent pieces of knowledge, concepts or skills
that students need to solve problems [11]. When a specific
set of KCs are mapped to a set of instructional tasks (usually
steps in problems) they form a KC Model, which is a specific
kind of student model.

Each dataset in DataShop consists of a set of student trans-
actions, which is a collection of students’ interactions with
ITSs. The collected students’ actions include (but not lim-
ited to) correct attempts, incorrect attempts, and hint re-
quests. The transactions that belong to the same prac-
tice opportunity get aggregated into a single students’ step
through the rollup procedure. The correctness of the step
depends on the result of the student’s first response for the
practice opportunity, and the total number of incorrect at-
tempts and hint requests is reported as an Assistance Score
of the step. Most existing knowledge tracing algorithms use
students’ steps, rather than transactions, in their models.

3. METHOD
The Additive Factors Model (AFM) [4] is a logistic regres-
sion that extends Item Response Theory by incorporating a
growth or learning term. The model gives the probability pij
that a student i will get a problem step j correct based on the
student’s baseline ability (θi), the baseline difficulty of the
related KCs on the problem step (βk), and the learning rate
of the KCs (γk). The learning rate represents the improve-
ment on a KC with each additional practice opportunity, so
it is multiplied by the number of practice opportunities (Tik)
that the student already had on the KC.

log(
pij

1− pij
) = θi + Σk(qjkβk + qjkγkTik) (2)

Our extension of AFM to support a polytomous outcome
measure, like Assistance Score, is inspired by the Partial
Credit Model (PCM) [14], which is an adjacent-categories
logit model [21]. The model was designed to work with or-
dered polytomous response categories with a specific order
or ranking of responses, which is the case for Assistance
Score. It is widely applied in aptitude testing to allow for
partial credit for near correctness of a response. In adjacent-
categories logit models, we model the odds of a higher cat-
egory relative to the adjacent lower one, and this paired
comparison creates the ordering of the categories.

Assistance Score can be interpreted in the partial credit
framework as follows. A student who gets a problem step
correct on their first try or after fewer errors or hint requests
is more likely to have the associated competence than a stu-
dent who makes many errors or requests multiple hints be-
fore getting the step correct. Thus, students making no er-

rors and needing no hints get full credit (Assistance Score =
0) and students with errors and/or hint requests get partial
credit in rough proportion to the number hint and errors.

The Partial Credit Additive Factors Model (PC-AFM) builds
upon these two different statistical models, AFM and PCM.
For a student i and a step j, there is a set of probabilities
Pij = {pija; a = 0, 1, ..., A} describing the chance for student
i to get Assistance Score a on the step j, where A is the max-
imum Assistance Score. In this work, we decided to limit an
Assistance Score at 5 because values above this tend not to
be meaningful and rare, but extreme outliers (e.g., where
assistance score is over 20 or even 140!) would significantly
bias the model. 98% of our data have an Assistance Score
of 5 or less. We extend AFM to use multivariate general-
ized linear mixed model, and the link function in logistic
regression takes the vector-valued form.

flink(Pij) =

flink,1(Pij)
...

flink,A(Pij)

 =

 log(
pij1
pij0

)

...
log(

pijA
pijA−1

)

 (3)

Note that flink,0 is not included due to the number of non-
redundant probabilities. PC-AFM use adjacent-categories
logits as a link function based on PCM. The ath adjacent-
categories logit is the logit of getting an Assistance Score
a versus a − 1. Each link function is an extended version
of AFM’s linear model (Eq. 2) with a level parameter (αa),
which represents the difficulty to improve from an Assistance
Score a to a− 1.

flink,a(Pij) = θi + αa + Σk(qjkβk + qjkγkTik) (4)

Inverting this function gives an expression for the probabil-
ities of student i to complete a problem step j with each of
the possible Assistance Scores a.

pija = eλa

ΣAi=0e
λi

λa =

{
0 if a = 0

Σa
l=1flink,l(Pij) otherwise

(5)

4. EXPERIMENT
We conduct experiments on both synthetic data and real
student data to evaluate the performance of PC-AFM. We
used the synthetic data to validate PC-AFM’s parameter re-
covery capability and examine our evaluation strategy in a
synthetic environment in which Assistance Score is stochas-
tically derived from student ability alone. In particular, As-
sistance Scores in the synthetic data are not confounded by
other student variations, such as their motivational state.
We hypothesized that PC-AFM would work less effectively
with the real student data because of non-ability effects on
Assistance Score, such as students’ help seeking strategies
or propensity to game the system.

While goodness-of-fits metrics, such as BIC, are widely used

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 297

to compare different cognitive models [16], such as knowl-
edge tracing algorithms, it is not applicable in our case due
to the difference of outcome measures between AFM and
PC-AFM. The challenge is how we can compare models that
are based on different outcomes (error rate vs Assistance
Score), while targeting the same desired latent measure (e.g.
student’s ability).

We explore two strategies to tackle this comparison problem.
The first approach is to use parameter estimate reliability in
split-half comparisons. Since both AFM and PC-AFM share
the majority of their parameters (student intercepts, KC in-
tercepts, and KC slopes), we can compare their parameter
recovery capability. However, unlike synthetic data, the true
parameters are not known in real data, so we need to use
the reliability of parameter estimates in split-half compar-
isons instead. Another strategy is to compare cross-measure
predictions. The assumption is that if a model based on
polytomous outcomes (Assistance Score) yields better accu-
racy than a model based on binary outcomes (error rate)
in predicting both polytomous and binary outcomes, the
polytomous model will be demonstrated to be a better mea-
surement model. This strategy is applicable in our scenario
because there are connections between both outcomes. Since
a student step is considered correct only when there is no
assistance, the error rate can be derived by calculating the
probability of Assistance Score = 0. On the other hand,
we can convert the error rate to a probability of an Assis-
tance Score by calculating the likelihood, where given an
error rate p, the probability of having an Assistance Score
a is (1 − p)pa. Then we can use CVs on both measures to
compare the models.

4.1 Experiment 1: Synthetic Data
In order to validate PC-AFM capability to recover student
and KC parameters, we synthetically generate datasets of
student steps based on a logistic regression model. Given a
set of student and KC parameters together with an oppor-
tunity count, a distribution over Assistance Scores is deter-
mined. We then sample once from the distribution to gener-
ate an Assistance Score of that student step. We generated
6 datasets of varying numbers of students and KCs, of which
the true student and KC parameters are known, to examine
parameter recovery capacity of PC-AFM in comparison to
AFM. In each generated dataset, student intercepts range
from -2 to 2, KC intercepts range from -1 to 1, and KC
slopes range from 0 to 0.5. The number of KCs ranges from
8 to 32, and the number of students range from 25 to 200.

We also evaluate both models with three types of cross-

Table 1: Correlation between true and estimated parameters
in synthetic data.

Dataset Stu Intercept KC Intercept KC Slope
PC AFM PC AFM PC AFM

KC8 S25 0.978 0.954 0.996 0.802 0.914 0.675
KC8 S50 0.973 0.936 0.998 0.985 0.972 0.964
KC8 S100 0.973 0.931 1.000 0.984 0.952 0.909
KC8 S200 0.975 0.936 1.000 0.979 0.975 0.735
KC16 S50 0.990 0.977 0.998 0.780 0.962 0.933
KC32 S50 0.996 0.988 0.995 0.799 0.929 0.543

Table 2: Correlation between split-halves parameters in syn-
thetic data

Dataset Stu Intercept KC Intercept KC Slope
PC AFM PC AFM PC AFM

KC8 S25 0.932 0.828 0.990 0.895 0.912 0.498
KC8 S50 0.963 0.906 0.998 0.931 0.972 0.945
KC8 S100 0.980 0.941 0.998 0.850 0.969 0.888
KC8 S200 0.871 0.790 0.999 0.955 0.910 0.894
KC16 S50 0.947 0.857 0.997 0.947 0.927 0.843
KC32 S50 0.967 0.942 1.000 0.883 0.997 -0.345

validation (CV), Random (data points are split randomly),
Student-blocked (data points are split by student), and Item-
blocked (data points are split by item), to demonstrate if
our model training on Assistance Score, can outperform a
dichotomous model training on error rate in predicting di-
chotomous outcomes.

We report on results for each of six different synthetic datasets
by comparing PC-AFM and AFM. We found that PC-AFM
better recovers the true student and KC parameters than
AFM in almost all comparisons using correlation (Table 1).
All contrasts are the same using mean absolute error. As
the number of students goes up, both models tend to better
recover the true parameters. The correlations of parameters
in split-half comparison are reported in Table 2, which show
a similar pattern to the correlation between estimated and
true parameters. This demonstrates that the parameter cor-
relation in split-half comparisons, which can be computed in
real data, is a reasonable proxy for true parameter recovery,
which cannot be computed in real data.

Figure 1 illustrates better true parameter recovery using
Assistance Score and PC-AFM than using error rate and
AFM. PC-AFM parameter estimates (red x’s) are generally
accurate across the spectrum of known parameter values (x-
axis), as can be seen by their closeness to the line, which is
identity function (intercept of 0, slope of 1). AFM estimates
(blue dots) are generally biased toward the extremes. For
student intercepts (Figure 1a), low prior knowledge students
are estimated by error rate/AFM to be worse than they are
and high prior knowledge students are estimated to be better
than they are. For KC intercepts (Figure 1b), hard KCs (on
the left) are estimated by error rate/AFM to be even harder
than are. For hard KCs, most responses are errors, yield-
ing quite low estimates by error rate/AFM. But, these same
steps show more variance in Assistance Score/PC-AFM as
somewhat better students and higher opportunities will pro-
duce lower, but non-zero Assistance Scores (i.e., not chang-
ing in error rate).

In error rate CV results, except Item-blocked CV where
both models perform similarly, PC-AFM outperforms AFM
in all other CVs (Table 4). Recall that these CV evalua-
tions require PC-AFM, while fit to Assistance Score (poly-
tomous outcome), to predict error rate (dichotomous out-
come). When we turn the tables and compare methods on
predicting Assistance Score, we find a similar pattern where
PC-AFM yields better accuracy in most CVs (Table 3).

4.2 Experiment 2: Real student data

298 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 1: Using Assistance Score and PC-AFM on synthetic data produces better estimates of the true parameters, for all three
of student intercepts, KC intercepts, and KC slopes than does using error rate and AFM.

Table 3: Cross-validation results (RSME) in synthetic data
predicting Assistance Score in the test set by estimating pa-
rameters based on Assistance Score (PC-AFM) or on Error
Rate (AFM) in the training set.

Dataset Random Stu-Blocked Item-Blocked
PC AFM PC AFM PC AFM

KC8 S25 0.546 0.598 0.542 0.600 0.586 0.634
KC8 S50 0.544 0.599 0.541 0.601 0.575 0.610
KC8 S100 0.536 0.596 0.532 0.599 0.550 0.602
KC8 S200 0.541 0.597 0.537 0.600 0.541 0.597
KC16 S50 0.540 0.600 0.537 0.601 0.566 0.604
KC32 S50 0.540 0.587 0.539 0.590 0.579 0.626

In the second experiment, we examine PC-AFM across a
variety of real world datasets. We used 6 datasets across
different domains (statistics, English articles, algebra, and
geometry) from the DataShop repository. Table 5 shows
the number of students, items, KCs, total transactions for
each dataset. For each dataset, we use the KC model that
achieves the best BIC reported on the DataShop repository.
All KC models coded a single KC per step. The number of
KCs ranges from 9 to 64, and the number of students ranges
from 52 to 318.

For each dataset, we evaluated both PC-AFM and AFM on
5 independent runs of 3-fold CVs of each type predicting
both Assistance Score and error rate. We report the result
of Assistance Score CVs in Table 6 and the results of error
rate CVs in Table 7. We found that PC-AFM outperforms
AFM in Student-blocked in both Assistance Score and error

Table 4: Cross-validation results (RSME) in synthetic data
predicting Error Rate in the test set by estimating parame-
ters based on Assistance Score (PC-AFM) or on Error Rate
(AFM) in the training set.

Dataset Random Stu-Blocked Item-Blocked
PC AFM PC AFM PC AFM

KC8 S25 0.275 0.278 0.310 0.306 0.370 0.430
KC8 S50 0.273 0.280 0.282 0.304 0.356 0.297
KC8 S100 0.273 0.277 0.283 0.300 0.387 0.449
KC8 S200 0.271 0.275 0.278 0.295 0.278 0.282
KC16 S50 0.277 0.281 0.278 0.311 0.301 0.294
KC32 S50 0.287 0.291 0.292 0.320 0.358 0.347

Table 5: Real Student Dataset.
Dataset Domain #Stu #Item #KC

ds308 College Statistics 52 113 9
ds313 English articles 120 85 26
ds372 English articles 99 84 15
ds388 Middle School math 318 64 64
ds392 Geometry 123 2035 43
ds394 English articles 97 180 13

rate CVs in most datasets, which suggests that PC-AFM can
achieve better estimates of KC parameters. To validate the
hypothesis, we investigated split-halves parameters correla-
tion of both models. We splitted the datasets on students to
evaluate KC slopes and intercepts correlation, and we split-
ted the datasets on KCs to evaluate students’ intercepts (Ta-
ble 8). On average, PC-AFM yields better correlations of
both KC intercepts (0.954 vs 0.946) and KC slopes (0.600 vs
0.563), but correlations of student intercepts is significantly
higher for AFM (0.784 vs 0.495).

5. DISCUSSION
Assistance score should, in principle, improve model param-
eter estimates and predictions based on them. A student
who gets a step correct after just one error or one hint (As-
sistance Score = 1) is likely to be closer to full acquisition
of a KC than a student who makes an error and requests 3
hints (Assistance Score = 4). However, the error rate metric
commonly used with BKT and AFM treats these the same,
since the student was not correct on their first attempt at
the step without a hint. Thus, there is potentially extra in-

Table 6: Cross-validation results (RSME) in real data pre-
dicting Assistance Score in the test set by estimating param-
eters based on Assistance Score (PC-AFM) or on Error Rate
(AFM) in the training set.

Dataset Random Stu-Blocked Item-Blocked
PC AFM PC AFM PC AFM

ds308 0.376 0.376 0.381 0.378 0.384 0.388
ds313 0.541 0.528 0.551 0.554 0.549 0.555
ds372 0.478 0.463 0.480 0.481 0.484 0.487
ds388 0.672 0.649 0.682 0.703 0.702 0.703
ds392 0.385 0.354 0.386 0.387 0.385 0.390
ds394 0.499 0.486 0.499 0.499 0.504 0.510

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 299

Table 7: Cross-validation results (RSME) in real data predict-
ing Error Rate in the test set by estimating parameters based
on Assistance Score (PC-AFM) or on Error Rate (AFM) in
the training set.

Dataset Random Stu-Blocked Item-Blocked
PC AFM PC AFM PC AFM

ds308 0.336 0.326 0.332 0.328 0.341 0.339
ds313 0.417 0.408 0.413 0.440 0.435 0.424
ds372 0.379 0.377 0.383 0.402 0.388 0.387
ds388 0.454 0.421 0.439 0.470 0.501 0.456
ds392 0.324 0.324 0.325 0.333 0.325 0.325
ds394 0.395 0.391 0.388 0.418 0.403 0.403

formation about students’ level of knowledge acquisition in
the Assistance Score not present in error rate. On the other
hand, prior research, for example on gaming the system [3],
suggests there are other reasons students may produce re-
peated incorrect entries or hint requests. These may pro-
duce enough confounding variance to make using Assistance
Score worse at accurate latent parameter estimation than
using error rate.

In developing a statistical model, PC-AFM, to convert As-
sistance Scores to knowledge acquisition estimates, we first
wanted to confirm that PC-AFM works as intended and is
able to benefit from extra information in Assistance Score
when no confounding sources for Assistance Score variation
are present. Indeed, when we generate synthetic data where
Assistance Scores are stochastically produced from known
latent parameters, we demonstrate better parameter recov-
ery using Assistance Score and PC-AFM than using error
rate and AFM. As shown in Figure 1, PC-AFM estimates
of student parameters are better correlated with true param-
eters and the AFM estimates are baised at the extremes.

This parameter recovery method for comparing these two
different measurement models cannot be applied to real datasets
because the true parameters are unknown. Thus, we em-
ployed we explored two other approaches: parameter esti-
mate reliability and our novel cross-measure cross-validation
approach. We demonstrated better parameter estimate re-
liability (in split-halves comparisons) using PC-AFM than
AFM. We also show how it is possible to use cross-measure
predictions to evaluate which of two different measurement
models works better, call them M1 and M2. We show that
estimating based on M1 (e.g., assistant score) can predict
M2 (e.g., error rate) on held-out data better than estimat-
ing based on M2 itself (e.g., error rate). We believe this
cross-measure cross-validation is a novel approach for com-
paring measurement models.

Assessing whether Assistance Score is a better measure than
Error Rate in real student data is complicated in two ways.
First, we do not have access to the true parameters in real
datasets, so we turn to measures of reliability and predictive
validity. Second, we know from models of gaming the sys-
tem and help seeking that students may produce Assistance
Scores for motivational and metacognitive reasons that are
potentially independent of a mastery source. In other words,
Assistance Scores have a student-driven source of variation
that may reduce their effectiveness in estimating student

Table 8: Split-halves parameters correlation in real data.
Dataset Stu Intercept KC Intercept KC Slope

PC AFM PC AFM PC AFM

ds308 0.113 0.486 0.971 0.955 0.745 0.583
ds313 0.490 0.830 0.948 0.937 0.865 0.905
ds372 0.427 0.803 0.985 0.968 0.433 0.639
ds388 0.567 0.873 0.946 0.945 0.225 0.354
ds392 0.830 0.901 0.973 0.964 0.494 0.485
ds394 0.541 0.809 0.904 0.906 0.838 0.413

mastery. We hypothesize that our model is struggling to
estimate student parameters in the real-world datasets due
to variance in students’ help seeking behavior.

We found that in real world datasets PC-AFM can better es-
timate KC parameters than AFM, which results in PC-AFM
outperforming AFM in Student-blocked CVs. KC parame-
ters estimates significantly impact Student-blocked CVs be-
cause they are the sole driver of these predictions. Poor stu-
dent estimates do not impact Student-blocked CVs because
they are not carried from the training to test as blocking
means there are different students in the test than training.
It does impact Random CVs and Item-blocked CVs because
they are likely to have some students showing up in both
test and training.

6. CONCLUSION AND FUTURE WORK
We investigated whether or not Assistance Score provides
a better measurement model than error rate for estimating
student’s ability. To pursue this question, we developed a
statistical model, PC-AFM, that utilizes Assistance Score.
We also faced the more general problem of how to compare
alternative measurement models for the same desired latent
outcome. In typical model comparison the predicted out-
come measure stays the same, but such comparison does not
work when the outcome measures are different. We proposed
two strategies to tackle this problem: parameter estimate re-
liability in split-halves comparisons and a new approach we
call, cross-measure cross-validation. We demonstrated that
these strategies work well by using synthetic data to show
that a model that better recovers parameters will also yield
better results with these strategies.

We demonstrated that PC-AFM outperforms AFM when
Assistance Scores are synthesized to be meaningful, but its
performance is hindered by non-ability variance in students’
behavior in the real-world datasets. Future work can explore
this finding by synthesizing Assistance Scores that derive
from both ability and motivational factors.

Future work can also test our measurement model compar-
ison strategies. For example, while it has been standard
practice in many tutoring systems to count hints as errors
(M1), some have wondered whether it would be better to not
count hints as errors (M2). Our measurement model com-
parison techniques, split-half reliability and cross-measure
cross-validation, can be used to compare M1 and M2 to in-
fer which provides better estimates of student ability.

7. REFERENCES

300 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

[1] V. Aleven, B. M. McLaren, J. Sewall, and K. R.
Koedinger. The cognitive tutor authoring tools (ctat):
Preliminary evaluation of efficiency gains. In
International Conference on Intelligent Tutoring
Systems, pages 61–70. Springer, 2006.

[2] J. R. Anderson, A. T. Corbett, K. R. Koedinger, and
R. Pelletier. Cognitive tutors: Lessons learned. The
journal of the learning sciences, 4(2):167–207, 1995.

[3] R. Baker, J. Walonoski, N. Heffernan, I. Roll,
A. Corbett, and K. Koedinger. Why students engage
in “gaming the system” behavior in interactive
learning environments. Journal of Interactive Learning
Research, 19(2):185–224, 2008.

[4] H. Cen, K. Koedinger, and B. Junker. Learning
factors analysis–a general method for cognitive model
evaluation and improvement. In International
Conference on Intelligent Tutoring Systems, pages
164–175. Springer, 2006.

[5] R. S. d Baker, A. T. Corbett, and V. Aleven. More
accurate student modeling through contextual
estimation of slip and guess probabilities in bayesian
knowledge tracing. In International conference on
intelligent tutoring systems, pages 406–415. Springer,
2008.

[6] S. E. Embretson and S. P. Reise. Item response theory.
Psychology Press, 2013.

[7] Y. Gong and J. E. Beck. Towards detecting
wheel-spinning: Future failure in mastery learning. In
Proceedings of the second (2015) ACM conference on
learning@ scale, pages 67–74, 2015.

[8] W. Harlen. The assessment of scientific literacy in the
oecd/pisa project. 2001.

[9] K. R. Koedinger, J. R. Anderson, W. H. Hadley,
M. A. Mark, et al. Intelligent tutoring goes to school
in the big city. International Journal of Artificial
Intelligence in Education, 8(1):30–43, 1997.

[10] K. R. Koedinger, R. S. Baker, K. Cunningham,
A. Skogsholm, B. Leber, and J. Stamper. A data
repository for the edm community: The pslc datashop.

Handbook of educational data mining, 43:43–56, 2010.

[11] K. R. Koedinger, A. T. Corbett, and C. Perfetti. The
knowledge-learning-instruction framework: Bridging
the science-practice chasm to enhance robust student
learning. Cognitive science, 36(5):757–798, 2012.

[12] K. R. Koedinger, S. D’Mello, E. A. McLaughlin, Z. A.
Pardos, and C. P. Rose. Data mining and education.
Wiley Interdisciplinary Reviews: Cognitive Science,
6(4):333–353, 2015.

[13] R. Liu and K. R. Koedinger. Towards reliable and
valid measurement of individualized student
parameters. International Educational Data Mining
Society, 2017.

[14] G. N. Masters. A rasch model for partial credit
scoring. Psychometrika, 47(2):149–174, 1982.

[15] E. Muraki. A generalized partial credit model:
Application of an em algorithm. ETS Research Report
Series, 1992(1):i–30, 1992.

[16] A. A. Neath and J. E. Cavanaugh. The bayesian
information criterion: background, derivation, and
applications. Wiley Interdisciplinary Reviews:
Computational Statistics, 4(2):199–203, 2012.

[17] R. Ostini and M. L. Nering. Polytomous item response
theory models. Number 144. Sage, 2006.

[18] P. I. Pavlik Jr, H. Cen, and K. R. Koedinger.
Performance factors analysis–a new alternative to
knowledge tracing. Online Submission, 2009.

[19] G. Rasch. Studies in mathematical psychology: I.
probabilistic models for some intelligence and
attainment tests. 1960.

[20] F. Samejima. Graded response model. In Handbook of
modern item response theory, pages 85–100. Springer,
1997.

[21] F. Tuerlinckx and W.-C. Wang. Models for
polytomous data. In Explanatory Item Response
Models, pages 75–109. Springer, 2004.

[22] K. VanLehn. The behavior of tutoring systems.
International journal of artificial intelligence in
education, 16(3):227–265, 2006.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 301

Learning Expert Models for Educationally Relevant Tasks
using Reinforcement Learning

Christopher J. MacLellan
College of Computing and Informatics

Drexel University
Philadelphia, PA 19104

christopher.maclellan@drexel.edu

Adit Gupta
College of Computing and Informatics

Drexel University
Philadelphia, PA 19104
ag3338@drexel.edu

ABSTRACT
There has been great progress towards Reinforcement Learn-
ing (RL) approaches that can achieve expert performance
across a wide range of domains. However, researchers have
not yet applied these models to learn expert models for ed-
ucationally relevant tasks, such as those taught within tu-
toring systems and educational games. In this paper we
explore the use of Proximal Policy Optimization (PPO) [25]
for learning expert models for tutoring system tasks. We
explore two alternative state and action space representa-
tions for this RL approach in the context of two intelligent
tutors (a fraction arithmetic tutor and a multicolumn addi-
tion tutor). We compare the performance of these models to
a computational model of learning built using the Appren-
tice Learner architecture. To evaluate these models, we look
at whether they achieve mastery and how many training op-
portunities they take to do so. Our analysis shows that at
least one PPO model is able to successfully achieve mas-
tery within both tutors, suggesting that RL models might
be successfully applied to learn expert models for educa-
tionally relevant tasks. We find that the Apprentice model
also achieves mastery, but requires substantially less train-
ing (thousands of times less examples) than PPO. Finally,
we find that there is an interaction between the PPO rep-
resentation and task (one representation is better for one
tutor and the other representation is better for the other
tutor), suggesting that the design of the state and action
representations for RL is important for success. Our work
showcases the promise of RL for expert model discovery in
educationally relevant tasks and highlights limitations and
challenges that need further research to overcome.

Keywords
Reinforcement Learning, Simulated Students, Expert Model
Authoring

1. INTRODUCTION

Researchers have made great progress towards developing
Reinforcement Learning (RL) models that can meet or ex-
ceed human skill at complex tasks across a broad range of
domains. For example, the recently developed Proximal Pol-
icy Optimization (PPO) algorithm [25] can learn to play a
broad range of Atari games at an expert level through trial
and error. A team of five PPO-trained models can beat a
team of five human professional champions at DOTA2, a
collaborative online multiplayer battle arena game [4]. Re-
searchers have applied a related RL approach called A3C
[19] to develop agents that can beat top human experts at
Starcraft2, a multiplayer real-time strategy game [28]. Fi-
nally, RL has been applied widely to the area of robotics
and autonomous systems; e.g., RL models can fly an F16 to
beat a expert human pilots in simulated 1v1 dogfights [7].

Despite these successes, there has been surprisingly little
work exploring the applicability of RL to educationally rel-
evant tasks, such as those found in K12 or higher educa-
tion. We do not mean that RL has not been applied to sup-
port learning and education; in fact, there is a large amount
of work exploring how RL can be applied to optimize stu-
dents instructional sequences [9]. However, we assert that
there has been very little exploration of how emerging RL
approaches perform on the kinds of educationally relevant
tasks that humans often engage in; e.g., learning math.

Given this gap we might ask, what are the benefits of ap-
plying RL to educationally relevant tasks? The recent work
on computational models of learning highlights many pos-
sible benefits. First, machine learning agents can support
researchers and instructional designers in authoring cogni-
tive models [17, 30] and discovering knowledge component
models [14] that can drive personalized learning technolo-
gies. Although RL models utilize different representations
than more traditional expert-system models (e.g., statistical
representations), learned models do still represent an expert
model.1 Thus, tutors might apply these models to provide
feedback on student behaviors. Researchers and designers
might also use machine learning agents to cognitively crash
test instruction before more costly human trials [16, 15, 31].

Given these benefits, why has more work not explored the
use of recent RL methods for these tasks? One possibility is
that applying RL to educational tasks is not straightforward.
There exist toolkits, like GymAI [5], MuJoCoEnv [23], and
PyBullets [6], for interfacing RL algorithms with simulation

1An expert model maps states to correct next action(s).

Christopher Maclellan and Adit Gupta “Learning Expert Models for Edu-
cationally Relevant Tasks using Reinforcement Learning”. 2021. In: Pro-
ceedings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 302-309.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

302 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

environments and games platforms like Atari, StarCraft2,
and DOTA2. These toolkits have powered the explosion of
RL research. Unfortunately, no such interfaces exist for ed-
ucational tasks, such as those found in intelligent tutoring
systems or educational games. Also, many educational tasks
do not fit cleanly into the standard RL paradigm of observ-
ing the state, choosing an action, receiving a reward, and
repeating; e.g., many tutors let learners request hints and
worked examples, which RL systems cannot leverage.2

Beyond these challenges, it is possible that the tasks them-
selves are less attractive for RL research. For example,
educationally relevant tasks, such as fraction arithmetic,
seem simple when compared to tasks such as flying an F16
or playing DOTA2. It is possible that these tasks do not
challenge current RL systems. However, it is also possible
that these tasks present challenges that have prevented re-
searchers from successfully applying RL to them. For exam-
ple, tutor tasks often have much larger action spaces than
game-based tasks where RL has been successfully applied
(e.g., actions for inputting the numbers 1-50 in any inter-
face field vs. six buttons on an Atari controller).

In this paper, we set out to investigate these ideas and to
lay a foundation for future research programs to apply RL to
the kinds of educationally relevant tasks that humans regu-
larly engage with. Our goal is not to show that RL provides
a good model of human learning and behavior (we do not
think that it does). Instead, we simply aim to show how RL
methods might be applied to tasks relevant to human learn-
ing. Our hope is that RL approaches might offer new means
for authoring and evaluating educational technologies.

To support these investigations we present TutorGym, an
open-source toolkit for interfacing RL agents (as well as
other kinds of machine learning agents) with intelligent tu-
toring system tasks. This toolkit lets us apply RL models
to two educational environments: a fraction arithmetic tu-
tor and a multicolumn addition tutor. We developed two
PPO models that vary in their features and action repre-
sentations. We also compared these models to a previously
developed Apprentice Learner model [16], which is a more
cognitively inspired model of how people learn from exam-
ples and feedback within intelligent tutors. We conducted a
factorial study design where we applied these three models
to our two educational tasks. Our key findings are:

1. The PPO models are able to achieve mastery at these
tasks, suggesting that they do generalize from games
and robotics tasks to educationally relevant tasks;

2. The PPO models require much more training than our
Apprentice Learner model to achieve mastery (thou-
sands of times more training), even when we provide
PPO with the same background knowledge as Appren-
tice (the PPO-Operator variant). This suggests that
human-like models, such as Apprentice, are more effi-
cient than PPO.

3. We find that there is an interaction between PPO’s
representation and the task, suggesting that represen-
tation is central to RL performance and that it needs
to be tailored for each task.

2Inverse RL [1] can learn from expert examples, but typi-
cally this is done offline in batch rather than interactively
interleaved with RL.

We claim that there is an synergistic opportunity to do re-
search at the intersection of RL and education that has not
yet been fully explored and this paper aims to lay the foun-
dation for these future explorations. There are many poten-
tial ways that educational data mining and learning analytic
communities might benefit from the development and use of
RL models, such as PPO. Similarly, there is an opportunity
to improve RL by exploring its application to the kinds of
educationally relevant learning tasks that humans engage in
during K12 and higher education.

2. BACKGROUND
2.1 OpenAI Gym
OpenAI Gym is an open-source toolkit for RL development
[5]. Gym provides an standardized interface for applying RL
to tasks. An environment created with Gym has standard-
ized state and action descriptions and supports methods,
for querying the state, taking an action, and collecting re-
wards. Gym currently supports multiple environments such
as robot simulations or Atari games. Our research builds on
Gym, so that we can directly interface existing RL imple-
mentations with educationally relevant tasks without having
to create custom implementations.

2.2 Proximal Policy Optimization (PPO)
PPO is a deep RL algorithm that was recently developed by
OpenAI [25]. It is a policy gradient method that achieves
state-of-the-art performance across many tasks. We chose
PPO over alternatives, such as TRPO [24] and ACER [29],
because it supports a broad range of state and action rep-
resentations and is much easier to tune than alternatives.
For this work, we use the stable-baselines3 implementation
of the PPO algorithm, which has verified performance on
multiple RL benchmarks [22].

2.3 Apprentice Learner Architecture
The open-source Apprentice Learner Architecture [16] gen-
eralizes prior simulated student models [13, 18] and provides
a platform for investigating and comparing alternative sim-
ulated student models. Apprentice models have been suc-
cessfully applied to learn expert models for 8 different tutor
tasks spanning multiple domains (math, language, chem-
istry, and engineering) [17]. Emerging work explores the use
of Apprentice models for supporting domain experts, such as
teachers, in authoring tutors through teaching rather than
programming [30]. In this work, we use one of the stan-
dard Apprentice models as a baseline for evaluating the PPO
models because it have been successfully applied in previous
work to learn expert models for educationally relevant tasks.
For a complete description of this model see [17].

3. TUTORGYM
To support the development of machine learning agents we
created TutorGym, a toolkit that provides a machine inter-
faces for multiple tutor environments.3 TutorGym leverages
the Gym [5] to enable existing RL implementations (that
support Gym) to interface with these environments.

Our toolkit extends Gym to enable agents to request worked
examples. Tutors generate both next-step hints and feed-
back, so the examples are automatically generated by the

3We have open-sourced TutorGym under an MIT license
and made it publicly available here: https://tutorgym.ai

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 303

Figure 1: Fractions tutor, as rendered within TutorGym with
its underlying base feature representation.

underlying tutor. As RL models only learn from feedback on
actions, these interactions are mainly used by the Appren-
tice models, which learn from both examples and feedback.

TutorGym logs agent interactions in DataShop format [12],
which is a common educational data format. Outputting
data in this format lets us analyze it using the same tech-
niques used to analyze human tutor data. In particular, it
lets us conduct learning curve analysis to investigate agents’
first attempt correctness as they receive more practice.

We implemented two tutors within TutorGym: a fraction
arithmetic tutor [21] and a multicolumn addition tutor [30].
We chose these tutors because they exhibit interesting state
and action spaces characteristics that are relevant to our
analysis of emerging RL approaches.

3.1 Fraction Arithmetic Tutor
This tutor was used to study both human [21] and agent [16]
learning. It presents students with three kinds of fractions
problems: addition with the same denominator, addition
with different denominators, and multiplication. The stu-
dents check a box indicating whether they need to convert
to common denominators before solving. If the fractions
need to be converted, then they input values into the con-
version fields. The tutor requires students to convert frac-
tions to common denominators using cross multiplication.
If students do not need to convert, then they directly en-
ter values into the final fraction fields. Figure 1 shows the
visual representation of the tutor state generated by Tutor-
Gym along with the underlying attribute-value representa-
tion that it maintains internally. The tutor gives students
randomly generated problems where the initial numerators
range from 1-15, the initial denominators range from 2-15,
and the type of problem can be either addition or multipli-
cation. There is also an “easy” version of the tutor that gen-

Figure 2: Multicolumn tutor, as rendered within TutorGym
with its underlying base feature representation.

erates a much smaller range of numbers (numerators range
from 1-5 and denominators range from 2-5). The tutoring
system also has a done button (not shown) that the agent
can select and it can provide worked examples on request.

3.2 Multicolumn Addition Tutor
The second tutor was used in previous research on simulated
students [30]. It presents students with two numbers to add,
with each digit presented in its own field. To compute the
solution, the students needs to add and carry values where
necessary. The tutor requires students to enter the answer
values right to left, carrying where necessary. The tutor will
mark an answer incorrect if they have not yet filled in the
answer field to the right or they have not yet carried over
a value from the previous column (if required). Figure 2
shows a simple visual output created by TutorGym along
with the underlying attribute-value representation. The tu-
tor also has a done button (not shown) and can provide
worked example on demand.

4. LEARNING MODELS
4.1 Apprentice Learner
We created three alternative learning models to train within
the TutorGym tutors. We built our first model using the
Apprentice Learner architecture [16, 30]. From this archi-
tecture, we used the an Apprentice model developed in prior
work [17]. For each tutor, we provided the apprentice model
with background relational knowledge (for augmenting the
state description) and primitive operators (for explaining
demonstrations). For the fractions tutor, we provided equal-
ity knowledge, which adds features to the state description
for each pair of fields denoting whether they have equal val-
ues. We also provided three primitive operators: copy, add,
and multiply, which give the agent the ability to copy, add,
and multiply values from the interface.

304 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

For the multicolumn tutor, the knowledge was slightly more
complicated. We added four relational knowledge operators:
add2-ones, add2-tens, add3-ones, and add3-tens. The first
two add the values from every pair of fields in the interface
and add features to the state denoting the ones component
and tens component of each sum. Add3-ones and add3-tens
do the same, but for every triplet of fields. This provides the
agent with the ability to determine if a column of numbers
(either of length two or three) will generate a value that
needs to be carried or not. We also added these exact same
operators as primitive operators, so the agent can use them
to explain and perform the actual steps of computing each
column sums and generating the appropriate carry values.

4.2 PPO-Number
A PPO model is defined in terms of its state (input) and
action (output) representations. For the fractions and mul-
ticolumn tutors, the PPO-Number model makes use of the
base state-representations shown in Figures 1 and 2. To con-
vert these representations into a format that is acceptable
to PPO (a fixed-length feature vector), we used an approach
called one-hot encoding. Under this scheme, every unique
attribute-value pair from the state is mapped to a particular
feature in a feature vector. If the attribute-value is present
in the state, then the feature is a 1, otherwise it is a 0.

Unfortunately, precomputing all possible attribute-values is
non-trivial. To address this issue, we created an online
one-hot encoder that always outputs a vector with a fixed
length preselected by the user. Whenever the encoder en-
counters a new attribute-value, it maps it to a previously
unused feature within the vector. After a mapping between
an attribute-value and a feature has been made, that fea-
ture is only ever used to represent that particular attribute-
value. This scheme enables the use of RL approaches that
expect fixed-length vectors (PPO) even though the system
might encounter a large number of sparse features that are
not known in advance. The end result is that states from
the fraction and multicolumn tutors are mapped to fixed
length feature vectors, where every feature is either a 0 or a
1 (e.g., the initial state from Figure 2 would have a feature
for upper tens = 7 with a value of 1). For the fractions
tutor, 2000 features was sufficient to describe states in the
standard tutor and 900 features was sufficient to describe
the states in the easy tutor (with a smaller set of problems).
For the multicolumn tutor, 110 features were sufficient.

Given this state representation, PPO-Number utilizes a mul-
tidiscrete output. This type of output has multiple indepen-
dent discrete action outputs; e.g., in Atari it might have an
output for the arrow pad (left, right, up, down) and an-
other output for the action action buttons (A, B, or None).
PPO-Number also has two outputs: one that outputs a field
to enter a value into (e.g., answer num) and a second that
outputs a number to enter into that field (e.g., 1).

For the fractions tutor, there are eight fields that can be
selected for input and there are 450 possible numbers that
can be entered into one of these fields (1-450). For the easy
version of the tutor, there are only 50 possible numbers (1-
50). Taken together, this means that the standard tutor has
3,600 unique actions (8×450 = 3600) and the easy tutor has
400 unique actions (8 × 50 = 400). There are slightly less
actions in practice because outputs are ignored in certain

cases; if the system selects the done or the check convert
fields, than the number component is ignored.

For the multicolumn tutor, there are also eight possible fields
that can be selected. Each field represents a single digit,
so there are only 10 numbers that can be input into each
field (0-9). This yields a total action space of 80 actions
(8 × 10 = 80). Similar to fractions, the total is slightly less
in practice because the number component of the output is
ignored when the done button is selected.

4.3 PPO-Operator
This model uses a different state and action representation
from PPO-Number. The representation aims to mirror the
representation used by the Apprentice model. We apply
the relational knowledge used by Apprentice to augment the
base state representation from each tutor. In the fractions
tutor, we apply the equality relation to add an additional
feature describing which pairs of fields are equal. For the
multicolumn tutor, we apply the add2-one, add2-tens, add3-
ones, and add3-tens relations to compute the ones and tens
values for the sums of every unique pair and triple of values
from the tutor fields. We applied the same one-hot encoding
approach used for PPO-Number to convert attribute-values
into fixed-length feature vectors. We increased the size of
the feature vectors to support the combinatorial number of
additional relational features (2000 for fractions and 5000
for multicolumn).

The action space is multidiscrete, but the number and type
of outputs are slightly different from PPO-Number. For the
fractions tutor, the model has four outputs. The first is
similar to PPO-Number’s selection output, it identifies the
field to update with a result. There are eight possible fields
that might be updated by an action. The second output
corresponds to an operator to apply. The operators are the
same as those available to Apprentice: copy, add, or multi-
ply. The remaining two outputs correspond to fields in the
interface that provide the two argument for each operator
and there are ten possible fields that can be used for either of
these arguments. Using this scheme, an agent might choose
to update the answer num field using the add operator, and
it might provide the initial num left and initial num right
as arguments. There are 2400 possible unique actions under
this representation (8 × 3 × 10 × 10 = 2400). However, this
number is smaller in practice. If the model chooses to update
the done or check convert fields than the reset of the action
outputs are ignored. Additionally, if the model chooses to
use the copy operator, than only the first argument is used
(the second is ignored).

For the multicolumn tutor there are five outputs instead
of four. The first corresponds to a field to update (there
are eight possible fields). The second corresponds to the
operator to apply. There are five operators corresponding to
those used by Apprentice: copy, add2-tens, add2-ones, add3-
tens, add3-ones. Finally, there are three argument fields
because some of the operators (add3-tens and add3-ones)
take three arguments. There are 13 possible options for
each argument. With these outputs, there are 87,880 unique
actions (8×5×13×13×13 = 87880). In practice this number
is much smaller because if the done field is updated, then all
the other outputs are ignored. Similarly if the copy operator
is selected, than only the first argument is used (second and

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 305

Model Domain # Inputs # Discrete Outputs
Number Fractions 2000 8, 450
Number Fractions-Easy 900 8, 50
Number Multicolumn 110 8, 10
Operator Fractions 2000 8, 3, 10, 10
Operator Multicolumn 5000 8, 5, 13, 13, 13

Table 1: Size of PPO model input/output for each task.

third arguments are ignored). Finally, if the add2-tens or
add2-ones operator are selected, than the third argument is
ignored. Table 1 shows a summary of the number of inputs
and outputs for each model and tutor.

5. SIMULATION STUDY
5.1 Tuning and Training Models
We conducted a simulation study with a factorial design,
where every agent (Apprentice, PPO-Number, and PPO-
Operator) was trained in each environments (fractions and
multicolumn). The hyperparameters used by PPO greatly
affect its performance [10] and they must be tuned inde-
pendently for each model and task. We used Optuna, an
open-source hyperparameter optimization framework to au-
tomate hyperparameter search [2]. Using Optuna, we ran
approximately 100 iterations of hyperparameter tuning for
each PPO model and task pair. Tuning one model for one
task took approximately 38 hours. The Apprentice model
does not have any hyperparameters that need to be tuned.

We trained each model in each environment using the best
hyperparameters. We trained Apprentice on 500 fractions
problems and 5000 multicolumn problems. These amounts
provided enough practice to reach mastery while minimizing
unnecessary computation. We trained each PPO model for
1 million steps, which translates into a varying number of
problems depending on the amount of incorrect steps. To
analyze the simulation logs, we assigned knowledge compo-
nent labels to each field for each problem type (e.g., answer
one’s place for multicolumn), computed the first-attempt

Figure 3: Fraction arithmetic learning curves.

correctness on each knowledge components for each prob-
lem, and plotted this correctness on a log scale with values
smoothed using binomial Gaussian additive smoothing (to
account for the 0/1 nature of the correctness values).

5.2 Results
See Appendix A for the results of hyperparameter tuning.
During tuning, we were unable to get PPO-Number to con-
verge to a correct model in the fractions tutor. We hy-
pothesized this was due to the large number of actions for
this model/task. To test this hypothesis, we trained PPO-
Number on the easy fractions tutor, which has substantially
less actions. PPO-Number converged to correct behavior on
this tutor, supporting our hypothesis.

Figures 3 and 4 shows the learning curves for the different
models in the two tutor environments. We find that Ap-
prentice converges to mastery after 10 opportunities for each
knowledge component in the fractions tutor and 125 in the
multicolumn tutor. In contrast, PPO-Number requires over
10,000 opportunities to reach mastery on the easy fractions
tutor and over 10,000 practice opportunities to reach mas-
tery in the multicolumn tutor. PPO-Operator requires less
opportunities (3,000) within the fractions tutor , but never
quite reaches mastery within the multicolumn tutor, even
after 10,000 opportunities. Even though both PPO-Number
and PPO-Operator receive the amount of training steps (1
million), PPO-Operator makes more mistakes per problem
and receives less problems as a result.

5.3 Discussion
At least one PPO model was able to achieve mastery in each
tutor. PPO-Operator achieved mastery in the fractions tu-
tor and PPO-Number achieved mastery in the multicolumn
tutor. This suggests that PPO can generalize from game
and robotics tasks to tutor tasks. However, the finding that
no single representation is best suggests that the represen-
tations must be customized for each task.

PPO-Number was unable to master the standard fractions
tutor. We suspect this is due to the single output channel

Figure 4: Multicolumn addition learning curves.

306 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

with 450 actions. Based on our experience, model perfor-
mance degrades when the number of actions on one of the
multidiscrete outputs gets large. Future work should ex-
plore replacing the 450 action output with three outputs: a
hundreds digit output (0-4) a tens digit output (0-9) and a
ones digit output (0-9). We also found that PPO-Operator
was unable to achieve mastery in the multicolumn tutor.
It may achieve mastery with more training (e.g., 1.5 mil-
lion training steps rather 1 million). Assuming this is true,
then PPO-Operator, which uses the same relational and op-
erator knowledge as Apprentice seems to be more generally
applicable than PPO-Number. Apprentice achieves mastery
in both tasks with substantially less practice (thousands of
times less), suggesting Apprentice has more efficient learn-
ing. Apprentice models have been shown to have similar
learning curves to human students [16] for the fractions tu-
tor. This implies that PPO models require substantially
more training than human learners.

One limitation of the current study is that PPO may be more
efficient when trained with multiple simultaneous environ-
ments (e.g., 8 tutors in parallel). Parallel training provides
more diversity and improves learning. We tested this idea
by training PPO models on 8 parallel environments for both
the fractions and multicolumn tutors. We found that paral-
lel PPO required an equivalent amount of practice to achieve
mastery as non-parallel PPO; however, parallel PPO took
less total wall time to train (e.g., 12 instead of 48 hours).
Future work should explore the benefits and trade-offs of
parallel training. Also, PPO is an on-policy RL approach,
as opposed to an off-policy approach like Deep Q-Networks
(DQN) [20]. As such, PPO only trains on the data that is
immediately sampled from the environment; it discards old
training data because it will cause the model to diverge. In
contrast, DQN saves all experiences and continues to train
on them over the course of learning. We would have liked to
compare PPO to DQN, but DQN does not support multi-
discrete action outputs, so could not be evaluated using the
current Number and Operator representations. Future work
should explore modifications of DQN (or other off-policy
models) to see how they perform on these tasks.

6. RELATED WORK
There has been substantial work exploring the use of RL to
optimally sequencing students’ practice [9]. Unfortunately,
this approach requires a large amount of data. One solu-
tion is to train models using simulated student data. How-
ever, simulated student models are often simplistic and not
representative of real student behavior [8]. As a result, se-
quencing models built from synthetic data typically perform
poorly with human students. The RL models we propose
might serve as better simulated student models. Adopting
a rational analysis perspective [3, 11], we hypothesize that
agents that face the same task and processing constraints as
humans will have similar behavior; i.e., sequencing models
that are best for agents should be best for humans. However,
future work is needed to investigate this hypothesis.

A similar parallel hypothesis is that when the task and pro-
cessing constraints between RL and humans differ, the their
behavior is likely to differ. To investigate this idea, Stamper
et al. [26] explore differences in human vs. RL expertise for
two games: Connect Four and Space Invaders. We view our

work as complementary to this research, and future work
should compare the behavior of expert models learned in
this work to the behavior of human experts.

Simulated students have been used for a wide range of appli-
cations including theory testing [16], expert model authoring
[17, 30], and teachable agents [18]. However, we are unaware
of previously developed simulated students that make use of
RL. Some of this prior work aims to model human learn-
ing and behavior. In contrast, this work makes little effort
to model humans. We view this as a shortcoming of our
current study, due to its preliminary nature. Future work
should explore how RL approaches, such as those explored
here, might be integrated within human-like simulated stu-
dent models, such as Apprentice.

7. FUTURE WORK
TutorGym and our initial PPO models lay the foundation
for a number of novel research directions. One promising
directions we hope to explore concerns the use of RL to dis-
cover buggy student knowledge. During learning, RL agents
make many mistakes. We should explore how these mistakes
relate to the kinds of mistakes that humans make. VanLehn
[27] investigated the “mind bugs” that human students ex-
hibit in multicolumn arithmetic. Future work should explore
how RL bugs compare to human bugs and if RL can support
the discovery of bug knowledge for tutor tasks.

8. CONCLUSIONS
We explore the application of the PPO—an emerging RL
approach—to educationally relevant tasks. While RL has
been successfully applied to learn expert models across many
tasks and domains, it has not yet been applied in the con-
text of educationally relevant tasks. To support this explo-
ration, we created TutorGym, a toolkit for interfacing RL
models with educational training environments. We created
two tutor-based environments within TutorGym: a fraction
arithmetic tutor and a multicolumn addition tutor.

We created two PPO models that differ in their state and
action representations (PPO-Number and PPO-Operator).
For comparison purposes, we created a simulated student
model using the Apprentice Architecture that has a similar
state and action representation to the PPO-Operator model,
but uses different (non-RL) learning mechanisms that are
specifically designed to model human learning. We con-
ducted a factorial study that varied the model and task.
We found that at least one PPO model is able to achieve
mastery within each tutor, suggesting that PPO is appli-
cable to educationally relevant tasks. Despite this success,
we found that both PPO models require substantially more
training to reach mastery than Apprentice. This suggests
that educationally relevant tasks present an interesting use
case for the study and advancement of RL research. We also
found an interaction between the type of PPO model and the
task (PPO-Operator is best for fractions, but PPO-Number
is best for multicolumn). This suggests that PPO’s repre-
sentation affects its performance and must be customized
specifically for each task.

This work lays the foundation for future research to study
and develop RL approaches for educationally relevant tasks.
Our hope is that TutorGym and our initial models enable
new research into how RL can support human education.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 307

9. REFERENCES
[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via

inverse reinforcement learning. In Proceedings of the
International Conference on Machine Learning, 2004.

[2] T. Akiba, S. Sano, T. Yanase, T. Ohta, and
M. Koyama. Optuna: A next-generation
hyperparameter optimization framework. In
Proceedings of the International Conference on
Knowledge Discovery and Data Mining, 2019.

[3] J. R. Anderson. The adaptive character of thought.
Psychology Press, 1990.

[4] C. Berner, G. Brockman, B. Chan, V. Cheung,
P. D ↪ebiak, C. Dennison, D. Farhi, Q. Fischer,
S. Hashme, C. Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint
arXiv:1912.06680, 2019.

[5] G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

[6] BulletPhysics. Pybullets real-time physics simulation.
https://pybullet.org/wordpress/, March 2021.

[7] DARPAtv. Alphadogfight trials final event.
https://www.youtube.com/watch?v=NzdhIA2S35w,
August 2020.

[8] S. Doroudi, V. Aleven, and E. Brunskill. Robust
evaluation matrix: Towards a more principled offline
exploration of instructional policies. In Proceedings of
the ACM Conference on Learning@Scale, 2017.

[9] S. Doroudi, V. Aleven, and E. Brunskill. Where’s the
reward? International Journal of Artificial Intelligence
in Education, 29(4):568–620, 2019.

[10] P. Henderson, R. Islam, P. Bachman, J. Pineau,
D. Precup, and D. Meger. Deep reinforcement learning
that matters. In Proceedings of the Conference on
Artificial Intelligence, volume 32, 2018.

[11] A. Howes, R. L. Lewis, and A. Vera. Rational
adaptation under task and processing constraints:
Implications for testing theories of cognition and
action. Psychological review, 116(4):717, 2009.

[12] K. R. Koedinger, R. S. Baker, K. Cunningham,
A. Skogsholm, B. Leber, and J. Stamper. A data
repository for the edm community: The pslc datashop.
Handbook of educational data mining, 43:43–56, 2010.

[13] N. Li, N. Matsuda, W. W. Cohen, and K. R.
Koedinger. Integrating representation learning and
skill learning in a human-like intelligent agent.
Artificial Intelligence, 219:67–91, 2015.

[14] N. Li, E. Stampfer, W. Cohen, and K. Koedinger.
General and efficient cognitive model discovery using a
simulated student. In Proceedings of the Annual
Meeting of the Cognitive Science Society, 2013.

[15] C. MacLellan, K. Stowers, and L. Brady. Optimizing
human performance using individualized
computational models of learning. In Proceedings of
Advances in Cognitive Systems, 2020.

[16] C. J. Maclellan, E. Harpstead, R. Patel, and K. R.
Koedinger. The apprentice learner architecture:
Closing the loop between learning theory and
educational data. In Proceedings of International
Conference on Educational Data Mining, 2016.

[17] C. J. MacLellan and K. R. Koedinger. Domain-general

tutor authoring with apprentice learner models.
International Journal of Artificial Intelligence in
Education, pages 1–42, 2020.

[18] N. Matsuda, W. Weng, and N. Wall. The effect of
metacognitive scaffolding for learning by teaching a
teachable agent. International Journal of Artificial
Intelligence in Education, pages 1–37, 2020.

[19] V. Mnih, A. P. Badia, M. Mirza, A. Graves,
T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement
learning. In Proceedings of the International
Conference on Machine Learning, pages 1928–1937.
PMLR, 2016.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[21] R. Patel, R. Liu, and K. R. Koedinger. When to block
versus interleave practice? evidence against teaching
fraction addition before fraction multiplication. In
Proceedings of the Annual Meeting of the Cognitive
Science Society, 2016.

[22] A. Raffin, A. Hill, M. Ernestus, A. Gleave,
A. Kanervisto, and N. Dormann. Stable baselines3.
https://github.com/DLR-RM/stable-baselines3,
2019.

[23] Robotii, Inc. Mujoco advanced physics simulation.
http://www.mujoco.org/, March 2021.

[24] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and
P. Moritz. Trust region policy optimization. In
Proceedings of the International Conference on
Machine Learning, pages 1889–1897. PMLR, 2015.

[25] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

[26] J. Stamper and S. Moore. Exploring teachable humans
and teachable agents: Human strategies versus agent
policies and the basis of expertise. In Proceedings of
the International Conference on Artificial Intelligence
in Education, pages 269–274. Springer, 2019.

[27] K. VanLehn. Mind bugs: The origins of procedural
misconceptions. MIT press, 1990.

[28] O. Vinyals, I. Babuschkin, W. M. Czarnecki,
M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement
learning. Nature, 575(7782):350–354, 2019.

[29] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos,
K. Kavukcuoglu, and N. de Freitas. Sample efficient
actor-critic with experience replay. arXiv preprint
arXiv:1611.01224, 2016.

[30] D. Weitekamp, E. Harpstead, and K. R. Koedinger.
An interaction design for machine teaching to develop
ai tutors. In Proceedings of the CHI Conference on
Human Factors in Computing Systems, 2020.

[31] Q. Zhang and C. MacLellan. Going online: A
simulated student approach for evaluating knowledge
tracing in the context of mastery learning. In
Proceedings of International Conference on
Educational Data Mining, 2021.

308 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://pybullet.org/wordpress/
https://www.youtube.com/watch?v=NzdhIA2S35w
https://github.com/DLR-RM/stable-baselines3
http://www.mujoco.org/

PPO-Number PPO-Operator PPO-Number PPO-Operator
Fractions-Easy Fractions Multicolumn Multicolumn

n steps 1024 256 32 128
batch size 512 32 32 64

gamma 0.0 0.0 0.0 0.0
learning rate 4.75e-3 4.56e-5 1.43e-3 7.13e-4
lr schedule constant constant linear constant

entropy coef 6.27e-3 3.28e-2 4.21e-2 2.91e-3
clip range 0.2 0.1 0.2 0.4
n epochs 1 10 5 1

gae lambda 0.98 0.99 0.92 1.0
max grad norm 0.8 0.5 0.7 0.3

vf coef 0.915 0.240 0.401 0.568
net arch small tiny medium small

shared arch False True False True
activation fn tanh tanh relu tanh

Table 2: PPO hyperparameters identified using hyperparameter optimization.

APPENDIX
A. HYPERPARAMETER TUNING
For each tuning trial, Optuna selects hyperparameter from
a prior sampling distribution, trains the model using these
values, and measures the resulting performance. Within a
trial, the PPO model is trained for 350,000 steps. The fi-
nal model performance is used to update the hyperparam-
eter sampling distribution, so subsequent iterations sample
more promising hyperparameters. Optuna also implements
a sample pruner, which detects PPO trials that are under
performing (e.g., if PPO performance gets worse with train-
ing rather than better) and prunes these samples early.

Table 2 shows the hyperparameters that were identified by
Optuna for each PPO model and domain. The hyperparam-
eter values are not particularly interpretable, but we report
them here so other researchers can replicate our results. It
is worth noting that we manually fixed the gamma value at
0.0, since tutoring systems provide immediate reward and
future rewards do not need to be factored into decision mak-
ing. Additionally, the tiny net architecture used a neural
network with two layers and 32 nodes per layer, the small
network used 64 nodes per layer and the medium network
used 128 nodes. If the architecture was shared, then the sec-
ond layer of the network was shared by both the value and
the policy head of the network. However, if they were not
shared then there were separate second layers for the value
and policy heads. Finally, a constant lr schedule means that
the learning rate is held constant over the course of train-
ing, whereas a linear schedule means that learning rate is
decreased linearly towards 0 over the course of training.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 309

Do Common Educational Datasets Contain Static
Information? A Statistical Study

Théo Barollet
Univ. Grenoble Alpes, Inria,
CNRS, Grenoble INP, LIG,

38000 Grenoble France
theo.barollet@inria.fr

Florent Bouchez
Tichadou

Univ. Grenoble Alpes, Inria,
CNRS, Grenoble INP, LIG,

38000 Grenoble France
florent.bouchez-

tichadou@imag.fr

Fabrice Rastello
Univ. Grenoble Alpes, Inria,
CNRS, Grenoble INP, LIG,

38000 Grenoble France
fabrice.rastello@inria.fr

ABSTRACT
In Intelligent Tutoring Systems (ITS), methods to choose
the next exercise for a student are inspired from generic rec-
ommender systems, used, for instance, in online shopping
or multimedia recommendation. As such, collaborative fil-
tering, especially matrix factorization, is often included as a
part of recommendation algorithms in ITS.

One notable difference in ITS is the rapid evolution of users,
who improve their performance, as opposed to multimedia
recommendation where preferences are more static. This
raises the following question: how reliably can we use matrix
factorization, a tool tried and tested in a static environment,
in a context where timelines seem to be of importance.

In this article we tried to quantify empirically how much in-
formation can be extracted statically from datasets in edu-
cation versus datasets in multimedia, as the quality of such
information is critical to be able to accurately make pre-
dictions and recommendations. We found that educational
datasets contain less static information compared to multi-
media datasets, to the extent that vectors of higher dimen-
sions only marginally increase the precision of the matrix
factorization compared to a 1-dimensional characterization.
These results show that educational datasets must be used
with time information, and warn against the dangers of di-
rectly trying to use existing algorithms developed for static
datasets.

Keywords
Knowledge tracing, Recommender systems, collaborative fil-
tering, static models, matrix factorization

1. INTRODUCTION
Knowledge tracing tries to model the knowledge of students
as they learn, and is a key component of Intelligent Tutoring
Systems (ITS). In such systems, the aim is to recommend re-

sources, such as exercises (or “problems”), to students in the
most effective way, that is, to recommend resources which
correspond to their learning needs. These resources can be
of various forms, but in this article we focus solely on rec-
ommending new problems for the student to solve. In order
to perform any recommendation, we believe that we should
be able to predict the outcome of one particular student try-
ing to solve one particular problem; we call this a (student,
problem) pair. Ideally, we have perfect information for all
such (student, problem) pairs, whether that information is
actual (extracted from observation) or deduced (based on
previous observation). This would allow us, for instance, to
skip problems that are predicted as being too easy or too
hard for a student.

Each (student, problem) pair could reflect a level of “diffi-
culty” indicating the student’s proficiency. In such a system,
one would derive existing difficulty levels from known inter-
actions, for instance through how much time was required for
a student to solve a problem, or how many attempts it took
to successfully solve it. A “good” system would then predict
difficulty levels for interactions that did not happen, possi-
bly with a confidence measure of the outcome prediction. It
would also provide an understanding of the structure of the
problem set. For example, it would enable the recognition
of problems that train similar skills or use similar knowl-
edge, without relying on expert knowledge components that
require human expertise.

Historically, the field of knowledge tracing has been inde-
pendent of recommender systems. With expert knowledge
components, one can explicitly measure student proficiency
with simple models like Item Response Theory and Bayesian
Knowledge Tracing [2]. Using data mining on large datasets,
it is possible to relax the knowledge components to be latent
features that do not require human experts to partition the
domain into explicit student skills [11]. Techniques in ed-
ucational data mining are inspired from techniques used in
collaborative filtering [1], such as factorization methods [20,
18], but also from techniques used in deep learning such as
deep knowledge tracing [11, 19, 20, 13].

In this article, we will focus on matrix factorization methods.
These are traditionally used in contexts where the available
data is not very sensitive to time, for instance movie tastes
and shopping habits. In contrast, students learn each time

Théo Barollet, Florent Bouchez-Tichadou and Fabrice Rastello “Do Com-
mon Educational Datasets contain Static Information? A Statistical Study”.
2021. In: Proceedings of The 14th International Conference on Educational
Data Mining (EDM21). International Educational Data Mining Society,
310-316. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

310 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

they practice and should normally improve with time, so it
would make sense to take history into account when analyz-
ing datasets, making predictions and doing structural stud-
ies. However, we do not know how much impact this has on
the results. The question that we would like to raise here is
whether taking history into account is that important or if
it is still possible to make good predictions when consider-
ing datasets as timeless. Recommending a good problem in
terms of teaching is not an easy task, but it is even more dif-
ficult when we cannot reliably predict whether the student
will succeed or fail, and how long it will take them to do so.
In the rest of this article, we will study how the matrix fac-
torization algorithm behaves in three datasets from the ed-
ucational data mining community compared to one dataset
from the traditional collaborative filtering community. We
will often deliberately leave out chronological information in
the educational datasets to see how much information can
still be extracted, compared to a traditional dataset.

This article makes two main claims:
• Educational datasets contain much less static informa-

tion than usual datasets found in multimedia recommen-
dation. Hence, treating educational datasets without any
dynamic method should be avoided;
• The little static information they contain amounts to a

one-dimensional value per student or problem.

We also propose in Section 3 a pre-processing procedure
for educational datasets meant to facilitate prediction, even
though we could not find any variable that is accurately pre-
dicted among all tested datasets, as well as a filtering pro-
cedure to try to find clusters among students and problems
that are particularly accurately predicted in Section 5.

2. RELATED WORK
2.1 Data Pre-processing
It is sometimes necessary or advantageous to perform pre-
processing of the data before trying to extract information.
For example, it was possible to improve the classification
error in the MNIST database from 12% to 8%, keeping the
same linear classifier, by using deskewing pre-processing [8].
Regarding our knowledge tracing problem, many corrections
to the ASSISTment dataset [4] are proposed by Xiong et
al. [19]. They are now included in the public dataset that
we use later. We also propose some more pre-processing in
Section 3.

2.2 Matrix Factorization
Matrix factorization (MF) is a widely used technique in rec-
ommender systems, as illustrated by its extgensive usage in
the 2009 Netflix Prize Competition [7]. We consider a set
U of N users, a set I of M items, and a set of ratings R.
These sets are usually given as records (u, i, ru,i), represent-
ing how much (ru,i) a given user u likes item i. From these
we can build a sparse rating matrix X ∈ RN×M . The goal
of matrix factorization is to find two matrices W ∈ RN×k

and H ∈ RM×k (usually with low rank k � N,M) such
that X is close to WHᵀ. This is an optimization problem
written as:

argmin
W∈RN×k

H∈RM×k

∑
(i,j)∈Ω

(Xij − wih
ᵀ
j)2 + λ(‖W‖2F + ‖H‖2F) (1)

Where λ is a regularization meta-parameter and ‖.‖2F is the
Frobenius norm [21]. Equation 1 may vary in regularization
terms (bias, sparsity penalty. . .) and can incorporate a loss
function between Xij and wih

ᵀ
j . We can now estimate un-

known ratings within the product WHᵀ. In other words,
we look for signatures for users and items in the same la-
tent space of dimension k (i.e., vectors of rank k), such that
the outcome of the user rating an item is close to the dot
product of these signatures.

This optimization problem is non-convex in general, but
different methods exist [7]. The Alternating Least Square
(ALS) method is the most popular method as it converges
better than the Stochastic Gradient Descent (SGD) method
due to non-convexity. When large-scale data is needed, as
ALS is not easy to parallelize, and Coordinate Descent is
preferred [6, 21]. In a knowledge tracing setting, users are
students and items are problems [20, 16, 18]. Problems are
usually split into smaller components that are the problem
steps. We will see in subsection 3.1 why we recommend a
first regrouping pass in order to work with whole problems.

2.3 Cold Start Problem and Online Settings
The cold start problem is a typical problem in recommender
systems that corresponds to the initial phase of a ”nude”
system (no data collected yet). The lack of data makes the
prediction accuracy unreliable at that early stage. MF tech-
niques are not designed to tackle the cold start problem but,
some extensions seek to solve it partially [22, 10]. As we
are not focused on prediction accuracy, we will not consider
these extensions in this article but we will try to evaluate
when the cold start problem ends in Section 4, that is, when
there is enough data for MF to start giving results. Trivedi
et al. [17] try to solve a cold start problem in an ITS environ-
ment with spectral clustering to help refine raw prediction,
but they work on the raw features of datasets without stu-
dent or item signatures.

Even after the cold start, the system usually benefits from
new data in general. This is referred to as online recom-
mendation, and MF is widely studied in such a context [5,
9, 12]. These works consider extremely large datasets, about
the order of millions of users and items, but it is still fea-
sible to redo a factorization after adding a few elements, as
we will see for instance in Section 4 and 5.

3. FLAT PREDICTION AND AGGREGATION
In this section we studied matrix factorization (MF) on four
different datasets, and found that not all datasets were di-
rectly usable without some pre-processing, compared to clas-
sical datasets. We use the basic version (L2 regularization)
of Equation 1 with a fixed rank of 20 (apart from the last
section where we measure the impact of rank variation).
We use coordinate descent for the optimization [21] because
some experiments in sections 4, 5, and 6 require numerous
factorizations.

3.1 Educational Datasets and Pre-processing
We will use three common educational datasets for the rest
of the article: Algebra I 2006–2007 [14], Bridge to Algebra I
2006–2007 [15] (both of these come from the Cognitive Tu-
tor problem set) and ASSISTment09 (we use the corrected

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 311

Table 1: Raw data sets overview

Data set Users Problems Steps Steps occurring once Mean samples per step Samples

Algebra I 2006-2007 1338 5644 418 060 314 198 5.4 2 270 384
Bridge to Algebra I 2006-2007 1146 14 787 202 672 46 935 18.1 3 679 199
ASSISTment09 4217 17725 26 688 3123 13.0 346 660
ML-1M 6040 3706 N/A N/A 269.9 1 000 209

Table 2: Preprocessed data sets overview

Data set Users Problems Samples Density Mean samples per problem Success percentage

Algebra I 2006-2007 1147 3111 152 709 0.043 49.1 0.79
Bridge to Algebra I 2006-2007 1068 8736 235 147 0.025 26.9 0.91
ASSISTment09 2025 12587 238 746 0.009 19.0 0.98
ML-1M 6040 3706 1 000 209 0.045 269.9 N/A

and collapsed version of the dataset) [4]. All three datasets
record scaffolding problem statistics (also called steps in
Cognitive Tutor datasets – we will use both terms here).
For each record (also named sample), we extract:

1. A student and a main problem ID;
2. A scaffolding problem ID;
3. A timestamp when a student starts a step and the

duration to complete the step;
4. If the student succeeded at his first attempt: Correct-

First-Attempt (CFA);
5. The number of hints and errors of the student for this

step.

To our surprise, these datasets are not very usable without
pre-processing in comparison with well-established recom-
mender system datasets like the MovieLens dataset. We will
compare most experiments with the ML-1M version of this
dataset, which will act as a “control” dataset: multimedia
recommendation datasets being the canonical use of matrix
factorization for recommender systems. The two main rea-
sons for this poor usability that we try to mitigate with
pre-processing are the following:

• The notion of scaffolding problem is not standardized
between the datasets and is hard to use as is. Some of
them are optional, which makes the number of steps for
a main problem vary between students. The step order
may also change between users, which makes matching
between users more difficult at the problem level.
• There is no guarantee of the minimum number of occur-

rences for a student or a step. Moreover, many steps
are done by a single student across the whole dataset,
as seen in Table 1 (especially for the Algebra I dataset,
where steps can be generated for a student from a tem-
plate, and are thus unique. These constitute up to 3
quarters of the steps).

Our first pre-processing pass, which is motivated by the
very low number of samples per step on average, corre-
sponds to aggregating all the steps of a common main (stu-
dent/problem) pair together. Aggregating timestamps and
durations is straightforward (the beginning of a problem is
the beginning of the first step and the total duration is the
sum of the steps’ durations). To aggregate “Correct-First-
Attempt” we take the mean across a (student/problem) pair
so we obtain a floating point value between 0 and 1 instead
of a boolean value.

Simply aggregating hint and error counts by summing them
is not satisfactory because ultimately we want to have an
idea of how much a student struggled on a problem. Sum-
ming these quantities is not sufficient to access some basic
information such as “Has the given student reached the end
of the problem or given up?” This information is not pro-
vided in the datasets, so we had to build a proxy variable.
To answer this question, we need to know, for a given prob-
lem, the number of basic steps it decomposes into. To find
this quantity, which we call the problem size, we counted
for each problem/student pair the number of samples. For a
student who succeeded (possibly with hints and intermediate
mistakes), the problem size and this number should match.
We assumed that for a given problem, the most represented
number (among all students) was the actual problem size.
We believe that this high representativeness comes from the
fact that the ITS providing the datasets give enough hints
for most students to reach the end of the problem before
giving up. This makes the number of hints and errors valu-
able information to measure the difficulty of a problem for
a given student.

Once we have a boolean proxy indicating success by reaching
the end of a problem, we can derive two variables: reaching
the end without errors and reaching the end without hints.
We can also build a difficulty variable to aggregate the hint
and error counts: we sum the two counts with a 0.5 coeffi-
cient for hints. We represent failure by assigning a difficulty
value of twice the maximum value.

After aggregation, we have six variables (called target vari-
ables or simply targets from now on) of interest for each stu-
dent/problem interaction: duration (0-1 scale value), diffi-
culty (0-1 scale value), correct-first-attempt (0-1 scale value)
and success-reached (boolean value), success-no-error (boolean
value), success-no-hint (boolean value). The first three are
normalized per problem so that for each problem, the ”worst”
student gets a value of 0, and the best one a value of 1 (giving
rise to what we called above a 0-1 scale value). ML-1M has
a single target which is the movie rating (also normalized
for comparison). After aggregation, we filter out users who
have done fewer than 20 problems and problems that are
done fewer than 5 times (same threshold than for ML-1M).
Table 2 shows the size of the datasets after pre-processing.

3.2 Influence of Aggregation on Datasets
Figures 1, 2, and 3 report the ability of a factorization to
accurately model the different target variables on the four

312 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

0.37

0.29

0.43

0.23

0.21

0.39

algebra bridge assistment
0

0.15

0.25

0.35

0.45 CFA no agg
CFA

R
M

S
E

Figure 1: RMSE between no aggrega-
tion and aggregation for correct first
attempt

0.35

0.26

0.18
0.20

0.23

0.28

0.23
0.21

0.39

algebra bridge assistment
0

0.15

0.25

0.35

0.45
Rel Difficulty
Rel Duration
CFA

R
M

S
E

ML-1M baseline

Figure 2: RMSE for duration, correct
first attempt and difficulty

0.86 0.86

0.98

0.85
0.80

0.58

0.87
0.81

0.66

algebra bridge assistment
0

0.2

0.4

0.6

0.8

1

Success reached
Success no err
Success no err no hint

R
O

C
 A

U
C

Figure 3: ROC AUC for success and
derivatives (higher is better)

datasets and compare the effect of aggregation. For 0-1 scale
variables we use the root mean square error (RMSE – the
smaller the better) as the error metric, and for boolean vari-
ables we use Receiving Operating Curve Area Under Curve
(ROC AUC – the closer to 1 the better). For ML-1M, the
only possible target variable is the movie rating. We report
it in Figure 2 as a horizontal line.

In Figure 1, we see that the aggregation and filter proce-
dure improve the prediction quality of the Cognitive Tutor
datasets in a notable way, but only by a small margin for the
ASSISTment dataset. We believe that if the pre-processing
removed about one third of the problems and half of the
students, the density would still be very low compared to
the others. In all the remaining experiments, we will use
the aggregated versions of the datasets.

It is hard to find any trend regarding the RMSE differ-
ences in Figure 2. Variations seem to indicate that different
datasets favor different target variables. MF can have about
the same prediction capability for educational datasets and
multimedia datasets if the target variables are chosen care-
fully, which suggests that situations call for pre-analyses in
order to select the target variable which will be the most
accurately predicted.

In Figure 3 we can see that accuracy on success classifica-
tion is reasonably good. However, we cannot explain the
difference in ASSISTment between success-reached and the
two other success target variables. This might stem from the
aggregation procedure that relies on approximated methods
to obtain the number of steps in a problem. We will not do
any further experiments on these target variables (which are
boolean), as they are barely comparable with the 0-1 scale
variable of the ML-1M dataset.

4. ONLINE PREDICTION
In this section, we will try to evaluate the point at which
there is enough information to predict reasonably well with
MF techniques. This allows the system to stop using what-
ever bootstrapping technique it was using to solve the cold
start problem.

To evaluate this we start by getting either the full student set
(and no problem) or the full problem set (and no student).
We then progressively add new problems in the first case and
new students in the second case, adding 20 new elements at

each iteration. At each iteration we redo a full factorization
and evaluation as if the system was complete.

We independently measure RMSE of correct-first-attempt
and difficulty variables. To evaluate whether the order in
which new elements are added makes a difference or not, we
considered three orders: (i) elements sorted by their number
of occurrences either in decreasing (high density first); (ii) or
in increasing (low density first) order; (iii) and following the
chronological order (chrono). Only the chronological order
makes sense in an online context, but we still use the number
of occurrence orders to evaluate whether or not we benefit
from a higher density.

We report in Figure 4 the results of this experiment. We can
see that for three out of four datasets (not ASSISTment),
adding elements by highest density makes the system con-
verge really fast (about 200 elements for Bridge), which was
to be expected as those elements carry the most informa-
tion. For all datasets, adding elements by lowest density, as
we might expect, makes the system converge really slowly.
We believe that the extremely accurate prediction on some
of the curves for the first few iterations of the growing pro-
cess is due to overfitting (recall that the factorization uses a
rank of k = 20 in those experiments).

Still, there are some artifacts to these results. In Figure 4e,
the previous claims are reversed for difficulty target. Maybe
this is a hint that this aggregated variable may not be robust
enough on all systems. Our advice is to systematically test
target variables on a system to make sure that the ones we
choose are consistent and can be trusted.

Finally, we do not observe any“dramatic”drop of the RMSE
in curves representing the chronological order that we could
clearly label as the “cold start” (although it sometimes takes
a few “adds” to stabilize). Of course, the highest accuracy is
obtained whenever all the data is used, but this suggests that
MF accuracy starts to get close to the maximum early in the
process. However, bear in mind that we only evaluated our
ability to model existing data (we evaluate on the matrix
we factorize), but did not evaluate our ability to predict
(by evaluating on the remaining, not factorized, part of the
matrix).

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 313

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

user number

R
M

S
E

(a) Algebra student growing

200 400 600 800
0

0.1

0.2

0.3

0.4

0.5

0.6

user number

R
M

S
E

(b) Bridge student growing

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

user number

R
M

S
E

(c) ASSISTment student growing

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6
high
chrono
low

user number

R
M

S
E

(d) ML-1M user growing

500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

item number

R
M

S
E

(e) Algebra problem growing

500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

item number

R
M

S
E

(f) Bridge problem growing

500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

item number

R
M

S
E

(g) ASSISTment problem grow-
ing

500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6
high
chrono
low

item number

R
M

S
E

(h) ML-1M item growing

Figure 4: RMSE evolution for student and problem set growing on the four data sets
If not specified the legend is the same as (b).

5. STUDENT OR PROBLEM PREDICTION
KERNELS

In this section we search for a subset of students and prob-
lems where the prediction is more accurate than on the rest
of the dataset. Having such a subset can be of interest in
various ways: further analysis like signature clustering might
work better on a subset with high accuracy prediction, or
this can be a first step towards building a confidence mea-
sure for new predictions using a similarity measure with this
accurate subset.

Note that we briefly tried some clustering algorithms on the
student and problem signatures given by MF, but they were
not promising. We will explain in Section 6 how the sig-
natures we can obtain with MF may not be appropriate to
such a study.

5.1 Iterative Filtering
We describe an iterative procedure to filter students and
problems that have the least accurate predictions.

We alternately remove students and problems: at each iter-
ation we remove the 8% of the considered set that are the
least accurately predicted in terms of RMSE (or 15 elements
if 8% is lower than 15). We report in Figure 5 and Figure 6
the evolution of the density of the rating matrix and RMSE
for the difficulty target variable.

Figure 5 presents the variations in density as we progres-
sively remove students and problems. Interestingly, remov-
ing items usually increases the density while removing stu-
dents decreases it in the three educational datasets, mean-
ing that the students that solved many problems are viewed
as “problematic” by the system. This behavior is not ob-
served in the reference ML-1M dataset. Figure 6 confirms
the tendency that removing students in the beginning tends
to improve prediction accuracy. This result is disturbing

as it means that, for the educational datasets, MF prefers
less dense matrices with regard to the users, i.e., less in-
formation for a given student. This suggests that MF per-
forms best when a problem was done by many students,
but when the students have done few problems. What is
interesting here is that this scenario is the one that resem-
bles most closely the ML-1M dataset: by having students
that did fewer problems, we are indeed eliminating students
that likely progressed during the experiment, hence whose
behavior cannot be represented by a single vector across all
their interactions. This is a first solid hint that MF alone
does not seem suited to educational datasets, as it shuns
chronological subtleties.

6. INFLUENCE OF RANK VARIATION
In this section we repeat the experiments from previous sec-
tions with different rank values. In addition to rank k = 20
that we already measured, we use rank 5 and a rank of 1. We
deliberately choose a rank of 1 to mimic a Whole History
Rating (WHR) [3]. Even though it is not an exact corre-
spondence, we believe that the information extracted by a
MF with rank 1 can also be extracted by a WHR.

We see in Figures 7, 8, 9 and 10 a clear difference between
the educational datasets and ML-1M regarding the influ-
ence of ranks. This benefit from rank increase agrees with
the intensive use of MF techniques in multimedia recom-
mender systems. However, the benefit of such an increase
for educational datasets is almost negligible. This is par-
ticularly apparent in Figure 10, where the ML-1M RMSE
curves get lower with increasing rank while all other curves
are nearly indistinguishable by rank. This shows that, when
the chronological information is not used, vectors of size 5
or 20 do not improve accuracy compared to a simple vector
of size 1, i.e., a single float. This suggests that we can-
not do better than assign a single number to problems and
students, which could be interpreted as having a “difficulty”

314 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

0 20 40 60 80
0

0.0005

0.001

0.0015

0.002

0.0025

0.003
filtering users
filtering items
algebra
assis
bridge
ml1m

Iterations

D
en

si
ty

Figure 5: Evolution of density during filtering with target
Difficulty

0 20 40 60 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 filtering users
filtering items
algebra
assis
bridge
ml1m

Iterations

R
M

S
E

Figure 6: Evolution of RMSE during filtering with target
Difficulty

algebra rel diff

bridge rel diff

assistment re
l diff

algebra rel tim
e

bridge rel tim
e

assistment re
l tim

e

algebra cfa

bridge cfa

assistment cfa
ml1m

0.9

0.95

1

k = 5
k = 20R

M
S

E
 re

la
tiv

e
to

 k
 =

 1 k = 1 baseline

Figure 7: Evolution of flat factoriza-
tion RMSE depending on rank rela-
tively to k = 1

500 1000 1500 2000
0.15

0.2

0.25

0.3

0.35

0.4

item number

R
M

S
E

Figure 8: Evolution of RMSE while
adding problems with target Difficulty

200 400 600 800 1000

0.2

0.25

0.3

0.35

user number

R
M

S
E

Figure 9: Evolution of RMSE while
adding students with target Difficulty

0 20 40 60 80

0.05

0.1

0.15

0.2

0.25

Iterations

R
M
S
E

(a) Duration

0 20 40 60 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iterations

R
M
S
E

(b) Difficulty

0 20 40 60

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iterations

R
M
S
E

(c) Correct First Attempt

Figure 10: Evolution of RMSE during filtering with various target

rating for problems and a“skill” rating for students, mimick-
ing a WHR rating system. This is a second strong hint that
educational datasets do not have the same structural prop-
erties as datasets from multimedia recommenders, and that
if we want to extract more information and discover a better
characterization of students and problems, it is necessary to
consider chronological information.

7. CONCLUSION
We applied preprocessing to common educational datasets
to try to improve the accuracy of MF techniques. While
these did improve the results, we also showed that when
MF techniques from the collaborative filtering community
are directly applied, they do not benefit from having ranks

higher than 1, meaning that the attribution of a single value
to students and problems is about as effective as we can get.
This seems to indicate that MF techniques might not be
the most efficient model to extract static information from
these datasets, or, more probably, that static information
is scarce. We believe that this stems from the fact that,
unlike users in multimedia recommender systems, students
change over time as they are faced with new problems but
also from outside interactions not recorded in ITS, hence
chronological information needs to be taken into account
in order to improve accuracy and make predictions. Still,
in the eventual absence of more sophisticated analyses in a
recommender system, MF can be used to extract a crude
measure of what could be labeled as a level of difficulty of a
problem and a level of proficiency or skill of a student.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 315

8. REFERENCES
[1] Y. Bergner, S. Droschler, G. Kortemeyer, S. Rayyan,

D. Seaton, and D. E. Pritchard. Model-based
collaborative filtering analysis of student response
data: Machine-learning item response theory.
International Educational Data Mining Society, 2012.

[2] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction,
4(4):253–278, 1994.

[3] R. Coulom. Whole-history rating: A bayesian rating
system for players of time-varying strength. In H. J.
van den Herik, X. Xu, Z. Ma, and M. H. M. Winands,
editors, Computers and Games, pages 113–124, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[4] M. Feng, N. Heffernan, and K. Koedinger. Addressing
the assessment challenge with an online system that
tutors as it assesses. User Model. User-Adapt.
Interact., 19:243–266, 08 2009.

[5] X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua. Fast
matrix factorization for online recommendation with
implicit feedback. ArXiv, abs/1708.05024, 2016.

[6] C.-J. Hsieh and I. S. Dhillon. Fast coordinate descent
methods with variable selection for non-negative
matrix factorization. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 1064–1072, 2011.

[7] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42(8):30–37, 2009.

[8] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2290,
1998.

[9] X. Luo, Y. Xia, and Q. Zhu. Incremental collaborative
filtering recommender based on regularized matrix
factorization. Knowledge-Based Systems, 27:271 – 280,
2012.

[10] U. Ocepek, J. Rugelj, and Z. Bosnić. Improving
matrix factorization recommendations for examples in
cold start. Expert Systems with Applications,
42(19):6784–6794, 2015.

[11] C. Piech, J. Spencer, J. Huang, S. Ganguli,
M. Sahami, L. Guibas, and J. Sohl-Dickstein. Deep
knowledge tracing. arXiv preprint arXiv:1506.05908,
2015.

[12] S. Rendle and L. Schmidt-Thieme. Online updating
regularized kernel matrix factorization models for
large-scale recommender systems. 01 2008.

[13] T. Sergent, F. Bouchet, and T. Carron. Towards
temporality-sensitive recurrent neural networks
through enriched traces. In A. N. Rafferty,
J. Whitehill, C. Romero, and V. Cavalli-Sforza,
editors, Proceedings of the 13th International
Conference on Educational Data Mining, EDM 2020,
Fully virtual conference, July 10-13, 2020.
International Educational Data Mining Society, 2020.

[14] J. Stamper, A. Niculescu-Mizil, S. Ritter, G. Gordon,
and K. Koedinger. Algebra i 2006-2007. development
data set from kdd cup 2010 educational data mining
challenge. find it at http://pslcdatashop.web.cmu.

edu/KDDCup/downloads.jsp, 2010.

[15] J. Stamper, A. Niculescu-Mizil, S. Ritter, G. Gordon,
and K. Koedinger. Bridge to algebra 2006-2007.
development data set from kdd cup 2010 educational
data mining challenge. find it at http://

pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp,
2010.

[16] N. Thai-Nghe, L. Drumond, T. Horváth,
L. Schmidt-Thieme, et al. Multi-relational
factorization models for predicting student
performance. In KDD Workshop on Knowledge
Discovery in Educational Data (KDDinED), pages
27–40. Citeseer, 2011.

[17] S. Trivedi, Z. A. Pardos, G. N. Sarkozy, and N. T.
Heffernan. Co-clustering by bipartite spectral graph
partitioning for out-of-tutor prediction. International
Educational Data Mining Society, 2012.

[18] J.-J. Vie and H. Kashima. Knowledge tracing
machines: Factorization machines for knowledge
tracing. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 750–757, 2019.

[19] X. Xiong, S. Zhao, E. G. Van Inwegen, and J. E. Beck.
Going deeper with deep knowledge tracing.
International Educational Data Mining Society, 2016.

[20] L. Xu and M. A. Davenport. Dynamic knowledge
embedding and tracing. In A. N. Rafferty,
J. Whitehill, C. Romero, and V. Cavalli-Sforza,
editors, Proceedings of the 13th International
Conference on Educational Data Mining, EDM 2020,
Fully virtual conference, July 10-13, 2020.
International Educational Data Mining Society, 2020.

[21] H.-F. Yu, C.-J. Hsieh, S. Si, and I. S. Dhillon. Scalable
coordinate descent approaches to parallel matrix
factorization for recommender systems. In IEEE
International Conference of Data Mining, 2012.

[22] K. Zhou, S.-H. Yang, and H. Zha. Functional matrix
factorizations for cold-start recommendation. In
Proceedings of the 34th international ACM SIGIR
conference on Research and development in
Information Retrieval, pages 315–324, 2011.

316 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp

Finding the optimal topic sequence for online courses
using SERPs as a Proxy

Sylvio Rüdian
Humboldt-Universität zu Berlin,

Weizenbaum Institute
Berlin, Germany

ruediasy@informatik.hu-berlin.de

Niels Pinkwart
Humboldt-Universität zu Berlin,

Weizenbaum Institute
Berlin, Germany

niels.pinkwart@hu-berlin.de

ABSTRACT

Finding the optimal topic sequence of online courses requires

experts with lots of knowledge about taught topics. Having a good

order is necessary for a good learning experience. By using

educational recommender systems across different platforms we

have the problem that the connection to an ontology sometimes

does not exist. Thus, the state of the art recommenders can suggest

courses with an optimal order within a platform. But on a more

global view, a recommendation across different platforms with

optimal order is not existing as long as no ontology was defined or

courses are not connected to an existing ontology. Nowadays

experimental approaches manipulate the learning paths to find the

optimum. As this can impact the learning experience of

participants, this approach is ethically unacceptable. To overcome

this problem, we propose a data-driven approach using the search

engine result pages (SERPs) of Google. In our experiment, we used

pair-wise search queries to get access to web pages, those 38.000

texts were used to test some NLP metrics. 10 different metrics were

examined to create an optimal order that was compared to the

optimal sequence defined by experts. We observed that the

Gunning Fog Index is a good estimator to determine the optimal

order within a cluster of topics.

Keywords

Course Sequencing, educational recommender system, web search,

adaptive courseware, personalization.

1. INTRODUCTION
Providing the optimal sequence of topics in online courses is of

high interest because it influences the learning outcome as well as

motivation. Lots of MOOCs are existing, but in which order they

should be done is defined by experts and this is a time-consuming

procedure. Large-scale educational recommender systems [1]

suggest online courses across different platforms. Creating an

optimal sequence based on an ontology is an easy solution as an

ontology includes the optimal order, defined by human experts.

This can be done within single platforms, but an ontology across

different courses across several platforms is not existing. McCrae

et al. [2] state that it “is difficult to link to ontologies”. The

willingness to create a connection of own online courses to an

existing public ontology is low as this is expensive due to manual

work on the one hand but can also result in course

recommendations of other suppliers on the other hand, which does

not meet the interests of the suppliers.

The optimal sequence is missing in recommender systems as long

as no manually created large-scale ontology or optimal sequence

exists. Recommender systems only provide a ranking based on how

well the suggested courses fit into the user's learning situation.

There are existing approaches, e.g. linked data to create a structured

semantic web [3]. Their idea is to create a network that contains the

meaning of the data. But there is the problem that the semantic web

is limited to specific domains. If the networks have not been created

for the topics that we need, we cannot use them. Besides, the

structure in the semantic web is designed to understand

relationships between objects, not whether there is a dependency

from the educational perspective. Further on, there is the problem

that topics for online courses often consist of multiple words to

describe the topic or concept. Finding the correct corresponding

concept within the semantic web can be challenging.

Having an optimal order of online courses is of high interest in

online education as many topics require the knowledge of

subtopics. Knowledge dependencies can be modeled by experts

manually on the one hand, but this is a cost-intense procedure that

requires lots of knowledge about the taught topics and provided

courses as well. On the other hand, the world wide web is full of

contents of different quality. Every topic that can be taught can be

found there, but the contents of web pages are still not used for topic

sequencing in education. Crawlers get access to all the texts and

companies like Google define an order of pages related to a search

query. Within a search engine, we get access to all pages that they

define to satisfy the user intent [4]. Using this large number of

pages for each topic could be beneficial in creating optimal topic

sequences for online courses.

An optimal order is very important for a good learning experience

in online courses. We define an optimal order as the sequence of

course topics where each topic should be taught when all pre-

requirements are fulfilled based on the previous courses. As long

as topics are taught where the requirements are missing, the dropout

rate will be high. Using courseware (single parts of a course) [5] to

generate a new online course it is important to have an optimal

order. Otherwise, the participant cannot understand the topic

because of missing knowledge. The same problem exists in AI-

generated learning paths of online courses, which must be

consistent according to the fundamental didactical method of

starting teaching basics, not with specialized knowledge.

Sylvio Rüdian and Niels Pinkwart “Finding the optimal topic sequence
for online courses using SERPs as a Proxy”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 317-322.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 317

Observing the world wide web, we can get a variety of texts on any

topic. We want to use this already existing large set of pages to find

the optimal topic order of online courses with an experimental

approach. To access all the pages with corresponding texts that we

need, we use the search engine Google, especially the Search

Engine Result Pages (SERPs) [6]. It is known that Google uses the

semantic web in the background, depending on the search query,

which helps to overcome the challenge to find the optimal

corresponding concept of the semantic web using the search engine

as a proxy [7]. This is beneficial for the case that for specific

domains no linked data is existing – as the search engine tries to

provide related resources, even if they are misspelled and the search

engine can give results for queries that they have never seen before.

Using topics as keywords results in a list of pages that satisfy the

user intent according to Google [4]. This can be used as a base for

having access to different features for ordering course topics.

SERPs help to understand the popularity of how many pages are

indexed by the search engine, which could be an indicator for good

sequencing as less specialized topics are existing compared to

general basic topics. Besides, having a lookup for two topics in one

search, we get pages that contain both keywords, those frequency

or deviation could be an indicator for finding the optimal sequence.

If we observe online courses, then we usually have an increasing

difficulty level. Using the complexity of texts could help to estimate

the optimal order based on the difficulty.

In this paper, we concentrate on the three research questions:

1) Is the SERP popularity of all topics a good indicator to find an

optimal topic sequence for online courses?

2) Is the topic frequency of page texts that are listed within the

SERPs an estimator to determine the optimal topic sequence in

online courses?

3) Does ordering topics’ texts by text difficulty metrics result in a

sequence that is appropriate to be used as a sequence in online

courses?

2. RELATED WORK
Brusilovsky et al. [5] define this problem as “sequencing of

lessons” where each lesson is connected to a topic. This contains

numerous chunks of educational material, ranging from videos and

texts to different interactive tasks. The authors use a domain

concept structure, that is stored independently from teaching

materials. Each concept needs to be linked to the teaching material.

It has the advantage of being able to use the courseware to generate

a personalized online course according to the interests and

knowledge gaps of a learner. This approach is comparable to using

an ontology that needs to be defined by experts, based on rules and

graph representation. It is the fundamental model to define an

optimal sequence of online courses but requires the creation of the

ontology by experts.

S. Fischer [8] uses an ontology knowledge base, namely a

“knowledge library” to create an optimal course sequencing.

Therefore, they use modularized media content as courseware

together with metadata that describes the link to the ontology

model. With that, they have access to a taxonomy that can be used

to create a good ordering of topics as well as generating questions

with right and wrong answers (depending on the granularity of the

ontology). The modular resources can be used to generate courses,

according to the knowledge gaps of learners.

Xu et al. [9] propose to learn from users providing specific course

sequences for testing and use their performance to create an optimal

sequence for new users. While this approach works it has the

disadvantage that it requires real test users which may perform

badly within the scenario. Doing this in a field study is acceptable

but using real students is not sustainable from an ethical point of

view. We want to emphasize that we do not want to use this

experimental user behavior data as this is ethically not acceptable.

Cucuringu et al. [10] used already captured student participation in

courses to create pair-wise comparisons using ranking aggregation

to create a global ranking. This ranking proposes an order of how

courses should be taken by students. One major problem is

incomplete data as some pairings are not existing for a comparison.

S. Morsy [11] states that a global ranking of online courses cannot

be used for personalized recommendations. But having a global

ranking can be helpful to determine which courses should be done

in which order. Combining this knowledge with personalized

courses or topic recommendations is helpful as the course

dependencies (e.g. what knowledge is necessary to understand a

topic) are the same for personalized recommendations, which are

filtered by topics/concepts that the learner is already aware of. Thus

having a global ranking can be beneficial for personalization as

well.

Using the information of chosen courses by students and their

performance is a good way to determine an optimal course

sequence. A major limitation with that approach is the limitation of

data and to have access to chosen courses and the resulting

performance. This approach does not comply with the GDPR as the

information on whether students passed or failed an exam is

classified to be sensitive personal data, that cannot be accessed for

course sequencing in general [12]. Thus, their application does not

work in a real-world scenario in the EU. Based on the limitations

of being dependent on user performance or manually created

ontologies, we propose a new methodology to create an optimal

order of online courses, based on their topic.

3. METHODOLOGY
As we learned from Rüdian et al. [13]: Even if experts are scoring

the same results of educational tasks, their scores vary among each

other. If we observe the order of topics, then we know that there is

not always a perfect solution regarding the whole sequence because

of ambiguous expert opinions. In the pre-study, four experts (AI

instructors) had the task to create the optimal order of 20 AI-related

topics to be taught within online courses. We used the following

topics: neural networks, voice recognition, chatbots, Linux, data

visualization, Python, statistic basics, part-of-speech tagging,

LSTM, data preparation, deep learning, TensorFlow, object

recognition, Naïve Bayes, natural language processing, ethical

principles, clustering, reinforcement learning, cross-validation,

and regression. The resulting sequences are then used to make a

pair-wise comparison to understand the overlap across instructors

and to see where we have a high overlap. The pair-wise sequence

score S is defined as followed: For every topic A and B of the expert

sequence with 𝐴 ≠ 𝐵 and every topic C and D of the sequence

derived by the algorithms or another expert with 𝐶 ≠ 𝐷 we count

all hits where (𝐴 < 𝐵 𝑎𝑛𝑑 𝐶 < 𝐷) or (𝐴 > 𝐵 𝑎𝑛𝑑 𝐶 > 𝐷). Thus,

the topics have the same order within both sequences. This number

is divided by the number of possible combinations, defined as S.

Some topics have dependencies; e.g. neural networks should be

introduced before teaching LSTM or natural language processing

should be taught before starting with part-of-speech tagging; others

do not have strong relations and can be taught somewhere, e.g.

ethical principles or Linux.

The idea of the main study is to compare the sequences created by

instructors with algorithmic ones. Therefore, it is a good fundament

318 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

to measure tutors’ decisions among each other first to define

accuracy as a gold standard that we want to achieve with our

methodology. Thus, we need a realistic generalizable accuracy that

we should achieve instead of over-optimizing our approach with

high accuracy that is the optimum for a sequence of one expert only.

Besides, the pre-study identifies the optimal order of the topic

subsets that are the same for all experts. The order of these topic

subsets will be compared to the order that we get from our

algorithms to see how well the algorithms perform in a real-world

scenario.

Our approach is to use the Search Engine Result Pages of Google

(SERPs) and we derive different metrics based on the results. A

search engine can be used to find web pages that are related to given

keywords. One of the main purposes of the search engine Google

is to satisfy the user intend by providing a list of web pages that are

related to the search query [4]. Thus, using it allows us to get pages

that have a high authority according to the Google ranking

algorithm, which is, according to them, a metric of high quality. We

use this list of pages with our topics as search queries to understand

the popularity, the number of user searches, the complexity of

topics, and which topics have a semantic connection. These metrics

are then used to create a sequence, based on a linear order of the

observed data. These sequences are compared to the experts’ ones

to understand whether there is a connection between our metrics

and the optimal order, defined by experts.

The approach of using a search engine as a basis has the advantage

that we do not need to do experiments with students where they

may be badly influenced due to bad testing sequences. Thus we are

independent and can use our approach on a larger scale. That makes

our approach more practically usable. We use different data as a

basis, use them to rank our 20 topics, and compare the order with

the instructors’ ones. Our approaches are the following:

1) We use the number of topic results that are estimated by the

search engine by searching for every keyword separately.

2) We use the number of topic results pair-wise keyword

combinations and observe the number of estimated results.

3) We use the keyword search estimator and rank our topics

according to the estimated search amount.

4) We use the first 100 results of all pair-wise keyword

combinations and count how often both keywords within the 100

listed pages exist.

1 https://seorld.com/crawler

5) We use the first 100 result pages as in 4), search for both

keywords on the pages, and summarize how often each keyword

occurs at first in the text.

We use the 100 result page texts and apply three algorithms to

estimate the text complexity, namely 6) Flesch-Reading-Ease

(FRE) [14], 7) RIX [15], and 8) Gunning Fog Index (GFI) [16].

Then we use the 100 result page texts with basic NLP metrics: 9)

The type-token ratio (TTR) and 10) the number of words per

sentence (NoW). We assume that observing how many pages are

existing in combination helps to identify topics that have a semantic

connection. Using the information on how many pages are existing

gives hints about the popularity (1,3), where for complex topics

mostly less content exist than for basics. Observing the complexity

of the contents (4-7) could help to identify the difficulty level of

topics to find the optimal sequence. Figure 1 visualizes the method

for 4)-10) to get features based on a pair-wise topic search.

The Flesch-Reading-Ease Index is based on the “Standard Text

Lessons in Reading” [17] and is calculated from the average

sentence and word length [14]. The main idea of the Gunning Fog

Index is to reduce the complexity in newspapers as a kind of

warning system for authors that texts are not “unnecessary

complex”. Therefore, the author uses the sentence lengths, the

number of syllables, easy words, and hyphenated words to estimate

the complexity of a text [18]. The “Regensburger Index“ (RIX) uses

difficulty parameters like passive, sentence complexity, and

predications to derive the complexity [15]. All approaches differ in

the selection of features that are used to create the indexes.

Finally, we use a random forest regressor [19] to predict the pair-

wise sequence, using the data of 4)-10) to estimate the feature

importance to support our findings. To get all the data, including

the SERPs, all pages, and the estimated search amount, we use a

commercial web crawler for SERPs1. This is necessary as the pair-

wise lookup of 20 keywords results in 20 ∗ 20 − 20 = 380

searches, where we need to download 100 web pages each,

resulting in 38.000 files. A simple crawler that we used in our lab

before, was banned after 20 crawls, thus using a commercial one is

the most efficient option.

Each data source 1) – 10) is then used to create a ranking of topics,

based on their linear order. These sequences are compared with the

expert ones to find the optimal feature that can be used in a real-

world setting. To compare the sequences of the experts with the

algorithmic ones, we use a pair-wise topic comparison to test

whether the order is the same in both sequences and summarize the

hits. Thus we can compute the overlap that represents the accuracy

in our experiments.

4. RESULTS
The overlaps across the expert sequences range from 0.6 to 0.8

(Table 1). Thus we have an orientation of the resulting overlap that

can be achieved with our approach at maximum. While the overall

sequences defined by experts are partly different, we identified

some partial sequences that are identical across all expert-based

rankings and use them as ground truth. We detected some matching

sequences of topics:

A = [“data preparation” → “data visualization” → “clustering”],

B = [“neural networks” → “deep learning” → “LSTM”], and

C = [“natural language processing” → “part-of-speech tagging” →

“voice recognition” → “chatbots”],

Figure 1. Pipeline for pair-wise search, extraction, and

separation of features.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 319

where [A → B] means that topic A needs to be explained before

topic B. This makes sense as each topic mostly requires knowledge

of the previous one(s), e.g. “neural networks” have to be introduced

first and after that, “LSTM” can be explained. We use the three

clusters (A, B, and C) to visualize whether our rankings make sense

in a real-world scenario as the overlap of sequences defined by a

number only is too abstract. All in all, in our pre-study we can

conclude that we identified three clusters using sequences of four

experts.

Table 1. Pair-wise sequence overlaps of 4 AI experts.

 Expert 1 Expert 2 Expert 3 Expert 4

Expert 1 - .60 .65 .80

Expert 2 - - .65 .65

Expert 3 - - - .75

Expert 4 - - - -

Then we used all the different data points that we got from the

crawler separately and created a sequence based on their linear

order. Table 2 shows all the results of our experiments. We

calculated the pair-wise overlap to compare estimated sequences

with the expert ones. Also, we tested whether our partial sequences

of the topic sets in A, B, and C have the same order as defined by

our experts.

Observing 1) - 3) we can answer the first research question as these

metrics represent the popularity of topics within the SERPs. The

ordered list of topic pages is not a good indicator to find an optimal

topic sequence for online courses. Thus, popularity is not a good

indicator of course sequencing.

Table 2. Overlap of sequences with four experts (E1…E4) and

the information on whether the orders of our clusters A, B,

and C are the same as defined by experts.

Approach E1 E2 E3 E4 A B C

1) .55 .40 .45 .50 No No No

2) .60 .50 .40 .50 Yes No No

3) .45 .45 .40 .53 No No No

4) .53 .63 .53 .53 No No No

5) .58 .53 .53 .40 No Yes No

6) FRE .35 .50 .55 .50 No No No

7) RIX .50 .50 .50 .45 No Yes No

8) GFI .55 .65 .60 .60 Yes Yes Yes

9) TTR .45 .40 .40 .40 No No No

10) NoW .50 .50 .50 .50 No No No

Observing the pair-wise searches in 4) and 5) we can conclude, that

topic frequency within the related texts is also not a good indicator

to get an optimal sequence of topics, which answers the second

research question. We limited the search to exact matches. Further,

using n-grams or other methods to detect variants could be

beneficial.

We identified the Gunning Fog Index as an estimator to create an

optimal order. This answers our third research question. Using this

metric for text complexity is the most robust feature to create a

good sequence of topics in our experiment. Also, the order we got

from our clusters is the same as in the sequence that we got by using

the GFI. This is very important for a practical educational

environment as the orders of topics that have a taxonomy with

knowledge dependencies need to be done correctly. The overlap

with the expert sequences ranges from 0.55 to 0.65, which is

acceptable as the overlap of sequences across experts was in the

range of 0.6 and 0.8. The remaining text complexity metrics (6, 7,

9, 10) are not as robust as the GFI.

To get more insights into the importance of the identified predictor,

we use the random forest regressor [19] as we investigate linear

features only and – for future work – we want to identify features

of high importance that also work for non-linear dependencies to

predict the optimal sequence. Therefore, we use all pair-wise

approaches (4-10) to train a decision tree using the random forest

regressor. As prediction target, we used all pairings orderings (e.g.

topic “neural networks” needs to be taught before topic “LSTM”).

This is a classical approach to predict the ordering of items, based

on different features. Figure 2 displays the relative importance of

features that we got. The most relevant feature is the Gunning Fog

Index (GFI), which performs best in our experiments as well.

5. DISCUSSION
Automated analysis of the pair-wise SERPs and the text complexity

using the GFI can help to assist instructors during planning course

sequences. From an ethical point, doing experiments with students

is not justifiable as it could corrupt the learning outcome as a bad

implication. As our approach is independent of experimenting with

users, this method can be applied on a large scale. Combining this

approach with educational recommender systems, we can provide

a sequence of topics, based on the topic set that we get from the

recommender system, even if no ontology is defined in the

background. Using the text complexity helps to start with topics

that can be explained more easily than the following ones. Having

automatic composed online courses based on courseware, it can be

beneficial to use the third party data of SERPs to find an optimal

order. This is an important step to create personalized online

Figure 2. Relative importance of features according to

the random forest regressor.

320 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

courses that are adaptive to the knowledge level, where no pre-

defined ontology exists.

There are various fields of application where we can use our

approach. This method can be used for planning lecture sequences

at school or university, based on the complexity of taught topics. It

is the same in preparing new lectures, based on existing learning

material, that can be composed in an optimal order. Besides, the

curricula at universities could be optimized, where students

participate in courses of different universities. Having a

recommendation for a good order on which courses should be

visited at which point of time is beneficial.

From a practical point of view, it is important to note that the

number of searches, while using a commercial crawler, is a cost

factor. If 𝑛 = “𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑝𝑖𝑐𝑠”, then the number of searches

𝐶 = 𝑛2 − 𝑛, having pair-wise searches 𝐴 + 𝐵 and 𝐵 + 𝐴 (with A

and B being topics of the list). This is necessary as the SERP list of

𝐴 + 𝐵 is not the same as 𝐵 + 𝐴. Also, the search query 𝐴 + 𝐵

returns 100 pages that need to be crawled to get the texts. In our

experiment, this results in 16Gb of data, having 38.000 texts of 20

topics with pair-wise searches, where the metric has to be derived

for each text. The required storage grows exponentially with the

number of topics. The length of the resulting topic list of

educational recommender systems can be limited in general, thus it

is not a problem, but it is important to limit the list first, before

finding the optimal order to avoid the need for large storage and

high computational capacities. Besides, using the first 10 results of

the SERPs instead of 100 reduces the crawling budget as well as

computing time, but makes the approach less robust.

In our experiment, we conclude that commercial popularity and the

estimated search amount are no indicators for a good topic

sequence. Independently from the intention of the paper, using

popularity is a helpful metric to get insights into trends about what

people are searching for. Online course suppliers can use this

information to create online courses for a large audience, those

sizes can be estimated with the search popularity. As data-driven

approaches, e.g. AI-related decisions require lots of participants,

offering online courses that are of high interest can help to get the

required number of participants to have enough training data for AI

methods. From the researchers’ perspective having popular courses

is of high interest to obtain AI decisions with a high statistical

significance. Sources like the Semantic Web do not provide this

additional information.

As this is ongoing research, the next step is to create a comparison

of the identified cluster sequences with sequences that can be

derived using the semantic web as proposed by Toman & Weddell

[20]. This real-world experiment can show the applicableness in the

field of education. If this method results in similar sequences, we

recommend using an already existing semantic network and in case

of missing concepts, we can use our method as a fallback.

Observing the overlap of expert sequences, we can see that they are

quite diverse. Finding an “optimum in education” is mostly a trade-

off between different opinions of experts. We used the sequences

to detect partial sequences that are similar across all experts. In the

future, all topics should have a description of the taught contents to

reduce the variety of sequences. Examining the detected partial

sequences, we can see that these topics have a semantic connection

and some topics have knowledge dependencies. In a future

scenario, we recommend finding clusters of topics first and then use

a text complexity metric like the GFI to get the optimal order.

Otherwise, there might be a switch of topics, those order is good

while looking at the complexity only, but could be confusing on a

more global view. From the didactical perspective, switching

between different topics in the learning path that have little

semantic coherence is not recommended.

In this paper, we focused on AI-related topics to present our

research at an early stage. It is of high interest to compare our

approach to data from another domain. We assume that the GFI as

a complexity metric can be used as an indicator for a useful order

as well. But it is important to note, it remains possible that GFI

randomly happened to give a good result. Thus extending the

experiment to different domains is necessary to give a final and

scalable recommendation.

Besides, we assumed that using text difficulty metrics will result in

nearly the same order as their task is identical. Observing the

results, we can see that there are major differences in the resulting

order. The GFI is used to estimate how many years of formal

education the reader needs to understand the text on the first reading

[16]. In our case, it was the best and most practical metric. Looking

at Figure 2, the Flesch-Reading-Ease is also of high importance but

failed to create the optimal order of our three clusters (Table 2).

Comparing the GFI with FRE, both metrics are based on syntactical

features. The GFI is enriched with contextual features like “easy

words”. This enrichment could be a reason why this index works

best in our experiment. Besides, other textual metrics need to be

taken into account for testing. Semantical features could be used as

well as text entailment. In the future, combining these metrics can

be beneficial, e.g. at training a neural network with all metrics to

use non-linear dependencies, that were not examined in this paper

yet. Textual metrics must be used carefully as they are “just”

formulas for judging the complexity of texts [21]. The methods

cannot be used to judge the appropriateness of contents or whether

the content is correct. Thus, selecting learning material of high

quality is important and the metrics are not useful in the selection

process.

The proposed approach depends on the SERPs of Google. Having

a high fluctuation of rankings within the SERPs could change the

feature's importance. As Google regularly updates their algorithms

within a core update twice a year, rankings may change [22]. As we

use the first 100 results we assume that the approach is robust

because there are only minor changes if we consider the set of the

first 100 pages. It is debatable that high-ranking Google results

contain web pages of high authority, it can be discussed whether

the first 100 resulting pages are a good resource for educational

purposes and whether they are trustworthy. Instead, they are likely

to be optimized for search engines, e.g. by search engine optimizers

that create contents with ingoing links of high authority web pages

aiming to have high rankings. There is the problem, that often texts

of competitors are re-written for new pages to rank for similar

terms. Thus, many texts with similar contents can be found.

Besides, the SERP came from multiple contributors, they may

include low-quality texts from commercial sources and web pages

that block search engines are systematically excluded.

We use Google as a proxy to get access to the web pages that

contain the texts that we are working with. The same can be done

with other search engines. Alternatively, being limited to resources

those contents are created by editors of publishing houses for

education may be biased as the complexity of texts also depends on

the writing style of authors. Using a resource like the first 100 texts

results in a more robust view to avoid this bias due to averaged data.

It can be discussed whether Google is a good source for

characterizing academic terms because SERPs might be too

inclusive and therefore noisy. Based on our experiment we could

see that a text difficulty average of the gathered data can be a good

indicator. Whether this is the case, in general, has to be examined

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 321

in further experiments. Besides, we could use educational materials

from publishing houses. In general, they are not publicly accessible,

which increases the costs if we want to use them. Further research

can examine whether resources like Wikipedia or Web of Science

can be used with similar metrics to determine the optimal order.

Limiting the approach to the header of courses could generally lead

to wrong conclusions if the courses do not cover the topic that was

given in the headline. In our experiments, we used topics as

keywords only. Using the course description or the course(ware)

content itself to obtain more rich information for having richer

keywords could be beneficial, that will be addressed in further

experiments. Besides, we did not consider synonyms, which should

be observed in future studies because using different words (even

synonyms) results in different SERPs.

6. CONCLUSION
In this paper, we propose different strategies to use texts that we

got using a search engine to find the optimal order of online course

topics. The pre-study has shown that the optimal topic sequences

differ among experts. But we can also observe that there are partial

topics that have the same order in all expert sequences. We

identified them to define a gold standard and to check for the

practical usefulness. The sequences derived by our approaches

were compared to the expert ones and the order of the partial topics.

The commercial popularity, that can be derived by searches in

search engines is not an indicator of a good topic sequence.

Searching for pair-wise topics and comparing the text complexity

of the SERPs’ web pages’ texts can be used as an indicator for

creating a plausible order of taught topics within online courses.

We identified the Gunning Fox Index as the most robust metric for

topic sequencing. We can conclude that this feature helps to find

the optimal sequence for automatic composed online courses to

personalize them ethically without using students giving them

randomized learning paths that could impair their learning

experience as well as their learning outcome.

7. ACKNOWLEDGMENTS
This work was supported by the German Federal Ministry of

Education and Research (BMBF), grant number 16DII127

(Weizenbaum-Institute). The responsibility for the content of this

publication remains with the authors.

8. REFERENCES
[1] N. Manouselis, H. Drachsler, K. Verbert and E. Duval,

"Recommender systems for learning," Springer Science &

Business Media, 2012.

[2] J. McCrae, D. Spohr and P. Cimiano, "Linking Lexical

Resources and Ontologies on theSemantic Web with lemon,"

in Extended Semantic Web Conference, Springer, 2011.

[3] P. Jain, P. Hitzler, P. Z. Yeh, K. Verma and A. P. Sheth,

"Linked Data is Merely More Data," in D. Brickley; V. K.

Chaudhri;H. Halpin; and D. McGuinness, editors, Linked

Data Meets Artificial Intelligence, Menlo Park,CA, AAAI

Press, 2010, p. 82–86.

[4] W. Gross, T. McGovern and R. Sturtevant, "Search engine

using user intent". USA Patent US20060064411A1, 2005.

[5] P. Brusilovsky and J. Vassileva, "Course sequencing

techniques for large-scale web-based education," in Int. J.

Cont. Engineering Education and Lifelong Learning, Vol.

13, Nos.1/2, 2003, pp. 73-94.

[6] D. Kelly and L. Azzopardi, "How many results per page?: A

Study of SERP Size, Search Behavior and User Experience,"

in Proceedings of the 38th International ACM SIGIR

Conference on Research and Development in Information

Retrieval, 2015, p. 183–192.

[7] T. Steiner, R. Troncy and M. Hausenblas, "How Google is

using Linked Data Today andVision For Tomorrow," in

Proceedings of Linked Data in the Future Internet at the

Future Internet Assembly, Ghent, 2010.

[8] S. Fischer, "Course and Exercise Sequencing Using

Metadata in Adaptive Hypermedia Learning Systems," in

ACM Journal of Educational Resources in Computing, Vol.

1, No. 1, ACM, 2001, pp. Article #3, 21 pages.

[9] J. Xu, T. Xing and M. v. d. Schaar, "Personalized Course

Sequence Recommendations," IEEE, 2016.

[10] M. Cucuringu, C. Z. Marshak, D. Montag and P. Rombach,

"Rank Aggregation for Course Sequence Discovery," 2017.

[11] S. Morsy, "Learning Course Sequencing for Course

Recommendation," 2018.

[12] EU, "Processing of special categories of personal data," in

Art. 9 GDPR, 2018.

[13] S. Rüdian, J. Quandt, K. Hahn and N. Pinkwart, "Automatic

Feedback for Open Writing Tasks: Is this text appropriate for

this lecture?," in DELFI 2020 - Die 18. Fachtagung

Bildungstechnologien der Gesellschaft für Informatik e.V.,

2020, pp. 265-276.

[14] T. v. d. Brück and J. Leveling, "Parameter Learning for a

Readability Checking Tool," DOI 10.5281/zenodo.2552414,

2019.

[15] J. Wild and M. Pissarek, "RATTE - Regensburger

Analysetool für Texte," Universität Regensburg, 2016, pp. 1-

12.

[16] R. Gunning, "The fog index after twenty years," in Journal

of Business Communication 6.2, 1969, pp. 3-13.

[17] F. R, "A new readability yardstick," in J. Appl Psycho 1 ,

1948.

[18] R. Gunning, The Technique of Clear Writing, McGraw-Hill,

1952.

[19] L. Breimann, "Random Forests," in Machine Learning 45,

2001, p. 5–32.

[20] D. Toman and G. Weddell, "On Order Dependencies for the

Semantic Web," in Conceptual Modeling, 2007, pp. 293-306.

[21] J. W.Pichert and P. Elam, "Readability formulas may

mislead you," in Patient Education and Counseling 7(2),

1985, pp. 181-191.

[22] Seorld, "Google Update," 05 10 2020. [Online]. Available:

https://seorld.com/blog/seo/google-update. [Accessed 21 10

2020].

322 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Targeting Design-Loop Adaptivity
Stephen E. Fancsali

Hao Li
Michael Sandbothe

Steven Ritter
Carnegie Learning, Inc.

{sfancsali, hli, msandbothe,
sritter}@carnegielearning.com

ABSTRACT
Recent work describes methods for systematic, data-driven
improvement to instructional content and calls for diverse teams
of learning engineers to implement and evaluate such
improvements. Focusing on an approach called “design-loop
adaptivity,” we consider the problem of how developers might use
data to target or prioritize particular instructional content for
improvement processes when faced with large portfolios of
content and limited engineering resources to implement
improvements. To do so, we consider two data-driven metrics that
may capture different facets of how instructional content is
“working.” The first is a measure of the extent to which learners
struggle to master target skills, and the second is a metric based
on the difference in prediction performance between deep learning
and more “traditional” approaches to knowledge tracing. This
second metric may point learning engineers to workspaces that
are, effectively, “too easy.” We illustrate aspects of the diversity
of learning content and variability in learner performance often
represented by large educational datasets. We suggest that
“monolithic” treatment of such datasets in prediction tasks and
other research endeavors may be missing out on important
opportunities to drive improved learning within target systems.

Keywords

Design-loop adaptivity, deep knowledge tracing, Bayesian
knowledge tracing, mastery learning, learning engineering.

1. INTRODUCTION
Recent work calls on researchers and developers, including teams
of learning engineers [14, 26], to focus on “explanatory” models
of learners [25] and “design-loop adaptivity” processes [1, 15] to
practically improve learning systems. While researchers describe
specific examples of how explanatory learner models and design-
loop adaptivity can be used to drive improvements to instruction,
less (if any) attention has been paid in the literature to the
practical problem of how content developers and learning
engineers target and prioritize content for improvement.

We focus on cases in which a target system has a large portfolio

of content, elements of which must be prioritized and targeted for
improvement given finite learning engineering and software
development resources. We present a case study using a data set
that is among the largest considered in the literature on knowledge
tracing and related methods [9, 18, 22], comprised of middle
school and high school student work over an academic year on
several hundred mathematics topics, each generally completed by
thousands of students, generating several hundred million data
points tracking student actions. We motivate, describe, and
illustrate two approaches to targeting content for improvement
within this portfolio, focusing primarily on what Aleven et al. [1]
call “design-loop adaptation to student knowledge,” relying on
large-scale data to find similarities amongst learners we might
leverage to redesign instructional content for better learning.

One targeting method is based on a measure of the extent to which
learners tend to struggle with particular pieces of content, and we
contrast it with an approach based on the relative prediction
performance of deep learning models (i.e., Deep Knowledge
Tracing; DKT [18, 22]) compared to traditional Bayesian
Knowledge Tracing (BKT; [9]) models.

The first method targets content students struggle to learn, relying
on measures of knowledge component (KC [19]; or skill) mastery
that are internal to the target intelligent tutoring system (ITS). In
contrast, the second method is roughly motivated by the idea that
identifying content in which there is a large difference in
performance between deep learning and traditional Bayesian
approaches may suggest areas in which deep learning can
leverage statistical regularities in students’ performance that could
point to improvements in the KC models that are used to drive
adaptation with BKT. Such performance differences may suggest
a particular focus area for KC model improvements. Relative
DKT performance versus BKT performance also provides an
instance of a metric that is perhaps less dependent on how the run-
time ITS has “set the bar” for success in terms of KC mastery.

In exploring these two approaches, we illustrate the variability in
learning content and experiences within widely deployed systems
like Carnegie Learning’s MATHia (formerly Cognitive Tutor)
[23]. While different facets of variation may at times call for
different approaches to content improvement (e.g., variation in
student motivation could call for redesigns that discourage
“gaming the system” [3]), our present work explores how to guide
learning engineers’ “attention” to particular pieces of content to
then consider specific improvements via processes for design-loop
adaptivity [1, 15].

Original contributions of this work are two-fold: (1) We describe
a novel problem in the literature related to how to target

Stephen Fancsali, Hao Li, Michael Sandbothe and Steven Rit-
ter “Targeting Design-Loop Adaptivity”. 2021. In: Proceedings
of The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 323-330.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 323

instructional content improvement or design-loop adaptivity and
explore two targeting approaches, and (2) we shed light on
opportunities in treating large-scale educational datasets that may
be missed by treating such datasets as “monolithic” targets for
data-intensive approaches. Treating datasets in a “monolithic”
way, though not a universal practice (e.g., [4-5, 10]) may inhibit
practical progress in learning engineering.

In addition to considering one of the largest-scale applications of
DKT (and BKT) modeling in the literature, we illuminate avenues
for research at the intersection of educational data science and
learning engineering at scale in a widely-deployed adaptive
learning platform for K-12 mathematics. We seek to amplify
extant calls for a more nuanced approach to work on performance
prediction [15, 25] while illustrating solutions to practical
problems in learning engineering and product improvement.

2. DESIGN-LOOP ADAPTIVITY
2.1 Background
A recent survey of adaptive instructional technologies [1]
describes three categories along which learners’ experience can be
varied, including “step-loop adaptivity,” “task-loop adaptivity,”
and “design-loop adaptivity.” Step-loop adaptivity and task-loop
adaptivity roughly correspond to “inner” and “outer” loop
adaptive functionality in ITSs distinguished by VanLehn (e.g.,
[28]), respectively. We briefly describe step-loop and task-loop
adaptivity before considering design-look adaptivity.

Step-loop or inner-loop adaptivity enables an adaptive
instructional system or ITS to provide support to learners within a
particular learning task based on their performance (e.g.,
providing context-sensitive hints or just-in-time feedback within a
math problem based on learner responses). Task-loop or outer-
loop adaptivity enable an instructional system to choose the next
appropriate task for a learner based on a model of student
learning and evolving estimates of a learner’s mastery of
underlying competencies, skills, or KCs [19] based on a learner’s
performance. Extensive educational data mining (EDM) literature
considers, for example, variants of and data-driven parameter
optimizations for BKT (e.g., [18]), which can be used to select
tasks for learners as their mastery of KCs evolves.

In their recent survey, Aleven and colleagues describe design-loop
adaptivity as involving

data-driven decisions made by course designers before
and between iterations of system design, in which a…
system is updated based on data about student learning,
specifically, data collected with the same system… [1].

They go on to describe goals toward which design-loop
adaptations might be made, including adaptations to student
knowledge, affect and motivation, student strategies and errors,
and self-regulated learning, providing examples of each.
Canonical examples of design-loop adaptivity or adaptation to
student knowledge, the goal of our present targeting and
prioritization endeavor, generally involve situations in which
content within tutoring systems or online courses are improved by
refining the fine-grained KC models that drive the adaptive
experience of learners using a combination of data and human
expertise [17, 20, 27].

Design-loop adaptivity for motivation and affect might drive
content or system design and redesign to discourage off-task
behavior [4] and “gaming the system” [3], wherein students

attempt to make progress in a system by taking advantage of
system features like hints, rather than making genuine attempts to
master content. Aleven et al. [1] suggest that an approach to
modeling gaming the system behavior based on a large-scale
survey of the extent to which gaming the system [3] manifests
across topics (what we will refer to as “workspaces”) in an
intelligent tutoring system like MATHia provides a foundation for
future design-loop adaptivity investigations. One important facet
of this work (and related work on off-task behavior [4]) is its
appreciation of the extent to which there is variability in how
learning occurs across different (types of) content within adaptive
instructional systems. Appreciating and surveying this variability
is vital to ascertaining where, within large portfolios of content, to
target design-loop adaptivity efforts and related data-driven,
instructional improvement efforts.

2.2 A Process for Design-Loop Adaptivity
Huang et al. [15] describe a systematic approach to design-loop
adaptivity or data-driven instructional redesign and improvement.
They suggest three general goals for such redesign efforts. For a
particular piece of content in an ITS or similar adaptive
instructional system with a KC model, the goals are: (1) refine the
KC model for the target content, (2) redesign the content, and (3)
optimize individualized learning within the content. Existing
EDM methods and novel analyses are then described to achieve
each of these goals, targeting an “Algebraic Expressions” unit of
content within the Mathtutor ITS [2]. For example, KC models
can be refined using data-driven, computationally intensive
methods like Learning Factors Analysis (LFA; [8]) or a simpler
approximation of such an approach that uses regression
techniques called “difficulty factor effect analysis” by Huang et
al. [15]. Human expertise also plays an important role in such
refinements, including in setting up data-driven analyses to
produce meaningful results, interpreting these results for inclusion
in potential task redesigns, and often in providing suggested
refinements for target tasks.
Huang et al. [15] demonstrate that redesigned content improves
learning as measured by pre-tests and post-tests. Broadly, these
goals align with on-going, data-driven content improvement
efforts pursued by learning engineers working with MATHia.
Nevertheless, the process of design-loop adaptivity generally
requires extensive human and computational resources to be
carried out in ways that will drive improved instructional
effectiveness. The present work seeks to illustrate how EDM
techniques might help improve targeting this process.

3. MATHia
3.1 Learning Platform
Carnegie Learning’s MATHia [23] is an ITS used by hundreds of
thousands of learners each year, mostly in middle and high school
classrooms as a part of a blended math curriculum that combines
collaborative work guided by instructors and Carnegie Learning’s
MATHbook worktexts (60% of instructional time in recommended
implementations) with individual work in MATHia (40% of
instructional time). Nevertheless, usage of MATHia, contexts in
which it is used, and other implementation details vary across a
diverse, nationwide user-base.

Grade levels of content in MATHia (e.g., Grade 7, Algebra I) are
organized into a series of “modules,” each of which is comprised
of a series of “units.” Units are composed of a series of
“workspaces.” Workspaces represent the underlying unit of
learner progress to mastery in MATHia. Each workspace presents

324 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

a set of problems associated with a set of KCs; student progress
within the system is determined by students’ achievement of
mastery of all of the KCs associated with a particular workspace,
estimated by MATHia using BKT (see §3.2). Learning
experiences vary substantially between workspaces with respect
to design patterns, content areas, types of practice and instruction
provided, (quality of) KC models intended to practice such
content (e.g., some the result of years of iterative refinements,
others introduced more recently), BKT parameters, and other
parameters that drive task selection and mastery judgment.

Consider the problem solving task illustrated in Figures 1 and 2.
Figure 1 illustrates the workspace “Modeling the Constant of
Proportionality.” In this workspace, students are provided with a
word problem and several associated questions (left pane; Figure
1). On the right-hand side of Figure 1, tools are presented to solve
the problem’s “steps.” There is a worksheet or table in which they
can provide units of measurement, responses to questions, and
fields in which to write expressions to model the problem’s
scenario. After they have completed entries in the worksheet,
students work with a graphing tool. Each problem-step in the ITS
can provide context-sensitive hints upon request as well as just-in-
time feedback that tracks errors that students often make. Most
problem-steps are mapped to KCs, for which MATHia provides
an evolving mastery estimate to adapt problem selection to the
individual student’s needs (see §3.2).

Contrast the learning experience of the problem in Figure 1 with
that of Figure 2. “Modeling the Constant of Proportionality”
(Figure 1) involves substantive reading, modeling the problem
scenario via algebraic expressions, working through concrete
instances of these expressions, and using a graphing tool. Figure 2
illustrates problem-solving in a menu-based equation “solver”
workspace, “Solving with the Distributive Property Over
Multiplication.” Here the student is tasked with solving for x in
the equation 65 = 10 (x + 6). There is little reading and no context
provided for the equation, but hints and just-in-time feedback are
available. Learners’ progress toward mastery is tracked for a
different set of KCs. The menu-based solver constrains possible
student actions at various points in the equation-solving process
compared to the typed-in input that students provide in the
worksheet in Figure 1. Far from an exhaustive list, we seek to
illustrate a few from among substantial differences in types of
content provided, design patterns, interaction modalities,
underlying KC models, and tools available, even within the
relatively constrained domain of math, any of which may have
important impacts on inferences that might be drawn from data or
the ability of different methods to predict performance and
learning within such content. While any of the features in these
examples might reasonably be refined as a part of the design-loop
adaptivity or content improvement process, we leave to future
work the data-driven targeting of specific improvements within a
workspace. We consider how to target specific “workspaces” for
design-loop adaptivity improvements.

3.2 Knowledge Tracing & Mastery Learning
BKT [9] posits a binary (i.e., “mastered” or “unmastered”)
knowledge state for each independently modeled KC and can be
formalized as a four-parameter hidden Markov model. One
parameter represents the probability that a learner has already
mastered a KC before their first opportunity to practice it. A
second parameter represents the probability that a learner
transitions from the unmastered to the mastered state at any
particular KC practice opportunity. Two parameters link the

knowledge state to observable outcomes at any KC practice
opportunity: the probability that a student is in the unmastered
state and responds correctly (“guessing”) and the probability that
a student is in the mastered state and answers incorrectly
(“slipping”). Extensive EDM literature has explored the data-
driven fitting of BKT parameters as well as individualized (e.g.,
[30]) and more sophisticated variants of this approach (e.g., [18]).

Figure 1. Problem-solving screenshot from a MATHia
workspace called “Modeling the Constant of Proportionality.”

Figure 2. Screenshot from the MATHia workspace “Solving
with the Distributive Property Over Multiplication.”
Based on parameter settings and performance data collected as a
student practices each KC, the system can use BKT to infer and
update estimates of the probability that a student is in the
“mastered” state for any particular KC. Typically, systems set a
threshold for mastery (often 0.95, as in MATHia); if the system’s
estimate that the probability a student has mastered a particular
KC is above the threshold, then the system considers the KC
mastered for that student.
Relying on evolving estimates of learner KC mastery,
instructional systems can use knowledge tracing frameworks like
BKT to drive “task-loop” (or “outer loop”) adaptivity [1, 28] and
mastery learning [7, 24]. After a student completes a problem (or
task; like the problems illustrated in Figures 1-2), the system can
select the next problem based on KCs that a student has yet to
master. In this way, systems can adapt to the student’s evolving
mastery of KCs, providing (ideally) just enough practice for
students to master KCs and avoiding cases in which the system
provides too little or too much practice.
Implementing self-paced mastery learning [7, 24], MATHia
provides practice to a student until they have either mastered all
KCs associated with a particular workspace or they have reached
the maximum number of problems that designers have specified
for a particular workspace. Once the student masters all of the
KCs in a particular workspace (or reaches the max number of
problems), they are moved on to the next workspace in an

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 325

assigned content sequence. Teachers are alerted when students
reach the max number of problems in a workspace without
reaching mastery. Setting a max number of problems ensures that
students do not endlessly struggle unproductively within a piece
of content [11].

3.3 Data
We consider data from 252,036 learners who used MATHia
during the 2018-19 academic year and completed at least one of
308 workspaces that track KC mastery across math content for
Grades 6-8, Algebra I, Algebra II, and Geometry. These data
account for approximately 3.8 million workspace completions.
Models are learned over subsets of 267,419,999 student actions
(i.e., first-attempts, including hint requests) at problem-steps
mapped to KCs. Over the 308 workspaces, MATHia tracks 2,152
KCs. Table 1 provides summary statistics.

Table 1. Summary statistics for 308 MATHia workspaces in
2018-2019; “KCs” = # KCs tracked; “Comps.” = # student-
workspace-completions; “Actions” = sum across all students
completing workspace of count of first attempts (including
hint requests) at problem-steps within workspace problems.

 Min. Q1 Med. Q3 Max.

KCs 2 5 6 9 15

Comps. 167 4275 9414 18801 51097

Actions 5530 197757 489159 1278325 7191034

When working with large, complex datasets, it is essential to
focus learning engineering efforts on the portions of the system
for which improvements can be most impactful. Rather than
consider such a broad dataset as a single monolithic target,
especially for performance prediction modeling in §4.2, we learn
models for each workspace within the dataset; input data are
sequences of correctness labels for learner actions (e.g., binary
correct or incorrect, where incorrect includes both errors and hint
requests) and labels for KCs mapped to each action.

4. METRICS FOR TARGETING
IMPROVEMENTS
As illustrated in Figures 1 and 2, workspace-to-workspace
variability in learning experiences is substantial. Types of practice
vary (e.g., equation solving, graphing, etc.), and developers make
a plethora of design choices in creating content. Some workspaces
require more reading; KC models vary in complexity, and some
have been iteratively refined over the course of nearly two
decades while others are newly deployed in a given year. Given
this variation and the nature of grade-level content standards,
there is also variability in the extent to which learners find
particular content difficult.

Learner difficulties manifest at the problem-step level in the form
of problem-solving errors and hint requests and at the workspace
level in at least two ways: (1) that some learners require a greater
number of problems to achieve mastery of all KCs, and (2) that
some learners reach the maximum number of problems set by
designers without having achieved mastery of all KCs. These
latter students are moved along within their curriculum sequence
without mastery. Teachers are alerted of this failure to reach
mastery via reporting analytics available to them as well as in the
LiveLab teacher companion app to MATHia. Some students fail
to reach mastery in a workspace because of genuine difficulty
with presented math content, but relatively frequent instances of

such failure to reach mastery often indicate that content
improvements (i.e., design-loop adaptivity) is called for to
enhance experiences for learners.

Prior research considers MATHia’s workspace level as a unit of
analysis. Researchers have focused on associations between
characteristics of Cognitive Tutor “lessons” (MATHia’s
workspaces) and learners’ affective states like confusion and
frustration [10] as well as the extent to which students go off-task
[4] and game the system [5]. In what follows, we adopt an
approach similar in spirit to this literature by considering a large
corpus of MATHia data as broken down into workspaces rather
than treating the entire dataset in a monolithic fashion.

The first metric we consider helps identify content that is
instructionally ineffective in ways that manifest as difficulty for
learners to successfully complete the content. In considering the
second metric, we explore one example where the metric may be
providing some insights into places where content is not
“difficult” (i.e., measures of difficulty do not “raise flags” about
improvement needs) but where design-loop adaptivity
improvements might drastically improve student learning.

4.1 Proportion of Failures to Reach Mastery
The first design-loop adaptivity targeting metric we consider is
the proportion of learners who fail to reach mastery of at least one
of the KCs associated with a workspace before reaching the
maximum number of problems set by content designers. Figure 3
provides a histogram showing the overall distribution of this
proportion across workspaces. The median workspace has 4.3% of
students fail to reach mastery of all its KCs (minimum = 0%; Q1
= .7%; Q3 = 12.1%; maximum = 77.7%).

Figure 3. Histogram illustrating the distribution of the
proportion of students failing to reach mastery of all KCs
associated with 308 workspaces in the 2018-19 academic year.
Fancsali et al. [11] argue that students’ failure to achieve mastery
at a level of aggregation like that of a workspace is an important
outcome for predictive modeling, mostly overlooked in the
literature on so-called “wheel spinning” (e.g., [6]), which tends to
develop models to predict whether students will master particular
KCs in a tutoring system, ignoring other elements of how
instructional content is presented. Fancsali et al. argue that, given
the clustering of KCs within problems, the clustering of problems
within workspaces, and the fact that workspaces are the unit at
which learners make progress in ITSs like MATHia, reporting
outcomes like the count and percentage of KCs that student fail to
master (a la Beck and Gong [6]) is of dubious practical value.

326 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Since design-loop adaptivity improvements are likely to often
involve redesign of instructional content, we similarly contend
that measures closely aligned to instructional delivery are likely to
be helpful in targeting this process. Large proportions of students
failing to master instructional content are likely to be important in
determining what learning content to improve with limited
resources. This metric serves as a foil to a second approach.

4.2 DKT vs. BKT Prediction Performance
Extensive recent literature (e.g., [12, 18, 22]) considers deep
learning approaches to the problem of predicting student
performance at fine-grained opportunities to demonstrate mastery
of KCs in learning systems like ASSISTments [13]. DKT [22] has
been compared (e.g., [12, 18] to BKT and logistic regression
approaches to the same type of prediction task [21]. Early work
demonstrated that DKT generally had superior prediction
performance compared to BKT [22], but subsequent literature also
suggests that variations of BKT (e.g., modeling “forgetting”) and
logistic regression approaches can bridge some, if not most, of the
gap in prediction performance (e.g., [18, 29]).
Nevertheless, we seek to better understand the extent to which
DKT out-performs BKT when considered workspace-by-
workspace across a large dataset from MATHia, which presents a
wide variety of learning experiences. We find that, for a variety of
workspaces, classic BKT’s performance is often comparable to
DKT even without accoutrements added in the work of Khajah et
al. [18]. Further, in keeping with our primary concern in the
present work, we explore the extent to which observed differences
in performance between the two approaches, especially examples
of DKT’s far superior prediction performance, might serve as a
metric for targeting improvement work for MATHia workspaces,
possibly indicating an especially flawed KC model.

4.2.1 Modeling Approach
We rely on the Khajah et al. [18] implementation of DKT with
long short-term memory (LSTM) recurrent units.1 We use
Yudelson’s hmm-scalable2 implementation of classic BKT
parameter fitting using expectation maximization [30]. We learn
DKT and BKT models for each of the 308 workspaces, splitting
the data for each workspace into training and test sets with a 80%-
20% student-level split and calculate the AUC (area under the
receiver-operating characteristic curve) on the test set following
methods in Khajah et al. [18]. BKT and DKT models are trained
and tested on the same datasets. AUC is a measure of the extent to
which a model can “discriminate” between or predict students’
correct and incorrect responses in the held-out test set. An AUC
value of 0.5 indicates “chance” ability to discriminate between
two classes; a value of 1.0 indicates perfect discrimination.

4.2.2 Results
Table 2 provides summary statistics for AUC performance for
DKT, BKT, and AUC differences of these methods over all
workspaces. As expected, DKT generally provides superior
prediction performance to classic BKT over the 308 workspaces.
However, there is substantial variability, with classic BKT in
some cases, albeit many (but not all) with relatively small sample
sizes, even out-performing DKT. While there is a modest,
statistically significant positive correlation between the AUC
difference in DKT and BKT and sample size (i.e., the number of

1 https://github.com/mmkhajah/dkt
2 https://github.com/myudelson/hmm-scalable

student-sequences available for training and testing) (r = .2; p <
.001), BKT performs comparably to DKT on a number of
workspaces with tens of thousands of students’ data, and BKT
only underperforms DKT by approximately .07 AUC units for the
median workspace. The Q1 value for this difference (the greatest
difference over 77 workspaces) is approximately in line, in terms
of AUC units, with a value (.03 AUC units) declared comparable
by Khajah et al. [18] for BKT “variants” compared to DKT.
The difference in AUC between DKT and BKT is uncorrelated
with the proportion of students who fail to reach mastery (r = -.05;
p = .4) and is thus not an indicator of the relative difficulty of
particular workspaces, regardless of the source of difficulty.
Table 2. Summary statistics for AUC performance over 308
workspaces of DKT and BKT models and of the difference
between DKT and BKT performance (∆); negative minimum
value indicates better BKT performance for some workspaces.

AUC Min. Q1 Med. Q3 Max.

DKT .5852 .7839 .8331 .8783 .9763

BKT .5150 .7045 .7456 .7854 .9563

∆ -.0802 .0361 .0676 .1281 .3073

4.2.3 Practical Promise
We consider two observations relating to workspace design
patterns that emerge from considering workspaces with the largest
differences in terms of DKT’s (generally better) prediction
performance compared to BKT. First, we consider the design of a
particular workspace as a prime target for design-loop adaptivity
to student knowledge, motivation, and affect. Second, we consider
more general design patterns in workspaces on which DKT and
BKT performance differences are greatest, suggesting more
“macro-level” design-loop adaptivity that may affect broader
categories of workspaces.

4.2.3.1 Example Workspace
The second greatest observed difference in AUC occurred for the
workspace “Checking Solutions to Linear Equations” (DKT AUC
= .968; BKT AUC = .684). A mere 0.2% of students fail to master
all KCs in this workspace, suggesting that it may not be “flagged”
for design-loop adaptivity improvements based on difficulty.
Nevertheless, careful inspection of the workspace yields several
areas for improvement.
This workspace presents students with problems (See Figure 4)
like: “Jordan solved the equation -3u – 8 = 10. She calculated u =
-6. Use the Solver to check Jordan’s solution.” The student is then
presented with a menu-based equation solver. Work with the
equation solver should involve the student substituting in the
solution value from the problem presentation and checking
whether the result is a balanced equation. After choosing
“Substitute for variable” from the menu, the student then must
input a value on the left-hand side of the equation (see Figure 5).
Problems in this workspace present both correct and incorrect
cases, but the KC model does not distinguish between correct and
incorrect cases, making problems with a correct solution targets
for possible gaming the system. For example, in the problem in
Figure 5, the student might enter 10 to complete “10 = 10.” This
response may not reflect having correctly carried out the variable
substitution to arrive at this solution. KCs in this workspace are
also not currently mapped to work in the solver; the solver
provides hints and just-in-time feedback on errors, but it is not
instrumented to track KC mastery. Once the student has entered

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 327

the appropriate value, two questions appear on the left of the
screen (see Figure 6), and student responses to these questions
trigger updates to two KCs at a time.

Figure 4. Screenshot in the MATHia workspace “Checking
Solutions to Linear Equations.”

Figure 5. Screenshot after the student has selected “Substitute
for variable” from the equation solving menu (see Figure 4).

Figure 6. Screenshot after the student has entered the value 10
on the left-hand side of the equation (see Figure 5).
Following design-loop adaptivity steps laid out by Huang et al.
[15], we have identified (1) where the KC model can be refined,
and (2) areas for task redesign. The third step would involve
fitting a BKT model using the hypothetical re-mapping of KCs to
steps within problems in existing data to determine whether the
hypothesized, refined KC model fits the data better than the
existing KC model. Future work will experimentally test
workspace redesigns to “close the loop” (cf. [16, 25]) between this
data-driven approach and empirical learning outcomes.

4.2.3.2 Prominent Design Patterns
Patterns emerge in comparing the performance of DKT to BKT
over 308 workspaces. In the top twenty workspaces in which
DKT outperforms BKT, differences in AUC units range from .307
to .212, and all provide constrained input mechanisms relative to

broader MATHia content. Fourteen workspaces (70%) involve
equation solving, and the others are split between those that
involve placing values on a number line and those in which
problem input is provided via drop-down menus.
Gervet et al. raise questions about explanations for observed
properties of DKT in predicting student performance. Can DKT,
for example, “better pick up on local patterns of student behavior
like gaming the systems” [12]? While far from conclusive, DKT’s
performance for the workspace “Checking Solutions to Linear
Equations” could exemplify this phenomenon. Workspaces with
more constrained inputs may provide examples where DKT
“picks up” on local patterns that BKT does not. Future work ought
to investigate whether these particular types of relatively
constrained input mechanisms are easy to “game” or whether and
how DKT learns local performance patterns.
Equation solver and number line workspaces are widespread in
the top workspaces in which DKT outperforms BKT. “Checking
Solutions to Linear Equations” has readily apparent flaws,
suggesting that our approach may be promising in targeting
instructional improvement work. Systematic review of these
results remains future work.

5. DISCUSSION
There are numerous questions for future research. That
differences in AUC between DKT and BKT are uncorrelated with
an important measure of instructional ineffectiveness, combined
with DKT’s ability to find regularities in data that are not found
by BKT suggests that this difference may be signaling important
workspace characteristics. Analysis of a particular workspace
(§4.2.3.1) suggests that DKT-BKT differences may signal
inadequacies in the KC model. These findings can be compared to
the results of data-driven search for better KC models [8].
Improvements can be made to the workspace, and A/B tests can
“close the loop” and establish more effective approaches.
Systematic analysis of instructional content and prediction
performance differences in DKT and BKT might follow work that
explores a space of properties and features of particular tutor
“lessons” to determine which predict students’ affect, gaming the
system, and off-task behavior [4-5, 10]. Comparisons to logistic
regression methods (e.g., [12]) are also needed.
Naïve learning engineering may focus on reducing students’
mastery failures. Such an approach could lead to “over-
simplified” tasks that don’t produce failure because they don’t
require much knowledge. Large differences between DKT and
BKT may help identify over-simplified workspaces that provide
opportunities for students to game the system [3, 12]. To what
extent do gaps in modeling techniques’ performance indicate
unproductive patterns of “local” behavior in particular
workspaces? What else drives differences? What other behavior
patterns indicate ways to target improvement?
Methodologically, our “non-monolithic” analysis of a large
educational data set treats component instructional experiences as
units for analysis. Such analytical decomposition is vital to
practical learning engineering to improve instructional systems
and large portfolios of content used by learners every day.

6. ACKNOWLEDGMENTS
This research was sponsored by the National Science Foundation
under the award The Learner Data Institute (Award #1934745).
The opinions, findings, and results are solely those of the authors
and do not reflect those of the National Science Foundation.

328 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

7. REFERENCES
[1] Aleven, V., McLaughlin, E.A., Glenn, R.A., Koedinger, K.R.

2017. Instruction based on adaptive learning technologies. In
Handbook of Research on Learning and Instruction, 2nd Ed.,
Routledge, New York, 522–560.

[2] Aleven, V., Sewall, J. 2016. The frequency of tutor
behaviors: a case study. In ITS 2016. LNCS, vol. 9684,
Springer, Cham, 396–401. https://doi.org/10.1007/978-3-
319-39583-8_47

[3] Baker, R.S., Corbett, A.T., Koedinger, K.R., Wagner, A.Z.
2004. Off-task behavior in the Cognitive Tutor classroom:
When students "game the system." In Proceedings of ACM
CHI 2004: Computer-Human Interaction, 383-390.

[4] Baker, R.S.J.d. 2009. Differences between intelligent tutor
lessons, and the choice to go off-task. In Proceedings of the
2nd International Conference on Educational Data Mining,
11-20.

[5] Baker, R.S.J.d., de Carvalho, A.M.J.A., Raspat, J., Aleven,
V., Corbett, A.T., Koedinger, K.R. 2009. Educational
software features that encourage and discourage "gaming the
system". In Proceedings of the 14th International
Conference on Artificial Intelligence in Education, 475-482.

[6] Beck J.E., Gong Y. 2013. Wheel-Spinning: Students Who
Fail to Master a Skill. In Artificial Intelligence in Education.
AIED 2013. LNCS, vol 7926. Springer, Berlin/Heidelberg.
https://doi.org/10.1007/978-3-642-39112-5_44

[7] Bloom, B. S. 1968. Learning for mastery. Evaluation
Comment 1(2). Los Angeles: University of California at Los
Angeles, Center for the Study of Evaluation of Instructional
Programs.

[8] Cen, H., Koedinger, K.R., Junker, B. 2006. Learning factors
analysis: A general method for cognitive model evaluation
and improvement. In Proceedings of the 8th International
Conference on Intelligent Tutoring Systems Springer‐Verlag,
Berlin, 164–175.

[9] Corbett, A.T., Anderson, J.R. 1994. Knowledge tracing:
Modeling the acquisition of procedural knowledge. User
Modeling and User‐Adapted Interaction 4, 253– 278.

[10] Doddannara L.S., Gowda S.M., Baker R.S.J.., Gowda S.M.,
de Carvalho A.M.J.B. 2013. Exploring the relationships
between design, students’ affective states, and disengaged
behaviors within an ITS. In Artificial Intelligence in
Education. AIED 2013. LNCS, vol 7926. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-39112-5_4

[11] Fancsali S.E., Holstein K., Sandbothe M., Ritter S., McLaren
B.M., Aleven V. 2020. Towards practical detection of
unproductive struggle. In Artificial Intelligence in Education.
AIED 2020. LNCS, vol 12164. Springer, Cham.
https://doi.org/10.1007/978-3-030-52240-7_17

[12] Gervet, T., Koedinger, K., Schneider, J., & Mitchell, T.
(2020). When is deep learning the best approach to
knowledge tracing? Journal of Educational Data Mining
12(3), 31-54. https://doi.org/10.5281/zenodo.4143614

[13] Heffernan, N.T., Heffernan, C.L. 2014.The ASSISTments
ecosystem: building a platform that brings scientists and
teachers together for minimally invasive research on human
learning and teaching. Int. J. Artif. Intell. Educ. 24(4), 470–
497.

[14] Hess, F., Saxberg, B. 2014. Breakthrough leadership in the
digital age: Using learning science to reboot schooling.
Thousand Oaks, CA: Corwin.

[15] Huang Y., Aleven V., McLaughlin E., Koedinger K. 2020. A
general multi-method approach to design-loop adaptivity in
intelligent tutoring systems. In Artificial Intelligence in
Education. AIED 2020. LNCS, vol 12164. Springer, Cham,
124-129. https://doi.org/10.1007/978-3-030-52240-7_23

[16] Liu, R., & Koedinger, K.R. (2017). Closing the loop:
Automated data‐driven cognitive model discoveries lead to
improved instruction and learning gains. Journal of
Educational Data Mining 9(1), 25–41.

[17] Lovett, M., Meyer, O., Thille, C. 2008. The open learning
initiative: Measuring the effectiveness of the OLI statistics
course in accelerating student learning. Journal of Interactive
Media Education, 14.

[18] Khajah, M., Lindsey, R.V., Mozer, M.C. 2016. How deep is
knowledge tracing? In Proceedings of the 9th International
Conference on Educational Data Mining (Jun 29 - Jul 2,
2016, Raleigh, NC, USA). EDM 2016. International
Educational Data Mining Society, 94-101.

[19] Koedinger, K.R., Corbett, A.T., Perfetti, C. 2012. The
knowledge-learning-instruction framework: Bridging the
science-practice chasm to enhance robust student learning.
Cognitive Science 36, 5, 757–798.

[20] Koedinger, K.R. & McLaughlin, E.A. 2010. Seeing language
learning inside the math: Cognitive analysis yields transfer.
In Proceedings of the 32nd Annual Conference of the
Cognitive Science Society. Austin, TX, Cognitive Science
Society, 471-476.

[21] Pavlik, P.I., Cen, H., Koedinger, K.R. 2009. Performance
factors analysis – a new alternative to knowledge tracing. In
Proceedings of the 2009 Conference on Artificial
Intelligence in Education. IOS Press, 531–538.

[22] Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M.,
Guibas, L.J., Sohl-Dickstein, J. 2015. Deep knowledge
tracing. In Advances in Neural Information Processing
Systems, 505–513.

[23] Ritter, S., Anderson, J.R., Koedinger, K.R., and Corbett, A.T.
2007. Cognitive Tutor: applied research in mathematics
education. Psychon. B. Rev. 14, 249-255.

[24] Ritter, S., Yudelson, M., Fancsali, S.E., Berman, S.R. 2016.
How mastery learning works at scale. In Proceedings of the
3rd Annual ACM Conference on Learning at Scale (Apr 25 -
26, 2016, Edinburgh, UK). L@S 2016. ACM, New York,
NY, 71-79.

[25] Rosé, C.P., McLaughlin, E.A., Liu, R., Koedinger, K.R.
2019. Explanatory learner models: Why machine learning
(alone) is not the answer. Br J Educ Technol 50, 2943-2958.
https://doi.org/10.1111/bjet.12858

[26] Simon, H.A. 1967. The job of a college president.
Educational Record 48(Winter), 68–78.

[27] Stamper, J. & Koedinger, K.R. 2011. Human-machine
student model discovery and improvement using data. In
Proceedings of the 15th International Conference on
Artificial Intelligence in Education. Springer,
Berlin/Heidelberg, 353-360.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 329

[28] Vanlehn, K. 2006. The behavior of tutoring systems.
International Journal of Artificial Intelligence in Education,
16(3), 227–265.

[29] Wilson, K.H., Xiong, X., Khajah, M., Lindsey, R.V., Zhao,
S., Karklin, Y., Van Inwegen, E.G., Han, B., Ekanadham, C.,
Beck, J.E., Heffernan, N., Mozer, M.C. 2016. Estimating
student proficiency: Deep learning is not the panacea. In
Proceedings of the Workshop on Machine Learning for

Education at the 30th Conference on Neural Information
Processing Systems (NIPS 2016).

[30] Yudelson, M., Koedinger, K., Gordon, G. 2013.
Individualized Bayesian Knowledge Tracing Models. In
Proceedings of 16th International Conference on Artificial
Intelligence in Education (Memphis, TN) AIED 2013. LNCS
vol. 7926, Springer-Verlag, Berlin/Heidelberg, 171-180.

330 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Going Online: A simulated student approach for evaluating
knowledge tracing in the context of mastery learning

Qiao Zhang
Drexel University

Philadelphia, PA, USA
qiao.zhang@drexel.edu

Christopher J. Maclellan
Drexel University

Philadelphia, PA, USA
christopher.maclellan@drexel.edu

ABSTRACT
Knowledge tracing algorithms are embedded in Intelligent
Tutoring Systems (ITS) to keep track of students’ learn-
ing process. While knowledge tracing models have been
extensively studied in offline settings, very little work has
explored their use in online settings. This is primarily be-
cause conducting experiments to evaluate and select knowl-
edge tracing models in classroom settings is expensive. To
fill this gap, we introduce a novel way of using machine-
learning models to generate simulated students. We con-
duct experiments using agents generated by the Apprentice
Learner Architecture to investigate the online use of differ-
ent knowledge tracing models (Bayesian Knowledge Tracing,
the Streak model, and Deep Knowledge Tracing). An anal-
ysis of our simulation results revealed an error in the initial
implementation of our Bayesian knowledge tracing model
that was not identified in our previous work. Our simula-
tions also revealed a more fundamental limitation of Deep
Knowledge Tracing that prevents the model from supporting
mastery learning on multi-step problems. Together, these
two findings suggest that Apprentice agents provide a prac-
tical means of evaluating knowledge tracing models prior to
more costly classroom testing. Lastly, our analysis identi-
fies a positive correlation between the Bayesian knowledge
tracing parameters estimated from human data and the pa-
rameters estimated from simulated learners. This suggests
that model parameters might be initialized using simulated
data when no human-student data is yet available.

Keywords
Computational Models of Learning, Simulated Students,
Knowledge Tracing

1. INTRODUCTION
Intelligent Tutoring Systems (ITS) are used within K-12 ed-
ucation to improve learning outcomes. In addition to provid-
ing students with scaffolding and feedback, tutors utilize an
approach called knowledge tracing to estimate what students

know and do not know [2]. When combined with a problem
selection policy [16], knowledge tracing enable tutors to sup-
port mastery learning and to focus students practice where it
is most needed (i.e., on the skills they do not yet know rather
than the skills they already know). While many studies
have explored knowledge tracing for offline evaluation (fit-
ting knowledge tracing models to existing data sets), there
is comparatively little work on evaluating these algorithms
in online settings (evaluating how well these algorithms es-
timate students’ mastery from just a few data points and
decide when to stop giving them additional problems).

We aim to understand which knowledge tracing models yield
the greatest mastery learning efficiency in online settings.
Additionally, we want to find out how the parameters for
knowledge tracing models can be selected before human data
is collected. To meet our need for multiple experiments to
investigate our knowledge tracing questions, we introduce
a novel way of using computational models of learning, or
simulated student models that learn from interactions with
a tutor just like human students do, to simulate our knowl-
edge tracing experiments. We use the Apprentice Learner
architecture [10], a machine-learning framework that aims
to model how humans learn from examples and feedback to
generate simulated students and conduct experiments.

To explore the feasibility of this approach, we conducted ex-
periments to compare Bayesian Knowledge Tracing (BKT)[2]
to the Streak model [7] and Deep Knowledge Tracing (DKT)
[15]. Our simulations show that both BKT and Streak stop
before giving all the problems, but that BKT is slightly more
aggressive than Streak and seems to assume students have
mastered skills a bit earlier than expected. Upon further
inspection, our analysis revealed a bug in our underlying
implementation of BKT (which we fixed for this study).
Further, we found that DKT exhibits strange behavior that
makes it unusable in certain cases of mastery learning and
problem selection. This limitation of DKT for mastery learn-
ing has not been identified in prior work. These findings
demonstrate that simulation students might serve a valu-
able role in testing knowledge tracing models before more
costly classroom deployments.

We also explore the use of simulated data from these exper-
iments to estimate initial parameters for the BKT model.
Prior to collecting human data, knowledge tracing param-
eters are often set to reasonable hand-picked defaults. A
better approach is to run a pilot study with human students

Qiao Zhang and Christopher MacLellan “Going Online: A simulated stu-
dent approach for evaluating knowledge tracing in the context of mastery
learning”. 2021. In: Proceedings of The 14th International Conference on
Educational Data Mining (EDM21). International Educational Data Mining
Society, 331-337. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 331

to collect data for model training, which requires additional
time and labor. Our analysis identifies a positive correlation
between the BKT parameters estimated from the simulated
data and those estimated from human data, suggesting sim-
ulated data might be used to initialize parameters.

2. BACKGROUND
2.1 Knowledge Tracing
The main purpose of knowledge tracing is to track students’
skill mastery and predict their future performance based on
their past activity. Knowledge tracing uses labels of the
skills needed for each step, which we call Knowledge Compo-
nents (KCs), and students’ first attempt correctness (correct
or incorrect) to predict whether the students will correctly
solve a new problem containing the same KC.

2.2 Bayesian Knowledge Tracing
BKT [2] is a well-known knowledge tracing algorithm that
can estimates whether students have learned a particular
skill given their past performance on opportunities to prac-
tice that skill. It models student knowledge using a Hidden
Markov Model, where the hidden state is estimated from
observations of students’ correctness on each step. For each
skill, a student can be in one of the two possible knowl-
edge states: “unknown” or “known”. A binary response (cor-
rect or incorrect) is generated at each opportunity a student
practices a skill [5]. Although, BKT supports the ability to
model forgetting, it is typically assumed that students never
forget what they have mastered [16]. If a student reaches
95% probability of being in the known state for a skill, the
skill is marked as being mastered by the student. With these
assumptions, the BKT model has four parameters.

• P(L0): initial probability of mastery (“known”).

• P(T): probability of learning the skill (“learn”).

• P(G): probability of guessing the answer (“guess”).

• P(S): probability of making a mistake (“slip”).

Researches have created variants of the BKT model. Yudel-
son et al. [20] introduced an individualized BKT model that
can take student differences in initial mastery and skill learn-
ing probabilities into account. Nedungadi et al. [13] created
PC-BKT (Personalized and Clustered), which has individual
priors for each student and skill, and dynamically clusters
students based on learning ability. This prior work aims to
improve predictive performance over original BKT. Despite
the quantity of research on BKT models, there is relatively
little evaluation in online settings.

2.3 Streak Model
Another knowledge tracing approach that is popular for use
within mastery learning is the Streak model. Also known
as “three-in-a-row” [7], it is a relatively simple and intuitive
model since it only has one parameter, how many correct
answers in a row equates to mastery. It was first applied in
ASSISTments and the key idea was to keep giving the stu-
dent questions until some proficiency threshold was reached.
The default setting was “three correct in a row” but this
could be manipulated by teachers.

2.4 Deep Knowledge Tracing
DKT [15] is a knowledge tracing model that has been receiv-
ing increasing attention. This model leverages information

about students sequence of steps and correctness on those
steps to predict performance on subsequent steps. Addition-
ally, DKT leverages information about performance on one
skill to improve predictive performance on other skills. DKT
uses a long short-term memory (LSTM) architecture, which
is a kind of recurrent neural network that allows for the
modeling of non-Markovian processes. Recent work evalu-
ating DKT [6, 8] suggests that DKT often outperforms BKT
in terms of predictive performance. Despite this promising
finding, there has been very little work exploring the use
of DKT within online knowledge tracing (e.g., for mastery
learning within a tutor). Beyond the original DKT work
[15], which explores the use of DKT for next step recom-
mendation, we are unaware of any research programs that
currently uses DKT in this way.

Finally, it is worth noting that knowledge tracing is not
strictly necessary for tutoring systems. Many tutors either
use a fixed problem sequence or present a fixed number
of problems in a random order. However, we hypothesize
that knowledge tracing in conjunction with mastery learn-
ing component is one of the main components of tutors that
makes tutors effective.

2.5 Computational Model of Learning
The Apprentice Learner Architecture is a framework for
modeling human learning from demonstrations and feed-
back in educational environments [10]. We use an Appren-
tice model previously developed in prior work; see [11] for a
complete description of the model. Most work in the field
of educational data mining focuses on building mathemati-
cal, predictive models of learning. In contrast, the Appren-
tice models actually perform the task (not just predict per-
formance). They induce task-specific knowledge from the
demonstrations and feedback they receive. Apprentice mod-
els are ideal for the current study because they do not require
prior human data to operate. They can predict learning and
behavior based solely on the task structure.

3. METHODOLOGY
We created 30 simulated students (Apprentice agents) to
solve problems in a fraction arithmetic tutor (tutor pre-
sented in [14]). The tutor had three different types of prob-
lems: Add Different (AD), add fractions with different de-
nominators; Add Same (AS), add fractions with same de-
nominators; Multiplication (M), multiply two fractions.

3.1 Experiment Design
Our study had six conditions: Random, Streak, BKT default,
BKT random, BKT human and DKT random. There were
four types of conditions: Random, BKT, Streak, and DKT,
which differ in the way they select the next problem to give
to a simulated student. In the Random condition every
problem was assigned only once in random order and the
training ends when problems run out. Since Random gives
the most training, it produces the highest correctness pre-
diction by the end of practice. We use Random as a baseline
for evaluating other models.

The other conditions use the respective knowledge tracing
approaches for mastery learning and problem selection. Dur-
ing problem selection, each knowledge tracing model ran-
domly chooses a problem with at least one unmastered skill

332 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 1: Num. problems given in each condition (by type).

and updates the student’s mastery level based on the result.
The training ends once the proficiency threshold is reached
(95% in all cases but Streak, where it was 3 in a row).

The parameters in BKT default were manually set based on
our prior experience with BKT. We set P(L0) to 0.1, P(T) to
0.05, P(G) to 0.05 and P(S) to 0.02. These parameters are
identical for each KC. The BKT random and BKT human
parameters were estimated using the BKT module on Learn-
Sphere [9]. The human-based parameters were obtained
from fitting BKT to the “Fraction Addition and Multipli-
cation” dataset accessed via DataShop (Koedinger et al.,
2010). The random-based parameters were obtained from
fitting BKT to the log data generated from simulated stu-
dents in the Random condition.

To support the use of DKT within online master learning,
we created our own implementation using PyTorch’s LSTM
module.1 Based on prior work [8], the model has 200 nodes
in the hidden layer, uses a dropout of 0.4 during training,
and uses a batch size of 5 (our sequences were longer than
those in prior work, so a smaller batch size works well). This
implementation supports the ability to fit DKT to data pre-
sented in standard DataShop [9] format. Trained models
have a simple interface for use in online knowledge tracing
settings. Similar to BKT, we fit DKT to the log data gen-
erated from simulated students in the Random condition to
estimate model parameters.

3.2 Simulation Studies and Evaluation
During the experiment process, we created 30 simulated stu-
dents for each of the six conditions and analyzed the data
that they generated. For these experiments, we created a
KC model that labels each step as a combination of “Prob-
lem Type” and “Selection”. There are 14 unique KCs in
our analysis, 8 for Add Different, 3 for Add Same and 3
for Multiplication. As the Additive Factors Model (AFM)
is often used to examine learning curves from existing data
[1], we used pyAFM [12] (a python implementation of AFM)
to predict the probability that students will get a next step
with the respective skill correct at the end of their practice.
This provided an independent means for us to estimate how
well each knowledge tracing approach did at appropriately

1Open-source code for the model is available here:
https://gitlab.cci.drexel.edu/teachable-ai-lab/dkt torch.

recognizing when students had achieved mastery.

Figure 2: Learning curves for four conditions.

The AFM model assumes that performance monotonically
converges to zero error in the tail. However, both humans
and simulated students have non-zero error in the tail of
their learning curve. This violation of the AFM model’s as-
sumption causes the model to estimate lower learning rates
in order to accommodate non-zero error in the tail. We
found that because the simulated students sometimes get a
much larger number of practice opportunities than human
students (e.g., 80 vs. 30 practice opportunities), the bias
in AFM’s learning rates was non-trivial. To address this
challenge, we utilized the Additive Factors Model + Slip
(AFM+S) approach [12], which explicitly models non-zero
error rates in the tail using additional “slipping” parameters
for each KC. The AFM+S model better fit the simulated
student data from all six conditions than the AFM model
(three fold cross-validated RMSE = 0.240 vs. 0.257). Quali-
tatively, we found that the AFM+ S learning curves seemed
to better fit the data, particularly for slopes at the beginning
of difficult to master skills.

4. SIMULATION RESULTS
4.1 Online Knowledge Tracing Results
Figure 1 shows the numbers of problems administered by the
tutoring system in each condition. Random always gives
all 80 problems each type. Streak gives around 17 prob-
lems for AD, 10 problems for AS and 9 problems for M.
BKT default gives around 11 problems for AD and 6 prob-
lems for AS and M. BKT random has the similar statis-
tics to the BKT default, while BKT human gives around
14 AD problems, 9 M problems and around 6 AS problems.
DKT random gives around 78 AD problems, almost as many
as Random; however, it gives less than 3 problems in AS
and M. The number of problems given by BKT human is
slightly higher than those given by BKT random. We hy-
pothesize that this is because the BKT random parameters
were fit specifically to the simulated students, so when used
for knowledge tracing they provide better estimates of mas-
tery than the the BKT human parameters.

To get a better sense of the overall differences between Ran-
dom, Streak, BKT (BKT random), and DKT, we plotted
the overall learning curves for the data from these condi-
tions, see Figure 2. We can see from this figure that BKT

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 333

Figure 3: The AFM+S predicted probability at the end of training for each KC averaged over all students.

stops giving practice earlier than Streak, which subsequently
stops giving practice earlier than Random and DKT. We
observe higher variance in the tail of the learning curves for
BKT and streak because the total number of students is
decreasing as each student reaches mastery.

We applied the AFM+S model to predict performance on
a hypothetical next opportunity for each KC and student.
Figure 3 shows the average predicted correctness (across stu-
dents) after the final practice opportunity for each skill. For
most KCs, the prediction is higher than 95%, which sug-
gests that mastery has been obtained in these KCs. Unfor-
tunately the KC “AD Answer Denominator” has the lowest
overall next-step correctness prediction in all six conditions.
Figure 4 displays the learning curve for this skill across all
six conditions and the number of students that have not
yet mastered the skill at each point. This graph shows that
there is a high slipping rate for this particular skill (see green
line), indicating that there is a ceiling on the best possible
AFM+S prediction that can be achieved.

Figure 4: Learning curve for “AD Answer Denominator” and
number of unmastered students at each opportunity.

Conditions AD Average AS Average M Average
Random 0.01 0.01 0.01
Streak 0.06 0.11 0.12

BKT default 0.09 0.16 0.16
BKT random 0.10 0.17 0.15
BKT human 0.08 0.16 0.12
DKT random 0.01 0.30 0.31

Table 1: Model efficiency scores across six conditions.

To evaluate how well each approach handles the trade off be-
tween maximizing student’s performance while minimizing
the amount of practice, we computed a metric that we call
“efficiency”, see Table 1. To compute the score, we divided
the AFM+S predictions at the end of training by the num-
ber of opportunities the student received for each student
and KC. We then averaged over students to get a score for
each KC. Finally, we averaged over KCs within each prob-
lem type. This produced, 3 model efficiency scores for each
of the six models. Bigger value refers to a more efficient
model. The efficiency score complements accuracy and pro-
vides more information for selecting the best model.

Although Random gives the highest prediction in Figure 3
among all KCs, it is the least efficient one as it gives all
the problems during training. BKT random has lower pre-
dictions than Streak, however the model efficiency suggests
that it is more efficient. DKT random yields the same effi-
ciency as Random in AD problems. However, for AS and M
problems, it appears to have the highest efficiency across all
six models since it takes the least practice, but still achieves
a moderate correctness prediction.

4.2 Simulated vs. Human BKT parameters
To validate the feasibility of generating BKT parameters
using simulated student data, we did a correlation analysis
of the BKT random and BKT human parameters. Figure
5 shows that there’s a positive correlation of around 0.65
in the “Learn” parameter, which means the simulated stu-
dents generated by Apprentice Learner have a similar learn-
ing rate as human students. We argue that this is one of the

334 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 5: Positive correlation in the BKT “Learn” parameter
values estimated from simulated and human data.

harder parameters to set. The “Known” parameter (P (L0))
was near 0 for all skills in the simulated data because all
agents start off without any prior knowledge. In human
data, this parameter will vary based on the learning context.
The “Guess” and “Slip” parameters based on the simulated
data were reasonable (both greater than 0), but exhibited
no notable correlation with the human guess and slip values.
Taken together, we argue that this approach is a promising
way to identify initial parameter values for BKT, but more
research is needed to explore and generalize this idea.

4.3 Knowledge Tracing Sequence Analysis
Next, we take a closer look at the estimates of several knowl-
edge tracing approaches for different sequences. Figure 6
shows the correctness sequence of a single student on “AD
Answer Denominator” KC. This student was taken from the
BKT random condition. We added the mastery predictions
generated by BKT, Streak and DKT given this sequence.
For BKT and Streak, only the correctness on this skill was
used. For DKT, the model was given the entire student se-
quence for all KCs, but only the predictions for this KC are
shown. Predictions were taken at where the student just
finished the problem that contained the target KC.

For BKT, the estimates trend towards increased mastery
over the course of practice, but sometimes the probability
decreases when it gets an item wrong. For Streak, each cor-
rect response yields a 33% increase in the mastery predic-
tion, accumulating to 100% by the third correct response in
a row. The DKT models predictions tend to jump around,
but generally do not seem to be increasing despite getting
the problem correct multiple times in a row. For example,
the model’s probability of correct jumps to 100% before re-
turning to and staying close to 0%.

Figure 6: Different Model Predictions on “AD Answer De-
nominator” given student correctness sequence.

To figure out why the DKT model has such erratic behavior
and why it gives so many AD problems, we fed a complete
sequence from one student into the DKT model (student
from BKT random condition). Figure 7 shows the predic-
tion of mastery for each KC after the student has completed
each problem (problem type shown on the x-axis). It seems
that the student never masters the “AD Answer Numerator”
or “AD Answer Denominator”, which explains why the DKT
tutor is giving almost all the AD problems to the students.

Upon further investigation, we discovered that the DKT
model has a fundamental issue that makes it difficult to use
for mastery learning. The issue is caused by using the DKT
predictions between problems when the mastery learning
system is determining which KCs are mastered before pick-
ing another problem. Unfortunately, for multi-step problems
some KCs cannot be correctly applied on the first step. DKT
correctly predicts these KCs will have near 0% correctness
(any attempts will be incorrect). However, this has the side
effect of confusing the mastery learning system into thinking
that the KC is unmastered. When the DKT model actually
reaches a step where the KC can be correctly applied, then
its predicted probability jumps to a more realistic estimate
of the mastery. This problem was not identified in previous
work on mastery learning with DKT (e.g., [15]) because the
prior work only looked at problems with a single step, so
this issue never occurred. However, most problems within
tutoring systems are multi-step. Future work should explore
how to correct this issue within DKT so it can be used for
mastery learning.

Figure 7: DKT predictions for each KC after each problem.

5. SUMMARY OF KEY FINDINGS
Our first key finding is that simulated students can success-
fully evaluate online knowledge tracing models. Our simu-
lations indicate that Streak works well for mastery learning
and has reasonable efficiency; although the model gives a bit
more practice than strictly necessary (e.g. the average num-
ber of steps to master all AD KCs is around 17 in Streak and
10 in BKT random). Still, Streak is very simple to operate,
implement, and modify and it behaves reasonably well.

BKT also work well for mastery learning and generally seems
to have the best efficiency of the approaches we compared
(although DKT seems to be more efficient for AS and M
problems). However, it seems to stop a little early in some
cases, resulting in under practice. Figure 3 shows that the
BKT random model gets 86% correctness prediction for the
KC “AD Answer Numerator”, 73% for “AD Answer Denom-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 335

inator” and 83% for “AS Answer Denominator”. To some
extent, it reveals that these KCs might be more difficult for
both simulated students and human students to master, and
more practice is required to obtain mastery. Our work sug-
gests that it is important to look at multiple factors when
evaluating knowledge tracing approaches in online settings.
In particular, it is important to look at both student mas-
tery and the amount of practice that is administered. To
explore this trade off, we proposed the efficiency metric. We
believe that this metric (or ones like it) might be useful for
evaluating knowledge tracing approaches in online settings.

Multiple studies [18, 17] suggest that the DKT model has
good predictive performance in offline setting. However,
we found that it does not seem to work properly for on-
line knowledge tracing, particularly in cases of multi-step
problems. Yeung & Yeung [19] identified that DKT’s pre-
dictions for KCs are not consistent across time-steps, which
we believe is related to the issue we encountered. Even when
a student performs well on a KC, DKT’s predicted perfor-
mance for that skill may drop. In general, DKT’s predictions
fluctuate drastically over time, so when its predictions are
sampled has a big impact on its accuracy. The core issue
is that DKT generates predictions for every KC at every
step, but its loss function only constrains predictions that
are likely to occur next. Yeung & Yeung suggested some
possible modifications to the DKT objective function to mit-
igate this problem, but implementation and testing of these
was beyond the scope of the current study.

In preliminary analysis, BKT estimated students reached
mastery even though their error rates were still high. Fur-
ther inspection revealed an error in our BKT model that was
causing it to incorrectly estimate student mastery. Multiple
researchers across multiple labs have used this open-source
implementation. Despite wide use, we uncovered issues that
had not been previously uncovered. Although we corrected
these issues for the current study, we argue that this is a
positive outcome for our simulated student approach. This
finding reinforces the idea that simulated students can be
used to test and improve knowledge tracing approaches be-
fore running more costly human studies.

Our second key finding is that researchers might use data
generated by simulated students to initialize knowledge trac-
ing parameters when human data is not available. To evalu-
ate the feasibility of this idea for BKT, we conducted a corre-
lation analysis between the random-based BKT parameters
and human-based parameters. We found a strong correla-
tion between the learning rate parameters suggesting that
initializing BKT parameters using simulated student data
might be an informed, but cost-effective approach.

6. RELATED WORKS
The closest work to ours is the simulation studies conducted
by Doroudi et al. [4, 3], which investigates different knowl-
edge tracing approaches using simulated students. They ar-
gue that it is important to evaluate knowledge tracing under
various assumptions about how students learn. One of the
major differences between their approach and ours is that
they use statistical models that predict correctness to simu-
late students rather than computational models of learning
that actually learn and perform the task, as we do with Ap-

prentice agents. Apprentice agents are more complex than
the knowledge tracing approaches that are being used to
evaluate them. It would be interesting to explore the use of
Apprentice agents as another kind of student model for the
knowledge tracing evaluations proposed by Doroudi et al.

7. CONCLUSIONS AND FUTURE WORK
We were able to successfully apply simulated students to
test different knowledge tracing models. When we com-
pared the three knowledge tracing models (BKT, Streak,
and DKT) to a no-knowledge-tracing baseline (Random),
we found that BKT gave the fewest problems, Streak gave
the second fewest, Random gave the most and DKT gave al-
most as many as Random in one problem type and the least
in the other two. In general, we found that BKT seemed to
be the most efficient approach, but streak gave reasonable
results despite its simplicity. Through the use of simulated
students, we also discovered a number of issues with our
BKT implementation as well a fundamental issue with DKT.
Despite widespread use of the BKT implementation and a
lot of recent investigation into the DKT model, these issues
had not been discovered in prior work. Together, these re-
sults support our primarily claim that simulated students
are an effective tool for investigating and evaluating online
knowledge tracing approaches.

Our analysis also found evidence to support the idea that
simulated student data might be used to initialize BKT pa-
rameters when no human-student data is available. In par-
ticular, we found that BKT learning rates estimated from
simulated data have a significant correlation to the learning
rates estimated from human data. While these initial results
are promising, more work is needed to further explore these
ideas. In particular, we would like to try running human-
subject experiments to compare BKT models initialized us-
ing simulated student data to those with default parameters.
One surprising finding is how well BKT default performs;
despite somewhat arbitrary parameters, it was more efficient
than Streak. Future work should explore how to manually
pick robust default values for BKT.

We have a number of additional future directions we would
like to explore. We intend to individualize the Apprentice
models to make them better mimic the behaviors of dif-
ferent kinds of learners (e.g., high vs. low performing stu-
dents), students with different motivation in learning, and
those who suffer from learning disabilities. We should also
explore variations of DKT that address concerns we have
identified and enable its use in online mastery learning. Fi-
nally, we should move beyond simulation and explore how
well our simulated students predict which knowledge tracing
approaches will yield the best learning for human students.

8. ACKNOWLEDGMENTS
We would like to thank Danny Weitekamp and Erik Harp-
stead, who developed much of the framework for testing the
Apprentice agents within the fractions tutors. We also thank
Anna Raffery for creating the framework for applying knowl-
edge tracing to simulated students and developing the initial
version of Bayesian Knowledge Tracing that we used. We
also thank Adit Gupta for reading earlier drafts and provid-
ing suggestions for improvement.

336 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

References
[1] H. Cen. Generalized Learning Factors Analysis: Im-

proving Cognitive Models with Machine Learning. PhD
thesis, Carnegie Mellon University Pittsburgh, 2009.

[2] A. T. Corbett and J. R. Anderson. Knowledge trac-
ing: Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction, 4(4):253–
278, 1994.

[3] S. Doroudi, V. Aleven, and E. Brunskill. Robust evalu-
ation matrix: Towards a more principled offline explo-
ration of instructional policies. In Proceedings of the
Fourth ACM Conference on Learning@Scale, pages 3–
12, 2017.

[4] S. Doroudi and E. Brunskill. Fairer but not fair enough
on the equitability of knowledge tracing. In Proceed-
ings of the 9th International Conference on Learning
Analytics & Knowledge, pages 335–339, 2019.

[5] S. E. Fancsali, T. Nixon, and S. Ritter. Optimal and
worst-case performance of mastery learning assessment
with Bayesian knowledge tracing. Proceedings of the 6th
International Conference on Educational Data Mining,
EDM 2013, 2013.

[6] T. Gervet, K. Koedinger, J. Schneider, T. Mitchell,
et al. When is deep learning the best approach to knowl-
edge tracing? Journal of Educational Data Mining,
12(3):31–54, 2020.

[7] N. T. Heffernan and C. L. Heffernan. The assistments
ecosystem: Building a platform that brings scientists
and teachers together for minimally invasive research
on human learning and teaching. International Journal
of Artificial Intelligence in Education, 24(4):470–497,
2014.

[8] M. Khajah, R. V. Lindsey, and M. C. Mozer. How deep
is knowledge tracing? Proceedings of the 9th Interna-
tional Conference on Educational Data Mining, EDM
2016, pages 94–101, 2016.

[9] K. R. Koedinger, R. S. Baker, K. Cunningham,
A. Skogsholm, B. Leber, and J. Stamper. A data
repository for the edm community: The pslc datashop.
In Handbook of Educational Data Mining, volume 43,
pages 43–56. CRC Press, 2010.

[10] C. J. MacLellan, E. Harpstead, R. Patel, and K. R.
Koedinger. The apprentice learner architecture: Clos-
ing the loop between learning theory and educational
data. Proceedings of the 9th International Conference
on Educational Data Mining, EDM 2016, pages 151–
158, 2016.

[11] C. J. MacLellan and K. R. Koedinger. Domain-general
tutor authoring with apprentice learner models. Inter-
national Journal of Artificial Intelligence in Education,
pages 1–42, 2020.

[12] C. J. MacLellan, R. Liu, and K. R. Koedinger. Ac-
counting for Slipping and Other False Negatives in Lo-
gistic Models of Student Learning. Proceeding of the 8th
International Conference on Educational Data Mining,
EDM15, pages 53–60, 2015.

[13] P. Nedungadi and M. S. Remya. Predicting stu-
dents’ performance on intelligent tutoring system - Per-
sonalized clustered BKT (PC-BKT) model. Proceed-
ings - Frontiers in Education Conference, FIE, 2015-
February(February), 2015.

[14] R. Patel, R. Liu, and K. R. Koedinger. When to block
versus interleave practice? evidence against teaching
fraction addition before fraction multiplication. In Pro-
ceedings of Cognitive Science Conference, 2016.

[15] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,
L. Guibas, and J. Sohl-Dickstein. Deep knowledge trac-
ing. In Proceedings of the 28th International Conference
on Neural Information Processing Systems - Volume 1,
NIPS’15, page 505–513, Cambridge, MA, USA, 2015.
MIT Press.

[16] J. Rollinson and E. Brunskill. From predictive models
to instructional policies. Proceedings of the 8th Interna-
tional Conference on Educational Data Mining, EDM
2015, pages 179–186, 2015.

[17] L. Wang, A. Sy, L. Liu, and C. Piech. Deep knowledge
tracing on programming exercises. In Proceedings of
the Fourth ACM Conference on Learning@Scale, pages
201–204, 2017.

[18] X. Xiong, S. Zhao, E. G. Van Inwegen, and J. E. Beck.
Going deeper with deep knowledge tracing. Proceed-
ing of the 9th International Conference on Educational
Data Mining, EDM 2016, pages 545–550, 2016.

[19] C.-K. Yeung and D.-Y. Yeung. Addressing two
problems in deep knowledge tracing via prediction-
consistent regularization. In Proceedings of the Fifth
Annual ACM Conference on Learning@Scale, pages 1–
10, 2018.

[20] M. V. Yudelson, K. R. Koedinger, and G. J. Gordon.
Individualized bayesian knowledge tracing models. In
Lecture Notes in Computer Science, volume 7926 LNAI,
pages 171–180, 2013.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 337

Effects of Algorithmic Transparency in Bayesian
Knowledge Tracing on Trust and Perceived Accuracy

Kimberly Williamson
Cornell University
Ithaca, NY, USA

khw44@cornell.edu

René F. Kizilcec
Cornell University
Ithaca, NY, USA

kizilcec@cornell.edu

ABSTRACT
Knowledge tracing algorithms such as Bayesian Knowledge
Tracing (BKT) can provide students and teachers with help-
ful information about their progress towards learning ob-
jectives. Despite the popularity of BKT in the research
community, the algorithm is not widely adopted in educa-
tional practice. This may be due to skepticism from users
and uncertainty over how to explain BKT to them to foster
trust. We conducted a pre-registered 2x2 survey experiment
(n=170) to investigate attitudes towards BKT and how they
are affected by verbal and visual explanations of the algo-
rithm. We find that ostensible learners prefer BKT over a
simpler algorithm, rating BKT as more trustworthy, accu-
rate, and sophisticated. Providing verbal and visual expla-
nations of BKT improved confidence in the learning appli-
cation, trust in BKT and its perceived accuracy. Findings
suggest that people’s acceptance of BKT may be higher than
anticipated, especially when explanations are provided.

Keywords
Bayesian Knowledge Tracing, Data Visualization, Explain-
able AI

1. INTRODUCTION
Knowledge tracing can offer students and teachers a real-
time understanding of what students have already learned
and what they are still struggling with [7]. It provides ac-
tionable insights that can lead to better educational out-
comes [16]. Among many types of knowledge tracing algo-
rithms, Bayesian Knowledge Tracing (BKT) has been es-
tablished and researched most extensively, as evidenced by
the 114,000 Google Scholar results for ”Bayesian Knowl-
edge Tracing,” 17,500 of which published since 2020. BKT
has been tested to help students self-monitor their learning
progress [4, 23], to help teachers understand what students
have not learned yet [22], and to enable adaptive learning
technologies that let students skip over the content they have
mastered [18]. In contrast to the abundance of research on

BKT, including hundreds of articles devoted to incremental
enhancements of the original model [20], there are not many
real-world applications that use BKT in practice. Some of
the most widely used K-12 learning platforms like ASSIST-
ments and Khan Academy decided against using BKT in
favor of simpler models such as N-Consecutive Correct Re-
sponses (N-CCR) [13]. This raises questions about barri-
ers to adopting knowledge tracing algorithms in educational
practice. In particular, how much is the relative complexity
and opacity of BKT responsible for its slow adoption? Plat-
form providers may be concerned that educators and learn-
ers will not trust a model that cannot easily be explained to
them [13, 12, 24, 25, 1].

The Technology Acceptance Model (TAM) posits that a
user’s acceptance and adoption of new technology is based
on its perceived usefulness (PU) and perceived ease of use
(PEOU) [9]. PU and PEOU are beliefs that can be influ-
enced by external factors, such as providing additional in-
formation about a technology. According to TAM, learn-
ers’ and educators’ PU and PEOU are essential factors in
the adoption of BKT in practice. Improving their percep-
tions could therefore increase the acceptance and adoption of
BKT in real-world applications. Moreover, a better under-
standing of the mechanisms behind the acceptance of BKT
is expected to inform the presentation of other knowledge
tracing algorithms as well.

A large number of knowledge tracing algorithms have been
developed over the years that could benefit from empiri-
cal evidence on how to explain them to users. Recent ad-
vances in artificial intelligence have inspired research into
more complex algorithms such as deep knowledge tracing
(DKT), which uses neural networks [17, 11]. With more
complex algorithms that provide less insight into their inner
workings, it becomes more important to understand how
people’s trust in the algorithm and its perceived accuracy
might influence perceptions of usefulness and usability of
a learning application [1]. Besides BKT and DKT, which
are suitable for modeling understanding and sense-making,
there are also logistic learning models, such as Additive Fac-
tor Models and Performance Factor Analysis [5, 19, 20],
which model memory and fluency [20]. These two types
of models can also be integrated into one [15]. While there
are many types of models that can be examined, we choose
BKT as an example knowledge tracing algorithms that is
relatively simple and popular among researchers.

Kimberly Williamson and Rene Kizilcec “Effects of Algorithmic Trans-
parency in Bayesian Knowledge Tracing on Trust and Perceived Accuracy”.
2021. In: Proceedings of The 14th International Conference on Educational
Data Mining (EDM21). International Educational Data Mining Society,
338-344. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

338 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

This research contributes causal evidence to address three
important research questions. First, do people prefer to
learn with BKT or N-CCR (N-Consecutive Correct Re-
sponses) in an ostensible high-stakes test scenario? Second,
how is their preference related to specific attitudes, includ-
ing their confidence in the learning system to do well on a
test, their trust in the algorithm, and the perceived accu-
racy of the algorithm? And third, how do verbal and/or
visual explanations affect people’s attitudes and preferences
over knowledge tracing algorithms? We answer these re-
search questions with data collected from a pre-registered
2x2 factorial survey experiment.

2. BACKGROUND
One of the simplest knowledge tracing algorithms is N-CCR.
It assesses student mastery by evaluating the number of con-
secutive correct responses for a particular skill. For example,
the model determines that a student has learned fractions
after correctly answering three fraction questions in a row.
Although N-CCR is easy to understand, its simplicity can
sometimes make it less accurate than BKT. Still, N-CCR
has been used in popular platforms, including ASSISTments
and Khan Academy [13], and there is mixed evidence as
to whether BKT outperforms N-CCR at modeling student
learning [8, 10, 13, 21]. Nevertheless, the scientific com-
munity shows a clear preference for BKT (and other more
complex knowledge tracing algorithms) based on the alloca-
tion of research attention.

BKT is a two-state Hidden Markov Model where the unob-
served hidden state being modeled is student learning, and
for a given knowledge component, a student has a state of
either learned or not learned [6, 17, 11]. Although BKT is
already more sophisticated than N-CCR, critics have sug-
gested that BKT is too simple of an algorithm for modeling
human learning. They point to deep (neural network) learn-
ing models to better represent all factors that go into student
learning [17, 11]. Mao and colleagues [17] found that deep
learning models outperformed BKT on some learning tasks.
However, they also acknowledge that these gains in perfor-
mance might not be worth the loss in model interpretability.
While researchers tend to consider BKT as one of the sim-
pler and more explainable algorithms for knowledge tracing,
practitioners and learners who are the end-users may not
share this view.

The explainability of an algorithm, which is partly deter-
mined by how transparent, understandable, interpretable it
is, can play an essential role in its adoption into applica-
tions. Barredo Arrieta and colleagues [1] identified these
and other reasons for making algorithms more explainable:
most relevant to the work on BKT are trustworthiness, con-
fidence, causality, and accessibility. Prior research on algo-
rithms in education has echoed this finding. Kizilcec [14]
found that increasing transparency by providing users with
additional information about an algorithm made users trust
the algorithm more (though too much information can erode
trust). Other studies have more specifically examined the in-
terpretability of BKT in learning applications. Yeung [24]
explored the use of Item Response Theory to make BKT
and deep learning models more explainable, but they have
not examined how users react to it. Zhou and colleagues [25]
examined BKT explainability by creating visualization ”ex-

plainables.” They then designed an experiment to determine
the effectiveness between a static and interactive visualiza-
tion and found that the static explainable led to a better
understanding of the BKT algorithm. More generally, re-
search on Open Learning Models (OLMs) has advanced an
understanding of how to visualize and explain learning mod-
els [3, 2]. OLMs provide users with interactive visualizations
that grant them insights into learning algorithms, along with
the ability to adjust the algorithm. This study will add to
OLM research by expanding knowledge on how to explain
and visualize information to foster positive attitudes.

The current study provides a foundational understanding of
how individuals perceive BKT compared to N-CCR along
several attitudinal dimensions, and how much verbal and
visual explanations of BKT can improve those perceptions.
Our review of prior work informed the following two hy-
potheses:

H1. Verbal and visual explanations of BKT lead participants
to prefer it over N-CCR.

H2. Verbal and visual explanations of BKT will positively
increase participants attitudes about the BKT algorithm.

3. METHODS
The study design, materials, measures and analysis ap-
proach are pre-registered with the Open Science Foundation:
https://osf.io/7c5zt/. To refine the study design, measures,
and analysis plan, we ran a pilot study with 26 participants
and used both descriptive and inferential statistical analyses
to build our analysis plan. We first used descriptive analysis
to estimate survey completion time, ensure we had enough
variance in responses, and check that the information pro-
vided to participants was enough information for them to
evaluate the algorithms. We used respondents’ answers and
an open-ended question at the end of the survey in which
we asked participants for any feedback to improve the sur-
vey. We took the results from this pilot study to alter the
visualizations and information provided to participants and
rephrase some questions to improve clarity. We removed
the open-ended feedback question from the survey after the
pilot.

3.1 Participants
Participants were recruited from Amazon Mechanical Turk
and received $1.70 for completing a 10-minute survey. The
study was advertised as seeking input on test preparation
applications. To determine our target sample size of 170,
we used G*Power to conduct a power analysis. Our analysis
goals were to obtain 95% power to detect a medium effect
size of 0.25 at the standard 0.05 alpha error rate with six
repeated measures and four groups. While we had 170 par-
ticipants who took the survey, 34 participants either failed
to answer all of the comprehension questions correctly (29)
or had prior experience with BKT (4) or both (1). Analyses
were conducted on the remaining 136 respondents. Table 1
describes the sample demographics for the sample.

3.2 Procedure
To contextualize the study, participants were provided the
following narrative with pictures of two sample questions
taken from the ASSISTments platform:

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 339

(a) Simple visualization (b) Detailed visualization

Figure 1: Two versions of a visualization of student performance on questions shown to participants depending on their
condition assignment.

Table 1: Sociodemographics of Participants included in the
study.

n %

Gender Woman 79 58.1
Man 54 39.7
Transgender Man 1 .7
Gender Variant/Non-Conforming 2 1.5

Ethnicity Hispanic 10 7.4
Not Hispanic 126 92.6

Race White 100 73.5
Black or African American 10 7.3
American Indian or Alaska Native 2 1.5
Asian 16 11.8
Not Listed 5 3.7
Multiracial 3 2.2

Age 18-24 27 19.9
25-34 52 38.2
35-44 37 27.2
45-54 8 5.9
55-64 11 8.1
Above 65 1 .7

As an admissions requirement for a university program that
you are applying for, you are preparing to take a general
knowledge exam. The test is important to you and you need
to do as well as possible to get accepted.
You have decided to use a test preparation app to help you
study for the test.
A key feature of the test prep app is that it personalizes the
learning experience to help you study efficiently. The app
shows you only questions about topics that you have
not already learned.
The system keeps track of your answers to each question and
automatically moves to the next topic once it deter-
mines that you have learned the previous topic. To
determine if you have learned a topic, the app uses an al-
gorithm. Once the algorithm determines you learned a
topic, it will stop giving you study questions about it. Thus,
it also determines the speed at which you progress in your
test prep.
We would like to get your opinions about the two different
algorithms to understand which one you find more accurate
and trustworthy.

On the next page, participants answered three multiple-
choice comprehension questions: (1) How does the test prep
app determine what questions to give you? (2) What de-
termines how quickly you are going to be done with test
prep? (3) What happens when the system determines that
you have learned a topic? We pre-tested these questions

to ensure that an attentive reader would have no problems
answering them correctly.

Next, participants saw a short description of the N-CCR
algorithm, which we labeled as 3 Right in a Row (3RR):
”A topic will be considered learned once a student correctly
answers three questions in a row.” A simple table depicting
a sample student’s progression for four topics (table rows)
and questions for each topic (table columns) accompanied
the description. The table looked like Figure 1a. Each
cell contained an X or a Xdepending on if the student an-
swered the question correctly. True to the 3RR algorithm,
each topic was considered learned once three consecutive
questions were answered correctly. At the bottom of the
page, participants answered several questions about their
attitudes towards the 3RR algorithm (see Measures).

At this point, participants were randomly assigned to con-
ditions based on a 2x2 factorial design. There were 33 par-
ticipants in the No BKT Explanation/BKT Simple Visu-
alization condition in the final sample, 34 in the No BKT
Explanation/BKT Detailed Visualization condition, 38 in
the BKT Explanation/BKT Simple Visualization condition,
and 31 in the BKT Explanation/BKT Detailed Visualization
condition.

The following page mirrored the structure of the previous
one but for BKT, providing a description and sample learn-
ing progress visualization based on the experimental assign-
ment, followed by the same set of attitudinal questions about
the algorithm. Next, on the final page of the survey, partic-
ipants were asked to compare the two algorithms.

3.3 Experimental Manipulations
In the no BKT explanation condition, participants received
this one-sentence description of the BKT algorithm: ”A
topic will be considered learned once the algorithm estimates
with a high probability that a student has learned the topic
based on their responses up to that point.” In the BKT ex-
planation condition, participants additionally received the
following information about the BKT algorithm:

After every question you answer, the Bayesian Knowledge
Tracing algorithm estimates the probability that you have
now learned a topic using a probabilistic model that accounts
for the following data:
– an initial probability that you have learned the topic based
on your first answer: it is higher if you answered correctly
– a correct guess probability: e.g., 50% for a true/false
question
– a slip probability for answering incorrectly even though
you already learned the topic

340 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

– the difficulty of questions you have answered based on how
many people have answered them incorrectly
– performance data such as the number of hints that you
asked for and the time it took you to answer the question

Using all of this information, the algorithm estimates
the probability that you have learned a topic. If the proba-
bility is above 95%, the algorithm moves you on to the next
topic.

In the BKT simple visualization condition, participants re-
ceived a simple table depicting a sample student’s learning
progress mirroring the one shown in the 3RR algorithm (Fig-
ure 1a). In the BKT detailed visualization condition, the
same table was enhanced to show the estimated probability
of having learned the topic using a color scale (Figure 1b).
To make the visualizations realistic, we ran a BKT algo-
rithm over a sample of ASSISTments data and used a 95%
probability to determine mastery.

3.4 Measures
We measured participants’ attitudes towards each algorithm
using six items rated on 5-point unipolar response scales
(’Not at all’, ’Somewhat’, ’Moderately’, ’Very’, ’Extremely’):

Confidence: ”How confident are you that the test prep app
with this algorithm will prepare you to do very well on the
test?”
Understanding: ”How well do you understand how this al-
gorithm determines if you have learned a topic?”
Sophistication: ”How complex is this algorithm for determin-
ing if you have learned a topic?”
Accuracy: ”How accurate is this algorithm at determining if
you have learned a topic?”
Trust: ”How much do you trust this algorithm to determine
what you have learned?”
Speed: ”How quickly do you learn the materials for the test
using this algorithm?”

At the end of the survey, participants rated their general
preference over the two algorithms in response to the follow-
ing question: ”Now that you have learned about the 3 Right
in a Row (3RR) and Bayesian Knowledge Tracing (BKT)
algorithms, which one would you prefer to use for your test
prep?” Response options were on a 7-point bipolar scale:
’Strongly prefer 3RR’, ’Moderately prefer 3RR’, ’Slightly
prefer 3RR’, ’Neither prefer 3RR nor BKT’, ’Slightly pre-
fer BKT’, ’Moderately prefer BKT’, ’Strongly prefer BKT’.
Participants were invited to provide a rationale for their
preference using an open-ended question: ”Please tell us why
you prefer the algorithm that you choose above.”

3.5 Analytical Approach
We used the pilot study data to finalize our analysis plan
by developing our inferential analysis. For H1, we decided
to use linear regression to understand if the conditions had
an association effect on the participants’ overall preference.
We used the conditions as the predictor variables and the
preference as the outcome variable. We next decided to use
multiple linear regression to understand the association be-
tween the attitudinal constructs and algorithm preferences.
This analysis used the attitudinal constructs as the predic-
tor variables with preference as the outcome variable. The

No BKT Explanation/
 BKT Simple Visualization

No BKT Explanation/
 BKT Detailed Visualization

BKT Explanation/
 BKT Simple Visualization

BKT Explanation/
 BKT Detailed Visualization

4 5 6 7

Avg. Algorithm Preference
(1=Strongly prefer 3RR, 7=Strongly prefer BKT)

Figure 2: Average algorithm preference by condition.

last planned analysis evaluated H2 by running a linear re-
gression on each attitudinal construct with the conditions
as the predictor variables and the attitudinal construct as
the dependent variable. While the interpretation of linear
regression output is clear and familiar, we acknowledge that
our measures are ordinal and not strictly continuous. We
confirmed that analysis by ordinal logistic regression yields
equivalent results.

For the open-ended question asking participants why they
choose their preferred algorithm, we planned to use simple
thematic coding. While we used the pilot data to create our
analysis plan, we did remove all pilot data from the final
dataset.

4. FINDINGS
First, we examine which algorithm participants preferred
overall. Figure 2 shows their average preference in each
condition, which varied between 5 (i.e. Slightly prefer
BKT) and 6 (i.e. Moderately prefer BKT). While there
is a suggestive pattern that providing more explanation
for BKT strengthens the preference for BKT, this pattern
was not statistically significant (linear regression: F3,132 =
0.7455, p = 0.5268). This means the data do not support
H1.

−2

−1

0

1

2

Prefer 3RR/
Neither

[1,4] (n=31)

Slightly/
Moderately Prefer BKT

[5,6] (n=51)

Strongly Prefer BKT
[7] (n=54)

Algorithm Preference Bin
(1=Strongly prefer 3RR, 7=Strongly prefer BKT)

A
v
g

.
R

e
s
p

o
n

s
e

 (
3

R
R

(−
)

to
 B

K
T

(+
))

confidence

understand

soph

acc

trust

fast

Figure 3: Average response on each measure at three levels
of preference: Prefer 3RR to Neither, Slightly and Mod-
erately Prefer BKT, and Strongly Prefer BKT. We choose
these groupings because each group represents approxi-
mately 1/3 of the sample.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 341

Confidence Accuracy Trust Sophistication

No
BKT

Explanation

BKT
Explanation

No
BKT

Explanation

BKT
Explanation

No
BKT

Explanation

BKT
Explanation

No
BKT

Explanation

BKT
Explanation

0

1

2

A
v
g
.
R

e
s
p
o
n
s
e
 S

c
o
re

 (
3
R

R
(−

)
to

 B
K

T
(+

)) BKT Simple Visualization BKT Detailed Visualization

Figure 4: Average differences (BKT score - 3RR score) in significant attitudinal constructs as a function of the randomly
assigned conditions. Positive scores indicate a higher score for BKT.

Next, we examine how algorithm preference is related to
the six attitudinal measures: confidence in the learning
system, the sophistication of the algorithm, trust, under-
standing, accuracy, and speed. We use the repeated mea-
sures design of our study by computing the difference score
for each question: subtracting the participant’s 3RR re-
sponse from the BKT response. Figure 3 shows the av-
erage response on each measure at three levels of prefer-
ence: Prefer 3RR to Neither, Slightly and Moderately Pre-
fer BKT, and Strongly Prefer BKT. We choose these group-
ing because each group represents approximately 1/3 of the
sample. All measures are positively correlated with pref-
erence as evidenced by their positive slopes (all Pearson’s
r > 0.325, p < 0.0001), but accuracy, confidence, and trust
are correlated more strongly (r > 0.739). This highlights the
importance of these three constructs in determining people’s
preference over the algorithms. In fact, the six measures ex-
plain 66.7% of the variance in preferences (multiple linear
regression: F6,129 = 43.07, p < 0.0001).

Lastly, we examine how the provision of verbal and/or visual
explanations influenced participant attitudes about BKT.
Figure 4 shows the average response in each condition for
the four measures that were significantly affected by the in-
tervention (i.e., relative understanding and speed did not
change significantly at p < 0.1). We find that confidence
in the learning application with BKT (relative to 3RR) im-
proved when both a detailed explanation and visualization
were provided (F3,132 = 2.88, p = 0.03844). Likewise, the
perceived accuracy of BKT improved with both types of ex-
planation provided (F3,132 = 3.28, p = 0.02305). Trust in
BKT improved by providing a detailed explanation, espe-
cially when complemented with the detailed visualization
(F3,132 = 2.346, p = 0.07575). Finally, and not surprisingly,
the more detail was provided, the more sophisticated BKT
was perceived to be (F3,132 = 11.17, p < 0.001). This pro-
vides evidence in support of H2.

In all of our analyses, we tested for the presence of demo-
graphic heterogeneity in results. However, no significant de-
mographic sources of variation were found in our sample.

5. DISCUSSIONS
This study investigated people’s attitudes towards BKT rel-
ative to a more straightforward knowledge tracing algorithm
and tested the effect of additional information via explana-
tions and visualizations on their attitudes. Understanding
how students might perceive the algorithms used in their
learning applications is a crucial issue for the adoption and
usability of these tools [9]. The results provide evidence sup-
porting our second hypothesis that additional explanations
improve key attitudinal measures of confidence, perceived
accuracy, trust, and sophistication. Qualitative data from
participants echo this result:

For something high stake, I’d only trust the
methods that employs a variety of learning
modalities. The analytics for such should match
the complexities of my learning process as well
as the nature of the material I’m learning. The
BKT would put me more at ease than the quick
route of the 3RR approach. (Participant as-
signed to BKT Explanation and BKT Detailed
Visualization who had high confidence, sophisti-
cation, accuracy, and trust in BKT relative to
3RR)

Surprisingly, we did not find a significant increase in people’s
preference for BKT (H1), even though we found that algo-
rithm preference is explained largely by people’s perceptions
of accuracy, trust, and confidence. This preference for BKT
regardless of experimental condition is furthered explained
by the qualitative responses from participants:

I don’t believe the 3RR algorithm is at all benefi-
cial to the student attempting to learn the topic.
If the student just happens to get 3 exception-
ally easy questions in a row, the algorithm will
assume that the student has learned the topic
which is likely not entirely true. (Participant as-
signed to No BKT Explanation and BKT Simple
Visualization who Strongly Preferred BKT)

342 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Nevertheless, participants generally preferred to use the
BKT algorithm regardless of the experimental treatment.

Since confidence, trust, and accuracy are important to a
user’s preference for BKT, it was notable that those three
measures were affected by the experimental manipulations.
Consistent with prior studies of explainability and trans-
parency in algorithmic systems, we also found that when
more information about an algorithm is presented to peo-
ple, they believe the algorithms to be more trustworthy and
accurate, leading the user to have more confidence in the
algorithm [1, 14]. This confidence can, in turn, increase the
use of applications shown to improve educational outcomes.
Our results further highlight the importance of OLM to pro-
vide more transparency to gain user trust and confidence.
In addition, future educational applications using complex
knowledge tracing algorithms should include detailed verbal
and visualization explanations of the algorithm to improve
confidence and trust in the application.

Frankly, we did not expect to find such strong support for
BKT going into this study. Many learning platforms that
have the capacity to implement BKT or even more com-
plex algorithms have opted not to do so. Our informal un-
derstanding was that this was largely due to concerns that
users, such as math teachers who use ASSISTments to as-
sign homework, would not understand BKT and not trust
it and lose confidence in the platform. This understanding
led us to expect that participants would report a preference
for the simpler algorithm and report that they find it more
trustworthy and have more confidence in a system that uses
it. Therefore, we are surprised by our positive findings for
BKT and propose future research directions to follow up on
these results.

Future work in this area should explore different partici-
pant populations and scenarios. We are planning to run this
study with student samples to see if we can replicate the re-
sults. While we asked our participants to put themselves in
the shoes of a student needing to prepare for a high-stakes
test, running this experiment on a student population might
make the scenario more realistic to the participants. Addi-
tionally, given that many tasks on Mechanical Turk involve
subjects annotating machine learning datasets, this group
of participants may have more favorable attitudes to algo-
rithms. Another area for future work includes changing the
scenario. We ran the study from the viewpoint of a student.
However, we acknowledge that intelligent tutoring systems
deployed in classrooms also need the trust and confidence
of the teachers administering the applications. We plan to
rewrite the scenario to allow participants to take on the role
of a teacher.

6. REFERENCES
[1] A. Barredo Arrieta, N. Dı́az-Rodŕıguez, J. Del Ser,

A. Bennetot, S. Tabik, A. Barbado, S. Garcia,
S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila,
and F. Herrera. Explainable Artificial Intelligence
(XAI): Concepts, taxonomies, opportunities and
challenges toward responsible AI. Information Fusion,
58(October 2019):82–115, jun 2020.

[2] S. Bull. There are open learner models about! IEEE
Transactions on Learning Technologies, 13(2):425–448,

2020.

[3] S. Bull and J. Kay. Open learner models. In Advances
in intelligent tutoring systems, pages 301–322.
Springer, 2010.

[4] A. Bunt and C. Conati. Probabilistic student
modelling to improve exploratory behaviour. User
Modeling and User-Adapted Interaction,
13(3):269–309, 2003.

[5] H. Cen, K. Koedinger, and B. Junker. Learning
factors analysis–a general method for cognitive model
evaluation and improvement. In International
Conference on Intelligent Tutoring Systems, pages
164–175. Springer, 2006.

[6] B. Choffin, F. Popineau, Y. Bourda, and J.-J. Vie.
Das3h: Modeling student learning and forgetting for
optimally scheduling distributed practice of skills. In
International Conference on Educational Data Mining
(EDM 2019), 2019.

[7] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction,
4(4):253–278, 1994.

[8] Y. B. David, A. Segal, and Y. K. Gal. Sequencing
educational content in classrooms using Bayesian
knowledge tracing. In Proceedings of the Sixth
International Conference on Learning Analytics &
Knowledge - LAK ’16, pages 354–363, New York, New
York, USA, 2016. ACM Press.

[9] F. D. Davis. Perceived usefulness, perceived ease of
use, and user acceptance of information technology.
MIS quarterly, pages 319–340, 1989.

[10] S. Doroudi and E. Brunskill. Fairer but Not Fair
Enough On the Equitability of Knowledge Tracing. In
Proceedings of the 9th International Conference on
Learning Analytics & Knowledge, pages 335–339, New
York, NY, USA, mar 2019. ACM.

[11] T. Gervet, K. Koedinger, J. Schneider, T. Mitchell,
et al. When is deep learning the best approach to
knowledge tracing? Journal of Educational Data
Mining, 12(3):31–54, 2020.

[12] W. J. Hawkins, N. T. Heffernan, and R. S. J. D.
Baker. Learning bayesian knowledge tracing
parameters with a knowledge heuristic and empirical
probabilities. In S. Trausan-Matu, K. E. Boyer,
M. Crosby, and K. Panourgia, editors, Intelligent
Tutoring Systems, pages 150–155, Cham, 2014.
Springer International Publishing.

[13] K. Kelly, Y. Wang, T. Thompson, and N. Heffernan.
Defining Mastery: Knowledge Tracing Versus
N-Consecutive Correct Responses. In 8th International
Conference on Educational Data Mining, 2015.

[14] R. F. Kizilcec. How Much Information? In Proceedings
of the 2016 CHI Conference on Human Factors in
Computing Systems, pages 2390–2395, New York, NY,
USA, may 2016. ACM.

[15] S. Klingler, T. Käser, B. Solenthaler, and M. Gross.
On the performance characteristics of latent-factor
and knowledge tracing models. International
Educational Data Mining Society, 2015.

[16] K. R. Koedinger and V. Aleven. Exploring the
assistance dilemma in experiments with cognitive
tutors. Educational Psychology Review, 19(3):239–264,

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 343

2007.

[17] Y. Mao. Deep learning vs. bayesian knowledge tracing:
Student models for interventions. Journal of
educational data mining, 10(2), 2018.

[18] E. Millán and J. L. Pérez-De-La-Cruz. A bayesian
diagnostic algorithm for student modeling and its
evaluation. User Modeling and User-Adapted
Interaction, 12(2):281–330, 2002.

[19] P. I. Pavlik Jr, H. Cen, and K. R. Koedinger.
Performance factors analysis–a new alternative to
knowledge tracing. Online Submission, 2009.

[20] R. Pelánek. Bayesian knowledge tracing, logistic
models, and beyond: an overview of learner modeling
techniques. User Modeling and User-Adapted
Interaction, 27(3):313–350, 2017.

[21] R. Pelánek and J. Řihák. Experimental Analysis of
Mastery Learning Criteria. In Proceedings of the 25th
Conference on User Modeling, Adaptation and
Personalization, pages 156–163, New York, NY, USA,

jul 2017. ACM.

[22] S. Ritter, M. Yudelson, S. E. Fancsali, and S. R.
Berman. How mastery learning works at scale. In
Proceedings of the Third (2016) ACM Conference on
Learning@ Scale, pages 71–79, 2016.

[23] S. Schiaffino, P. Garcia, and A. Amandi. eteacher:
Providing personalized assistance to e-learning
students. Computers & Education, 51(4):1744–1754,
2008.

[24] C.-K. Yeung. Deep-IRT: Make Deep Learning Based
Knowledge Tracing Explainable Using Item Response
Theory. EDM 2019 - Proceedings of the 12th
International Conference on Educational Data Mining,
pages 683–686, apr 2019.

[25] T. Zhou, H. Sheng, and I. Howley. Assessing post-hoc
explainability of the bkt algorithm. In Proceedings of
the AAAI/ACM Conference on AI, Ethics, and
Society, AIES ’20, page 407–413, New York, NY,
USA, 2020. Association for Computing Machinery.

344 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Automatic short answer grading with SBERT on
out-of-sample questions

Aubrey Condor
University of California, Berkeley

aubrey_condor@berkeley.edu

Max Litster
University of California, Berkeley
maxlitster@berkeley.edu

Zachary Pardos
University of California, Berkeley

pardos@berkeley.edu

ABSTRACT
We explore how different components of an Automatic Short
Answer Grading (ASAG) model affect the model’s ability
to generalize to questions outside of those used for train-
ing. For supervised automatic grading models, human rat-
ings are primarily used as ground truth labels. Producing
such ratings can be resource heavy, as subject matter ex-
perts spend vast amounts of time carefully rating a sam-
ple of responses. Further, it is often the case that mul-
tiple raters must come to a census before a final ground-
truth rating is established. If ASAG models were devel-
oped that could generalize to out-of-sample questions, ed-
ucators may be able to quickly add new questions to an
auto-graded assessment without a continued manual rat-
ing process. For this project we explore various methods
for producing vector representations of student responses
including state-of-the-art representation methods such as
Sentence-BERT as well as more traditional approaches in-
cluding Word2Vec and Bag-of-words. We experiment with
including previously untapped question-related information
within the model input, such as the question text, ques-
tion context text, scoring rubric information and a question-
bundle identifier. The out-of-sample generalizability of the
model is examined with both a leave-one-question-out and
leave-one-bundle-out evaluation method and compared against
a typical student-level cross validation.

Keywords
ASAG, Assessment, SBERT, Generalizability

1. INTRODUCTION
Automatic Short Answer Grading (ASAG) is an emerging
field of research, as the education community has started
to embrace the use of technology to assist students and ed-
ucation professionals. It has been shown that the use of
open-ended (OE) questions helps facilitate learning [7], but

educators are often deterred from their use because grading
requires much more time than that for multiple choice [12].
In addition, human ratings may contain bias and vary in con-
sistency, as rating choices are often subjective [28]. ASAG
systems may be an important tool for educators, allowing
more frequent use of OE questions, and more objective rat-
ings for both formative and summative assessments.

A key challenge with supervised automatic grading models
is gathering a large enough sample of labelled data for train-
ing. While some labeling tasks for supervised learning may
be straightforward such as identifying an image as either a
dog or a cat, others such as rating student responses require
careful consideration. In high-stakes assessment scenarios,
two or more ratings by different experts are often necessary
to form a reliable consensus rating. Thus, obtaining labelled
data to train an ASAG system can be arduous. It follows
that quickly introducing new questions to an existing system
may not be feasible if a data collection as well as the metic-
ulous rating of new responses is necessary. Further, a new
model would have to be trained and tuned with the newly
collected responses. If we create more generalizable ASAG
models, educators may have the flexibility to add new ques-
tions to an existing assessment with very little effort, thus
increasing the practical use of the ASAG system.

We hypothesize that the inclusion of extra question related
information within the model input may improve both the
classification performance, and the generalizability of the
model. For the purposes of this project, we formally define
the generalizability of an ASAG model as the capacity to
classify responses from out-of-training-sample questions.

This research contributes to the field of automatic grading in
three related ways. We focus on classification performance
and generalizability of the supervised grading model in terms
of 1) the textual representation type, 2) the content of the
input and 3) the classification model. We compare three dif-
ferent representation types, including those of state-of-the-
art models: Sentence-BERT, Word2Vec, and Bag of Words.
In terms of input content, we experiment with including
previously untapped resources relating to the questions in
the model input. Such resources include a question-bundle
identifier, the question stem text, question context text, and
rubric information. Extra input content is vectorized (if the
source is textual) and concatenated to the response vectors

Aubrey Condor, Max Litster and Zachary Pardos “Automatic short an-
swer grading with SBERT on out-of-sample questions”. 2021. In: Pro-
ceedings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 345-352.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 345

to be used as input to the classification model. Finally,
we compare a non-neural model (a multinomial logistic re-
gression) and a simple neural (a three layer feed forward
network) model.

In order to examine the generalizability of the model for each
experiment, we use a leave-one-question-out evaluation pro-
cedure where we train the model on N-1 questions, and use
the one left-out question data as our test set. Thus, during
training, the model has not yet seen responses from the ques-
tion for which we use solely to evaluate the model. We go
one step further in testing the generalizability of the model
with a leave-one-bundle-out evaluation procedure where we
train the model on M-1 question bundles (groupings of ques-
tions that are related in context), and use the questions for
the left-out bundle as the test set. We conceptualize the
leave-one-bundle-out method as a more extreme test of the
model’s ability to classify out of sample questions because
even questions that are related in context have not been seen
by the model during training. Additionally, we compare re-
sults of our experiments against and a typical student level
cross validation. Results from a majority class classifier are
included as well for a baseline comparison.

2. RELATED WORK
This section outlines notable work relating to ASAG and the
more general use of NLP for education. For this project,
we build on the previous literature by considering lessons
learned in preceding research, and employing novel approaches
that, to our knowledge, have not yet been explored.

2.1 ASAG work
A systematic review of trends in ASAG [3] illustrates an
increasing interest in the field of automatic grading for ed-
ucation. Unsupervised methods have been explored such
as concept mapping, semantic similarity, and clustering to
assign ratings. For example, Mohler and Mihalcea [19] com-
pared knowledge based and corpus based semantic similarity
measures for automatic grading, Klein et al. [14] imple-
mented a latent semantic analysis approach, and Basu et
al. [2] used clustering to provide rich feedback to groups
of similar responses. In addition, many types of supervised
classification methods have been utilized for ASAG. Note-
able examples include Hou and Tsao [13] who incorporated
POS tags and term frequency with a Support Vector Ma-
chine classifier, and Madnani et al. [16] who made use of
simple features such as a count of commonly used words
and length of response with a logistic regression classifier.

More recent ASAG research exploits deep learning methods.
Noteable work includes Zhang et al. [31] who used a combi-
nation of feature engineering and deep belief networks, Liu
et al. [15] who employed multi-way attention networks, and
Yang et al. [30] who considered a deep autoencoder model
specific to Chinese responses. Additionally, Qi et al. [21]
created a hierarchical word-sentence model with a CNN and
Bi-LSTM model and Tan et al. [25] explored the use of a
graph convolutional network (GCN) to encode a graph of all
student responses.

Further, much of the newest ASAG work makes use of state-
of-the-art transformer based models, including Gaddipati et
al. [11] who evaluated four different types of response em-

beddings, ELMo, GPT, BERT, and GPT-2 for their per-
formance on an ASAG task, Camus and Filighera [4] who
compared the performance of transformer models for ASAG
in terms of the size of the transformer and the ability to
generalize to other languages, and Sung et al. [24][23] who
examined the effectiveness of pre-training BERT, including
further pre-training the model on relevant domain texts.

2.2 NLP for Education
Literature addressing the general application of natural lan-
guage processing (NLP) for various uses in field of education
has grown quickly in recent years as well. For example, Fon-
seca et al. [10] used NLP to automatically classify the pro-
gramming assignments for students within given academic
context, Thaker et al. [26] incorporated textual similarity
techniques to recommend remedial readings to students, and
Arthurs and Alvero [1] examined bias in word representa-
tions for college admissions essays. Additionally, Xiao et al.
[29] employed NLP and transfer learning methods for prob-
lem detection in peer assessments, Venant and d’Aquin [27]
utilized a concept graph to predict semantic complexity of
short essays by written by English language learners, and
Chen et al. [6] leveraged a variety of textual analysis meth-
ods to predict student satisfaction in the context of online
tutorial dialogues.

We build on the previous literature by incorporating state-
of-the art representation methods such as Sentence-BERT
and a neural classification model. The novel contribution
of this project includes both our focus on the generalizabil-
ity of the model to out-of-training-sample questions, as well
as the leveraging of previously untapped, question related
information as input to the model.

3. DATA SET
The data we will use for this project was sourced from a
2019 field test of a Critical Reasoning for College Readiness
(CR4CR) assessment [17] created at the Berkeley Evaluation
and Assessment Research (BEAR) center. The data consists
of 5,550 student responses from 558 distinct students to 33
different items. The field test included other items that were
multiple choice, but these questions were filtered out of the
data for our use. The mean number of responses per ques-
tion is 179 with the minimum being 128 and the maximum
being 313. Most of the items belong to an item bundle - a
grouping of items that are related in context and/or share
a common question context. Additionally, the items were
administered in four different test forms, where some items
were included in multiple forms. The items all relate to four
constructs about student understanding of algebra.

An example of one of the items, labelled ‘Crude Oil 4ab’ is
included in Figure 1. For this item, students are presented
with two images relating to oil production - one being a line
graph and the other, a table. With the given context, stu-
dents are presented with a choice between the graph or the
table for which would be better to represent the historical
patterns, or change over time of the oil production. The
correct answer for this question is the graph, and students
are expected to provide reasons why this is the right choice.

An example of a student response to the Crude Oil 4ab ques-
tion (shown in Figure 1) rated at the highest (most correct)

346 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 1: An example of an item from the data set.

score category is shown: “the graph easily displays patterns
over time whereas the table and equations require more ana-
lyzing.” In contrast, a student response to the same question
rated at the lowest (most incorrect) category is shown: “the
table is more clear, the information is seen in the table.”

Responses were rated from 0 (fully incorrect) to 4 (fully
correct) by multiple researchers and subject-matter experts
at the BEAR center. The quality and consistency of ratings
were evaluated by an inter-rater reliability score, and when a
high percentage of rating mismatches between raters existed,
incongruous ratings were discussed until a consensus was
reached by the raters.

4. METHODS
In this section, We briefly introduce the representation meth-
ods and model classes that we include in our experiments.
Additionally, we describe the question related information,
beyond that of the responses, that are used as inputs to
the model. Further, we outline our experiments in detail
including methods for evaluation and comparison.

4.1 Input Representations
We chose to include three distinct, yet commonly used, rep-
resentation types in our experiments: A count-based method
that elicits the distinct vocabulary of our data (Bag of Words),
a simple neural method that utilizes pre-trained word vec-
tors (Word2Vec), and a state-of-the-art, contextual neural
method (Sentence-BERT). A short description of each rep-
resentation type is included.

4.1.1 Sentence-BERT
Sentence-BERT (SBERT) is a modification of the BERT
network that utilizes siamese and triplet network structures
to create semantically meaningful sentence embeddings [22].
SBERT fine-tunes the BERT network on a combination of
the SNLI dataset and the Multi-Genre NLI datasets, to-
taling about 1 million sentence pairs. Although sentence
embeddings can be derived from the original BERT model
using methods such as averaging the BERT output layers or
using the [CLS] token embedding, it has been shown that

such methods yield poor sentence embeddings [20]. In com-
parison, SBERT sentence embeddings outperformed other
state-of-the-art methods such as InferSent [8] and Universal
Sentence Encoder [5] on the SentEval [8] benchmark, which
gives an idea of the quality of sentence embeddings for var-
ious tasks such.

4.1.2 Word2Vec
Word2Vec (W2V) ma13, is a neural model that creates vec-
tor representations of words that have been shown to be
semantically meaningful and useful in different NLP tasks
[22]. We use an extension of the previously introduced Skip-
gram model [18] that incorporates sub-sampling of frequent
words during training in order to speed up training, and
improves accuracy of representations of less frequent words.
For this project, we use the Google News corpus of pre-
trained word embeddings. Vectors of size 300 are created
for each word, and in order to construct response embed-
dings from the individual word vectors, we employ a simple
but popular method: averaging the vectors of all words in
the response.

4.1.3 Bag-of-words
The bag-of-words (BOW) model represents a document as
a vector, or “bag,” of length equal to the number of unique
words in the entire corpus and values of the vector equal to
the frequency with witch its corresponding word occurred
in the document. In our application, the bags are student
short answers and additional question information.

4.2 Input Content
In an item design context, there are various untapped sources
of information relating to a particular question that may be
useful to include as input to a classification model. We ex-
plore the use of four different sources of information, outside
that of the response itself. A brief description of the such
sources are included below.

4.2.1 Question Text
The question text consists of the direct question stem. As
in the example item provided in Figure X, the question text
would be: “Briefly explain your answer choice in [a].”

4.2.2 Question context
The question context includes any textual information be-
yond that of the question stem that is related to the ques-
tion, and might be useful for the respondent to produce a
response. In the question example in Figure 2, the question
context would include: “The following graph and table show
annual crude oil production in million tonnes of oil equiv-
alent (mtoe) from 1960 to 2014. For a group project, you
and your classmates have to present the overall historical
patterns of annual oil production as a poster. Due to lim-
ited space, only one of the following representations can be
included in the poster: a table, a graph, or a set of equa-
tions. Which representation should you use?” We note that
not all of the included items have question context text be-
yond that of the question text itself. For such items, it was
not possible to include question context as part of the input.

4.2.3 Rubric Text

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 347

Figure 2: An example of a scoring rubric corresponding to
the item in Figure 1.

As part of the assessment cycle as previously mentioned,
an important step in a measurement process is defining the
outcome space for each item through a scoring guide, which
is essentially a rubric. The scoring guide includes a detailed
description of the reasons for which a response would be
rated at a certain score, and is used as a guide for human
raters. In addition, the scoring guide often includes example
responses for each rating level. An example of a scoring
guide for the ’Crude Oil 4ab’ item in Figure 1 is included
shown in Figure 2. When the rubric text is included in the
input text, we include both the level descriptions as well as
the example response(s).

4.2.4 Bundle Identifier
As described above in the data section, most of the ques-
tions belong to a bundle of questions - those that are linked
based on a similar image, or context text. As a question
bundle identifier, we concatenate a one-hot vector to the in-
put vectors. Although items within the same bundle will
often share the same context text, we include the one-hot
bundle identifier within our extra input text experiments so
that we can infer whether the model makes use of semantics
within the context text, or rather just a general indication
of similar questions.

4.3 Classification Models
We compare a multinomial logistic regression model with a
simple neural network classification model. We chose these
classification methods representing a linear transformation
of the feature space to a label (regression) and a non-linear
transformation (neural network). A brief overview of each
model is included.

Multinomial logistic regression (MLR) is a classification model
that predicts probabilities of different outcomes for a cate-
gorical dependent variable. In order to generalize to a K-
class setting, the model runs K-1 independent binary lo-
gistic regression models where one outcome is chosen as
a “pivot” and other K-1 outcomes are separately regressed
against the pivot outcome. We use the Limited-memory
Broyden-Fletcher-Goldfarb-Shannon (LBfGS) algorithm for
optimization [9], and incorporate L2 regularization.

Additionally, we use a simple feed forward neural network
on a categorical cross entropy loss function with 2 hidden
layers of size 100, using rectified linear unit (ReLU) activa-
tion functions for both hidden layers. We include dropout

of 0.4 and utilize Adam optimization. We train the model
for 16 epochs and use a batch size of 36.

4.4 Evaluation and Model Comparison
In this section, we enumerate our experiments and the eval-
uation methods chosen for comparison.

4.4.1 Experiments
As input to our model, we experiment with 8 different com-
binations of content to vectorize and concatenate to the re-
sponse vectors before training our classification models:

1) response
2) question + response
3) question context + response
4) scoring rubric + response
5) bundle one-hot + response
6) question + scoring rubric + response
7) bundle one-hot + question + scoring rubric + response
8) bundle one-hot + question + question context + scoring
rubric + response

For each of the 8 combinations listed above, we create three
different vector representations with the aforementioned meth-
ods: 1) Sentence-BERT, 2) Word2Vec, and 3) Bag-of-words,
resulting in 24 distinct input types. We fit a classification
model for each of the input types, for both of our classifica-
tion models. Thus, we compare 48 separate versions of an
ASAG model with three types of evaluation.

4.4.2 Leave-one-question/bundle-out Evaluation
In order to assess the generalizability of the ASAG model
to out-of-training-sample questions for each of the 48 exper-
iments, we average the results of N (where N is the number
of questions) independent models. For each of the N models,
we train the classifier on data from N-1 questions, and test
on data exclusive to the left-out-of-training question. In the
case of the leave-one-question-out results, it is important to
note that although the model has not seen data specific to
the left-out question, it has seen questions that are part of
the same question bundle and are therefore related.

To expand our evaluation of generalizability further, we in-
clude a leave-one-bundle-out metric for each experiment.
For such, we average the results from M (where M is the
number of bundles) independent models where we train the
classifier on data from M-1 bundles, and test on data exclu-
sive to the left-out-of-training questions which belong to a
single bundle. So, these results give us an idea of whether the
model can successfully rate responses from questions that
have not been used for training, and when the model has
not seen questions related by context during training.

4.4.3 Evaluation Metrics
We report our results in both multilabel accuracy, and weighted
F1 score because multilabel accuracy is both widely used and
easy to interpret, and the weighted F1 score captures both
the precision and recall and accounts for class imbalance.

Multilabel accuracy represents the degree to which our model
classifications agree with the ground truth labels (for this

348 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 1: Experiment Results: Multilabel Accuracy
Response
Text

Bundle
ID

Question
Text

Context
Text

Rubric
Text

Random Holdout Question Holdout Bundle Holdout
SBERT W2V BOW SBERT W2V BOW SBERT W2V BOW Average (ACC) Average (Wf1)

Majority Class 0.34715 0.37044 0.30521 0.34093 0.25429
LogReg x 0.58034 0.49765 0.54665 0.35870 0.35338 0.36517 0.31806 0.25316 0.26995 0.39367 0.38323
LogReg x x 0.59603 0.53154 0.55602 0.37225 0.37595 0.36097 0.32855 0.25784 0.28364 0.40698 0.39513
LogReg x x 0.63062 0.55748 0.58702 0.40378 0.41290 0.32506 0.36276 0.30162 0.25982 0.42678 0.40317
LogReg x x 0.62972 0.56036 0.58486 0.40352 0.41815 0.33053 0.34539 0.31713 0.27005 0.42886 0.40411
LogReg x x 0.61657 0.55982 0.58846 0.38488 0.38379 0.42198 0.28175 0.23273 0.31443 0.42049 0.39944
LogReg x x x 0.61818 0.56432 0.59152 0.40967 0.38968 0.37571 0.34737 0.26432 0.30380 0.42940 0.40213
LogReg x x x x 0.62484 0.56144 0.59261 0.41534 0.40174 0.36048 0.32196 0.25499 0.28627 0.42441 0.40195
LogReg x x x x x 0.61406 0.55963 0.59009 0.41494 0.39999 0.36104 0.31797 0.26117 0.29534 0.42380 0.39920
NN x 0.60249 0.56450 0.60973 0.35736 0.34029 0.36930 0.31540 0.25760 0.26633 0.40922 0.40709
NN x x 0.60540 0.59802 0.61963 0.39011 0.37083 0.35526 0.31598 0.23819 0.28716 0.42006 0.41686
NN x x 0.65800 0.61009 0.65532 0.40633 0.37576 0.34075 0.35574 0.32317 0.27179 0.44411 0.42600
NN x x 0.66070 0.61388 0.66198 0.39309 0.38079 0.33176 0.36227 0.31851 0.28206 0.44500 0.42470
NN x x 0.64017 0.61226 0.62234 0.36721 0.35595 0.40597 0.33015 0.23390 0.33769 0.43395 0.41403
NN x x x 0.62503 0.61009 0.62198 0.41137 0.39257 0.33095 0.34568 0.25618 0.31157 0.43394 0.41456
NN x x x x 0.63206 0.59981 0.62938 0.40885 0.36204 0.39455 0.36535 0.26301 0.32980 0.44276 0.42075
NN x x x x x 0.60557 0.59405 0.61478 0.42270 0.39130 0.35288 0.30132 0.27360 0.31397 0.43002 0.40366
Average (ACC) 0.62124 0.57468 0.60452 0.39500 0.38157 0.36140 0.33223 0.26919 0.29273
Average (WF1) 0.60830 0.55063 0.59135 0.37680 0.35320 0.33350 0.31472 0.24976 0.28697

project, human ratings). It is calculated simply as the num-
ber of correct predictions divided by the number of total
number of examples. The F1 score for a certain class is
the harmonic mean of its precision and recall, where preci-
sion is calculated as true positives divided by false positives
and true positives, and recall is calculated as true positives
divided by false negatives and true positives. In order to
account for class imbalance, we specifically use the weighted
F1 score. This metric calculates the F1 score for each class
independently, and the overall score for all the classes is the
average weighted by class size.

5. RESULTS
Results of our experiments are detailed in Table 1, reported
in multilabel accuracy. For column and row averages, the
weighted F1 score is presented as well. In the left-most half
of the table, an x is present for a given row if the informa-
tion type, indicated by the column header, is included in the
model input. For example, results in the first row represent
an input of only the response text and results in the sec-
ond row represent an input of both the Bundle ID and the
response. Additionally, the top half of the table results are
those from the multinomial logisitic regression classifier, and
the bottom half of the table results are those for the neural
network classifier (as indicated by the leftmost column). For
each of our evaluation methods, random holdout, question
holdout, and bundle holdout, we present results for the three
textual representation methods: SBERT, W2V, and BOW.

In terms of the general performance of our classification
models, we consider the random holdout evaluation method.
Overall, SBERT representations performed best when aver-
aging across the classification methods and input combina-
tions, followed by the BOW representations (accuracy of
0.621 for SBERT compared to 0.575 and 0.605 for W2V
and BOW, respectively). Additionally, the neural network
achieves higher accuracy than the logistic regression in gen-
eral. Both SBERT and BOW perform notably well when the
input includes the question text, or the question content.

To assess the generalizability to grading answers to ques-
tions unseen in the training set, we focus on the question
holdout and bundle holdout results. Across the board, we
see much lower accuracy for the question and bundle holdout
experiments than that of the random holdout, with the bun-

dle holdout being the lowest. This is in line with what one
might expect because for the question holdout, the model
has not yet seen responses for the particular question in the
test set and for the bundle holdout, the model has not seen
questions even related to the test set question.

Similar to the random holdout experiments, we see the same
overall pattern for the question and bundle holdout experi-
ments: SBERT is generally superior, followed by BOW and
W2V, respectively. One notable difference for the question
holdout experiments compared to those of the random hold-
out is that we see increased performance when we include
multiple extra sources of information. For example, with
SBERT and bundle holdout, we achieve 0.365 accuracy with
the neural network classifier when we include the rubric text,
question text, and bundle ID. We might explain this result
as, when the model is lacking previous information about the
test question from training, extra input information might
provide guidance for the model.

For the question and bundle hold out experiments, the ad-
dition of the rubric text improves performances particularly
well with the use of BOW representations, for both the logis-
tic regression and neural network classifiers. With SBERT,
the addition of the question text seemed to help the general-
izability of the model as well. Interestingly, we do not see the
same pattern between the classification models for the ques-
tion and bundle holdout methods: where the neural net was
clearly superior in the random holdout experiments, results
are more similar between the logistic regression and neural
network for the bundle and question holdout experiments.

We see from the row averages in the right most columns of
the table that across all experiments and text representa-
tion types, the response and question text, as well as the
response and context text achieve the highest evaluation
scores. Additionally, the column averages further confirm
that the SBERT representations perform best.

Further, we include results from a majority class classifier
on the top row for a baseline comparison. We emphasize
that, across all random holdout experiments, the classifi-
cation models outperform the majority class classifier sig-
nificantly. However, this is not the case for the question
holdout and bundle holdout experiments. For the question
holdout experiments, many of the SBERT experiments out-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 349

Figure 3: 2D visuals of input vector representations. Plots vary by representation type, input content, and color labeling.

performed the majority class classifier, but on average, the
W2V and BOW experiments performed a bit worse than
majority class. For the bundle holdout experiments, on av-
erage, SBERT performs slightly better than majority class,
but the W2V and BOW experiments do not.

Further interpretations can be made from Figure 4, which
includes two dimensional, t-distributed Stochastic Neighbor
Embedding (TSNE) reduced vector representations. The
center image includes SBERT embeddings of only the re-
sponse text and the colors represent the ground truth rat-
ings. From the top left and right images, as well as the
bottom left image we can see very distinct question clus-
ters with the inclusion of question text. However, from the
bottom right image, we can visualize question specific clus-
ters, but they are not as distinct as the representations that
include the question text.

Thus, we conclude that in terms of question holdout, the
model can generalize to out-of-sample questions with only
slight improvement over majority class, with a state-of-the-
art representation method like SBERT. Certain extra pieces
of input information aid our models more than others like
question text and the best performing models use the neural
network classifier.

6. DISCUSSION
Although our results are not promising for the generalizabil-
ity of autograding models to unseen questions, we emphasize
the importance of finding more generalizable models to de-
crease time spent on the laborous task of creating ground-
truth human ratings. Our intention is that this work will
influence researchers to consider further innovative methods
to increase the generalizability of ASAG models. Further,
because we did find that including certain question-related
text may improve model performance, it may be of use to
the ASAG research community to continue to explore how
extra sources of information about a question may be incor-
porated into an ASAG system.

As is evident in our literature review, there has been in-
creased adoption of state-of-the-art textual representation
methods such as SBERT, and transformer-based models such
as BERT and XLNet, within the field of NLP in Education.
Our results support that such models may achieve superior
performance for certain tasks.

To build on this work further, we could consider other meth-
ods, beyond that of concatenation to the input text, to in-
clude the extra question information in our model. We could
further pre-train a transformer-based model such as BERT
or XLNet with the extra textual information by either tun-
ing the existing weights or altering the existing architec-
ture with an extra encoder layer of weights trained on our
text alone. Moreover, we may focus more closely on how
the classification model itself might be altered such that it
might better generalize to out-of-training-sample questions,
instead of only focusing on the input content.

We believe that beyond model performance, the practical
utility of an ASAG system must be considered in order for
educators to continue to adopt new technologies that employ
advanced methods in artificial intelligence. Recent years
have seen vast improvements in the field of machine learning
and language processing. Embracing such technologies for
applications in education may be pivotal to provide the as-
sistance that both educators and learners need. However, we
do not suggest that machine learning systems such as ASAG
should be used to replace human judgements in education,
especially in high stakes testing scenarios. We emphasize
the ASAG systems should be used to support educators,
not replace them. This project represents a continued ef-
fort to explore the ways in which we can make use of new
technologies to improve learning.

7. REFERENCES
[1] N. Arthurs and A. J. Alvero. Whose Truth is the

”Ground Truth”? College Admissions Essays and Bias
in Word Vector Evaluation Methods.

[2] S. Basu, C. Jacobs, and L. Vanderwende.

350 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Powergrading: a clustering approach to amplify
human effort for short answer grading. Transactions of
the Association for Computational Linguistics,
1:391–402, 2013.

[3] S. Burrows, I. Gurevych, and B. Stein. The eras and
trends of automatic short answer grading.
International Journal of Artificial Intelligence in
Education, 25(1):60–117, 2015.

[4] L. Camus and A. Filighera. Investigating transformers
for automatic short answer grading. In International
Conference on Artificial Intelligence in Education,
pages 43–48. Springer, Cham, 2020.

[5] D. Cer, Y. Yang, S. Kong, N. Hua, N. Limtiaco,
R. John, N. Constant, M. Guajardo-Céspedes,
S. Yuan, C. Tar, and Y. Sung. Universal sentence
encoder., 2018.

[6] G. Chen, R. Ferreira, D. Lang, and D. Gasevic.
Predictors of Student Satisfaction: A Large-Scale
Study of Human-Human Online Tutorial Dialogues.
International Educational Data Mining Society, 2019.

[7] M. T. Chi, N. De Leeuw, M. H. Chiu, and
C. LaVancher. Eliciting self-explanations improves
understanding. Cognitive science, 18(3):439–477, 1994.

[8] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and
A. Bordes. Supervised learning of universal sentence
representations from natural language inference data.
preprint, 2017.

[9] R. Fletcher. Practical Methods of Optimization(2nd
ed.). John Wiley Sons, -0-471-91547-8, New York,
1987.

[10] S. C. Fonseca, F. D. Pereira, E. H. Oliveira, D. B.
Oliveira, L. S. Carvalho, and A. I. Cristea. Automatic
subject-based contextualisation of programming
assignment lists. International Educational Data
Mining Society, 2020.

[11] S. K. Gaddipati, D. Nair, and P. G. Pl”oger.
Comparative evaluation of pretrained transfer learning
models on automatic short answer grading. arxiv.
preprint, 2020.

[12] C. L. Hancock. Enhancing mathematics learning with
open-ended questions. The Mathematics Teacher,
88(6):496, 1995.

[13] W. J. Hou and J. H. Tsao. Automatic assessment of
students’ free-text answers with different levels.
International Journal on Artificial Intelligence Tools,
20(2):327–347, 2011.

[14] R. Klein, A. Kyrilov, and M. Tokman. Automated
assessment of short free-text responses in computer
science using latent semantic analysis. In G. RoBling,
T. Naps, C. Spannagel (Eds.), Proceedings of the 16th
annual joint conference on innovation and technology
in computer science education . Darmstadt: ACM,
pages 158–162. Darmstadt: ACM, 2011.

[15] T. Liu, W. Ding, Z. Wang, J. Tang, G. Y. Huang, and
Z. Liu. June). automatic short answer grading via
multiway attention networks. In International
conference on artificial intelligence in education.,
pages 169–173. Springer, Cham., 2019.

[16] N. Madnani, J. Burstein, J. Sabatini, and T. O. Reilly.
Automated scoring of a summary writing task
designed to measure reading comprehension. In J. B.
Tetreault and C. Leacock, editors, Proceedings of the

8th workshop on innovative use of nlp for building
educational applications . Atlanta, pages 163–168.
Association for Computational Linguistics, 2013.

[17] J. Mason, M. Wilson, A. E. Arneson, and
D. Wihardini. A framework for the college ready
algebraic thinking assessment (CRATA). University of
California, Berkeley Evaluation and Assessment
Research Center, 2017.

[18] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality., 2013.

[19] M. Mohler and R. . Mihalcea. March). Text-to-text
semantic similarity for automatic short answer
grading, 12:567–575, 2009.

[20] J. Pennington, R. Socher, and C. D. Manning. Glove:
Global vectors for word representation. pages
1532–1543. In Proceedings of the conference on
empirical methods in natural language processing,
2014.

[21] H. Qi, Y. Wang, J. Dai, J. Li, and X. Di.
Attention-based hybrid model for automatic short
answer scoring. pages 385–394. SIMUtools 2019.
LNICST, vol. 295, . Springer, Cham, 2019.

[22] N. Reimers and I. Gurevych. Sentence-bert: Sentence
embeddings using siamese bert-networks. preprint,
2019.

[23] C. Sung, T. Dhamecha, and N. Mukhi. Improving
short answer grading using transformer-based
pre-training. In International Conference on Artificial
Intelligence in Education, pages 469–481. Springer,
Cham, 2019.

[24] C. Sung, T. Dhamecha, S. Saha, M. Tengfei,
V. Reddy, and A. Rishi. Pre-training bert on domain
resources for short answer grading. In Proceedings of
the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint
Conference on Natural Language Processing, pages
6071–6075, Hong Kong, CH., 2019. Association for
Computational Linguistics.

[25] H. Tan, C. Wang, Q. Duan, Y. Lu, H. Zhang, and
R. Li. Automatic short answer grading by encoding
student responses via a graph convolutional network.
Interactive Learning Environments, pages 1–15, 2020.

[26] K. Thaker, L. Zhang, D. He, and P. Brusilovsky.
Recommending remedial readings using student
knowledge state. In Proceedings of The 13th
International Conference on Educational Data Mining
(EDM 2020), pages 233–244, 2020.

[27] R. Venant and M. d’Aquin. Towards the prediction of
semantic complexity based on concept graphs. In 12th
International Conference on Educational Data Mining,
pages 188–197, 2019.

[28] S. A. Wind and M. E. Peterson. Sa systematic review
of methods for evaluating rating quality in language
assessment. Language Testing, 2(35):161–192, 2018.

[29] Y. Xiao, G. Zingle, Q. Jia, S. Akbar, Y. Song,
M. Dong, and E. Gehringer. Problem detection in peer
assessments between subjects by effective transfer
learning and active learning. 2020.

[30] X. Yang, Y. Huang, F. Zhuang, L. Zhang, and S. Yu.
Automatic chinese short answer grading with deep
autoencoder. In International Conference on Artificial

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 351

Intelligence in Education., pages 399–404. Springer,
Cham, 2018.

[31] Y. Zhang, R. Shah, and M. Chi. Deep Learning+
Student Modeling+ Clustering: A Recipe for Effective
Automatic Short Answer Grading. International
Educational Data Mining Society, 2016.

352 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Sentiment Analysis of Student Surveys - A Case Study on
Assessing the Impact of the COVID-19 Pandemic on Higher

Education Teaching ∗

Haydée G. Jiménez,
Marco A. Casanova

Departamento de Informática
PUC-Rio

Rio de Janeiro, Brazil
{hjimenez,

casanova}@inf.puc-rio.br

Anna Carolina Finamore
COPELABS

Lusófona University
Lisboa, Portugal

anna.couto@ulusofona.pt

Gonçalo Simões
Google Research
United Kingdom

gsimoes@google.com

ABSTRACT
Sentiment Analysis is a field of Natural Language Process-
ing which aims at classifying the author’s sentiment in text.
This paper first describes a sentiment analysis model for stu-
dents’ comments about professor performance. The model
achieved impressive results for comments collected from stu-
dent surveys conducted at a private university in 2019/20.
Then, it applies the model to different scenarios: (i) in-
person classes taught in 2019 (pre-COVID); (ii) the emer-
gency shift to online, synchronous classes taught in the first
semester of 2020 (early-COVID); and (iii) the planned online
classes taught in the second semester of 2020 (late-COVID).
The results show that students acknowledged the effort pro-
fessors did to keep classes running during the first semester
of 2020, and that the enthusiasm continued throughout the
second semester. Furthermore, the results show that stu-
dents evaluated professors’ performance for online courses
better than for in-person courses.

Keywords
sentiment analysis, BERT, online classes, in-person classes

1. INTRODUCTION
The systematic evaluation of a Higher Education Institu-
tion (HEI) provides its administration with valuable feed-
back about several aspects of academic life, such as the rep-
utation of the institution and the individual performance of
faculty. In fact, in some countries, it is mandatory that HEIs
implement self-evaluation committees, whose members are
elected by the various segments of the community and whose

∗(Does NOT produce the permission block, copyright
information nor page numbering). For use with
ACM PROC ARTICLE-SP.CLS. Supported by ACM.

duties include the preparation of annual reports assessing
the performance of the institution on predefined aspects.

In particular, student surveys are a first-hand source of in-
formation that help assess professor performance and course
adequacy. Such surveys are typically organized as a ques-
tionnaire with closed-ended questions, which the student an-
swers by choosing predefined alternatives, and open-ended
questions, which the student answers by freely writing com-
ments on the topic of the question. Albeit interesting and
useful, the analysis of open-ended questions poses challenges,
such as how to summarize the comments and how to deter-
mine the sentiment of the comments.

The primary goal of this paper is to introduce a sentiment
analysis model for students’ comments in the context of
questionnaires designed to assess professor performance, and
to evaluate the model using data from student surveys ap-
plied at Brazilian University in 2019 and 2020.

Studying this particular period of time is interesting be-
cause, in early 2020, the COVID-19 pandemic forced the
Brazilian University to move all classes online, taught with
the help of a videoconferencing software and a Learning
Management System (LMS), and they so remained through-
out 2020. This change in instructional model offers the
unique opportunity to compare the in-person classes in 2019
(pre-COVID scenario), with the emergency shift to online,
synchronous classes in the first semester of 2020 (early COVID
scenario), and with the planned online classes in the sec-
ond semester of 2020 (late-COVID scenario). Therefore, the
second goal of this paper is to apply the sentiment analy-
sis model developed to the case study data to compare the
overall sentiment of the students’ comments about professor
performance in these different scenarios.

The results reported in this paper indicate that the senti-
ment analysis model developed achieves good performance
in the classification of the sentiment expressed by the stu-
dents’ comments about professor performance. This model
was separately applied to the different scenarios covered by
the case study data. The results show that students ac-
knowledged the effort professors did to keep classes run-
ning during the first semester of 2020 (early-COVID sce-

Haydée Guillot Jiménez, Anna Carolina Finamore, Marco Antonio
Casanova and Gonçalo Simões “Sentiment Analysis of Student Sur-
veys - A Case Study on Assessing the Impact of the COVID-19
Pandemic on Higher Education Teaching”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 353-359.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 353

nario), and that the enthusiasm continued throughout the
second semester of 2020 (late-COVID scenario). These con-
clusions are justified by the peak in positive comments ob-
served in the first semester of 2020, as compared with the
other semesters. Furthermore, the results show that stu-
dents evaluated professor performance for online classes bet-
ter than for in-person classes. To a large extent, these re-
marks are consistent, for example, with the findings of a
random-sample survey, conducted in late May 2020, involv-
ing more than 1,000 US college students whose classes moved
from in-person to completely online in early 2020 [13]. How-
ever, they have to be cross-checked with other surveys con-
ducted in 2019/2020 at the Brazilian University and else-
where.

The remainder of this paper is organized as follows. Section
2 summarizes related work. Section 3 presents the case study
used in the paper. Section 4 details the model for sentiment
analysis. Section 5 describes the results obtained with the
case study data. Section 6 contains the conclusions and
directions for future work.

2. RELATED WORK
Sentiment Analysis (SA), also known as Opinion Mining, is
a field of natural language processing (NLP) where the main
focus is to automatically analyze people’s opinions and sen-
timents [11]. According to Pang and Lee [15], for most of us,
the decision-making process takes into consideration “what
other people think”. Based on this assertion, it is easy to
understand why SA is very popular in several domains, such
as tourism, restaurants, movies, music, and, more recently,
education.

Chaturvedi et al. [5] addressed the essential task of elimi-
nating “real” or “neutral” comments that do not express a
sentiment. The article reviewed hand-crafted and automatic
models for detecting subjectivity in the literature, compar-
ing the advantages and limitations of each approach. Ahuja
et al. [1] addressed the analysis of comments from one of
the most popular Twitter platforms. As the comments are
not structured, they used six techniques to pre-process the
comments. They then applied two techniques (TF-IDF and
N-Grams) to classify comments, and concluded that the TF-
IDF word level of sentiment analysis is 3-4% higher than the
use of N-characteristics. Prusa et al. [17] also concentrated
on Twitter data. They analysed the impact of ten filter-
based feature selection techniques on the performance of four
classifiers. Nazare et al. [14] analyzed about 1,000 Twitter
comments using various machine learning approaches, sep-
arately or in combination, to classify the comments. Unlike
other articles with traditional approaches to analyze the sen-
timent of short texts, Li and Qiu [10] did not consider the
relationship between emotion words and modifiers, but they
showed how to mitigate these problems through the senti-
ment structure and rules that captured the text sentiment.
The results of an experiment with microblogs validated the
efficacy of their approach.

Analyzing comments from sales Web sites is important to de-
tect if users are praising or criticizing the products they con-
sume. Bansal and Srivastava [4] used the word2vec model to
convert comments into vector representations using CBOW
(continuous bag of words), which were fed to a classifier.

Experimental results showed that Random Forests using
CBOW achieved the highest precision. Khoo and Johnkhan
[9] analysed comments from the Amazon Web site, using
a new general-purpose sentiment lexicon, called WKWSCI
Sentiment Lexicon, and compared it with five existing lex-
icons. Akhtar et al. [2] used classification algorithms, like
Conditional Random Filed (CRF) and Support Vector Ma-
chine (SVM), to classify comments from different Indian
Web sites.

Zhou and Ye [22] reviewed journal publications between
2010-2020 in SA applied to the education domain and, among
others future research directions, they pointed out: (i) the
need to explore SA in the learning cross-domain; (ii) con-
sider a combination of text mining and qualitative answers
(questionnaires or interviews) to understand the psycholog-
ical motivation behind learning sentiment; (iii) explore the
association between sentiment, motivation, cognition, and
also demographic characteristics to regulate the emotions of
learners. Santos et al. [19] studied SA in online students’
reviews to identify factors that influence international stu-
dents’ choice for a HEI. They also suggested aspects that
HEI managers may have to consider to attract more inter-
national students, such as: online information about (HEI)
offerings, students’ comments about their experiences, inter-
national environment, courses taught in English, and sup-
port to students’ accommodation or expenses. Sindhu et
al. [20] proposed an aspect-oriented SA system based on
Long Short-Term Memory (LSTM) models. They consid-
ered two datasets with students’ comments, namely: the
Sukkur IBA University and a standard SemEval-2014. They
suggested that the evaluation of teaching performance would
have to consider six dimensions: teaching pedagogy, behav-
ior, knowledge, assessment, experience, and general. We
previously created a tool for the analysis of student com-
ments [8] but it was limited to a fixed, manually created
dictionary, which might therefore not take into account some
relevant words.

The choice of a university to enroll in is a difficult decision
and, at the same time, the information available on the inter-
net is overwhelming. To address these issues, Balachandran
and Kirupananda [3] proposed an aspect-based sentiment
analysis tool to evaluate the reputation of universities in Sri
Lanka from users’ comments in Facebook and Twitter, using
the StanfordCoreNLP library to perform sentiment analysis.
Lytras et al. [12] built the Learning Analytics Dashboard
for E-Learning (LADEL) tool to monitor different sources,
such as student blogs, social networks and Massive Open On-
line Courses (MOOC) in search of comments that express
satisfaction, anxiety, efficiency, frustration, abandonment.
LADEL is composed of four modules: collection, cleaning,
word cloud and sentiment of opinion. Sivakumar and Reddy
[21] extracted students’ comments using the Twitter API
and tried to analyze the relations between word aspects and
phrases of student opinion. They used a sentiment package
available in R to find the polarity of the sentences and then
applied k-mean clustering and näıve Bayes for the sentiment
analysis classification.

de Oliveira and de Campos Merschmann [6] analyzed the
combination of NLP pre-processing tasks (tokenization, POS
tagging, stemming, among others) with three classifiers (Ran-

354 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

dom Forest, Support Vector Machine, and Multilayer Per-
ceptron), and discussed their predictive performance. They
evaluated these tasks in five Portuguese datasets related
to sentiment analysis, encompassing comments, news and
tweets. They analyzed some combinations of preprocessing
tasks and classifier

This paper focuses on identifying students’ sentiments ex-
pressed in comments about professor performance in Higher
Education. It uses the pre-trained model called Bidirec-
tional Encoder Representations from Transformers (BERT)
[7] for the sentiment analysis task. BERT-style models are
the current state-of-the-art in several NLP tasks, including
entity recognition and sentiment analysis. BERT’s archi-
tecture is based on multi-layered transformers, which are
particularly optimized to be trained on GPUs and TPUs
with significant amounts of data. For this reason, a recipe
for success with these models is to pre-train them with large
datasets (in the order of millions of documents) on general
tasks such as masked language models or next sentence pre-
dictions [7]. This pre-training allows the model to learn a
lot about some language patterns (that are independent of
the task we care about) and make it easier to train them
specifically for other language tasks even without the need
for large amounts of annotated data. Our corresponding
code is available at GitHub1.

3. CASE STUDY
3.1 Course Survey Data
In the rest of this paper, we use course to denote “a series
of lectures in a particular subject”, and class to describe “a
particular instance of a course”. Therefore, students enroll
in a class of a course. We assume that classes run on a per
semester basis, and use <year>.1 and <year>.2 to denote
the first and second semesters of the calendar year, respec-
tively.

Since 2005, at the Brazilian University used in the case
study, students are invited, at the end of each semester,
to answer a questionnaire for each class they took in the
semester. Students’ participation in the survey is not manda-
tory. The questionnaire has a set of closed-ended questions
about the professor that taught the class, and a separate
set of closed-ended questions about the course the class is
an instance of. For each closed-ended question, the student
chooses a score from a Likert scale (1-5). The questionnaire
also has one open-ended question which invites students to
write as many sentences as they like to express their evalu-
ation of the professor that conducted the class, and likewise
for the course the class is an instance of. The comments are
in Portuguese and the sentences are often ungrammatical.
We are interested in the sentiment analysis of the students’
comments about the professor performance, which we will
refer to as the comments for brevity.

The purpose of the case study is to analyse comments col-
lected from the questionnaires applied in the first and sec-
ond semesters of 2019 and 2020. However, we also use the
comments collected from the questionnaires applied in both
semesters of 2018 for pre-training (see Section 5). The rea-

1https://github.com/hguillot/Sentiment-Analysis-of-
Student-Surveys-with-BERT

Table 1: Number of comments about professor performance
in classes.

Semester #Comments
2018.1 and 2018.2 10,077

2019.1 3,182
2019.2 1,910
2020.1 3,492
2020.2 2,219

Table 2: Structure of the professor questionnaires.
Year Class Mode #Closed-ended #Open-ended

Questions Questions
2018 in-person 10 1
2019 in-person 16 1
2020 online 20 1

son for using comments from 2018 for pre-training is that
we wanted to make sure that no comment used in the anal-
ysis step has been observed before in the pre-training step.
Using the 2018 data is possible because it has been observed
that the vocabulary students use to write comments has not
changed significantly over the years. Table 1 presents the
number of comments for the 2018, 2019 and 2020 student
surveys.

As far as professor evaluation is concerned, the question-
naires varied slightly from 2018 to 2019. Also, in early
2020, the COVID pandemic forced the university to move all
classes online, taught with the help of a videoconferencing
software and a Learning Management System (LMS), and
they so remained throughout 2020. The questionnaire, used
for classes taught in 2020.1 and 2020.2, was then modified
accordingly. Table 2 summarizes the structure of the various
questionnaires that the case study is concerned with.

Given this new reality, forced by the COVID pandemic, it is
reasonable to ask if the professors were prepared for online
classes and if this would affect the students’ evaluation of
the professor performance at the end of 2020.1 (the early-
COVID scenario).

As a simple answer to this conjecture, consider the last
closed-ended question incorporated in the 2019/20 surveys:
“O: Overall evaluation of the professor”. Figure 1 depicts
the distribution of the scores of Question O per semester,
grouped as 1 and 2, for “negative”, 3, for “neutral”, and 4
and 5, for “positive”, considering only questionnaires with a
non-empty comment about professor performance. Figure
1 shows that students in fact evaluated the overall profes-
sor performance better in 2020.1 (again, the early-COVID
scenario) than in the other semesters.

But the question remains if the overall sentiment of the com-
ments about professor performance points in the same direc-
tion.

3.2 Use of the Course Survey Data
This section describes how the course survey data were used
to construct models for the sentiment analysis of comments
about professors performance (recall that each questionnaire

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 355

Figure 1: Distribution of the scores of Question O per
semester (considering only questionnaires with a non-empty
comment about professor performance).

has only one such comment).

We first observe that no text pre-processing was necessary,
as in the Twitter sentiment analysis reported in [16], since
the students’ comments do not significantly depart from
written Portuguese, albeit they often contain ungrammat-
ical sentences.

The models used manually annotated comments, obtained
as follows. From the course surveys of the two semesters
of 2019, 800 questionnaires with non-empty professor com-
ments were randomly chosen, using the following criteria:
5 samples were chosen for each of the Likert scale scores
(1-5) for each of the 16 closed-ended questions (5 * 5 * 16
= 400) in each of the semesters (400 * 2 = 800). The com-
ments of the selected questionnaires were manually classified
into 3 categories: positive, when the comment only praised
the professor; negative, when the comment only criticized
the professor; and neutral when the comment expressed no
opinion or when the comment both praised and criticized
the professor. Table 3 shows the number of comments in
each of these classes.

The pre-training step (see Section 5) used data from the 2018
student surveys as follows. We considered a dataset with all
questionnaires with non-empty comments from the 2018 stu-
dent surveys. But, since the questionnaire applied in 2018
had no overall professor evaluation (Question O), we used
the average score savg[q] ∈ [1, 5] of all questions of a ques-
tionnaire q to induce a label c[q] ∈ {“negative”, “neutral”,
“positive”} for the comment as follows: if savg[q] < 3 then
c[q] = “negative”; if 3 ≤ savg[q] < 4 then c[q] = “neutral”;
and if savg[q] ≥ 4 then c[q] = “positive”. Figure 2 shows
the distribution of the average scores obtained.

4. A SENTIMENT ANALYSIS MODEL
In the paper, we focus on the polarity classification task,
whose focus is to classify comments, which express opinions
or reviews, into “positive”, “negative” or “neutral”, or even
into more than these three classes. We neither consider sub-
jectivity classification, i.e., the task of verifying the subjec-
tivity and objectivity of a comment, nor irony detection, i.e.,
the task of verifying whether the comment is ironic or not.

Figure 2: Distribution of the average score of all questions of
a questionnaire from 2018.

Table 3: Distribution of the number of questionnaires per
class of comment about professor performance, using the
manual classification and the automatic classification induced
by the score of Question O (considering 800 questionnaires
with a manually classified comment about professor perfor-
mance).

Year Classification Positive Negative Neutral
2019.1 Manual 107 220 73

Automatic 187 150 63
2019.2 Manual 119 203 78

Automatic 201 138 61

We use BERT [7], which achieves outstanding results on
a number of NLP tasks. The core of the architecture has
been pre-trained on a very large amount of unlabeled data.
The model is then fine-tuned on small supervised datasets,
designed for the task in question.

For our case study, BERT encodes each comment into a
768-dimensional embedding and, then, a dense layer trans-
forms the embeddings into a three-dimensional vector for
each comment that indicates the probability that the com-
ment belongs to each of the three classes - “positive”, “neg-
ative” or “neutral”. We adopted the BERT-Base, Multilin-
gual Cased version2 (for 104 languages, with 12-layer, 768-
hidden, 12-heads, 110M parameters), which is required since
the comments are written in Portuguese. In order to signif-
icantly speed up the training and inference with our model,
we limited the size of each input comment to 64 tokens,
which is enough to cover the vast majority of the comments.
Any comment with less than 64 tokens was padded with the
‘[PAD]’ symbol already allocated in BERT’s vocabulary and
any comment with more than 64 tokens was truncated.

Finally, the model was implemented using KERAS and run-
ning on GPU’s.

5. EXPERIMENTS AND RESULTS
We started our experimental setup by executing a pre-training
step that aims at getting the model used to the style of stu-

2Available at https://github.com/google-
research/bert/blob/master/multilingual.md

356 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 4: Results of the experiments.
Experiment Accuracy Precision Recall F1
Zero-shot 50.2±2.3 54.2±2.2 51.8±2.8 53.0±2.4

From scratch 86.3±1.8 84.5±2.3 83.0±3.1 83.7±2.4
Fine-tuned 87.5±2.0 84.6±2.0 84.8±2.0 84.6±2.5

dent’s comments through non-annotated data. In order to
do that, we used the set of comments from the 2018 stu-
dent surveys, and the scores they assigned to the professor
as a proxy to the labels, as explained in Section 3.2. We
started the pre-training experiment with the multilingual
BERT checkpoint that is publicly available and trained for
10 epochs, resulting in a newly trained checkpoint which we
call from this point on the pre-trained checkpoint.

After the pre-training step, we proceeded to experiment with
three setups, using a 5-fold cross-validation strategy, applied
to the set of 800 manually classified comments. Therefore,
each round of cross-validation used 640 comments for train-
ing and 160 comments for testing. The three setups we used
were as follows:

• Zero-shot : this experiment does not perform any train-
ing with the manually classified comments. Instead, it
performs inference directly using the pre-trained check-
point that resulted from the pre-training step on the
test set. If this model’s performance was good, then
it would show that manually annotating comments
would not be necessary.

• From scratch: this experiment does not use the pre-
trained checkpoint that resulted from the pre-training
step. Instead, it starts with the multilingual BERT
checkpoint and uses the manually classified comments
to train and evaluate the model. The objective of this
experiment is to understand if the pre-training step is
necessary to obtain top-quality results.

• Fine-tuned : this experiment uses the pre-trained check-
point that resulted from the pre-training step and then
uses it as the starting point when training with the
manually classified documents. This experiment aims
at evaluating if combining pre-training and manually
annotated comments helps in obtaining top-quality re-
sults.

Table 4 shows the results of the 5-fold cross-validation (each
cell indicates the average and the standard deviation over
the 5 rounds). Observe that the fine-tuned model obtained
the best results, which indicates that combining pre-training
and manually annotated comments helps in obtaining top-
quality results.

We have also computed the Fisher-Irwin test [18], to ex-
amine the hypothesis that Fine-tuned model does not have
an equivalent classification performance when compared to
both Zero-shot and From scratch. For this purpose, we com-
puted the Fisher-Irwin test twice. In the first test, our null
hypothesis (Fine-tuned classifier has a proportion of correct
classifications equivalent to the proportion of correct classifi-
cations from Zero-shot classifier) was tested against the al-

Figure 3: Accuracy for From scratch and Fine-tuned using
train set of 40, 80, 160, 320 and 640 comments.

ternative hypothesis (Fine-tuned classifier has a proportion
of correct classifications superior to the proportion of correct
classifications from the Zero-shot classifier), and the null hy-
pothesis was rejected for the usual levels of statistical signifi-
cance (5% and 10%). The same happened in our second test
where our null hypothesis (Fine-tuned classifier has a pro-
portion of correct classifications equivalent to the proportion
of correct classifications from From scratch classifier) was
tested against the alternative hypothesis (Fine-tuned classi-
fier has a proportion of correct classifications superior to the
proportion of correct classifications from the From scratch
classifier). Based on this, we can conclude that our results
are statistically significant, since our null hypotheses were
both rejected for the usual levels of statistical significance
(5% and 10%), leading us to accept alternative hypotheses.

An important question that arises is about the number of
comments that must be manually annotated to achieve an
acceptable level of accuracy. To address this question, we
ran the following cross validation experiment, with a de-
creasing number of manually annotated comments used for
training. We divided the 800 manually annotated comments
into 5 sets of 160 comments each. Let G1, ..., G5 denote these
sets and Gi denote the 640 comments not in Gi. For each
i = 1, ..., 5, we computed the accuracy and the F1-score of
the from-scratch and the fine-tuned models, using Gi for
testing and subsets of Gi, of sizes 640, 320, 160, 80, and 40,
for training. Finally, for each cardinality of the training sets,
we computed the average accuracy and the average F1-score
of each model. Figures 3 and 4 depict the results.

Figure 3 shows that, using 640 manually annotated com-
ments for training, the fine-tuned model achieved an aver-
age accuracy of 87.5% and the from-scratch model achieved
86.3%, and so on for the other training set cardinalities (320,
160, 80 and 40). Therefore, based on the level of accepted
accuracy, one can balance the effort to manually annotate
the comments.

Figure 3 also shows that: (i) using just 40 manually anno-
tated comments for training, the fine-tuned model achieved
an average accuracy of 77.1%, while the from-scratch model

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 357

Figure 4: F1 for From scratch and Fine-tuned using train
set of 40, 80, 160, 320 and 640 comments.

only achieved an accuracy of 70.8%, when trained with 160
comments, that is, 4 times as much comments; (ii) the fine-
tuned model, again trained with just 40 comments, achieved
a much better accuracy than that of the zero-shot model,
shown in the first line of Table 4 (the zero-shot model is
the equivalent to training the fine-tuned model with 0 com-
ments); (iii) the pre-trained check-point had a positive im-
pact, since the fine-tuned curve is always above the from-
scratch curve; (iv) the fine-tuned model achieved a standard
deviation smaller than that of the from-scratch model, which
means that this technique is more stable and less susceptible
to changes due to the samples. These observations reinforce
that, with an adequate pre-training strategy, we may achieve
good results without the need to manually annotate a large
amount of data.

Finally, we used the fine-tuned model to classify the full set
of comments from the 2020.1 and 2020.2 surveys, and the set
of comments from 2019.1 and 2019.2 that were not manually
classified. Then, we added the manually classified comments
from 2019.1 and 2019.2 to obtain the final distributions for
the four semesters, as shown in Figure 5.

For comparison purposes, Figure 5 includes the distributions
of the comment classifications induced by the score of Ques-
tion O as explained in Section 3.1. Note that Question O
induces a classification biased towards positive comments,
when compared with the classification based on the fine-
tuned model. This is also observed when just the manually
classified comments are considered.

In conclusion, the distributions of the students’ comments
sentiment and of the scores of Question O indicate that stu-
dents evaluated the professor performance better in 2020.1
(the early-COVID scenario) than in the other semesters,
which seems to indicate that students acknowledged the ef-
fort professors did to keep classes running during 2020.1,
and that the enthusiasm continued throughout 2020.2 (late-
COVID scenario). Furthermore, students evaluated the pro-
fessor performance better in 2020.1 and 2020.2 (online classes),
by a margin of nearly 10%, when compared with 2019.1 and
2019.2 (in-person classes), respectively.

Figure 5: Distribution of the final classification of the com-
ments from all surveys, using the fine-tuned model, added
to the manually classified comments from 2019.1 and 2019.2
(shown in blue), and the classification of the comments from
all surveys, using the score of Question O (shown in orange).

6. CONCLUSIONS
This paper first described a sentiment analysis model for stu-
dents’ comments about professor performance. The model is
based on BERT and has achieved good results when applied
to a case study with students’ comments about professor
performance, obtained in 2019/20.

Then, the paper applied the model to compare the overall
sentiment of the students’ comments about professor perfor-
mance in different scenarios: in-person classes in 2019.1 and
2019.2 (pre-COVID scenarios); the emergency shift to on-
line, synchronous classes in 2020.1 (early COVID scenario);
and the planned online classes in 2020.2 (late-COVID sce-
nario). The results show that students acknowledged the
effort professors did to keep classes running during 2020.1,
and that the enthusiasm continued throughout 2020.2. Fur-
thermore, the results show that students evaluated profes-
sor performance for online courses better than for in-person
courses, by a margin of nearly 10%, which seems to indicate
that students favor online classes.

This paper also discussed the number of comments that must
be manually annotated to achieve good results. Future ex-
periments can take advantage of this discussion to reduce
the manual annotation effort, even with datasets obtained
from other universities.

The stability of the models was also investigated, indicating
that the fine-tuned model achieved a lower standard devia-
tion, which means that this technique leads to more stable
results. The fine-tuned model also achieved a higher per-
formance, when compared to both the zero-shot and from-
scratch models, in terms of the proportion of correct classi-
fications, and the difference was statistically significant.

We plan to extend the analysis to past student surveys,
which go back to 2005, and to the student survey to be
applied at the end of 2021.1, when classes will still be on-
line. We also plan to cross-check these preliminary findings
with other surveys conducted in 2019/20 at the Brazilian
University and elsewhere.

358 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

7. ACKNOWLEDGMENTS
This work was partly funded by FAPERJ under grant E-
26/202.818/2017, by CAPES under grant 88882.164913/2010-
01, and by CNPq under grants 302303/2017-0 and 162959/2017-
6.

8. REFERENCES
[1] R. Ahuja, A. Chug, S. Kohli, S. Gupta, and P. Ahuja.

The impact of features extraction on the sentiment
analysis. Procedia Computer Science, 152:341–348,
2019.

[2] M. S. Akhtar, A. Ekbal, and P. Bhattacharyya.
Aspect based sentiment analysis in Hindi: Resource
creation and evaluation. In Proceedings of the Tenth
International Conference on Language Resources and
Evaluation (LREC’16), pages 2703–2709. European
Language Resources Association (ELRA), May 2016.

[3] L. Balachandran and A. Kirupananda. Online reviews
evaluation system for higher education institution: An
aspect based sentiment analysis tool. 2017 11th
International Conference on Software, Knowledge,
Information Management and Applications (SKIMA),
pages 1–7, 2017.

[4] B. Bansal and S. Srivastava. Sentiment classification
of online consumer reviews using word vector
representations. Procedia Computer Science,
132:1147–1153, 2018. International Conference on
Computational Intelligence and Data Science.

[5] I. Chaturvedia, E. Cambria, R. E. Welsch, and
F. Herrera. Distinguishing between facts and opinions
for sentiment analysis: Survey and challenges.
Information Fusion, 44:65–77, December 2018.

[6] D. N. de Oliveira and L. H. de Campos Merschmann.
Joint evaluation of preprocessing tasks with classifiers
for sentiment analysis in brazilian portuguese
language. Multimedia Tools and Applications, pages
1–22, 2021.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
BERT: Pre-training of deep bidirectional transformers
for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics.

[8] H. G. Jiménez, M. A. Casanova, B. P. Nunes, and
A. C. Finamore. Courseobservatory: Sentiment
analysis of comments in course surveys. In M. Chang,
D. G. Sampson, R. Huang, A. S. Gomes, N. Chen, I. I.
Bittencourt, Kinshuk, D. Dermeval, and I. M.
Bittencourt, editors, 19th IEEE International
Conference on Advanced Learning Technologies,
ICALT 2019, Maceió, Brazil, July 15-18, 2019, pages
176–178. IEEE, 2019.

[9] C. S. Khoo and S. B. Johnkhan. Lexicon-based
sentiment analysis: Comparative evaluation of six
sentiment lexicons. Journal of Information Science,
44(4):491–511, 2018.

[10] J. Li and L. Qiu. A sentiment analysis method of
short texts in microblog. In 2017 IEEE International
Conference on Computational Science and
Engineering (CSE) and IEEE International

Conference on Embedded and Ubiquitous Computing
(EUC), volume 1, pages 776–779, 2017.

[11] B. Liu. Sentiment analysis and opinion mining.
Synthesis lectures on human language technologies,
5(1):1–167, 2012.

[12] M. D. Lytras, E. D’Avanzo, P. Adinolfi, I. Novo-Corti,
and J. Picatoste. Sentiment analysis to evaluate
teaching performance. Int. J. Knowl. Soc. Res.,
7(4):86–107, October 2016.

[13] B. Means and J. Neisler. Suddenly online: A national
survey of undergraduates during the covid-19
pandemic, 2020.

[14] S. P. Nazare, P. S. Nar, A. S. Phate, and P. D. D. R.
Ingle. Sentiment analysis in twitter. International
Research Journal of Engineering and Technology
(IRJET), 5(1):880–886, January 2018.

[15] B. Pang and L. Lee. Opinion mining and sentiment
analysis (foundations and trends (r) in information
retrieval), 2008.

[16] M. Pota, M. Ventura, R. Catelli, and M. Esposito. An
effective bert-based pipeline for twitter sentiment
analysis: A case study in italian. Sensors, 21(1), 2021.

[17] J. D. Prusa, T. Khoshgoftaar, and D. Dittman.
Impact of feature selection techniques for tweet
sentiment classification. In FLAIRS Conference, 2015.

[18] S. M. Ross. Introduction to probability and statistics
for engineers and scientists. Academic Press, 2020.

[19] C. L. Santos, P. Rita, and J. Guerreiro. Improving
international attractiveness of higher education
institutions based on text mining and sentiment
analysis. International Journal of Educational
Management, 2018.

[20] I. Sindhu, S. M. Daudpota, K. Badar, M. Bakhtyar,
J. Baber, and M. Nurunnabi. Aspect-based opinion
mining on student’s feedback for faculty teaching
performance evaluation. IEEE Access,
7:108729–108741, 2019.

[21] M. Sivakumar and U. S. Reddy. Aspect based
sentiment analysis of students opinion using machine
learning techniques. In 2017 International Conference
on Inventive Computing and Informatics (ICICI),
pages 726–731. IEEE, 2017.

[22] J. Zhou and J.-m. Ye. Sentiment analysis in education
research: a review of journal publications. Interactive
Learning Environments, pages 1–13, 2020.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 359

Context-aware Knowledge Tracing Integrated with The
Exercise Representation and Association in Mathematics

Tao Huang1, Mengyi Liang2, Huali Yang1, Zhi Li2, Tao Yu2 and Shengze Hu1

1 National Engineering Laboratory for Educational Big Data, Central China Normal University,
Wuhan, China

{tmht, yanghuali}@mail.ccnu.edu.cn, shengzehu@mails.ccnu.edu.cn
2 National Engineering Research Center for E-Learning, Central China Normal University,

Wuhan, China

{mengyiliang, zhili, yt2542106000}@mails.ccnu.edu.cn

ABSTRACT
Influenced by Covid-19, online learning has become one of the

most important forms of education in the world. In the era of

intelligent education, knowledge tracing(KT) can provide excellent

technical support for individualized teaching. For online learning,

we come up with a new knowledge tracing method that integrates

mathematical exercise representation and association of

exercise(ERAKT). In the aspect of exercise representation, we

represent the multi-dimensional features of the exercises, such as

formula, text and associated concept, by using ontology

replacement method, language model and embedding technology,

so we can obtain the unified internal representation of exercise.

Besides, we utilize the bidirectional long short memory neural

network to acquire the association between exercises, so as to

predict his performance in future exercise. Extensive experiments

on a real dataset clearly proved the effectiveness of ERAKT

method, they also verified that adding multi-dimensional features

and exercise association can indeed improve the accuracy of

prediction.

Keywords

Knowledge tracing. Context-aware. Exercise representation.

1. INTRODUCTION
As one of the key technologies of adaptive learning, knowledge

tracking has become a research hotspot in adaptive education. The

main task of knowledge tracking is to automatically track students'

acquisition knowledge level with time according to their historical

learning trajectory, so as to accurately predict their performance in

future learning. In actual teaching, teachers can adjust teaching plan

dynamically by predicting the result, improve teaching quality and

teaching efficiency, and help teachers to achieve accurate teaching

goal.

Knowledge Tracing method (KT) was first proposed by Atkinson.

Bayesian knowledge tracing method (BKT) [1] is one of the most

popular knowledge tracing methods in the early stage. BKT

assumes that students will never forget a knowledge concept once

they have mastered it, which is not in line with the actual teaching

situation. Later, with the continuous development of deep learning,

more and more scholars combined knowledge tracing tasks with

deep learning methods, among which Deep Knowledge Tracing

(DKT) [2] is the most popular and commonly used one. DKT partly

solves the assumption error problem in BKT which does not

conform to the actual teaching situation, and can more accurately

represent the concept proficiency of learners. However, the

assumption of concept state represented by a hidden layer in DKT

is inaccurate, making a student's mastery level difficult to track.

Furthermore, Jiani Zhang et al. proposed Dynamic Key-Value

Memory Networks for Knowledge Tracing (DKVMN) [3] based on

memory neural networks, and DKVMN is significantly better than

BKT and DKT in terms of performance effect. In recent years, the

University of Science and Technology of China team proposed

some methods which integrated exercise records and exercise

materials into KT based on the existing KT methods, such as

EKT[11], qDKT[12], etc., which has stronger explanatory power

and gradually improved performance effect.

However, most of the traditional knowledge tracing methods only

consider the exercises records of students, using the covered

concepts to index the exercises, ignoring the influence of exercise

formula, text or concepts on a student's knowledge state. In fact,

besides exercise interaction records, the multi-dimensional

information of exercises has an important impact on a student's

performance. Therefore, in order to solve the above problems, we

propose a mathematical knowledge tracing method that integrates

the representation and association of a student’s exercises, so as to

solve the problem of information loss caused by ignoring multi-

dimensional representation and association of exercises in

traditional knowledge tracing and improve accuracy of the method.

Contributions of ERAKT are as follows:

(1) We propose a new context-aware knowledge tracing method

that can automatically learn and predict a student’s

performance in the next exercise.

(2) We propose an exercise representation method that integrates

multi-dimensional information, including text, formulate and

associated concept.

(3) We propose a sequential question association mining method

based on a bidirectional neural network to acquire association

content between exercises.

2. RELATED WORK

2.1 Semantic representation
In the domain of text processing, the most important task is to

transform text into a vector form which could be understood and

processed by computers, that is, semantic representation. There are

 Tao Huang, Mengyi Liang, Huali Yang, Zhi Li, Tao Yu and Shengze
Hu “Context-aware Knowledge Tracing Integrated with The Exercise
Representation and Association in Mathematics”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 360-366.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

360 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

many ways to get semantic representation, such as Word2vec,

TextCNN, FastText, Bert etc.

Word2Vec[4] was proposed by Google’s Mikolov team. It is the

preliminary application of neural networks in semantic

representation. Word2Vec conducts fixed-dimensional vectors to

represent words. For sentences, the Doc2Vec method [5] is derived,

which establishes a model by means of a neural network structure.

Paragraph vectors are obtained during the training of the model.

Both of them are typical unsupervised text representation methods.

Compared with the traditional bag-of-words method, they can

better integrate the internal information of exercise, such as context,

semantics and word order.

Yoon Kim modified the input layer of traditional CNN. In 2014, he

proposed a text classification method named TextCNN[6], which

has a simpler network structure, smaller amount of calculations and

faster speed of training. So compared with traditional CNN method,

TextCNN performs better in field of semantic representation.

Another method to get semantic representation is FastText [7].

FastText can train word vectors by itself without requiring pre-

trained word vectors, which speeding up training and testing while

maintaining high accuracy.

The Bert [8] method was also proposed by the Google team to solve

the semantic representation problem. To deal with the effects of

polysemous words in sentences, Bert exploits the transfomer model

with Self-attention and Multi-Headed Attention mechanisms [9],

which combines the context of the sentence to determine the

specific semantics. Bert has a two-way function, allowing for more

accurate results and adaptive learning in a multi-tasking

environment.

2.2 Knowledge tracing considering multi-

dimensional characteristics of exercises
With the rapid development of deep learning, more and more

scholars exploit different deep learning methods to represent

exercises in order to complete the knowledge tracking task and

attempt to comprehensively consider the impact of different

features of the exercises on knowledge tracing tasks. The multi-

dimensionality mainly include textual materials and concepts

involved in the exercises.

Therefore, the majority of existing KT methods utilize concepts to

index exercises to avoid over-parameterization. For example, both

DKT and DKVMN treat all the exercises covering the same

concept as a single one. Compared with the former, the key-value

matrix in DKVMN extends the hidden feature representation of the

exercises, but it still does not take advantage of the characteristics

of other dimensions. The Prerequisite-driven deep knowledge

tracing(PDKT) [23] method integrates the structural information

between concepts with the help of the Q matrix in the cognitive

diagnosis theory, and specifically considers the contextual

relationship between concepts. The self-attentive knowledge

tracing (SAKT) [24] method exploits concepts to index exercises

and introduces a self-attention mechanism to consider the degree of

relevance between concepts. The Context-Aware Attentive

Knowledge Tracing method(AKT) [13] utilizes a novel monotonic

attention mechanism that relates a student’s future responses to

assessment exercises to their past responses; attention weights are

computed using exponential decay and a context-aware relative

distance measure, in addition to the similarity between exercises.

Moreover, AKT utilizes the Rasch model to capture individual

differences between exercises. The Graph-based Knowledge

Tracing(GKT) [25] also introduces concepts to index exercises, at

the same time constructs a graph method to represent the

association between concepts, updates the student's knowledge

status through the GRU mechanism.

The exercise materials which KT methods consider are mainly text

materials and the concepts covered. EERNN (Exercise-Enhanced

Recurrent Neural Network) [10] and qDKT(Question centric Deep

Knowledge Tracing)[12] predict a student’s performance only by

making full use of his practice records and text of exercises. EKT

(Exercise-aware Knowledge Tracing for Student Performance

Prediction) [11] is an improved method based on EERNN. It is the

first method to comprehensively consider the influence of a

student's practice records and exercise materials (concepts and text

contained) on his performance. But it is worth noticing that in EKT

exercise text is represented by LSTM, due to its internal structure

problem, LSTM can't parallel computing, resulting in dealing with

text slower, so the effect is not very satisfactory. Exploring

Hierarchical Structures for Recommender Systems (EHFKT)[21]

make full use of concepts, difficulty, and semantic features to

represent exercises. The first two are embedded using TextCNN,

and semantic features are extracted using Bert. The Introducing

Problem Schema with Hierarchical Exercise Graph for Knowledge

Tracing(HGKT) [22] method exploits a hierarchical graph neural

network to learn the graphical structure of the exercises. It also

introduces two attention mechanisms to better mine knowledge

state of learners, and utilizes the K&S diagnosis matrix to obtain

the diagnosis result.

3. PROPOSED METHOD
The student's knowledge mastery is tracked by observing his

interactive information in different exercises. It is a supervised

learning sequence prediction problem in the field of machine

learning. In this section, we will first define the problem and then

describe the proposed method in detail.

3.1 Problem Definition
Assuming that each student does exercises separately, we define the

student sequence s = {(𝑒1, 𝑟1), (𝑒2, 𝑟2), …… , (𝑒𝑇 , 𝑟𝑇)}, where 𝑒𝑇

belongs to exercises sequence E, which represents the exercises

done by the student at time T. Usually, 0 or 1 is applied to mark

whether his answer is correct, i.e. 1 means correct, 0 means wrong.

In the ERAKT method, we add the text content of each exercise

into the student’s exercise sequence E, because we mainly focus

on knowledge tracing task in mathematics, which generally contain

not only words but also specific mathematical elements, so the text

is represented as e = {𝑤, 𝑓} , where w = {𝑤1, 𝑤2, …… ,𝑤𝑀}
represents the words in the exercise, and f = {𝑓1, 𝑓2, …… , 𝑓𝑀}
represents the mathematics components. Furthermore, the

corresponding concept is a key information in KT task, k =
{𝑘1, 𝑘2, …… , 𝑘𝑀}, which is summarized into a concepts matrix for

embedding, and the student sequence after embedding turns into

sequence s = {(𝑒1, 𝑘1, 𝑟1), (𝑒2, 𝑘2, 𝑟2), …… , (𝑒𝑇 , 𝑘𝑇 , 𝑟𝑇)}, s ∈ S.

The ultimate goal of our ERAKT method is to track a student’s

knowledge status through hidden layers to predict his performance

in future exercise, that is, his response to exercise 𝑒𝑇+1 at the next

moment T+1. Besides, we take into account the student's record of

exercises, the text content of the exercises and the concepts

included. The ERAKT framework is shown in Figure 1. The

method includes three major parts: exercise representation module,

exercise association module and the performance prediction

module.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 361

Figure 1. ERAKT framework. (a) The process of obtaining the exercise representation. After the replacement of the formula, we splice the

formula with the original text, and the final exercise representation vector is obtained through 3 embedding layers and 12 layers of encoder.

(b) Combine the exercise representation vector with the knowledge concepts and student response corresponding to the exercise, and input

them into the Bi-LSTM network together to obtain the student's hidden state representation. (c) The student response prediction part, which

predicts the student's response to the exercise at time T+1.

3.2 Exercise Representation Method
The information of the exercise includes the material itself and the

concepts associated with it. To realize the unified representation of

mathematics exercises, firstly, we need to construct the different

dimension features in the exercises to represent the material itself

and its associated concepts, and then integrate the feature

representations of multidimensional exercises into a unified feature

vector.

3.2.1 Preprocessing of exercise formula
Mathematical exercises involve text and formulas, which are

represented by LaTex, and we need to convert formulas into unified

text expressions in advance. Since the LaTeX formula in the

exercises follows a set of unified coding rules, we first replace

LaTeX formulas uniformly through ontology replacement method,

then perform unified preprocessing together with other text.

In the unified preprocessing of the formula text, the entities and

attributes in the exercises are identified and replaced from entities

to attributes. During the replacement process, the replaced entities

or attributes and the replaced forms are saved in a dictionary. , That

means, replace these formula texts 𝑓 = {𝑓1, 𝑓2, …… , 𝑓𝑀} to obtain

𝑓 = {𝑓1 ̃ , 𝑓2̃, ……，𝑓�̃�} . The partial replacement relationship is

shown in Table 1.

Table 1. Formula replacement table.

𝒇 �̃�

complement 补集

sqrt 根式

^ 幂

+ 加号

cm 厘米

pi 圆周率

After the replacement, splice 𝑓 with the text w =
{𝑤1, 𝑤2, …… ,𝑤𝑀} according to the original position, and get the

text representation of the exercise �̃� ̃.

�̃� = 𝑤 ⊕ 𝑓 (1)

For exercise representation �̃�, we apply python's Chinese word

segmentation package Jieba for word segmentation. Jieba has three

segmentation modes: precise mode, full mode and search engine

mode. Here we utilize precise mode to accurately segment a

complete sentence into independent words according to the

segmentation algorithm. Then use a self-built stop word list to

delete some words that cannot express specific meanings. This

specific process is shown in Figure 2.

362 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 2. Example diagram of exercise formula preprocessing.

3.2.2 Vector representation of multi-dimensional

exercise
In view of the superiority of Bert in the field of natural language

processing, we exploit Bert to conduct self-supervised learning and

training on the text features of exercises. We employ three

embedding layers and a 12-layer encoder to pre-train the exercise

representation. As shown in the question representation part in

Figure 1, it includes three layers. The function of the token

embedding layer is to convert each word segmentation into a 768-

dimensional vector, then the segment embedding layer

distinguishes differences between the vectors of two sentences, the

position embedding layer can help understand the order of words.

When all the embedding processes are done, we add the results of

each layer element by element to get the input of the Bert encoder

layer. After encoding by the 12-layer encoder, we can get the final

text vector representation 𝑏𝑇.

𝑏𝑇 = 𝑒𝑇𝑜𝑘𝑒𝑛 + 𝑒𝑆𝑒𝑔𝑚𝑒𝑛𝑡 + 𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (2)

In this way, semantic information of exercises can be obtained

automatically without any extra expert manual coding.

3.2.3 Representation of concepts
In the dataset, each exercise will be marked with concepts involved,

k = {𝑘1, 𝑘2, …… , 𝑘𝑀}. With reference to EKT, we select the first

concept 𝑘1 ,which is also the most relevant one to represent the

concept involved in exercise, then all the concepts of exercises are

encoded into a vector of length |E| through one-hot vector

encoding, E is the set of exercises, |E| represents the number of

exercises, the encoded vector is adjusted by a layer of sigmoid

activation function into the concepts representation 𝑐𝑇.

After getting the text representation and concepts representation,

we concatenate them together as the final exercise embedded

matrix.

𝑥𝑇 = 𝑏𝑇 ⊕ 𝑐𝑇 (3)

⊕ means concatenate two vectors in a certain dimension, and the

length of vector obtained after concatenating is |E|+768.

3.3 Exercises association modeling
After obtaining the final merged exercise embedding matrix, we

need to model the entire exercising process of each student and

obtain his hidden state at each step, it will be affected by both the

history exercises sequence and his responses.

3.3.1 Student response embedding
First of all, we combine the student's response with each exercise

representation. Specifically, at each step t,we combine exercise

embedding 𝑥𝑇 with the corresponding score 𝑟𝑇 as the input to the

recurrent neural network.

We first extend the score 𝑟𝑇 to a feature vector 0 = (0, 0,… , 0)

with the same dimensions of exercise embedding 𝑥𝑇 and then

learn the combined input vector 𝑥�̃� as:

𝑥�̃� = {
𝑥𝑇 ⊕ 0 𝑟𝑇 = 1
0 ⊕ 𝑥𝑇 𝑟𝑇 = 0 (4)

After the concatenating, the student sequence becomes s =
{𝑥1̃, 𝑥2̃, …… , 𝑥�̃�}.

3.3.2 One-way time series knowledge tracing
Like the original DKT method, a hidden layer is applied to track

changes in student's knowledge status, the formula is as follows:

𝑖𝑇 = 𝜎(𝑊𝑖 ∙ [ℎ𝑇−1, 𝑥�̃�] + 𝑏𝑖) (5),

𝑓𝑇 = 𝜎(𝑊𝑓 ∙ [ℎ𝑇−1, 𝑥�̃�] + 𝑏𝑓) (6)

𝑜𝑇 = 𝜎(𝑊𝑜 ∙ [ℎ𝑇−1, 𝑥�̃�] + 𝑏𝑜) (7)

𝑐�̌� = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [ℎ𝑇−1, 𝑥�̃�] + 𝑏𝑐) (8)

𝑐𝑇 = 𝑓𝑇 ∙ 𝑐𝑇−1 + 𝑖𝑇 ∙ 𝑐�̌� (9)

ℎ𝑇 = 𝑜𝑇 ∙ 𝑡𝑎𝑛ℎ(𝑐𝑇) (10)

Where 𝑐𝑇 is the long-term state at time T, 𝑖𝑇, 𝑓𝑇, and 𝑜𝑇 are the

input gate, forget gate, and output gate in LSTM respectively. tanh

represents the tanh activation function, 𝑡𝑎𝑛ℎ(𝑧𝑖) = (𝑒𝑧𝑖 − 𝑒−𝑧𝑖)/
(𝑒𝑧𝑖 + 𝑒−𝑧𝑖), 𝜎 represents sigmoid activation function, 𝜎(𝑧𝑖) =
1/(1 + 𝑒−𝑧𝑖).

3.3.3 Bidirectional time series knowledge tracing
In order to better obtain the association between the exercises, we

introduce a bidirectional long and short-term memory neural

network [14] to obtain the hidden state representation of the

students, because Bi-LSTM can make full use of the exercises

representation in both forward and backward directions [15], it can

obtain the association between the exercises. Specifically, after

getting s = {𝑥1̃, 𝑥2̃, …… , 𝑥�̃�}, we set the input of the first layer of

LSTM to �⃗⃗� (0) = �⃗⃗⃖�(0) = {𝑥1̃, 𝑥2̃, …… , 𝑥�̃�} , at each time T, the

forward hidden state of each layer (ℎ⃗⃗⃗⃗ 𝑇
(𝑙)

, 𝑐 𝑇
(𝑙)

) and backward

hidden state (ℎ⃖⃗𝑇
(𝑙)

, 𝑐𝑇
(𝑙)

) updates with the input from previous layer

from each direction. The specific formula is as follows:

ℎ⃗ 𝑇
(𝑙)

, 𝑐 𝑇
(𝑙)

= LSTM (ℎ⃗ 𝑇
(𝑙−1)

, ℎ⃗ 𝑇−1
(𝑙)

, 𝑐 𝑇−1
(𝑙)

; 𝜃 LSTM) (11)

ℎ⃖⃗𝑇
(𝑙)

, 𝑐𝑇
(𝑙)

= LSTM(ℎ⃖⃗𝑇
(𝑙−1)

, ℎ⃖⃗𝑇+1
(𝑙)

, 𝑐𝑇+1
(𝑙)

; �⃖�𝐿𝑆𝑇𝑀) (12)

The association between exercises can be captured by Bi-LSTM.

Since the hidden state of each direction only contains the

association of one direction, it is beneficial to combine the hidden

state of both directions together to obtain the final student hidden

state representation:

𝐻𝑇 = concatenate (ℎ⃗ 𝑡
(𝐿)

, ℎ⃖⃗𝑡
(𝐿)

) (13)

3.4 Student performance prediction
After the above steps, we get the student's hidden learning state

sequence {𝐻1, 𝐻2, ……𝐻𝑇 } and the exercise sequence

{𝑥1, 𝑥2, ……𝑥𝑇}, both of which will affect the student's final answer.

We utilize two layers of bidirectional neural networks to obtain the

predicted student performance, as shown in the formula:

𝑦𝑇+1 = 𝑇𝑎𝑛ℎ(𝑊1 ∙ [𝐻𝑇 ⊕ 𝑥𝑇+1̃] + 𝑏1) (14)

𝑟𝑇+1̃ = 𝜎(𝑊2 ∙ 𝑦𝑇+1 + 𝑏2) (15)

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 363

Figure 4. Four indicators performance after adding multi-dimensional feature.

The first layer uses the Tanh activation function, and the second

layer uses the sigmoid activation function. After two layers, the

final prediction result 𝑟�̃� is obtained. It is a scalar, which

represents the probability of answering the question 𝑒𝑇 correctly.

3.5 Training and optimization
The method is optimized by conducting the binary cross-entropy

loss function, which calculates the loss between the true response

𝑟𝑇 and the probability of correct answer 𝑟�̃� , and adjusts the

model parameters such as exercise embedding parameters and

student response embedding by inverse transfer until the value

converges. The loss function is defined as:

ℒ = −∑(𝑟𝑇log𝑟�̃� + (1 − 𝑟𝑇) log(1 − 𝑟�̃�)) (16)

4. EXPERIMENTS
In order to ensure the reliability of the experimental results, we

carry out several baseline comparison experiments on a real

dataset. This section will focus on the selection of data set and the

comparison of benchmark models, as well as a discussion of the

final experiments on a real dataset. This section will focus on the

selection of data set and the comparison of benchmark models, as

well as a discussion of the final experimental results.

4.1 Dataset
The method we proposed was validated on a dataset called

Eanalyst-math. The data comes from a widely used evaluation

system in China [16], from offline to online, that selects elementary

school math exercises as experimental subjects. The data collected

by EAnalyst-math mainly includes homework, unit tests, and term

tests. Each assignment or evaluation is regarded as a collection of

exercises, which is more in line with the actual education situation

in China. EAnalyst-math recorded a total of 525,638 interactions

from 1,763 students, with an average of 298.1 responses per student.

Figure 3. Student-interaction distribution diagram of the

Eanalyst-math dataset.

4.2 Settings
In order to predict students' future response, we can evaluate it by

classification and regression respectively [17]. From the

perspective of classification, the area under the Receiver Operating

Characteristic (ROC) curve AUC and the prediction accuracy ACC

are used to measure the prediction performance. From a regression

point of view, we choose Mean Absolute Error (MAE) and Root

Mean Square Error (RMSE) to quantify the distance between the

predicted result and the actual response.

Each data set is divided into 7:3 based on students, 70% is utilized

for training verification, and 30% for testing. In order to avoid the

contingency of the evaluation results, we implement the standard

five-fold cross-validation division for all models and all training

validation subsets, that is, 80% training set and 20% validation set,

and exploit the average value as the final comparison result.

There are many hyperparameters in the model, among which the

number of hidden units (h), batch_size (b) and learning rate (l) will

have a greater impact on the results. We conducted many

experiments to explore the influence of the changes of these

hyperparameters on the performance of the model, and finally

found that the performance results were optimal when l=0.09, h=16,

and b=16.

4.3 Results

4.3.1 Accuracy comparison
We compare our ERAKT with three other baselines on the dataset.

The experimental results are shown in Table 2. In general, ERAKT

has significantly improved AUC and ACC results, MAE and

RMSE results are significantly lower, which proves that the

performance of ERAKT is better than the others. Especially, our

ERAKT performs better the EERNN, a state-of-the-art model

which including the exercise content information. Next, the

exercise-aware methods (i.e. EERNN and ERAKT) outperform

other models that ignore the exercise content (i.e. DKT and

DKVMN). This experimental result validates the conclusion of

EKT [11].

Table 2. Accuracy comparison

Method AUC ACC MAE RMSE

DKT 0.79 0.7301 0.2827 0.2233

DKVMN 0.8783 0.8072 0.2678 0.1346

EERNN 0.8836 0.8213 0.2495 0.131

ERAKT 0.9025 0.8407 0.2203 0.1278

4.3.2 The influence of multi-dimensional features of

exercises on the prediction results
In view of the fact that multi-dimensional features will affect the

performance of knowledge tracing, we explore the impact of

different features on the performance of the model by adding them

into the model. The results are shown in Table 3. It can be seen that

the effect of ERAKT, which integrates multi- dimensional features,

is significantly better than other models which only add semantic

features or concepts features. It is worth mentioning that all the

models we mentioned above perform better than the original DKT

model.

364 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 3. The influence of multi-dimensional features of

exercises on the prediction results

None DKT 0.79

Semantics

DKT+Doc2Vec 0.8266

DKT+Bert 0.8325

Concept DKT+Concept 0.83

Multi-

dimensional

features

DKT+Bert+Concept 0.8463

From a semantic point of view, no matter which method (Doc2Vec

or Bert) is adopted to obtain the exercise representation, the results

after embedding the method have been greatly improved, which

shows that the text content of the exercises does have a non-

negligible impact on the prediction result. From the perspective of

concepts, the addition of conceptual features, while not much

improved, was still about 1% higher than the original knowledge

tracking method.

In order to better eliminate the influence of the data set division

ratio on the results, 60%, 70%, 80% and 90% of the data set are

applied as the training set, and the rest as the test set. As shown in

Figure 4, the result is consistent with the performance of 70%

division, with both AUC and ACC increasing and RMSE and MAE

decreasing as the data set increases, which proves that the increase

in the training set can Enhance forecasting effect.

4.3.3 The impact of association on the prediction

results
After the experiment proved that integrating exercises

representation can improve the accuracy of prediction, we then

designed a comparative experiment to explore the impact of

exercises association in predicting.

Table 4. The influence of exercise association on prediction

results

RNN LSTM GRU BI-LSTM

0.8463 0.8543 0.8637 0.9065

After we integrate exercises representation, we chose different time

series modeling methods to model and predict student’s responses.

A comparison of the more commonly applied RNN [18], LSTM [19]

and GRU [20] with the Bi-LSTM used in our method is shown in

table 4. It can be seen that RNN is the worst performer, with LSTM

and GRU in the middle, and Bi-LSTM the best. It proves that

exercises association has a great influence on the prediction

performance.

Figure 5. Auc and Loss convergence fluctuation diagram after

adding exercise association

We have drawn the model convergence of the four time series

modeling methods. It can be seen that the Bi-LSTM fluctuates

slightly, and the model convergence curves of the other three

methods are relatively smooth.

5. CONCLUSION AND DISCUSSION
In our proposed method, we propose a new context-aware KT

method that integrates mathematical exercise representation and

association of exercises, through which we can predict the

performance of a student on the exercises, thus helping teachers to

adjust their teaching plans dynamically.

Experiments have verified the effectiveness and reliability of our

method. It can be seen from the experimental results that the

prediction results are significantly improved after integrating multi-

dimensional features and exercise association.

As for the exercise semantic representation, Bert can obtain more

exercise information, which is better than Doc2Vec after

integrating. This is because Bert realizes the processing of data of

time series through the attention mechanism and it supports parallel

computing, which is validated in Bert [8]. In the case of sufficient

resources, the computing speed of Bert will be much faster than

LSTM, and the residual network which inside of Bert can prevent

the network structure from being too complicated. It makes the

model perform better.

In the aspect of exercise association, in section 4.3.3, we use four

different time series modeling methods, in which the Bi-LSTM

exploited in ERAKT method has the best effect, then GRU’s

performance is relatively well among the remaining three. This is

because of the internal structure of them. LSTM and GRU can solve

the problem of long-term memory and can avoid the problem of

gradient disappearance in RNN. Compared with LSTM, GRU can

reduce the risk of over-fitting. Therefore, GRU has the best

prediction performance and RNN is the worst, this conclusion can

also be obtained in LSTM [19] and GRU [20]. But all of them three

can not get the association between exercises.

The bidirectional structure of Bi-LSTM not only preserves the past

information, but also the future one. Therefore, all the content can

be effectively used to obtain the association between the exercises,

which greatly improves the accuracy of prediction.

6. FUTURE WORK
At present, our research has achieved phased results, which can be

applied in the actual teaching environment to assist teachers in

teaching activities. Our future work will focus on two aspects:

 (1) Explore knowledge tracking model that integrates multiple

knowledge concepts, and at the same time integrate the sequence

association between them.

 (2) Show the students' mastery of each knowledge concept

systematically. So as to to improve the accuracy of prediction,

systematically promote it to facilitate the teaching work of teachers.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 365

7. REFERENCES
[1] Yudelson M V, Koedinger K R, Gordon G J. Individualized

bayesian knowledge tracing models[C]//International

conference on artificial intelligence in education. Springer,

Berlin, Heidelberg, 2013: 171-180.

[2] Piech C, Bassen J, Huang J, et al. Deep knowledge tracing[J].

Advances in neural information processing systems, 2015, 28:

505-513.

[3] Zhang, Jiani & Shi, Xingjian & King, Irwin & Yeung, Dit-Yan.

(2017). Dynamic Key-Value Memory Networks for

Knowledge Tracing. 765-774. 10.1145/3038912.3052580.

[4] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of

word representations in vector space[J]. arXiv preprint

arXiv:1301.3781, 2013.

[5] Le Q, Mikolov T. Distributed representations of sentences and

documents[C]//International conference on machine learning.

2014: 1188-1196.

[6] Kim Y. Convolutional neural networks for sentence

classification[J]. arXiv preprint arXiv:1408.5882, 2014.

[7] Joulin A, Grave E, Bojanowski P, et al. Bag of tricks for

efficient text classification[J]. arXiv preprint

arXiv:1607.01759, 2016.

[8] Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep

bidirectional transformers for language understanding[J].

arXiv preprint arXiv:1810.04805, 2018.

[9] VASWANI, Ashish, et al. Attention is all you need.

In: Advances in neural information processing systems. 2017.

p. 5998-6008.

[10] Su Y, Liu Q, Liu Q, et al. Exercise-enhanced sequential

modeling for student performance prediction[C]//Proceedings

of the AAAI Conference on Artificial Intelligence. 2018,

32(1).

[11] Huang Z, Yin Y, Chen E, et al. Ekt: Exercise-aware

knowledge tracing for student performance prediction[J].

IEEE Transactions on Knowledge and Data Engineering, 2019.

[12] Sonkar S, Waters A E, Lan A S, et al. qDKT: Question-centric

Deep Knowledge Tracing[J]. arXiv preprint

arXiv:2005.12442, 2020.

[13] Ghosh A, Heffernan N, Lan A S. Context-aware attentive

knowledge tracing[C]//Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery

& Data Mining. 2020: 2330-2339.

[14] Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional

LSTM-CRF models for sequence tagging. arXiv preprint

arXiv:1508.01991 (2015).

[15] Xuezhe Ma and Eduard Hovy. 2016. End-to-end sequence

labeling via bidirectional lstm-cnns-crf. arXiv preprint

arXiv:1603.01354 (2016).

[16] Huang, T., Li, Z., Zhang, H., Yang, H., & Xie, H. (2020).

EAnalyst: Toward Understanding Large-scale Educational

Data. EDM.

[17] J. Fogarty , R. S. Baker, and S. E. Hudson. Case studies in the

use of roc curve analysis for sensor-based estimates in human

computer interaction. In Proceedings of Graphics Interface

2005, pages 129–136. Canadian Human-Computer

Communications Society , 2005.

[18] Zaremba, Wojciech, Ilya Sutskever, and Oriol Vinyals.

"Recurrent neural network regularization." arXiv preprint

arXiv:1409.2329 (2014).

[19] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term

memory." Neural computation 9.8 (1997): 1735-1780.

[20] Chung, Junyoung, et al. "Empirical evaluation of gated

recurrent neural networks on sequence modeling." arXiv

preprint arXiv:1412.3555 (2014).

[21] S. Wang, J. Tang, Y. Wang and H. Liu, "Exploring

Hierarchical Structures for Recommender Systems," in IEEE

Transactions on Knowledge and Data Engineering, vol. 30, no.

6, pp. 1022-1035, 1 June 2018, doi:

10.1109/TKDE.2018.2789443.

[22] Tong H , Zhou Y , Wang Z . HGKT : Introducing Problem

Schema with Hierarchical Exercise Graph for Knowledge

Tracing[J]. 2020

[23] Chen P, Lu Y, Zheng V W, et al. Prerequisite-driven deep

knowledge tracing[C]//2018 IEEE International Conference

on Data Mining (ICDM). IEEE, 2018: 39-48.

[24] Shalini Pandey and George Karypis. 2019. A self-attentive

model for knowledge tracing. In Proc. International

Conference on Educational Data Mining. 384–389.

[25] Nakagawa H , Iwasawa Y , Matsuo Y . Graph-based

Knowledge Tracing: Modeling Student Proficiency Using

Graph Neural Network[C]// IEEE/WIC/ACM International

Conference on Web Intelligence. ACM, 2019.

366 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Gaining Insights on Student Course Selection in Higher
Education with Community Detection

Erla Guðrún Sturludóttir
∗

Reykjavík University
Menntavegi 1

102 Reykajvík, Iceland
erlas13@ru.is

Eydís Arnardóttir
Reykjavík University

Menntavegi 1
102 Reykajvík, Iceland

eydis13@ru.is

Gísli Hjálmtýsson
Reykjavík University

Menntavegi 1
102 Reykajvík, Iceland

gisli@ru.is

María Óskarsdóttir
†

Reykjavík University
Menntavegi 1

102 Reykajvík, Iceland
mariaoskars@ru.is

ABSTRACT
Gaining insight into course choices holds significant value for
universities, especially those who aim for flexibility in their
programs and wish to adapt quickly to changing demands
of the job market. However, little emphasis has been put
on utilizing the large amount of educational data to under-
stand these course choices. Here, we use network analysis of
the course selection of all students who enrolled in an un-
dergraduate program in engineering, business or computer
science at a Nordic university over a five year period. With
these methods, we have explored student choices to iden-
tify their distinct fields of interest. This was done by ap-
plying community detection (CD) to a network of courses,
where two courses were connected if a student had taken
both. We compared our CD results to actual major special-
izations within the computer science department and found
strong similarities. Analysis with our proposed methodol-
ogy can be used to offer more tailored education, which in
turn allows students to follow their interests and adapt to
the ever-changing career market.

Keywords
Community detection, higher education, Louvain method,
bipartite networks, student network, course selection

1. INTRODUCTION
University students enter higher education with a plethora of
courses to choose from on their path to graduation. Gaining

∗EGS and EA contributed equally.
†Corresponding author.

insight into student choices holds significant value for uni-
versities, especially those who aim for flexibility in their pro-
grams and those who wish to adapt quickly to changing de-
mands of the job market. For example, the fast rise in pop-
ularity of machine learning over the past years could impel
universities to make machine learning and related courses
readily available to their students. In contrast, more subtler
trends could be directly identified by the students’ choices
rather than an obvious shift in the job market.

Numerous studies based on questionnaires and surveys have
found that there are various components that contribute to a
student’s course selection [2, 19, 20]. These are factors such
as learning value, workload, age and academic performance
[2]. Of these, the learning value of the course (which refers
to factors such as intellectual level and interest in the topic)
has been found to be the most influential factor in course
selection. Course selection has also been a target in studies
aiming to understand the gap between student mindsets and
career demands [20]. Maringe [19] found that although in-
trinsic interest was important, course choices depend mainly
on future career goals. According to the author, universities
may need to adapt their strategies to the idea that students’
course choices now seem to reflect their expectations of fu-
ture employment rather than simply interests. Thus, uni-
versities would benefit greatly from a deeper understanding
of the path their students choose towards their degree.

Educational data mining (EDM) has risen as a new field
to answer these and other questions about students and
their learning environment. It utilizes a variety of analytical
methods and applies them to the vast amounts of data that
has become available with increased digitization of adminis-
trative educational information. For example, EDM meth-
ods have already been applied to try to accurately predict
college success using common classification algorithms with
different feature sets [31]. They have also been used to ana-
lyze student clicking behavior in online courses to determine
students’ learning strategies and how those strategies can
have an impact on their learning outcomes [1], as well as to
predict student dropout [10]. One area of educational stud-

Erla Guðrún Sturludóttir, Eydís Arnardóttir, Gísli Hjálmtýsson and
María Óskarsdóttir “Gaining Insights on Student Course Selection in
Higher Education with Community Detection”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 367-374.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 367

ies that has not received much attention is student course
selection, despite its importance in understanding student
interests and preparing them for a future career [28].

In this paper, we aim to reveal patterns in course selection
through EDM, providing a new data-driven technique based
on institutional analytics to gain insight into students’ inter-
ests that would otherwise be difficult to discern. This knowl-
edge can then be used for monitoring student interests and
ensuring that courses reflecting those interests are available.
We examine whether network analysis applied to students’
course data, with a focus on community detection (CD), can
effectively be used to identify university students’ fields of
interest. To accomplish this, we use a weighted projection
network in combination with CD to explore student course
selection. We focus on communities of elective courses for
different majors and compare them to some of the official
specializations the university already has to offer. Deeper
understanding of students’ choices is a stepping stone into
allowing students to take more control over their studies,
improve flexibility in the curricula, and facilitate students’
pursuit of their interests.

2. RELATED WORK
A promising method for EDM is to represent educational
data as networks. In general, networks consist of nodes and
edges, where the nodes can for example represent people,
countries or cells, and edges represent connections between
nodes based on factors such as spatial and temporal prox-
imity or social connections such as friendships [12, 8]. Net-
work analysis is used to look at internal characteristics and
the connections and patterns of nodes and edges, providing
the ability to better understand the fundamental structure
of networks and the real-life phenomena they model [29].
Different methods can be used to analyze networks, for ex-
ample by looking at structural characteristics such as cen-
trality, which indicates the importance of any given node in
the network by assuming nodes that are more central have
higher control over information passed through the network
[8]. Community detection is another common way of ana-
lyzing networks which allows for the aggregation of different
nodes into communities based on shared characteristics by
identifying groups of nodes that have a high number of edges
within themselves but fewer edges to other groups [12].

A common application of network analysis in educational
settings is to understand social connections between stu-
dents. This has helped reveal the negative effects of student
interdependence in music education programs and its rela-
tionship to the program’s friendship networks [26], as well as
identifying how positive and negative friendship ties emerge
[27]. Network analysis has also helped clarify the relation-
ship between students’ social networks and the development
of their academic success [6, 14]. Furthermore, looking at
students’ social networks over time, close coequal commu-
nities are typically formed early on [30], although in some
cases, students enhance their performance due to social re-
lations outside their assigned group [24].

Although students’ social networks have been studied, the
exploration of students’ course choices through network anal-
ysis has few precedents. Within the EDM field, Kardan et al.
[16] used neural networks to predict course enrollment based

on various factors such as course and instructor character-
istics, and course difficulty. Further, Turnbull and O’Neale
[28] used network analysis with CD and entropy measures to
explore enrollment in STEM courses at the high school level.
Among other results, they revealed that indigenous popu-
lations showed higher levels of entropy in their enrollment
patterns, which was moderated by adolescent socioeconomic
status. Neither of these studies focused on detecting student
interests from course selection patterns.

3. METHODS
3.1 Data Source
Here, we use student and course data from Reykjav́ık Uni-
versity (RU). The university offers many different areas of
study, including preliminary studies, undergraduate and grad-
uate degrees. Most RU students are undergraduate stu-
dents, and the RU undergraduate programs also offer the
most variety of courses. Generally, the majority of RU un-
dergraduate programs’ courses are mandatory. These are
the core courses each department decides is essential to their
study program. The rest of the courses are either free choice
electives, which can be any course in the university that the
student qualifies for, or restricted elective courses from a
selection tailored to the specific major.

We sample data from all graduated RU students that en-
rolled in the year 2014 or later and completed undergradu-
ate programs in engineering, business, or computer science
(CS) before 2021 (the total number of students was 1481).
The university offers other programs as well, but we left
them out since they have fewer students. The variables we
look at include the student’s registration ID and registration
semester, the name and semester of each course a student
has completed, and whether they passed or failed the course.
We also include each student’s department, major, and type
of study (undergraduate, graduate, etc.).

To anonymize the data, we remove anything that could iden-
tify students, specifically their social security number and
a numerical registration ID and give them a unique ran-
dom sequence of numbers to replace both original numbers.
For each student, we also remove any courses that they had
de-registered from early in the semester. Further, for each
major, courses taken by fewer than 5% of students are con-
sidered outliers and removed.

3.2 Network Analysis
3.2.1 Bipartite networks

We apply network analysis to the data to explore the fields
of interests of RU students from a data driven perspective.
Many real-world networks have a bipartite structure, where
nodes belong to one of two groups or divisions and edges con-
nect nodes of opposite groups without within-group edges
[3]. In our bipartite network, the students make up one di-
vision of the nodes, and courses the other. If a student has
taken a course, an edge is created between the respective
nodes. Since edges represent that a student has taken a
course, there is no edge between two students nor between
two courses (see Figure 1, left).

Although bipartite networks give a more realistic and de-
tailed representation of the system, analyzing them can be

368 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 1: From bipartite network to weighted projected net-
work. Left: a bipartite network, where the blue nodes repre-
sent courses and the green nodes, students. Right: a unipar-
tite network has been obtained from the bipartite network,
where the nodes are courses and the edges have weights that
determine how many students have taken both courses.

complex. Therefore we project the bipartite network onto its
unipartite counterpart (see Figure 1, right) [3]. This leaves
a network with one type of nodes that can be analyzed with
typical network methods. The resulting projected network
consists of nodes representing the courses and edges between
two nodes indicating that a student has taken both courses.
We assign weights to the edges to represent the number of
students who have taken both courses (see Figure 1).

A base problem with projection of bipartite networks is that
a lot of important information in the original bipartite net-
work is lost. Thus, we may end up connecting all courses
in the network to each other –and form a clique– as long as
they have at some point been taken by the same student,
without taking into account how many students connected
the two courses in the original bipartite network. Here, we
address this by assigning weights to the edges in the pro-
jected network [3], where the weights represent the number
of students who have taken both courses (see Figure 1).

3.2.2 Community detection
Building on the weighted projected networks, we use CD
with the objective of inferring fields of interests in students’
course selection. To identify fields of interest, we want to
emphasise electives. However, in our data set, the informa-
tion on which courses are mandatory and which are electives
is incomplete. Mandatory courses along with very popular
electives appear in the network as hubs, which usually occur
in real-world networks as nodes with much higher degrees
and edge weights than the other nodes [4]. We therefore de-
fine hubs in a data driven way, where a node is a hub if its
total edge weight is at least one standard deviation above
the mean edge weight of all nodes. We remove hubs from
the network based on this definition.

Next, we apply the Louvain algorithm for CD [7]. This
is an established, computationally efficient, fast converging
method that produces accurate communities with high net-
work modularity, especially in smaller networks [7, 17, 12,
23]. It has been successfully applied to identify communities
of intrinsic brain systems [9], and to help create friend lists
for Facebook users [18]. Modularity, is a measure of edge
density within a partition (or proposed community) as op-
posed to edge density between partitions, whereby a higher
modularity suggests a more cohesive community, separate
from the others in the network. Importantly for our analysis
using weighted projected networks, the Louvain algorithm

can be used both with weighted and unweighted edges. The
method starts by assigning each node to its own community
[7], as seen in Figure 2. It then iterates over all nodes of
the network and assesses the modularity gain obtained by
assigning the node to the same community as each of its
neighboring nodes. Next, the node is assigned to the com-
munity that yields the largest positive modularity gain, or
maintains its current community if no positive modularity
gain can be achieved by switching communities. This way,
each new community assignment brings us closer to optimal
modularity. The nodes are usually considered multiple times
and the final iteration is determined when no switch leads
to a gain of modularity, resulting in optimal partitioning
of the network. This optimal partitioning is a local max-
ima, as the result is influenced by which node is considered
first and the order in which nodes are visited. For some
communities, we re-apply the Louvain algorithm for more
detailed results, while using the inter/intra weight density
ratio described below to ensure our communities maintain
high quality.

Figure 2: The Louvain algorithm. The first step of the algo-
rithm is to assign each node to its own community. In step
2, a random node is selected to start the community aggre-
gation process. All nodes are visited and allocated to the
community of one of their neighbors or maintain their cur-
rent community, depending on which choice gives the highest
gain in modularity for the network. When no more modu-
larity gain is possible in the network, step 3 is to aggregate
the nodes of each community into new super-nodes. Here,
the numbers given show the sum of node edges within and
between supernodes. Steps 2 and 3 are then repeated until
modularity has been optimized, as seen in step 4.

3.2.3 Community validation
Although the objective of CD is to split nodes into groups
based on their connections within versus outside the group,
there are many more aspects to consider [12]. One impor-
tant factor is intra-cluster density, which refers to how many
edges there are within the community as a ratio of how many
possible edges there could be if all nodes of the community
were connected to each other. This is contrasted by inter-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 369

cluster density, which shows how many edges go from the
community to the rest of the network as a proportion of the
maximum possible connections. High intra-cluster density
may suggest a strong and cohesive community, however if
it coincides with equally high inter-cluster density, it may
simply suggest a strong and cohesive overall network.

To assess the quality of our communities, we use intra and
inter weight density [13]. This is the same as intra and inter
edge density previously described, but now accounting for
weighted edges. The two are defined as follows:

WD inter =
wext

C

w̄nC(n− nC)
and WD intra =

wint
C

w̄nC(nC − 1)/2
,

where wext
C is the sum of edge weights connecting the com-

munity to the rest of the network, or external community
edges. We divide this by the estimated total edge weight
of the network, which shows the edge weight going from
the community to the rest of the network as a proportion
of the maximum possible edge weight (assuming that the
average edge weight of the fully connected network were un-
changed). Here, w̄ is the average edge weight of the network,
n is the total number of nodes in the network and nC is
the total number of nodes within the community. Similarly,
wint

C refers to the sum of edge weights inside the community,
which is divided by the expected total edge weight within
the community. We then use a ratio of these two measures
(WDinter / WDintra) to obtain the community strength on
a scale where 0 is the strongest value, indicating a commu-
nity that is disconnected from the rest of the network, and
a value of 1 indicates a community equally connected within
itself as to the rest of the network. We call this measure
density ratio and use it not only to determine the commu-
nity strength, but also to ensure that as we create smaller
and more focused communities, community strength is not
compromised.

3.2.4 Comparing communities and specializations
To further assess the real-world application of the commu-
nities we detect, we compare them to specializations within
RU’s Computer Science (CS) department, described in Table
4 in the Appendix. Any student who pursues an undergrad-
uate degree in CS at RU has the option to graduate with
a specialization in a certain field. The specializations do
not need to be declared at enrollment but any student who
fulfills the requirements can choose to add this to their grad-
uation certificate. The specializations offered are Artificial
Intelligence, Law, Web- and User Experience (UX) Design,
Sports Science, Game Development and FinTech. Each spe-
cialization has 2-4 core courses that students need to com-
plete, along with 1-3 courses from a pool of specialization-
specific electives. Our approach to defining fields of interest
is purely through data driven CD. Comparing the detected
communities with these specializations helps validate the re-
sults and perhaps provide a reference for the creation of
new specializations. We compare both the courses in each
community and specialization, and the number of students
belonging to a specialization versus those belonging to the
corresponding community. We define a student as belong-
ing to a community if they have taken at least 50% of the
community’s courses, with a special case of two course com-
munities where both courses have to be completed.

3.3 Tools
Aside from the initial retrieval and anonymization of data,
which we do using C# and SQL, all code for the data anal-
ysis was written in Python 3.9. We use multiple Python
libraries to help with the data analysis. For our network
analysis, we mainly utilize the NetworkX library [21]. For
more general data manipulation, we use the pandas library
[22]. We used Gephi for the majority of our network visual-
ization [5], along with the Matplotlib library [15].

4. RESULTS
4.1 Communities that Reflect Interest Fields
We conducted CD with the Louvain algorithm on three un-
dergraduate majors: engineering, business, and computer
science. These majors have quite different program struc-
tures and emphases on electives, with the business major
having the lowest number of elective courses allowed in their
study plan (four electives). This is followed by the CS major
with 11 electives and finally engineering, which offers only
four free electives but nine ”guided electives” (that is, nine
electives must be specific to engineering), depending on the
chosen engineering specialization.

We first look at the communities for the engineering de-
partment, see Figure 4 and Table 2 in the Appendix, which
after hub removal consisted of 81 courses taken by 496 un-
dergraduate students. Reykjav́ık University offers various
undergraduate engineering programs such as biomedical en-
gineering, financial engineering, and mechatronics engineer-
ing. These engineering majors all fulfill the same core courses
in addition to some additional major-specific requirements.
These majors are quite structured and offer few free elec-
tive courses. Due to the similarity in the core courses of
these programs, we group them together into a more gen-
eral engineering major. This means that the hub removal
method removed general core engineering courses but leave
most specialty-specific courses in the network. The result-
ing engineering network has 81 course nodes and 2614 edges.
The weighted average inter/intra weight density ratio is 0.24.
This suggests that hub removal was effective and the aver-
age community is relatively strong. The communities we
have detected were eight in total as seen in Table 2. Note
that communities are named after common characteristics
between the majority of the courses, even though rarely
all courses of a community fall within that definition. As
expected, these communities mainly correspond to the of-
ficial engineering majors such as financial, biomedical, and
electrical engineering, with electrical engineering being our
strongest community (WDinter / WDintra = 0.05). How-
ever, we also observe unrelated communities that supersede
the official majors, such as a community of applied design
and another for business related courses not mandatory in
the financial engineering major. Courses in these commu-
nities are commonly taken together by engineering under-
graduates, suggesting a common interest not credited to the
specialized majors.

There are 334 undergraduate students in our data set who
majored in business. For this major, the network consists
of 36 course nodes and 504 edges, with a weighted average
WDinter / WDintra of 0.25, again suggesting strong commu-
nities, see Figure 5 in the Appendix. This is not unexpected,
as the business major only allows electives in the final year,

370 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

giving business students less room to pursue distinct inter-
ests outside their core subjects. Table 3 in the Appendix
shows the five communities identified within the business
major. The strongest community is that of popular courses,

Figure 3: The network with communities for the BSc program
in CS.

Table 1: Community detection results for BSc in CS.

Community No. courses Density ratio

UX and Business 15 0.25
Engineering 13 0.17
Web and Software 10 0.20
Artificial Intelligence 7 0.39
Deprecated Courses I 6 0.08
Game Development 4 0.10
Deprecated Courses II 4 0.23

Weighted average 0.21

which includes the most common electives in the business
majors along with a handful of newer core courses (WDinter

/ WDintra = 0.07). These core courses were recently added
to the study plan, meaning that they were only mandatory
for a minority of the students in our data set. This is why
these core courses were not identified as hubs and removed
during hub removal. The business major also contains the
weakest community of all the majors, management (WDinter

/ WDintra = 0.71). As the name suggests, this commu-
nity includes various courses on management, such as service
management and project management. The low inter and
intra weight density ratio is interesting, as intuitively these
courses would seem very connected. This is why measuring
community strength is vital in determining the importance
of the detected communities. The other business communi-
ties are both strong and reflect more specific interests, sug-
gesting that there are students of the business major who
actively seek distinct interests despite the program having
no official specializations. The last major we explore is CS,
with 377 students. Computer science has the least struc-
tured study plan of the three majors, as it puts a higher
emphasis on unstructured flexibility and free electives. The
CS course network consists of 59 nodes and 1492 edges. The
communities (see Figure 3 are the strongest we found, with
a weighted average WDinter / WDintra of 0.21. Most, but

not all, detected communities seem to reflect an interest in
a CS sub-field. However, the strongest community we have
discovered was Deprecated Courses I (see Table 1), which
represents older courses that may have been core courses
at some point but are no longer being offered (WDinter /
WDintra = 0.08). We conjecture that this community exists
as some older students re-register to complete their under-
graduate degree, for example after previously completing a
CS diploma or taking a longer study break. It is therefore
very intuitive that this specific sub-field is combined into
our strongest community. Aside from communities based
on deprecated courses, the other communities suggest that
there is in fact an underlying pattern of interest fields present
in the CS major, as observed for the other majors explored
here.

4.2 RU Communities and Specializations
As a final validation of the communities we have detected
for the CS undergraduate major, we now cross-reference our
results with the actual specializations available for CS stu-
dents. Unlike the other majors, CS offers a number of spe-
cializations meant to aid students in pursuing a specific sub-
field (see Table 4 in the Appendix for a short description of
each specialization). However, only a subsection of students
choose to do this. Of the students who graduated between
2014 and 2020, inclusive, only 9.5% fulfilled the requirements
for a specialization. A further 13% partially fulfilled a spe-
cialization’s requirements, by completing at least 60% of the
specialization’s core courses and 60% of the restricted elec-
tives needed.

Comparing the specializations and the communities we de-
tected (shown in Table 1), we find interesting similarities.
Our CD reveals that some communities are consistent with
the specializations, but there is no absolute match. For the
AI specialization (taken by 11 students, or 29% of those
who graduated with a specialization), there is a partially
corresponding community that includes both of the AI core
courses (Artificial Intelligence and Machine Learning). There
are 28 students who belong to this community, making it
more popular than the official AI specialization. Although
this community does not include any of the other courses
from the specialization, it does include more theoretical and
academically demanding courses than most other commu-
nities, suggesting a reflection of interest in theoretical com-
puter science in general rather than specifically AI.

To fulfill the official AI specialization requirement, students
must complete two core courses and three or more courses
from a list of specialization-specific electives. However, in
our data set most of these other electives were removed dur-
ing either data cleaning (where we removed courses taken
by fewer than 5% of students) or during hub removal and
are therefore not part of any community. Interestingly, two
of the remaining electives overlap between the AI special-
ization and that of Game Development. Both these courses
have been sorted by our algorithm into a community that re-
flects Game Development much more strongly than AI, with
67 students. This is intriguing, as we know that students are
much more likely to specialize in Artificial Intelligence than
Game Development (only one student in our data set fulfills
the requirements for Game Development), but this indicates
that the gaming sub-field of Artificial Intelligence may be the

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 371

biggest area of interest for these students.

The final specialization for which we discovered a similar
community is Web and UX design, which was by far the most
popular specialization taken by students (with 23 students,
or 64% of all students who had a specialization). While this
specialization encompasses both web programming and user
experience, the corresponding community of Web and Soft-
ware Development (with 84 students) is much more web than
UX specific. Most of the UX related courses belong to a sep-
arate community of 21 students that unites UX and business
rather than UX and web design. This suggests that divid-
ing the Web and UX design specialization into two distinct
specializations (Web design and UX design) might be more
appealing to students. Interestingly, the remaining four offi-
cial specializations have no corresponding community in our
results. This was to be expected, as these remaining spe-
cializations are very rarely pursued by students. That is,
the communities we have detected are able to represent the
specializations that students are actually choosing, but did
not reflect other specializations. This is exactly what we
expect of CD, with the added bonus of identifying fields of
interests that may not have been previously considered.

5. DISCUSSION AND CONCLUSION
With this project, we aimed to find whether CD could be
used to effectively identify students’ fields of interest at RU.
To maintain the scope of the results, we have presented only
the findings for undergraduate majors in engineering, busi-
ness, and CS. Our resulting communities vary slightly in
strength and size, yet almost all of them contain courses
of a general theme that seem to indicate that they do in
fact reflect fields of interest. This builds on the results
found by Turnbull and O’Neale [28], who performed CD on
a similar school course network, but without hub removal.
This resulted in much more general course communities that
demonstrated important but slight differences in the over-
all majors. In focusing on fields of interests, removing the
hubs has allowed us to increase the granularity of the result-
ing communities while still maintaining community strength
and cohesion. However, one of the commonalities between
these majors is that the largest community detected usually
included the major’s most popular courses, be that electives
or new mandatory courses our hub removal does not con-
sider. As Fortunato [13] suggested, using the inter/intra
weight density, we were able to evaluate the quality of the
communities that were detected with the Louvain algorithm.

The communities we have discovered encapsulate various
distinct areas of interests for the different undergraduate
majors RU has to offer. Additionally, for the CS depart-
ment, we have verified that the detected communities also
reflect the main areas students choose to specialize in, which
further validates our findings. To our knowledge, applying
CD in this way and for this purpose has not been done be-
fore. This provides an exciting new tool for universities to
better understand their students’ aspirations.

In improving knowledge of student course selection, we pro-
vide academic institutions with more tools to increase study
flexibility for their students. This knowledge can then be
used to decide which courses the university wants to of-
fer. This knowledge is also useful for academic counselors

when helping students to discover their own field of inter-
est. Based on previous studies, we assume that interest is
the main motivation behind course choices [2, 19]. However,
these communities may be based on other factors. Exam-
ining the characteristics of courses that make up different
communities might reveal other factors that contribute to
course selection, such as course difficulty, grading, teacher
characteristics, and more [25, 2, 19].

Although we were able to successfully apply network analy-
sis to our student and course data, there were a few setbacks.
One drawback in our analysis is the fact that although RU’s
administrative data has largely been digitized, this has not
always been done in the most structured and data-mining
friendly way. For example, all information on specializa-
tions was retrieved directly from RU’s website and format-
ted manually, as this information is not stored in the univer-
sity’s data warehouse. Reliable information on the manda-
tory courses of each major was also not available, which was
why we decided to use data driven hub removal. Improving
data availability, centrality and consistency is currently a
priority at RU, but should also be considered by other uni-
versities wanting to take full advantage of EDM methods.

Our findings show that network analysis with CD is a useful
tool in understanding students’ course selection. The course
choice patterns found here can still be explored further. For
example, the current results are based on data from stu-
dents who enrolled in the same program at different times.
Thus any small changes in the program structure between
years can introduce noise in the data. Looking at individ-
ual registration years, perhaps including a larger university
with more students, could give clearer results. Further, it
would be interesting to repeat the same analysis over sepa-
rate periods to discover changes in interest fields over time.
Finally, it was out of the scope of the current paper to an-
alyze trends based on more detailed characteristics such as
gender, age or grades. Augmenting the communities with
these factors could for instance provide a tool to identify
differences in choices made by students who graduate suc-
cessfully and those who struggle more with their studies,
perhaps yielding an opportunity for early intervention.

Educational data mining is an exciting new field with the
potential to greatly influence educational institutions and
their students going forward [11]. This project aimed to re-
veal how network analysis could be used to enhance student
course selection by improved understanding of students’ aca-
demic interests. Our analysis has successfully led to mean-
ingful results that could easily be replicated by most inter-
ested universities with digitized information. Coupling this
increased understanding of student interests with added aca-
demic support gives universities the tools to raise flexibility
within majors while maintaining educational quality. Hope-
fully, this and other research in the field can be used to offer
more tailored and student-led education, which in turns al-
lows students to follow their interests and easily adapt to
the ever-changing demands of the job market.

6. ACKNOWLEDGMENTS
We appreciate the contributions made by Kolbrún Eir Óskars-
dóttir who had a big impact on the conceptualization and
development of this research.

372 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

7. REFERENCES
[1] N.-J. Akpinar, A. Ramdas, and U. Acar. Analyzing

student strategies in blended courses using clickstream
data. In Proceedings of the 13th International
Conference on Educational Data Mining, 2020.

[2] E. Babad and A. Tayeb. Experimental analysis of
students’ course selection. British Journal of
Educational Psychology, 73(3):373–393, 2003.

[3] S. Banerjee, M. Jenamani, and D. K. Pratihar.
Properties of a projected network of a bipartite
network. In 2017 International Conference on
Communication and Signal Processing (ICCSP), pages
0143–0147. IEEE, 2017.

[4] A.-L. Barabási. Network science. Philosophical
Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences,
371(1987):20120375, 2013.

[5] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An
open source software for exploring and manipulating
networks, 2009.

[6] D. Blansky, C. Kavanaugh, C. Boothroyd, B. Benson,
J. Gallagher, J. Endress, and H. Sayama. Spread of
academic success in a high school social network.
PLoS ONE, 8(2):e55944, 2013.

[7] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory
and Experiment, 2008(10):P10008, 2020.

[8] S. P. Borgatti, A. Mehra, D. J. Brass, and
G. Labianca. Network analysis in the social sciences.
Science, 323(5916):892–895, 2009.

[9] M. Cole, D. Bassett, J. Power, T. Braver, and
S. Petersen. Intrinsic and task-evoked network
architectures of the human brain. Neuron,
83(1):238–251, 2014.

[10] G. Deeva, J. De Smedt, P. De Koninck, and
J. De Weerdt. Dropout prediction in moocs: a
comparison between process and sequence mining. In
International Conference on Business Process
Management, pages 243–255. Springer, 2017.

[11] G. Deeva, S. Willermark, A. S. Islind, and
M. Oskarsdottir. Introduction to the minitrack on
learning analytics. In Proceedings of the 54th Hawaii
International Conference on System Sciences, page
1507, 2021.

[12] S. Fortunato. Community detection in graphs. Physics
Reports, 486(3):75–174, 2010.

[13] S. Fortunato and D. Hric. Community detection in
networks: A user guide. Physics Reports, 659:1–44,
2016.

[14] N. Gitinabard, F. Khoshnevisan, C. F. Lynch, and
E. Y. Wang. Your actions or your associates?
predicting certification and dropout in moocs with
behavioral and social features. International
Educational Data Mining Society, 2018.

[15] J. D. Hunter. Matplotlib: A 2d graphics environment.
Computing in Science & Engineering, 9(3):90–95,
2007.

[16] A. A. Kardan, H. Sadeghi, S. S. Ghidary, and
M. R. F. Sani. Prediction of student course selection
in online higher education institutes using neural
network. Computers & Education, 65:1–11, 2013.

[17] A. Lancichinetti and S. Fortunato. Community
detection algorithms: A comparative analysis.
Physical Review E, 80(5):056117, 2009.

[18] Y. Liu, K. P. Gummadi, B. Krishnamurthy, and
A. Mislove. Analyzing facebook privacy settings: user
expectations vs. reality. In Proceedings of the 2011
ACM SIGCOMM conference on Internet measurement
conference - IMC ’11, page 61. ACM Press, 2011.

[19] F. Maringe. University and course choice: Implications
for positioning, recruitment and marketing.
International Journal of Educational Management,
20(6):466–479, 2006.

[20] V. C. Milliron. Exploring millennial student values
and societal trends: Accounting course selection
preferences. Issues in Accounting Education,
23(3):405–419, 2008.

[21] NetworkX developer team. Networkx, 2014.

[22] T. pandas development team. pandas-dev/pandas:
Pandas, Feb. 2020.

[23] X. Que, F. Checconi, F. Petrini, and J. A. Gunnels.
Scalable community detection with the louvain
algorithm. In 2015 IEEE International Parallel and
Distributed Processing Symposium, pages 28–37.
IEEE, 2015.

[24] B. Rienties and D. Tempelaar. Turning groups inside
out: A social network perspective. Journal of the
Learning Sciences, 27(4):550–579, 2018.

[25] R. Sabot and J. Wakeman-Linn. Grade inflation and
course choice. Journal of Economic Perspectives,
5(1):159–170, 1991.

[26] M. Sarazin. Can student interdependence be
experienced negatively in collective music education
programmes? a contextual approach. London Review
of Education, 2017.

[27] M. A. Sarazin. Disliking friends of friends in schools:
How positive and negative ties can co-occur in large
numbers. Social Networks, 64:134–147, 2021.

[28] S. M. Turnbull and D. O’Neale. Entropy of
co-enrolment networks reveal disparities in high school
stem participation. ArXiv, abs/2008.13575, 2020.

[29] B. Wellman. Network analysis: Some basic principles.
Sociological Theory, 1:155, 1983.

[30] Y. Xu, C. F. Lynch, and T. Barnes. How many friends
can you make in a week?: Evolving social relationships
in moocs over time. International Educational Data
Mining Society, 2018.

[31] R. Yu, Q. Li, C. Fischer, S. Doroudi, and D. Xu.
Towards accurate and fair prediction of college
success: Evaluating different sources of student data.
In 13th International Conference on Educational Data
Mining, 2020.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 373

APPENDIX

Figure 4: The network with communities for the BSc program
in engineering.

Figure 5: The network with communities for the BSc program
in business.

Table 2: Community detection results for BSc in engineering.

Community No.
courses

Density
ratio

Comp Sci and Mechatronics 25 0.37
Engineering Management 15 0.16
Finances and Management 10 0.25
Biomedical Engineering 10 0.10
Financial Engineering 9 0.21
Electrical Engineering 5 0.05
Applied Design 4 0.29
Business 3 0.32

Weighted average 0.24

Table 3: Community detection results for BSc in business.

Community No. courses WDinter/WDintra

Popular Courses 15 0.07
Management 6 0.71
Finance 6 0.29
Operations 5 0.10
Asset Management 4 0.36

Weighted average 0.25

Table 4: Official specializations in the CS program.

Name Description

Artificial
intelligence

Core courses reflecting an interest in AI
and machine learning, with electives fo-
cused on game development and analytical
skills.

Game design Core courses encompass game development
in general, computer graphics and game
engine architecture. Electives reflect more
general programming skills and AI.

FinTech Both core courses and electives focus on
the financial part of the Financial Technol-
ogy discipline, as all students taking these
courses gain software development skills
from the core courses of the CS major.

Web and UX
design

As the name suggests, most courses for this
specialization directly relate to either web
programming (such as the courses Web
Programming II and Web Services) or user
experience (User-Focused Software Devel-
opment, Human-Computer Interaction).

Psychology Core courses in psychology that emphasize
cognitive processing and research method-
ology. Any other psychology courses can
then be chosen as electives.

Law General law courses with some emphasis
on intellectual property rights and negoti-
ations.

Sports science General sports science courses.

374 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Automated Claim Identification Using NLP Features in
Student Argumentative Essays

Qian Wan
Georgia State University

qwan1@gsu.edu

Scott Crossley
Georgia State University

scrossley@gsu.edu

Michelle Banawan
Arizona State University

mbanawan@asu.edu

Renu Balyan

SUNY at Old Westbury

balyanr@oldwestbury.edu

Yu Tian
Georgia State University

ytian9@gsu.edu

Danielle McNamara
Arizona State University

dsmcnama@asu.edu

Laura Allen
University of New Hampshire

Laura.Allen@unh.edu

ABSTRACT

The current study explores the ability to predict argumentative
claims in structurally-annotated student essays to gain insights into
the role of argumentation structure in the quality of persuasive
writing. Our annotation scheme specified six types of
argumentative components based on the well-established

Toulmin’s model of argumentation. We developed feature sets
consisting of word count, frequency data of key n-grams,
positionality data, and other lexical, syntactic, semantic features
based on both sentential and suprasentential levels. The
suprasentential Random Forest model based on frequency and
positionality features yielded the best results, reporting an accuracy
of 0.87 and kappa of 0.73. This model will be included in an online
writing assessment tool to generate feedback for student writers.

Keywords

Argumentation, Claim identification, Argumentative writing

1. INTRODUCTION
Written argumentation has been an important area of study for
many years [43, 45]. Recent developments in natural language
processing (NLP) have introduced new approaches to
automatically detect the discourse structure of argumentative
essays [7, 8, 9, 10, 26, 33, 34, 38, 44, 45]. These studies have shown
that content (i.e., lexical, syntactic, and semantic) and structural
features (i.e., the positionality of tokens, sentences, and paragraphs)

are effective in detecting discourse elements.

Researchers have used fixed discourse markers at the word and
phrase levels [5, 12, 18, 42] as indicators of different argumentative
structures. This approach has been applied in discourse [17, 19, 22]
and NLP analyses [7, 8, 9, 47]. These studies generally identify
relations between discourse markers and their functions according
to the conceptual framework of conjunctive relations [36]. For
instance, phrases such as in summary and in conclusion are
associated with the discourse function of ‘summarizing’ an

argument. Such discourse markers have been used to identify the

attributes of the structural elements in argumentative essays [8, 9,
36, 37]. For example, Burstein et al. [7] annotated structural
information of argumentative essays collected from TOEFL, GRE,
and GMAT. Discourse markers indicating each of the

argumentative functions were extracted automatically from the
essays. A word list that contained the discourse markers and their
corresponding argumentative functions was formed and used to
automatically predict instances of argumentation. Similarly, Palau
and Moens [37] implemented a context-free ruled-based approach
for argumentation mining in legal texts. They focused on and
developed rules based on common expressions encountered in the
legal documents such as for these reasons, in light of all the

material, and discourse markers, such as however or furthermore.
Using this approach, they obtained accuracy of approximately 0.6
in detecting the argumentation structures, while maintaining F1-
measure of around 0.7 for recognizing premises and conclusions in
legal texts.

In more recent work, Stab and Gurevych [44, 45] provided publicly
available corpora comprising students’ argumentative essays and
annotation guidelines for parsing argumentations. In these corpora,

the essays were annotated based on three major argumentative
categories: major claim, claim, and premise. They then used lexical,
structural, syntactic, discourse markers, and other features to
identify argument components. The lexical features consisted of
binary lemmatized unigrams and the 2,000 most frequent bigrams
extracted from a training corpus. The structural features captured
the position of components in the text and the number of tokens in
those components. Discourse markers included logical connectives

such as therefore, thus, or consequently and the use of first-person
pronouns (which indicated major claims). The syntactic features
included part of speech (POS) distributions, number of sub-clauses,
and the tense of the main verb. Using support vector machine
models, Stab and Gurevych [45] found that a combination of all
these features yielded an F1 score of 0.77. Khatib et al. in [3]
employed a classifier for argumentativeness based on the research
in [37, 44, 45], and evaluated its performance on student essays
from [44]. Khatib et al. used n-grams, syntax, discourse makers and

part of speech (POS) features in an argument. Their results
indicated that a combination of n-grams, POS tags, and syntax
features yielded accuracy of 0.64, 0.62, and 0.59 on classifying
arguments in students' essays, while the full feature set model
yielded an accuracy of 0.67. Though only unigram through tri-
grams were included in the POS feature.

Though the use of discourse markers, n-grams and POS as
indicators has been common in the detection of argumentative

elements, few studies have examined whether using longer

Qian Wan, Scott Crossley, Michelle Banawan, Renu Balyan, Yu Tian,
Danielle McNamara and Laura Allen “Automated Claim Identification Us-
ing NLP Features in Student Argumentative Essays”. 2021. In: Pro-
ceedings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 375-383.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 375

mailto:Laura.Allen@unh.edu

sequences of n-grams (beyond tri-grams) and their POS tags would
contribute to identifying argumentative features. We also note that
other types of linguistic features related to lexical, structural,
cohesion, and affective features were not tested in previous studies
[e.g., 37, 45]. Therefore, this study explores a wider range of NLP

features, and examines their contribution to model accuracy. We do
so specifically on a corpus of student essays annotated on
theoretically-aligned classifications of argumentative elements
expected in academic settings. This is in contrast to most of the
existing corpora in English that are annotated for argumentative
structures and are from the domains of law [e.g., 4, 37], biology and
medicine [e.g., 20], and user-generated content, e.g., Wikipedia
articles or debate data, see [1, 2, 27, 41]. Few corpora [44, 45] have

been developed for argumentation mining in the educational
settings. In this study, we build on Stab and Gurevych’s work [44,
45] by developing a structurally annotated corpus based on the
Toulmin model [46] of argumentation that better reflects the
structure of student essays. Our objective is for the corpus – and the
models of argumentation developed from the corpus – to contribute
to the development of writing assessment tools that can deliver
useful feedback to student writers.

Thus, in this study, we introduce a new corpus of essays annotated
for argumentative features. We then develop NLP approaches to
automatically identify claims in structurally annotated
argumentative essays using length, frequency data of significant n-
grams and POS tags, positionality data, and a wide range of lexical,
syntactic, cohesion, and cognitive features extracted from a number
of NLP tools [14, 15, 25, 24]. We compared the identification
accuracy of multiple machine learning classifiers using different

types of derived features at different levels (based on sentences or
argumentative elements that are suprasentential). Our goal is to
better understand whether and how the selection of the linguistic
features, the level of units for identification (both sentential and
suprasentential), and the choice of classifiers influence the
accuracy of claim identification. Finally, we conduct an error
analysis of the best model and discuss the distribution of the
misclassification instances and related features. This study is
guided by the following research question:

To what extent do length, frequency of significant n-grams (and
POS tags of n-grams), lexical, syntactic, and semantic features, and
positionality predict argumentative claims in essays?

2. METHOD

2.1 Corpus
For the analysis, we annotated 314 persuasive essays. The essays
were written by undergraduate students (N = 314) at a public
university in the United States who were native speakers of English.
Two prompts from retired test banks of the Scholastic Assessment
Test (SAT) were used. The prompts were counterbalanced such that

half of the students wrote about ‘originality and uniqueness’ while
the other half wrote about ‘heroes versus celebrities.’ All essays
had been scored previously by expert raters for holistic writing
quality. For each essay, we extracted the average number of letters
per word, the number of words, number of types, type-token ratio,
average number of words per sentence, the number of sentences

and paragraphs. Descriptive statistics for these items of the 314
essays are reported in Table 1.

Table 1. Descriptive statistics of the persuasive essays

 Mean SD Median Range

Letters per word 4.52 0.24 4.51 1.50

Number of words 354.46 118.20 344.00 680.00

Number of types 178.17 50.01 173.00 279.00

Type-token ratio 0.52 0.07 0.52 0.41

Words per sentence 17.74 4.30 17.06 35.08

Number of sentences 20.65 7.42 20.00 48.00

Number of paragraphs 3.86 1.38 4.00 7.00

2.2 Annotation of argumentative elements
The essays were structurally annotated by normed raters for
argumentative elements. We used the modified Toulmin models
[46] presented in [35] and [30] as the basis for the annotation rubric.
The rubric adopted six elements (i.e., micro-categories) as the
building blocks of the argumentation framework: Final Claim,
Primary Claim, Counterclaim, Rebuttal, Data, and Concluding
Summary. The definitions of each of these elements are presented

in Appendix A.

The essays were coded by two annotators on the web-based text
annotation platform ‘Tagtog’1. The two annotators were both native
speakers of English and were undergraduate students majoring in
applied linguistics at a public university in the United States. Before
independent annotation, a norming process was conducted to help
ensure consistency in annotations. Once normed, the two
annotators worked independently and coded the 314 essays in the

opposite order to avoid recency effects.

The two annotators made decisions on both the boundary of an
argumentative element and the category of the element. An
argumentative element was inherently suprasentential (i.e.,
according to the annotation scheme derived from the norming
session, it could contain one or more sentences, and the content
could be over the span of paragraphs). Inter-rater reliability
calculated using Fleiss’s Kappa for all the annotations was 0.584 (p

< 0.001), indicating fair to good agreement [16]. Disagreements of
either boundary or category of the argumentative elements between
the two annotators were adjudicated by an expert adjudicator who
had years of experience teaching and conducting writing research.
In the case of disagreement, the expert adjudicator compared the
annotations from both annotators and made the final decision for
both the boundary and the category of the argumentative element.

The current study focuses on the identification of claims versus

non-claims, mainly because of the small sample size of the corpus
and the distribution of micro-categories. Thus, we combined the
categories of Final Claim, Primary Claim, Counterclaim, and
Rebuttal into a single category of claims. The remaining categories
of Data and Concluding summary were classified as non-claims as
was any non-annotated text.

1 https://www.tagtog.net

376 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

2.3 Training and test sets
Annotation of the data led to the classification of 2264

argumentative elements. As mentioned in Section 2.2, the
argumentative elements were inherently suprasentential. We
further split the elements into sentences to determine whether this
influenced accuracy. All sentences from the same argumentative
element were given the same annotation as the original category
(i.e., claims or non-claims). We thus had two data sets: 1) a
sentence-tokenized data set (N = 6326) and 2) a suprasentential
data set (N = 2264). We randomly selected 70% of the

argumentative elements as the training set, and the remaining 30%
of the elements as the test set for both datasets. We report the
number of argumentative elements, and number of claims and non-
claims for the datasets in Table 2.

Table 2. Numbers of elements, claims and non-claims for the

training and test sets

Data set
Number

of
elements

Number
of claims

Number
of non-
claims

Suprasentential training set 1594 639 955

Suprasentential test set 670 267 403

Sentential training set 4401 935 3466

Sentential test set 1925 409 1516

2.4 Features

2.4.1 Word count
We extracted the number of words for each claim and non-claim at
the sentential and suprasentential level.

2.4.2 N-gram frequency
We extracted n-grams and the POS combinations of these n-grams
for both claims and non-claims. We assume that some n-grams (or
POS n-grams) are more likely to identify claims versus non-claims
(and vice versa), and the frequency of these key n-grams (or POS
n-grams) could serve as good indicator of the type of an
argumentative element or sentence. We used keyness values [21]
as the measurement of importance of the n-grams or POS n-grams

in claims and non-claims. Keyness values can provide evidence of
whether n-grams and POS n-grams are more common in one corpus
as compared with the other corpus. In the current study, we treated
the claims and non-claims as two separate corpora.

Raw and normalized frequency (i.e., normalized by the total
number of words in all claims and non-claims, respectively) for
each n-gram (or POS n-gram) that occurred both in claims and non-
claims were calculated. The keyness value of each n-gram was also

calculated based on the frequency data following Rayson and
Garside’s guidelines [40]. Specifically, if an n-gram or POS n-gram
had a keyness value greater than 3.84 (equivalent to p < 0.05), and
if it had a higher normalized frequency in claims, it was considered
more likely to occur in claims over non-claims, and vice versa. The
range of the n-grams and POS n-grams was from unigram to seven-
grams. NLTK [6] was used to tokenize the texts into n-grams and
label the POS for the n-grams. For example, the following phrases
should be, would be, can be, and will be were converted to the same

POS n-gram combination: MD (modal) + VB (verb base). We did
not remove stopwords before n-gram tokenization. For each
suprasentential and sentential argumentative element in the training
and test sets, we calculated the frequency of each type of the

significant n-grams or POS n-grams (e.g., bigrams that were
significant in claims), and normalized the frequency by the length
(word counts).

2.4.3 Positionality of the elements
Beyond n-gram frequency, studies have shown that, the position of
argumentative elements is an indicator of their structural function
[e.g., 7, 8, 10]. In this study, two types of normalized positional
variables for each argumentative element or sentence were

calculated as positionality features.

Normalized element or sentence position in an essay was computed
as the ratio of the element/sentence position in an essay to the
number of elements/sentences in the essay (e.g., if an
argumentative element or a sentence was the 5th element or
sentence in an essay of 10 elements/sentences in total, the value of
this variable would be 5 divided by 10, or 50%). The normalized
position of the element or sentence in a paragraph was computed as

the ratio of the element/sentence position in a paragraph to the total
number of elements/sentences in that paragraph. That means, if an
argumentative element or a sentence was the 2nd element (sentence)
in a paragraph, in which there were 5 elements (sentences) in total,
the value would be 2 divided by 5, or 40%).

2.4.4 Other lexical, syntactic, and semantic features
To explore whether additional lexical, syntactic, cohesion, and
cognitive text features increased the accuracy in identifying claims
and non-claims, we extracted 925 features for each of the

argumentative elements. These features were extracted using the
Suite of Automatic Linguistic Analysis Tools (SALAT) [14, 15, 25,
24]. SALAT includes multiple NLP tools including TAACO (Tool
for the Automatic Analysis of Cohesion), TAALES (Tool for the
Automatic Analysis of lexical Sophistication), TAASSC (Tool for
the Automatic Analysis of Syntactic Sophistication and
Complexity), and SEANCE (Sentiment Analysis and Cognition
Engine). Two-sample t-tests or Wilcoxon’s tests were conducted

using the variables after removing SALAT variables that were not
normally distributed. We then removed those variables where the
results of t-test or Wilcoxon’s test were not significant between the
group of claims and non-claims. Finally, by visual inspection, 20
out of 131 variables that were relevant to argumentative elements
were selected. Hand selection of variables was done to avoid
problems of overfitting. The selected NLP features and their
descriptions are presented in Appendix B.

2.4.5 Feature reduction
To avoid multicollinearity, we conducted correlation analyses
among all the derived features (one versus all) for the two training
sets, respectively. If two or more variables correlated with r >

0.699, the variable(s) with the lower correlation with the category
of the argumentative element/sentence were removed, and the
variable with the higher correlation was retained. The feature
reduction process was done on the two training sets first and then
applied to the test sets. After feature reduction, the frequency
features that were retained included word count (of the
argumentative element or sentence), the frequency of the
significant unigram in claims and in non-claims, bigrams and quad-

grams in claims, and the frequency of significant POS unigrams,
trigrams, four-grams, five-grams in claims and in non-claims, and
frequency of significant six-grams in claims. The two positionality
features and the selected 20 SALAT features were also retained.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 377

Table 3. Model accuracy results

Classifier Model Accuracy Kappa Label Precision Recall F1

Logistic
Regression

Suprasentential - Frequency
and positionality

0.852 0.691
Non-Claim 0.874 0.881 0.878

Claim 0.818 0.809 0.814

Suprasentential - Full features 0.845 0.675
Non-Claim 0.867 0.876 0.872

Claim 0.810 0.798 0.804

Sentential - Frequency and
positionality

0.802 0.216
Non-Claim 0.817 0.965 0.885

Claim 0.604 0.198 0.298

Sentential - Full features 0.800 0.244
Non-Claim 0.823 0.951 0.882

Claim 0.569 0.242 0.340

Naive
Bayes

Suprasentential - Frequency
and positionality

0.769 0.485
Non-Claim 0.747 0.931 0.829

Claim 0.833 0.524 0.644

Suprasentential - Full features 0.819 0.618
Non-Claim 0.831 0.878 0.854

Claim 0.799 0.730 0.763

Sentential - Frequency and

positionality
0.791 0.267

Non-Claim 0.834 0.925 0.878

Claim 0.515 0.301 0.380

Sentential - Full features 0.789 0.271
Non-Claim 0.833 0.916 0.872

Claim 0.506 0.318 0.390

K-Nearest
Neighbors

Suprasentential - Frequency
and positionality

0.836 0.650
Non-Claim 0.835 0.906 0.869

Claim 0.837 0.730 0.780

Suprasentential - Full features 0.787 0.526
Non-Claim 0.760 0.943 0.842

Claim 0.865 0.551 0.673

Sentential - Frequency and
positionality

0.818 0.286
Non-Claim 0.827 0.973 0.894

Claim 0.709 0.245 0.364

Sentential - Full features 0.804 0.196
Non-Claim 0.813 0.976 0.887

Claim 0.654 0.166 0.265

Support

Vector
Machines

Suprasentential - Frequency
and positionality

0.863 0.714
Non-Claim 0.886 0.886 0.886

Claim 0.828 0.828 0.828

Suprasentential - Full features 0.833 0.652
Non-Claim 0.865 0.856 0.860

Claim 0.786 0.798 0.792

Sentential - Frequency and
positionality

0.818 0.336
Non-Claim 0.839 0.951 0.891

Claim 0.639 0.325 0.431

Sentential - Full features 0.822 0.320
Non-Claim 0.833 0.968 0.896

Claim 0.706 0.281 0.402

Random
Forest

Suprasentential - Frequency
and positionality

0.873 0.734
Non-Claim 0.886 0.906 0.896

Claim 0.853 0.824 0.838

Suprasentential - Full features 0.866 0.720
Non-Claim 0.890 0.886 0.888

Claim 0.829 0.835 0.832

Sentential - Frequency and
positionality

0.832 0.419
Non-Claim 0.858 0.943 0.898

Claim 0.664 0.421 0.515

Sentential - Full features 0.829 0.390
Non-Claim 0.850 0.951 0.897

Claim 0.672 0.377 0.483

To examine whether adding the SALAT features improved the
accuracy of claim identification, we created two versions of the
feature sets. The first version comprised the n-gram frequency

(including word count) features and positionality features, and the
second version comprised all the features (including the SALAT
NLP features). Combined with the different levels of discourse
units (sentential and suprasentential), four pairs of datasets
(training and test sets) were prepared for modeling: the frequency
and positionality versions along with the full feature versions at
both the sentential and suprasentential levels.

2.4.6 Classifiers
We used the ‘caret’ [23], ‘randomForest’ [28], ‘e1071’ [32], and
‘tidyverse’ packages [48] in R [13] to apply Logistic Regression,
Naïve Bayes, K-Nearest Neighbors, Support Vector Machines, and
Random Forest models. 10-fold cross validation with five repeats

was used. We trained and tested the four versions of data separately.

For the SVM classifier, a linear, polynomial, and radial kernel was
applied. The model with the best performance was selected to make
predictions on the test set.

3. RESULTS

3.1 Model evaluation
The classification performances (precision, recall, F1 scores,
accuracy, and Cohen’s kappa) of the multiple models on the test
sets are reported in Table 3.

Overall, the models developed on frequency and positionality
features slightly outperformed the models developed using all the
features. This indicates that adding lexical, syntactic, cohesion, and
cognitive NLP features does not improve the accuracy of the
classification of claims and non-claims. In terms of the selection of
the unit of classification, the suprasentential models outperformed

the sentential models. Finally, the suprasentential Random Forest

378 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

model based on frequency and positionality features yielded the
best accuracy (0.873) and Kappa (0.734), followed by the
suprasentential model based on the full feature set, which yielded
an accuracy of 0.866 and Kappa of 0.720, which represents good
performance based on the scale of Cohen’s Kappa values [11].

3.2 Important variables
Variable importance for the best model (the suprasentential
Random Forest model based on word count, n-gram frequency and
positionality features) was reported by the ‘caret’ package. Table 4
shows the top 10 important variables and their importance values

for this model.

The variable importance values showed that the length (word
count) of an argumentative element, the normalized position of the
argumentative element in the essay, and the frequency of
significant bigrams in claims in the argumentative element are the
three most important variables.

Table 4. Variable importance values

Variable
Importance

Value

Word Count 289.988

Normalized element position in the essay 162.083

Frequency of significant bigrams in claims 47.992

Frequency of significant unigrams in claims 31.147

Normalized element position in the paragraph 29.791

Frequency of significant POS five grams in claims 28.465

Frequency of significant POS four grams in claims 27.389

Frequency of significant unigrams in non-claims 25.399

Frequency of significant POS unigrams in claims 25.272

Frequency of significant POS unigrams in non-
claims

23.812

Frequency of significant POS trigrams in claims 20.364

Frequency of significant POS trigrams in non-
claims

18.375

Frequency of significant POS four grams in non-
claims

13.745

Frequency of significant four grams in claims 8.676

Frequency of significant POS six grams in claims 8.490

Frequency of significant POS five grams in non-
claims

4.210

4. ERROR ANALYSES AND DISCUSSION
We conducted error analyses for the two Random Forest
suprasentential models (i.e., the models based on the frequency and
positionality feature set and the full feature set). Our goal was to
examine the misclassifications of the models to better understand

elements that may contribute to model accuracy.

We first examined classification rates. Among all incorrectly
classified instances, we found more cases in which a claim was
misclassified as a non-claim, whereas non-claims were less
frequently misclassified as claims. For both models, around 17% of
claims were misclassified and non-claims, and around 10% of non-
claims were misclassified as claims. These results indicate that, the
models are better at identifying non-claims than claims, potentially

due to the imbalanced data between the claims and non-claims.
Nevertheless, future studies should examine if there are more
representative features in claims that can be integrated into our
current feature set.

We next examined if essay quality and length influenced the model

accuracy. Specifically, for each argumentative element in the two
suprasentential test sets, we extracted the following information:
holistic score, number of words, number of sentences, and number
of paragraphs in the essay where the argumentative element
occurred. We examined differences between the argumentative
elements that were correctly and incorrectly predicted for these
features using t-tests. No differences were reported for essay
quality and length in either model. Thus, the classification of

argumentative elements was not related to the quality or the length
of essays.

We also examined if differences in model accuracy were related to
more specific argumentation categories (i.e., micro-categories). As
mentioned in Section 2.2, we merged the argumentation categories
of Primary Claim, Final Claim, Counterclaim, and Rebuttal from
the original annotated corpus into a larger classification of claims
(i.e., a macro-classification). We also classified the remaining

categories of Data and Concluding Summary along with Non-
annotated texts into non-claims. To assess whether the micro-
categories influenced classification of the macro-classification, we
compared the prediction accuracies among the seven micro-
categories.

The results showed that Counterclaims were not misclassified in
either model (likely because of their rarity), Concluding Summaries
were not misclassified in the frequency- and positionality-based

models, but misclassified 3.9% of the time in the full feature model.
Data was misclassified around 9% in both models. Meanwhile, the
sub-categories that were more frequently misclassified included:
Primary Claims (around 14 misclassified), Final Claims (around
21% misclassified), Non-annotated texts (around 22%
misclassified), and Rebuttal (2 out of 3, 66.7% misclassified
instances in both models). These results were also in line with
findings that claims were more frequently misclassified as non-
claims.

To further explore what factors affect the misclassifications among
the micro-categories of argumentative types, Welch’s t-tests were
conducted among all NLP features (see Appendix B) used in the
full analysis between correct and incorrect classification instances.
However, the analysis was done for the sub-category of
Counterclaim since all instances under this category were correctly
predicted by the two models. Also, we did not conduct t-tests for
the micro-category of Rebuttal due to a small sample size (N =3).

Table 5 presents the features for which significant differences were
found between the correct and incorrect classification instances in
at least two categories of argumentative types. In general, the
classification of Primary Claim, Data, Concluding Summary, and
Non-annotated texts seemed to be more strongly influenced by
linguistic features. Word count was the strongest indicator of
misclassification, in which difference were found for each micro-
category. The standard deviation of dependents per object of

prepositions was another strong predictor of misclassification,
which reflects the development of syntactic complexity [25].

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 379

Table 5. Features with significant differences between correct and incorrect classification instances

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Primary claim Yes Yes Yes Yes Yes Yes Yes Yes

Final claim Yes Yes Yes

Data Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Concluding summary Yes Yes Yes Yes Yes Yes Yes

Nonannotated Yes Yes Yes Yes Yes Yes Yes

Note. Shaded gray cells with ‘Yes’ indicate significant difference (p < .05) were found between the correct and incorrect instances. 1 =
Number of named entities, 2 = Word count, 3 = Normalized element position in the paragraph, 4 = Normalized element position in the essay,
5 = Frequency of significant unigrams in claims, 6 = Frequency of significant POS trigrams in claims, 7 = Frequency of significant quad-
grams in claims, 8 = Hu Liu proportion score, 9 = Objects component score, 10 = Brown frequency score, 11 = Bigram lemma type-token
ratio, 12 = Nouns as modifiers score, 13 = Dependents per object of the preposition (SD), 14 = T-units per sentence.

The number of named entities was a strong indicator for the non-
claims, wherein the incorrect instances of non-claims contained
fewer named entities versus the correct instances. The nouns as
modifier scores were also predictive of misclassification, which
measured the use of nouns as nominal modifiers in general and the
variation in the number of modifiers per nominal [25]. Other
linguistics features that influenced the classification accuracy
included: the normalized position of the element in paragraph and

in essay, the bigram type-token ratio, the frequency of key unigram,
quad-gram, and POS trigram in claims, the number of T-units per
sentence, the number terms that reference objects, the proportion of
the number of words with positive sentiments to the words with
negative sentiments, and the mean frequency score based on
London-Lund Corpus of Conversation.

5. CONCLUSION
In this study, we proposed an approach that combined the

frequency, positionality, and other lexical, syntactic, cohesion, and
cognitive NLP features to predict claims and non-claims in
argumentative essays. Our model performed well in the
classification of these argumentative elements. Our exploration of
the features, the comparison between sentential versus
suprasentential models, and investigation of the factors that
influenced classification accuracy in the error analyses should
contribute to the field of automated identification and evaluation of

discourse elements in argumentative writing.

It is important to note that the corpus used for this study was
relatively small, comprising 314 student essays. Thus, to gain
higher accuracies and reliabilities in classifying argumentative
elements, we plan on annotating more essays and expanding the
current corpus. That also means we will use essays written to more
prompts allowing us to extract key n-grams and POS n-grams that
are more generic and less restricted to the specific prompts used
here. In addition, due to the small sample size, our classification of

argumentative elements was simplified to focus on claims versus
non-claims. We are interested in exploring the classification of the
micro-categories (Primary Claim, Final Claim, Counter Claim,
Rebuttal, Data, and Concluding Summary) in a larger corpus. We
also plan to include the prediction of the quality of these
argumentative elements in students’ writing.

The models developed in this study will be included in an online
Writing Assessment Tool (WAT). Implementing the classification

algorithm within WAT, WAT’s automatic writing evaluation
(AWE) system will have the capacity to predict the number of
claims in the essay and whether the claims mention the key n-grams

that reflects the argument topic. This will afford providing feedback
to students on argumentation quality within student essays. The
study also provides insight into the length, position, content (e.g.,
the key n-grams), and other NLP features in claims versus non-

claims in students’ writing, which will contribute to finer-grained
feedback components in our AWE system.

This study also provides important information for others who are
developing AWE algorithms to drive feedback on argumentative
essays, or more broadly to better understand the use of claims in
essays. Specifically, the results of this study inform features related
to feedback that can be provided to students about the number of
claims, mentioning the argument topic, how to better position

argumentative elements within their essays, and how to pay
attention to specific linguistic features (such as the use of named
entities when giving evidence) in their writing. This is an important
achievement in the realm of writing feedback given the crucial need
to automate feedback to students on their use of claims and
evidence in argumentative essays.

Another important contribution of this study is that we also
introduce a new corpus of essays annotated for argumentative

elements, which is made publicly available at
linguisticanalysistools.org. This corpus includes theoretically
aligned argumentative elements that complement existing corpora
[44, 45] and adds new components including prompts, holistic
scores, additional categories of argumentation, and different
educational settings. As such, this study provides the opportunity
for other scientists to build upon our work such that we can better
understand writing, and the features related to successful
composition.

6. ACKNOWLEDGMENTS
The research reported here was supported by the Chan Zuckerberg
Initiative, the Bill & Melinda Gates Foundation, and Schmidt
Futures through grants to Georgia State University. Additional
funding was provided by the Institute of Education Sciences, U.S.

Department of Education, and the Office of Naval Research,
through Grants R305A180261, R305A180144, N00014-20-1-
2623, N00014-19-1-2424 to Arizona State University and
University of New Hampshire. The opinions expressed are those of
the authors and do not represent views of the funding agencies.

380 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

7. REFERENCES
[1] Aharoni, E., Polnarov, A., Lavee, T., Hershcovich, D., Levy,

R., Rinott, R., Gutfreund, D. and Slonim, N., 2014, June. A
benchmark dataset for automatic detection of claims and
evidence in the context of controversial topics.
In Proceedings of the first workshop on argumentation
mining (pp. 64-68).

[2] Ajjour, Y., Alshomary, M., Wachsmuth, H. and Stein, B.,
2019, November. Modeling frames in argumentation.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP) (pp. 2915-2925).

[3] Al Khatib, K., Wachsmuth, H., Hagen, M., Köhler, J. and
Stein, B., 2016, June. Cross-domain mining of argumentative

text through distant supervision. In Proceedings of the 2016
conference of the north american chapter of the association
for computational linguistics: human language
technologies (pp. 1395-1404).

[4] Ashley, K.D. and Walker, V.R., 2013, November. From
Information Retrieval (IR) to Argument Retrieval (AR) for
Legal Cases: Report on a Baseline Study. In JURIX (pp. 29-
38).

[5] Biber, D. and Conrad, S., 1999. Lexical bundles in
conversation and academic prose. Language and
Computers, 26, pp.181-190.

[6] Bird, S., Klein, E. and Loper, E., 2009. Natural language
processing with Python: analyzing text with the natural
language toolkit. " O'Reilly Media, Inc.".

[7] Burstein, J., Braden‐Harder, L., Chodorow, M., Hua, S.,
Kaplan, B., Kukich, K., Lu, C., Nolan, J., Rock, D. and
Wolff, S., 1998. Computer analysis of essay content for
automated score prediction: A prototype automated scoring
system for GMAT analytical writing assessment essays. ETS
Research Report Series, 1998(1), pp.i-67.

[8] Burstein, J., Kukich, K., Wolff, S., Lu, C. and Chodorow,
M., 2001a. Enriching Automated Essay Scoring Using

Discourse Marking.

[9] Burstein, J., Marcu, D. and Knight, K., 2003. Finding the
WRITE stuff: Automatic identification of discourse structure

in student essays. IEEE Intelligent Systems, 18(1), pp.32-39.

[10] Burstein, J., Marcu, D., Andreyev, S. and Chodorow, M.,
2001b, July. Towards automatic classification of discourse

elements in essays. In Proceedings of the 39th annual
meeting of the Association for Computational
Linguistics (pp. 98-105).

[11] Cohen, J., 1960. A coefficient of agreement for nominal
scales. Educational and psychological measurement, 20(1),
pp.37-46.

[12] Cohen, R., 1984, July. A computational theory of the
function of clue words in argument understanding. In 10th
International Conference on Computational Linguistics and
22nd Annual Meeting of the Association for Computational
Linguistics (pp. 251-258).

[13] Core Team, R., 2017. R: A language and environment for
statistical computing. R Foundation for Statistical
Computing. Vienna, Austria: URL https://www. R-project.
org/.[Google Scholar].

[14] Crossley, S.A., Kyle, K. and McNamara, D.S., 2016. The
development and use of cohesive devices in L2 writing and
their relations to judgments of essay quality. Journal of
Second Language Writing, 32, pp.1-16.

[15] Crossley, S.A., Kyle, K. and McNamara, D.S., 2017.
Sentiment Analysis and Social Cognition Engine (SEANCE):
An automatic tool for sentiment, social cognition, and social-

order analysis. Behavior research methods, 49(3), pp.803-
821.

[16] Fleiss, J.L., Levin, B. and Paik, M.C., 1981. The

measurement of interrater agreement. Statistical methods for
rates and proportions, 2(212-236), pp.22-23.

[17] Fraser, B., 1999. What are discourse markers?. Journal of

pragmatics, 31(7), pp.931-952.

[18] Grosz, B. and Sidner, C.L., 1986. Attention, intentions, and
the structure of discourse. Computational linguistics.

[19] Hirschberg, J. and Litman, D., 1993. Empirical studies on the
disambiguation of cue phrases. Computational

linguistics, 19(3), pp.501-530.

[20] Houngbo, H. and Mercer, R.E., 2014, June. An automated
method to build a corpus of rhetorically-classified sentences

in biomedical texts. In Proceedings of the first workshop on
argumentation mining (pp. 19-23).

[21] Kilgarriff, A., 2001. Comparing corpora. International

journal of corpus linguistics, 6(1), pp.97-133.

[22] Knott, A. and Dale, R., 1994. Using linguistic phenomena to
motivate a set of coherence relations. Discourse

processes, 18(1), pp.35-62.

[23] Kuhn, M., 2015. A Short Introduction to the caret Package. R

Found Stat Comput, 1.

[24] Kyle, K. and Crossley, S.A., 2015. Automatically assessing
lexical sophistication: Indices, tools, findings, and

application. Tesol Quarterly, 49(4), pp.757-786.

[25] Kyle, K., 2016. Measuring syntactic development in L2
writing: Fine grained indices of syntactic complexity and

usage-based indices of syntactic sophistication.

[26] Lawrence, J. and Reed, C., 2015, June. Combining argument
mining techniques. In Proceedings of the 2nd Workshop on

Argumentation Mining (pp. 127-136).

[27] Levy, R., Bilu, Y., Hershcovich, D., Aharoni, E. and Slonim,

N., 2014, August. Context dependent claim detection.
In Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical
Papers (pp. 1489-1500).

[28] Liaw, A. and Wiener, M., 2002. Classification and regression
by randomForest. R news, 2(3), pp.18-22.

[29] Lippi, M. and Torroni, P., 2016. Argumentation mining:
State of the art and emerging trends. ACM Transactions on
Internet Technology (TOIT), 16(2), pp.1-25.

[30] Liu, F. and Stapleton, P., 2014. Counterargumentation and
the cultivation of critical thinking in argumentative writing:
Investigating washback from a high-stakes test. System, 45,
pp.117-128.

[31] Max, K., 2016. Contributions from Jed Wing. Steve Weston,
Andre Williams, Chris Keefer, Allan Engelhardt, Tony
Cooper, Zachary Mayer, Brenton Kenkel, the R Core Team,

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 381

Michael Benesty, Reynald Lescarbeau, Andrew Ziem, Luca
Scrucca, Yuan Tang and Can Candan, pp.6-0.

[32] Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A.,
Leisch, F., Chang, C.C. and Lin, C.C., 2015. Misc functions
of the department of statistics, probability theory group
(formerly: E1071). Package e1071. TU Wien.

[33] Nguyen, H. and Litman, D., 2015, June. Extracting argument
and domain words for identifying argument components in
texts. In Proceedings of the 2nd Workshop on Argumentation
Mining (pp. 22-28).

[34] Nguyen, H. and Litman, D., 2016, August. Context-aware
argumentative relation mining. In Proceedings of the 54th
Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers) (pp. 1127-1137).

[35] Nussbaum, E.M., Kardash, C.M. and Graham, S.E., 2005.
The Effects of Goal Instructions and Text on the Generation

of Counterarguments During Writing. Journal of
Educational Psychology, 97(2), p.157.

[36] Ong, N., Litman, D. and Brusilovsky, A., 2014, June.
Ontology-based argument mining and automatic essay
scoring. In Proceedings of the First Workshop on
Argumentation Mining (pp. 24-28).

[37] Palau, R.M. and Moens, M.F., 2009, June. Argumentation
mining: the detection, classification and structure of
arguments in text. In Proceedings of the 12th international
conference on artificial intelligence and law (pp. 98-107).

[38] Persing, I. and Ng, V., 2015, July. Modeling argument
strength in student essays. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers) (pp. 543-
552).

[39] Quirk, R., 1985. The English language in a global
context. English in the world: Teaching and learning the
language and literatures, 16, pp.17-21.

[40] Rayson, P. and Garside, R., 2000, October. Comparing
corpora using frequency profiling. In The workshop on
comparing corpora (pp. 1-6).

[41] Rinott, R., Dankin, L., Alzate, C., Khapra, M.M., Aharoni, E.
and Slonim, N., 2015, September. Show me your evidence-
an automatic method for context dependent evidence
detection. In Proceedings of the 2015 conference on

empirical methods in natural language processing (pp. 440-
450).

[42] Schiffrin, D., 2001. Discourse markers: Language, meaning,

and context. The handbook of discourse analysis, 1, pp.54-
75.

[43] Song, Y., Heilman, M., Klebanov, B.B. and Deane, P., 2014,

June. Applying argumentation schemes for essay scoring.
In Proceedings of the First Workshop on Argumentation
Mining (pp. 69-78).

[44] Stab, C. and Gurevych, I., 2014, October. Identifying
argumentative discourse structures in persuasive essays.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP) (pp. 46-
56).

[45] Stab, C. and Gurevych, I., 2017. Parsing argumentation
structures in persuasive essays. Computational
Linguistics, 43(3), pp.619-659.

[46] Toulmin, S.E., 2003. The uses of argument. Cambridge
university press.

[47] Van Eemeren, F.H., Houtlosser, P. and Henkemans, A.F.S.,
2008. Dialectical profiles and indicators of argumentative
moves. Journal of Pragmatics, 40(3), pp.475-493.

[48] Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan,
L.D.A., François, R., Grolemund, G., Hayes, A., Henry, L.,
Hester, J. and Kuhn, M., 2019. Welcome to the
Tidyverse. Journal of Open Source Software, 4(43), p.1686.

382 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

APPENDIX

A. Definitions of argumentative elements

Elements Definitions Examples

Final Claim
An opinion or conclusion on the
main question

 In my opinion, every individual has an obligation to think seriously about
important matters, although this might be difficult.

Primary Claim
A claim that supports the final
claim.

 The next reason why I agree that every individual has an obligation to
think seriously about important matters is that this simple task can help each
person get ahead in life and be successful.

Counterclaim

A claim that refutes another claim or

gives an opposing reason to the final
claim.

 Some may argue that obligating every individual to think seriously is not

necessary and even annoying as some people may choose to just follow the
great thinkers of the nation.

Rebuttal A claim that refutes a counterclaim.
 Even though people can follow others' steps without thinking seriously in
some situations, the ability to think critically for themselves is a very important
survival skill.

Data
Ideas or examples that support
primary claims, counterclaims, or
rebuttals.

 For instance, the presidential debate is currently going on. In order to
choose the right candidate, voters need to research all sides of both candidates
and think seriously to make a wise decision for the good of the whole nation.

Concluding
Summary

A concluding statement that restates
the claims.

 To sum up, thinking seriously is important in making decisions because

each decision has an outcome that affects lives. It is also important because if
you think seriously it can help you succeed.

Non-annotated
Any text that doesn’t fall into any of
the above categories

 People always strive to be unique or different. This idea clashes with
creativeness all through our lives.

B. Descriptions of the SALAT NLP features

NLP features from SALAT Descriptions

Bigram lemma type-token ratio Number of unique bigram lemmas (types) divided by the number of total bigram lemmas (tokens)

Brown frequency score Mean word frequency score based on London-Lund Corpus of Conversation

Brysabaert concreteness score Sum of concreteness scores based on all words divided by number of words with concreteness scores

COCA academic bigram

association strength

Sum of approximate collexeme strength score divided by the number of bigrams in text with collexeme

scores

Dependents per clause (SD) The standard deviation of the total number of dependents per clause

Dependents per object of the
preposition (SD)

This score captures the variation (standard deviation) in the prepositional objects

Direct objects per clause The number of direct objects per clause

Free association tokens response

score

Number of response tokens elicited by word as stimuli in discrete word association experiment (based

on function words)

Hu Liu proportion score Proportion of the number of words with positive sentiments to the words with negative sentiments

LDA age of exposure score
Based on Incremental Age of Exposure for words across 13 grade levels; calculated based on 1/slope
of linear regression

Lexical decision time
Standardized lexical decision reaction time across all participants for this word (z-score, based on
function words)

Nouns as modifiers score This score captures the use of nouns as modifiers and modifier variation

Number of named entities The number of named entities

Number of prepositions per clause This score captures capture noun phrase elaboration and clause complexity

Objects component score This component score represents the number of terms that reference objects

Possessives component score
This component score captures the use of possessives in general, and specifically captures the use of
possessives in nominal subjects, direct objects, and prepositional objects

Sentiment score of dominance This score captures the sentiment of dominance, measured by the number of words of dominance

Sentiment score of overstating
This score captures the sentiment of overstating, calculated based on words indicating emphasis in
realms of frequency, causality, accuracy, validity...

T-units per sentence Number of T-units in text divided by number of sentences in text

Verb argument constructions
association strength

Average approximate collostructional strength score based on the COCA academic corpus

Note. For more information about the SALAT NLP features, please see https://www.linguisticanalysistools.org/

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 383

https://www.linguisticanalysistools.org/

Using Keystroke Analytics to Understand Cognitive
Processes during Writing

Mo Zhang, Hongwen Guo, and Xiang Liu
Educational Testing Service (Princeton, NJ, 08541)

MZhang, HGuo, XLiu003@ETS.org

ABSTRACT
We present an empirical study on the use of keystroke ana-
lytics to capture and understand how writers manage their
time and make inferences on how they allocate their cogni-
tive resources during essay writing. The results suggest three
distinct longitudinal patterns of writing process that de-
scribe how writers approach an essay task in a writing assess-
ment. Discussion of the potential applications of keystroke
analytics for improving teaching, learning, and assessing
writing are also provided.

Keywords
keystroke logging, writing, cognitive process, time manage-
ment, writing pattern

1. INTRODUCTION
The study of writing process has long been of interest to the
writing research community (e.g., [4], [18], [12], [19], [22]).
With the advances in technology, keystroke logging has be-
come a practical and popular tool to capture and study the
process of composition in a wide range of contexts [10]. In
this study, we demonstrate some research findings on the use
of keystroke analytics to understand writers’ time manage-
ment during their writing process. The results have practi-
cal implications for the teaching and learning of writing in
classrooms.

Previous research on writing cognition suggested several sub-
processes of writing [9], including task analysis, text plan-
ning, idea generation, translating ideas into natural lan-
guage, transcribing langauge onto paper (handwriting) or
a screen (keyboard-based writing), text revision, copy edit-
ing and reviewing. Figure 1 illustrates a simplified version
of Hayes coginitive writing model, which specified four main
subprocesses of writing. Specifically, idea generation and
task preparation (i.e., proposer) often manifest as pauses at
the start of writing and at sentence boundaries; fluency of
putting ideas into language (i.e., translator) primarily re-

lates to the size of long sequences of text production with-
out major interruption (also known as“burst”); orthographic
proficiency and motor skill (i.e., transcriber) typically relates
to pauses inside a word and to edits designed to make im-
mediate corrections to spelling errors or typos; and editing
and reviewing (i.e., evaluator) usually show up as jumps to
different locations in the text to make changes or replace
large chunks of existing text with new content.

Evaluator

TranslatorProposer Transcriber

Figure 1: A Cognitive Model of Writing Process

One important implication from the cognitive model is that
writing is not a linear process and successful writing calls for
effecitive management and coordiation of the subprocesses.
Drawing from the cognitive theories of writing, an overview
of the types of activities occuring during text composition
can be found in [5]. The cognitive resources, as stated in [3],
required to carry out each activity do not distribute ran-
domly over the text-production process. Writers often need
to decide on which goals to prioritize at which time point be-
cause they simply do not have unlimited working memory to
accomplish everything at once [11]. With the availability of
keystroke logs, how writers distribute their time and cogni-
tive resource to various subprocesses of writing can be quan-
tified and analyzed, which is described in the next section.
In this study, we aim to tackle a specific research question
of whether there are distinct writing-process patterns that
may be detected with regard to how writers allocate their
cognitive resource to various subprocesses of writing. An
identification of meaningful writing profiles will have practi-
cal implications for instructors to design curriculum suitable
to their classes, and personalize their instruction for learners
with different needs and characteristics.

1.1 Keystroke Logging
We consider keystroke logging as a recording of every key-
press that the writer makes on the keyboard. The gap time
between two consecutive keypresses is often called an in-
terkey interval (IKI), which is also recorded in keystroke
logging. A single keystroke record in JSON format may
look like this: {“p”: “1”, “o”: “”, “n”: “I”, “t”: “0.57”}, where

Mo Zhang, Hongwen Guo and Xiang Liu “Using Keystroke Analytics
to Understand Cognitive Processes during Writing”. 2021. In: Pro-
ceedings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 384-390.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

384 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 1: An Example Keystroke Log Segment
Index PosInText Content ContentLen TimeStamp ActionType Context WordIntended CursorJump TextToDate
0 1 I 1 0.57 Insert WordStart It N I
1 2 t 1 0.62 Insert InWord It N It
2 3 (space) 1 0.99 Insert BetweenWords N It
3 4 i 1 1.30 Insert WordStart is N It i
4 5 s 1 1.42 Insert InWord is N It is
5 6 (space) 1 1.61 Insert BetweenWords N It is
6 7 a 1 2.12 Insert WordStart a N It is a
7 8 (space) 1 2.22 Insert BetweenWords N It is a
8 9 g 1 2.35 Insert WordStart fun N It is a g
9 10 o 1 2.43 Insert InWord fun N It is a go
10 11 o 1 2.55 Insert InWord fun N It is a goo
11 12 d 1 2.68 Insert InWord fun N It is a good
12 12 d 1 3.01 Delete InWord fun N It is a goo
13 11 o 1 3.16 Delete InWord fun N It is a go
14 10 o 1 3.30 Delete InWord fun N It is a g
15 9 g 1 3.53 Delete InWord fun N It is a
16 10 f 1 3.71 Insert InWord fun N It is a f
17 11 u 1 3.93 Insert InWord fun N It is a fu
18 12 n 1 4.11 Insert InWord fun N It is a fun
19 13 (space) 1 4.30 Insert BetweenWords N It is a fun
20 14 d 1 4.49 Insert WordStart day N It is a fun d
21 15 a 1 4.62 Insert InWord day N It is a fun da
22 16 y 1 4.90 Insert InWord day N It is a fun day
23 17 . 1 5.13 Insert PuncMark N It is a fun day.

Note: ContentLen=Content Length. ContentLen usually takes the value of 1 unless the writer cuts or pastes in a chunk of text with more than
one character. PuncMark=Punctuation Mark. CusurJump can take a binary value of “Y” or “N”.

“p” is the position in the text box, “o” is the current text
at that position, “n” is the change made to that position,
and “t” is the time elapsed since the start of writing. In this
example, the writer inserted a chatacter “I” at position 1 in
the text box at a timestamp of 0.57 seconds, computed rela-
tive to when the writing started (i.e., at 0 elapsed seconds).
The overall behaviral process of text production can then
presented by a sequence of keystroke records. More impor-
tantly, qualitative labels may be attached to characterize a
keystroke record in terms of the type (e.g., insertation, dele-
tion) and location (e.g., inside of a word, end of a sentence)
of an action, along with the content and associated time
stamp. For the hypothetical example given in Table 1 (for
illutration purpose only), the writer spends 5.13 seconds to
write a full sentence: “It is a fun day.” During the process,
the writer changed the choice of a word from “good” to “fun”
evidenced by a sequence of the “delete” actions. Cursor lo-
cation is tracked so that if the cursor moves suddenly to a
different location away from the current location, the jump
behavior can be detected.

As Table 1 indicates, keystroke logs allow the visible aspects
of the text-production process to be precisely reconstructed
and retrospectively replayed. Figures 2 and 3 demonstrate
one approach to visualizing the dynamics of the text-production
process by plotting the time elapsed (horizontal axis) against
text length and cursor position (verticle axis). When the
writer is appending or deleting text at the end of the text,
the dashed purple line (text length) and the solid green line
(cursor position) would converge; when the writer is making
changes elsewhere in the text, the green cursor-line would
diverge from the purple length-line. The gaps between the
two lines can indicate the degree of the “jump” action. The
length-line can go up or down indicating adding or removing
of content. The small-scale zig-zag pattern in both figures
suggests that both writers conducted a fair amount of quick
fixes or local edits mostly on the word level (e.g., typo cor-
rection, word-choice revision, removing/adding punctuation
marks) at the end of the text as they write. The writer in

Figure 3 showed evidence of global-level editing behavior to-
wards the end of the writing session, when the writer moved
the cursor to different parts of the text to make changes, as
can be seen from the relatively large gaps between the purple
and green lines. This type of jump-edit behavior is rather
absent in Figure 2 for which the writer showed a much more
linear writing process.

Figure 2: Writing Pro-
gression Example a

Figure 3: Writing Pro-
gression Example b

1.2 Inferences & Relations to Writing Quality
The nature and location of the changes that writers make
to their text directly can directly support inferences about
where the writer is cognitively in the composition process.
For example, a long pause followed by insertion of a written
outline is suggestive of task analysis and idea generation; a
long pause at the phrasal or sentence boundaries followed
by a burst of text production is a sign of sentence planning;
alternating between insert and delete actions on a character-
level inside of a word is likely an indication of spelling cor-
rection or word finding; if a writer types long sequences of
words thereby adding new content, it is reasonably safe to
assume that the writer is primarily engaged in content gen-
eration; and, if a writer jumps to various locations (tracked
by cursor position) in the text to make changes, the writer
is more likely in the state of text reviewing and revision
(e.g., [6], [16]). Previous research has reported that the

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 385

process of writing, such as the total time spent on writ-
ing, between-word pause tempo, initial pause length before
typing a word, length of long burst (i.e., stretches of long
sequence of text production), and extent of text editing and
revision, relate to the quality of the final written product
(e.g., [3], [17], [2], [27]). In this study, we largely followed
the practice described in [8] by classifying each interkey in-
terval (i.e., gap time betweeb two keystrokes) into one of
the following four cognitive states in writing. These states
intend to operationalize the theoretical subprocesses pro-
posed in Hayes model, although there will unavoidably be
gaps between theory and practice. Long Pause state, repre-
senting text planning, idea generation and deliberation, or
hesitation and struggle with text production; Text Produc-
tion state, representing relatively fluent content generation
without major interruption where interruption is signaled
by an extended pause; Local Editing state, representing lo-
calized (mostly on the word-level) minor text editing; and
Global Editing state, representing reviewing, revision and
copy editing on the whole passage/text level.

2. METHOD
2.1 Data Set
The data set was collected from a high-school equivalency
testing program, which contains five subject tests: English
language arts – reading, English language arts – writing,
math, science, and social science. The focus of this study
was the essay writing task in the writing subtest. In re-
sponding to the essay task, the examinees are expected to
read two sources with different perspectives on a common
issue (e.g., whether success is more the result of talent or of
hard work), and then express and explain their opinions in
writing while appropriately incorporating evidence from the
sources. Each submitted essay was scored holistically on a
0-6 scale by two trained human raters according to a stan-
dardized grading rubric. Essays receiving a human score of
0 were excluded from analysis as those essays tend to have
aberrant characteristics such as being empty, not in English,
or consisting of random keystrokes. In this study, we se-
lected two writing forms administered between September
2017 and August 2018 for investigation. Each form con-
tained one essay writing task, or prompt. The sample size
used for analysis was approximately 500 in each prompt.
The analyses were conducted on the first (base) prompt,
and then replicated on the second prompt to validate the
consistency of the findings.

2.2 Propensity Score Matching
To ensure comparability, propensity score matching (PSM)
[1] was used to minimize irrelevant factors such as perfor-
mance level and the paraticipants’ demographics and to bal-
ance covariates between the participants who responded to
either of the two prompts. Also, the two different prompts
were not administered at random, thus necessitating this
step. A logistic regression model was developed to gener-
ate the propensity scores, and a one-to-one greedy matching
without replacement algorithm with a caliper value of 0.05
was applied to find the matches in the prompt 2 sample to
make it most comparable to the prompt 1 sample [15]. The
caliper value refers to the maximum distance in propensity
scores; hence the smaller the caliper value, the closer the
match. In performing the PSM, the covariates were chosen

based on our understanding of the examination and the ex-
aminee population, and on findings from previous reports
on subgroup differences in writing process (e.g., [7], [25]).
The covariates included for propensity score matching were
gender (Male or Female), ethnicity (White, Black, Hispanic,
or others/unreported), employment status (Full-time, Part-
time, Unemployed, or others/unreported), highest education
level (Below Grade 9, Some high school, others/unreported),
English as best communicative language (Yes or No), as well
as scores on the subject tests other than writing. All the de-
mographic background variables were self-reported by the
participants on a voluntary basis.

2.3 Feature Extraction
Keystroke logs were recorded automatically as writers com-
posed their essays. A two-stage procedure was applied for
feature extraction. In Stage 1, we classified each interkey in-
terval (IKI) into one of four heuristically-defined and mutually-
exclusive writing states by following the practice in [8] with
some modifications. In Stage 2, we split each log into ten
time periods by evenly dividing the total writing duration
into ten segments, as one way to align and compare the
logs of different length in duration. The choice of ten time-
periods was made to balance the duration of each segment,
which should be long enough to detect any patterns related
to time distribution, and the number of segments, which
should be sufficient for detecting longitudinal patterns.

Stage 1: Classification of writing states. The general pro-
gramming logic is as follows.

• Step 1. Define Long Pause (LP) state. If an IKI is
longer than n times in-word typing speed, it is then
labelled as P. The keystroke sequence in between two
adjacent Ps is considered a burst.

• Step2: Define Text Production (TP) state. Inside of
a burst, if there is an absence of Delete action, or the
max number of a Delete sequence is smaller than k,
label all IKIs in this burst as TP. If there is a consec-
utive delete action sequence with k or more number of
Deletes, temporarily change all IKIs in this burst to
R, which will be refined in the next step.

• Step 3. Define Local Editing (LE) state. Use an m-
IKI moving window to scan through the keystroke se-
quence within an R-burst. That is, the first moving
window contains the 1st to the mth IKIs in a burst;
the second moving window contains the 2nd to the
(m+1)th IKIs in the burst; and so on.

– If all IKIs in a moving window are Inserts or con-
tain less than s Deletes, change the first record in
the moving window from R to TP. Continue with
the same logic to the next moving window.

– If a moving window contains equal to or more
than s Delete actions, label all the m records in
the moving window as LE.

• Step 4. Define Global Editing (GE) state. GE is indi-
cated by text deletion while crossing sentence bound-
aries or making jump-edits elsewhere in the text away
from the current location.

386 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

– If d or more consecutive Delete actions contain
the following punctuation marks – comma, pe-
riod, semicolon, exclamation mark, and question
mark – label the entire Delete sequence as GE.

– If the position of an IKI in the text is different
from the one before it by more than q, then the
IKI is labeled as Jump Back (JB to an earlier
place in the text) or Jump Forward (JF to a later
place). Find the longest JB-JF pair in distance,
and label all the IKIs in between to GE.

The parameters n, m, k, s, d, and q used in state definitions
are customizable. In this study, we chose n=10, m=3, k=3,
s=3, d=2, and q=4 as a starting point, mainly following [8].
Once all the IKIs are labelled, consecutive IKIs of the same
state can be further aggregated. Each keystroke log can be
described by the total number of states, the duration of each
state, proportion of time spent on each state, the frequency
of various transitions, etc. Among the four states, there are
12 state-transition possibilities (e.g., TP → GE) in total.

Stage 2: In this stage, we used the state classification gener-
ated above to calculate a writer’s time distribution at various
points during the writing process. To accomplish this goal,
we divided each keystroke log into ten even time-periods. We
then calculated the proportion of time spent in each writing
state within a time period. As a result, each keystroke log
was represented by a vector of 40 elements (i.e., four states
times ten segments). The elements’ values (i.e., percent-
ages) could range from 0 to 100. When it is a 0, it simply
means that the writer did not spend time on an activity
(e.g., Local Editing) during that time period (which is one
tenth of the total time). Similarly, when the value is 100,
it means that a writer spent all his/her time on an activity
(e.g., Global Editing) during that time period. With this
information, the longitudinal pattern of time allocation can
be revealed and investigated. We can analyze, for example,
how writers spend their time at the beginning, middle, or
end of their writing process, whether writers distribute their
effort evenly or differently at various time-points during the
writing process, and whether there are distinct profiles with
regard to time management of an individual writing process.

2.4 Cluster Analysis and Interpretation
Using the writing samples in each of the two prompts, we
conducted hierarchical cluster analysis (agglomerative ap-
proach) with Ward linkage using the Euclidean distance met-
ric [23, 20]. The proportion of time spent in each state at the
ten time-points was used to create 40 input variables. Each
input variable was standardized to a mean of zero and stan-
dard deviation of one across individuals in a prompt [13].
The cluster analysis was done separately for each prompt,
with the second prompt serving as a replication sample to
verify results from the base prompt. Because there is no es-
tablished convention for choosing the number of clusters, we
used the Pseudo-F statistic, model R-squared, and semipar-
tial R-square statistics to help us determine the appropriate
number. The pseudo-F statistic is calculated as the ratio
of the between-cluster variance to the within-cluster vari-
ance [14]. Larger values indicate better separation between
the clusters. The model R-squared indicates the proportion
of variance accounted for by the clusters. The semipartial

R-square indicates the decrease in the proportion of vari-
ance accounted for due to joining two clusters. We plotted
these statistics against the number of clusters to examine
the impacts of joining or splitting clusters. Dendrograms vi-
sualizing the distances between the keystroke logs were also
examined to help select the final number of clusters.

To interpret identified clusters, we compared how writers
falling into different clusters allocated their efforts during
the writing process. Since the proportions of time spent on
Text Production, Local Editing, Global Editing, and Long
Pause were used as input variables in the cluster analysis,
this comparison would be the most direct way to examine
any distinct patterns exhibited by each cluster. It would
also be informative to know whether clusters are associated
with distinct patterns of writing proficiency or in cluster
members’ demographic background. Therefore, to further
substantiate the meaning of identified clusters, we compared
the essay scores, essay length (in words), time on task (in
minutes), the proportion of cluster members belonging to
specific demographic categories, as well as a rough measure
of writing efficiency calculated as essay length divided by
time on task, between the clusters.

3. RESULTS
3.1 Outcome of Propensity Scoring Matching
The samples resulting from the propensity score matching
are closely comparable between the two prompts (Table 2).
In the first (base) prompt, males and females were evenly
distributed; 53% of the examinees self-identified as White,
12% as Black, 14% as Hispanic; 4% reported that their high-
est grade level was below Grade 9, 62% reported having some
high school education; 16% were working part-time, 17%
were working full time, 23% were unemployed at the time of
the examination. The majority of the examinees, 94%, in-
dicated English as their best communicative language. The
demographic background distribution of the second prompt,
after matching, was very similar to that for the base prompt.
The matched samples for prompt 2 also showed comparable
means of the subtest scores to those for the base prompt.

3.2 Cluster Analysis Results
To decide the optimal number of clusters, we first examined
the dendrograms, which indicated a solution of 3 or 4 clus-
ters for both prompts. Figures 4 and 5 show the results
of the Pseudo-F statistic and Sempartial R-square statis-
tic that were considered for model selection in prompt 2.
The results for prompt 1 are similar. The X-axis in both
plots is the number of clusters ranging from 1 to 50. The
Y axis is the Pseudo-F statistic on the left plot, R-squared
on the middle plot, and semipartial R-square on the right
plot. The results suggested a peak on the Pseudo-F statis-
tic with a 3-cluster solution. The semipartial R-square plot
shows an elbow point at cluster 3. The model R-squared
(not shown) appears to go up continuously without a clear
turning point. Considering all the evidence, we decided on
three clusters as the most parsimonious and sensible solution
for the this study sample.

3.3 Comparing the Clusters
Given the multivariate nature of the clustering variables, we
drew radar charts to visualize the time distribution at the

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 387

Table 2: Comparability between Prompts after Propensity Score Matching
Proportion Mean Score (Scale: 0 - 20)

Prompt Female White Black Hisp. Below9 HS PT FT Unemp. Eng(Y) Reading Math Science SS
1 (base) 0.50 0.53 0.12 0.14 0.04 0.62 0.16 0.17 0.23 0.94 12.23 11.55 14.11 13.41
2 (matched) 0.51 0.52 0.13 0.14 0.02 0.63 0.16 0.19 0.20 0.94 12.19 11.73 13.97 13.55

Note: Below9: Below Grade 9; HS: some high school; PT: part-time employee; FT: full-time employee; Unemp.: unemployed; Eng(Y): English
as best communicative language; SS: Social Science

Figure 4: Pseudo-F
statistic x N of Cluster

Figure 5: Semipartial
R2 x N of Cluster

ten consecutive time-points during the writing process of
the logs belonging to each of the three clusters (Figures 6
and 7). The axes represent the average proportions of time
spent on a state at a certain time. For example, “TP 1”
refers to the proportion of time spent on Text Production
at the beginning of writing – the 1st of the ten duration
segments. It is clear from Figures 6 and 7 that the three
clusters demonstrated rather different polygonal shapes over
all axes, which are consistent between the two prompts.

Figure 6: Radar Chart
(Prompt 1)

Figure 7: Radar Chart
(Prompt 2)

Cluster 1 (blue colored, solid line in both prompts) writers
have a distinct pattern with notable spikes on the TP state
over the course the writing process. Because the total writ-
ing time is constrained and writers can only do one thing
at a time, if the writers spend more time on text produc-
tion, they would necessarily spend less time on the other
activities such as editing or revision. This constraint is ev-
ident from the plots where, for Cluster 1, the proportion of
time spent on long pauses and editing is relatively smaller.
Cluster 2 (orange colored, dashed line) writers, on average,
have a much smoother circle compared to Cluster-1. Clus-
ter 2 writers appeared to have distributed their efforts more
evenly throughout the writing process. The allocation of
time across the four writing states is relatively balanced over
the course of the writing session. In general, Cluster 1 seems
to represent a group of writers that compose linearly with-
out showing much editing behaviors, while Cluster 2 seems

to represent writers that also consistently produce text but
still spend time on text planning and conduct text editing
and revision as they write. Cluster 3 (green colored, dot-
ted line) writers further showed a distinct time-management
pattern from the other two clusters. The writers in Cluster-
3 appeared to have difficulties in generating text at the start
of the writing session, as evidenced by the lack of text pro-
duction (TP 1) and a higher proportion of the local editing
behaviors (GE 1 and LE 1) in the first time period, which
suggested possible false starts during the writing process.
This “struggling” pattern appeared to have persisted into
later stages of the writing process, as evidenced by a higher
proprotion of time spent on long pauses compared to text
production or editing.

We also examined the actual length of time writers stayed
in a state before transitioning to a different state. The re-
sults suggest that the three clusters not only differ in their
relative time distributions during writing, but also in the
total time writers stayed in different states. Each cluster
displayed distinct patterns consistent across prompts: Clus-
ter 1 writers spent considerably less time on long pauses
than Clusters 2 and 3 writers; Cluster 2 writers spent no-
tably larger amounts of time making word-level local edits
than Clusters 1 and 3 writers by approximately 1 minute
in Prompt 1 and 2 minutes in Prompt 2; and Clusters 3
writers generally spent less time on text production than
Clusters 1 and 2 writers by about 1-2 minutes in Prompt
1 and about 3.5 minutes in Prompt 2. An additional inter-
esting difference between Clusters 1 and 2 is that Cluster 2
writers not only spent longer time on local editing, but also
on global editing by about 3 minutes in both prompts. A
close comparison between Clusters 2 and 3 further revealed
that Cluster 2 writers also appeared to spend more time
on long pauses than Cluster 3 writers by a small margin in
Prompt 1 and by a rather large margin in Prompt 2.

Taking into account both absolute time spent in each state,
and relative time in each state, Cluster 2 writers appear
to have shown a stable-tempo, iteractive process pattern in
which they switch repeatedly between the activities of text
planning, text production, and text editing over the course
of their writing sessions. Although more data are needed to
verify this interpretation, the long pauses demonstrated by
Cluster 3 writers throughout the writing session appeared to
be signals of hesitation and difficulties in content generation.
Finally, Cluster 1 writers seem to be relatively quick and flu-
ent at generating ideas (as evidenced by fewer long pauses)
and at translation and transcription (that is, at expressing
their ideas in written form).

To better understand and interpret the identified clusters,
Table 3 further compares the characteristics of student es-
says across the three clusters. Cluster 1 writers spent the
shortest time on the writing task on average (22.94 minutes

388 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 3: Proficiency and Demographic Distributions of Clusters
Prompt 1 Prompt 2

Variable Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3
n 65 264 168 169 259 71
Essay Score (scale: 2 - 12) 5.51 (1.70) 5.64 (1.54) 5.43 (1.53) 5.38 (1.59) 5.42 (1.74) 4.51 (1.80)
Essay Length (in words) 305 (136) 324 (145) 289 (128) 287 (129) 290 (127) 236 (118)
Time on Task (in minutes) 22.94 (11.56) 36.60 (15.65) 32.36 (14.16) 25.45 (12.39) 36.04 (14.86) 26.88 (14.37)
Efficiency (words/min) 15.02 (6.19) 9.94 (4.43) 9.96 (4.09) 12.85 (5.71) 8.97 (3.98) 10.82 (6.41)
Female 0.52 0.56 0.43 0.49 0.54 0.39
White 0.62 0.51 0.50 0.58 0.51 0.46
Black 0.12 0.14 0.13 0.12 0.12 0.13
Hispanic 0.06 0.13 0.18 0.09 0.17 0.13

Proportion Below Grade 9 0.03 0.02 0.02 0.05 0.03 0.03
Some high school 0.54 0.63 0.64 0.60 0.62 0.68
Part-time 0.15 0.13 0.20 0.17 0.16 0.14
Full-time 0.12 0.19 0.22 0.17 0.17 0.20
Unemployed 0.20 0.21 0.18 0.21 0.24 0.28
English as Best (Y) 0.96 0.94 0.96 0.96 0.92 0.94

Note: Values in parenthesis are standard deviations. Values on the lower-half of the table are the percent of various subgroups within a cluster.

in Prompt 1; 25.45 minutes in Prompt 2). The difference in
the total time on task between Clusters 1 and 2 is drastic –
about 14 minutes difference in Prompt 1 and about 10 min-
utes difference in Prompt 2. Cluster 1 writers wrote notably
more words/minute than Cluster 2 writers (15.02 vs 9.94 in
Prompt 1; 12.85 vs. 8.97 in Prompt 2). The overall evidence
seems to suggest Cluster 1 writers were more efficient than
Cluster 2 writers, in that they spent significantly less time
writing, yet achieved comparable text quality (essay scores).

In relation to demographic background, several results are
noteworthy. On both prompts, Cluster 1 contained a no-
tably greater proportion of White writers, a lower propor-
tion of Hispanic writers, and a lower proportion of exam-
inees with high-school experience, compared to the overall
demographic distribution in Table 2. Cluster 2 included a
slightly greater proportion of female writers than the aver-
age on both prompts, while all other demographic variables
fell close to the mean for each prompt. Finally, Cluster
3 had a considerably lower proportion of White or female
writers. But the results in general are less consistent be-
tween the two prompts for Cluster 3. The evidence seems to
suggest that writers from different demographic background
and having different educational experience may display dis-
trinctive patterns in their writing processes. However, with-
out further evidence, we cannot infer any causal connection
between demographic group membership, writing process
patterns, and overall writing performance.

4. DISCUSSION
In this paper, we presented a study on the use of keystroke
analytics to understand writers’ cognitive processes during
writing. One possible outcome of this study, and of the
larger research program of which it is a part, would be
to providing actionable writing feedback to instructors and
learners. However, before we can reach this goal, we need
to develop a clear understanding of how writing processes
change as a result of learning and instruction. This study
provides a first attempt to address this issue, by identify-
ing characteristic longitudinal patterns of time management
that writers display when they respond to an essay writ-
ing task. The current results suggest that there are at least
three distinct writing profiles that describe how writers ap-
proach an on-demand essay writing task. Though, it will be
critical that the analysis to be replicated with more data. In

the future, for writers placed into different profiles, we can
imagine giving customized suggestions on writing strategies
to improve learning and practice. Obviously, more research
is needed to further validate the meaning and interpreta-
tion of the profiles we have detected. Possible approaches
include cognitive interviews to elicit writers’ understanding
of what they were doing, combining eye-tracking technique
with keystroke logging to get a better sense of where the
writer’s attention was focused and how changes in the focus
of attention interacts with pause patterns, and convening an
expert panel to determine whether the clusters derived by
atatistical analysis align with expert judgments about what
the writers were doing at each point in the writing process.
The availability of keystroke logs makes it possible to replay
a writer’s composition process like a movie. Such replays
can then be presented as stimuli to assist and guide cog-
nitive interviews or the expert review process. Statistical
tests will be necessary to detect if the profiles are signif-
icantly different beyond the practical importance. It will
also be essential to replicate our analyses on a wide range
of writing prompts, a broader variety of writing tasks, and
across many different writer populations, as well as to study
how well findings resulting from timed-writing tasks can be
generalized to writing tasks with no time restriction.

The association between cluster assignment and demographic
background is worth further investigation. The study of
writing process ought to integrate with the social and lin-
guistic context [21]. Previous studies have reported sub-
group differences in writing processes (e.g., between native
and non-native speakers in [24], between male and female
writers in [26], between black and white students in [7]). It is
concievably helpful and valuable to give information about
writing profiles to provide customized feedback to writers
from different linguistic, social, and educational backgrounds.

Finally, although this is beyond the scope of the current
study, it is worth mentioning that keystroke-enabled pro-
cess visualization such as those illustrated in Figures 2 and
3, in and of itself, may have instructional value, by mak-
ing it easier for students to understand and self-reflect their
writing processes. For instance, teachers may select replays
and graphs to demonstrate a specific writing subprocess or
a writing strategy, to help the class understand how to im-
plement a more effective writing process. Teachers might
also be able to use such graphs during their one-on-one con-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 389

ference with their students to help them better understand
their writing strengths and weaknesses (such as lack of edit-
ing, low-level engagement, or lack of sufficient attention to
idea generation) that are revealed by the keystroke log. Fu-
ture research is encouraged to gather teacher and students
feedback on the assistive value of keystroke logs in their
teaching and learning experience.

5. REFERENCES
[1] P. C. Austin. An introduction of propensity score

methods for reducing the effects of confounding in
observational studies. Multivariate Behavioral
Research, 46(3):399–424, 2011.

[2] V. M. Baaijen, D. Galbraith, and K. de Glopper.
Keystroke analysis: Reflections on procedures and
measures. Written Communication, 29(3):246–277,
2012.

[3] I. Breetvelt, H. van den Bergh, and G. Rijlaarsdam.
Relations between writing processes and text quality:
When and how? Cognition and Instruction,
12(2):103–123, 1994.

[4] E. F. Burke. An experimental study of the educational
use of the typewriter in second grade. Master’s Thesis,
Loyola University, 1939.

[5] P. Deane and M. Zhang. Automated writing process
analysis. In D. Yan, A. Rupp, and P. Foltz, editors,
Handbook of automated scoring: Theory into practice,
pages 347–364. Chapman and Hall, 2020.

[6] D. Galbraith and V. M. Baaijen. Aligning keystrokes
with cognitive processes in writing. In E. Lindgren
and K. P. H. Sullivan, editors, Observing writing,
pages 306–325. Brill Publishing, 2019.

[7] H. Guo, M. Zhang, P. Deane, and R. Bennett. Writing
processes differences in subgroups reflected in
keystroke logs. Journal of Educational and Behavioral
Statistics, 44(5):571–695, 2019.

[8] H. Guo, M. Zhang, P. Deane, and R. Bennett. Effects
of scenario-based assessment on students’ writing
processes. Journal of Educational Data Mining,
12(1):19–45, 2020.

[9] J. R. Hayes. Modeling and remodeling of writing.
Written Communication, 29:369–388, 2012.

[10] M. Leijten and L. V. Waes. Keystroke logging in
writing research: Using inputlog to analyze and
visualize writing processes. Written Communication,
30:358–392, 2013.

[11] D. McCutchen. A capacity theory of writing: Working
memory in composition. Educational Psychology
Review, 8:299–325, 1996.

[12] D. McPherson. A study of typing speed and accuracy
development using computer-based and
typewriter-based instruction in a public high school.
OTS Master’s Level Project & Papers, 352, 1995.

[13] G. W. Millgan and M. C. Cooper. A study of
standardization of variables in cluster analysis.
Journal of Classification, 5:181–204, 1988.

[14] G. W. Milligan and M. C. Cooper. An examination of
procedures for determining the number of clusters in a
data set. Psychometrika, 502:159–179, 1985.

[15] T. Nguyen, G. S. Collins, J. Spence, J. Daures,
D. P. J., P. Landais, and Y. L. Manach.
Doubling-adjustment in propensity score matching

analysis: Choosing a threshold for considering residual
imbalance. BMC Medical Research Methodology, 17,
2017.

[16] T. Quinlan, M. Loncke, L. M, and L. V. Waes.
Coordinating the cognitive processes of writing: The
role of the monitor. Written Communication,
29(3):345–368, 2012.

[17] S. Sinharay, M. Zhang, and P. Deane. Prediction of
essay scores from writing process and product features
using data mining methods. Applied Measurement in
Education, 32(2):116–137, 2019.

[18] C. K. Stallard. An analysis of the writing behavior of
good student writers. Research in the Teaching of
English, 8:206–218, 1974.

[19] K. P. Sullivan and E. Lindgren. Computer keystroek
logging and writing: Methods and applications.
Elsevier, New York, 2006.

[20] G. J. Szekely and M. L. Rizzo. Hierarchical clustering
via joint between-within distances: Extending ward’s
minimum variance method. Journal of Classification,
22(2):151–183, 2005.

[21] L. V. Waes and P. J. Schellens. Writing profiles: The
effect of the writing mode on pausing and revision
patterns of experienced writers. Journal of
Pragmatics, 35:829–853, 2003.

[22] S. Wallot and J. Grabowski. Typewriting dynamics:
What dintinguishes simple from complex writing
tasks. Ecological Psychology, 25:1–14, 2013.

[23] J. H. Ward. Hierarchical grouping to optimize an
objective function. Journal of the American Statistical
Association, 58(301):236–244, 1963.

[24] C. Xu and Y. Ding. An exploratory study of pauses in
computer-assisted efl writing. Language Learning &
Technology, 18:80–96, 2014.

[25] M. Zhang, R. Bennett, P. Deane, and P. van Rijn. Are
there gender difference in how students write their
essays? an analysis of writing processes. Educational
Measurement: Issues and Practice, 39(2):14–26, 2019.

[26] M. Zhang, R. E. Bennett, P. Deane, and P. van Rijn.
Are there gender differences in how students writer
their essays? an analysis of writing processes.
Educational Measurement: Issues and Practice,
38(2):14–26, 2019.

[27] M. Zhang, J. Hao, C. Li, and P. Deane. Classification
of writing patterns using keystroke logs. In L. A.
van der Ark, D. M. Bolt, W.-C. Wang, J. A. Douglas,
and M. Wiberg, editors, Quantitative psychology
research: The 80th Annual Meeting of the
Psychometric Society, Beijing, 2015, pages 299–314.
Springer, 2016.

390 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Embedding navigation patterns for student performance
prediction

Ekaterina Loginova
Ghent University

ekaterina.loginova@ugent.be

Dries F. Benoit
Ghent University

dries.benoit@ugent.be

ABSTRACT
Predicting academic performance using trace data from learn-
ing management systems is a primary research topic in edu-
cational data mining. An important application is the iden-
tification of students at risk of failing the course or dropping
out. However, most approaches utilise past grades, which
are not always available and capture little of the student’s
learning strategy. The end-to-end models we implement pre-
dict whether a student will pass a course using only naviga-
tional patterns in a multimedia system, with the advantage
of not requiring past grades. We experiment on a dataset
containing coarse-grained action logs of more than 100,000
students participating in hundreds of short course. We pro-
pose two approaches to improve the performance: a novel
encoding scheme for trace data, which reflects the course
structure while remaining flexible enough to accommodate
previously unseen courses, and unsupervised embeddings ob-
tained with an autoencoder. To provide insight into model
behaviour, we incorporate an attention mechanism. Clus-
tering the vector representations of student behaviour pro-
duced by the proposed methods shows that distinct learning
strategies specific to low- and high- achievers are extracted.

Keywords
learning strategies, academic performance prediction, navi-
gational patterns, mooc, lstm, autoencoder, learning man-
agement systems

1. INTRODUCTION
A large amount of trace data about learner behaviour has
recently become available from online learning environments
[30]. Hence, it is now possible to improve the delivery, assess-
ment and intervention quality using data mining techniques,
giving rise to technology-enhanced learning. Educators are
especially interested in receiving early alerts when students
are at risk of failing the course or dropping out. With these
alerts, timely intervention can be organised. To estimate
this risk, machine learning classification models are built to

predict student performance based on their interaction with
the course content. There are several ways to define student
performance: it can be a binary or a multi-level grade on
either the next exercise or the entire course. This study fo-
cuses on a binary grade for the given course (fail or pass),
a common scenario on student performance prediction [15,
28, 27].

Traditionally, the primary source of information for this task
is past academic performance records [31]. They might in-
clude the grades for the previously taken courses or interme-
diate test scores. However, apart from those, online learn-
ing platforms also provide information about other types
of interaction between students and the content. Depend-
ing on the technical implementation and medium, it can be
fine-grained click-stream video data, the text of discussion
forum messages, or more coarse-grained information such
as whether a person liked a video or performed a search
query. Our models operate on such coarse-grained sequen-
tial records of interacting with different content types on
the online learning platform and does not rely on previous
grades. The motivation for it is three-fold. First, the past
scores might not be available, or it can be time- and effort-
consuming to provide them. For example, grading an es-
say usually requires a specialist, which is not scalable for
MOOCs. Second, by focusing on interaction with the con-
tent, such as video views, we obtain the representation of
student behaviour that is more likely to capture their learn-
ing strategies. In other words, we can discover whether they
prefer a specific medium or actively interact with other stu-
dents in online discussions. Third, if we work with naviga-
tion patterns, the resulting model has the potential to inform
a recommendation system that would nudge a struggling
student in the right direction. For instance, when students
explore the platform, we can automatically recommend the
next learning item to interact with (e.g., a video or a reading
material they might find useful or interesting).

This study applies recurrent neural networks for academic
performance prediction in short online courses. The ap-
proach we describe works without manual feature engineer-
ing or information about previous scores. In contrast to most
works in the area of course grade prediction, our models op-
erate instead on raw sequences of multiple-type interactions
with the content (video view/like, discussion message, search
request, exercise attempt). We propose several encoding
schemes for action logs and demonstrate that they can in-
crease classification performance. Among them, we intro-

Ekaterina Loginova and Dries Benoit “Embedding navigation pat-
terns for student performance prediction”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 391-399.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 391

duce a flexible scheme that reflects relative progress within
the course while being independent of its length. We also
use autoencoders to extract student representation in an un-
supervised way. Vector representations of student behaviour
produced by different methods are clustered to compare how
well they indicate (un)successful learning strategies. In or-
der to illuminate the inner workings of the model, we pro-
vide cluster visualisations and experiment with an attention
mechanism.

Thus, our research questions are the following. RQ1: Can
we capture the information about course structure in the
action sequences in a flexible way (that can be extended dy-
namically when new exercises or longer courses are added)?
RQ2: Can we improve predictive performance by pretrain-
ing unsupervised embeddings (using autoencoder models)?
RQ3: Can we improve predictive performance further by
adding attention to an autoencoder?

2. RELATED WORK
While working with educational trace data, there are vari-
ous ways to extract features from the raw sequences. The
easiest and perhaps the most popular approach is to count
the number of actions – despite its simplicity, it is a solid
baseline, used even in the most recent studies [27], [28], [21].

Unfortunately, by aggregating the data in such a way, we
ignore the time delay between actions and the information
about their order. A common way to engineer additional,
more time-sensitive features from trace data is to represent
student behaviour in chunks, called studying sessions. For
instance, we can define the sequence of actions as a session
if less than 15 minutes passed between actions. The thresh-
old is usually determined heuristically [20]. However, the
need to choose this threshold manually is a clear drawback.
Moreover, additional manual feature engineering is often re-
quired to aggregate features over sessions (e.g., experts have
to define what qualifies as session intensity).

Furthermore, even though the described measures are sound
and easy to use, their high volume does not necessarily con-
tribute to the high quality of learning. Neither does it allow
actionable insight beyond relatively trivial advice to spend
more time in the system. As justly noted by the learn-
ing analytics community, it is the specific learning strategies
adopted by individual students that are important [12].

Therefore, various approaches based on deep learning were
proposed to overcome these limitations. The sequential na-
ture of the data lends itself well to the use of recurrent neu-
ral networks (RNNs) [37]. The pioneering Deep Knowledge
Tracing (DKT) model applied RNNs and its variations to
the history of students’ answers to predict whether they will
answer the next exercise correctly [26]. One of the benefits
of such neural architectures is that they can complement
the educational theories proposed by human experts with
insights obtained in the bottom-up, data-driven way [23].
Another benefit is that end-to-end models adapt to new do-
mains easier and are more cost-efficient.

The success of DKT led to a new strand of research. Aiming
to get rid of its simplifying assumptions, such as disregard to
skill interaction or exercise text, researchers developed more

advanced neural models for knowledge tracing [8].

In contrast to many grade prediction approaches such as
[18], our approach does not require knowing previous aca-
demic performance or past grades. Instead, we investigate
whether a binary course grade can be predicted from the
trace data alone, with no intermediate exercise scores. Thus,
an advantage of our approach is that we can detect low- and
high-achievers without assessing the correctness of students’
answers. The benefit is especially important for courses that
include open-answer questions since those usually require
costly human experts to be graded reliably (for example,
essays in humanities subjects).

Our models work on raw sequences actions without aggre-
gation of count or session variables. Recent studies on using
RNNs on click-stream data [22], [17], [7], [16] and [18] are
conceptually close to our approach in terms of using RNNs
to work with sequences of actions. However, all of them
but [18] operate only on video interaction and exercise an-
swer features, whereas we also include search queries and
discussion messages. [18] does not explore the autoencoders
or attention and does not investigate the extracted student
representation. Moreover, in most of them, aggregation still
happens: [17] uses cumulative counts, [16] – weekly snap-
shots and in [22] interaction features are binary per item,
while we feed the raw sequences as an input to predictive
models. Besides, their task is to predict the next exercise
response while we predict the overall course success.

Concerning the use of deep learning for unsupervised feature
extraction, only a few recent publications have explored it
[7]. For example, autoencoders, a popular approach in nat-
ural language processing [35], have only recently entered the
educational data mining field [36]. Motivated by this, we ex-
tend recent end-to-end approaches to feature engineering on
trace data by using autoencoders (including an attentional
one) to embed student behaviour.

Regarding the character of the trace data used, we operate
on short courses which contain multimedia content (such as
videos and discussion messages; details are provided in sec-
tion 3). The dataset also addresses the variability across a
range of subjects [24]. Moreover, it allows us to showcase
the methods in a real-life scenario, as the data is collected
from a commercial educational platform. It should be noted
that only coarse-grained trace data is available, i.e. there
are no details of interaction with videos, such as replays. To
enrich the data representation without changes to the orig-
inal platform, we introduce several encoding schemes that
capture the relative progress within the course.

Despite their promising results, the state-of-the-art deep
learning methods are black-box models, which renders the
interpretation of the prediction making process and incor-
poration of domain knowledge far from straightforward [10].
Such lack of interpretability can seriously hinder the adop-
tion of otherwise efficient models in decision-critical domains
such as education, as stakeholders cannot control or assess
the fairness of the process. In order to illuminate how the
model makes a decision, we can cluster the produced student
behaviour representations or investigate attention heatmaps.
In spite of the apparent success of attention mechanisms in

392 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 1: An example data entry for student behaviour in a
course.

user id 77
course id 60
avg session duration 584
num sessions 5
avg session intensity 2.6
session frequency 0.24
actions [(‘video view’ ‘2015-11-13 15:33’), ...]
views 4
searches 0
messages 0
video likes 3

natural language processing [2], few researchers have utilised
them for academic performance prediction so far [25].

While our primary focus is on predicting academic perfor-
mance, it is also necessary to provide an insight into the
learning strategies of students [12]. While this concept is
reminiscent of learning styles [9], it avoids their heavily crit-
icised assumptions [29] by performing analysis bottom-up
based on raw data, instead of fitting the students in a rigid
framework. One way to investigate different learning strate-
gies is to cluster students based on their trace data. The
resulting clusters implicitly classify students according to
how they receive and process information or whether they
are high- versus low-achievers. The obtained cluster assign-
ment allows us to improve personalisation mechanisms since
we can now use the student’s preferred mode of interaction
(for example, adjust the proportion of videos versus readings
based on how much of a visual learner the student is). Pre-
vious research in this field relied on Hidden Markov Models,
pattern mining, or Levenshtein distance between sequences
[6, 13]; on numerical features, Partitioning Around Medoids
[11] or k-Means are used. This study clusters the embed-
dings produced by predictive models and autoencoders. We
expect students with similar learning strategies to appear in
the same clusters. By aligning these clusters with academic
performance scores, we could distinguish strategies typical
for low- and high- achievers.

3. DATA & FEATURES
3.1 Data
The dataset for this study consists of student trace data ex-
tracted from an online educational platform for secondary
school students (12-18 years old), with a focus on mathe-
matics and Dutch language courses. The dataset contains
interaction logs for 44 333 students and 467 short courses
(177 873 students-course tuples) from 20 September 2012 to
8 August 2020. Each course includes several lessons with
associated videos, discussion threads and exercises (mostly
multiple choice).

The target variable is the score that the student obtains for
the course. We converted the original score (from 0 to 100)
into a binary variable (I(score > 50)), as we are interested
in patterns corresponding to general success or failure in the
course. Thus, for a given student-course tuple, we need to
predict 0 if the student is likely to fail the course and 1
otherwise.

For this binary classification case, there is a noticeable class
imbalance: there are 124 248 (70%) instances in class 1 and
53 625 (30%) in class 0. It is also important to note that
the courses on the platform are rather short compared to
most datasets in the field: the median number of actions
per student-course tuple is 8, and the median duration of
a course is approximately 14 minutes. In comparison, [7]
use information about 44 920 students participating in a 4-
month course focused on a single subject, with 20 interaction
features.

3.2 Features
We distinguish three ways to engineer features (see Table 1
for the example data entry). Count and session features are
traditional predictors. Sequences of actions are also often
aggregated per timestep (e.g. a chapter in the course) in-
stead of being used as-is. In contrast, we use the sequences
in their raw, original format as input for neural models. Such
a general data format can be applied in any online course
with minimal technical requirements for tracking student
behaviour, which benefits smaller learning platforms. More
precisely, the features we use are as follows:

1. counts of actions Xc. For example, the student with id
77 watched four videos in a course with id 60. These
features include the number of: video views, video
likes, messages posted in forums, search queries, ques-
tions attempted (without making a distinction between
correct or incorrect answer).

2. manually engineered session features Xs. We experi-
mented with multiple threshold timeout values (as we
did not have access to login and logout timestamps
for students), settling on 15 minutes. We then ag-
gregated statistics about individual studying sessions,
resulting in 4 features: average session duration in sec-
onds, number of sessions, session frequency (the ratio
of number of sessions to the course duration in hours)
and session intensity (average number of actions per
session). This is a typical set of features engineered in
similar studies [32], which we use as a benchmark.

3. raw action sequences Xa. There are five possible ac-
tions: a video view, a video like, a discussion forum
message post, a search request for a term, and an at-
tempt to answer an exercise (without the indicator of
whether the answer was correct).

Due to the short duration of courses, encoding with just five
types of actions without any additional information leads
to low variability in data: out of 177 873 sequences, only
10 058 are unique. As a consequence, the same behaviour
pattern could correspond to both passing and failing the
course. To overcome this issue, we consider several ways to
encode additional information in elements of the sequence.
We list them by their generalisability, from least to most.

Concatenating global content item id and the corresponding
actions. For instance, for a video with id 12, we would en-
code the action as “video view 12” (we give examples for
videos, but the idea transfers directly to other content items
as well). We can also encode items associated with the video:

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 393

answering the exercise about this video would be encoded
as “exercise answer 12”. The downside is that both these
approaches do not generalise to new courses: we have to
assume that the number of either courses or content items
is fixed. Otherwise, a model needs to be retrained. It is
a common problem also found in such popular approaches
as DKT [33]. Besides, this approach quickly leads to an
inflated vocabulary, making it computationally inefficient if
one would use the bag-of-words approach (hence it is not
featured in Table 2 for machine learning models, only for
recurrent networks).

Encoding actions using local content item ids, preserving their
relative order in the course. In other words, if the video
with id 12 is the first video in a given course, then we en-
code the action as “video view 1”. This scheme has the po-
tential for interesting insights into student behaviour. For
example, we can see whether consequently watching the
videos contributes a lot to better performance. Besides,
we can gauge the engagement and background knowledge
by checking whether the student immediately watched later
videos. Regarding the disadvantages, the applicability to
new courses is still limited: the number of videos should be
the same or less than in the courses we have seen before.
Using the out-of-vocabulary token or setting the maximum
possible number of videos high is the simple workaround.
However, a more flexible solution might be required – for
which we suggest the progress percentage encoding.

Encoding the rounded percentage of the total number of videos
in the course. For instance, if there are five videos in to-
tal, then the view of the second one will be represented as
“video view 40” (40%). Even though we can no longer focus
on the exact content item as if the case with the other encod-
ing schemes, we can still potentially recommend the section
of the course to revise. This is the most flexible way, as it
scales to new courses (of arbitrary length, with previously
unseen exercises) as well.

We provide experimental results using the four proposed en-
coding schemes (raw Xa, global content id Xa−gid, local
content id Xa−lid and progress percentage id Xa−pid, re-
spectively) in section 5. To each of the above schemes, we
can also add the difference in seconds with the previous ac-
tion if the timestamps are available.

4. MODELS
We trained three types of classification models on numeri-
cal count features Xc and session features Xs: Logistic Re-
gression, Decision Tree and Random Forest. For sequence
data Xa, we used two popular variations of RNN – Long-
Short Term Memory (LSTM) [14] and Gated Recurrent Unit
(GRU) [4]. We have experimented with convolutional neu-
ral networks, but their performance was lower than that of
recurrent ones. As such, for the sake of brevity, we do not
focus on them in this study.

On a general level, neural classification models embed ac-
tion sequences and pass them through recurrent layers to
the final feed-forward layer(s) with sigmoid activation. It
produces a probability of success which is then converted
into a classification prediction score. A recurrent neural net-
work takes a sequence of vectors {xt}Tt=1 (T is the number

of timesteps) as an input and maps them to an output se-
quence {yt}Tt=1 by calculating hidden states {ht}Tt=1 which
encode past information that is relevant for future predic-
tions. LSTM uses a more elaborate structure in each of the
repeating cells, allowing it to learn long-term dependencies.
It includes so-called forget, input and output gates, which
control what information to retain and pass to the next step.
GRU simplifies the cell by combining the forget and input
gates into a single update gate and merges the cell state and
hidden state.

An encoder-decoder framework uses an RNN to read a se-
quence of vectors {xt}Tt=1 into another, context vector c in
an auto-regressive fashion. If we set the desired output se-
quence equal to the input one – so that the goal becomes
the reconstruction of the original data – we obtain an au-
toencoder. Then, the context vector, if its dimensionality
is chosen to be lower than that of the input, will contain
a denoised representation of the data that can be used in
other models. This way, an autoencoder allows us to learn
efficient data representation in an unsupervised manner.

Bahdanau attention mechanism allows the network to focus
on certain parts of the input [2]. It is achieved by computing
the context vector as a weighted sum of vectors produced by
the encoder. The weights are learnt by a feed-forward neural
network jointly with the rest of the model. Transformer
model is a recent competitive alternative to the encoder-
decoder framework [34] which foregoes the recurrent cells in
favour of stacked self-attention and feed-forward layers.

5. EXPERIMENTS
We apply machine learning models on count and session
features and compare them with deep learning ones on se-
quences of actions (with different encoding schemes used, as
outlined above). Besides, we embed action sequences using
an LSTM autoencoder and use its output Xauto as input for
the classification models.

Neural network models were implemented using Keras [5]
with Tensorflow backend [1] and machine learning ones with
sklearn [3]. The parameters were optimised using the grid-
search with stratified 10-fold cross-validation (5-fold for neu-
ral models). For recurrent neural networks, we checked
the following parameter values: 32/64/128 recurrent units,
32/64/128 hidden units in feed-forward layers, 32/64/128
embedding dimensions. The maximum sequence length was
set to 50. The models were trained with binary cross-entropy
loss, using the Adam optimiser [19], early stopping and
learning rate reduction on a plateau.

5.1 Classification
For the binary classification task, the cross-validation ROC
AUC scores are presented in Table 2. Inspecting the table,
we can conclude that end-to-end models perform at least
as well as the ones using manually engineered features, even
when the length and variability of actions sequences are lim-
ited.

Concerning RQ1, the contribution of different encoding schemes,
we can see that global content id encoding performs the best.
However, as mentioned above, it does not scale to new con-
tent items. However, using the percentage encoding scheme

394 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 2: Cross-validation ROC AUC scores for classification models. Input features: count features Xc, session features Xs,
action sequences Xa with encoding scheme variations (no id Xa, global content id Xa−gid, local content id Xa−lid, progress
percentage id Xa−pid), actions embeddings by LSTM autoencoder Xauto, actions embeddings by an attentive (Bahdanau)
LSTM autoencoder XautoB .

Xc Xs Xa−lid Xa−pid Xauto Xauto B

Logistic Regression 0.62 0.62 0.69 0.67 0.77 0.76
Random Forest 0.73 0.81 0.81 0.81 0.82 0.81
Decision Tree 0.73 0.80 0.79 0.80 0.80 0.80

Xa Xa−gid Xa−lid Xa−pid Xauto Xauto B

LSTM 0.73 0.88 0.82 0.81 0.82 0.83
GRU 0.73 0.87 0.81 0.81 0.83 0.82

(a) Xc (count features) (b) Xs (session features)

(c) Xa (LSTM embeddings on action data)
(d) Xa−pid (LSTM embeddings on action data with progress
percentage id)

Figure 1: Distribution of target variable (pass/fail score) over the K-Means clusters based on different data representations
(with Euclidean distance; K of 3, 5, 10 and 20 were tried). LSTM embeddings distinguish better between high- and low-
achievers, producing clusters that clearly correspond to one class more than the other, while for traditional count (a) and
session (b) data, most of the clusters contain a mix of both classes. For LSTM embeddings on action data (c), clusters appear
that contain more failing students than passing – and are thus more useful for early warning systems. The effect is even more
pronounced if we use progress percentage encoding (d).

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 395

also gives a steady increase in ROC AUC score: from 0.73 to
0.81 for Random Forest, where we use count features, and
similarly for recurrent networks, where we use sequences.
Using unsupervised embeddings obtained with an autoen-
coder (the focus of RQ2), we gain an improvement as well:
from 0.73 to 0.82 for both machine and deep learning mod-
els.

Contrary to our expectations for RQ3, adding attention did
not significantly improve the results. We experimented with
including an attention mechanism directly into the classifi-
cation models, both Bahdanau and Transformer. It can be
done, for example, by training a simple Transformer, then
using the average of its encoder’s hidden states as an input
to a classification model on top. Unfortunately, those mod-
ifications did not influence performance in our experiments,
in contrast to [25]. We hypothesise that the features might
be too coarse-grained and the sequences too short to take
full advantage of the technique; there are also no skill labels
that would provide the hierarchical structure that attention
mechanisms can reflect. However, using attention allows us
to produce visualisations that a first step to understanding
the decision-making process of the neural network. Thus,
we provide the attention scores from a Bahdanau-attention
classification model below for illustration purposes.

To gain more actionable insight from our models, we also
investigated the predictive performance on partial action se-
quences. Being able to predict early that a student will fail
the course would allow sending a timely alert to the educa-
tor, signalling the need for intervention. Hence, we explored
how the performance of the models changes when only the
first N actions are available. For these experiments, to en-
sure that the model does not have full information, we only
used courses with more than five questions and more than
eight actions. As depicted in Figure 2, sequential data lead
to higher scores than count features and proposed encoding
schemes outperform raw action sequences.

5.2 Clustering & Visualisation
We clustered the student-course tuples based on different
data representations using k-Means and plotted the distri-
bution of the target class over these clusters (see Figure 1d)
to investigate how the models distinguish between learning
strategies of low- and high-achievers. For traditional count
and session data, most of the clusters are not easily inter-
pretable, as they contain a mix of both classes, roughly fol-
lowing the target label distribution. For instance, when us-
ing count features, almost all student-course pairs are in just
three clusters, so there is little distinction between learning
strategies. It should be noted that even though some clus-
ters appear empty, in fact they still contain a very small
number of students.

When we increase the representation’s complexity, the ex-
tracted groups are more distinct. The distribution of high-
and low-achievers in them shifts so that clusters with the
prevalence of a single class emerge. The improvement is
even more noticeable with progress percentage encoding:
more clusters are extracted where one class is prevalent. For
LSTM embeddings on action data, clusters appear that con-
tain more failing students than passing, signalling that this
is an unsuccessful strategy (clusters 4 and 6 on 1). This

information is vital for early warning systems. The effect
is even more pronounced if we use the progress percentage
encoding, which encourages the application of these schemes
for distinguishing between successful and unsuccessful learn-
ing strategies.

Another way to shed light on the prediction process of a neu-
ral network is to visualise attention heatmaps, where higher
scores correspond to actions in the sequence that are more
important for the classification decision (Figure 3).

Limitations & Future work. A wide range of topics covered in
these courses might influence the performance, as different
subjects are likely to demand different behaviour patterns
to successfully pass the course (e.g., humanities versus tech-
nical subjects). We plan to investigate them separately and
include information about exercise content. Finally, we plan
to train a recommendation system informed by the extracted
learning strategies to aid navigation.

6. CONCLUSION
We show that it is possible to predict whether students will
pass the course using only their navigation pattern sequence
in the online learning platform, without information about
past grades. The findings of our study suggest that features
extracted with deep learning are efficient even if the courses
are extremely short, cover multiple different subjects, and
only a limited number of interaction types is available.

We propose a flexible way to increase the classification per-
formance with minimal preprocessing of the raw sequences
of actions extracted from the learning platform required.
A novel and relatively simple percentage progress encod-
ing scheme is introduced which captures the course struc-
ture while scaling well to the new data. It results in an
improvement of almost 10% in ROC AUC score. We also
demonstrate a positive effect of using pre-trained unsuper-
vised embeddings obtained with autoencoders (up to 15%
improvement when using in machine learning models, com-
pared to traditional features). We cluster resulting embed-
dings to show that using action sequences has more potential
for distinguishing between strategies specific to high and low
achievers than simple count or session features. It is possible
to visualise attention heatmaps and see the contribution of
individual actions to the classification decision to interpret
retrieved strategies.

Our research supports decision-makers, as it allows detecting
(un)successful students from their navigation patterns alone,
without having to grade intermediate exercises. The action
sequences corresponding to high achievers can be used to in-
form learning design patterns and recommendation systems
in a more meaningful way than the standard count features.
As the proposed models are shown to outperform several
baselines on extremely short, incomplete action sequences,
they allow us to intervene early if a student begins to follow
a trajectory associated with a lower chance of success.

7. REFERENCES
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,

Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,

396 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. Software available
from tensorflow.org.

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine
translation by jointly learning to align and translate.
2015.

[3] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa,
A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer,
A. Gramfort, J. Grobler, R. Layton, J. VanderPlas,
A. Joly, B. Holt, and G. Varoquaux. API design for
machine learning software: experiences from the
scikit-learn project. In ECML PKDD Workshop:
Languages for Data Mining and Machine Learning,
pages 108–122, 2013.

[4] K. Cho, B. van Merrienboer, Ç. Gülçehre,
F. Bougares, H. Schwenk, and Y. Bengio. Learning
phrase representations using RNN encoder-decoder for
statistical machine translation. CoRR, abs/1406.1078,
2014.

[5] F. Chollet et al. Keras. https://keras.io, 2015.

[6] M. C. Desmarais and F. Lemieux. Clustering and
visualizing study state sequences. In S. K. D’Mello,
R. A. Calvo, and A. Olney, editors, Proceedings of the
6th International Conference on Educational Data
Mining, Memphis, Tennessee, USA, July 6-9, 2013,
pages 224–227. International Educational Data Mining
Society, 2013.

[7] M. Ding, K. Yang, D. Yeung, and T. Pong. Effective
feature learning with unsupervised learning for
improving the predictive models in massive open
online courses. In Proceedings of the 9th International
Conference on Learning Analytics & Knowledge, LAK
2019, Tempe, AZ, USA, March 4-8, 2019, pages
135–144. ACM, 2019.

[8] X. Ding and E. C. Larson. Why deep knowledge
tracing has less depth than anticipated. 2019.

[9] J. Feldman, A. Monteserin, and A. Amandi.
Automatic detection of learning styles: state of the
art. Artif. Intell. Rev., 44(2):157–186, 2015.

[10] R. C. Fong and A. Vedaldi. Interpretable explanations
of black boxes by meaningful perturbation. In IEEE
International Conference on Computer Vision, ICCV
2017, Venice, Italy, October 22-29, 2017, pages
3449–3457. IEEE Computer Society, 2017.

[11] D. Furr. Visualization and clustering of learner
pathways in an interactive online learning
environment. In M. C. Desmarais, C. F. Lynch,
A. Merceron, and R. Nkambou, editors, Proceedings of
the 12th International Conference on Educational
Data Mining, EDM 2019, Montréal, Canada, July
2-5, 2019. International Educational Data Mining
Society (IEDMS), 2019.

[12] D. Gašević, S. Dawson, and G. Siemens. Let’s not
forget: Learning analytics are about learning.
TechTrends, 59(1):64–71, 2015.

[13] N. Gitinabard, T. Barnes, S. Heckman, and C. F.
Lynch. What will you do next? A sequence analysis

on the student transitions between online platforms in
blended courses. 2019.

[14] S. Hochreiter and J. Schmidhuber. LSTM can solve
hard long time lag problems. In M. Mozer, M. I.
Jordan, and T. Petsche, editors, Advances in Neural
Information Processing Systems 9, NIPS, Denver,
CO, USA, December 2-5, 1996, pages 473–479. MIT
Press, 1996.

[15] B. Jeon, E. Shafran, L. Breitfeller, J. Levin, and C. P.
Rosé. Time-series insights into the process of passing
or failing online university courses using
neural-induced interpretable student states. 2019.

[16] H. Karimi, T. Derr, J. Huang, and J. Tang. Online
academic course performance prediction using
relational graph convolutional neural network. In
A. N. Rafferty, J. Whitehill, C. Romero, and
V. Cavalli-Sforza, editors, Proceedings of the 13th
International Conference on Educational Data Mining,
EDM 2020, Fully virtual conference, July 10-13, 2020.
International Educational Data Mining Society, 2020.

[17] T. Käser and D. L. Schwartz. Exploring neural
network models for the classification of students in
highly interactive environments. 2019.

[18] B. Kim, E. Vizitei, and V. Ganapathi. Gritnet:
Student performance prediction with deep learning.
2018.

[19] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. 2015.

[20] V. Kovanovic, D. Gasevic, S. Dawson, S. Joksimovic,
R. S. Baker, and M. Hatala. Penetrating the black box
of time-on-task estimation. In J. Baron, G. Lynch,
N. Maziarz, P. Blikstein, A. Merceron, and
G. Siemens, editors, Proceedings of the Fifth
International Conference on Learning Analytics And
Knowledge, LAK ’15, Poughkeepsie, NY, USA, March
16-20, 2015, pages 184–193. ACM, 2015.

[21] B. Mbouzao, M. C. Desmarais, and I. Shrier. A
methodology for student video interaction patterns
analysis and classification. In M. C. Desmarais, C. F.
Lynch, A. Merceron, and R. Nkambou, editors,
Proceedings of the 12th International Conference on
Educational Data Mining, EDM 2019, Montréal,
Canada, July 2-5, 2019. International Educational
Data Mining Society (IEDMS), 2019.

[22] K. Mongkhonvanit, K. Kanopka, and D. Lang. Deep
knowledge tracing and engagement with moocs. In
Proceedings of the 9th International Conference on
Learning Analytics & Knowledge, LAK 2019, Tempe,
AZ, USA, March 4-8, 2019, pages 340–342. ACM,
2019.

[23] S. Montero, A. Arora, S. Kelly, B. Milne, and
M. Mozer. Does deep knowledge tracing model
interactions among skills? 2018.

[24] B. Motz, J. Quick, N. L. Schroeder, J. Zook, and
M. Gunkel. The validity and utility of activity logs as
a measure of student engagement. In Proceedings of
the 9th International Conference on Learning
Analytics & Knowledge, LAK 2019, Tempe, AZ, USA,
March 4-8, 2019, pages 300–309. ACM, 2019.

[25] S. Pandey and G. Karypis. A self attentive model for
knowledge tracing. 2019.

[26] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 397

L. J. Guibas, and J. Sohl-Dickstein. Deep knowledge
tracing. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec,
Canada, pages 505–513, 2015.

[27] A. Pigeau, O. Aubert, and Y. Prié. Success prediction
in moocs: A case study. 2019.

[28] A. Polyzou and G. Karypis. Feature extraction for
classifying students based on their academic
performance. In K. E. Boyer and M. Yudelson, editors,
Proceedings of the 11th International Conference on
Educational Data Mining, EDM 2018, Buffalo, NY,
USA, July 15-18, 2018. International Educational
Data Mining Society (IEDMS), 2018.

[29] C. Riener and D. Willingham. The myth of learning
styles. Change: The magazine of higher learning,
42(5):32–35, 2010.

[30] C. Romero and S. Ventura. Data mining in education.
Wiley Interdiscip. Rev. Data Min. Knowl. Discov.,
3(1):12–27, 2013.

[31] C. Romero and S. Ventura. Educational data mining
and learning analytics: An updated survey. Wiley
Interdiscip. Rev. Data Min. Knowl. Discov., 10(3),
2020.

[32] A. Sheshadri, N. Gitinabard, C. F. Lynch, T. Barnes,
and S. Heckman. Predicting student performance
based on online study habits: A study of blended
courses. CoRR, abs/1904.07331, 2019.

[33] S. Sonkar, A. S. Lan, A. E. Waters, P. Grimaldi, and
R. G. Baraniuk. qdkt: Question-centric deep
knowledge tracing. 2020.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. In I. Guyon, U. von
Luxburg, S. Bengio, H. M. Wallach, R. Fergus,
S. V. N. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 5998–6008, 2017.

[35] P. Wang, J. Xu, B. Xu, C. Liu, H. Zhang, F. Wang,
and H. Hao. Semantic clustering and convolutional
neural network for short text categorization. In
Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing of the Asian Federation of Natural
Language Processing, ACL 2015, July 26-31, 2015,
Beijing, China, Volume 2: Short Papers, pages
352–357. The Association for Computer Linguistics,
2015.

[36] Y. Wang, N. Law, E. Hemberg, and U. O’Reilly. Using
detailed access trajectories for learning behavior
analysis. In Proceedings of the 9th International
Conference on Learning Analytics & Knowledge, LAK
2019, Tempe, AZ, USA, March 4-8, 2019, pages
290–299. ACM, 2019.

[37] R. J. Williams and D. Zipser. A learning algorithm for
continually running fully recurrent neural networks.
Neural Comput., 1(2):270–280, 1989.

398 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

APPENDIX

Figure 2: Comparison of validation ROC AUC scores of
an LSTM on encoding schemes in the incomplete sequence
scenario. We can see that percentage and local content id
encoding schemes perform better than raw actions. As such,
we would be able to detect whether a student is likely to fail
from the first two actions already.

Figure 3: An attention heatmap of the RNN model with
Bahdanau attention mechanism on action data (multiple se-
quences view). Higher scores (brighter colours) correspond
to actions in the sequence that are more important for clas-
sifying the student as passing or not. If we use an encoding
scheme which includes content id (such as the global content
id here), we see which content items contribute more to the
classification decision: for example, in the bottom row, the
viewing of the video with id 264231 is more important for
the network than the others.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 399

Assessing Attendance by Peer Information

Pan Deng1, Jianjun Zhou1*, Jing Lyu2, Zitong Zhao2
1Shenzhen Research Institute of Big Data, Shenzhen, China

2The Chinese University of Hong Kong, Shenzhen, China

{pandeng, jinglyu, zitongzhao}@link.cuhk.edu.cn

zhoujianjun@cuhk.edu.cn

ABSTRACT

Attendance rate is an important indicator of students’ study

motivation, behavior and Psychological status; However, the

heterogeneous nature of student attendance rates due to the course

registration difference or the online/offline difference in a blended

learning environment makes it challenging to compare attendance

rates. In this paper, we propose a novel method called Relative

Attendance Index (RAI) to measure attendance rates, which

reflects students’ efforts on attending courses. While traditional

attendance focuses on the record of a single person or course,

relative attendance emphasizes peer attendance information of

relevant individuals or courses, making the comparisons of

attendance more justified. Experimental results on real-life data

show that RAI can indeed better reflect student engagement.

Keywords

attendance, peer information, engagement, academic performance,

comparison, clustering

1. INTRODUCTION
While studying offline is the norm for most schools, during

epidemic periods all or a portion of students are forced to study

online due to university closure. In such a blended learning

environment, tracking the study status and the wellbeing of

students is an important issue for the university. Students’

attendance in classes is a measure that reflects students’

enthusiasm for the course and their status in the university [29].

Many studies suggest a correlation between attendance and

attainment at university [5, 26, 14]. Several studies detect

attendance rates using mobile devices and include attendance as a

feature to predict academic performance [27, 19, 28]. Attendance

is also correlated with behavior and Psychological problems such

as video game addiction [24] and depression [26]. Detecting

unusual attendance rate changes can help to identify abnormal

behaviors and Psychological problems in an early stage and

provide in time intervention to students in need.

The successful applications of attendance data call for fair

comparisons among peer attendance, especially in universities.

Traditionally, the attendance rate of a course or a student is

isolated and might not be compared fairly, because in many

universities students are allowed to select some courses on their

own so that the course registration records of two students can be

different. In addition, each course can have its own attendance

policy, making it harder to compare attendance rates. Courses that

have mandatory attendance requirements usually have higher

attendance rates than those do not, so that it is not fair to compare

course attendance rates without considering attendance

requirements. Similarly, students who registered for courses with

mandatory attendance requirements usually have higher

attendance rates than students who registered for courses with

voluntary attendance requirements, so that the attendance rate

does not always reflect the attainment of a student. Attendance of

online and offline courses may not be compared directly as well,

because the efforts to attend those courses can be significantly

different. Attending online courses could be as simple as a mouse

click away, while attending offline courses usually requires

travelling from place to place physically.

Traditionally it is not easy to fairly compare attendance in a

university, due to not just the diversity of course registration and

attendance requirements but also the difficulty of collecting

campus-wide attendance data. Without attendance information of

peer students or courses, the attendance data of a student or a

course is isolated and difficult to adjust. However, in the era of

Big Data, many new technologies [12, 18, 31] have been proposed

to collect attendance data for many courses simultaneously,

making it possible to analyze the attendance structure of the

student population, and develop new attendance calculation

methods.

Careful comparisons of attendance can also provide insight into

students’ academic interest. If a student attends a course that has a

generally low attendance rate, it indicates that the student is more

willing to attend the course than their classmates are; On the other

hand, if a student attends a course that has a generally high

attendance rate, it indicates that the student is just doing what

others are doing.

In this paper, we propose a novel method called Relative

Attendance Index (RAI) to measure attendance, which reflects the

efforts on attending courses and makes comparisons of attendance

more justified. To our knowledge, this is the first study on fair

comparisons of attendance. While traditional attendance focuses

on the record of a single person or course, we define a notion for

attendance contribution to course attendance and add the

attendance information of relevant individuals or courses to make

the comparisons of attendance fairer. We perform a campus-wise

study on attendance and analyze its effects on course grades and

GPA. Our experiment results show that RAI has a higher

correlation with academic performance than the traditional

attendance rate.

* The corresponding author.

Pan Deng, Jianjun Zhou, Jing Lyu and Zitong Zhao “Assess-
ing attendance by peer information”. 2021. In: Proceedings
of The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 400-406.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

400 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

The rest of this paper is organized as follows. Section 2 describes

the related studies. Section 3 introduces the RAI definition.

Section 4 presents the experiment results on real-life data from a

university. Section 5 discusses an application of RAI on clustering

student populations. Section 6 describes the limitations and future

work. Section 7 lists the acknowledgments.

2. RELATED STUDIES
With the advancement of technology, many new methods have

been proposed to collect campus-wide attendance data. Several

studies [13, 11, 18] measured attendance via QR code systems in

which QR codes are generated and then scanned by students to

authenticate themselves. Wang et al. [26] deployed an APP to

students’ cell phones to detect attendance by GPS signals and

WiFi tracing. A method independently developed in [19] and [28]

used WiFi log to calculate attendance. Studies in [2, 25] proposed

Bluetooth/Beacon based attendance prediction systems. Shoewu

and Idowu [22] used fingerprints and Kar et al. [12] used face

recognition to detect individual attendance rates.

Some studies measured offline and online attendance at the same

time. Brennan et al. [4] detected physical attendance by thermal

sensors and online behaviors by clickstream data. The change of

online and physical attendance through time was observed.

However, due to a technology limit, the method did not link

physical attendance to individuals and did not study the issue of

attendance comparison. Nordmann et al. [17] mixed the data of

physical attendance and online recording clickstream together to

form the total attendance rate instead of studying them separately.

However, attendance of live lectures is still a stronger predictor

than recording use on students’ academic performance.

Many studies confirmed the correlation between attendance and

academic performance [1, 3, 7, 16]. See [15] for a survey. [15]

also reviewed factors that affect attendance. To work around the

issue of fair comparisons of attendance, many studies focused on

samples from the same course or samples with similar registration

records (e.g., first year students) [1, 3, 10]. [3] also controlled

factors such as age, gender, nationality etc. in their regression

analysis. Studies in [7] and [16] divided the students into bands

according to grades and used the average attendance of each band

for correlation studies.

Student subtyping and clustering are widely used in analyzing

learning process and predicting academic performance. Yang et

al. [30] applied EM-IRL to students learning behavior data and

observed significant differences between groups. Romero et al.

[20] used clustering on online forum data to predict students’ final

performance. Resulting model turned out to be suitable and highly

interpretable. Cerezo et al. [5] studied both learning process and

clusters’ relation with performance using LMS logs data.

Resulting clusters are well-interpreted and showed satisfying

correlation with final marks.

Many studies explored the reasoning for student class attendance.

Friedman et al. [9] and Moore et al. [14] reported positive

relationship between class attendance and students’ motivation.

Sloan et al. [23] further found that the level of interest has

significant impact on attendance. These studies indicated that

attendance, along with other features, can better show students’

academic interest than traditional models.

None of the above studies has applied peer information to revise

attendance measurements.

3. METHOD
The traditional attendance rate of a class or a student is defined in

a straightforward way. Only the information of the class or the

student is involved. We give the definition of Attendance Rate

(AR) formally as in Definition 1.

Definition 1 (Attendance Rate rc and rs): Given class c and

student s, let 𝑛𝑐
𝑟𝑒𝑔

and 𝑛𝑐
𝑎𝑡𝑡 be the number of students registered c

and the number of students attended c respectively; let 𝑛𝑠
𝑟𝑒𝑔

and

𝑛𝑠
𝑎𝑡𝑡 be the number of classes registered by s and the number of

classes attended by s. Then the Attendance Rate (AR) of class c

(rc) and of student s (rs) are defined as below respectively.

𝑟𝑐 =
𝑛𝑐

𝑎𝑡𝑡

𝑛𝑐
𝑟𝑒𝑔

, (1)

𝑟𝑠 =
𝑛𝑠

𝑎𝑡𝑡

𝑛𝑠
𝑟𝑒𝑔

 (2)

Students can have different sets of registered classes, and classes

can have very different attendance requirements. When comparing

the attendance rates of two students, it is necessary to analyze the

set of classes attended by these two students and the attendance

rates of these classes. If a student attends a class attended by

almost everyone, the student makes little contribution to the

attendance rate of the class; on the other hand, if a student attends

a class that has a low attendance rate, the student makes a

significant contribution to the attendance rate. To capture the

concept, we propose the notion of attendance contribution as in

Definition 2.

Definition 2 (Attendance Contribution 𝐷𝑠𝑐): Let rc be the

attendance rate of class c, and asc be a function indicting whether

student s attended class c or not, then the Attendance Contribution

of student s on the attendance rate of class c is defined as

𝐷𝑠𝑐 = 𝑎𝑠𝑐 − 𝑟𝑐, with (3)

 𝑎𝑠𝑐 = {
1，if 𝑠 attended 𝑐

 0，if 𝑠 did not attend 𝑐
 (4)

Since 𝑟𝑐 ∊ [0, 1], Attendance Contribution is a number between

 -1 and 1. If s has registered c and s attended c, then the

attendance rate of c cannot be zero and 𝐷𝑠𝑐 can approach 1 but

never reach 1.

With Attendance Contribution, we can compare the attendance

rates of two students by computing the average Attendance

Contribution on registered classes. We defined the notion as

Relative Attendance Index (RAI) in Definition 3.

Definition 3 (Relative Attendance Index 𝑅𝐴𝐼𝑠): Given student s,

Let 𝐾𝑠 be the set of classes registered by s, the Relative

Attendance Index (RAI) of s is defined as

𝑅𝐴𝐼𝑠 =
∑ 𝐷𝑠𝑐𝑐∈𝐾𝑠

|𝐾𝑠|
 (5)

RAI considers both the student’s individual attendance status of a

semester and the attendance status of the student’s classmates.

The peer information is injected into the new measure through the

course attendance rate in Attendance Contribution.

LEMMA 1: −1 < 𝑅𝐴𝐼𝑠 < 1.

Proof: The 𝑅𝐴𝐼𝑠 definition only considers classes registered by s.

When 𝑎𝑠𝑐 = 0, 𝑟𝑐 ∊ [0,1) ; When 𝑎𝑠𝑐 = 1, 𝑠 attended 𝑐,
therefore 𝑟𝑐 ∊ (0, 1] . Thus 𝑎𝑠𝑐 − 𝑟𝑐 ∊ (−1, 1), Therefore

𝑅𝐴𝐼𝑠 =
∑ (𝑎𝑠𝑐−𝑟𝑐)𝑐∈𝐾𝑠

|𝐾𝑠|
 ∊ (

|𝐾𝑠|×−1

|𝐾𝑠|
,

|𝐾𝑠|×1

|𝐾𝑠|
) = (-1, 1). □

RAI is a number between -1 and 1. When RAI approaches -1, 𝑎𝑠𝑐

is mostly 0 and 𝑟𝑐 approaches 1 for most classes, indicating that

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 401

the student has skipped many well attended classes. On the other

hand, when RAI approaches 1, 𝑎𝑠𝑐 is mostly 1 and 𝑟𝑐 approaches

0 for most classes, indicating that the student has attended many

poorly attended classes. Therefore, RAI shows the difference of

attitudes toward classes between students and their classmates.

4. Results

4.1 Data and Setup
The anonymous attendance and grade data used in this paper were

collected in 2018 and 2019 from a university 1 in China. We

applied the method proposed in [19] and [28] to calculate the

attendance. Note that our Relative Attendance Index can be

applied to attendance data collected using other methods such as

QR code [18]. The student IDs were converted into hash codes,

then the attendance and grade data were connected through the

hash codes. The university did not have a mandatory attendance

policy; however, while most instructors followed the university

policy, some instructors had their own attendance requirements.

Some instructors used in-class discussions and quizzes to

encourage attendance. The data came from 4838 students from

Cohort 14 to 19 in 44 majors, spanning over 3 semesters, with

1489 courses grouped into 37 categories by the university. For

most courses, students received letter grades from A to F. Courses

with other grades such as P/F were excluded. The traditional

attendance rate (AR) for a student was calculated using Formula

(2) in Definition 1, and the corresponding RAI was calculated

using Formula (5) in Definition 3.

4.2 Correlation with Academic Performance
Many previous studies show that attendance is correlated with

academic performance. Given that the purpose of student

attendance comparison is usually to assess the attainment of the

students, we calculated the correlation between attendance rates

and GPA to assess the fairness of attendance comparisons. A

more correctly calculated attendance assessment will have a

higher correlation with the GPA. The Pearson correlation between

RAI and GPA is 0.48, which is significantly higher than that of

AR (0.37). The p-values of the two correlation values are

3.7x10-225 and 2.6x10-129 respectively. Since they are well below

the 0.05 threshold, the correlation values are generally considered

significant.

We also calculated the correlation between attendance and

academic performance within each course category. The result is

shown in Table 1 (sorted by the RAI correlation). Some course

categories were filtered out because they had small enrollments

and did not generate correlation values with low enough p-values

(<0.05) to be statistically significant. For 19 out of the 26 course

categories, RAI has a higher correlation than AR. Only for two

categories, GED and FRN, AR has a higher correlation than RAI

(The descriptions of the categories are listed in Table 1). AR and

RAI are tie for the five categories of FMA, GNB, ERG, CHM and

CSC. We remark that language related courses such as ENG

(English) have low correlations because those courses usually

have in-class discussions resulting in an unofficial mandatory

attendance requirement. Categories that rely on prior knowledge

in high school, such as Chemistry and Physics, also have low

1 The use of the data by our project has been approved by the

university management and the committee in charge of personal

information in this university.

correlations. Since most students attending this university did not

study Calculus in high school and Calculus accounts for a large

faction in Mathematics courses, it is reasonable to see the MAT

category having a much higher correlation.

Table 1. Correlation in course categories

CAT. Description AR RAI

FMA Financial Mathematics 0.65 0.65

MSE Material Science and Engineering 0.46 0.52

BIM Bioinformatics 0.35 0.51

GED General Education D 0.48 0.46

GEB General Education B 0.42 0.45

STA Statistics 0.32 0.39

MGT Management 0.26 0.39

GFN
GE Foundation: In Dialogue with

Nature
0.28 0.37

FIN Finance 0.34 0.36

MAT Mathematics 0.34 0.36

EIE Electronic Information Engineering 0.34 0.36

GFH
GE Foundation: In Dialogue with

Humanity
0.34 0.36

ECO Economics 0.27 0.36

GNB Genomics and Bioinformatics 0.35 0.35

GEA General Education A 0.32 0.35

ACT Accounting 0.32 0.34

PHY Physics 0.22 0.29

HSS Humanities and Social Science 0.27 0.28

ERG General Engineering courses 0.27 0.27

GEC General Education C 0.24 0.27

CHM Chemistry 0.25 0.25

FRN French 0.28 0.23

CSC Computer Science 0.23 0.23

MKT Marketing 0.12 0.22

CHI Chinese 0.13 0.19

ENG English 0.06 0.12

4.3 RAI Distribution
To illustrate the different distributions on RAI for high and low

course grade students, we collected two sets of samples, with one

set having a course grade no less than B+ and the other set no

greater than C. Each sample is a triplet with a hashed student ID, a

course ID, and the corresponding grade received by the student in

the course. We then calculated the RAI of the student in the

corresponding course. Figure 1 (a) shows the distribution of the

first set. It shows that more than 50% of samples have RAI > 0

(better than normal). Figure 1 (b) shows the distribution of the low

course grade set. It shows that the majority of samples have RAI

< 0 (worse than normal), with some down to -0.8. For easier

comparisons of both sets, the values in both subfigures have been

402 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

normalized as the proportion values. We can see that the first set

has a more concentrated distribution than the second set. This

indicates that students receiving grade C or lower have a much

higher probability of having extreme attendance behaviors

(skipping many courses).

5. DISCUSSION
In this section, we showcase an application of RAI on clustering

the student population.

We formatted the attendance values in the 37 course categories as

a vector for each student, then applied a clustering algorithm on

the vectors. Since the dimensionality of 37 is too high for most

clustering algorithms, we applied PCA to reduce the

dimensionality. The clustering algorithm we applied was the

DBSCAN clustering algorithm [8] using the Euclidean distance.

DBSCAN performs density-based clustering and does not require

the input of the cluster number. The parameters we tuned in this

experiment are specified in Table 2. We applied silhouette score

[21] to select the best set of parameters with the highest silhouette

score.

Table 2. Parameters to tune for the clustering.

Parameters Range

Number of PCA components [5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15]

Eps of DBSCAN [0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1.0]

MinPoints of DBSCAN [5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20]

We applied the same clustering procedure to AR and RAI

attendance values respectively. For AR, the procedure failed to

generate meaningful clustering (the result contained one big

cluster only). For RAI the procedure produced 8 clusters with 616,

472, 665, 520, 130, 1799, 61, and 549 students respectively. 26

student samples were labeled as noise by DBSCAN and excluded

in the follow-up study. For each cluster, we identified the top five

most popular majors among the samples in the cluster to analyze

students’ academic interest and performance.

Figure 2 shows the profiles of the 8 clusters from the RAI

clustering, labeled as cluster 1 to 8. We combined the dimensions

of student numbers, distribution of majors, RAI attendance rates,

top 10% academic performance ratio, and last 10% academic

performance ratio to show how RAI attendance is related with

academic performance and how the analysis can provide guidance

on major selection. While some of the findings are interesting, we

admit that not all phenomena can be fully explained due to the

complexity behind attendance and attainment [15]. For all

subfigures in Figure 2, the X is the major of the students. Figure

2(a) shows the number of students in each major for the 8 clusters

in a row. Some of the clusters are very specific. Cluster 5 contains

two majors only, TRAN (Translation) and PSY (Psychology);

Cluster 7 contains the major of FE (Financial Engineering) only.

Figure 2(b) shows the distribution of majors among the clusters

(whether a cluster accounts for a significant portion of the

students in a major), with each bar representing a fraction of the

corresponding major in the university. For example, as shown in

Figure 2(b), close to 70% of the students majoring in PSY are in

cluster 5; close to 50% of the students majoring in CSE

(Computer Science and Engineering) are in Cluster 6, with other

large portions of CSE students in Cluster 2, 3 and 4. Figure 2(c)

shows the RAI attendance of the clusters. Students in Cluster 6

have significantly lower RAI values than the other clusters. Figure

2(d) shows the ratio of students with a GPA in the top 10% of the

major. If a bar of major m is higher than the 0.1 line, it means that

the students from the cluster in major m outperform the average

level of students in major m. Similarly, Figure 2(e) shows the

portion of students with a GPA in the last 10% of the major. The

higher the value, the worse the performance of the students, which

is the opposite of Figure 2(d).

Figure 2 illustrates how RAI correlates with academic

performance. Figure 2(c) shows that Cluster 6 has the overall

lowest RAI values, with all the five majors having negative RAI

values. Cluster 6 also has the worst top 10% ratio in Figure 2(d)

(only one major is barely over the average cutline), and the worst

last 10% ratio in Figure 2(e) (all five majors worse than the

average). The TRAN major has about the same number of

students in Cluster 5 and Cluster 8. The TRAN in Cluster 8 has a

higher RAI value as well as a higher top 10% ratio and a much

lower last 10% ratio than TRAN in Cluster 5. There are

exceptions though. CSE in Cluster 3 has a negative RAI, but its

(a) Samples with grades ≥ B+

(b) Samples with grades ≤ C

Figure 1. RAI of high and low course grade samples.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 403

top 10% ratio is the highest in Cluster 3. However, this is

consistent with our result in Table 1, which shows that CSE

courses have a relatively low RAI correlation with academic

performance (CSE major students usually take many CSE

courses).

Another interesting finding is that in all the 7 clusters with more

than one major, the major that has the highest RAI value also has

the lowest last 10% ratio except for Cluster 2. In Cluster 2 it is the

second highest RAI major EIE that has the lowest last 10% ratio.

The highest RAI major in Cluster 2 is BIFC (Bioinformatics), a

new major with a relatively small enrollment. Students facing the

risk of poor academic performance may consider selecting or

switching to the major with the highest RAI in the same cluster.

While we admit that this is by-no-mean a correlation between RAI

and students’ academic interest, we remark that the interest in a

subject is generally believed to be a weapon to fight against poor

performance. Together with the fact that DBSCAN worked better

on RAI than AR, we believe this phenomenon may suggest that

RAI has a better potential than AR for exploring students’

academic interest.

6. LIMITATIONS AND FUTURE WORK
In this study, we defined the Relative Attendance Index to adjust

the attendance measurement, with the objective of better

reflecting students’ attainment and interest. While attendance is

affected by many factors [15], the new information we introduced

is only the attendance of the peer. Further improvements should

address more factors of attendance.

When clustering on student data, the clustering algorithm

DBSCAN worked better on RAI than AR data, and the clustering

analysis confirmed the correlation between RAI and academic

performance. We admit that we have not been able to confirm the

correlation between RAI and students’ academic interest, which is

an interesting topic to be further explored.

The raw attendance data was collected using a WiFi based method

[19, 28]. It is possible that some students closed the WiFi

connection on their cell phones or even closed their cell phones all

together before class, leading to a false label of absence. If a

student had less than 50 WiFi connection records in a week, their

data in that week were excluded from the statistics. While we

admit that this could generate some noise in the attendance, we

(a) Number of students in each major

(b) Fraction of the corresponding major in the university

(c) RAI

(d) Top 10% ratio

(e) Last 10% ratio

Figure 2. Student Clustering.

404 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

observed that this situation only occurred rarely. For example, in

Fall term 2019 we found that only 2 out of 4838 students turned

off WiFi completely, and only 3.34% of the students had some

weeks of data filtered out. We conjecture two reasons for this

phenomenon. First, usage of laptops and tablets is popular among

the students in this university. Many students carry them to the

classroom to view course materials. Laptops and tablets usually

can connect WiFi only. Secondly, students use time confetti

before and after class to chat with friends or read the news. It will

be interesting to see how RAI performs on other attendance data

such as QR code scanning and online attendance data.

7. ACKNOWLEDGMENTS
This work was supported by Shenzhen Research Institute of Big

Data. We also want to thank anonymous reviewers for helpful

suggestions.

8. REFERENCES
[1] Alexander, V., & Hicks, R. E. (2016). Does class attendance

predict academic performance in first year psychology

tutorials. International Journal of Psychological Studies, 8(1),

28-32.

[2] Avireddy, S., Veerapandian, P., Ganapati, S., Venkat, M.,

Ranganathan, P., & Perumal, V. (2013, March). MITSAT—

An automated student attendance tracking system using

Bluetooth and EyeOS. In 2013 International Mutli-

Conference on Automation, Computing, Communication,

Control and Compressed Sensing (iMac4s) (pp. 547-552).

IEEE.

[3] Bijsmans, P., & Schakel, A. H. (2018). The impact of

attendance on first-year study success in problem-based

learning. Higher Education, 76(5), 865-881.

[4] Brennan, A., Sharma, A., & Munguia, P. (2019). Diversity of

Online Behaviours Associated with Physical Attendance in

Lectures. Journal of Learning Analytics, 6(1), 34-53.

[5] Cerezo, R., Sánchez-Santillán, M., Paule-Ruiz, M. P., &

Núñez, J. C. (2016). Students' LMS interaction patterns and

their relationship with achievement: A case study in higher

education. Computers & Education, 96, 42-54.

[6] Clark, G., Gill, N., Walker, M., & Whittle, R. (2011).

Attendance and performance: Correlations and motives in

lecture-based modules. Journal of Geography in Higher

Education, 35(2), 199-215.

[7] Colby, J. (2005). Attendance and Attainment-a comparative

study. Innovation in Teaching and Learning in Information

and Computer Sciences, 4(2), 1-13.

[8] Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996,

August). A density-based algorithm for discovering clusters

in large spatial databases with noise. In Kdd (Vol. 96, No.

34, pp. 226-231).

[9] Friedman, P., Rodriguez, F., & McComb, J. (2001). Why

students do and do not attend classes: Myths and realities.

College teaching, 49(4), 124-133.

[10] Fryer, L. K., Ginns, P., Howarth, M., Anderson, C., &

Ozono, S. (2018). Individual differences and course

attendance: why do students skip class?. Educational

Psychology, 38(4), 470-486.

[11] Hosen, P., Himel, N., Adil, M. A., Moon, M. N. N., & Nur,

M. F. N. (2019). Music Playing and Wallpaper Changing

System Based on Emotion from Facial Expression. In

Emerging Technologies in Data Mining and Information

Security (pp. 79-87). Springer, Singapore.

[12] Kar, N., Debbarma, M. K., Saha, A., & Pal, D. R. (2012).

Study of implementing automated attendance system using

face recognition technique. International Journal of computer

and communication engineering, 1(2), 100.

[13] Masalha, F., & Hirzallah, N. (2014). A students attendance

system using QR code. International Journal of Advanced

Computer Science and Applications, 5(3), 75-79.

[14] Moore, S., Armstrong, C., & Pearson, J. (2008). Lecture

absenteeism among students in higher education: A valuable

route to understanding student motivation. Journal of Higher

Education Policy and Management, 30(1), 15-24.

[15] Moores, E., Birdi, G. K., & Higson, H. E. (2019).

Determinants of university students’ attendance. Educational

Research, 61(4), 371-387.

[16] Newman‐Ford, L., Fitzgibbon, K., Lloyd, S., & Thomas, S.

(2008). A large‐scale investigation into the relationship

between attendance and attainment: a study using an

innovative, electronic attendance monitoring system. Studies

in Higher Education, 33(6), 699-717.

[17] Nordmann, E., Calder, C., Bishop, P., Irwin, A., & Comber,

D. (2019). Turn up, tune in, don’t drop out: The relationship

between lecture attendance, use of lecture recordings, and

achievement at different levels of study. Higher

Education, 77(6), 1065-1084.

[18] Patel, A., Joseph, A., Survase, S., & Nair, R. (2019, April).

Smart Student Attendance System Using QR Code. In 2nd

International Conference on Advances in Science &

Technology (ICAST).

[19] Pytlarz, I., Pu, S., Patel, M., & Prabhu, R. (2018). What Can

We Learn from College Students' Network Transactions?

Constructing Useful Features for Student Success Prediction.

International Educational Data Mining Society.

[20] Romero, C., López, M. I., Luna, J. M., & Ventura, S. (2013).

Predicting students' final performance from participation in

on-line discussion forums. Computers & Education, 68, 458-

472.

[21] Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the

interpretation and validation of cluster analysis. Journal of

computational and applied mathematics, 20, 53-65.

[22] Shoewu, O., & Idowu, O. A. (2012). Development of

attendance management system using biometrics. The Pacific

Journal of Science and Technology, 13(1), 300-307.

[23] Sloan, D., Manns, H., Mellor, A., & Jeffries, M. (2020).

Factors influencing student non-attendance at formal

teaching sessions. Studies in Higher Education, 45(11),

2203-2216.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 405

[24] Terry, M., & Malik, A. (2018). Video Gaming as a Factor

That Affects Academic Performance in Grade Nine. Online

Submission.

[25] Varshini, A., & Indhurekha, S. (2017). Attendance system

using beacon technology. International Journal of Scientific

& Engineering Research, 8(5), 38.

[26] Wang, R., Chen, F., Chen, Z., Li, T., Harari, G., Tignor, S.,

... & Campbell, A. T. (2014, September). StudentLife:

assessing mental health, academic performance and

behavioral trends of college students using smartphones. In

Proceedings of the 2014 ACM international joint conference

on pervasive and ubiquitous computing (pp. 3-14).

[27] Wang, R., Harari, G., Hao, P., Zhou, X., & Campbell, A. T.

(2015, September). SmartGPA: how smartphones can assess

and predict academic performance of college students. In

Proceedings of the 2015 ACM international joint conference

on pervasive and ubiquitous computing (pp. 295-306).

[28] Wang, Z., Zhu, X., Huang, J., Li, X., & Ji, Y. (2018).

Prediction of Academic Achievement Based on Digital

Campus. International Educational Data Mining Society.

[29] Westerman, J. W., Perez‐Batres, L. A., Coffey, B. S., &

Pouder, R. W. (2011). The relationship between

undergraduate attendance and performance revisited:

Alignment of student and instructor goals. Decision Sciences

Journal of Innovative Education, 9(1), 49-67.

[30] Yang, X., Zhou, G., Taub, M., Azevedo, R., & Chi, M.

(2020). Student Subtyping via EM-Inverse Reinforcement

Learning. International Educational Data Mining Society.

[31] Zhou, M., Ma, M., Zhang, Y., SuiA, K., Pei, D., &

Moscibroda, T. (2016, September). EDUM: classroom

education measurements via large-scale WiFi networks. In

Proceedings of the 2016 acm international joint conference

on pervasive and ubiquitous computing (pp. 316-327).

406 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Fair-Capacitated Clustering

Tai Le Quy
Leibniz University Hannover

Hannover, Germany
tai@l3s.de

Arjun Roy
Leibniz University Hannover

Hannover, Germany
roy@l3s.de

Gunnar Friege
Leibniz University Hannover

Hannover, Germany
friege@idmp.uni-

hannover.de
Eirini Ntoutsi

Freie Universität Berlin, Germany
Berlin, Germany

eirini.ntoutsi@fu-berlin.de

ABSTRACT
Traditionally, clustering algorithms focus on partitioning the
data into groups of similar instances. The similarity objec-
tive, however, is not sufficient in applications where a fair-
representation of the groups in terms of protected attributes
like gender or race, is required for each cluster. Moreover,
in many applications, to make the clusters useful for the
end-user, a balanced cardinality among the clusters is re-
quired. Our motivation comes from the education domain
where studies indicate that students might learn better in
diverse student groups and of course groups of similar car-
dinality are more practical e.g., for group assignments. To
this end, we introduce the fair-capacitated clustering prob-
lem that partitions the data into clusters of similar instances
while ensuring cluster fairness and balancing cluster cardi-
nalities. We propose a two-step solution to the problem: i)
we rely on fairlets to generate minimal sets that satisfy the
fair constraint and ii) we propose two approaches, namely
hierarchical clustering and partitioning-based clustering, to
obtain the fair-capacitated clustering. Our experiments on
three educational datasets show that our approaches deliver
well-balanced clusters in terms of both fairness and cardi-
nality while maintaining a good clustering quality.

Keywords
fair-capacitated clustering, fair clustering, capacitated clus-
tering, fairness, learning analytics, fairlets, knapsack.

1. INTRODUCTION
Machine learning (ML) plays a crucial role in decision-making
in almost all areas of our lives, including areas of high soci-
etal impact, like healthcare and education. Our work’s mo-
tivation comes from the education domain where ML-based
decision-making has been used in a wide variety of tasks from
student dropout prediction [9], forecasting on-time gradua-

tion of students [15] to education admission decisions [21].
Recently, the issue of bias and discrimination in ML-based
decision-making systems is receiving a lot of attention [28]
as there are many recorded incidents of discrimination (e.g.,
recidivism prediction [20], grades prediction [4, 14]) caused
by such systems against individuals or groups or people on
the basis of protected attributes like gender, race etc. Bias
in education is not a new problem. There is already a long
literature on different sources of bias in education [24] or stu-
dents’ data analysis [3] as well as studies on racial bias [31]
and gender bias [22]. However, ML-based decision-making
systems have the potential to amplify prevalent biases or cre-
ate new ones and therefore, fairness-aware ML approaches
are required also for the educational domain.

In this work, we focus on fairness in clustering, as in edu-
cational activities, group assignments [8] and student team
achievement divisions [30] are important tools that help stu-
dents working together towards shared learning goals. Clus-
tering is an effective solution for partitioning students into
groups of similar instances [3, 26]. Traditional algorithms,
however, focus solely on the similarity objective and do not
consider the fairness of the resulting clusters w.r.t. pro-
tected attributes like gender. However, studies indicate that
students might learn better in diverse groups, e.g., mixed-
gender groups [11, 32]. Lately, fair-clustering solutions have
been proposed [1, 2, 5, 6], which aim to discover clusters with
a fair representation regarding some protected attributes. In
this work, we adopt the cluster fairness of [6], called clus-
ter balance, according to which protected groups must have
approximately equal representation in every cluster.

In a teaching situation, it is obvious that the size of the
groups should be comparable to allow a fair allocation of
work among the students. As traditional clustering algo-
rithms do not consider this requirement, clusters of varying
sizes might be extracted, reducing the usefulness and ap-
plicability of the partitioning for end-users/teachers. This
leads to the demand for clustering solutions that also take
into account the size of the clusters. The problem is known
as capacitated clustering problem (CCP) [25] which aims to
extract clusters with a limited capacity while minimizing
the total dissimilarity in the clusters. Capacitated cluster-
ing is useful in quite a few applications such as transfer-
ring goods/services from the service providers (post office,
stores, etc.), garbage collection and sales force territorial de-

Tai Le Quy, Arjun Roy, Gunnar Friege and Eirini Ntoutsi “Fair-Capacitated
Clustering”. 2021. In: Proceedings of The 14th International Conference on
Educational Data Mining (EDM21). International Educational Data Mining
Society, 407-414. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 407

sign [27]. To the best of our knowledge, no solution exists
that considers both fairness and capacity of clusters on the
top of the similarity objective.

To this end, we propose a new problem, the so-called fair-
capacitated clustering that ensures fairness and balanced
cardinalities of the resulting clusters. We decompose the
problem into two subproblems: i) the fairness-requirement
compliance step that preserves fairness at a minimum thresh-
old of balance score and ii) the capacity-requirement com-
pliance step that ensures clusters of comparable sizes. For
the first step, we generate fairlets [6], which are minimal sets
that satisfy fair representation w.r.t. a protected attribute.
For the second step, we propose two solutions for two differ-
ent clustering types, namely hierarchical and partitioning-
based clustering, that consider the capacity constraint dur-
ing the merge step (hierarchical approach)/assignment step
(partitioning approach). Experimental results, on three real
datasets from the education domain, show that our methods
result in fair and capacitated clusters while preserving the
clustering quality.

2. RELATED WORK
Chierichetti et al. [6] introduced the fair clustering problem
with the aim to ensure equal representation for each pro-
tected attribute, such as gender, in every cluster. In their
formulation, each instance is assigned with one of two colors
(red, blue). They proposed a two-phase approach: clus-
tering all instances into fairlets - small clusters preserving
the fairness measure, and then applying vanilla clustering
methods on those fairlets. Subsequent studies focus on gen-
eralization and scalability. Backurs et al. [1] presented an
approximate fairlet decomposition algorithm which can for-
mulate the fairlets in nearly linear time thus tackling the effi-
ciency bottleneck of [6]. Rösner and Schmidt [29] generalized
the fair clustering problem to more than two protected at-
tributes. A more generalized and tunable notion of fairness
for clustering was introduced in Bera et al. [2]. Anshuman
and Prasant [5] introduced a fair hierarchical agglomerative
clustering method for multiple protected attributes.

The capacitated clustering problem (CCP), a combinatorial
optimization problem, was first introduced by Mulvey and
Beck [25] who proposed solutions using heuristic and sub-
gradient algorithms. Several approaches exist to improve
the efficiency of solutions or CCP approaches for different
cluster types. Khuller and Sussmann [17], for example, in-
troduced an approximation algorithm for the capacitated
k-Center problem. Geetha et al. [10] improved k-Means
algorithm for CCP by using a priority measure to assign
points to their centroid. Lam and Mittenthal [19] proposed
a heuristic hierarchical clustering method for CCP to solve
the multi-depot location-routing problem.

In this work, we introduce the problem of fair-capacitated
clustering which builds upon the notions from fair cluster-
ing and capacitated clustering. In particular, we build upon
the notion of fairlets [6] to extract the minimal sets that
preserve fairness. Regarding the CCP we follow the formu-
lation of [25] to ensure balanced cluster cardinalities. To the
best of our knowledge, the combined problem has not been
studied before and as already discussed, comprises a useful
tool in quite a few domains like education.

3. PROBLEM DEFINITION
Let X ∈ Rn be a set of instances to be clustered and let
d() : X ×X → R be the distance function. For an integer k
we use [k] to denote the set {1, 2, ..., k}. A k-clustering C is
a partition of X into k disjoint subsets, C = {C1, C2, ..., Ck},
called clusters with S = {s1, s2, ..., sk} be the corresponding
cluster centers. The goal of clustering is to find an assign-
ment φ : X → [k] that minimizes the objective function:

L(X, C) =
∑
si∈S

∑
x∈Ci

d(x, si) (1)

As shown in Eq. 1, the goal is to find an assignment that
minimizes the sum of distances between each point x ∈
Xand its corresponding cluster center si ∈ S. It is clear
that such an assignment optimizes the similarity but does
not consider fairness or capacity of the resulting clusters.

Capacitated clustering: The goal of capacitated clustering
[25] is to discover clusters of given capacities while still min-
imizing the distance objective L(X, C). The capacity con-
straint is defined as an upper bound Qi on the cardinality
of each cluster Ci:

|Ci| ≤ Qi (2)

Clustering fairness: We assume the existence of a binary
protected attribute P = {0, 1}, e.g., gender={male, female}.
Let ψ : X → P denotes the demographic group to which the
point belongs, i.e., male or female.

Fairness of a cluster is evaluated in terms of the balance
score [6] as the minimum ratio between two groups.

balance(Ci) = min
(
|{x∈Ci|ψ(x)=0}|
|{x∈Ci|ψ(x)=1}| ,

|{x∈Ci|ψ(x)=1}|
|{x∈Ci|ψ(x)=0}|

)
(3)

Fairness of a clustering C equals to the balance of the least
balanced cluster Ci ∈ C.

balance(C) = min
Ci∈C

balance(Ci) (4)

We now introduce the problem of fair-capacitated cluster-
ing that combines all aforementioned objectives regarding
distance, fairness and capacity.

Definition 1. (Fair-capacitated clustering problem)
We define the problem of (t, k, q)-fair-capacitated clustering
as finding a clustering C = {C1, C2, · · · , Ck} that partitions
the data X into |C| = k clusters such that the cardinality
of each cluster Ci ∈ C does not exceed a threshold q, i.e.,
|Ci| ≤ q (the capacity constraint), the balance of each cluster
is at least t, i.e., balance(C) ≥ t (the fairness constraint),
and minimizes the objective function L(X, C). Parameters
k, t, q are user defined referring to the number of clusters,
minimum balance threshold and maximum cluster capacity,
respectively.

4. FAIR-CAPACITATED CLUSTERING
4.1 Fairlet decomposition
Traditionally, the vanilla versions of clustering algorithms
are not capable of ensuring fairness because they assign the
data points to the closest center without the fairness con-
sideration. Hence, if we could divide the original data set
into subsets such that each of them satisfies the balance
threshold t then grouping these subsets to generate the final

408 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

clustering would still preserve the fairness constraint. Each
fair subset is defined as a fairlet. We follow the definition of
fairlet decomposition by [6].

Definition 2. (Fairlet decomposition)
Suppose that balance(X) ≥ t with t = f/m for some in-
tegers 1 ≤ f ≤ m, such that the greatest common divisor
gcd(f,m) = 1. A decomposition F = {F1, F2, ..., Fl} of X
is a fairlet decomposition if: i) each point x ∈ X belongs to
exactly one fairlet Fj ∈ F ; ii) |Fj | ≤ f +m for each Fj ∈ F ,
i.e., the size of each fairlet is small; and iii) for each Fj ∈ F ,
balance(Fj) ≥ t, i.e., the balance of each fairlet satisfies the
threshold t. Each Fj is called a fairlet.

By applying fairlet decomposition on the original dataset
X, we obtain a set of fairlets F = {F1, F2, . . . , Fl}. For
each fairlet Fj we select randomly a point r ∈ Fj as the
center. For a point x ∈ X, we denote γ : X → [1, l]
as the index of the mapped fairlet. The second step, is
to cluster the set of fairlets F into k final clusters, sub-
ject to the cardinality constraint. The clustering process
is described below for the hierarchical clustering type (Sec-
tion 4.2) and for the partitioning-based clustering type (Sec-
tion 4.3). Clustering results in an assignment from fairless
to final clusters: δ : F → [k]. The final fair-capacitated
clustering C can be determined by the overall assignment
function φ(x) = δ(Fγ(x)), where γ(x) returns the index of
the fairlet to which x is mapped.

4.2 Fair-capacitated hierarchical clustering
Given the set of fairlets: F = {F1, F2, . . . , Fl}, let W =
{w1, w2, . . . , wl} be their corresponding weights, where the
weight wj of a fairlet Fj is defined as its cardinality, i.e.,
number of points in Fj .

Traditional agglomerative clustering approaches merge the
two closest clusters, so rely solely on similarity. We extend
the merge step by also ensuring that merging does not vio-
late the cardinality constraint w.r.t. the cardinality thresh-
old q.

Theorem 1. The balance score of a cluster formed by the
union of two or more fairlets, is at least t.

balance(Y) ≥ t, where Y = ∪j≤lFj and balance(Fj) ≥ t

Proof. We use the method of induction to derive the
proof. Assume we have a set of fairlets F = {F1, F2, . . . , Fl},
in which, balance(Fj) ≥ t, j = 1, . . . , l. We first con-
sider the case for any two fairlets {F1, F2} ∈ F . We have

balance(F1) =
f1
m1
≥ t and balance(F2) =

f2
m2
≥ t. We

denote by Y is the union of two fairlets F1 and F2, then

balance(Y) = balance(F1 ∪ F2) =
f1 + f2
m1 +m2

(5)

It holds:

f1
m1
≥ t or,

f1
m1 +m2

≥ tm1

m1 +m2

Similarly,
f2

m1 +m2
≥ tm2

m1 +m2

=⇒ f1
m1 +m2

+
f2

m1 +m2
≥ tm1

m1 +m2
+

tm2

m1 +m2

=⇒ f1 + f2
m1 +m2

≥ t(m1 +m2)

m1 +m2
= t

(6)

Therefore, from Eq. 5 and Eq. 6 we get,

balance(Y) ≥ t (7)

Thus, the statement given in Theorem 1 is true for any clus-
ter formed by the union of any two fairlets. Now we assume
that the statement holds true for a cluster formed from i
fairlets, i.e, Y = ∪j≤iFj , where 1 < i < l. Then,

balance(Y) =

∑
j≤i fj∑
j≤imj

≥ t (8)

Consider another fairlet Fi+1 ∈ F which is not in the formed

cluster Y, balance(Fi+1) =
fi+1

mi+1
≥ t. Then, by joining Fi+1

with the cluster Y we get the new cluster Y
′

such that,

balance(Y
′
) =

fi+1 +
∑
j≤i fj

mi+1 +
∑
j≤imj

(9)

Following the steps in Eq. 6, we can similarly show that,

fi+1 +
∑
j≤i fj

mi+1 +
∑
j≤imj

≥ t =⇒ balance(Y
′
) ≥ t (10)

Hence, the theorem holds true for cluster formed with i+ 1
fairlets if it is true for i fairlets. Since i is any arbitrary num-
ber of fairlets, thus the theorem holds true for all cases.

Theorem 1 shows that for any cluster formed by union of
fairlets, the fairness constraint is always preserved. Hence-
forth, we don’t need further interventions w.r.t. fairness.

The pseudocode is shown in Algorithm 2 of Appendix B.
In each step, the closest pair of clusters is identified and a
new cluster is created only if its capacity does not exceed
the capacity threshold q. Otherwise, the next closest pair
is investigated. The procedure continues until k clusters
remain. The remaining clusters are fair and capacitated ac-
cording to the correponding thresholds t and q. To compute
the proximity matrix (line 1 and line 8), we use the distance
between centroids of the corresponding clusters. The func-
tion capacity(cluster) in line 5 returns the size of a cluster.

4.3 Fair-capacitated partitioning clustering
Partitioning-based clustering algorithms, such as k-Medoids,
can be viewed as a distance minimization problem, in which,
we try to minimize the objective function in Eq. 1. The
vanilla k-Medoids does not satisfy the cardinality constraint
since the allocating points to clusters step is only based on
the distance among them. Now, if we change the goal of this
assignment step to find the “best” data points with a defined
capacity for each medoid instead of searching for the most
suitable medoid for each point, we can control the cardinality
of clusters. We formulate the problem of assigning points
to clusters subject to a capacity threshold q as a knapsack
problem [23].

Let S = {s1, s2, ..., sk} be the cluster centers, i.e., medoids,
and C = {C1, C2, ..., Ck} be the resulting clusters. We change
the assignments of points to clusters, using knapsack, in or-
der to meet the capacity constraint q. In particular, we
define a flag variable yj = 1 if xj is assigned to cluster Ci,
otherwise yj = 0. Now, we define a value vj to data point
xj , which depends on the distance of xj to Ci, with vj being

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 409

maximum if Ci is the best cluster for xj , i.e, the distance
between xj and si is minimum. We formulate value vj of
instance xj based on an exponential decay distance function:

vj = e−
1
λ
∗d(xj ,si) (11)

where d(xj , si) is the Euclidean distance between the point
xj and the medoid si. The higher λ is the lower the effect
of distance in the value of the points. The point which is
closer to the medoid will have a higher value.

Then, the objective function for the assignment step is:

maximize

n∑
j=1

vjyj (12)

Now, given F = {F1, F2, . . . , Fl} and W = {w1, w2, . . . , wl}
are the set of fairlets and their corresponding weights, i.e.,
the number of instances in the fairlet, respectively; q is the
maximum capacity of the final clusters. Our target is to
cluster the set of fairlets F into k clusters centered by k
medoids. We apply the formulas in Eq. 11 and Eq.12 on the
set of fairlets F , i.e, each fairlet Fj has the same role as xj .
Then, the problem of assigning the fairlets to each medoid in
the cluster assignment step becomes finding a set of fairlets
with total weights less than or equal to q and the total value
is maximized. In other words, we can formulate the cluster
assignment step in the partitioning-based clustering as a 0-1
knapsack problem.

maximize

l∑
j=1

vjyj

subject to

l∑
j=1

wjyj ≤ q and yj ∈ {0, 1}

(13)

In which, yj is the flag variable for Fj , yj = 1 if Fj is assigned
to a cluster, otherwise yj = 0 ; vj is the value of Fj which is
computed by the Eq. 11; q is the desired maximum capacity.

The pseudocode of our k-Medoids fair-capacitated algorithm
is described in Algorithm 2. In which, for each medoid we
would search for the adequate points (line 3) by using func-
tion knapsack(p, values, w, q) (line 10) implemented using
dynamic programming, which returns a list of items with a
maximum total value and the total weight not exceeding q.
In the main function, line 12, we optimize the clustering cost
by replacing medoids with non-medoid instances when the
clustering cost is decreased. This optimization procedure
will stop when there is no improvement in the clustering
cost is found (lines 19 to 32).

5. EXPERIMENTS
In this section, we describe our experiments and the perfor-
mance of our proposed methods on three educational datasets.

5.1 Experimental setup
Datasets. The datasets are summarized in Table 1.

UCI student performance. This dataset includes the de-
mographics, grades, social and school-related features of stu-
dents in secondary education of two Portuguese schools [7] in

Algorithm 1: k-Medoids fair-capacitated algorithm

Input: F = {F1, F2, . . . , Fl}: a set of fairlets
W = {w1, w2, . . . , wl}: weights of fairlets
q: a given maximum capacity of final clusters
k: number of clusters

Output: A fair-capacitated clustering
1 Function ClusterAssignment(medoids):
2 clusters← ∅;
3 for each medoid s in medoids do
4 candidates ← all fairlets which are not assigned

to any cluster ;
5 p ← length(candidates) ;
6 w ← weights(candidates) ;
7 for each fairleti in candidates do
8 values[i] ← v(fairleti) //Eq. 11 ;
9 end

10 clusters[s]←knapsack(p, values, w, q) ;

11 end
12 return clusters;

13 Function main():
14 medoids← select k of the l fairlets arbitrarily ;
15 ClusterAssignment(medoids) ;
16 costbest ← current clustering cost;
17 sbest ← null ;
18 obest ← null ;
19 repeat
20 for each medoid s in medoids do
21 for each non-medoid o in F do
22 consider the swap of s and o, compute

the current clustering cost;
23 if current clustering cost < costbest then
24 sbest ← s;
25 obest ← o;
26 costbest ← current clustering cost;

27 end

28 end

29 end
30 update medoids by the swap of sbest and obest ;
31 ClusterAssignment(medoids)

32 until no improvements can be achieved by any
replacement ;

33 return clusters;

2005 - 2006. “Gender” is selected as the protected attribute,
i.e., we aim to balance gender in the resulting clusters.

Open University Learning Analytics (OULAD). This
is the dataset from the OU Analyse project [18] of Open
University, England in 2013 - 2014. Information of students
includes their demographics, courses, their interactions with
the virtual learning environment, and final outcome. We
aim to balance the “Gender” attribute in the results.

MOOC. The data covers students who enrolled in the 16
edX courses offered by the two institutions (Harvard Univer-
sity and the Massachusetts Institute of Technology) during
2012 - 2013 [13]. The dataset contains aggregated records
which represent students’ activities and their final grades of
the courses. “Gender” is the protected attribute.

Baselines. We compare against well-known fairness-aware

410 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 1: An overview of the datasets

Dataset #instances #attributes Protected attribute Balance score
UCI student performance 649 33 Gender (F: 383; M: 266) 0.695

OULAD 4,000 12 Gender (F: 2,000; M: 2,000) 1
MOOC 4,000 21 Gender (F: 2,000; M: 2,000) 1

clustering methods and a vanilla clustering method.

k-Medoids [16]: a traditional partitioning clustering tech-
nique that divides the dataset into k clusters so as to mini-
mize clustering cost. Cluster centers are actual instances.

Vanilla fairlet [6]: a fairness-aware clustering approach that
i) decomposes the dataset into fairlets and ii) applies a vanilla
k-center clustering algorithm [12] to form the final k clusters.

MCF fairlet [6]: Similar to Vanilla fairlet but the fairlet
decomposition part is transformed into a minimum cost flow
(MCF) problem, by which an optimized version of fairlet
decomposition in terms of cost value is computed.

Evaluation measures. We report on clustering quality (mea-
sured as clustering cost, see Eq. 1), cluster fairness (ex-
pressed as cluster balance, see Eq. 4) and cluster capacity
(expressed as cluster cardinality).

Parameter selection. Regarding fairness, a minimum thresh-
old of balance t is set to 0.5 for all datasets in our experi-
ments. It means that the proportion of the minority group
is at least 50% in each resulting cluster. Regarding the λ
factor in Eq. 11, a value λ = 0.3 is chosen for our experi-
ments from a range of [0.1, 1.0] via grid-search. We evaluate
the clustering cost and balance score on a small dataset,
i.e., UCI student performance dataset - Mathematics sub-
ject w.r.t λ. Theoretically, the ideal capacity of clusters is⌈ |X|
k

⌉
where |X| is the population of dataset X, k is the

number of desired clusters. However, in many cases, the
clustering models cannot satisfy this constraint, especially
the hierarchical clustering model. Hence, we set the formula
in Eq. 14 to compute the maximum capacity q of clusters; ε is
a parameter chosen in experiments for each fair-capacitated
clustering approach.

q =
⌈ |X| ∗ ε

k

⌉
(14)

To find the appropriate value of ε, we set a range of [1.0,
1.3] to ensure all the generated clusters have members and
evaluate the cardinality of resulting clusters on the UCI stu-
dent performance (Mathematics subject) dataset. ε is set to
1.01 and 1.2, for k-Medoids fair-capacitated and hierarchical
fair-capacitated methods, respectively.

5.2 Experimental results
UCI student performance. When k is less than 4, as shown
in Figure 1-a, the clustering quality of our models can be
close to that of the vanilla k-Medoids method. However,
the clustering cost is fluctuated thereafter due to the ef-
fort to maintain the fairness and cardinality of methods.
Our vanilla fairlet hierarchical fair-capacitated outperforms
other competitors in most cases. Vanilla fairlet and MCF
fairlet show the worst clustering cost as an effect of the k-

Center method. Figure 1-b depicts the clustering fairness.
As we can observe, in terms of fairness, vanilla fairlet hier-
archical fair-capacitated has the best performance when k is
less than 10. Contrary to that, by selecting each point for
each cluster in the cluster assignment step, the k-Medoids
fair-capacitated method can maintain well the fairness in
many cases. Regarding the cardinality, as illustrated in Fig-
ure 1-c, our approaches outperform the competitors when
they can keep the number of instances for each cluster un-
der the specified thresholds.

OULAD. Our MCF fairlet k-Medoids fair-capacitated ap-
proach outperforms other methods in terms of clustering
cost, although there is an increase compared to the vanilla
k-Medoids algorithm, as we can see in Figure 2-a. Con-
cerning fairness, in Figure 2-b, k-Medoids is the weakest
method while others can achieve the highest balance. The
balance of Gender feature in the dataset is the main reason
for this result. All fairlets are fully fair; this is a prerequi-
site for our methods of being able to maintain the perfect
balance. Regarding cardinality, our approaches demonstrate
their strength in ensuring the capacity of clusters (Figure 2-
c). The difference in the size of the clusters generated by
our methods is tiny. This is in stark contrast to the trend
of competitors.

MOOC. The results of clustering quality are described in
Figure 3-a (Appendix A). Although an increase in the clus-
tering cost is the main trend, our methods outperform the
vanilla fairlet and MCF fairlets methods. Regarding clus-
tering fairness, as depicted in Figure 3-b, our approaches
can maintain the perfect balance for all experiments. This
is the result of an actual balance in the dataset and the
fairlets. The emphasis is our methods can divide all the ex-
perimented instances into capacitated clusters, as shown in
Figure 3-c, which proves their superiority in presenting the
results over the competitors regarding clusters’ cardinality.

Summary of the results. In general, fairness is well main-
tained in all of our experiments. When the data is fair, in
case of OULAD and MOOC datasets, our methods achieve
a perfect fairness. In terms of cardinality, our methods are
able to maintain the cardinality of resulting clusters within
the maximum capacity threshold, which is significantly su-
perior to competitive methods. The fair-capacitated par-
titioning based method is better than the hierarchical ap-
proach since it can determine the capacity threshold closest
to the ideal capacity. Regarding the clustering cost, the hi-
erarchical approach has an advantage over other methods by
outperforming its competitors in most experiments.

6. CONCLUSION AND OUTLOOK
In this work, we introduced the fair-capacitated clustering
problem that extends traditional clustering, solely focusing
on similarity, by also aiming at a balanced cardinality among
the clusters and a fair-representation of instances in each
cluster according to some protected attributes like gender
or race. Our solutions work on the fairlets derived from

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 411

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of clusters

1800

2000

2200

2400

2600

Clu
ste

rin
g c

os
t

a) Clustering quality (lower is better)

k-Medoids
Vanilla fairlet
Vanilla fairlet hierarchical fair-capacitated
Vanilla fairlet k-Medoids fair-capaciatated
MCF fairlet
MCF fairlet hierarchical fair-capacitated
MCF fairlet k-Medoids fair-capacitated

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of clusters

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ba
lan

ce

b) Clustering fairness (higher is better)

k-Medoids
Vanilla fairlet
Vanilla fairlet hierarchical fair-capacitated
Vanilla fairlet k-Medoids fair-capaciatated
MCF fairlet
MCF fairlet hierarchical fair-capacitated
MCF fairlet k-Medoids fair-capacitated
Minimum balance
Dataset's balance

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of clusters

0

50

100

150

200

250

300

Nu
m

be
r o

f i
ns

ta
nc

es

c) Clustering cardinality
k-Medoids
Vanilla fairlet
Vanilla fairlet hierarchical fair-capacitated
Vanilla fairlet k-Medoids fair-capacitated
MCF fairlet
MCF fairlet hierarchical fair-capacitated
MCF fairlet k-Medoids fair-capacitated
Maximum capacity of hierarchical fair-capacitated
Maximum capacity of k-Medoids fair-capacitated

Figure 1: Performance of different methods on UCI student performance dataset

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of clusters

10000

10500

11000

11500

12000

12500

Clu
ste

rin
g c

os
t

a) Clustering quality (lower is better)

k-Medoids
Vanilla fairlet
Vanilla fairlet hierarchical fair-capacitated
Vanilla fairlet k-Medoids fair-capaciatated
MCF fairlet
MCF fairlet hierarchical fair-capacitated
MCF fairlet k-Medoids fair-capacitated

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of clusters

0.2

0.4

0.6

0.8

1.0

Ba
lan

ce

b) Clustering fairness (higher is better)

k-Medoids
Vanilla fairlet
Vanilla fairlet hierarchical fair-capacitated
Vanilla fairlet k-Medoids fair-capaciatated
MCF fairlet
MCF fairlet hierarchical fair-capacitated
MCF fairlet k-Medoids fair-capacitated
Minimum balance
Dataset's balance

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of clusters

0

500

1000

1500

2000

Nu
m

be
r o

f i
ns

ta
nc

es

c) Clustering cardinality
k-Medoids
Vanilla fairlet
Vanilla fairlet hierarchical fair-capacitated
Vanilla fairlet k-Medoids fair-capacitated
MCF fairlet
MCF fairlet hierarchical fair-capacitated
MCF fairlet k-Medoids fair-capacitated
Maximum capacity of hierarchical fair-capacitated
Maximum capacity of k-Medoids fair-capacitated

Figure 2: Performance of different methods on OULAD dataset

the original instances: the hierarchical-based approach takes
into account the cardinality requirement during the merging
step, whereas the partitioning-based approach takes into ac-
count the cardinality of the final clusters during the assign-
ment step which is formulated as a knapsack problem. Our
experiments show that our methods are effective in terms of
fairness and cardinality while maintaining clustering qual-
ity. In the future, we plan to extend our approach for more
than one protected attributes as well as to further investigate
what fair group assignments means in educational settings.

Acknowledgements
The work of the first author is supported by the Ministry
of Science and Education of Lower Saxony, Germany, within
the PhD program“LernMINT: Data-assisted teaching in the
MINT subjects”. The work of the second author is sup-
ported by the Volkswagen Foundation under the call “Arti-
ficial Intelligence and the Society of the Future”.

412 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

7. REFERENCES
[1] A. Backurs, P. Indyk, K. Onak, B. Schieber,

A. Vakilian, and T. Wagner. Scalable fair clustering.
In International Conference on Machine Learning,
pages 405–413. PMLR, 2019.

[2] S. Bera, D. Chakrabarty, N. Flores, and
M. Negahbani. Fair algorithms for clustering. In
H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[3] S. Bharara, S. Sabitha, and A. Bansal. Application of
learning analytics using clustering data mining for
students’ disposition analysis. Education and
Information Technologies, 23(2):957–984, 2018.

[4] K. Bhopal and M. Myers. The impact of covid-19 on a
level students in england. SocArXiv, 2020.

[5] A. Chhabra and P. Mohapatra. Fair algorithms for
hierarchical agglomerative clustering. arXiv preprint
arXiv:2005.03197, 2020.

[6] F. Chierichetti, R. Kumar, S. Lattanzi, and
S. Vassilvitskii. Fair clustering through fairlets. In
Proceedings of the 31st International Conference on
Neural Information Processing Systems, pages
5036–5044, 2017.

[7] P. Cortez and A. M. G. Silva. Using data mining to
predict secondary school student performance.
EUROSIS-ETI, 2008.

[8] M. Ford and J. Morice. How fair are group
assignments? a survey of students and faculty and a
modest proposal. Journal of Information Technology
Education: Research, 2(1):367–378, 2003.

[9] J. Gardner, C. Brooks, and R. Baker. Evaluating the
fairness of predictive student models through slicing
analysis. In Proceedings of the 9th International
Conference on Learning Analytics & Knowledge, pages
225–234, 2019.

[10] S. Geetha, G. Poonthalir, and P. Vanathi. Improved
k-means algorithm for capacitated clustering problem.
INFOCOMP, 8(4):52–59, 2009.

[11] D. Gnesdilow, A. Evenstone, J. Rutledge, S. Sullivan,
and S. Puntambekar. Group work in the science
classroom: How gender composition may affect
individual performance. 2013.

[12] T. F. Gonzalez. Clustering to minimize the maximum
intercluster distance. Theoretical computer science,
38:293–306, 1985.

[13] HarvardX. HarvardX Person-Course Academic Year
2013 De-Identified dataset, version 3.0, 2014.

[14] S. Hubble and P. Bolton. A level results in england
and the impact on university admissions in 2020-21.
House of Commons Library, 2020.

[15] S. Hutt, M. Gardner, A. L. Duckworth, and S. K.
D’Mello. Evaluating fairness and generalizability in
models predicting on-time graduation from college
applications. International Educational Data Mining
Society, 2019.

[16] L. Kaufman and P. J. Rousseeuw. Partitioning around
medoids (program pam). Finding groups in data: an
introduction to cluster analysis, 344:68–125, 1990.

[17] S. Khuller and Y. J. Sussmann. The capacitated

k-center problem. SIAM Journal on Discrete
Mathematics, 13(3):403–418, 2000.

[18] J. Kuzilek, M. Hlosta, and Z. Zdrahal. Open
university learning analytics dataset. Scientific data,
4:170171, 2017.

[19] M. Lam and J. Mittenthal. Capacitated hierarchical
clustering heuristic for multi depot location-routing
problems. Int. J. Logist. Res. Appl., 16(5):433–444,
2013.

[20] J. Larson, S. Mattu, L. Kirchner, and J. Angwin. How
we analyzed the compas recidivism algorithm.
ProPublica (5 2016), 9(1), 2016.

[21] F. Marcinkowski, K. Kieslich, C. Starke, and
M. Lünich. Implications of ai (un-) fairness in higher
education admissions: the effects of perceived ai (un-)
fairness on exit, voice and organizational reputation.
In FAT* ’20, pages 122–130, 2020.

[22] T. Masterson. An empirical analysis of gender bias in
education spending in paraguay. World Development,
40(3):583–593, 2012.

[23] G. B. Mathews. On the partition of numbers.
Proceedings of the London Mathematical Society,
1(1):486–490, 1896.

[24] M. Meaney and T. Fikes. Early-adopter iteration bias
and research-praxis bias in the learning analytics
ecosystem. In Companion Proceeding of the 9th
International Conference on Learning Analytics &
Knowledge (LAK’19), Fairness and Equity in Learning
Analytics Systems Workshop, pages 14–20, 2019.

[25] J. M. Mulvey and M. P. Beck. Solving capacitated
clustering problems. European Journal of Operational
Research, 18(3):339–348, 1984.

[26] Á. A. M. Navarro and P. M. Ger. Comparison of
clustering algorithms for learning analytics with
educational datasets. IJIMAI, 5(2):9–16, 2018.

[27] M. Negreiros and A. Palhano. The capacitated centred
clustering problem. Computers & operations research,
33(6):1639–1663, 2006.

[28] E. Ntoutsi, P. Fafalios, U. Gadiraju, V. Iosifidis,
W. Nejdl, M.-E. Vidal, S. Ruggieri, F. Turini,
S. Papadopoulos, E. Krasanakis, et al. Bias in
data-driven artificial intelligence systems-an
introductory survey. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 10(3):e1356,
2020.

[29] C. Rösner and M. Schmidt. Privacy preserving
clustering with constraints. arXiv preprint
arXiv:1802.02497, 2018.

[30] M. Tiantong and S. Teemuangsai. Student team
achievement divisions (stad) technique through the
moodle to enhance learning achievement.
International Education Studies, 6(4):85–92, 2013.

[31] N. Warikoo, S. Sinclair, J. Fei, and D. Jacoby-Senghor.
Examining racial bias in education: A new approach.
Educational Researcher, 45(9):508–514, 2016.

[32] Z. Zhan, P. S. Fong, H. Mei, and T. Liang. Effects of
gender grouping on students’ group performance,
individual achievements and attitudes in
computer-supported collaborative learning. Computers
in Human Behavior, 48:587–596, 2015.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 413

APPENDIX
A. MOOC DATASET

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of clusters

4000

5000

6000

7000

8000

Clu
ste

rin
g c

os
t

a) Clustering quality (lower is better)

k-Medoids
Vanilla fairlet
Vanilla fairlet hierarchical fair-capacitated
Vanilla fairlet k-Medoids fair-capaciatated
MCF fairlet
MCF fairlet hierarchical fair-capacitated
MCF fairlet k-Medoids fair-capacitated

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of clusters

0.0

0.2

0.4

0.6

0.8

1.0

Ba
lan

ce

b) Clustering fairness (higher is better)

k-Medoids
Vanilla fairlet
Vanilla fairlet hierarchical fair-capacitated
Vanilla fairlet k-Medoids fair-capaciatated
MCF fairlet
MCF fairlet hierarchical fair-capacitated
MCF fairlet k-Medoids fair-capacitated
Minimum balance
Dataset's balance

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of clusters

0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f i
ns

ta
nc

es

c) Clustering cardinality
k-Medoids
Vanilla fairlet
Vanilla fairlet hierarchical fair-capacitated
Vanilla fairlet k-Medoids fair-capacitated
MCF fairlet
MCF fairlet hierarchical fair-capacitated
MCF fairlet k-Medoids fair-capacitated
Maximum capacity of hierarchical fair-capacitated
Maximum capacity of k-Medoids fair-capacitated

Figure 3: Performance of different methods on MOOC dataset

B. HIERARCHICAL FAIR-CAPACITATED
ALGORITHM

Algorithm 2: Hierarchical fair-capacitated algorithm

Input: F = {F1, F2, . . . , Fl}: a set of fairlets
q: a given maximum capacity of final clusters
W = {w1, w2, . . . , wl}: weights of fairlets
k: number of clusters

Output: A fair-capacitated clustering
1 compute the proximity matrix ;
2 clusters← F //each fairlet Fj is considered as cluster ;
3 repeat
4 cluster1, cluster2 ← the closest pair of clusters ;
5 if capacity(cluster1) + capacity(cluster2) ≤ q then
6 newcluster ← merge(cluster1, cluster2);
7 update clusters with newcluster;
8 update the proximity matrix ;

9 else
10 continue;
11 end

12 until k clusters remain;
13 return clusters;

414 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Combining Cognitive and Machine Learning Models to
Mine CPR Training Histories for Personalized Predictions

Florian Sense
InfiniteTactics, LLC
Dayton, OH, USA

florian.sense@infinitetactics.com

Michael Krusmark
L3Harris Technologies
Melbourne, FL, USA

michael.krusmark.ctr@us.af.mil

Joshua Fiechter
Ball Aerospace

Dayton, OH, USA
jfiechte@ball.com

Michael G. Collins
ORISE at AFRL

Dayton, OH, USA
michael.collins.74.ctr@us.af.mil

Lauren Sanderson &
Joshua Onia

RQI Partners, LLC
Dallas, TX, USA

lauren.sanderson@rqipartners.com
josh.onia@rqipartners.com

Tiffany Jastrzembski
Air Force Research Laboratory

Dayton, OH, USA
tiffany.jastrzembski@us.af.mil

ABSTRACT
Cardiopulmonary resuscitation (CPR) is a foundational life-
saving skill for which medical personnel are expected to
be proficient. Frequent refresher training is needed to pre-
vent the involved skills from decaying. Regular low-dose,
high-frequency training for staff at fixed intervals has proven
successful at maintaining CPR competence but does not take
into account inherent performance variability across learn-
ers. Tailoring refreshers to an individual’s past performance
would minimize personnel being trained too (in)frequently
and would ensure faster knowledge acquisition for new learn-
ers. To maximize the benefits of individualized schedules,
learning needs gleaned from past training history need to
be identified. A recent field study conducted among nursing
students showed that a cognitive model-based approach was
able to successfully trace the knowledge acquisition and decay
of learners and prescriptively devise personalized training
regimes that outperformed fixed schedules with regards to
both training efficiency and learners’ performance. Here, we
report a post-hoc analysis of the collected data to investigate
whether an alternative modeling approach, blending cogni-
tive modeling and machine learning, could have resulted in
even higher quality predictions. Our results reveal modest
improvements in predictive accuracy for ensemble models, in
which machine learning models predict the prediction errors
(i.e., residuals) of the standalone cognitive model. These
promising findings reveal strong applied utility for future use
in domains where sustained proficiency is a requirement.

Keywords
Predictive modeling; Cognitive model; Machine learning;
Cardiopulmonary resuscitation; Learning

1. INTRODUCTION
Cardiopulmonary resuscitation (CPR) is a basic life-saving
skill but it has been shown that medical professionals are not
able to perform it consistently [1]. To remedy this shortfall,
several improvements to skill acquisition and maintenance
programs have been proposed [6]. One dimension of the shift
in educational focus [5] emphasizes increased re(training) effi-
ciency by moving towards personalized, adaptive scheduling.
The current work aims to facilitate this development.

Currently, as in many domains, refresher trainings at fixed
intervals (i.e., regular and the same for everyone) are re-
quired to maintain CPR compliance. A recent effort [14, 18]
has shown that a cognitive model representing regularities
of memory can be leveraged to devise personalized train-
ing schedules that maintain proficiency at lower cost and
risk. This effort will be referred to as the CPR field study
throughout the current text, and the data collected during
this experiment (see sections 2.1 and 2.2 for details) will form
the bedrock on which the efforts presented here will build.

Specifically, we conducted a post-hoc simulation study of
the CPR field study data to explore whether the cognitive
model’s predictions could be enhanced by combining it with
machine learning (ML) models that can leverage additional
information to improve predictive accuracy. The combination
of the two modeling approaches is achieved by fitting the
models sequentially, forming an ensemble model in which the
cognitive model’s residuals are learned by the ML models.
We show that their combined predictions afford a modest
improvement over the cognitive model by itself and are prefer-
able to using the ML models by themselves.

Modern CPR training is an interesting educational data
mining domain and modeling task because trainings are con-
ducted on advanced manikins equipped with an array of sen-
sors that quantify various aspects of a student’s performance
against objective performance guidelines [16]. Consequently,
large amounts of high-resolution data are readily collected
for a given event. The challenge is that events are usually
spaced months apart, which provides a sparse sampling space
for knowledge tracing. Consequently, it is difficult to make
precise predictions. However, given quality CPR’s central

Florian Sense, Michael Krusmark, Joshua Fiechter, Michael G. Collins,
Lauren Sanderson, Joshua Onia and Tiffany Jastrzembski “Combin-
ing Cognitive and Machine Learning Models to Mine CPR Train-
ing Histories for Personalized Predictions”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 415-421.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 415

role in the “chain of survival” [6, 5], even small improvements
in predictive accuracy can conceivably have large real-life
impacts—especially if predictive models can identify those
most in need of more frequent refresher trainings and help
them to maintain compliance.

Generally speaking, the fields of cognitive science and ma-
chine learning have approached the computational modeling
of a task like CPR skill acquisition and maintenance with
different mindsets [24]. Specifically, cognitive models primar-
ily focus on explaining the mechanisms that drive individual
differences; machine learning models primarily focus on out-
of-sample prediction. Aiming to combine the best of both
approaches, we engineered a pipeline of predictive models:
First, a cognitive model that was specifically developed as a
prescriptive tool [13] is fit to the training data, which results
in residuals that indicate which instances are fit poorly by
the cognitive model. Next, a ML model is fit to those resid-
uals, effectively learning to fine-tune the cognitive model’s
predictions. We show that such an ensemble approach can
provide improvements in predictive accuracy without sacri-
ficing interpretability, which is important to retain so that
the model’s personalized prescriptions are fully explainable.
With an eye on advancing predictive tools in the domain
of CPR training, our core motivation is to assess whether
alternative predictive approaches could have yielded better
result in the CPR field study, so that insights gained can be
leveraged in future applied settings.

1.1 The current study
Here, we will use the exact version of the cognitive model that
was used in the CPR field study as a yardstick to determine:
(I) How well would alternative instantiations of the cognitive
model have performed?, (II) Would a number of off-the-shelf
ML approaches have yielded superior predictions than the
cognitive model?, and (III) Could ML models be used to
learn the prediction error of the cognitive model?

We believe the last question is the most pertinent. How-
ever, the combined approach should be compared to the ap-
proaches that only use either of the two modeling approaches
in isolation to ascertain whether it has any benefit.

2. METHODS
This section will outline the data we used for our exploration,
the input features that are available in the data, the predictive
model we employed, and the setup of the simulation study
we conducted to address our research questions. Figure 1
provides a schematic overview of the approach and its parts
and connections are going to be explained in the following.

2.1 Data
Data were from a multi-phased, longitudinal study conducted
at 10 nursing schools across the United States [18]. A to-
tal of 475 nursing students started the study. Participants
were randomly assigned to 4 initial acquisition conditions
where they completed 4 consecutive CPR training sessions
that were spaced by 1 day, 1 week, 1 month, or 3 months.
Students were additionally randomized to 3 maintenance
training conditions where they refreshed their skills for 1
year at intervals of 3 months, 6 months, or at personalized
intervals prescribed by the cognitive model. During each

PPE
5 variants

ML
4 models

Training
data

up to
Session i

PPE alone
N = 5

ML alone
N = 4

PPE+ML
N = 20

Figure 1: Schematic of the various predictive models.

session, students completed a series of CPR events using the
Resuscitation Quality Improvement (RQI®) system with
Laerdal’s Resusci Anne® adult QCPR manikin.

First, students completed a pre-test consisting of 60 com-
pressions or 12 bag-mask ventilations with no feedback from
the manikin, followed by trainings where students received
real-time, dynamic feedback to guide, and then post-tests
with no feedback. RQI provides composite scores for the
quality of compressions and ventilations on scales of 0 to 100,
with higher scores corresponding to better performance. The
compression score is based on depth, rate, release, and hand
placement. The ventilation score is based on volume, rate,
and compliance with inspiration time.

Prior to the onset of the study, participants completed a
demographic questionnaire. Of the 475 participants that
began the study, we included in our study the 393 that
completed the initial acquisition phase. Due to the variations
in retraining schedules across the maintenance phase, not all
students completed the same number of sessions. We focus
here on data from the first through the eighth session since
the majority of students completed 8 sessions.

2.2 Input features
This section describes all information available in the “train-
ing data” box of Figure 1. As sessions progress, the number
of available training instances grows but the number of input
features is constant. Using the color-coded arrows in Fig-
ure 1 to categorize them, these features are detailed in the
following and the labels correspond to those in Figure 4A.

Gray arrow in Figure 1: time/lag: An event’s timestamp
expressed as the number of seconds since the first/previous
recorded event; score: The composite performance score
recorded for each event.

White arrow in Figure 1: compvent: Does the recorded event
correspond to performing compressions or ventilations?; ac-
qint and maintint: What acquisition-maintenance interval
combination was this user assigned to? Together, these de-
fine the 12 experimental conditions (see previous section for
detail) that the condition PPE variant is based on; session:
Session counter 1 through 8; pretrnpst: Was this a pre-
test, training, or post-test?; site, age, gender, height, and
weight: Demographic information associated with each user
(time-invariant). There were ten sites/locations and other
information was coded in years, male/female, inches, and
pounds, respectively; profile: We reduced the unique user
IDs to a low-dimensional set of performance profiles. This
approach was inspired by earlier work [2, 23] that showed
a small number of descriptive profiles could be obtained by
performing k-means clustering [9]. Here, we used k = 4,
and re-partitioned the training data on each iteration of the

416 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

simulation. Specifically, only pre-test scores across both skills
were taken into account.

Yellow arrow in Figure 1: decay rate and model time: The
two PPE terms computed when fitting PPE (see section
2.3.1) are passed to the ML models; residual: The difference
between PPE’s fit and score.

The three rightmost arrows indicate the predictions that
are made, emphasizing that the PPE+ML ensemble models
(purple) uses both the cognitive (blue) and machine learning
(red) models. Next, we outline which ML models were used
and how the five PPE variants were fit to the data.

2.3 Predictive models
As noted in Figure 1, there are a total of 29 models. Here,
we describe the PPE and ML models that make up the
PPE alone/ML alone predictions. The remaining majority
of models are based on combining the PPE+ML models by
first fitting the PPE as described below and subsequently
computing the PPE’s residuals in the training data and
training the ML model to predict those. The PPE+ML
predictions can thus be thought of PPE predictions that
were fine-tuned by a given ML model.

2.3.1 Predictive performance equation (PPE)
The PPE is a set of nested mathematical equations that
capture findings in the cognitive science literature associated
with the temporal dynamics of human learning and forgetting
[26]. These include the power law of learning, the power law
of forgetting, the spacing effect, and effects of relearning. Two
essential components of PPE are sub-equations that model
time and the rate of knowledge/skill decay. The model time
equation captures the idea that the age of items in memory
should be skewed toward the most recent presentations, but
the full study history should be represented. Hence, model
time for each instance i (across n instances) is wi × ti, where

wi =
t−0.6
i∑n

j=1 t−0.6
j

and ti is the time, in seconds, relative to the

first instance. The decay rate equation captures the idea that
spacing practice across time produces more stable knowledge
that decays at a slower rate, while massing practice produces
less stable knowledge that decays at a faster rate. Since
model time and the decay rate are essential to how PPE
captures learning and decay, we include them separately
as features in the machine learning models. For a more
extensive description of the mechanics of the PPE, please
see [25, 26].

In the CPR field study, PPE was fit separately to each
participant’s history of compression and ventilation scores.
We refer to this variant as the original PPE throughout
the paper. The rationale for individual fits was from prior
research suggesting that each individual would have unique
learning and forgetting trajectories across sessions due to
psychometric differences, the trajectories would vary for
compressions and ventilations, and thus predictive accuracy
would be maximized by fitting to each student on each skill.

Here, we conduct post-hoc simulations to explore these as-
sumptions by comparing the methodology used in the field
study to less granular PPE variants in which free parameters
are fit to: experimental condition (acquisition and mainte-

nance intervals), skill (compressions and ventilations), user,
or user’s performance profile. By exploring these different
groupings for which a set of unique parameters are estimated,
we evaluate the trade-space between model flexibility and
predictive accuracy, and how this interacts with the amount
of data available for fitting the models.

2.3.2 Machine learning models
We used four different machine learning models. Depending
on the approach, these were either trained to predict the
score (red arrow in Figure 1) or PPE’s residuals (purple
arrow in Figure 1). For either task, all models had access to
all input features outlined in section 2.2 (also see x-axis of
Figure 4A). All models were run with the default settings of
the cited R packages [21].

As the simplest model, we fit a single decision tree to the
scores/residuals. Each tree was pruned through 10-fold cross
validation—as implemented in [22]—to avoid overfitting. In
most cases, this resulted in very shallow trees and sometimes
even single node “stumps.” Hence, the decision trees can be
thought of as baseline models.

The most complex model was a random forest [4], which is
an ensemble of decision trees. Using the default settings in
[15], we used both bagging and random feature sub-setting
to grow a forest of 500 trees. A recent comparison of gradient
boosting algorithms included random forests as a comparison
and nicely showed that they perform very well on a range
of ML tasks and have the added benefit of not requiring
hyperparameter tuning [3]. The disadvantage of random
forests—as with many ML approaches—is that the internal
mechanics that result in a prediction are not easily inspected
(see our discussion around Figure 4 below).

The two other models were ridge regression and the lasso
[10], which apply slightly different shrinkage terms when
coefficients are estimated. The key difference between the
two methods is that ridge regression will retain coefficients
for all input features, while the lasso effectively performs
feature selection (see section 6.2 in [12] for an introduction).
This generally makes lasso models more interpretable. Both
models have a single hyperparameter, λ, that was tuned
for each iterative prediction using the cross-validation pro-
cedure implemented in [8] and all numerical features were
standardized.

2.4 Simulation study and analysis
The approach to our simulation study can be summarized as
follows: For each session s = 1, 2, . . . , 7, train the models on
data up to session s and issue predictions for the pre-test of
session s+ 1. We focused on pre-test scores because we were
interested in predicting students’ readiness to perform CPR
compressions and ventilations, prior to additional training.
The procedure was run for all 29 (combinations of) mod-
els described above and generated iterative predictions for
sessions 2 through 8. The quality of predictions across the
models will be compared by computing the mean absolute
error (MAE), which summarizes how accurately, on average,
each model predicts the scores recorded in the subsequent
session. This yields 7 × (4 + 20 + 5) = 203 (i.e., number of
predicted sessions times number of models) errors. For the
sake of easier presentation of these results, we subsequently

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 417

24.1

20

21.3

20.2

24.9 19.3 21.5 23.8 21.1

23.4 19.2 19.9 23.8 20.8

24.1 19.5 20.4 23.5 21.3

21.7 19.2 18.9 21.8 19.8

23 19.2 19.7 23.3 20.8

ML alone PPE variant

ML alone condition original profile skill user

random forest

ridge

lasso

decision tree

PPE alone

Figure 2: Average MAE across sessions for all models.

summarize the errors by (i) computing the average MAE for
each model (Figure 2), and (ii) ranking the models based on
their errors (Table 2). These overall results are elaborated
on with additional figures and tables that highlight relevant
details.

3. RESULTS
Figure 2 presents the average MAE for all 29 models and
speaks to all three research questions posed in section 1.1.
As detailed in section 2.4, the 203 prediction errors were
aggregated across sessions and the average MAE for each
combination of models is presented as a heatmap. The color-
coding corresponds to the magnitude of the errors; lower
values are better. By averaging across sessions, variations
in predictive accuracy as a function of session (see Figure 3)
is lost but it becomes easier to assess the model’s relative
performance in one glance.

First, we can look at the “PPE alone” row in Figure 2 to
compare the five PPE variants that were tested. Overall, the
original instantiation of the cognitive model as used in the
CPR field study—if used alone—does indeed outperform the
more constrained variants explored here. This is somewhat
surprising since the original model exhibited signs of over-
fitting (i.e., fit MAE lower than prediction MAE) that were
ameliorated for the constrained variants of PPE. However, it
appears that despite overfitting the training data, the orig-
inal variant of PPE did produce the best predictions after
all.

Second, whether a number of off-the-shelf ML approaches
would have yielded superior predictions than the cognitive
model can be assessed by comparing the cell original PPE
alone (MAE = 19.5) with the prediction errors in the “ML
alone” column in Figure 2. All ML approaches yield average
errors larger than 19.5 when applied alone, which suggests
that the ML models tested here—if used by themselves—
would not have resulted in better predictions overall. How-
ever, the differences in prediction errors are not large and
the ridge and lasso regression in particular perform well on
average.

And third, and most importantly, we turn to the PPE+ML

16

18

20

22

24

3 4 5 6 7 8
Session that predictions were made for

M
ea

n
ab

so
lu

te
 e

rr
or

 (
M

A
E

)

ML alone

profile

original

user

condition

skill

Figure 3: Comparison of all models in the “random forest”
row of Figure 2, showing prediction errors for each session.

combinations. These correspond to the larger facet labeled
“PPE variants” in Figure 2. A number of notable patterns
emerge: the average MAE for the original PPE is hardly
affected by adding any of the ML models to predict its
residuals. This might be because this variant of PPE is
very flexible, which restricts the residuals in the training
data that the ML can actually fit to. For all other PPE
variants, we see a gradient from top to bottom, with average
MAEs decreasing with ML models relative to PPE alone.
The decision trees are an exception to this pattern and seem
to worsen the performance more often than not. Otherwise,
we generally see the lasso and ridge regressions improving
on PPE alone and the PPE+random forest resulting in the
best performance for all PPE variants.

Zooming in on the models using random forests, Figure 3
shows the session-by-session prediction errors of the ran-
dom forest alone (ML alone) and the PPE+random forest
combinations. We omitted predictions for the second ses-
sion because they are quite poor for the random forests
combined with the condition and skill PPE variants, which
distorts the y-axis and obscures differences between models
in the later sessions1. The figure highlights that the ran-
dom forest alone consistently performs worse than all other
combinations of models, in which the random forest is used
specifically to learn PPE’s residuals rather than observed per-
formance. This suggests that the most promising approach
is an ensemble of a PPE variant that captures the overall
temporal dynamics to issue predictions that are subsequently
fine-tuned by a random forest that can leverage all other
available input features.

Another way to summarize these results is by ranking all 29
models’ MAE within each session and computing the average
rank for each PPE variant. These average ranks are shown

1Predictions for session 2 were generally much worse than
for all subsequent sessions. We ran all analyses reported here
without session 2 predictions to confirm that our conclusions
do not depend on differences between models on session 2.
If session 2 is omitted, the skill PPE variant performs a
little better overall but results are not otherwise affected
drastically.

418 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 1: Comparison of PPE variants across all ML models.

PPE variant average rank average MAE

profile 11.9 20.1
skill 12.7 23.2

original 15.1 19.3
user 17.2 20.8

condition 18.4 23.4

in Table 1, and reveal that although the original PPE yields
the lowest overall average MAE, both the profile and skill
variants achieve better average ranks. This suggests that if
ML models are leveraged to predict PPE’s residuals, more
constrained variants of PPE tend to perform better. However,
even the lowest average ranks listed in Table 1 is relatively
high, suggesting that no model consistently outperforms
the others. This observation is confirmed by inspecting the
models’ MAEs in detail (not shown here), which reveals that
for some sessions, most models perform effectively identically.

Lastly, we present the top 10 models in terms of their ranking
in Table 2. Here, the ranks are computed as an average
across the seven sessions each model made predictions for.
The best-performing model is the PPE with parameters for
each performance profile whose residuals are predicted by
a random forest. Figure 2 corroborates this observations,
showing that this combination of models obtains the lowest
average MAE overall. Notably, all five instances of the
original PPE and five out of six instances of random forests
are represented in the top 10, confirming that these models
perform very well in various combinations.

3.1 Peeking into the random forest
Space constraints limit the amount of model interrogation
we can report here. However, we want to at least showcase
one prominent example. Table 2 and Figure 2 show that the
best model overall is the combination of the PPE variant
with unique parameters for each performance profile and a
random forest that learns its residuals. (This model is the
blue line in Figure 3, which highlights that other models
perform very similarly.) Figure 4A shows the normalized
feature importance computed for each input feature (white
and yellow arrows in Figure 1) for each iterative session that
predictions are made for. Superimposed are the average
importance and the spread (in black) and features are sorted
from least to most important based on average importance.
Notably, most time-invariant features (gender, age, etc.) are
equally important across the seven iterations. The session

counter, stability, and model time, on the other hand,
become gradually more important as more sessions were
included in the training data, while the opposite pattern is
evident for compvent and users’ performance profile.

Feature importance plots as shown here can be informa-
tive but should be interpreted with caution since they do
not capture and visualize the potential intricate non-linear
relationships between the various input features [17]. Further-
more, feature importance and their impact on predictions are
not necessarily the same—more advanced approaches exist
[19] but are beyond the scope of the current paper.

Table 2: The top 10 models overall sorted by average rank
across the seven predictions made by each model.

PPE variant ML model average rank

1 profile random forest 5.3
2 skill random forest 6.7
3 condition random forest 7.9
4 original lasso 8.1
5 original random forest 8.3
6 original decision tree 8.4
7 original ridge 8.6
8 user random forest 10.1
9 original PPE alone 10.7
10 condition ridge 11.9

Figure 4B zooms in on two important features and shows the
predictions made for the profile PPE model for the fourth ses-
sion against the residuals the random forest predicts for each
instance. We generally see the most differentiation between
models on Session 4, which is why we chose it—however,
this figure is broadly representative of the profile PPE+RF
dynamics for other sessions. Figure 4B suggests that ven-
tilations are more often down-adjusted than compressions
(i.e., more triangles below the equality line) unless PPE pre-
dicts near-ceiling performance. The fact that model time
is consistently identified as the most important feature (see
Figure 4A) but no clear relationship between the magnitude
of the adjustment (i.e., distance from equality line) emerges
in Figure 4B highlights the disadvantage of applying ML
models—such as a random forest—that are challenging to
interrogate.

4. DISCUSSION
The post-hoc simulation study reported here suggests that
the original cognitive model used for prescriptive, adaptive
scheduling in the CPR field study performed very well overall.
In fact, in the aggregate, it resulted in lower average predic-
tion errors than both the more constrained variants of PPE
and the machine learning models included in the current
comparison. Thus, it is unlikely that the tested off-the-shelf
ML models would have performed better than the original
PPE, although the regularized regression models (ridge and
lasso) in particular achieved prediction errors similar to the
original PPE. We expected the ML models to outperform
the cognitive model because the latter’s main “insights” (the
estimated model time and decay rate) were included as in-
put features to the ML models (yellow arrow in Figure 1.
This suggests that the PPE, using much less information,
was slightly better at extrapolating performance to the next
session.

The current explorations also showed, however, that an en-
semble cognitive and ML model has the potential to perform
slightly better than either alone. Notably, the more con-
strained variants of PPE performed particularly well in this
ensemble arrangement. One possible explanation is that the
less flexible cognitive model operates as a smoothing function
on the temporal information, which leaves the ML to learn
under which conditions (i.e., [combinations of] input features)
the general temporal dynamics should be adjusted to fur-
ther improve predictions. This framing of the procedure is

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 419

●

●
●

●
●

● ●

● ● ●

●
●

●

4.7% 7.3% 11.7% 12.4%0.7% 7.1%3.3% 16.1%5.1% 9.3%3.7% 9.6%9.1%

0.0%

5.0%

10.0%

15.0%

gender maintint session acqint pretrnpst height age weight profile site compvent decay
rate

model
time

Input feature

predicting session:

2 3 4 5 6 7 8

(A) Normalized feature importance

5.0e+06

1.0e+07

1.5e+07

2.0e+07
model_time

compvent

Comp

Vent

0

20

40

60

80

100

P
re

di
ct

io
n

af
te

r
ad

di
ng

 r
es

id
ua

ls
pr

ed
ic

te
d

by
 r

an
do

m
 fo

re
st

0 20 40 60 80 100
Prediction of profile PPE for Session 4

(B) Fine−tuned predictions

Figure 4: Details on the best-performing model. (A): The normalized feature importance for each iteration of the model with
superimposed averages (black dots). (B): Initial PPE predictions for Session 3 (x-axis) plotted against fine-tuned predictions
(y-axis); color-coding indicates the model time for each predicted instance and shape differentiates compvent.

conceptually akin to a two-step boosting algorithm [7] and
the “fine-tuning” of predictions induced by the second step
(the ML model in this case) is nicely illustrated in Figure 4B,
which shows the results of the first step (the constrained cog-
nitive model’s predictions on the x-axis), against the results
after the second boosting-like step (the PPE+ML predictions
on the y-axis). In this process, the initial PPE prediction’s
quite restricted range is expanded by the random forest,
which can—and does (cf. Figure 4A)—draw on various input
features.

The ensemble approach outlined here has the added benefit
of a modular structure. Thus, it is easy to make design
decisions, particularly regarding (i) which constraints should
be built into the parameter fitting procedure for PPE, and
(ii) what type of ML model is most informative. The latter
will determine where on the continuum of interpretability the
ensemble will fall. For example, the dynamics of the random
forest that predicts the profile PPE’s residuals (highlighted in
Figure 4), does not lend itself to straightforward model inter-
rogation but the PPE+lasso and PPE+ridge combinations
would not reduce the interpretability of the ensemble, while
slightly reducing prediction errors relative to PPE alone (see
Figure 2).

It should be pointed out, however, that the improvement in
prediction errors relative to the original PPE alone is minor.
Nevertheless, we consider these findings significant for two
reasons: First, the small improvement vindicates that PPE’s
time-based mechanisms capture the majority of variance in
this task domain. Second, the PPE+ML ensemble approach
used here serves as a proof-of-concept that illustrates how
the core mechanism of PPE can be preserved while incorpo-
rating an arbitrary number of additional input features. For
example, some of the input features used here were specific to
the field study’s design (notably acqint and maintint) and
would not be present in the hospital setting RQI systems are
primarily deployed in. In such settings, however, other input
features would be available (e.g., job title or department)
and samples would be larger and more heterogeneous, which

would conceivably introduce more variance that is not a
function of time-based features alone. We expect that under
these conditions, the ensemble approach’s advantage over
PPE alone would be more pronounced.

In the current effort, we choose to assess the models’ ability
to make session-by-session predictions. This approach meant
that events did not line up chronologically (a student in the
weekly acquisition condition will have completed the first four
session before a student in the 3-month condition returned
for their second session) but the amount of training data
available for each student is equalized—only the lag between
events varies. This reveals, for example, that predictions
improve up to session 4 (the end of the acquisition phase;
see Figure 3) and then get worse for session 5, which is when
students switch to the maintenance phase. This suggests
that the models get better at forecasting performance as
more data from a consistent schedule becomes available, and
that one should expect a dip in predictive accuracy as the
temporal dynamics are altered.

Future work in this domain should validate the approach
presented here in more naturalistic data that more closely
resemble how medical professionals train and maintain CPR
proficiency. We believe that cognitive models in particular—
and a cognitive-machine learning ensemble specifically—hold
great promise in moving towards a predictive framework that
affords personalized, adaptive refresher training schedules
that are tailored towards individual learning needs—either
of an individual or groups of learners that exhibit similar
performance profiles. Furthermore, the outlined predictive
pipeline’s potential value in adaptive, educational learning
system outside of the medical domain should be explored.

5. ACKNOWLEDGEMENTS
This work was funded through the 711th Human Perfor-
mance Wing Chief Scientist Seedling award at the Air Force
Research Laboratory. Data were wrangled in R using [28];
tables were created with [11], and figures with [27] and [20].

420 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

6. REFERENCES
[1] B. S. Abella, J. P. Alvarado, H. Myklebust, D. P.

Edelson, A. Barry, N. O’Hearn, T. L. V. Hoek, and
L. B. Becker. Quality of cardiopulmonary resuscitation
during in-hospital cardiac arrest. Jama, 293(3):305–310,
2005.

[2] E. Ayers, R. Nugent, and N. Dean. Skill set profile
clustering based on student capability vectors
computed from online tutoring data. Educational Data
Mining, 2008.

[3] C. Bentéjac, A. Csörgő, and G. Mart́ınez-Muñoz. A
comparative analysis of gradient boosting algorithms.
Artificial Intelligence Review, pages 1–31, 2020.

[4] L. Breiman. Random forests. Machine learning,
45(1):5–32, 2001.

[5] A. Cheng, D. J. Magid, M. Auerbach, F. Bhanji, B. L.
Bigham, A. L. Blewer, K. N. Dainty, E. Diederich,
Y. Lin, M. Leary, et al. Part 6: resuscitation education
science: 2020 american heart association guidelines for
cardiopulmonary resuscitation and emergency
cardiovascular care. Circulation,
142(16 Suppl 2):S551–S579, 2020.

[6] A. Cheng, V. M. Nadkarni, M. B. Mancini, E. A. Hunt,
E. H. Sinz, R. M. Merchant, A. Donoghue, J. P. Duff,
W. Eppich, M. Auerbach, et al. Resuscitation
education science: educational strategies to improve
outcomes from cardiac arrest: a scientific statement
from the american heart association. Circulation,
138(6):e82–e122, 2018.

[7] Y. Freund, R. Schapire, and N. Abe. A short
introduction to boosting. Journal-Japanese Society For
Artificial Intelligence, 14(771-780):1612, 1999.

[8] J. H. Friedman, T. Hastie, and R. Tibshirani.
Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software,
Articles, 33(1):1–22, 2010.

[9] J. A. Hartigan and M. A. Wong. A K-means clustering
algorithm. Journal of the Royal Statistical Society:
Series C (Applied Statistics), 28(1):100–108, 1979.

[10] T. Hastie, R. Tibshirani, and J. Friedman. The
elements of statistical learning: data mining, inference,
and prediction. Springer Science & Business Media,
2009.

[11] M. Hlavac. stargazer: Well-Formatted Regression and
Summary Statistics Tables. Central European Labour
Studies Institute (CELSI), Bratislava, Slovakia, 2018. R
package version 5.2.2.

[12] G. James, D. Witten, T. Hastie, and R. Tibshirani. An
introduction to statistical learning. Springer, 2013.

[13] T. S. Jastrzembski, K. A. Gluck, and G. Gunzelmann.
Knowledge tracing and prediction of future trainee
performance. In Interservice/Industry Training,
Simulation, and Education Conference, pages
1498–1508. National Training Systems Association,
2006.

[14] T. S. Jastrzembski, M. Walsh, M. Krusmark,
S. Kardong-Edgren, M. Oermann, K. Dufour,
T. Millwater, K. A. Gluck, G. Gunzelmann, J. Harris,
et al. Personalizing training to acquire and sustain
competence through use of a cognitive model. In
International conference on augmented cognition, pages
148–161. Springer, 2017.

[15] A. Liaw and M. Wiener. Classification and regression
by randomForest. R News, 2(3):18–22, 2002.

[16] R. M. Merchant, A. A. Topjian, A. R. Panchal,
A. Cheng, K. Aziz, K. M. Berg, E. J. Lavonas, D. J.
Magid, A. Basic, P. B. Advanced Life Support, R. E. S.
Advanced Life Support, Neonatal Life Support, and
S. of Care Writing Groups. Part 1: Executive summary:
2020 american heart association guidelines for
cardiopulmonary resuscitation and emergency
cardiovascular care. Circulation,
142(16 Suppl 2):S337–S357, 2020.

[17] C. Molnar. Interpretable Machine Learning. 2019.
https://christophm.github.io/interpretable-ml-book/.

[18] M. Oermann, M. Krusmark, S. Kardong-Edgren, T. S.
Jastrzembski, and K. A. Gluck. Personalized training
schedules for retention and sustainment of CPR skills.
Simulation in Healthcare, 2021.

[19] T. Parr, J. D. Wilson, and J. Hamrick. Nonparametric
feature impact and importance. arXiv preprint
arXiv:2006.04750, 2020.

[20] T. L. Pedersen. patchwork: The Composer of Plots,
2019. R package version 1.0.0.

[21] R Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2020.

[22] B. Ripley. tree: Classification and Regression Trees,
2019. R package version 1.0-40.

[23] F. Sense, M. Collins, M. Krusmark, and T. S.
Jastrzembski. Using k-means clustering for
out-of-sample predictions of memory retention. In
Proceedings of the 42nd Annual Conference of the
Cognitive Science Society, 2020.

[24] G. Shmueli et al. To explain or to predict? Statistical
science, 25(3):289–310, 2010.

[25] M. M. Walsh, K. A. Gluck, G. Gunzelmann,
T. Jastrzembski, and M. Krusmark. Evaluating the
theoretic adequacy and applied potential of
computational models of the spacing effect. Cognitive
science, 42:644–691, 2018.

[26] M. M. Walsh, K. A. Gluck, G. Gunzelmann,
T. Jastrzembski, M. Krusmark, J. I. Myung, M. A.
Pitt, and R. Zhou. Mechanisms underlying the spacing
effect in learning: A comparison of three computational
models. Journal of Experimental Psychology: General,
147(9):1325, 2018.

[27] H. Wickham. ggplot2: Elegant Graphics for Data
Analysis. Springer-Verlag New York, 2016.

[28] H. Wickham, M. Averick, J. Bryan, W. Chang, L. D.
McGowan, R. François, G. Grolemund, A. Hayes,
L. Henry, J. Hester, M. Kuhn, T. L. Pedersen, E. Miller,
S. M. Bache, K. Müller, J. Ooms, D. Robinson, D. P.
Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke,
K. Woo, and H. Yutani. Welcome to the tidyverse.
Journal of Open Source Software, 4(43):1686, 2019.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 421

Math Multiple Choice Question Solving and Distractor
Generation with Attentional GRU Networks

Neisarg Dave∗

Pennsylvania State University
nud83@psu.edu

Riley Bakes∗

Pennsylvania State University
rob5372@psu.edu

Barton Pursel
Pennsylvania State University

bkp10@psu.edu

C. Lee Giles
Pennsylvania State University

clg20@psu.edu

ABSTRACT
We investigate encoder-decoder GRU networks with atten-
tion mechanism for solving a diverse array of elementary
math problems with mathematical symbolic structures. We
quantitatively measure performances of recurrent models on
a given question type using a test set of unseen problems with
a binary scoring and partial credit system. From our find-
ings, we propose the use of encoder-decoder recurrent neural
networks for the generation of mathematical multiple-choice
question distractors. We introduce a computationally inex-
pensive decoding schema called character offsetting, which
qualitatively and quantitatively shows promise for doing so
for several question types. Character offsetting involves freez-
ing the hidden state and top k probabilities of a decoder’s
initial probability outputs given the input of an encoder,
then performing k basic greedy decodings given each of the
frozen outputs as the initialization for decoded sequence.

Keywords
Math Question Solving, Distractor Generation, Math Multi-
ple Choice Questions, Mathematical Language, Math Educa-
tion

1. INTRODUCTION
1.1 Problem Statement
Here we focus on the needs of mathematics educators in high
school and early university education, One of the most tedious
jobs for a teacher is to create exams and quizzes and grade
them. The more time they spend on these tasks, the less
time they spend teaching students. An automated system
capable of creating reliable math questions of consistent
difficulty level, creating solutions, generating distractors for
them, and finally be able to grade them is the holy grail of
educational automation. In this paper we focus on solving

∗Both authors contributed equally.

the math questions and generating distractors for Multiple
Choice Questions.

Questions in mathematics are different from other subjects
such as English, History, or Economics. In mathematics and
by extension in all STEM fields, questions and answers not
only are composed of natural text but are often accompanied
by symbolic equations, expressions, inequalities or relational
information. Ganeslingam [6] postulates in his work that
these non-textual objects not only augment the context of
the textual part but also derive their context from it. These
non-textual objects are not part of the natural language and
hence require special treatment. On the semantic level, math-
ematical questions require an underlying understanding of
rules before a question can be solved. A mere comprehension
is not sufficient. To solve a simple problem in arithmetic, the
fundamental understanding of the four operators is necessary.

In this work we experiment with a network which has had
historical success on natural language processing problems
and test its ability to generalize mathematical knowledge
from an open source data set contributed by [22] consisting
of elementary focused question types. Alternatively as a
second problem, for some question types, we examine whether
models which fail to generalize to the test set may have their
incorrect solutions leveraged as ‘good’ distractor options for
multiple choice questions like those seen in multiple choice
questions on a math quiz. As following with the precedent
of the data set contributor [22], mathematical expressions
are presented using Python’s operator syntax.

In summary we show the following:

• Insight in the ability of an encoder decoder attentional
GRU to extract semantic and syntactic meaning from
mathematical expressions.

• Simultaneously test whether these model’s incorrect
predictions may be leveraged to auto generate multi-
ple choice question distractors commonly seen in lower
education exams. Continuing with this potential ap-
plication, experiment with the practice of character
offsetting–a modified greedy decoding schema which
pushes the networks to predict four separate sequences
instead of a single output thus providing a complete
set of distractors.

Neisarg Dave, Riley Owen Bakes, Bart Pursel and C. Lee Giles “Math Mul-
tiple Choice Question Solving and Distractor Generation with Attentional
GRU Networks”. 2021. In: Proceedings of The 14th International Confer-
ence on Educational Data Mining (EDM21). International Educational Data
Mining Society, 422-430. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

422 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

• Qualitatively measure which question types show the
highest potential for leveraging character offsetting for
the purpose of multiple choice distractor generation.

2. RELATED WORK
Math Word Problems

Early applications of machine learning and deep learning
based methods in math questions attempted to convert math
word problems into equations [10]. Here we rely on the
capability of neural network to identify the textual and
equation parts from the question and model them correctly
in order to solve them. Much of the work in math word
problems relied on extracting equations from text and then
solving them using symbolic solver libraries such as Sympy.

Subhro Roy and Dan Roth created expansion trees [20] and
Unit Dependency Graphs [21] from arithmetic word prob-
lems. Kushman et. al. [11] mapped word problems to
equations using canonical templates and handled ambiguity
using probabilistic models. Tencent AI Lab [29] first used
deep neural networks for solving math word problems. They
used the Seq2Seq model with LSTM units for mapping math
word problems to the equations. MathDQN [27] proposed
using Deep Q-Learning to map math word problems to solv-
able equations. Deepmind [15] attempted to solve math
word problems using the program induction technique, which
would also generate a rationale for choosing an answer. This
method did not involve mapping problems to equations but
the reasoning in text form. Recent work focused on using
recursive neural networks for evaluating equations [30] [28]
mapped from word problems.

Polozov et. al. [19] and Liu et. al [16] proposed methods for
generating math word problems. Liu et. al. [16] used Gated
Graph Neural Networks with Variational Autoencoders to
generate questions from knowledge graphs of mathematical
concepts and symbolic expressions. [19] take programming
approach for encoding requirements from tutors and students
to create logical graphs with the help of ontology. This logical
graph is then used to create expressions and sentences with
the help of primitive templates.

Lample et. al. [12] showed solutions for questions in differen-
tial equations, differential calculus, and integral calculus and
used transformer networks [26] to solve calculus questions
and compared their results with traditional solvers like Math-
ematica and Matlab. In contrast, Saxton et. al. [22] created
a codebase to generate math problems across fifty-six classes
and solve them using deep neural networks. Saxton et. al.
compared problem solving abilities of Seq2seq networks with
transformers. Though transformers showed better results
than the the recurrent models, but Saxton et. al. commented
that the improvement in performance was largely due to the
higher capacity of transformer networks to remember rather
than their ability to solve.

Here we use the codebase created by Saxton et. al. [22] to
generate math questions. Even though the codebase in its
original form cannot generate distractors, it can be modified
to create distractors using simple rules. In comparison to
other datasets [15] which contain distractors, we chose to
use the codebase since it provided more control over the

generation of questions and also the templates used have a
simpler language and an equation with each question.

In a classroom and tutoring settings math questions are
more open ended. Erikson et. al [5] tested the capability of
XGBoost, Random Forests and LSTMs in analyzing the open
ended answers in mathematics. These models were created to
assist the teacher rather than complete automated grading.
Michalenko et. al [17] used LSTMs to solve polynomial
factorization problems. They created their dataset from
Wolfram Alpha. They use the trained network for automated
grading and personalized feedback system.

Distractor Generation (DG)

In multiple choice questions, the options which are not the
answer are called distractors, because their job is to distract
a student from a given correct answer. Distractor generation
has been studied for non-mathematical subjects, especially
English (Susanti et. al. [23]) and other domain-specific tasks
(Aldabe et. al. [2]). Distractor generation for scientific
subjects like physics, chemistry, biology, and economics was
explored by Linag et. al. [13]. They [13] used a two-stage
model with a classifier and a ranker to filter out the relevant
distractors. Linag et. al. [14] explored distractors for fill in
the blank type questions using GAN networks.

Partial Credit Scoring

Similar in spirit to our partial credit scoring system, Pho
et. al. [18] attempt to automatically score the quality of
manually created English multiple choice distractors using
various semantic and syntactic criteria including WordNet.
This is fundamentally different from our problem however
as we seek to automate the generation of the distractors
themselves and simultaneously sought out a metric to help
measure the fundamental reasonableness of those distractors.

3. EXPERIMENTS
3.1 Training Data
The data set used in this paper [22] had the express pur-
pose of being a large scale training and testing framework
for benchmarking models on mathematical reasoning. The
framework consists of both training and testing sets. The
training set consists of 39 different math problem types and
variants of 17 of those add the element of mathematical
composition to the problem’s statements for a total of 56
question types organized into 8 different domains–probability,
polynomials, numbers, measurement, comparison, calculus,
arithmetic, and algebra. Each question type within a do-
main is split into three training sets, easy, medium and hard
of 666,666 question answer pairs, for a total of 2 million
examples per question type.

Difficulty measures the relative complexity of coefficients in
the expressions generated. As an example compare from
the polynomial evaluation set the easy: ‘Let u(q) = q**2
- 6*q - 10. Calculate u(8).’, medium: ‘Let s(v) = v**3 +
47*v**2 +471*v + 142. Give s(-33)’, hard: ‘Let h(a) =
-177071*a - 4957992. What is h(-28)?’ and an actual related
college algebra exam question [25]: ‘Evaluate the function
f(x) = 3 + (x-5)**(1/2) at x = 9.’. It is relatively clear that

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 423

examples from medium and hard are unlikely to appear on a
low level math examination. For this reason the majority of
experiments rely on the easy train set variants. It was our
hypothesis that as the curriculum provided by these sets are
much more in line with the expected complexity of questions
appearing on actual low level exams that the models would
thus be more likely to generate better distractors (or even
the correct answer) when provided such an exam’s questions
as input.

The primary test method within the framework proposed by
[22] is a data set referred to as interpolation. Every question
type has an associated interpolation test set. The set consists
of 105 question answer pairs likely unseen in either the easy,
medium and hard train sets of the associated question. The
guarantee of lack of repeated questions comes from a lower
bound on the probability of a questions repeated generation.
A training question at most has a 10−8 chance of reappearing
in the test set. [22] also release a secondary test set referred
to as extrapolation, which measures generalization of core
concepts across multiple question types. However, as we
specifically were interested in single question trained models
for the express purpose of multiple choice question distractor
generation this test set was unused.

3.2 Rule Based Distractor Generation
Evaluation of distractors is not an exact process. For a given
question there can be any number of distractors, some good,
other bad. There is usually a very loose concensus on what
constitutes a good distractor. Also no algorithm exists that
can gauge the ”goodness” of distractor. However, expert
educators have a keen sense of judging the distractor by
their teaching and research experience. Educators usually
know where students make mistakes, and leverage that to
generate good distractors. For simple high school questions,
we can simulate this process by creating rules that mimic
the mistakes made by students. These rules then can be
embedded with a mathematical solver to produce distractors
for given question. A simple set of rules can be created to
modify the solution steps to generate distractors for questions
containing mathematical equality or inequality. Commonly
used rules are:

• Change One Sign : Randomly pick one coefficient or
constant in equality/ inequality and multiply by −1.

• Change Two Signs : Randomly pick two coefficients or
constants of equality/inequality and multiply by −1.

• Most Frequent Number : Use the most frequent number
in the equality/inequality as a distractor

• Nearest Multiple : Randomly pick a coefficient or a
constant in equality/inequality and change it to the
nearest multiple of 2, 3 or 5.

• Random Drop : Randomly drop one of the coefficients
or constant in equality/inequality

• Invert Range : Invert the solution range of the inequal-
ity, e.g. change [0, 1] to (−∞, 0) ∪ (1,∞)

• Trivial Solution : For inequality problems, one of the
distractors can be chosen from {φ}, (−∞,∞), or No
Solution. For equations, choices are from 0, −1 or 1

• Flip brackets : Change an open bracket in answer to
closed and vice and versa. In the question, order of
operations can be changed by changing the position of
brackets.

These rules can be coded as python functions and then
selected one or two rules at random to modify the steps
involved in solving the question. Symbolic library like sympy
can be used for generating and solving the math questions.
The library developed by deepmind [22] can create math
questions across various domains with varying difficulty level.
We modify their codebase to extend its capability to generate
the distractors based on the stated rules. Table 1 shows few
examples of rule based distractor generation.

Question Answer Distractors

Let − 2p
3
− 2

3
≥ 2p

5
− 4

5
.

What is p?
−∞ < p ≤ 1

8

11
2
≤ p <∞

3 ≤ p <∞
4
23
≤ p <∞

Find all solutions to
3
2
− w

6
≥ − 2w

11
− 14

11
.

−183 ≤ w <∞
− 61

4
≤ w <∞

−∞ < w ≤ 61
4

−∞ < w ≤ 47
2

Solve the polynomial
inequality:

51− 3f 6= −f − 1
6

f 6= 307
12

f 6= − 305
24

f 6= − 305
18

f 6= − 46
3

Table 1: Distractors generated using rules

Distractors generated using rules act as a form of reference
distractors. For qualitative evaluation of distractors gener-
ated by neural networks, we will look at both the distractors
side by side in table 3.

3.3 Experiment Detail
Two principle experiments can be identified. An attentional
[3] encoder decoder GRU [4] is trained on a single question
type for the entire 666,666 easy train set. Keeping with the
spirit of the framework released by [22] we after training
a model on a specific question set test the models on their
respective question’s interpolate test rather than a subset of
the train set.

Simultaneously, during the second round of data collection
with the GRU, when the model is scored on the interpolate
set we perform character offsetting (see 3.3.1) and ask the
model to predict 3 distractors in addition to a primary so-
lution sequence. Two different scores were calculated for a
model’s performance on the test set–the first, a complete
binary accuracy where credit is assigned if and only if the
entire primary greedy decoded sequence matches the true
solution sequence. And second, a partial credit score which is
calculated by subtracting from 1 the normalized Levenshtein
edit distance between the predicted and true solution. Nor-
malized in this context means the ratio of the edit distance
to the max sequence length of either the true or predicted
solution sequence. Thus for a given Levenshtein distance d
for solution sequence S and prediction sequence P we have
partial credit defined as

partial credit = 1− d(P, S)

max(len(P, S))
(1)

424 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 1: Example of character offsetting given an encoder’s
context embedding from the input question ‘-2 + 1’. Note
decoder hidden states not shown in diagram. <SOS> signifies
the start of sequence character.

It is important to acknowledge the widely different possible
interpretations for what partial credit could mean in this
context and why we choose the definition we did. In a
typical educational setting, partial credit is assigned when
the student demonstrates sufficient understanding of the
problem albeit fail to arrive at the final correct solution.
This is difficult to measure in model outputs–consider a
correct sequence being −2 and a predicted sequence of 2,
the partial credit score would be 1− 1

2
= 50%. In real life

a teacher may realize a student failed to report a final sign
change and assign significant credit. Such thorough review
is impossible given the 100, 000 examples within a single
question type’s test set (and also impossible considering the
model’s inability to provide secondary and tertiary decision
making steps)–and so we formulate the above definition as
an attempt to empirically measure the ability for a model to
predict similar expressions to the correct one. We emphasize
this is not any attempt to measure the models comprehension
of the mathematics it is predicting on. As for why this is
important; the ultimate goal is to generate multiple choice
question distractors which generally exhibit some form of
similarity to the correct solution. We discuss defining a good
distractor more fully in section 3.3.2.

3.3.1 Character Offsetting
We propose a modified greedy decoding schema called char-
acter offsetting for generating multiple choice question dis-
tractors. In a typical greedy decoding scheme for an encoder
decoder sequence to sequence model an input sequence (in
our case, a string literal representation of a math problem)
is given to the encoder which generates a context embedding
[24]. Then character by character the decoder outputs a
response sequence based on this context. At every time step
of the output sequence’s prediction, the previously predicted
character and hidden states, as well as the encoder’s context
output, are re-fed into the decoder. The actual output of
the decoder at any step is a probability array the size of the
model’s vocabulary [8]. The highest value corresponds to the
most likely next character in the sequence, at least according
to the model’s weightings. In a greedy decoding at every
step we simply take the most probable character and append
it to the final output. Prediction is halted once the model
outputs the end of sequence character as the most probable
next step [8].

In character offsetting we freeze the initial decoder returned
probability array and hidden states. We now ask the decoder
to generate four total prediction sequences–one being your
expected greedily decoded output, a second with the second
most likely character from the frozen initial probability array
as the sequence’s starting character, and similarly a third
and fourth. Each time a new sequence is attempted, we reset
the hidden state to the saved initial hidden tensor. This
was found for several question types to generate diverse and
reasonable incorrect outputs. Table 4 provides a qualitative
ranking based on question type for this task.

3.3.2 Difficulty in Defining a Good Distractor
Defining a good distractor is a non-trivial endeavor, and
we make no claim to have accomplished this in this paper.
Rather we discuss qualities typically considered when trying
to formulate distractors for a multiple choice assessment.

Some qualities are readily apparent–general reasonability of
a distractor as a possible solution to the question posed is
perhaps the most fundamental requirement [7]. Measuring
reasonability may be accomplished in several ways. Differ-
ence in value between a distractor and the true solution are
potentially a good baseline–a distractor should be within a
context specific similar magnitude as the true solution to
avoid immediate exclusion. For lower level maths such as the
the problem types discussed we believe this to be typically
within a magnitude difference.

3.4 Model Parameters and Training Procedure
The model experimented with was an encoder decoder atten-
tional GRU trained on a single NVIDIA 1080TI GPU for a
single train-easy curriculum question type from the [22] data
set. The models encoder and decoders had an embedding
layer of size 512, with the decoder having 16 attentional
heads. Initially what was attempted for a given training
question type was an encoder decoder hidden size of 2048
on a batch size of 256. If the 1080TI GPU memory was
insufficient given a training question type then we alternated
between dropping encoder size and batch size. The parame-
ters for a given question type are recorded in table 4. 150
training epochs were performed.

We follow most of the parameters used in [22]–the Adam
optimizer [9] was selected for minimizing the sum of the
log probabilities of the correct character with learning rate
lr = 6 ∗ 10−4, and β1 = 0.9, β2 = 0.995, and ε = 10−9

and absolute gradient clipping of 0.1. The model leveraged
teacher forcing during training and used 0.9/0.1 split of
training data into a train and validation set.

4. RESULTS AND ANALYSIS
4.1 Attentional GRU on the Interpolate Set
4.1.1 Performance Considerations

It should be noted that these models have removed from
them the greater context provided by the train-medium and
train-hard data sets, of which interpolate attempts to test
understanding for as well. It is possible as well that the hard
or medium sets better generalize to interpolate for specific
question sets. A small test seems to support this–we let the
model train on the hard variant of algebra linear 1d and
scores improved from 3.9% to 44.3%.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 425

Metric Mean Score
Binary 0.065
Partial Credit 0.679

Table 2: Comparison of attentional GRU partial credit and
binary scoring performance averaged across all questions not
disqualified in 4.2.1. This includes low potential questions
excluded in table 4.

Figure 2: Top ten scoring questions when evaluated with the
partial credit (PC) metric and no partial credit (binary) (No
PC) score.

4.1.2 Analysis: GRU Performance Binary Scoring
Performance when scored with no partial credit varied widely.
Of the top ten scoring question types 5 are from the com-
parison module type. Based on overall poor performance
we are skeptical that the models extrapolate true mathe-
matical semantic meaning–rather they likely just determine
meta solution strategies. For example, one hypothesis for the
comparison task success is that the notion of magnitude is
readily apparent based on the length of the input sequence.
Two observations about this–the first is that this requires the
model to have gained the ability to isolate critical numeric
subsequences within a larger question prompt. Secondly,
providing contrary evidence to this hypothesis of sequence
length metagaming, is that even for examples comparing
long decimal sequences of lesser magnitude to short whole
integers of greater magnitude we observe successful predic-
tions. Lastly, the implication of signage in comparison was
understood well by the models.

Generally it would appear that magnitude is an easier concept
for statistical pattern recognition to abstract. Most difficult
for the network was the evaluation of polynomials and other
algebraic expressions, and arithmetic. Binary scores in all
these categories were low–even given the considerations pro-
vided in section 4.1.1.

4.1.3 GRU Performance Partial Credit Scoring
Measurement with the partial credit metric (table 2, figure 2)
demonstrates greater consistency and performance and shows
promise for the ability of the attentional GRU to capture
the essence of a reasonable response and work as a distractor
generator for multiple choice questions–especially for types
of problems the model performed poorly on using a binary
scoring metric. However we note some flaws in the mea-
surement. An example: in algebra linear 2d composed the

model would frequently predict a single negative sign, a safe
prediction and given the length of correct outputs is typically
only one or two characters this led to a significant boost in
score while answers remained meaningless. Interestingly in
the question set’s non-composed variant algebra linear 2d
the model’s outputs are mostly meaningful and the partial
credit score seemingly justified. To supplement the partial
credit score, a qualitative examination of the reasonability
of model’s outputs compared to their empirical partial credit
scoring is provided in table 4.

4.2 Multiple Choice Question DG
4.2.1 Considerations

The [22] framework releases a wide range of question types
posed in diverse formats. Not discussed until now is that
several formats are not conducive towards training models.
Take for example questions from the comparison closest set
which are themselves posed as multiple choice questions–

‘Which is the nearest to -955? (a) -3/4 (b) 0.2 (c) 17/3 (d)
3/5 (e) 0.5’

A model is supposed to predict either a, b, c, d, or e. Of the
data sets released only four were found to use such a format
for some or all questions within the set. A similar problem;
six sets were either partially or fully posed as simple true
and false questions. Naturally such questions are removed
from consideration from our goal of distractor generation.

Partial credit was found to be an effective indication for
many question types of whether a model’s principle predicted
sequence captures what a reasonable response should look
like. Some faults exist however–consider the question type
comparison sort. An example: ‘Sort -1, 0.3, -6, -24/11, 3, 5, 1
in descending order.’ with primary prediction ‘5, 3, 1, -0.3, -1,
-24/11, -6’. Observe the −0.3 in the prediction output–a value
which is not even an option given in the problem statement!
Such an example would not make a worthwhile distractor
as it fails to test for the mathematical notion this question
fails to over a high partial credit score. In table 4 we provide
a qualitative review per question type of character offset
predictions for multiple choice question distractor generation.
By comparing to their respective partial credit score we find
that generally a high score is an indicator for character offset
predictions to also be reasonable.

4.2.2 Character Offset DG: Interpolate Sampling
The following are a couple of curated model responses–the
order of the distractors matches the ordering of the probabil-
ity of the initial character offset. So the first value listed is
the model’s primary greedily decoded prediction, the second
is the sequence generated when we force the initial character
to be the second most probable, and so on. If the model
predicts the correct solution it is bolded.

‘solve -2*s - 40 = -2*j, 53*j - 62*j + 245 = 4*s for s.’
output: 5, -5, 4, 1

‘let i(a) = -a**2 + 1319*a - 22130. calculate i(17).’
output: 4, -4, 5, 14

426 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Here we see a pair of ideal outputs from the algebra linear 2d
and polynomials evaluate sets respectively. Not only did the
model successfully predict the correct solution sequences of
5 and 4, but also produced noteworthy distractors. Observe
the similar magnitude and the prediction of -5 and -4–sign
changes of the true solutions and a powerful arithmetic skills
check.

Quantitative measurement of the potential for character off-
setting in generating multiple choice question distractors is
a difficult endeavor due to the lack of formal definition of
the problem. However, we observe general groupings of ques-
tions which seem to have potential for the use of character
offsetting as a computationally cheap method of doing so.
Table 4 is a qualitative ranking when given a random subset
of outputs for each interpolate question type, whether offset
predictions are not reasonable (low, not reported), whether at
least one offset sequence is reasonable (medium), or whether
most offset sequence predictions are reasonable (high). We
view a prediction as unreasonable if it is mathematically
meaningless or as mentioned in 4.2.1 either unreasonable
given the problem’s context or disqualified due to format.
We find a higher partial credit score of the primary predic-
tions frequently but not always aligns with whether offset
predictions would also be reasonable.

Table 3 shows the comparison of the model generated dis-
tractors and rule based distractors for five questions. We
generated four distractors for each question from the model
and generated ten distractors from the rule based system.
In the given table we show the most matching distractors.
As we can see we get two matches each for questions (1), (4)
and (5). There are three matching distractors for question
(3) while there is no matching distractor for question (2).
Despite being no matching distractor, our model gets the
form of the distractors correct, and the predicted distractors
at a glance can be used on a real quiz. In question (4), we
can see that the model gets the multiplicity of 120 right and
tries to stay around it. From the above examples we can
see that our model first tries to get the form of the answer
correct and then aims for computational compositionality.

4.2.3 Character Offset DG: Standard Exam Sampling
We sample several actual standardized exam questions from
the SAT, ACT, and a college algebra midterm. Questions
are altered before being fed to a model so that mathemati-
cal syntax matches Python’s. Interestingly models appear
resilient to significant changes in the question’s formulation.
Correct exam solutions are bolded, and generated options are
in order of the probability of the initial character offsetting.
The exam distractors are provided for comparison below but
are removed before the question is fed to a model.

‘What is the greatest common factor of 42, 126, and 210?
A) 2 B) 6 C) 14 D) 21 E) 42’

output: 42, 6, 21, 12

An interesting example [1] as the numbers gcd data set only
ever presents two values to find the gcd of, while the above
presents three. Not only does the model predict the correct
solution, but two distractors also used in the actual exam.

‘Evaluate the function f(x) = 3 + (x-5)**(1/2) at x = 9. A)
1 B) 5 C) 6 D) 7’

output: 5, 49, -5, 9

Again we observe relatively reasonable responses given ques-
tion formulations which diverge significantly from the tem-
plates trained on. This question [25] is similar to a polyno-
mials evaluate type. However, the difference is no fractional
powers exist in the train-easy set–yet even with the power
symbol being replaced by the unknown character the model
still generates valid distractors (and the correct solution, but
this is clearly by chance as the model has no knowledge of
roots).

5. CONCLUSION
5.1 Summary
Two experiments quantitatively showed that a GRU has
mixed results when attempting to solve elementary math
problems. Our alternative goal of multiple choice distrac-
tor generation for several question types typically found in
pre-undergraduate education by applying a modified greedy
decoding schema referred to as character offsetting was suc-
cessful. Evaluation using an edit distance based partial
credit scoring metric as opposed to a binary one demon-
strates greatly increased consistency and performance for
capturing a reasonable response. We found the following:

• Generally the easiest math problem types for a GRU
is comparison tasks which is not surprisingly since
this is a fundamental problem encountered early in
education. It would appear the ability for GRUs to
abstract mathematical knowledge is minimal.

• The ability for networks to capture the essence of a
reasonable response for several question types is shown.
Leveraging the proposed practice of character offset-
ting we show that these networks can cheaply generate
distractor options for multiple choice questions.

5.2 Future Work
It would be interesting to compare a beam search decoding’s
non principle predicted sequences to those produced by char-
acter offsetting and whether for certain question types more
worthwhile distractors are produced. The general capability
for character offsetting to produce at least one worthwhile
distractor for the medium potential questions listed in table
4 hint that with some refinements to the decoding schema or
training parameters could potentially become high potential
question types.

6. ACKNOWLEDGEMENTS
We gratefully acknowledge support from Teaching and Learn-
ing with Technology at The Pennsylvania State University.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 427

Supplementary Material - Appendix

S.No. Question Answer
Distractors
(Model)

Distractors
(Rule Based)

1
express −105c2 − 5c3 + 7c− 50c + 41c + 332c2

in the form rc3 + ic2 + b + uc and give u.
−2

−1
0
3
2

−9
0

−16
2

2
let k(w) = 2w2 − 4w2 + 3w2. let z = −29 + 33.
let r(o) = −4 − 39o2 + 84o2 + z. give r(k(s)).

45s4

−s4

8s4

9s4

18s4

−45s4

45s4 − 4
135s4

0

3
let u be 1/(114/56 − 2).
suppose −3d = −3p + 24, −16d− u = −4p− 13d.
solve c− 3z + 2 = −c, 0 = −4c− pz − 4 for c.

−1

1
4
2
0

1
−2
2
0

4
let v be 4/(−14) + −1 ∗ (−596)/28. let a = v − 15. what is the third
derivative of −6b2 − 9b6 + 23ba − 8b6 wrt b?

720b3

−120b3

120b3

60b3

240b3

−120b3

120b3

−720b3

360b3

5
let a(h) = 2h2 − 9h + 4. suppose −26w − 20w = −55w + 126.
what is the remainder when a(−7) is divided by w?

11

18
8
21
9

7
8
3
9

Table 3: Qualitative Comparison of Distractors Generated using Neural Network Model and Rule Based System

Potential Question Encoder Hidden Size Batch Size Partial Credit Score Mean Score
algebra linear 2d composed 2048 128 0.837

High algebra linear 2d 2048 256 0.811 0.766
algebra linear 1d composed 2048 128 0.887
algebra linear 1d 2048 256 0.694
algebra sequence next term 2048 128 0.774
arithmetic mul div multiple 2048 256 0.772
arithmetic nearest integer root 2048 256 0.730
polynomials evaluate composed 2048 128 0.754
polynomials evaluate 2048 128 0.709
polynomials expand 512 128 0.642
polynomials coefficient named 2048 128 0.733
numbers gcd composed 2048 128 0.760
numbers gcd 2048 256 0.762
numbers lcm composed 2048 128 0.737
numbers div remainder composed 2048 128 0.800
numbers div remainder 2048 256 0.762
numbers place value composed 2048 128 0.859
algebra sequence nth term 1024 128 0.507

Medium arithmetic add or sub 2048 256 0.501 0.624
arithmetic mul 2048 256 0.451
arithmetic div 2048 256 0.559
arithmetic mixed 2048 256 0.688
arithmetic add sub multiple 2048 256 0.755
arithmetic add or sub in base 2048 256 0.682
calculus differentiate composed 1024 128 0.589
calculus differentiate 512 128 0.730
measurement time 2048 256 0.838
numbers lcm 2048 256 0.564

Table 4: Qualitative ranking of the potential for models to use character offsetting for generating distractors based on observed
predictions on interpolate. Questions not listed are those whose predictions were generally unreasonable as defined in 4.2.2 or
disqualified due to formatting mentioned in 4.2.1. Model specifications are included as well. Decoder hidden size was 2048 for
all models. Encoder/Decoder embedding dimension and number of attentional heads was 512/512 and 16 respectively.

428 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

7. REFERENCES
[1] ACT. Practice test questions: Math, 2020.

[2] I. Aldabe and M. Maritxalar. Automatic distractor
generation for domain specific texts. In International
Conference on Natural Language Processing, pages
27–38. Springer, 2010.

[3] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine
translation by jointly learning to align and translate.
CoRR, abs/1409.0473, 2015.

[4] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase
representations using RNN encoder-decoder for
statistical machine translation. CoRR, abs/1406.1078,
2014.

[5] J. A. Erickson. Natural language processing for open
ended questions in mathematics within intelligent
tutoring systems. In EDM, 2020.

[6] M. Ganesalingam. The language of mathematics. In
The language of mathematics, pages 17–38. Springer,
2013.

[7] H. C. Goodrich. Distractor efficiency in foreign
language testing. TESOL Quarterly, 11(1):69–78, 1977.

[8] A. Graves. Supervised Sequence Labelling with
Recurrent Neural Networks. Four volumes. Springer,
2014.

[9] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2015.

[10] R. Koncel-Kedziorski, H. Hajishirzi, A. Sabharwal,
O. Etzioni, and S. D. Ang. Parsing algebraic word
problems into equations. Transactions of the
Association for Computational Linguistics, 3:585–597,
2015.

[11] N. Kushman, Y. Artzi, L. Zettlemoyer, and R. Barzilay.
Learning to automatically solve algebra word problems.
In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 271–281, Baltimore, Maryland,
June 2014. Association for Computational Linguistics.

[12] G. Lample and F. Charton. Deep learning for symbolic
mathematics. CoRR, abs/1912.01412, 2019.

[13] C. Liang, X. Yang, N. Dave, D. Wham, B. Pursel, and
C. L. Giles. Distractor generation for multiple choice
questions using learning to rank. In Proceedings of the
Thirteenth Workshop on Innovative Use of NLP for
Building Educational Applications, pages 284–290, 2018.

[14] C. Liang, X. Yang, D. Wham, B. Pursel,
R. Passonneaur, and C. L. Giles. Distractor generation
with generative adversarial nets for automatically
creating fill-in-the-blank questions. In Proceedings of
the Knowledge Capture Conference, page 33. ACM,
2017.

[15] W. Ling, D. Yogatama, C. Dyer, and P. Blunsom.
Program induction by rationale generation: Learning to
solve and explain algebraic word problems. Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
2017.

[16] T. Liu, Q. Fang, W. Ding, Z. Wu, and Z. Liu.
Mathematical word problem generation from
commonsense knowledge graph and equations. ArXiv,
abs/2010.06196, 2020.

[17] J. J. Michalenko, A. S. Lan, and R. G. Baraniuk.
Personalized feedback for open-response mathematical
questions using long short-term memory networks. In
X. Hu, T. Barnes, A. Hershkovitz, and L. Paquette,
editors, Proceedings of the 10th International
Conference on Educational Data Mining, EDM 2017,
Wuhan, Hubei, China, June 25-28, 2017. International
Educational Data Mining Society (IEDMS), 2017.

[18] V.-M. Pho, A.-L. Ligozat, and B. Grau. Distractor
quality evaluation in multiple choice questions. In
C. Conati, N. Heffernan, A. Mitrovic, and M. F.
Verdejo, editors, Artificial Intelligence in Education,
pages 377–386, Cham, 2015. Springer International
Publishing.

[19] O. Polozov, E. O’Rourke, A. M. Smith, L. Zettlemoyer,
S. Gulwani, and Z. Popović. Personalized mathematical
word problem generation. In IJCAI 2015, May 2015.

[20] S. Roy and D. Roth. Solving general arithmetic word
problems. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 1743–1752, Lisbon, Portugal, Sept. 2015.
Association for Computational Linguistics.

[21] S. Roy and D. Roth. Unit dependency graph and its
application to arithmetic word problem solving. In
Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, AAAI’17, page 3082–3088. AAAI
Press, 2017.

[22] D. Saxton, E. Grefenstette, F. Hill, and P. Kohli.
Analysing mathematical reasoning abilities of neural
models. CoRR, abs/1904.01557, 2019.

[23] Y. Susanti, T. Tokunaga, H. Nishikawa, and H. Obari.
Automatic distractor generation for multiple-choice
english vocabulary questions. Research and Practice in
Technology Enhanced Learning, 13(1):15, 2018.

[24] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to
sequence learning with neural networks. In Proceedings
of the 27th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’14,
page 3104–3112, Cambridge, MA, USA, 2014. MIT
Press.

[25] University Department of Mathematics. Math 021
sample exams, exam 1 sample exam a, 2020.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. CoRR, abs/1706.03762, 2017.

[27] L. Wang, D. Zhang, L. Gao, J. Song, L. Guo, and H. T.
Shen. Mathdqn: Solving arithmetic word problems via
deep reinforcement learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32,
2018.

[28] L. Wang, D. Zhang, J. Zhang, X. Xu, L. Gao, B. T.
Dai, and H. T. Shen. Template-based math word
problem solvers with recursive neural networks.
Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01):7144–7151, Jul. 2019.

[29] Y. Wang, X. Liu, and S. Shi. Deep neural solver for
math word problems. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language
Processing, pages 845–854, Copenhagen, Denmark,
Sept. 2017. Association for Computational Linguistics.

[30] K. Zaporojets, G. Bekoulis, J. Deleu, T. Demeester,
and C. Develder. Solving math word problems by

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 429

scoring equations with recursive neural networks. arXiv
preprint arXiv:2009.05639, 2020.

430 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Linguistic and Gestural Coordination: Do Learners
Converge in Collaborative Dialogue?

Arabella J. Sinclair
ILLC, University of Amsterdam

Science Park 107
1098 XG Amsterdam
a.j.sinclair@uva.nl

Bertrand Schneider
Graduate School of Education, Harvard

13 Appian Way
Cambridge, MA 02138

bertrand_schneider@gse.harvard.edu

ABSTRACT
Collaborative dialogue is rich in conscious and subconscious
coordination behaviours between participants. This work
explores collaborative learner dialogue through theories of
alignment, analysing inter-partner movement and language
use with respect to our hypotheses: that they interrelate,
and that they form predictors of collaboration quality and
learning. In keeping with theories of alignment, we find
that linguistic alignment and gestural synchrony both corre-
late significantly with one another in dialogue. We also find
strong individual correlations of these metrics with collab-
oration quality. We find that linguistic and gestural align-
ment also correlate with learning. Through regression anal-
ysis, we find that although interconnected, these measures in
combination are significant predictors of collaborative prob-
lem solving success. We contribute additional evidence to
support the theory that alignment takes place across multi-
ple levels of communication, and provide a methodological
approach for analysing inter-speaker dynamics in a multi-
modal task based setting. Our work has implications for the
teaching community, our measures can help identify poorly
performing groups, lending itself to informing the design of
real time intervention strategies or formative assessment for
collaborative learning.

Keywords
Dialogue, Gesture, Natural Language Processing, Alignment,
Collaborative Learning

1. INTRODUCTION
Collaborative problem solving has long been a focus of ed-
ucational research, and has been deemed an educational
learning objective of critical importance in the 21st century
workforce [12]. In the education literature, collaboration
success is often analysed with respect to a joint problem
space as created through learner interaction [31]. This joint
problem space integrates learner shared goals, descriptions
of the problem state, awareness of available problem solv-

ing actions and the associations between these aspects. The
emergence of this shared conceptual space is constructed
through shared language, situation and activity.

Alignment in dialogue, the language component of this inter-
action, is also commonly attributed to an automatic mecha-
nism to achieve a shared understanding, or situation model
[27]. This account of dialogue predicts alignment across
various modes of communication, from word level to ges-
ture and gaze patterns. Specifically in a task based setting,
alignment is thought to aid mutual understanding [10, 27].
These theories of alignment and collaborative learning when
taken together suggest that convergence at many levels of
communication will take place in parallel over the course of
collaborative dialogue, and that this alignment will be in-
dicative of collaborative success. Additionally, the collabo-
rative learning literature suggests that the effort necessary to
build shared understanding is what actually leads to learn-
ing [40], thus alignment, already found to be predictive of
student learning in a teacher student context [42], may also
be indicative of this.

Investigating collaborative problem solving through the lens
of alignment can give additional insights to this complex
problem of convergence [38]. In this work, we examine the
synchrony and convervence between students at both a lin-
gusitic and gestural level, via inter-student metrics of lin-
guistic alignment and movement synchrony. Of particular
interest in this study is the separate coding of collaboration
and learning in the learner dialogues. This allows for side by
side comparison of the different modalities, and the analysis
of their interaction with respect to these outcomes. Ges-
tural and linguistic coordination between locutors has long
been linked in dialogue, both properties having been indi-
vidually explored for facilitating collaboration and learning
in various settings.

We offer an exploration of theoretically motivated metrics
to capture synchronisation and alignment at the levels of
linguistic expressions and movement patterns. We explore
correlations between the measures themselves and between
collaboration and learning. Exploring the relationship be-
tween these measures we find strong correlations between
modalities, in line with the collaboration and alignment lit-
erature. Finally we explore the combination of these modal-
ities in their predictive power for both collaboration and
learning, finding that although they are interrelated, each
plays a significant role in prediction quality.

Arabella Sinclair and Bertrand Schneider “Linguistic and Gestural Coordi-
nation: Do Learners Converge in Collaborative Dialogue?”. 2021. In: Pro-
ceedings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 431-438.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 431

1.1 Research Questions
Motivated by the hypotheses we draw from the literature on
collaboration, learning and alignment, we hypothesise that
more successful learner dyads will converge in both their
language use and their movement patterns to a visible de-
gree, as the students align their mental models during the
learning process. We also hypothesise that together, these
aspects of interaction can provide useful tools in the analysis
of student learning. We split our analysis into the following
research questions:
RQ1: Evidence of Convergence: Are linguistic align-
ment, gestural synchrony and convervence effects between
students higher than by chance task and vocabulary effects?
RQ2: Convergence Vs Collaboration & Learning: How
do our measures of convergence correlate with collaboration
and learning?
RQ3: Interaction: Linguistic Vs Gestural: Do these
modalities correlate with one another?
RQ4: Multimodal: Do combined measures of syn-
chrony predict learning and collaboration outcomes:
are the measures in combination predictive of learning and
collaboration?

2. BACKGROUND

Evidence of convergence. Experimentally, in a two per-
son dialogue setting, speakers have been found to converge,
each aligning to their locutor at many levels of communica-
tion: lexical, structural, gesture and conceptual[27]. Speak-
ers have been found to spontaneously coordinate body pos-
tures and gaze patterns during conversation [35]. Behaviour
matching in multimodal communication has also been found
to be temporally synchronised in collaborative task-based
activity, when participants are facing each other [22]. Im-
itation or mimicry between people unconscious of this be-
haviour has been found in incidental mannerisms such as
the bouncing of a foot, or rubbing a nose [9]. People imitate
one another in dialogue across many different modalities,
including lexical choice [17], accent [18], pauses [7], speech
rate [43] and syntax [30, 4, 26]. This imitation has been
linked to having social benefits, for example, [9] find that
speakers in those pairs where their incidental mannerisms
were mimicked perceived the interaction as running more
smoothly than those whose were not. In terms of collabo-
ration, multi modal behaviour matching has been found to
occur in a synchronous manner in a task based collaborative
dialogue where rapport and its role in learning and conver-
gence was investigated [22]. Acoustic prosodic entrainment
has also been found to correlate with rapport, a social qual-
ity of the interaction, in collaborative learning dialogues [23].
Parallel to this, it has been argued that infants’ early skills
of joint attention is their emerging understanding that other
people exist as intentional agents [8], as they develop the-
ory of mind. In terms of learning, lexical entrainment has
been shown to correlate with success in multiparty student
engineering group project meetings [16], where higher scor-
ing teams were more likely to increase their entrainment
in project words over the course of a dialogue, while lower
scoring teams are more likely to diverge. Alignment level
has been shown to vary with student ability [36], and con-
vergence of lexical and speech features from student to tutor
in spoken tutorial dialogue corpora has been shown to be a
useful predictor of learning [42].

Language and gesture in learning. Gesture has an im-
portant role in teaching and learning [32], as does language,
which, at a structural level, has been shown to exhibit effects
characteristic of both learning and implicitness, thought of
as an aspect of alignment or coordination between interlocu-
tors [15]. A wide range of lingusitic features derived from
student dialogues have been found to be effective predic-
tors of both learning gains and collaboration quality [29].
Categorising gesture in an educational setting often adopts
the framework proposed by [24], of separating them into
four basic types: beat (gestures devoid of topical content
yet which lend temporal or emphatic structure i.e. hand
tapping, head movement for emphasis), deictic (concrete or
abstract pointing i.e. to match an object referred to as ‘this’
or ‘that’, or a concept in the past that is being referred to),
iconic (also referred to as representational, i.e. making a
gesture of putting a phone to ones ear), and metaphor (ges-
tures to illustrate abstract concepts, such as moving hands
together to illustrate mathematical convergence, or drawing
a trend line in the air to demonstrate positive correlation).
While gestures are pervasive, not all types are equally repre-
sented in particular speech events, and are very dependent
on the dialogue context, however, various studies have found
that gesture and speech together provide a better index of
mental representation than speech alone, and to be an im-
portant aspect in learning [19, 11].

3. METHODS
Speaker Utterance

Left: then we need to turn left . again put an if and then turn the
view book .

Right: so another if do statement ?
Right: was it just when you write in the sensor here , right into that . i

say talk to motor ? all right , a and b .
Left: if it is that , then we take a left . then turn left .
Right: turn left , which is right here , right , so
Left: put this inside that and then again , we need to turn left .
Right: another if statement ? remember , control . and then talk to

motor again . turn left
Left: turn left comes after .
Right: and we need one for ...

Table 1: Example dialogue excerpt. Expressions in bold
indicate shared lexical constructions.

Experimental Setup. The experimental setup consisted of
40 pairs of undergraduate students participating in a col-
laborative problem solving task of programming a robot to
traverse a maze. The participants had no prior programming
experience. The participants sat facing a computer screen,
and were recorded as they worked through the shared ex-
ercises. During the collaborative aspect of the task, the fo-
cus of our analysis in this work, participant dialogue was
recorded and subsequently transcribed. Body movement
data was also recorded via a Microsoft kinect sensor. This
resulted in timestamped language and movement data for
the 30 minute period of the task. The participants were
individually given a pre and post test on a similar set of
exercises, in order to evaluate the relative learning in the
dyads. The learning assessment consisted of four short an-
swer or fill-in-the-blank questions that assessed their under-
standing of basic computer science competencies (adapted
from [5, 44]). Learning gains were computed by subtracting
pre-test scores from post-test scores and divided by the total
number of points to be gained minus the pre-test [13]. Col-
laboration was evaluated on a series of axes derived from the

432 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

collaboration assessment measures proposed in [25]: sustain-
ing mutual understanding, dialogue management, informa-
tion pooling, reaching consensus, task division, time man-
agement, technical coordination, reciprocal interaction, and
individual task orientation1. Each dimension was given a
score between +2 and -2 (each score was defined with con-
crete behaviors in a codebook). Researchers double-coded
20% of the sessions and had a Cronbach’s alpha of .65 (75%
agreement). An overall measure of collaboration was defined
as the aggregate of all collaborative features. More details
of the study, the data, experimental setup and coding of col-
laboration and learning scores can be found in Reilly et al.
2019 [29].

Dialogue transcripts. An example snippet from a dialogue
with high collaboration score is provided in Table 1. The
transcripts occasionally include some utterances from the
facilitator, for whom we are not interested in measuring any
alignment effects. The facilitator typically will speak most
at the beginning of the dialogue, thus we remove all intial ut-
terances (including participant) which interleave facilitator
and participant. For the remainder of the dialogue, facilita-
tor utterances are simply removed. Punctuation, although
added at the annotators discretion, is retained, as it pro-
vides valuable information about the pace of the language
used, and indicates the fragmented nature of these dialogues.
The transcripts were tokenised before analysis using the nltk
python package2.

Figure 1: Example student movement pattern over time
(left) and student geometries (right).

Movement Data. Student movement was processed using
motion sensors from microsoft kinect, returning a series of
geometries representing the students’ body positions in space.
An example of two students sitting at the table (which ob-
sures the lower half of their bodies) can be seen in Figure 1.
We only include data from the time period where the stu-
dents were performing the collaborative activity, which cor-
responds to the transcript data of 30 minutes per session.
In terms of pre-processing choices, our interest in the move-
ment data is where the students mimic the gestures of their
partner independent on their position relative to the camera
or one another. This allows us to abstract from the postu-
ral shapes, relative size, and dominant hand of the partic-
ipant’s gestural patterns. We thus use averaged 30-second
time slices3 of the movement data (a measure of between
frame positional difference). We further process this data

1Detailed descriptions of these measures used can be found
in [25]
2NLTK[21] python package http://www.nltk.org
3Our choice of 30-second slices was in part informed by pre-
vious work [38], and through qualitatively examining the

to account for the differences in movement which the ex-
perimental setup introduces: we apply standardisation4 to
each participant signal in order that two signals of differ-
ent means and standard deviations can be compared on the
same axis. This grants us a measure of variance similarity,
which captures better the elements of beat gesture patterns
separate from absolute movement differences, as we know
the students consistently display different mean movement
levels across dyads.

3.1 Computing Lexical Alignment
We operationalise linguistic alignment in this work at the
lexical (word) level, derived from the dialogue transcripts,
extracting shared expressions, which we define as any se-
quence of tokens which contain at least one word (e.g. single
punctuation marks are excluded). The automatic extrac-
tion of shared expressions per dialogue is an instance of the
longest common sub-sequence problem [20, 3]. For each dia-
logue, we extract the inventories of shared expressions using
the method proposed by Duplessis et al. [14]. For each of
the two dialogue-specific inventories of shared constructions,
we compute the following measures:

• Expression Variety (EV): The lexical diversity of the
expression vocabulary.

• Expression Repetition (ER): The ratio of produced to-
kens belonging to an instance of an established expres-
sion

• Vocabulary overlap (VO): Captures the richness of the
shared vocabulary, the ratio of shared vocabulary present
in the dialogue between participants:

#(wordsspeaker1 ∩ wordsspeaker2)

#(wordsspeaker1 ∪ wordsspeaker2)

Individuals repeat and introduce expressions at different rates
within dyads, thus we additionally calculate dyad level mea-
sures to capture the symmetry between interlocutors.

• Expression Initiator (IE) Difference: Difference in %
of shared constructions introduced by each dialogue
participant. Initiator describes the dialogue partici-
pant to first use a subsequently shared and repeated
construction.

||IE(speaker one)− IE(speaker two)||

• Expression Repetition Difference: The difference in
proportion of an individual speaker’s utterances which
contain a usage of a shared construction:

||ER(speaker one)− ER(speaker two)||

These measures capture the between speaker repetition within
dialogue, which we use as a proxy for measuring the coor-
dination or alignment between the speakers. An example of
expression repetition can be found in Table 1

data at 5-second and 30-second slices, 30-seconds seems to
be sufficient to capture interesting aspects of finer-grained
hand movement, but not so fine as to render average total
movement data meaningless
4Standardising a time series dataset involves re-scaling the
distribution of values, also known as Z-normalisation

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 433

3.2 Computing Gestural Synchrony
We use Dynamic Time Warping [33] as the measure of sim-
ilarity between partner movement patterns as it has been
found to be a consistently robust measure of time series
similarity [2], which although introduced as a method for
analysing speech signal [33], has been employed successfully
in the field of gesture recognition [1]. DTW is a technique to
find the optimal alignment between two time series, through
the stretching or compression of either series along its time
axis. This warping can be used to find corresponding re-
gions between two time series, and serve as a distance mea-
sure. This measure of distance allows us to capture slightly
out of sync movement patterns, or those of slightly differnt
phase length, to be deemed more similar than their differ-
ence in slope would suggest. Our main motivation for choos-
ing DTW over other metrics demonstrated suitable for this
task such as [38, 28] is our hope to capture the similarity of
slightly asynchronus movement, which, if indeed movement
and linguistic alignment is linked, should follow a similar
mixed turn taking behaviour as dialogue [41]. As well as
providing a robust distance measure between two time se-
ries, DTW returns a warping path which describes in what
direction the time series needs to be moved in order to best
align: in other words, the warping path can provide useful
information about leader and follower dynamics which we
exploit in our analysis.

Inspired by common measures of gestural synchrony/body
language, we investigate the following dyadic behavioural
properties:

• Movement Difference (Mdiff): Global mean movement
difference in a pair. Calculated as the absolute value of
the difference between the means of each participants.

• Movement Synchrony (dtw dist): The synchrony be-
tween pairs in terms of their movement patterns, as
measured by the Dynamic Time Warping (DTW)[33]
distance

• Leader Follower dynamics (diffLF): The directionality
of the alignment of the movement between the pair.
This metric is derived from the DTW path.

Additionally, to measure whether these similarities become
more pronounced as the session progresses, we divide the ses-
sion in half by timestamp, and compute the measures per
half. We use the difference between dialogue halves (second
- first) as a measure to capture convergence. This results
in three additional measures corresponding for those syn-
chrony measures above: Mdiff change, dtw dist change and
diffLF change. The aspects of the body geometries which
we focus on consist of the points for Head, Hands, Shoul-
ders and Total (average) movement. For hand and shoulder
measures, these are defined as an average of the movement
in the right and left points for each aspect.

3.3 Measure Validation - Baseline
A certain level of similarity between speakers will exist in-
dependently of their adapting to one another. Due to their
performing the same task, vovabulary will necessarily be
constrained by topic, and consistent across pairings. Due to

the experiment configuration, task specific gesture patterns
such as moving the robot, or interacting with the computer,
as well as to which side of them their interlocutor is will also
lead to movement similarities, e.g. turning to the right vs
the left to speak. We thus create baselines for both dialogue
and movement data which demonstrate the levels of similar-
ity inherent to the task setup. For the dialogue baseline, we
create a scrambled version of the corpus by retaining the ut-
terances of one of the students and interleaving it with utter-
ances randomly drawn from another pair, per speaker. For
a partner specific movement baseline, the movement data
from each student is randomly paired with the data from
another student on the same side relative to them as their
partner was (i.e for each participant on the right hand side,
replace their partner with a participant from the left hand
side). To further check task specific effects of the seating
configuration, we pair students sitting in the same position
with one another, in order to confirm that the role does not
show more similarities than the origional student pairings.

4. RESULTS
4.1 Analysis 1: Measuring Convergence

Linguistic. We firstly hypothesise that there will be signifi-
cant inter dyad repetition beyond what the task demands by
chance, since alignment has been linked to both learning, as
well as collaboration, and this same measure has found sig-
nificant alignment levels in negotiation[14], as well as in sec-
ond language tutoring dialogue[37], although this dialogue
setting is different since both speakers are learners. Firstly
we explore whether alignment is greater than by chance: we
therefore compare the original dialogues to the shuffled base-
line in the same manner as [14]. The expression variety is sig-
nificantly higher for the original (mean=0.118, std=0.023)
than for the shuffled dialogues (mean=0.110, std=0.015).
Statistical difference is checked by a Wilcoxon rank sum test
(U = 1141, p = 0.03 < 0.05, r = 0.21)5 This indicates that
there exists a richer and more dyad specific expression lexi-
con. The expression repetition is also significantly higher for
the original (mean=0.509, std=0.123) than for the shuffled
dialogues (mean=0.487, std=0.109) (U = 1079.5, p = 0.014
< 0.05, r = 0.25). This means that the level of repetition
between student dyads is not simply incidental, and can be
attributed to alignment or routinisation effects. Finally, as
a measure of how task specific the vocabulary is, we find the
vocabulary overlap between speakers significantly higher in
the original (mean=0.509, std=0.123) than in the shuffled
dialogues (mean=0.487, std=0.109) (U = 856, p = 0.0002
< 0.001, r = 0.41). This difference demonstrates that stu-
dents share a much richer vocabulary than would happen
by chance in performing this task. Overall, these results
show that the collaborative student dialogues constitute a
richer expression lexicon than they would by chance, indi-
cating that the students align to one another, resulting in
their langauge converging [10, 27].

Gestural. We hypothesise that our measures of movement
matching will result in higher partner-specific synchrony than

5Following [14], for each test, we report the test statistics
(U/W), the p - value (p) and the effect size (r)

434 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

in our baseline: i.e. lower distance between pairs collabo-
rating than simply any student performing the same task
with a different partner. We find that within dyad DTW
similarity is significantly higher than in both the partner
substitution baseline (t= -2.0401, p < 0.05), and the within
side baseline (t = -2.0397, p < 0.05). This indicates DTW
is a useful measure of movement similarity in this setting
showing that this method is suitable for capturing partner
specific effects of these movement patterns and can allow us
to use this to compare similarities between dyads.

4.2 Analysis 2: Convergence Correlated with
Collaboration and Learning

Lingusitic alignment. We hypothesise that alignment be-
tween students will correlate with learning, since in other
tutoring settings, it has been found to correlate with both
learning gains [42] and linguistic ability [36]. Additionally,
global language features of collaborative dialogue have also
found to correlate with learning gains [29]. To answer RQ2,
we compare our linguistic alignment metrics with learning
and collaboration scores. We find support for our hypothe-
sis about collaboration and alignment correlating. We find
ER (r 0.680 p < 0.001), EV (r 0.622 p < 0.001), and VO
(r 0.663, p <0.001) all correlate with collaboration using
Pearson’s r correlation coefficient. This shows that inter
partner repetition is important, and that students will con-
verge even to less common language in a collaborative set-
ting. We also find our between learner measures signifi-
cantly correlated with collaboration, IE diff (r=-0.570, p
< 0.01) and ER diff (r=-0.54, p < 0.001) meaning that
smaller differences between learner initiation and repetition
of shared expressions correlates with how well they collab-
orate. EV (r=0.442, p =0.026), ER (r=0.442, p =0.006)
and VO (r=0.349, p =0.034) also correlate with learning,
although to a lesser degree. An intuition as for why, is that
in other studies reporting alignment correlation with learn-
ing analyse dialogues conducted in an asymmetric tutoring
setting, where adopting the language of the teacher is a sen-
sible learning strategy as it is assumed that this language is
correct. In our case, since these dialogues are between peer
learners, the learning outcome is somewhat dependent on
the rapport within the dyad, and the information aligned to
being correct. In other words, in some cases, the learners
may be converging to a shared mental representation, but it
may not be the correct one. In keeping with this observation
of dyad rapport and equality, IE diff (r=-0.487, p = 0.002)
and ER diff (r=-0.515, p = 0.001) both show strongly that
more equal contributions from the students in terms of re-
peating one another, and in introducing words upon which
to align correlate with learning.

Movement Synchrony and Convergence. We hypothe-
sise that movement synchrony and convergence, as defined
by DTW distance and its change over the interaction, will
provide a robust measure of synchrony which will better dis-
tinguish between dyads with differing activity levels, which
in turn should correlate with collaboration and learning, in
keeping with previous results with other measures in task
based dialogue [22, 32, 28]. We compare our movement sim-
ilarity metric with learning and collaboration scores. Overall

Figure 2: Gestural synchrony and convergence vs. Collabo-
ration and Learning measures correlation with Pearson’s r.
Significant p values reported in the text.

as can be seen from Figure 2, we find average movement syn-
chrony to correlate with both collaboration and learning. In
terms of learning, DTW dist measures for Head (r = -0.611,
p > 0.001) Hands (r = -0.561, p = 0.002), Shoulders (r
= -0.609, p > 0.001), and Mtotal (r = -0.611, p =0.006)
all significantly correlate with learning to a strong degree.
Convergence between dyads in terms of Mtotal (r=-0.519, p
= 0.006) and Hands(r=-0.467, p = 0.014) also significantly
correlate with learning. Finally, dyads becoming more dis-
similar in terms of hand movement (having a stronger leader
follower dynamic) also significantly correlates with learn-
ing: Hands diffLF (r=0.471, p = 0.013). With collabora-
tion, Head Hands Shoulders and Mtotal all significantly (p <
0.05) correlate. As does the diffLF for Hands (r=-0.42, p =
0.029) and Mtotal (r=-0.519, p = 0.006). Overall, the results
are intuitive: we find that more synchronus pairs as mea-
sured by DTW distance significantly correlate with collabo-
ration quality. We also find that convergence between dyads
is present (negative correlation between dtw dist change and
Mdiff change show greater similarity between learners over
time) and correlates with learning quite strongly for some
movement metrics. We also see a positive correlation be-
tween the diffLF change features, particularly with learning,
indicating that while convergence of behaviour is important,
some aspects of turn taking and initiative are separate to
this.

4.3 Analysis 3: Comparing Linguistic and Ges-
tural Convergence

Comparing Linguistic and Gestural convergence, we hypoth-
esise these aspects of communication will correlate with one
another, as previous literature suggests [17, 4, 22]. To an-
swer research question (RQ3), we contrast the modalities
themselves. We split this comparison to compare gestural
and linguistic coordination. We hypothesise that movement
synchrony and linguistic alignment will correlate strongly,
due to the process of speakers’ alignment of shared men-
tal representations taking place across various linguistic and
paralinguistic levels [6, 27]: if dyads align at the lexical level,
it is likely that the same process leading to this alignment
will affect the gestural level also [27]. The DTW path al-
lows us to capture the relationship between slightly offset
movement patterns of beat gesture mimicry [24], and the

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 435

Figure 3: Movement measures vs. linguistic alignment mea-
sures. Pearson’s r correlation coefficient.

case where linguistic alignment in turn taking utterances is
low, which can lead to more synchronised patterns of move-
ment [32]. Previous work has also found evidence of the co-
ordination of of lexical alignment and gestural behaviour in a
multimodal [35, 9, 22] context, we thus hypothesise that col-
laborative problem solving dialogues will also demonstrate
this. We find significant correlation between linguistic align-
ment measures and movement synchrony across all move-
ment patterns (Figure 3), with strongest effects for head (r
= -0.735, p-value: 1.225) and hands (r = -0.706 p-value:
3.811), providing support that our hypothesis about lexical
patterns influencing gestural alignment at the level of beat
gesture and head nodding may be be true for this setting.
In terms of convergence, there is a significant correlation
with change in hand movement and expression variety (r
= -0.387, p-value: 0.0458). Interestingly, the difference be-
tween speakers lingusitic (Diff IE, Diff ER) patterns posi-
tively correlates with both their difference in movement syn-
chrony and speaeker divercence, indicating that asymmetric
relationships between students are visible across modalities
of communication. Inkeeping with our hypothesis we find
strong negative correlation between between speaker differ-
ence in movement and divergence (strong correlation be-
tween similarity and convergence) with the linguistic mea-
sures of convergence, providing supporting evidence for the
hypothesis that lingusitic and gestural convergence are part
of the same underlying communicative process.

4.4 Analysis 4: Predicting Learning and Col-
laboration

Finally, in order to answer research question (RQ4), to find
combined interaction effects of the various inter modality
measures, we fit a series of mixed effect regression mod-
els6. We hypothesise that while each measure individually
is strong, and although the measures themselves are corre-
lated, each modality will provide its own distinct informa-
tion contributing to learning and collaboration aspects. We
perform backward step wise model selection to select the
best predictors, firstly fitting each model with all relevant
variables and stopping only when all remaining terms have
significance p < 0.05. Although RMSE and r2 values of

6To fit the data and perform the statistical tests within this
paper, we use the Statsmodels python package [34]

Table 2: Mixed effects Regression model multimodal results

Formula

Learning: RMSE:5.48 r2:0.90

Learning ∼ EV : ER + Diff IE ∗ Diff IE + Handmean movement 30 diffLFChange +
Shouldermean movement 30 diffLFChange

Collaboration RMSE:0.15 r2:0.999

Collaboration ∼ EV ∗ ER + Diff IE ∗ Diff ER + Head movement 30 dtw dist
+ Handmean movement 30 dtw dist + Shouldermean movement 30 dtw dist
+ movement total 30 dtw dist + Head movement 30 diffLFChange + Shoul-
dermean movement 30 diffLFChange + movement total 30 diffLFChange +
Head movement 30 dtw dist change + Handmean movement 30 dtw dist change +
Shouldermean movement 30 dtw dist change + movement total 30 dtw dist change
+ Head movement 30 diffLF + Handmean movement 30 diffLF + Shoulder-
mean movement 30 diffLF + movement total 30 diffLF

predicted data are highest when combining all factors, we
wished to discover the minimally significant descriptive set
of criteria in order to find more interaction in our results.

Table 2 shows the minimal significant set of linguistic and
gestural factors and their interaction in terms of their ability
to predict the dependent variables of learning and collabo-
ration. Each modality separately can form a good predic-
tor of both alignment and learning in this setting. How-
ever, this analysis offers strong support for the multimodal
modelling of collaborative problem solving, proving that al-
though correlating with one another, both linguistic and
gestural aspects have an independent role to play when pre-
dicting learning and collaboration. Broadly, from Table 2,
the gestural features chosen indicate that both the measures
of synchrony, and those for convergence (change features)
play a role in prediction. It is also clear that predicting col-
laboration in this case is easier than learning. This may be
influenced by ceiling effects or ease of pre-test being a lim-
iting factor. e.g. a learner with very good pretest score will
have hit a ceiling by the end of the session.

5. DISCUSSION & CONCLUSION
We find significant levels of both linguistic and movement
synchrony in our data (RQ1). In answer to RQ2, we find
our measures of linguistic and gestural alignment correlate
with collaboration. In terms of learning, we find that the dif-
ference in repetition between students negatively correlates
with learning, that movement synchrony in general shows
strong correlation with learning. In terms of RQ3, we find
significant strong to medium effects when correlating mea-
sures of ER and dtw dist with one another. This contributes
to a growing body of evidence in support of theories of in-
teractive alignment emerging across communicative modal-
ities. Finally, via regression analysis combining our metrics
(RQ4), we find that although separately powerful, a com-
bination of modalities can best explain collaboration and
learning outcomes. Our findings show the importance of
analysing between speaker dynamics to capture nuances of
learning. Our findings also suggest the use of a multimodal
approach for the best understanding of these interactions.
We also contribute interesting new evidence adding to work
exploring the relationship between linguistic alignment and
gestural and movement similarity. Our findings, while lim-
ited to a small specific setting, contribute evidence to sup-
port existing theories of human cognition and alignment.

6. ACKNOWLEDGMENTS
First author funded under grant agreement No. 819455 from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme.

436 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

7. REFERENCES
[1] A. Akl and S. Valaee. Accelerometer-based gesture

recognition via dynamic-time warping, affinity
propagation, & compressive sensing. In 2010 IEEE
International Conference on Acoustics, Speech and
Signal Processing, pages 2270–2273. IEEE, 2010.

[2] A. J. Bagnall, A. Bostrom, J. Large, and J. Lines. The
great time series classification bake off: An
experimental evaluation of recently proposed
algorithms. extended version. CoRR, abs/1602.01711,
2016.

[3] L. Bergroth, H. Hakonen, and T. Raita. A survey of
longest common subsequence algorithms. In
Proceedings Seventh International Symposium on
String Processing and Information Retrieval. SPIRE
2000, pages 39–48. IEEE, 2000.

[4] H. P. Branigan, M. J. Pickering, and A. A. Cleland.
Syntactic co-ordination in dialogue. Cognition,
75(2):B13–B25, 2000.

[5] K. Brennan and M. Resnick. New frameworks for
studying and assessing the development of
computational thinking. In Proceedings of the 2012
annual meeting of the American educational research
association, Vancouver, Canada, volume 1, page 25,
2012.

[6] S. Brennan and H. Clark. Conceptual Pacts and
Lexical Choice in Conversation. Journal of
Experimental Psychology, 22(6):1482–1493, 1996.

[7] J. N. Cappella and S. Planalp. Talk and silence
sequences in informal conversations iii: Interspeaker
influence. Human Communication Research,
7(2):117–132, 1981.

[8] M. Carpenter, K. Nagell, M. Tomasello,
G. Butterworth, and C. Moore. Social cognition, joint
attention, and communicative competence from 9 to
15 months of age. Monographs of the society for
research in child development, pages i–174, 1998.

[9] T. L. Chartrand and J. A. Bargh. The chameleon
effect: the perception–behavior link and social
interaction. Journal of personality and social
psychology, 76(6):893, 1999.

[10] H. Clark and D. Wilkes-Gibbs. Referring as a
collaborative process. Cognition, 22:1–39, 1986.

[11] S. W. Cook, Z. Mitchell, and S. Goldin-Meadow.
Gesturing makes learning last. Cognition,
106(2):1047–1058, 2008.

[12] N. R. Council et al. Education for life and work:
Developing transferable knowledge and skills in the
21st century. National Academies Press, 2012.

[13] S. Cuendet, E. Bumbacher, and P. Dillenbourg.
Tangible vs. virtual representations: when tangibles
benefit the training of spatial skills. In Proceedings of
the 7th Nordic conference on human-computer
interaction: Making sense through design, pages
99–108, 2012.

[14] G. D. Duplessis, C. Clavel, and F. Landragin.
Automatic measures to characterise verbal alignment
in human-agent interaction. In Proceedings of the 18th
Annual SIGdial Meeting on Discourse and Dialogue,
pages 71–81, 2017.

[15] V. S. Ferreira and K. Bock. The functions of
structural priming. Language and Cognitive Processes,

21(7-8):1011–1029, 2006. PMID: 17710210.

[16] H. Friedberg, D. Litman, and S. B. Paletz. Lexical
entrainment and success in student engineering
groups. In 2012 IEEE Spoken Language Technology
Workshop (SLT), pages 404–409. IEEE, 2012.

[17] S. Garrod and A. Anderson. Saying what you mean in
dialogue: A study in conceptual and semantic
co-ordination. Cognition, 27(2):181–218, 1987.

[18] H. Giles, P. Powesland, E. A. of Experimental Social
Psychology Staff, and E. A. of Experimental
Social Psychology. Speech Style and Social Evaluation.
European monographs in social psychology. European
Association of Experimental Social Psychology by
Academic Press, 1975.

[19] S. Goldin-Meadow. Beyond words: The importance of
gesture to researchers and learners. Child development,
71(1):231–239, 2000.

[20] D. S. Hirschberg. Algorithms for the longest common
subsequence problem. Journal of the ACM (JACM),
24(4):664–675, 1977.

[21] E. Loper and S. Bird. Nltk: The natural language
toolkit. In In Proceedings of the ACL Workshop on
Effective Tools and Methodologies for Teaching
Natural Language Processing and Computational
Linguistics. Philadelphia: Association for
Computational Linguistics, 2002.

[22] M. M. Louwerse, R. Dale, E. G. Bard, and
P. Jeuniaux. Behavior matching in multimodal
communication is synchronized. Cognitive science,
36(8):1404–1426, 2012.

[23] N. Lubold and H. Pon-Barry. Acoustic-prosodic
entrainment and rapport in collaborative learning
dialogues. In Proceedings of the 2014 ACM workshop
on Multimodal Learning Analytics Workshop and
Grand Challenge, pages 5–12, 2014.

[24] D. McNeill. Hand and mind: What gestures reveal
about thought. University of Chicago press, 1992.

[25] A. Meier, H. Spada, and N. Rummel. A rating scheme
for assessing the quality of computer-supported
collaboration processes. International Journal of
Computer-Supported Collaborative Learning,
2(1):63–86, 2007.

[26] M. J. Pickering and V. S. Ferreira. Structural priming:
A critical review. Psychological bulletin, 134(3):427,
2008.

[27] M. J. Pickering and S. Garrod. Toward a mechanistic
psychology of dialogue. Behavioral and Brain
Sciences, 27(02):169–190, 2004.

[28] J. M. Reilly, M. Ravenell, and B. Schneider. Exploring
collaboration using motion sensors and multi-modal
learning analytics. International Educational Data
Mining Society, 2018.

[29] J. M. Reilly and B. Schneider. Predicting the quality
of collaborative problem solving through linguistic
analysis of discourse. International Educational Data
Mining Society, 2019.

[30] D. Reitter, F. Keller, and J. D. Moore. Computational
modelling of structural priming in dialogue. In
Proceedings of the Human Language Technology
Conference of the NAACL, Companion Volume: Short
Papers, NAACL-Short ’06, pages 121–124,
Stroudsburg, PA, USA, 2006. Association for

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 437

Computational Linguistics.

[31] J. Roschelle and S. D. Teasley. The construction of
shared knowledge in collaborative problem solving. In
Computer supported collaborative learning, pages
69–97. Springer, 1995.

[32] W.-M. Roth. Gestures: Their role in teaching and
learning. Review of educational research,
71(3):365–392, 2001.

[33] H. Sakoe and S. Chiba. Dynamic Programming
Algorithm Optimization for Spoken Word Recognition,
page 159–165. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1990.

[34] S. Seabold and J. Perktold. Statsmodels: Econometric
and statistical modeling with python. In Proceedings
of the 9th Python in Science Conference, volume 57,
page 61. Austin, TX, 2010.

[35] K. Shockley, D. C. Richardson, and R. Dale.
Conversation and coordinative structures. Topics in
Cognitive Science, 1(2):305–319, 2009.

[36] A. Sinclair, A. Lopez, C. Lucas, and D. Gasevic. Does
ability affect alignment in second language tutorial
dialogue? In 19th Annual Meeting of the Special
Interest Group on Discourse and Dialogue (SIGDIAL
2018), 4 2018.

[37] A. Sinclair, K. McCurdy, C. G. Lucas, A. Lopez, and
D. Gaševic. Tutorbot corpus: Evidence of
human-agent verbal alignment in second language
learner dialogues. International Educational Data
Mining Society, 2019.

[38] T. Sinha and J. Cassell. We click, we align, we learn:
Impact of influence and convergence processes on
student learning and rapport building. In Proceedings
of the 1st Workshop on Modeling INTERPERsonal
SynchrONy And infLuence, pages 13–20, 2015.

[39] D. Tannen. New york jewish conversational style.
International Journal of the sociology of language,
1981(30):133–150, 1981.

[40] S. Teasley, F. Fischer, P. Dillenbourg, M. Kapur,
M. Chi, A. Weinberger, and K. Stegmann. Cognitive
convergence in collaborative learning. 2008.

[41] M. Walker and S. Whittaker. Mixed initiative in
dialogue: An investigation into discourse
segmentation. arXiv preprint cmp-lg/9504007, 1995.

[42] A. Ward and D. Litman. Dialog convergence and
learning. Frontiers in Artificial Intelligence and
Applications, 158:262, 2007.

[43] J. T. Webb. Subject speech rates as a function of
interviewer behaviour. Language and speech,
12(1):54–67, 1969.

[44] D. Weintrop and U. Wilensky. To block or not to
block, that is the question: students’ perceptions of
blocks-based programming. In Proceedings of the 14th
international conference on interaction design and
children, pages 199–208, 2015.

438 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Using Student Trace Logs To Determine Meaningful
Progress and Struggle During Programming Problem

Solving

Yihuan Dong
North Carolina State

University
ydong2@ncsu.edu

Samiha Marwan
North Carolina State

Universtiy
samarwan@ncsu.edu

Preya Shabrina
North Carolina State

Universtiy
pshabri@ncsu.edu

Thomas Price
North Carolina State

Universtiy
twprice@ncsu.edu

Tiffany Barnes
North Carolina State

Universtiy
twprice@ncsu.edu

ABSTRACT
Over the years, researchers have studied novice program-
ming behaviors when doing assignments and projects to iden-
tify struggling students. Much of these efforts focused on
using student programming and interaction features to pre-
dict student success at a course level. While these methods
are effective at early detection of struggling students in the
long run, there is also a need to identify struggling students
during an assignment so that we can provide proactive in-
tervention to prevent unproductive struggle and frustration.
This work proposes a data-driven method that uses student
trace logs to identify struggling moments during a program-
ming assignment and determine the appropriate time for an
intervention. We define a struggling moment as not achiev-
ing significant progress within a certain amount of time, rel-
ative to the amount of progress made and time taken in a
sample student dataset. The paper describes how we de-
termine significant progress and a time threshold for strug-
gling students. We validated our algorithm’s classification
of struggling and progressing moments with experts rating
whether they believe an intervention is needed for a sample
of 20% of the dataset. The result shows that our automatic
struggle detection method can accurately detect struggling
students with less than 2 minutes of work with over 77%
estimated accuracy. Our work contributes significantly to
building proactive immediate support features for intelligent
programming environments.

Keywords
block-based programming, open-ended assignment, strug-
gling, progressing, data-driven method, trace log

1. INTRODUCTION AND BACKGROUND
Computer programming is a challenging topic for novices.
As a result, there has been an increasing interest in the early
detection of struggling students for proactive intervention
to reduce dropout rates and improve student learning in
programming courses.

Researchers have collected and studied student problem-
solving trace data during programming assignments from
various perspectives. Most of this effort has focused on an-
alyzing student programming actions to reveal their behav-
ioral traits and programming patterns. This research typi-
cally uses manual inspection of the trace logs [4, 16, 9] or ap-
plies machine learning models [7, 3, 1] to categorize student
behaviors and discuss the characteristics of each category
and their potential impact on or relationship with student
performance. The contribution of these studies usually lies
in helping educators understand novice learning processes
and promote positive behaviors. Another strand of research
that analyzed student trace data focuses on student compila-
tion behaviors [11, 19, 2] and syntax errors and bugs [21, 10]
in student traces. This research used statistical inferences,
machine learning methods, and visualization techniques to
explore the relationship between specific patterns and stu-
dent success and identify novice students’ common mistakes.
Some of these patterns are helpful for identifying students
struggling with certain concepts.

However, we found that there has not been enough research
that uses student trace log to model their progress and iden-
tify struggling moments during programming assignments.
One major application of struggling detection is providing
proactive hints in intelligent tutoring systems (ITS), as pre-
vious research has shown that novices, especially those with
low prior knowledge or experience, may not request on-
demand hints even when they need them [18]. Prior work
identifying struggling students in traces generally focused
on early detection of struggling students determined by the
assignment outcome [12, 5, 6] and are not suitable for iden-
tifying struggle during programming assignments.

In this work, we propose a novel data-driven approach to

Yihuan Dong, Samiha Marwan, Preya Shabrina, Tiffany Barnes and
Thomas Price “Using Student Trace Logs To Determine Meaningful
Progress and Struggle During Programming Problem Solving”. 2021. In:
Proceedings of The 14th International Conference on Educational Data
Mining (EDM21). International Educational Data Mining Society, 439-
445. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 439

identify struggling moments from student trace data. We de-
scribe how we adopted the SourceCheck algorithm to model
student progress during open-ended programming assign-
ments and how to identify progressing moments and strug-
gling moments from student progress. We used human ex-
perts to evaluate the progressing moments and struggling
moments classified by our method. Our initial result shows
that human experts had a decent agreement with our al-
gorithm and that it is possible to determine if a student
is struggling during programming assignments within two
minutes. To the best of our knowledge, this is the first at-
tempt to use a data-driven progress measurement to identify
struggling students. We also discuss how our method may
generalize to other domains that meet certain requirements.

2. DETERMINE INTERVENTION TIMES
In this work, we consider a student to be struggling during
problem-solving when they could not make enough progress
within a typical amount of time. As such, to determine the
proper time to provide proactive intervention, we need to in-
vestigate: 1) how to measure student progress during solving
a programming assignment, 2) what constitutes significant
progress, and 3) how much time it typically takes a student
to make significant progress, and finally, 4) what is the ap-
propriate time threshold beyond which we consider the stu-
dent is struggling and need help. This section describes how
our algorithm models student progress and identifies poten-
tial progressing and struggling moments through these four
steps.

2.1 Dataset
We analyzed a dataset collected from an introductory pro-
gramming course for non-computer science major students
in Fall 2017. Students learned to program by doing a series
of open-ended programming assignments adapted from the
BJC curriculum [8] in a block-based programming environ-
ment called Snap!.

We extended the Snap! environment to record all students’
programming actions into traces. Each trace, identified by
a project id, contains all actions a student performed dur-
ing an assignment (e.g., creating or deleting a block) with
timestamps. There are two types of actions in the traces,
non-coding actions, and coding actions. Non-coding actions
do not change the program scripts, for example, searching
for blocks and running the program. Coding actions change
the abstract syntax tree of program scripts, such as creat-
ing variables, creating custom blocks, and reordering blocks.
Alongside every coding action, our Snap! environment also
saves a code snapshot after the action, allowing us to recon-
struct the steps a student took to build their final code and
analyze their coding progress.

In this work, we focused on analyzing two assignments, Squiral
and Guessing Game. Squiral is a homework assignment that
asks students to create a procedure that draws a square-like
spiral with a certain number of rotations specified by an in-
put parameter. A correct Squiral solution typically contains
7 to 14 lines of code. Guessing Game (GG) is an in-class as-
signment that requires students to create a game that greets
the players by their names, asks the player to guess the se-
cret number, and tells the player if their guesses were too
high too low until they guessed correctly. A typical Guess-

ing Game solution contains 14 to 18 lines of code. These
two assignments allow us to explore how well our method
identifies students’ struggling moments in assignments with
different time constraints. Table 1 shows the descriptive
statistics of the traces analyzed in the two assignments. We
preprocessed the traces to remove any idle time of more than
five minutes, during which the student did not perform any
action.

Table 1: Descriptive statistics of the trace logs and grades of
the two assignments.

Traces Rows Time on Task Avg Grade
Squiral 45 25160 29.6m 9.8/12
GG 59 22744 30.5m 11.7/12

2.2 Define Progress
The first step to identify struggling is to measure student
progress in the assignment. Previous work used code com-
pilation results [11, 19, 2], students’ programming behavior
patterns [7], and features completion [15, 13] to monitor
student progress in an assignment. While these criteria are
reliable indicators of how many assignment requirements the
students have met, they did not use the student traces’ full
potential to identify struggling students at an action-level
granularity during the assignment.

We adopted the SourceCheck algorithm [17] to measure stu-
dent progress during an assignment. SourceCheck was ini-
tially designed as a hint generation algorithm to provide on-
demand, next-step hints to help students move towards the
closest correct solution to the student’s current code. When
generating hints, emphSourceCheck first compares the stu-
dent’s current code snapshot with a list of correct solutions
(usually collected from past student data) and generates
mapping costs from the student’s code snapshot to each of
the correct solutions. These mapping cost values represent
how similar the correct solutions are to the student code –
the more similar a correct solution is to the student’s code,
the lower the mapping cost is. SourceCheck picks the correct
solution with the lowest mapping cost as the closest correct
solution and generates next-step hints to move the student
to that solution.

We adapted the mapping cost into a similarity score by re-
versing the mapping cost such that when a student moves
closer to the closest correct solution, the mapping cost de-
creases, and the similarity score increases. One novel aspect
of this paper is how we use the similarity score to measure
student progress in the two assignments 1 We calculate a
similarity score for every snapshot in a student trace using
the SourceCheck algorithm. We define a snapshot’s progress
in an assignment as the similarity score difference between
the current snapshot and its previous snapshot. As such, at
a particular snapshot, we say a student is making a positive
progress if the similarity score difference is positive and a
negative progress if the similarity score difference is nega-
tive.

1Note that we assume a student is moving towards the clos-
est correct solution at any given snapshot. Students do not
know the prior student solutions used by SourceCheck, and
we have no ground truth to identify what strategy a student
may be using for their assignments.

440 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

We can visualize a student’s progress in an assignment by
plotting the similarity scores for each snapshot against the
cumulative active time, shown in blue in Figure 1. The red
line in Figure 1 represents what we call “absolute progress”,
which we define in the next section. The blue dots in Figure
1 represent the similarity score of every snapshot in a Squiral
trace, and the blue line represents the progress (similarity
change between consecutive snapshots) over time. Figure 1
demonstrates that the student made steady positive progress
in the first eight minutes. Then, the student had a reduced
similarity score for about four minutes, tearing the code
apart trying to complete an objective of the assignment.
Afterward, the student continued to make rapid positive
progress until 14 minutes, stopped progressing for around
three minutes, and finally reached their final submission at
around 17 minutes.

Figure 1: Similarity score (blue) and absolute progress (red)
change over time in one student trace of Squiral.

2.3 Determine Significant Progress
Through inspecting multiple students’ traces and comparing
them with their corresponding progress plot (e.g., Figure 1),
we found that not all positive progress represents a signif-
icant change to the program. Some minor similarity score
increases were due to reordering code that does not change
the code semantics but slightly reduces the mapping cost.
This observation means that using any amount of similar-
ity score increase for making progress may not be sufficient.
Thus, it is important to determine how much similarity score
increase can be considered significant progress.

To determine significant progress, we first define absolute
progress for a student sj at time ti. We define Smax(sj , ti)
to be the maximum similarity score achieved by student sj
in an assignment between time t0 and ti, Smax(sj , ti) =
maxi

k=0S(sj , tk). We then define absolute progress as the
difference in the maximum similarity scores between ti and
the previous snapshot time ti−1, Pabsolute(sj , ti) =
max(Smax(sj , ti) − Smax(sj , ti−1), 0). To visualize absolute
progress, we plot the highest similarity scores achieved since
the beginning of the trace (Smax), as shown in red in Figure
1. The absolute progress is positive whenever Smax increases
between two consecutive snapshots.

We then calculated and sorted the absolute progress values
from all the student traces for each assignment in increasing
order and plotted all positive absolute progress values by
percentile (using the quantile function in R), as shown in
Figure 2. We used the 25th percentile of absolute progress
values as the threshold for making significant progress. This

choice was also used in another work identifying struggling
students in a MOOC programming assignments [20]. The
intuition is that if a student’s absolute progress is no more
than three-quarters of all the absolute progress, we consider
the student is not making enough progress. Figure 2 shows
that the significant progress threshold is 1.25 for Squiral and
1.5 for Guessing Game.

Figure 2: Positive absolute progress in all traces by percentile

2.4 Determine Typical Time
Now that we have determined the significant progress for
each assignment, the next step to identify struggling mo-
ments is to extract the typical time for students to make
significant progress. To do this, we first split all the traces
into code chunks whenever the student makes significant
progress–each code chunk contains multiple snapshots. This
gave us 648 code chunks from Squiral and 1207 code chunks
from Guessing Game. Then, we calculate the elapsed time
between the first and the last snapshot in each code chunk
and organize the elapsed times in ascending order. We plot
the ordered elapsed times in Figure 3 where the y-axis is the
elapsed time, and the x-axis is the percentile of the elapsed
time distribution. The green line in Figure 3 marks the third
quartile of time used to make significant progress. Note
that the elapsed time to make significant progress grows al-
most exponentially after the third quartile. Therefore, we
chose to use the third quartile as the cutoff for the typical
time to make significant progress. The third-quartile time
(dashed green line) in Figure 3 intersects with the Squiral
progress (solid blue line) at 105 seconds and intersects with
the Guessing Game significant progress (solid red line) at 85
seconds. We use these times as the typical time for the stu-
dents to make significant progress in Squiral and Guessing
Game. There are several dashed lines on Figure 3, which we
explain in section 3.

2.5 Determine Progressing and Struggling
Moments

The last step of this process is to use the typical time to make
significant progress in identifying progressing and struggling
moments for each assignment. To do this, we took all the
code chunks generated in the third step and divided them
into two groups, struggling moments and progressing mo-
ments. Recall that we define a student as struggling if
the student does not make enough progress within a typ-
ical amount of time. Therefore, struggling moments are
defined to be code chunks that have elapsed time greater
than our struggling time threshold (75th percentile of time
for significant progress), meaning that in this code chunk,
even though students spent a long time, they did not make

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 441

Figure 3: The elapsed time for all code chunks to make sig-
nificant progress by percentile. The green, yellow, blue and
red dash lines mark the proposed, earlier, even earlier, and
later intervention times, respectively.

significant progress. Conversely, progressing moments are
defined to be code chunks that took equal or less time than
the 75th percentile of the typical time to make significant
progress. Table 2 summarizes the significant progress, typ-
ical time for significant progress, and the number of code
chunks generated for each assignment.

Table 2: A summary of products generated by our algorithm
for the two assignments.

Squiral GG
Sig. Progress 1.25 1.5
Typical Time for Sig. Prog. 105.3s 84.5s
Code Chunks 648 1207
(%) Struggling Moments 131(20.2%) 269(22.3%)
(%) Progressing Moments 517 (79.8%) 938(77.7%)

3. EVALUATION
Our evaluation is driven by the following research questions:

RQ1: To what extent the human experts agree with the
progressing moments and struggling moments identified by
our method?
RQ2: What are the common causes that the human experts
do not agree with the progressing and struggling moments
identified by our method?

We invited three expert raters, all included as authors, to
participate in the rating of whether an intervention is needed
for given code chunk samples. All three experts are com-
puter science graduate students, two with extensive expe-
rience analyzing Guessing Game traces, and all three with
extensive experience analyzing Squiral traces for research.

We first created the struggling rating sample dataset by pick-
ing a random struggling moment from each trace until the
rating dataset contains 20% of all struggling moments for
each assignment. Then, we created the progressing rating
sample dataset by selecting the progressing moments im-
mediately before each struggling moment in the struggling
rating sample dataset. Finally, three redundant progressing
moments were excluded from the progressing rating dataset
because they were shared by consecutive struggling moments
in the same trace. As a result, our rating dataset ended up
with 29 struggling moments and 29 progressing moments
for Squiral (out of 131), and 57 struggling moments and 54

progressing moments for Guessing Game (out of 269).

The experts were told to imagine themselves as TAs when
rating. They used a customized interface that allowed them
to visually step through the students’ code changes in the
rating moments to decide whether an intervention is needed.
The experts used the time elapsed between actions and the
type of the actions to inform their rating decision. They
were asked to avoid using hindsight, which means that they
should not justify their decision for intervening at an earlier
time using student’s later actions.

When rating the struggling moments, to make it easy to
compare expert ratings, the experts were given five interven-
tion timing options. The five options corresponds to poten-
tial intervention times marked by the colored vertical lines
shown in Figure 3, which correspond to suggesting an in-
tervention at time: blue or before (quantile(0.55)), yellow
(quantile(0.65)), green (quantile(0.75), the typical time to
make significant progress), red (quantile(0.85)), or“not now”
(after red, or never). We chose these candidate percentiles
to gain insights into expert preferences of intervention times
for future analysis. For struggling moments, experts were
shown the code changes from the start until the last action
before the 85th percentile time for significant progress (red)
to decide when an intervention would be most appropriate,
or “not now.” For progressing moments, experts were shown
the entire progressing moment (all code changes within the
time period where significant progress was achieved) and
asked the expert to rate whether the moment “needs in-
tervention” or “not now.” Aside from rating the struggling
and progressing moments, experts were also encouraged to
take notes on why they believed an intervention is needed
whenever they rate a sample as“needs intervention” for both
the struggling and the progressing rating sample datasets.
These notes will help us understand the experts’ point of
view when inspecting the disagreements between the experts
and our algorithm.

Before formal rating, the experts practiced rating on a train-
ing dataset by immediately discuss their ratings after rating
each sample until they were comfortable with the rating pro-
cess. Then, the experts rated the struggling moments inde-
pendently in three rounds, each round rating a third of the
samples in the dataset. After each round, the experts gath-
ered and discussed the differences in their ratings to share
perspectives and resolve disagreements caused by oversight.
We did not require the experts to reach a complete consen-
sus on the rating because experts sometimes have different
opinions on handling specific situations. Finally, after rat-
ing the struggling sample dataset, the experts independently
rated the progressing dataset and were asked to check dis-
agreements to correct rating errors caused by oversight.

4. ANALYSIS AND RESULT
To evaluate our RQ1 considering to what extent the human
experts agree with the struggling moments and progressing
moments identified by our algorithm, in this analysis, we
merged the five rating options the experts used in the rating
of the struggling chunks dataset into two options, ”need in-
tervention” and ”not now.” Specifically, we merged ”at blue
or before,” ”at yellow,” and ”at green” options into ”need in-
tervention” and merged the ”at red” and ”not now” options

442 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

into ”not now.”These two option labels are identical to those
used when rating the progressing moments to directly com-
pare how much the experts agreed with the generated strug-
gling and progressing moments. Splitting and merging the
options at green where the proposed time is at allows us to
determine if our proposed typical time to make significant
progress is appropriate and enough for the experts to decide
whether they believe an intervention is needed.

Our analysis of expert ratings focuses on their ratings after
discussion because those ratings are after the effort to re-
move personal error or bias. However, we report the inter-
rater reliability (IRR), calculated with Fleiss Kappa, both
before and after discussions to demonstrate the impact of the
discussions. To determine how well the experts agree with
the algorithm, we turned each expert’s ratings into binary
scores of 0s and 1s depending on whether the expert rating
agrees with the rating dataset. Specifically, for struggling
moments, the score is 1 if the expert rated ”need interven-
tion” and the score is 0 otherwise. For progressing moments,
on the other hand, the score is 0 if the expert rated ”need
intervention” and the score is 1 otherwise. We then take the
average of all expert ratings to calculate a combined rating
score for each sample such that a combined rating of 0 or 1
represents that the experts reached an agreement and any-
thing in between 0 and 1 means the two or three experts had
different opinions, even after discussion, on whether the stu-
dent was making progress or struggling. Finally, we calcu-
late the agreement rate for each rating dataset by summing
up all the combined rating scores in that rating dataset and
divide the sum by the total number of samples in the rating
dataset for that assignment.

4.1 RQ1: Expert Agreement
Table 3 shows the percentage of progressing moments and
struggling moments that the expert ratings agreed with the
algorithm after discussion, as well as the corresponding inter-
rater reliability before and after discussions. Looking at the
agreement rate between the expert and our algorithm, we see
that for both assignments, over 77% of the time, the human
experts agreed that an intervention was needed when the al-
gorithm determined the student was struggling. Over 85% of
the time, the human experts agreed that an intervention was
not needed when the algorithm determined the student was
making progress. This suggests that our method was able to
identify struggling moments and progressing moments from
the trace data with decent accuracy.

Table 3: Human expert agreement with the algorithm iden-
tified struggling moments and progressing moments

Struggling Rating Progressing Rating

N
Need
Interv.

IRR
(B/A)

N
Not
Now

IRR

Squiral
(3 raters)

29 77.0%
0.805∗∗

/0.847∗∗ 29 85.2% 0.853∗∗

GG
(2 raters)

57 83.3%
0.539∗∗

/0.646**
54 85.1% 0.819∗∗

Looking at the expert agreement with each other, we found
that the experts had excellent inter-rater reliability for pro-
gressing moments ratings on both assignments and for strug-
gling moments ratings on Squiral. However, the experts

were only able to reach a moderate agreement, even after
discussion, for struggling moments on Guessing Game. We
explored reasons that might cause experts to disagree with
each other by manually inspecting the traces and their notes.
We found that in four out of five struggling moments that the
experts disagreed, students did not have errors in their snap-
shots but only performed less than six actions, which is way
below the average number of 12 actions of all rated strug-
gling moment samples. In such cases, one expert prefers
to hold off on any intervention until seeing more student
actions, whereas the other expert believes that the student
needed a nudge telling them what they should do next. We
did not see such a case in Squiral because all the rated strug-
gling moments with few student actions had relatively ap-
parent flaws in the student codes that warrant intervention.
We will talk more about this in the discussion section.

4.2 RQ2: Common Causes of Disagreement
We manually investigated the ratings on which the human
tutors and our algorithm disagreed. We present some com-
mon causes of disagreement for struggling moments and pro-
gressing moments, respectively.

Disagreement in Struggling Moments
Solution Matching: A decreased similarity score does not al-
ways mean the student is making negative progress. Due
to characteristics of the SourceCheck algorithm, in some
cases, a reduced similarity score can also be caused by the
SourceCheck algorithm mapping the student’s previous snap-
shot and the current snapshot to different correct solutions
because the student added a particular code block. In such
cases, if the student similarity score does not surpass the
maximum similarity score since the beginning within an ex-
pected amount of time, our algorithm will determine the
student is struggling, even though the student is making
progress (having an increasing similarity score). However,
the student may just be using a different approach to solve
the problem from the expert’s perspective.

Few Coding Actions: Since our algorithm focused on stu-
dents’ progress over time, sometimes students might not
have taken enough actions for experts to determine if the
student is struggling or not. There are several possible rea-
sons why students have few actions, including trying to rea-
son with their code, running their code, evaluating the re-
sult, or being off task. Disagreement in this situation did
not only occur between experts and our algorithm but also
happened between expert raters, causing a relatively lower
inter-rater reliability of struggling moments in the Guessing
Game assignment.

Disagreement in Progressing Moments
Logic Errors: The experts are good at catching critical logic
errors in the student code and tend to intervene if there
is a critical logic error in student code that might prevent
them from completing the feature they are working on. For
example, in Guessing Game, both experts decided to inter-
vene when a student set the secret number to a boolean
value and was trying to use the secret number to give player
feedback on their guesses because the student would not be
able to test the feedback feature properly without correctly
setting the secret number first. In contrast, our algorithm
considered that the student was making progress because

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 443

the students added blocks seen in the correct solutions.

Human Factors: Sometimes, when deciding on intervention,
the experts assess the natural language in students’ code to
infer information about student intention in a way that is
not possible for our algorithm. For example, in the Guessing
Game assignment, experts pointed out that an intervention
is needed when several students used an if/else block instead
of combining the say block and the join words block to greet
the players. However, since the if/else block was used for
giving player feedback in many correct solutions, our algo-
rithm determined the student was making progress, despite
the student using the if/else block incorrectly for a different
purpose.

5. DISCUSSION
RQ1: To what degree do the experts agree with the algorithm
on struggling and progressing moments? For Squiral, the ex-
perts agreed that an intervention was needed for over 77%
of the struggling moment samples and agreed that no inter-
vention was needed for over 83% of the progressing moment
samples. However, the experts have a relatively lower dis-
agreement with each other in Guessing Game ratings, caused
by different opinions on whether an intervention is needed
when a student has few actions within the time frame. Since
the expert raters were not pedagogical experts and had ex-
perience level on par with experienced teaching assistants
(TAs), we do not know how an experienced instructor would
react to this or other scenarios. Nevertheless, our results
show that our method of identifying struggling moments by
measuring whether a student could make significant progress
within a typical amount of time aligns well with opinions
from our experts who have at least as much experience as
highly qualified TAs. We believe this shows great potential
to determine when to give proactive interventions to stu-
dents in intelligent tutoring systems for programming.

RQ2: What are the common cases that our algorithm does
not handle well? We listed four common causes that led
to disagreements between the experts and our algorithm.
The first cause, “solution matching”, rests in the adoption of
SourceCheck as a progress measure. Since the SourceCheck
compares student solutions to multiple model solutions, some-
times, adding a code block to a snapshot could cause Source-
Check to pick a different solution as the closest solution with
a lower similarity score. This calls for investigation on how
we may wish to smooth out the abrupt progress change when
mapped to different correct solutions between consecutive
snapshots. “Logic errors” and “human factors” are problems
that are difficult to solve by using distance-based similar-
ity measures alone, since similarity measures merely com-
pare the mapping cost between two pieces of code and do
not assess the semantics in natural language or program-
ming logic. Thus, these two causes may require obtaining
knowledge from other types of analysis to identify. Previous
research has used compilation error [11, 19, 2], and feature
detection [14] to detect if there are specific errors and deter-
mine if the student is struggling. Incorporating these meth-
ods could provide richer information in the decision-making
for struggling moments. Lastly, some expert disagreements
with the algorithm in struggling moments were caused by
dealing with “few actions” within the time frame of the code
chunks. Our inter-rater reliability for Guessing Game shows

that even experts had a hard time agreeing on if an inter-
vention is needed in this case. There seem to be multiple
factors that may affect the expert decision, including if there
are errors in the snapshot, the type of actions performed,
and the assignment requirements that are completed and in-
completed. Potential solutions to this problem may include
consulting experienced teachers and incorporating sequence
pattern analysis [7].

It’s worth pointing out one important contribution of this
work is that our method of using a data-driven approach to
identify struggling moments has the potential to be general-
ized into any other domain that meets the following criteria.

1.Student Performance: Good student performance on the
task, meaning that the majority of the students achieve cor-
rect or mostly-correct final solutions.
2.Trace log data: having time-stamped trace logs that doc-
uments students’ snapshots during an assignment.
3.Progress measure: A score, or a combination of correct so-
lutions and a distance metric between snapshots and correct
solutions, as we devised from SourceCheck.

There are two major ways our method can benefit future
research. First, our method of identifying progressing and
struggling moments provides a new way for researchers to
study novice problem-solving behaviors and identify com-
mon misconceptions. Second, the significant progress value
and typical time to make significant progress can be incorpo-
rated into intelligent tutoring systems for providing proac-
tive feedback to struggling students.

This work has some clear limitations. First, we only used
three expert raters to evaluate the sample result. The expert
raters were not pedagogical experts and had experience lev-
els on par with experienced TAs. Hence the evaluation result
may be different if rated by experienced instructors. In addi-
tion, our work is limited by a small sample size with only two
programming assignments. We need further investigation to
determine if our result holds for assignments with even more
varied complexity or in other problem-solving contexts.

6. CONCLUSION
This work presented a novel, data-driven approach to use
a similarity measure to model student progress in program-
ming assignments and identify progressing and struggling
moments from trace log data. To evaluate the performance
of our algorithm, we asked human experts to evaluate a
sample of 20% of the algorithm-identified progressing and
struggling moments from trace logs from students solving
two programming assignments and rated if the experts agree
with the algorithm. Our result shows that the expert agreed
with over 77% of the struggling moments and over 83% of the
progressing moments, which shows great potential. Our al-
gorithm can be generalized to different domains if they have
good student performance, trace log data, and a progress
measure for in-progress student solution attempts.

7. REFERENCES
[1] A. Allevato and S. H. Edwards. Discovering patterns

in student activity on programming assignments. In
ASEE Southeastern Section Annual Conference and
Meeting, 2010.

444 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

[2] A. Altadmri and N. C. Brown. 37 million
compilations: Investigating novice programming
mistakes in large-scale student data. In Proceedings of
the 46th ACM Technical Symposium on Computer
Science Education, pages 522–527, 2015.

[3] P. Blikstein, M. Worsley, C. Piech, M. Sahami,
S. Cooper, and D. Koller. Programming pluralism:
Using learning analytics to detect patterns in the
learning of computer programming. Journal of the
Learning Sciences, 23(4):561–599, 2014.

[4] Y. Dong, S. Marwan, V. Catete, T. Price, and
T. Barnes. Defining tinkering behavior in open-ended
block-based programming assignments. In Proceedings
of the 50th ACM Technical Symposium on Computer
Science Education, pages 1204–1210, 2019.

[5] G. Dyke. Which aspects of novice programmers’ usage
of an ide predict learning outcomes. In Proceedings of
the 42nd ACM technical symposium on Computer
science education, pages 505–510, 2011.

[6] A. Estey, H. Keuning, and Y. Coady. Automatically
classifying students in need of support by detecting
changes in programming behaviour. In Proceedings of
the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education, pages 189–194, 2017.

[7] G. Gao, S. Marwan, and T. W. Price. Early
performance prediction using interpretable patterns in
programming process data. arXiv preprint
arXiv:2102.05765, 2021.

[8] D. Garcia, B. Harvey, and T. Barnes. The beauty and
joy of computing. ACM Inroads, 6(4):71–79, 2015.

[9] R. Hosseini, A. Vihavainen, and P. Brusilovsky.
Exploring problem solving paths in a java
programming course. 2014.

[10] M. C. Jadud. An exploration of novice compilation
behaviour in BlueJ. PhD thesis, University of Kent,
2006.

[11] M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. In Proceedings of the second
international workshop on Computing education
research, pages 73–84, 2006.

[12] Y. Mao. One minute is enough: Early prediction of
student success and event-level difficulty during novice
programming tasks. In In: Proceedings of the 12th
International Conference on Educational Data Mining
(EDM 2019), 2019.

[13] S. Marwan, G. Gao, S. Fisk, T. W. Price, and
T. Barnes. Adaptive immediate feedback can improve
novice programming engagement and intention to
persist in computer science. In Proceedings of the 2020
ACM Conference on International Computing
Education Research, pages 194–203, 2020.

[14] S. Marwan, G. Gao, S. Fisk, T. W. Price, and
T. Barnes. Adaptive immediate feedback can improve
novice programming engagement and intention to
persist in computer science. In Proceedings of the 2020
ACM Conference on International Computing
Education Research, pages 194–203, 2020.

[15] S. Marwan, T. W. Price, M. Chi, and T. Barnes.
Immediate data-driven positive feedback increases
engagement on programming homework for novices.
2020.

[16] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari.

Habits of programming in scratch. In Proceedings of
the 16th annual joint conference on Innovation and
technology in computer science education, pages
168–172, 2011.

[17] T. Price, R. Zhi, and T. Barnes. Evaluation of a
data-driven feedback algorithm for open-ended
programming. International Educational Data Mining
Society, 2017.

[18] T. W. Price, R. Zhi, and T. Barnes. Hint generation
under uncertainty: The effect of hint quality on
help-seeking behavior. In International conference on
artificial intelligence in education, pages 311–322.
Springer, 2017.

[19] E. S. Tabanao, M. M. T. Rodrigo, and M. C. Jadud.
Predicting at-risk novice java programmers through
the analysis of online protocols. In Proceedings of the
seventh international workshop on Computing
education research, pages 85–92, 2011.

[20] R. Teusner, T. Hille, and T. Staubitz. Effects of
automated interventions in programming assignments:
evidence from a field experiment. In Proceedings of the
Fifth Annual ACM Conference on Learning at Scale,
pages 1–10, 2018.

[21] M. N. C. Vee, B. Meyer, and K. L. Mannock.
Empirical study of novice errors and error paths in
objectoriented programming. In Proceedings of the 7th
Annual HEA-ICS Conference, 2006.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 445

More With Less: Exploring How to Use Deep Learning
Effectively through Semi-supervised Learning for

Automatic Bug Detection in Student Code

Yang Shi∗, Ye Mao∗, Tiffany Barnes, Min Chi, Thomas W. Price
North Carolina State University

Raleigh, NC, USA
{yshi26, ymao4, tmbarnes, mchi, twprice}@ncsu.edu

ABSTRACT
Automatically detecting bugs in student program code is
critical to enable formative feedback to help students pin-
point errors and resolve them. Deep learning models es-
pecially code2vec and ASTNN have shown great success
for large-scale code classification. It is not clear, however,
whether they can be effectively used for bug detection when
the amount of labeled data is limited. In this work, we in-
vestigated the effectiveness of code2vec and ASTNN against
classic machine learning models by varying the amount of
labeled data from 1% up to 100%. With a few exceptions,
the two deep learning models outperform the classic mod-
els. More interestingly, our results showed that when the
amount of labeled data is small, code2vec is more effective,
while ASTNN is more effective with more training data; for
both code2vec and ASTNN, the more labeled data, the bet-
ter. To further improve their effectiveness, we investigated
the potential of semi-supervised learning which can leverage
a large amount of unlabeled data to improve their perfor-
mance. Our results showed that semi-supervised learning is
indeed beneficial especially for ASTNN.

Keywords
CS Education, Machine learning, Program analysis, Bug de-
tection, semi-supervised learning

1. INTRODUCTION AND BACKGROUND
When students encounter difficulties during programming,
they are often caused by systemic procedural errors, or“bugs”
[9], which can occur repeatedly across problems [38, 8]. For
example, a student may confuse when it is appropriate to
use the and and or operators, or fail to consider a boundary
case in a condition, using > instead of >= [17]. These bugs
are rarely directly addressed by the compiler or test-case

∗The first two authors contributed to the manuscript
equally.

feedback employed in most computer science (CS) courses,
which are generally limited to suggesting syntax errors, or
which correct input-output pairs the program fails to repli-
cate. Historically, tutoring systems in a variety of learn-
ing domains have detected these bugs automatically (e.g.
through a bug library [9, 4]). The detection can be used
to offer tailored formative feedback [34] that address bugs
directly [22], and can also help instructors to be more in-
formed about student learning process [25]. The detection
of bugs often requires experts’ manual definitions, with dis-
tinct rules for detecting the bug on different problems [4].
This can make it impractical to use bug detection in practice.
Most current automatic grading systems for student code are
mainly based on test cases, which provide a score and failed
test case information to students [15, 16, 37]. Nevertheless,
the relationship between code’s output and the presence of
specific bugs in student code is not clear, since a given er-
roneous output could be caused by various errors in student
code. An automatic bug detection system for student code
could be useful to fill in the gaps for students.

Machine learning (ML) algorithms are powerful tools for
data analysis, which have been commonly used for auto-
matic programming code analysis [10]. Classical machine
learning methods, such as support vector machines [13] and
XGBoost [11], are capable of classifying program code [12,
21, 18]. Recent advances in machine learning have lever-
aged structural information in code to accurately classify
and label it [2, 3, 41, 28]. For example, Alon et al. explored
path representations on code represented as trees [2], and
designed the code2vec model to learn the representations
using deep neural networks [3]. Abstract Syntax Tree based
Neural Network (ASTNN) by Zhang et al. applied recursive
neural networks in the structure, outperforming Tree-based
Convolutional Neural Networks [28] and other state-of-the-
art models [41].

However, to apply the models to detect student program
bugs, two challenges need to be addressed. First, these deep
models were originally designed for professional programs
which are fundamentally different than code written by stu-
dents [39]. Some recent work has applied these techniques to
educational domains [33, 19, 26, 30, 6], but they either used
base models years before, [28, 19], or are not specifically used
for bug detection [33, 26, 30, 6]. Second, deep learning mod-
els are traditionally “data hungry” [1], using large, labeled

Yang Shi, Ye Mao, Tiffany Barnes, Min Chi and Thomas Price “More With
Less: Exploring How to Use Deep Learning Effectively through Semi-
supervised Learning for Automatic Bug Detection in Student Code”. 2021.
In: Proceedings of The 14th International Conference on Educational Data
Mining (EDM21). International Educational Data Mining Society, 446-
453. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

446 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

training datasets (e.g. [19] was trained on 270k samples).
However, in most educational settings, datasets can be much
smaller (e.g. ∼100 students), and labeling (e.g. to identify
bugs) can take extensive expert effort [14]. This suggests the
potential of leveraging a semi-supervised learning strategy,
using a mixture of labeled and unlabeled data [42]. Semi-
supervised learning, such as the Expectation-Maximization
(EM) method, uses unlabeled data for model improvement
[42]. However, studies show that the usage of unlabeled
data may not always help [35]. Thus, an empirical evalua-
tion, suggested by recent studies [29], to investigate whether
semi-supervised learning with unlabeled data actually helps
is needed.

To address these challenges, in this paper, we evaluate two
state-of-the-art deep learning methods: code2vec [3] and
ASTNN [41], on the task of automatically detecting pro-
gramming bugs in student code. We manually labeled three
bugs in ∼1800 code submissions from 410 students in a Java
programming course, where each bug occurred in 4-6 distinct
problems. Our results show that, when using all available
training data, the ASTNN model performs best at detect-
ing all three bugs, outperforming code2vec and two classical
baseline models (support vector machines and XGBoost).

Furthermore, we investigate whether a semi-supervised learn-
ing approach can improve the code2vec and ASTNN per-
formance without requiring additional labeled data. More
specifically, we investigated how the deep and baseline mod-
els performed with different amounts of labeled training data
through a “cold start” analysis [32]. We found that all mod-
els benefited from more data. However, despite deep models’
reputation as “data hungry,” we found the top-performing
model was generally a deep model, regardless of training
data size. However, which model performed best depended
on the data size, with code2vec outperforming ASTNN when
less labeled data was available. We also found that semi-
supervised learning generally improves both code2vec and
ASTNN by using unlabeled data. This effect was most con-
sistent for ASTNN, where semi-supervised learning consis-
tently improved the model performance by 5% to 20% on
all splits. For code2vec, we also found that it required very
little data (5%) to achieve 80% of its peak F1 score.

The major contributions of this paper are addressing three
research questions (RQs):

• RQ1: How well do state-of-the-art deep learning mod-
els for programming code perform in a student bug
detection task?

• RQ2: How are deep learning models’ performance im-
pacted by the amount of available training data?

• RQ3: To what extent does semi-supervised learning
improve the performance of the deep learning models?

2. APPROACHES
In this section, we introduce how we build code2vec and
ASTNN for program classification; and how we applied the
semi-supervised learning strategy on them to leverage unla-
beled data.

es,r

eo,r

ee,r

...

es,0

eo,0

ee,0

...

Node
Embed-

ding
Layer
Wenode

Attention
Layer
Wa

SoftMax

E

Linear
Layer
W0

Linear
Layer
W1

ReLU
p

Sigmoid

Dot
product

s0

o0

e0

sr
or
er

Path
Embed-

ding
Layer
Wepath

pr

Concatenate

e0

e1

er-1

er

...
p0

Figure 1: Code2vec model structure: model takes a set
of paths as input, and through embedding layers, attention
layer, then detect if the input code has bugs (1) or not (0).

2.1 Code2vec
One primary technical challenge in applying machine learn-
ing to program code lies in code representation. Code is
often represented using an abstract syntax tree (AST) [7],
while most learning algorithms expect a fixed-length vec-
tor. To solve this issue, sub-components of the ASTs are
used as inputs for deep learning models. In the case of the
code2vec model, it learns a code embedding through leaf-
to-leaf paths, represented as strings. Strings of nodes and
paths are mapped into numbers by tokenizers, where differ-
ent strings are mapped into different numbers. These num-
bers are used as the input of a code2vec model, shown in
Figure 1. Assume we have a code snippet that produces R
paths (p0, ..., pr) to be fed into the code2vec model. These
numbers are embedded into e-dimensional vectors through
node and path embedding layers (Wenode and Wepath) re-
spectively, and these node and path vectors are concatenated
together into one vector for each of the paths (e0, ..., er).
These vectors form a matrix E, where E ∈ Re×R. Then
these path vectors pass through a soft attention layer Wa

[40], where they calculate the soft attention weight α for
each of the paths: α = SoftMax(Wa

>E), Wa ∈ Re×1,
and thus α has scalar weights αr for each of the paths, nor-
malized by a SoftMax operator. Then the embedded path
vectors E take the dot product of the calculated attention
weights, showing which paths are more important in a code
snippet. Then the weighted average vector passes through
two fully-connected layers to make the bug classifications.
In the training process, all the W weights are updated us-
ing Adam [23] optimization algorithm, while in the evalua-
tion and validation processes, the weights in model are not
changed.

2.2 ASTNN
Different from the path-based inputs for code2vec, ASTNN
utilize the statement-level ASTs to learn a vector for the
code. Specifically, we split the large AST of a code fragment
by the granularity of the statement and extract the sequence
of statement trees (ST-trees) with a pre-order traversal, and
feed them as the raw input of ASTNN. Suppose that we
have a set of ST-trees (s1, s2, ..., sT), our goal is to learn a
vector representation z for the original code. The detailed
architecture of ASTNN is shown in Figure 2.

Statement Encoder: Each ST-tree is composed of a root
node and its child indices from a limited vocabulary of up to
V symbols. For a ST-tree si, we first represent all nodes with

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 447

Figure 2: ASTNN model structure: model takes a set of
statement trees as input, and through encoder layer, Bi-GRU
layer, max-pooling layer, then to detect if the input code has
bugs (1) or not (0).

the pre-trained embedding matrix Wembed ∈ RV×d where
V is the vocabulary size and d is the embedding dimension.
Thus the initial vector of a node n can be obtained by:

vn = W>
embedxn (1)

where xn is the one-hot encoding of node n. Next the ST-
tree will go through a Recursive Neural Network [36] based
encoder layer to update the vector for each node:

hn = σ(W>
encodevn +

∑
i∈child

hi + bn) (2)

where Wencode ∈ Rd×k is the encoding matrix and k is the
encoding dimension. vn is obtained from Equation 1 and bn
is the bias term. σ is the activation function and in this work
we followed the original paper to set σ as identity function.
After recursive optimization of the vectors of all nodes in
the ST-tree, we sample the final representation ei for si via
a max-pooling layer.

Code Representation: Based on the sequences of ST-tree
vectors, bidirectional GRU [5] is applied to track the natu-
ralness of statements sequence (e1, e2, ..., eT), where T is the
number of ST-trees in the AST:

hi = [
−−−→
GRU(ei),

←−−−
GRU(ei)], i ∈ [1, L] (3)

The statement representation hi ∈ RL×2m, where m is the
embedding dimension of GRU. Finally, similar to Statement
Encoder, a max-pooling layer is used to sample the most im-
portant features on each of the embedding dimensions. Thus
we get z ∈ R2m, which is treated as the final vector repre-
sentation of the original code fragment. Finally z vectors
pass through a linear layer to make the final classification of
the bugs.

2.3 Semi-supervised Learning Strategy
While we explore the potential of machine learning mod-
els using insufficient labeled data as training inputs, unla-
beled data can also serve as an important resource for the
models to learn the structure of code. We applied a semi-
supervised learning strategy to utilize these unlabeled data
to help the model update. Specifically, in our experiments,
we used Expectation-Maximization (EM) method [42] as an
exploratory attempt.

EM method is iterative, and it contains two steps for ev-
ery iteration: 1) In expectation steps, the model infers on
the unlabeled dataset, getting a probability score, which will
be served as the pseudo-label in the next step, for each of
the unlabeled code snippets; 2) In maximization steps, the
model is retrained using all the labeled training dataset and
the unlabeled set with the pseudo-labels from expectation
step. After retraining, the model is used for the next round
of expectation step. In our case, deep learning models are
designed to output probability scores, but SVM and XG-
Boost models make classifications without clear scores or
probabilities. We implemented the regression versions of
the models, assuming they would output a continuous prob-
ability as the regression result. We then used 0.5 as the
probability threshold to binarize the output, serving classi-
fication results. Every model uses a unified 10 iterations of
EM steps, assuming the models are able to converge after a
certain number of iterations and retraining.

3. EXPERIMENT SETTINGS
3.1 Dataset and Bug Labeling
We performed bug classification on a publicly available dataset,
collected from an entry-level Java programming class in Spring
20191. It was collected from the CodeWorkout [15] platform
and stored in ProgSnap2 [31] format. Since Java compiler
can already detect bugs from code that failed to compile (due
to syntax errors), and this code cannot be converted into
an AST, we excluded uncompilable code from our analysis.
We also did not use code that passed all test cases, as this
code is correct and therefore is very unlikely to have bugs.
There are 410 students, who attempted in total 50 problems
from 5 assignments. Typical solutions for these assignments
range from 10 to 20 lines of code. In order to determine the
common set of bugs across different problems, two authors
examined student code from six distinct programming prob-
lems from the first assignment and identified common bugs
that arose. They then selected 3 prevalent ones after calcu-
lating the coverage of bugs from each problems, and identi-
fied in prior CS education literature [17, 20]. This included
2 logical bugs and 1 syntax bug: comparison-off-by-one

(logical), assign-in-conditional (syntax), and and-vs-or

(logical), defined below:

comparison-off-by-one: This bug occurs if, in a condi-
tional expression (e.g. in an if or while), the student’s
code uses a greater/less-than comparison operator (<=, >=,
<, >) incorrectly, and this error can be resolved by adding
or removing the ‘=’, (e.g. < becomes <=). The direction of
comparison (i.e. <= vs >=) should already be correct. This
often indicates an “off by one” error, and it is contextual, de-
pendent on the number of literals being compared. If there
are multiple bugs, including this bug, we still count it.

assign-in-conditional: This bug occurs if, in a condi-
tional expression, a student uses the = assignment operator
in their code when trying to compare a variable with another
value, rather than the correct == comparison operator. This
is a syntax-based bug, but it is not detected by the compiler,
since the assignment is logically a valid operation.

and-vs-or: This bug occurs if a student uses the logical

1https://pslcdatashop.web.cmu.edu/Project?id=585

448 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 1: Detection performance for four classifiers on three
bugs.

Method Accuracy AUC Precision Recall F1 Score (Std)

comparison-
off-by-one

SVM 0.753 0.658 0.731 0.100 0.173 (0.045)
XGBoost 0.505 0.541 0.384 0.547 0.334 (0.088)
Code2Vec 0.736 0.746 0.500 0.556 0.522 (0.058)
ASTNN 0.785 0.704 0.606 0.533 0.560 (0.090)

assign-in-
conditional

SVM 0.943 0.959 0.918 0.627 0.733 (0.099)
XGBoost 0.847 0.877 0.494 0.726 0.563 (0.112)
Code2Vec 0.917 0.907 0.725 0.688 0.672 (0.119)
ASTNN 0.970 0.901 0.961 0.807 0.868 (0.094)

and-vs-or

SVM 0.722 0.674 0.534 0.173 0.256 (0.078)
XGBoost 0.503 0.669 0.350 0.784 0.470 (0.045)
Code2Vec 0.758 0.821 0.570 0.663 0.609 (0.078)
ASTNN 0.880 0.837 0.820 0.739 0.773 (0.064)

operator and instead of or in their code, or vice-versa, such
that the opposite operator would produce correct code. This
is also a logical bug that requires contextual information but
is easier to detect than comparison-off-by-one. It requires
the literals, but does not depend much on problem require-
ments.

Two authors started by labeling 20% of the data, following
the same set of initial bug definitions. The labeling process
was iterative: the two authors first labeled 20% of the data
independently and then calculated Cohen’s Kappa scores κ.
If on any of the three bugs, the two authors did not achieve
a score higher than the 0.8 [24], then the authors discussed
and resolved the disagreements, refined the definitions, and
continued to another round of independently labeling 10% of
the data. This process continued until the authors reached
high agreement (κ > 0.8) on all three categories of bugs,
which occurred after labeling 40% of the data. The first
two rounds of labeling did not achieve a high κ score, both
due to the low scores on the comparison-off-by-one bug,
suggest that this bug may be more difficult to consistently
detect for humans. On the third round of labeling, the two
authors achieved 0.81, 0.97 and 0.84 κ scores on the three
bugs. Then the authors divided the rest 60% of data by
35% for each person to label, overlapping on 10% of the data
for verification. These 10% of data achieved 0.78, 0.98 and
0.95 κ scores, indicating moderate to near-perfect agreement
[27]. The finalized labeled dataset has a biased distribution,
as only 30% of the submissions have comparison-off-by-

one bug, 28% of the submissions have and-vs-or bug, and
13% have assign-in-conditional bug. In total, we spent
around 20 hours and labeled 1867 code snippets from 296
students.

3.2 Splits in Experiments
Since our dataset included multiple attempts from a given
student, we split our data into training and testing sets by
student. This ensured that a given student’s code showed
up in either the training or testing set, but not both. In our
experiment, we have 20% of the data as the test set, and the
rest 80% are used for model generation. To check the perfor-
mance of models with limited labeled data, we further split
the 80% of data into labeled data and unlabeled data. We
use only labeled data for supervised learning, and use both
labeled and unlabeled data for semi-supervised setting. All
these splits were stratified according to the class label and
number of submissions, ensuring that a similar proportion
of buggy/non-buggy programs were in each split. This is
necessary, since splitting by students can create very biased

distributions, especially when we only have small labeled
training sets. The stratification uses thresholds for 1) the
ratio of bugs and 2) averaged submission numbers for stu-
dents in respective bug groups. We argue that in practice,
we should be able to select a similarly representative sample
by manually checking several submissions to see if the distri-
bution is fundamentally different. To ensure we evaluate our
model performance with fair comparisons, we created 10 dif-
ferent splits, generated randomly. All models use the same
training/testing splits, and average performance metrics are
reported as the results. For semi-supervised setting, we var-
ied the size of labeled/unlabeled data to evaluate the per-
formance of models. In order to perform fair comparisons,
all semi-supervised models have the same labeled/unlabeled
splits. Also, all models are tested on the same test sets,
regardless of the model, the amount of training data, or su-
pervised vs. semi-supervised. These settings ensured fair
comparisons across different models.

3.3 Model Settings
SVM and XGBoost Parameters: We performed grid search
on hyperparameters for SVM and XGBoost models using
cross-validation on the training sets. In the SVM setting,
we searched linear and Radial Basis Function (RBF) kernels,
with C parameters in a range of (0.1 - 1), stepping by 0.1.
In the XGBoost setting, we searched through situations that
sub-sample portions from 0.1 to 1, stepping by 0.1, using 5
to 100 estimators in the model. To prepare numerical input,
we used TF-IDF feature extraction on the code submissions
for both models.

Code2vec and ASTNN Parameters: Since deep learning mod-
els are more time- and resource-consuming, and our cold
start experiments required many repeated runs (∼ 100 runs),
we did not perform automatic grid search; rather, we used
default settings of the hyper-parameters and did manual
changes. In code2vec, after observing the training and val-
idation loss, we set the maximum training epochs as 200,
with the patience of early stopping set to 100, and set the
learning rate to 0.0002. Linear layer and embedding di-
mensions were kept at the default value of 100. To ensure
the highest efficiency of the model, we set the batch size
as the full batch. These parameters are tuned with dif-
ferent numbers, but little change in validation accuracy is
observed. We also manually padded the number of paths to
100 over all code submissions. In ASTNN, we padded the
statement sequences to the maximum length to accommo-
date the longest sequence before feeding to Bi-GRU. During
training, we used 32 as batch size, 0.001 as learning rate, and
keep the max training epoch as 50. The encoding dimension
for the statement encoder was 128, and hidden neurons for
Bi-GRU were 100. The weights were learned during training
using the Adam optimizer for code2vec and ASTNN models.

4. RESULTS
4.1 Bug Detection Model Performance
In this subsection we address RQ1: How well do state-of-
the-art deep learning models for programming codes perform
in a student bug detection task? Table 1 shows the results of
the classifiers in the task of detecting bugs across problems.
We use accuracy, Area-under-curve (AUC), Precision (P),
Recall (R), and F1 score as the evaluation metrics for the

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 449

And-vs-orComparison-off-by-one Assign-in-conditional

Figure 3: F1 score of models using supervised strategy with different portions of labeled data in detecting bugs.

detection. Across the three bugs for detection, we observe
that the top-performing model (ASTNN) achieved 0.560,
0.868, 0.773 F1 scores on detecting comparison-off-by-

one, assign-in-conditional, and and-vs-or respectively.
The F1 scores indicate that the models achieved a higher
performance on detecting assign-in-conditional compared
to comparison-off-by-one and and-vs-or. In all bug de-
tection tasks, ASTNN achieved the best F1 score on all bugs.
On the two logical bugs, ASTNN achieved at least 0.226
higher F1 score than SVM and XGBoost, while Code2vec
also achieved at least 0.139 higher, showing deep learning
models are more preferable for detecting the two logic bugs
across the six problems. On the detection of the assign-

in-conditional bug, ASTNN achieved a high F1 score of
0.868, while a simple SVM model is able to achieve a 0.733
F1 score, which is not much lower than the ASTNN model.
However, the recall of SVM is low (0.627), which indicates
a limited capability of detecting the bugs out of submis-
sions with bugs. Code2vec model did not achieve better F1
or AUC scores than SVM or ASTNN model in this case,
showing that in the detection of syntax issues, paths fea-
tures might be overly complicated. SVM might have a good
performance when the real rule to learn is just “If it has =

instead of == in the code, it has the bug,” since there is little
contextual information to learn. Generally speaking, when
using all 80% labeled dataset (∼ 1493 programs on average),
deep learning models have a better performance than tra-
ditional machine learning models in detecting logical bugs,
showing the advantage of leveraging structural information
in the feature extraction step.

4.2 Bug Detection with Limited Labels
We address RQ2 in this subsection: How are deep learning
models’ performance impacted by the amount of available
training data? From Figure 3, we see the F1 scores of the
four models in supervised strategy using a subset of labeled
data. The x-axis is the log-scaled labeled data size, and the
y-axis is the F1 score that models achieved across the 10
different splits. The lowest portion of labeled data we use
is 1%, which contains around 15 students, while the highest
portion is 80%. The general trend of the supervised models
shows that when more data is used, better F1 scores can
be achieved by models, especially ASTNN. We also observe
some interruptions in the increment of the performance as
more data is available, meaning that it is not guaranteed

that more data generate better models. For other baseline
models, such a data-performance relationship is weaker, but
still more data can generally produce better models.

While the models expect better performance given more
data, we would like to note that among all supervised mod-
els, code2vec achieved better results than other models using
a small subset of labeled data, showing a property of warm
starting. With 10 percent of labeled data, code2vec has at
least 7.5% higher F1 scores than any other models on all
the three detected bugs. When more data is used, ASTNN
outperforms other models, showing that there is generally at
least one deep learning model more preferable than baseline
models. When comparing code2vec with ASTNN, we find
that deep learning models are not always “data-hungry”: al-
though both models are are sensitive to data size, code2vec
starts higher than baseline models in classifying all three
bugs. To achieve a good detection result, using 30%-40%
(560-747) less labeled data would create models achieving
80% of the F1 score.

With these results we are able to conclude the answer for
RQ2: For code2vec and ASTNN, more data would produce
models with better performance. However, the relation is
not linear: ASTNN is more “data-hungry” than code2vec,
but these deep learning models do not require lots of data
points to perform better than baselines.

4.3 Application of Semi-supervised learning
This subsection addresses RQ3: To what extent does semi-
supervised learning improve the performance of the deep learn-
ing models? Figure 4 shows the semi-supervised learning
results for all four models and the comparisons to super-
vised ASTNN and code2vec models. The labeled training
data for each split is exactly the same as ones used in super-
vised settings. While the results give a mixed signal about
whether semi-supervised learning is beneficial for all mod-
els, we have two observations. 1) semi-supervised learning
enhanced the learning of deep models, especially ASTNN in
all three bugs. Comparing the black lines, we found that
solid lines are always higher than dashed ones. It sug-
gests ASTNN, as a more “data-hungry model”, is favored
by the semi-supervised strategy more than in other models.
Typically, an ASTNN model trained with a semi-supervised
learning strategy achieves 0.05 to 0.2 higher F1 scores than

450 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Comparison-off-by-one Assign-in-conditional And-vs-or

Figure 4: F1 score of models using semi-supervised strategy with different portions of labeled data in detecting bugs. Red circles
noted places when semi-supervised strategy outperformed supervised training with full data.

those trained in supervised learning strategy, using the same
training dataset. In code2vec, which is also a deep learn-
ing model, semi-supervised learning does not always help.
It helps code2vec achieve better F1 scores when using a
lower portion of data, but when given more data, a super-
vised learning strategy provides better performance. Semi-
supervised learning does not help much for the other two
classical models, compared with deep models. 2) In semi-
supervised learning scenario, ASTNN achieved a better per-
formance when using 70% labeled data than using all 80%
as training in detecting two bugs, assign-in-conditional
and and-vs-or, by 2.8% and 7.1% respectively (red-circled
in Figure 4). While this may reflect the fluctuation of data
performance, we did run the models 10 times. This suggests
that the model may be harnessing the semi-supervised learn-
ing strategy to infer labels for unlabeled sets, and achieve
more consistent labels than the authors, or some outliers
present in the unlabeled set. We assume that the model then
learned on these automatically inferred labels and achieved
better results than learning from all expert labeled data.

Our conclusion for RQ3 is that semi-supervised learning of-
ten improves performance, especially when little training
data is available. It enables the models to achieve an ex-
pected performance with less labeled data than the super-
vised scenario. Specifically, semi-supervised learning helped
all cases in the learning of ASTNN models, and helped
code2vec overall as well, especially when data size is low.

5. DISCUSSION CONCLUSION
Our results suggest three primary conclusions: 1) The two
deep learning models generally outperformed baselines, and
ASTNN had the best performance. Our results from Subsec-
tion 4.1 show that deep learning models can detect simpler
bugs, but still have a limited effectiveness on more com-
plicated bugs (detailed in Subsection 3.1). The complex-
ity of the comparison-off-by-one bug may be due to the
difficulty of the labeling process, or its dependency on the
problem context. 2) Deep learning models may still be suc-
cessful when labeled data is limited. From the results in Sub-
section 4.2, we learn that even if training with small data
size such as < 100 data points in complicated programming
data, the code2vec model is still able to outperform base-
line models. 3) Semi-supervised learning has the potential to
help deep learning models perform better. Semi-supervised
learning helped code2vec to achieve a higher performance,

but only when a small number of data points are labeled.
One may assume the difference between the two deep learn-
ing models come from the structures, but it may also come
from the feature extraction process. Code2vec uses paths
based features but ASTNN uses node based features, and
recursively processed by neural networks.

Our results can have other potential applications in edu-
cational program analysis tasks as well. For example, as
features are automatically extracted from student code dur-
ing code2vec or ASTNN training, these features can be used
to help instructor discover new bugs, as suggested by [33],
which can help shape instruction. If more features such as
problem requirements and test case inputs are available, we
can apply these features to the model introduced by [30]
to propagate instructor feedback to all students who would
benefit form it.

This work also has a couple of caveats or limitations as of
the current stage. 1) We only performed extensive exper-
iments on three bugs and used them to generalize to con-
clusions. This is because the dataset labeling is time con-
suming, requiring the authors to label ∼ 1800 data points.
The conclusions here may not generalize to other bugs or
code classification tasks. 2) Similarly, these bugs also come
from one programming assignment near the beginning of the
course, focused on if conditions, and thus may be biased to
this specific type of problem. 3) In the splitting process,
we performed stratified sampling, requiring that test, la-
beled, and unlabeled data be a similar distribution of class
labels and the number of attempts. 4) Since we only com-
pared our models with two classical model baselines, there
may be other better models existing for better performance.
We used our best effort to select representative models that
achieve state of the art performance, but there might be
better models available for the task as well. This work’s
primary goal is to lay the foundation for using deep models
in this task by exploring if the “data-hungry” property also
applies here, and potential applications of semi-supervised
learning. It serves as a step towards future model designs
specific for automatic student bug detection, and provides
guideline for situations when labeled data is limited.

Acknowledgements: This research was supported by the NSF
Grants: #1623470, #1726550, #1651909 and #2013502.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 451

6. REFERENCES
[1] C. C. Aggarwal et al. Neural networks and deep

learning. Springer, 10:978–3, 2018.

[2] U. Alon, M. Zilberstein, O. Levy, and E. Yahav. A
general path-based representation for predicting
program properties. PLDI’18, 2018.

[3] U. Alon, M. Zilberstein, O. Levy, and E. Yahav.
code2vec: Learning distributed representations of
code. POPL’19, 2019.

[4] P. Baffes and R. Mooney. Refinement-based student
modeling and automated bug library construction.
Journal of Artificial Intelligence in Education,
7(1):75–116, 1996.

[5] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine
translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473, 2014.

[6] A. Bajwa, A. Bell, E. Hemberg, and U.-M. O’Reilly.
Analyzing student code trajectories in an introductory
programming mooc. In 2019 IEEE Learning With
MOOCS (LWMOOCS), pages 53–58. IEEE, 2019.

[7] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier. Clone detection using abstract syntax trees.
In Proceedings. International Conference on Software
Maintenance (Cat. No. 98CB36272), pages 368–377.
IEEE, 1998.

[8] J. Bonar and E. Soloway. Preprogramming knowledge:
A major source of misconceptions in novice
programmers. Human–Computer Interaction,
1(2):133–161, 1985.

[9] J. S. Brown and K. VanLehn. Repair theory: A
generative theory of bugs in procedural skills.
Cognitive science, 4(4):379–426, 1980.

[10] Y. Brun and M. D. Ernst. Finding latent code errors
via machine learning over program executions. In
Proceedings. 26th International Conference on
Software Engineering, pages 480–490. IEEE, 2004.

[11] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang,
H. Cho, et al. Xgboost: extreme gradient boosting. R
package version 0.4-2, 1(4), 2015.

[12] J. Choi, H. Kim, C. Choi, and P. Kim. Efficient
malicious code detection using n-gram analysis and
svm. In 2011 14th International Conference on
Network-Based Information Systems, pages 618–621.
IEEE, 2011.

[13] C. Cortes and V. Vapnik. Support-vector networks.
Machine learning, 20(3):273–297, 1995.

[14] A. Dutt, M. A. Ismail, and T. Herawan. A systematic
review on educational data mining. Ieee Access,
5:15991–16005, 2017.

[15] S. H. Edwards and K. P. Murali. Codeworkout: short
programming exercises with built-in data collection. In
Proceedings of the 2017 ACM Conference on
Innovation and Technology in Computer Science
Education, pages 188–193, 2017.

[16] S. H. Edwards and M. A. Perez-Quinones. Web-cat:
automatically grading programming assignments. In
ITiCSE’08, pages 328–328, 2008.

[17] A. Ettles, A. Luxton-Reilly, and P. Denny. Common
logic errors made by novice programmers. In
Proceedings of the 20th Australasian Computing
Education Conference, pages 83–89, 2018.

[18] A. Gupta, S. Sharma, S. Goyal, and M. Rashid. Novel
xgboost tuned machine learning model for software
bug prediction. In 2020 International Conference on
Intelligent Engineering and Management (ICIEM),
pages 376–380. IEEE, 2020.

[19] R. Gupta, A. Kanade, and S. Shevade. Neural
attribution for semantic bug-localization in student
programs. Network, 1(P2):P2, 2019.

[20] M. Hristova, A. Misra, M. Rutter, and R. Mercuri.
Identifying and correcting java programming errors for
introductory computer science students. ACM
SIGCSE Bulletin, 35(1):153–156, 2003.

[21] A. Kaur, S. Jain, and S. Goel. A support vector
machine based approach for code smell detection. In
2017 International Conference on Machine Learning
and Data Science (MLDS), pages 9–14. IEEE, 2017.

[22] H. Keuning, J. Jeuring, and B. Heeren. Towards a
systematic review of automated feedback generation
for programming exercises. In Proceedings of the 2016
ACM Conference on Innovation and Technology in
Computer Science Education, pages 41–46, 2016.

[23] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[24] J. R. Landis and G. G. Koch. The measurement of
observer agreement for categorical data. biometrics,
pages 159–174, 1977.

[25] M. H. Liu. Blending a class video blog to optimize
student learning outcomes in higher education. The
Internet and Higher Education, 30:44 – 53, 2016.

[26] Y. Mao, S. Marwan, T. W. Price, T. Barnes, and
M. Chi. What time is it? student modeling needs to
know. In In proceedings of the 13th International
Conference on Educational Data Mining, 2020.

[27] M. L. McHugh. Interrater reliability: the kappa
statistic. Biochemia medica, 22(3):276–282, 2012.

[28] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin.
Convolutional neural networks over tree structures for
programming language processing. In Thirtieth AAAI
Conference on Artificial Intelligence, 2016.

[29] A. Oliver, A. Odena, C. A. Raffel, E. D. Cubuk, and
I. Goodfellow. Realistic evaluation of deep
semi-supervised learning algorithms. Advances in
Neural Information Processing Systems, 31:3235–3246,
2018.

[30] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati,
M. Sahami, and L. Guibas. Learning program
embeddings to propagate feedback on student code. In
International Conference on Machine Learning, pages
1093–1102, 2015.

[31] T. W. Price, D. Hovemeyer, K. Rivers, G. Gao, A. C.
Bart, A. M. Kazerouni, B. A. Becker, A. Petersen,
L. Gusukuma, S. H. Edwards, et al. Progsnap2: A
flexible format for programming process data. In
Proceedings of the 2020 ACM Conference on
Innovation and Technology in Computer Science
Education, pages 356–362, 2020.

[32] T. W. Price, R. Zhi, Y. Dong, N. Lytle, and
T. Barnes. The impact of data quantity and source on
the quality of data-driven hints for programming. In
International conference on artificial intelligence in
education, pages 476–490. Springer, 2018.

452 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

[33] Y. Shi, K. Shah, W. Wang, S. Marwan, P. Penmetsa,
and T. Price. Toward semi-automatic misconception
discovery using code embeddings. In The 11th
International Conference on Learning Analytics
Knowledge (LAK 21), 2021.

[34] V. J. Shute. Focus on Formative Feedback. Review of
Educational Research, 78(1):153–189, 2008.

[35] A. Singh, R. D. Nowak, and X. Zhu. Unlabeled data:
Now it helps, now it doesn’t. In NIPS, volume 21,
pages 1513–1520, 2008.

[36] R. Socher, C. C.-Y. Lin, A. Y. Ng, and C. D.
Manning. Parsing natural scenes and natural language
with recursive neural networks. In ICML, 2011.

[37] J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, J. K.
Hollingsworth, and N. Padua-Perez. Experiences with
marmoset: designing and using an advanced
submission and testing system for programming
courses. ACM Sigcse Bulletin, 38(3):13–17, 2006.

[38] K. VanLehn. Mind bugs: The origins of procedural
misconceptions. MIT press, 1990.

[39] S. Wiedenbeck, V. Fix, and J. Scholtz. Characteristics
of the mental representations of novice and expert
programmers: an empirical study. International
Journal of Man-Machine Studies, 39(5):793–812, 1993.

[40] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville,
R. Salakhudinov, R. Zemel, and Y. Bengio. Show,
attend and tell: Neural image caption generation with
visual attention. In F. Bach and D. Blei, editors,
Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 2048–2057, Lille,
France, 07–09 Jul 2015. PMLR.

[41] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and
X. Liu. A novel neural source code representation
based on abstract syntax tree. In 2019 IEEE/ACM
41st International Conference on Software
Engineering (ICSE), pages 783–794. IEEE, 2019.

[42] X. Zhu and A. B. Goldberg. Introduction to
semi-supervised learning. Synthesis lectures on
artificial intelligence and machine learning,
3(1):1–130, 2009.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 453

Speeding up without Loss of Accuracy: Item Position
Effects on Performance in University Exams

Leonardo J. Vida
Utrecht University
Heidelberglaan 8
Utrecht 3584 CS
The Netherlands
l.j.vida@uu.nl

Maria Bolsinova
Tilburg University

Prof. Cobbenhagenlaan 225
Tilburg 5037 DB
The Netherlands

m.a.bolsinova@uvt.nl

Matthieu J.S. Brinkhuis
Utrecht University
Princetonplein 5
Utrecht 3584 CC
The Netherlands

m.j.s.brinkhuis@uu.nl

ABSTRACT
The quality of exams drives test-taking behavior of exam-
inees and is a proxy for the quality of teaching. As most
university exams have strict time limits, and speededness is
an important measure of the cognitive state of examinees,
this might be used to assess the connection between exams’
quality and examinees’ performance. The practice of ran-
domization within university exams enables the analysis of
item position effects within individual exams as a measure
of speededness, and as such it enables the creation of a mea-
sure of the quality of an exam. In this research, we use
generalized linear mixed models to evaluate item position
effects on response accuracy and response time in a large
dataset of randomized exams from Utrecht University. We
find that there is an effect of item position on response time
for most exams, but the same is not true for response accu-
racy, which might be a starting point for identifying factors
that influence speededness and can affect the mental state
of examinees.

Keywords
exam quality, computerized testing, item response time, item
position effect, speededness, speed-accuracy trade-off

1. INTRODUCTION
The quality of standardized high-stakes tests can be seen as
a driver of test-taking behaviors and mental states of test
takers. The structured format of these tests, with strict
time limits and high consequences attached to the test re-
sult, lead test takers to a situation in which they feel more
or less comfortable [19]. With the introduction and spread
of computerized testing in high stakes tests, more data can
be collected on high-stakes tests than in the past. These
data can be used to monitor the quality of measurement in-
struments of individual items and exams as a whole. Among
the collected data, an important source of information are

response times. Response times can be used to gain more in-
formation on the test-taking behavior of the examinees [17,
1] and the functioning of the exam and exam questions. As
a proxy for exam quality, higher education institutions com-
monly use reliability measures such as the Cronbach’s alpha
[5], although literature showed that this indicator, if speed-
edness is present in the exam, might be underestimated lead-
ing to reliability concerns [2]. However, reliability is not the
only measure of exam quality: test takers behavior, in par-
ticular speededness, might be relevant to lecturers and test
creators. Thus, investigating the presence of speededness in
a test is not only important to know whether the commonly
used reliability measure can be trusted, but it can also be
used to propose a new indicator of exam quality that takes
into consideration the cognitive state of examinees, relating
tests’ quality and examinees’ performance.

Traditional measures of speededness only take into account
whether examinees provide responses to all exam questions
and are not missing a large proportion of items at the end
of the exam [13]. However, fully missing responses at the
end of the test is not the only way in which speededness
manifests itself [16]. An important way in which time pres-
sure can be observed is the increase of speed and decrease
of accuracy close to the end of the test [11]. This behavior
can be operationalized as the effect of item position on re-
sponse time and response accuracy. When exam items are
administered to all students in the same order, as often is
in the case of traditional high-stakes achievement tests, the
effect of item position cannot be separated from the effect
of item properties. However, since for test security reasons
exams are now more often administered with a randomized
item order, it becomes possible to study item position effects
separately from item effects.

We have a large data set of computerized exams adminis-
tered at Utrecht University between January 2015 and June
2020. Using these data, we want to study the overall effect
of item position on response time and response accuracy.
Furthermore, for each exam we want to quantify the effect
of item position on test performance which can be used as
an indicator of test quality and of the mental state of test
takers. To answer these questions, we focus on three key
points. First, we uncover that responses to later items in
exams have an increased speed, in conformity with previ-
ous studies on anxiety and test strategies within high-stakes

Leonardo Vida, Maria Bolsinova and Matthieu J. S. Brinkhuis “Speeding
up without Loss of Accuracy: Item Position Effects on Performance in Uni-
versity Exams”. 2021. In: Proceedings of The 14th International Confer-
ence on Educational Data Mining (EDM21). International Educational Data
Mining Society, 454-460. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

454 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

tests [19, 8]. Second, we notice the lack of a relationship be-
tween item position and accuracy that, if analyzed in parallel
with our first finding, might give us indirect evidence that
increased response speed does not seem to have the expected
negative effect on accuracy. This might show that successful
test-taking strategies might include increased response speed
towards the end of a test, as previous qualitative analyses al-
ready seem to show [18, 10], and that performance-reducing
mental states do not appear to influence response speed.

1.1 Problem Statement
Currently, most tests used in European higher education in-
stitutions are non-adaptive computerized tests, that often
have a large number of multiple-choice items, no penalty for
incorrectly responded items and use a test-based time limit
instead of a section-based time limit, as is usual in adaptive
assessments. High-stakes non-adaptive computerized tests
have not been researched and investigated as frequently as
their adaptive counterparts and datasets on these tests are
not widely available. Thanks to the advance of computer-
ized testing within Dutch higher education institutions, we
now have a multitude of data available that were not avail-
able before concerning high-stakes tests. Among these data,
response times for each examinee on each item and the (ran-
domized) item positions are saved. As test developers, when
developing their tests, must find a balance between testing
time requirements and difficulty and given that this balance
depends on the type of the test and the needs of lecturers
and students, we believe that exam-specific effects of item
position on response time and response accuracy can provide
them with useful information. Therefore, using the dataset
at hand we set out to answer the following questions:

1. What is the effect of item position on response time
and accuracy?

2. What can be inferred concerning test-taking behavior
by analyzing the influence of item position on response
time and accuracy?

1.2 Contribution
Answering our research questions, we make several contribu-
tions to the field: (1) using generalized liner mixed models
that make use of item position in a dataset of university
exams, we analyze the effect of item position on response
time and accuracy; (2) we provide indications concerning
the relation between examinees’ response time and response
accuracy within randomized high-stakes tests.

This paper is structured as follows: in section 2, we pro-
vide the background from which this work stems. Section 3,
describes the data and the models used in the analysis. Sec-
tion 4 continues comparing the results of the models fitted.
Section 5 discusses the results of the models and provides
the ground for the conclusion in section 6.

2. BACKGROUND
This research revolves around data collected at a higher ed-
ucational institution concerning the results of tests adminis-
tered using computers. The computerized collection of stu-
dents’ answers enables the creation of a dataset containing,
among other data, the response time data of each student

on each test item. We want to make use of this information
to help us better understand response processes and, as a
consequence, improve measurement instruments.

Interest in response time as a method of revealing informa-
tion about mental activity has a long origin [15] and other
research aims to be relatively comprehensive on the domain
[6]. Here, we focus on the specific features on the approach
relevant to our data and findings. Recently the role of re-
sponse time modeling rose to a central position with novels
works on the interplay between accuracy and response time
[21, 9] and on item position [7]. Traditionally, two main
effects of item position have been distinguished: a learning
effect when items in later position become easier and a fa-
tigue effect when items become instead more difficult [7]. In
both cases, item position effects refer to the impact of the
position of an item within an exam on the response time
and on the response accuracy. Research commonly assumes
that an increase in the speed of response will result in a
decrease in accuracy [9]. This relationship, called speed-
accuracy trade-off (SAT), is understood as a within-person
phenomenon in which the accuracy of response varies with
the time taken to produce it [11]. Our empirical findings
provide some evidence that might enhance our understand-
ing of the SAT and specify cases in which this relationship
is more unclear than what previously thought.

On the other hand, the psychology and education literature
has long been interested in developing test designs that gen-
erate fair results and thus studied examinees’ test-taking be-
havior to investigate the effect of test designs. Among many
domains, this literature also focuses on the effects of anxiety,
motivation and test-taking strategies on performance when
taking a test [19, 8, 3], finding that high achievers are more
likely to engage in effective test-taking strategies compared
to low achievers and identifying differences between genders
in risk-taking behaviors and anxiety levels. Studies in this
area identify risk-taking as an important strategy when tak-
ing a test, in particular in multiple-choice tests under strict
limits [3]. These guessing strategies are found to potentially
lead to better results regardless of ability level and compared
to students at the same ability level not using these types
of strategies [8]. Our empirical findings provide some evi-
dence also in this aspect, not finding a negative relationship
between speeded behavior and response accuracy.

3. METHODS
3.1 Data
We use data from Utrecht University that comprises all ex-
ams carried out using the online platform Remindo Toets1

between 2015/01/01 and 2020/06/01. Given our goal of in-
vestigating the effect of item position, we select exams in
which response randomization was applied (i.e., the position
of the questions given to examinees changes from examinee
to examinee). Therefore, the starting dataset of exams is fil-
tered on the following conditions: (1) duration of the exam:
less than 240 minutes. (2) Number of examinees: at least
100. (3) Number of items per examinee: at least 10. (4)

1Remindo Toets is a software product developed by Paragin,
a Dutch education company, which provides educational in-
stitution with a platform to create, administer, review and
grade exams.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 455

Types of questions in the exam: “choice”, “inline-choice”,
“order”, “match”. (5) Maximum response time: less than
600 seconds, to reduce outliers in the dataset. (6) Finally,
we only analyze exams in which the item order is fully ran-
domized. After filtering, the dataset contains 599.519 item
responses. In the final dataset, tests are composed by an
average of 204 students, 34 items and the average duration
is of 106 minutes.

For each question, lecturers are provided with the so-called
p-value, as a measure of ”difficulty” of the item, and the es-
timates of commonly used metrics the item-test correlation
(RIT) and the item-rest correlations (RIR) [20]. These vari-
ables are available along with item responses and response
times. On the dataset at hand, the mean response time is of
91.18 seconds while the average accuracy rate is of 63.19%.

Due to privacy reasons, this dataset was anonymized. Be-
cause of this, we are only able to provide a general overview
of the exams used in this analysis and not a complete overview
of the underlying students population. The dataset at hand
consists of 90 unique exams across 6 faculties within Utrecht
University. In order, the largest faculties are Science, Vet-
erinary Science and Social Sciences. Finally, as we selected
courses with more than 100 examinees and due to the dif-
ference in the average class size between bachelor and mas-
ter courses at Utrecht University, the wide majority of se-
lected exam were from bachelor programs which are typi-
cally taught in Dutch. The predominance of the exam in
Dutch (90%) indicates that the majority of students attend-
ing these courses courses are Dutch, implying that the re-
sults of these analyses might be culture-specific.

3.2 Selected variables
In the context of our analysis, we make use of the following
variables:

• Student : factor variable identifying each individual
student. Total number of factors: 18.476.

• Test : factor variable identifying each individual test.
Total number of factors: 90.

• Item: factor variable identifying each individual item.
Total number of factors: 5.089.

• Response time: continuous variable referring to the
total time, in seconds, spent by an examinee on an
item. The response time is the summed response time
across all attempts made in answering that item. Clear
extreme outliers in item were eliminated by setting a
cutoff in the filtering process of the data.

• Accuracy : binary variable referring to a right or wrong
answer by an examinee on an item.

Additionally, we create the following two variables: item po-
sition and available time per item. The first variable, item
position, is used to identify the location in which the item
appears within a test and it is divided within 10 blocks rep-
resenting 10% of the exam. For each response of person i to
item j in exam k, zijk ∈ [0 : 9] denotes the block in which
the item was presented to the person. We also create a set

of dummy variables z1ijk, . . . , z9ijk, where zsijk if zijk = s,
in order to model nonlinear relationship between item posi-
tion and exam performance. The second variable, available
time per item, is created dividing the total allotted time for
a specific exam by the number of items in that exam. This
variable is created as the exams available in the dataset are
heterogeneous and do not have a common time limit. As
we cannot compare exams having different time limits, we
create a variable that represents the time limit at an item
level. Across all exams, the available time per item has a
mean allotted time of almost 3 minutes (177 seconds).

3.3 Models
Before discussing the results of our models, we make a brief
note of the reason underlying their creation. A key necessity
in our models is the ability to quantify the effect of item posi-
tion on response time and on response accuracy. Therefore,
to build models we turn to generalized linear mixed models
(GLMMs). We choose GLMMs as we aim to develop mod-
els that create a reliable and easily repeatable analysis to
increase the reach and applicability of the model results to
datasets from other educational institutions.

In both models, to study the effects on response accuracy
and response time, we consider three predictors. We allow
for random variability across students incorporating this ef-
fect as random effect (θ1ik for the effect on response accu-
racy, and θ2ik for the effect on response time). We consider
fixed item effects (β1jk and β2jk for the effects of item j from
exam k on response accuracy and response time, respec-
tively). Finally, for each of the item position dummy vari-
ables we consider fixed effects on response accuracy (γ1sk)
and on response time (γ2sk), which are estimated for each
exam separately. We include fixed item position effects only
in the second variation of both models in order to enable us
to evaluate whether their addition is significant.

3.4 Modeling response time
We construct the models concerning response time using
the logarithm transformation of response time. For response
time, we focus on the following linear mixed effect regression
(LMER) models:

yijk = β2jk + θ2ik

θ2ik ∼ N(0, σ2
1k)

(1)

yijk = β2jk +

9∑
s=1

γ2skzsijk + θ2ik

θ2ik ∼ N(0, σ2
2k)

(2)

wher yijk is the log-transformed response time of person i
on item j in exam k, and σ2k is the variance of the person
random effect on response time in exam k. Model 1 does
not contain the fixed effects of item position.

3.5 Modeling response accuracy
For response accuracy, we focus on the following generalized
linear mixed effect regression on a binary variable (GLMER):

logit(xijk) = β1jk + θ1ik

θ1ik ∼ N(0, σ2
1k)

(3)

where xijk denotes response accuracy of person i on item
j in exam k, and σ2

1k is the variance of the random effect.

456 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

The model is extended with the effect of the item position
dummy variables:

logit(xijk) = β1jk +

9∑
s=1

γ1skzijks + θ1ik

θ1ik ∼ N(0, σ2
1k)

(4)

4. RESULTS
We first analyze the results of response time models from
equation 1 and 2, before moving to the results of the re-
sponse accuracy models from equation 3 and 4. Because of
limitations due to the size of data at hand, in particular due
to the number of fixed effects, all models are fit on each exam
individually and their effects are shown as the gray lines in
Figure 1 and Figure 2. After fitting each individual model,
the item position effects estimates are pooled together with
a random-effect meta-analysis in which we the exam-specific
effects are assumed to come from a distribution with a com-
mon mean and variance [4]. The means of the effect and the
±1.96 times the standard deviation of the effect boundary
are shown as the blue and light blue lines in Figure 1 and
Figure 2. The estimates of each of the item position effects
of the pooled model of LMER 2 and GLMER 4 are given
in Table 1 and Table 2 in the Appendix.

4.1 LMER on log response time
Concerning LMER models on response time, we see that
across exams the ANOVAs between model 2 model 1 are
significant in 79 out of the 90 cases. Respectively 72 exams
at the .1% significance level, 5 at the 1% significance level
and 2 at the 5% significance level. The average additional
proportion of explained variance of model 2 on model 1 is
0.0084.

Analyzing response time behavior and the effect of item po-
sition, we observe a significant negative effect of item posi-
tion on response time. In particular, we observe an increase
in the effect over the course of the exam, which is typically
defined as response acceleration. This can be seen in Figure
1 as each item position relates to the effect size compared
to the baseline of item position 0, which represents the first
10% of the exam. The blue line represents the pooled esti-
mates of the item position effects across all exams, while the
gray lines represent individual exams.

4.2 GLMER on response accuracy
With respect to GLMER models on response accuracy, we
see that model 4 does not significantly outperform model 4.
The ANOVAs between model 4 and model 3 are only signif-
icant 5 times at the 1% significance level and 11 at the 5%
significance level. This shows that the response acceleration
found previously and shown in Figure 1 either is not strong
enough to influence response accuracy or does not have any
influence on it. Hypothesis on the reason underlying this
finding are discussed in section 5.

4.3 Proportion of explained variance and avail-
able time per item

After running a likelihood-ratio test on each exam individ-
ually, we select model 2 as significantly better than model
1 while we further investigated the additional proportion of

Figure 1: Item position effects on response time

Figure 2: Item position effects on accuracy

explained variance of model 2 regressing it on the available
time per item for each exam. Figure 3 shows that there
is a relationship between the available time per item in an
exam and the additional explained variance from the model
with item position effects (linear correlation −.37). This is
an indicator that on exams that have less time available,
response acceleration is indeed happening and the inclusion
of a variable to take into account the position of the item
help us explain better the behavior of students. However,
as it is visible in Figure 3, the additional explained variance
of model 2 is relatively low. This result is important as it
provides us with a tool to support the results of response
acceleration.

5. DISCUSSION
5.1 Discussion of findings
Using a collection of item responses and response times from
higher education tests during a five-years time span, we an-
alyze the relationship between item position and response
time and between item position and response accuracy. We
show that item position is associated with response accelera-
tion while we find that the connection between item position
and response accuracy is unclear. Finally, we also find that
the available time per item is negatively correlated with the
additional explained variance when comparing the model re-
lating item position and response time.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 457

Figure 3: Regression between mean duration of item and
additional explained variance for model 2

Concerning the significant effect between item position and
response times, we see that the effect is not as strong as we
initially expected. The presence of this effect might stem
from increased respondents’ fatigue or decreased interested
in the exam, as highlighted by previous work on this topic
[22, 9]. However, previous literature focuses on adaptive
tests in which items becomes more or less hard in relation
to respondent’s performance, while in our dataset this is
not the case. Comparing the differences between these two
modalities of testing and understanding the difference in the
response behavior might be an attractive opportunity for
future research.

With regards to the interaction between response accuracy
and item position, literature tends to show that later items
are more difficult [14, 22] and therefore might decrease the
rate of correct responses. We find no significant relationship
between response accuracy and item position. The lack of
this relationship might be explained by a few hypotheses.
First, we might hypothesize that the response acceleration
shown is the representation of students reaching their nat-
ural speed on the exam. Students might take some time
to enter in the mental state that allows them to take an
exam and they might be initially slowed down by the need
of understanding how the exam is structured. This might
explain the increased acceleration of response at the same
level of accuracy between earlier and later item in the test.
Secondly, we might hypothesize that there is an negative ef-
fect of response acceleration on response accuracy, but it is
not shown because of the relatively heterogeneous dataset
of exams at hand and because of the need of accessing more
data. Concerning the second hypothesis, more work on a
larger dataset of similar exams is needed before drawing any
conclusion. Finally, the lack of this relationship might also
be explained by the presence of increased response speed
within effective test-taking strategies among high achievers,
as found by previous qualitative literature on this topic [18,
12]. This result might be caused by an increased willing-
ness to guess using effective elimination processes, leading to
an effective guessing strategy on high-stakes multiple choice
tests, when compared to the choice of picking an answer
option at random.

Finally, we demonstrate that there is a relationship between
the additional explained variance and the available time per
item. When the model with item position effects is sig-
nificantly more informative than the model without these
effects, this correlation might also provide backing to a po-
tential quality indicator to be provided to lecturers and test
creators to inform them about their tests. In the presence of
high additional explained variance, an indicator that would
take this relationship into account might be used to provide
lecturers with information about the quality of their tests
and to identify exam-specific factors that influence speeded-
ness and the test-taking strategies of examinees.

5.2 Limitations
When carrying out the modeling part of our research, due
to the size of data and factors at hand, we realized that the
current statistical methods available to analyze this quantity
of data create computational problems. As a matter of fact,
we were interested in analyzing the effect of item position
on response time and accuracy across the entire dataset but,
due to computational limitations, we decided to fit the mod-
els on individual exams and later pool the effects estimates
using a meta-analysis. To avoid this obstacle, two parallel
path might be taken: (1) extending the current statistical
libraries to include the possibility of using sparse matrices
in computing fixed effects estimates and (2) adding more
computational power to the tools used in the analysis.

Further, we also need to take into consideration both the
dataset used in this research and the filtering actions taken
on it. First, the dataset stems from a higher education insti-
tution (wetenschappelijk onderwijs) and therefore the results
of our analyses might be dependent on the educational level
of the students’ population. Secondly, because of the filter-
ing actions carried out on the dataset (2), we can assume
that Dutch students are more represented in the dataset
than international students. This might imply that the re-
sults stemming from our analyses are highly dependent on
the Dutch test-taking ”culture”.

An important distinction between our work and previous
studies on speededness, such as [9], is that we attempted to
remove the effects of very long answers, but not of answers
given during rapid guessing behavior [15]. As a matter of
fact, the validity of test scores of such tests are threatened by
what [23] call noneffort, which is associated with the guess-
ing behavior of an examinee who does not try to solve items.
The effect of such mechanism is an underestimation of his
or her actual level of proficiency, threatening the validity of
test score by adding a source of construct-irrelevant vari-
ance [23]. An analysis about the presence and the methods
to identify noneffort in this dataset might reveal pathways
to either take it into account or eliminate it from the dataset,
paving the way for an analysis that compares the estimates
of ability accounting only for truthful response acceleration.

5.3 Future research
Expanding dataset. As noted in section 5.2, we believe ex-
panding the dataset at hand, including most recent data,
and including other universities, would help providing more
information on the relationship between response time and
accuracy and thus the creation of more accurate indicators
for lecturers. Moreover, as there might be differences in

458 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

the ”culture” of examination between countries and between
educational levels, a larger dataset comprising of multiple
countries and different educational levels might help clarify-
ing these questions.

Creating a metric to provide recommendations. As we did
not see a clear effect of item position on accuracy, a future
path for research might assume that, in the presence of sim-
ilar results, students are given too few items for the time
allotted on a specific exam. This would open a path for
creating experiments to increase the total number of items
on an exam and analyze the cutoff value at which effects
on accuracy start appearing. An experiment increasing the
number of test items would not only clarify the values at
which effects appear, but would also improve domain cov-
erage for that specific exam and, improving its reliability
metric, and would allow us to study changes in test-taking
strategies within the test.

6. CONCLUSION
This research evaluates methods to investigate the effects
of item position on response time and accuracy. We find
that, thanks to the advancement in the technologies used in
exam settings and the wide application of these technologies
in high-stakes tests, these analyses are not only feasible but
are also promising if applied on larger datasets. We believe
the overall results of the models can be of use within the
educational sector, in particular thanks to the creation of an
additional and reliable indicator of the quality of an exam.
Using the results presented in section 4, we can now answer
our research questions:

1. We find a small but significant effect of item position
on response time, while we fail to find any effect of item
position on accuracy. Section 5 provides a discussion
on the findings.

2. We believe our results stemming from modeling item
position and response time and the subsequent regres-
sion of the additional explained variance of this model
and the available time per item, could evolve into a
practical indicator providing more information con-
cerning the quality of a test and the test-taking be-
havior of students.

7. REFERENCES
[1] A. P. Association. Standards for educational and

psychological testing, 2014.

[2] Y. Attali. Reliability of speeded number-right
multiple-choice tests. Applied Psychological
Measurement, 29(5):357–368, 2005.

[3] K. Baldiga. Gender differences in willingness to guess.
Management Science, 60(2):434–448, 2014.

[4] M. Borenstein, L. V. Hedges, J. P. T. Higgins, and
H. R. Rothstein. Introduction to Meta-Analysis,
volume 8. John Wiley & Sons, Bridgewater, NJ, USA,
jan 2009.

[5] L. J. Cronbach. Coefficient alpha and the internal
structure of tests. psychometrika, 16(3):297–334, 1951.

[6] P. De Boeck and M. Jeon. An overview of models for
response times and processes in cognitive tests.
Frontiers in psychology, 10:102, 2019.

[7] D. Debeer and R. Janssen. Modeling item-position
effects within an irt framework. Journal of
Educational Measurement, 50(2):164–185, 2013.

[8] H. Dodeen. Assessing test-taking strategies of
university students: developing a scale and estimating
its psychometric indices. Assessment & Evaluation in
Higher Education, 33(4):409–419, 2008.

[9] B. Domingue, K. Kanopka, B. Stenhaug, J. Soland,
M. Kuhfeld, S. Wise, and C. Piech. Interplay between
speed and accuracy: Novel empirical insights based on
1/4 billion item responses, Mar. 2020.

[10] A. P. Ellis and A. M. Ryan. Race and cognitive-ability
test performance: The mediating effects of test
preparation, test-taking strategy use and self-eff icacy.
Journal of Applied Social Psychology,
33(12):2607–2629, 2003.

[11] R. P. Heitz. The speed-accuracy tradeoff: history,
physiology, methodology, and behavior. Frontiers in
Neuroscience, 8:150, 2014.

[12] E. Hong, M. Sas, and J. C. Sas. Test-taking strategies
of high and low mathematics achievers. The Journal of
Educational Research, 99(3):144–155, 2006.

[13] Y. Lu and S. G. Sireci. Validity issues in test
speededness. Educational Measurement: Issues and
Practice, 26(4):29–37, nov 2007.

[14] G. Nagy, B. Nagengast, M. Becker, N. Rose, and
A. Frey. Item position effects in a reading
comprehension test: an irt study of individual
differences and individual correlates. Psychological
Test and Assessment Modeling, 60(2):165–187, 2018.

[15] T. C. Oshima. The effect of speededness on parameter
estimation in item response theory. Journal of
Educational Measurement, 31(3):200–219, 1994.

[16] D. L. Schnipke and D. J. Scrams. Modeling item
response times with a two-state mixture model: A
new method of measuring speededness. Journal of
Educational Measurement, 34(3):213–232, 1997.

[17] D. L. Schnipke and D. J. Scrams. Exploring issues of
examinee behavior: Insights gained from response-time
analyses. Computer-based testing: Building the
foundation for future assessments, 34:237–266, 2002.

[18] T. Stenlund, H. Eklöf, and P.-E. Lyrén. Group
differences in test-taking behaviour: An example from
a high-stakes testing program. Assessment in
Education: Principles, Policy & Practice, 24(1):4–20,
2017.

[19] T. Stenlund, P.-E. Lyrén, and H. Eklöf. The successful
test taker: exploring test-taking behavior profiles
through cluster analysis. European Journal of
Psychology of Education, 33(2):403–417, 2018.

[20] U. University. Toetsanalyse in remindo v2.1.
https://remindo-support.sites.uu.nl/

wp-content/uploads/sites/79/2019/11/

Toetsanalyse-in-REMINDO-v2.1-003.pdf, Nov. 2019.
Accessed: 2020-10-30.

[21] P. W. van Rijn and U. S. Ali. A generalized
speed–accuracy response model for dichotomous
items. psychometrika, 83(1):109–131, 2018.

[22] S. Weirich, M. Hecht, C. Penk, A. Roppelt, and
K. Böhme. Item position effects are moderated by
changes in test-taking effort. Applied psychological
measurement, 41(2):115–129, 2017.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 459

[23] S. Wise and C. DeMars. Examinee noneffort and the
validity of program assessment results. Educational
Assessment, 15(1):27–41, 2010.

APPENDIX
A. ESTIMATES OF POOLED MODELS
Table 1: Coefficients estimates of pooled model LMER 2
Item Position Estimate Std. Error Estimate Rand. Std. Error Rand. tau

1 -0.0539 0.0036 -0.0628 -0.0628 0.0658
2 -0.0625 0.0035 -0.0679 -0.0679 0.0621
3 -0.0775 0.0036 -0.0775 -0.0775 0.0619
4 -0.0949 0.0035 -0.0983 -0.0983 0.0655
5 -0.1169 0.0035 -0.1203 -0.1203 0.0663
6 -0.1309 0.0035 -0.1343 -0.1343 0.0729
7 -0.1547 0.0036 -0.1605 -0.1605 0.0794
8 -0.1750 0.0035 -0.1854 -0.1854 0.0835
9 -0.1879 0.0034 -0.1989 -0.1989 0.1062

Table 2: Coefficients estimates of pooled model GLMER 4
Item Position Estimate Std. Error Estimate Rand. Std. Error Rand. tau

1 -0.0412 0.0156 -0.0393 -0.0393 0.1148
2 -0.0412 0.0151 -0.0480 -0.0480 0.1193
3 -0.0163 0.0155 -0.0185 -0.0185 0.1279
4 -0.0283 0.0152 -0.0308 -0.0308 0.1127
5 -0.0264 0.0154 -0.0335 -0.0335 0.1161
6 -0.0106 0.0152 -0.0144 -0.0144 0.1046
7 0.0007 0.0154 -0.0009 -0.0009 0.1203
8 0.0141 0.0152 0.0141 0.0141 0.1282
9 0.0157 0.0147 0.0103 0.0103 0.1268

460 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Grouping Source Code by Solution Approaches —
Improving Feedback in Programming Courses

Frank Höppner
Ostfalia University of Applied Sciences

f.hoeppner@ostfalia.de

ABSTRACT
Various similarity measures for source code have been pro-
posed, many rely on edit- or tree-distance. To support a
lecturer in quickly assessing live or online exercises with
respect to approaches taken by the students, we compare
source code on a more abstract, semantic level. Even if
novice student’s solutions follow the same idea, their code
length may vary considerably – which greatly misleads edit
and tree distance approaches. We propose an alternative
similarity measure based on variable usage paths (VUP),
that is, we use the way how variables are used in the code
to elaborate code similarity. The final stage of the mea-
sure involves a matching of variables in functions based on
how the variable is used by the instructions. A preliminary
evaluation on real data is presented.

Keywords
source code distance, semantic analysis, variable usage paths

1. INTRODUCTION
Learning a programming language requires a lot of practice.
Students gain knowledge and experience from both, home-
work and in-classroom exercises. It is, however, very impor-
tant to give students feedback, e.g. discuss different solu-
tion approaches with them. Both, those who have and have
not yet succeeded, will benefit from such discussions, either
it widens their view (because they may not have thought
about alternative approaches yet) or encourages them to
try the exercise at a later point in time once more (once
they got a glimpse on how to solve it). The sharing of dif-
ferent solution approaches and discussing the pros and cons
of different approaches improves their algorithmic thinking
skills. However, it is quite common in many programming
courses, that the only (automatic) feedback consists of the
number of passed or failed unit tests. Achieving a positive
feedback then requires an already well developed solution
and no credit is given for, say, getting the code structure
right – which may frustrate novices noticeably.

We thus address the following research question: Can we
support the lecturer in providing meaningful feedback about
the solution approaches taken by the students? This requires
automation as a lecturer does not have the time to review
all solutions manually, especially not in online teaching situ-
ation. Providing meaningful feedback requires some kind of
insight in the solution approach a particular student was fol-
lowing (semantics), how common the approach is, how many
different approaches have been followed in the course, etc.
We intend to achieve this by providing a similarity measure
for source code that does not focus on results (as unit tests
do) but to reach a higher semantic level by assessing the
more abstract code structure: different solution approaches
manifest themselves in different code structures.

Such a measure would be useful in many ways. For in-
stance, during an in-classroom teaching situation it would
enable the lecturer to pick two (or more) submissions fol-
lowing different approaches to start a discussion about their
pros and cons. It could also support a lecturer in browsing
the spectrum of approaches that were followed by the course
members (how many different approaches were chosen how
often) without having to check every solution manually. It
may enable the lecturer to pick a solution that follows the
same approach as a solution that has been discussed already,
but did not pass all unit tests, thereby representing a live
challenge to the course members (“spot the error”). Note
that we are not aiming at grading the source with respect
to its correctness, but leave this to the unit tests. As tests
do not provide any useful feedback to students that do not
yet have an appropriate code structure, the desired measure
may close this gap, as it would allow us to differentiate code
submissions that are far from working from those that follow
a reasonable solution approach and got the code structure
right, but only the tiny details prevents them from passing
the tests. Such a more detailed inspection would enable a
much more sensitive (automatic) feedback.

2. RELATED WORK
Similarity or distance measures for source code have been
investigated for a long time. Many approaches have in com-
mon that they start from an abstract syntax tree (AST) that
represents the code. Code is then compared by calculating
some kind of tree distance on the corresponding ASTs: the
minimal number of steps (node deletion, insertion, and re-
labelling) to transform one AST to the other. A survey on
tree edit distance can be found in [2]. A tree, however, has
no conscience about variable identity: the very same vari-

Frank Höppner “Grouping Source Code by Solution Approaches — Im-
proving Feedback in Programming Courses”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 461-467.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 461

able occurs over and over again as a new node in an AST.
To reflect which variable change affects other code, program
dependency graphs (PDG) may be used. But comparing
graphs is even more complicated than comparing trees, a
survey on graph edit distance is given in [6]. To simplify the
comparison, the AST may also be linearized such that much
simpler string comparison measure (edit distance) may be
applied (cf. [5, 7, 9]).

An extremly fast approach is to define a hash function on
(possibly pre-processed trees) such that a similarity is de-
tected when hash codes are identical [1]. The flexibility of
such an approach is, however, very limited, as the similiarity
measure is a binary one. It may nevertheless be useful for
clone detection (plagiarism) or may be enhanced by calcu-
lating multiple hashes [4]. Tree edit distance has been used
in, e.g., [10] to detect similar source codes. In [3] a distance
measure for source code has been proposed, that transforms
the AST into a sequence of tokens on which Levenshtein or
edit distance is applied.

In many related papers the goal is to compare (student’s)
code to a (lecturer’s) reference code; the higher the simi-
larity, the closer is the student’s submission to the correct
solution. In this work, however, we want to identify source
codes that are semantically similar, that is, they follow the
same solution approach. Especially when novices start to
code, their solutions are often more lengthy and redundant
than those of an experienced programmer. This affects mea-
sures such as edit distance or tree distance dramatically. The
approach in [3] did not work out as well as expected, and
the authors hypothesized about one of the reasons that the
length of the code dramatically influences the edit distance.
While longer code may be less readable and more redundant,
it is neither more likely wrong nor does it necessarily follow
a different solution approach. As an example, consider codes
(a) and (b) from Fig. 1. The task was to calculate the mean
of all positive array elements. Both codes follow the same
approach, but (b) uses a single loop instead of two and is
thus more compact. But semantically, we consider both so-
lutions as being identical. We are not aware of any source
code similarity measure that tries to reflect that.

It is also common in the literature to replace variable names
by a constant string (possibly depending on the variable’s
type), which eases matching sources that use different vari-
able names. In plagiarism detection (see [5, 9] and references
therein) this is considered as a countermeasure against dis-
guising plagiarism by variable renaming. However, the way
a single variable is used throughout the code is crucial for
a solution approach. Fig. 1(d) utilizes the same statements
(e.g., array-access in conditional statement of a for-loop),
but does not calculate anything meaningful and thus does
not represent the same solution approach as codes (a-c).

3. COMPARING SOURCE CODE BY
VARIABLE USAGE PATHS

We argue that two solutions follow the same approach if they
use variables in the same way. In the subsequent sections
we show how we grasp variable usage in the code and then
define similarity measures on this representation.

public double avg(double a[]) {
if (a==null) return NaN;
int n = 0;
for (int j=0;j<a.length;++j) {
if (a[j]>0) ++n;

}
double sum = 0;
for (int j=0;j<a.length;++j) {
if (a[j]>0) sum+=a[j];

}
return sum/n;

} // (a) [TwoLoopQuickExit]

public double avg(double a[]) {
if (a==null) return NaN;
int n = 0;
double sum = 0;
for (int i=0;i<a.length;++i) {
if (a[i]>0) {
++n;
sum+=a[i];

}
}
return sum/n;

} // (b) [OneLoopQuickExit]

public double avg(double a[]) {
if (a!=null) {
int n = 0;
double sum = 0;
for (int i=0;i<a.length;++i) {
if (a[i]>0) {
++n;
sum+=a[i];

} }
return sum/n;

} else {
return NaN;

} } // (c) [OneLoopGuardedIf]

public double avg(double a[]) {
if (a==null)
return NaN;

int n = 0;
double sum = 0;
for (int i=0;i<a.length;++n) {
if (a[i]>0) {
++i;
a[i]+=sum;

}
}
return sum;
} // (d) [Disordered]

Figure 1: Responses to a simple programming exer-
cise: Write a function avg that yields the mean of all
positive values in the array. Left: Code (a) uses two
loops, while code (b) only one. While the main code
is organized after an if-statement in (a) and (b), it is
embedded in the conditional statement in (c). Code
(d) uses similar instructions, but the variable usage
is screwed up and does not solve the problem.

3.1 Variable Usage Paths
Solving a programming exercise requires to combine pro-
gramming instructions such that a handful of variables
jointly build up the final result (and return it to the caller).
The key to a solution are thus the variables and how they
are embedded in the (possibly nested) instructions. Code
analysis often starts with an abstract syntax tree (AST);
there, every variable usage is represented by a new node in
the tree. This occludes important information: Where in
the source code is the same variable used? We therefore
rearrange the AST to a graph, where a node is unique for
each variable and subsequent usages of the variable link to
the same node. Fig. 2 shows an example for the code of
Fig. 1(b). All variables are marked in red color. From the
paths between the variable sum and function avg, we can
see that the variable sum is declared, occurs in a conditional
statement that is embedded in a loop, and finally occurs in
the return value. We consider these paths (shown in blue in
Fig. 2) as a kind of fingerprint for the role of this variable:
code following the same approach requires variables with the
same roles.

We thus do not operate directly on the graph, but paths from
variable nodes to the enclosing function node. After apply-
ing some transformations to simplify the graph somewhat
(e.g. removing body or replacing for, while, etc. by a subsum-
ing label loop), we end up with string representations of the
three blue paths like sum/expression/return/avg, sum/dec-

462 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

ArrayAccess

i

index

a

array

avg

double

return

Parameters

public

modifier

Body

body

<

Expression

operator

operand_0FieldAccess

operand_1

int

type

0

Test

_0

++0

0

Expression

/

operator

n

operand_1

sum

operand_0

>

length

==

++

double

Expression

operand

operator

nametype

+= ArrayAccess

indexarray

parameter_0

For

control

update_0

Declaration

Declare

Body

repeat

Assignment

right operatorleft

Declare

Declaration

name_0

Body

statement_1

Expression

statement_0

int

NaN

Declaration

set

name Double

set

name

operatoroperand

double

type

NULL

type

Expression

operand_1operator operand_0

Declare

name_0

return

FieldAccess

expression

0

Expression

operator

operand_0

operand_1

name

set

If

statement_0

return

expression

type

then

control

nametype

statement_3statement_2statement_1 statement_4

If

statement_0

then control

Figure 2: Graph representation of code in Fig. 1(b) (red: variable nodes; blue: VUPs of variable ’sum’).

laration/declare/avg and sum/assignment/if/loop/avg.

Definition 1. Let I be a set of code instruction labels
(such as if, loop, . . .). For a given source code C (single
class), let VC be a set of variable-identifiers1 and FC the set
of methods declared in C. A path p = (v, i1, . . . , in, f) ∈
VC × I∗ × FC := P reflects that a variable v is used by
instruction i1, which is itself used by instruction i2, etc.,
in function f . The VUP-representation (variable usage
path) of code C is a set PC ⊆ P of all paths occurring in C.

We thus intentionally drop many details from the original
source code, e.g. numerical constants or full expressions.
From the fact that two codes that are structurally identi-
cal (same VUP representation) we cannot conclude anything
about the number of unit tests both codes may pass. But
as we have mentioned earlier, we seek for a common code
skeleton, which may indicate that the programmers were
guided by the same underlying idea. The skeleton includes
the information which variables need to be used in which
instructions — but there are many different ways of coding
expressions equivalently, so we simply stick with unit tests
to check their correctness.

3.2 Simplified Set Similarity
Given two source codes (a) and (b) from Fig. 1 and the cor-
responding VUP-representations P,Q. Code (a) determines

1Note the variable names themselves are not valid identi-
fiers, as the same variable name may occur more than once
in the same function, e.g. variable j in code (a) of Fig. 1.

the number of elements first before it sums the relevant val-
ues, while code (b) does both in a single loop. While the
choice of one or two loops may affect the efficiency, they are
semantically equivalent and thus similar. At first glance the
variable usage paths (of, say, the loop counter) in all loops
seem identical such that a set comparison (where duplicate
elements are not counted) appears just right. However, the
loop counter is named j in code (a) and i in code (b). Fur-
thermore, (a) defines two variables with the same name j

(one for each loop). Let us ignore these details by introduc-
ing a simplification (and revisit the problem later):

Definition 2. From a VUP representation P we obtain a
SVUP representation (simplified VUP) representation P ′

by replacing all variable identifiers and all method identifiers
by a constant identifier vn (generic variable name) and fn

(generic function name), resp. (I = {vn}, F = {fn}).

Standard methods to measure set similarity may then be
used to compare source code. For given SVUPs P and Q we
use the F1 measure2:

F1 = 2 · p · r
p+ r

where p =
|P ∩Q|
|P | , r =

|P ∩Q|
|Q|

Fig. 3 shows a dendrogram for an average-linkage cluster-
ing using this measure (actually 1−F1 to obtain a distance
measure). Codes (a)-(d) correspond to TwoLoopQuickExit,
OneLoopQuickExit, OneLoopGuardedIf and Disordered. Addi-
tional examples include: Nonsense (similar set of instruction

2although based on asymmetric precision p and recall r, F1

itself is symmetric and thus a similarity measure

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 463

0.8 0.6 0.4 0.2 0.0

Empty

OneLoopGuardedIf

OneLoopGuardedElse

Nonsense

OneLoopQuickExit

TwoLoopQuickExit

OneLoopQuickExitTempVar

Disordered

Figure 3: Dendrogram for source codes of Fig. 1
based on F1-measure on VUP representation.

Table 1: Example of comparing P and Q (see text).
P 1 vn/expr/if/loop/fn

2 vn/assign/if/loop/fn
3 vn/declare/fn
4 vn/assign/fn
5 vn/return/fn

Q 6 vn/expr/loop/fn
7 vn/assign/loop/fn
8 vn/assign/declare/fn
9 vn/return/fn

d m(d)
if (1,6), (2,7)

assign (3,8)
declare (4,8)

step un- / assigned
0 1,2,3,4,6,7,8 / 5,9
1 3,4,8 / 1,2,5,6,7,9
2 4 / 1,2,3,5,6,7,8,9

set but variables are mixed randomly), OneLoopQuickExit-
TempVar (the mean value is assigned to a temporal vari-
able before it is returned) and OneLoopGuardedElse (same
as OneLoopGuardedIf (Fig. 1(c)) but inverted if-condition).
From the dendrogram we learn that codes TwoLoopQuick-
Exit and OneLoopQuickExit become identical as desired. But
we can also see that code OneLoopGuardedIf, where a con-
ditional statement encloses the main code, is recognized as
very dissimilar. The additional if-statement occurs in all
paths and the simple Jaccard similarity finds this code to
be completely different. We address this problem next.

3.3 Reflecting Instruction Embedding
A single conditional statement may introduce an new ele-
ment in many paths turning them all different (as in codes
(a),(c) in Fig. 1). For compensation we could measure a par-
tial similarity between paths (e.g., 80% of path p is contained
in q), but a single instruction (such as the conditional state-
ment in (c)) would then still weaken all path similarities.
We therefore propose a different approach in the fashion of
edit distance, where we pay a constant cost for a missing
path element, which may then be used in many paths.

Given two SVUP representations P,Q, we compare all paths
p ∈ P, q ∈ Q to identify missing path elements δ(p, q) ∈ I∗.
(For example, δ(vn/loop/if/fn,vn/loop/fn)=if). Many dif-
ferent path combinations may lead to the same δ(p, q), so
by m(d) we denote the set of all pairs (p, q) ∈ P × Q with
δ(p, q) = d. The matching of paths in P to paths inQ is done
iteratively: In the first iteration, we match all paths from P
and Q that are identical (δ(p, q) = ()). To match the SVUP
representations at minimal cost, in subsequent iterations we
identify the missing path element d that unifies the largest
number of paths (that is, choose d = argmaxx|d(x)|). Be-
fore entering the next iteration, all pairs are removed from

0.8 0.6 0.4 0.2 0.0

Empty

Nonsense

OneLoopQuickExitTempVar

Disordered

OneLoopGuardedIf

OneLoopGuardedElse

OneLoopQuickExit

TwoLoopQuickExit

Figure 4: Dendrogram for source codes of Fig. 1
based on F1-measure on SVUP representation.

m(·) that have been assigned already. We reflect the cost of
adding a missing path element by adding it as a virtual path
to the SVUP P or Q (depending on where it was missing).

Table 1 shows a detailed example. The table on the left
shows the paths belonging to SWUP of P and Q. All paths
have been numbered for easier reference. The initial map
m(·) is shown on the top right; for instance, the path element
if unifies path #1 of P with #6 of Q, as well as #2 of P
with #7 of Q. At the bottom right each line corresponds
to an iteration of the matching process. In step 0, paths
#5 and #9 are already identical. In the second iteration
the path element if is chosen from map m(·), because it
unifies 2 paths (all others only one). We have thus matched
6 paths in total (step 1 of bottom right table), and only
#3, #4, #8 remain unassigned (gray). The map d(·) now
offers two alternatives (assign and declare, both |m(·)| =
1), we arbitrarily choose assign as the second missing path
element for the third iteration. This leaves only path #4
unassigned. The choice of m(declare) has covered paths #4
and #8, so we remove all pairs from m(·) containing any
of these (already covered) paths. This ends the matching
phase (all |m(·)| = 0). We had to add the first missing
path element if to paths in Q; likewise we had to add the
second path element assign to P to match #3 against #8.
As a penalty for the missing path elements we add them to
the respective SVUP, that is, P becomes {1, 2, 3, 4, 5, assign}
and Q = {6, 7, 8, 9, if}. Taking the established identity of
paths into account, this gives us an F1 value of

p =
|P ∩Q|
|P | =

4

6
, r =

|P ∩Q|
|Q| =

4

5
, so F1 = 2·16/30

44/30
=

8

11
.

Fig. 4 shows the resulting dendrogram. Now OneLoop-
GuardedIf (Fig. 1(c)) became much more similar to One/T-
woLoopQuickExit (Fig. 1(a-b)). But we are still dissatisfied
with the high similarities towards Disordered: it uses the
same set of embedded instructions (causing the high simi-
larity), but the variable usage is mixed up. The instructions
may look identical, but the author did not get the role of
variables right and that should degrade the similarity.

3.4 Matching Variables
So we finally revisit the simplification of definition 2. We
have hypothesized that similar solution approaches use vari-
ables at specific places in the code skeleton. Up to now,
we have mixed the usage paths of different variables in the
SVUP representation. This will be sorted out next.

464 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Definition 3. Let π(v,f) : P → P, P 7→ {p | p =
(v, i1, . . . , in, f) ∈ P} be a filtering function that returns
only those paths that refer to variable identifier v and
function identifier f . From a VUP representation P with
a set V of variable identifiers and F of function identi-
fiers, we obtain a GVUP representation (grouped VUP)
P ′ = {π(v,f)(P) | v ∈ V, f ∈ F}. That is, a GVUP is a set
of VUPs, one VUP set for each variable in each function.

For instance, the code in Fig. 1(b) consists of 4 variables in
one function, so the GVUP representation is a set of four
VUP representations (one set for each variable). Now, as
the GVUP representations P and Q of two source codes
are sets of sets, how do we generalize the F1 calculation?
Consider the following example, where we use abbreviated
instructions I = {a, b, c}:

P = {{x/a/c/f, x/b/c/f}, {y/a/f, y/c/f}, {z/b/f}},
Q = {{x/a/f, x/c/f}, {y/b/f}}

Formally, a direct calculation of |P ∩Q| yields 0 as none of
the sets in P is contained in Q. But this does not meet our
intention. Note that variable y in P plays the role of x in
Q (same for z in P and y in Q). Variables may be renamed
without changing the semantics, in fact |P ∩ Q| should be
2. The desired semantics is to match variable and function
names appropriately, rename them accordingly and calculate
the F1 measure on the obtained

⋃
X∈P X and

⋃
Y ∈Q Y .

How do we match the sets X ∈ P against Y ∈ Q? All paths
in X or Y refer to the same variable and function name, so
we can safely transform the VUP to a SVUP representation
and use the measure from section 3.3 to construct a pair-
wise cost matrix. We employ the Munkres algorithm [8] to
find the optimal assignment based on this cost matrix. As
the Munkres algorithm performs a 1:1 least-cost assignment,
some variables may not get assigned. We match them after-
wards in a second pass to the least costly counterpart. (This
allows us to match multiple identifiers in one program to the
same variable in another, as required when comparing codes
(a) and (b) of Fig. 1.)

As an example, for the abovementioned P and Q we would
create a cost matrix of all pairwise F1-values (P -paths in
rows, Q-paths in columns): 0.67 0.50

1.00 0.50
0.50 1.00

The Munkres algorithm optimally assign two of the P -paths
to two of the Q-paths (bold face). The third P -path is then
associated with the first Q-path, which matches best ac-
cording to the higher F1-value. We have thus assigned the
variables x and y of P to variable x in Q and may think
of renaming all these variables in both codes to, say, u. In
the same fashion we may rename the variables of the second
assignment to v; reunifying all SVUPs leads us to:

P ′ = { u/a/c/f, u/b/c/f, u/a/f, u/c/f, v/b/f},
Q′ = { u/a/f, u/c/f, v/b/f}

The final similarity is obtained by applying the calculations
of Sect. 3.3 to both sets P ′ and Q′ (this time with differ-
ent variable names rather than just generic variable names

0.8 0.6 0.4 0.2 0.0

Empty

Nonsense

Disordered

OneLoopQuickExitTempVar

OneLoopGuardedIf

OneLoopGuardedElse

OneLoopQuickExit

TwoLoopQuickExit

Figure 5: Dendrogram for source codes of Fig. 1
based on F1-measure on GVUP representation.

vn). Although the example did not include different function
names, it works in the same way. Fig. 5 shows the resulting
dendrogram. As desired, the similarity of code Disordered
(Fig. 1(d)) is now worst among all solutions that follow the
same solution approach.

4. EXPERIMENTAL EVALUATION
We started to evaluate the proposed approach on real stu-
dent code submissions and demonstrate its performance on
some examples. The submissions were inspected manually
and grouped by approach (defining ground truth). While the
author of an exercise may have a specific solution in mind,
a group of students usually finds multiple ways to solve the
exercise. The real data contains nearly identical submis-
sions (potential plagiarism) as well as submissions that ap-
pear somewhat chaotic, have superfluous declarations and
calculations, or contain artefacts indicating a change in the
solution approach over time. Most codes can nevertheless
be assigned to solution approaches, but the strong variation
in novice’s code length misleads edit- and tree-distance such
that resulting dendrograms do not match the approaches.

We show results for two exercises, the first exercise asks for
the most frequently occurring element in an integer array.
To inspire the students to elaborate on different solutions,
an additional restriction was given that all values v in the
array satisfy 0 ≤ v < 10000. The two main solution ap-
proaches were: (1) iterate over all elements in an outer loop,
count the frequency of the current element in an inner loop,
remember the element that occurs most often; (2) instanti-
ate an array of size 10000 (associating a counter with each
possible element in the original array), increment the re-
spective counter while looping over the array and identify
the largest entry in the counter array. Apart from these
two dominating solutions, three solutions (3) sorted the ar-
ray first, such that identical values are grouped together,
which simplifies frequency counting in a single loop over the
array.3 Finally, (4) there are some exotic solutions which
may be considered as a mixture of the discussed solutions.
Possibly students became aware of the other approaches by
discussing approaches among each others, but had difficul-
ties in solving the task and switched back and forth between
them. Usually, elements of all other solutions can be found
in them. Fig. 6 shows average-linkage hierarchical clustering

3However, when this exercise was handed out, sorting al-
gorithms were not yet discussed (so this solution required
background knowledge or a student’s own initiative).

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 465

1.0 0.8 0.6 0.4 0.2 0.0

G27G10G13G37G26G20G7G62G4G47G42G55G67G68G66G23G39G43G30G48G34G19G65G63G45G60G94G31G46G36G35G22G25G18G52G73G32G2G56G33G5G49G54G14G64G53G50G29G12G15G9G11G44G38

1.0 0.8 0.6 0.4 0.2 0.0

G27G32G2G25G22G18G33G5G56G52G73G14G64G49G53G50G29G12G7G10G13G37G26G15G54G9G11G20G31G62G4G47G42G46G63G45G36G35G55G67G68G66G38G39G43G30G48G34G19G65G44G60G23G94

1.0 0.8 0.6 0.4 0.2 0.0

G27G7G10G13G37G26G20G31G46G55G67G68G66G47G42G63G45G60G94G44G9G11G38G39G43G30G48G34G19G65G23G36G35G22G25G18G32G2G33G14G64G49G53G50G29G12G5G56G15G54G52G73G62G4

Figure 6: Dendrogram for exercise ’most frequent
element’ based on F1-measure (measure from Sect.
3.2, 3.3, and 3.4 from top to bottom).

results for the similarities from Sect. 3.2, 3.3, and 3.4 from
top to bottom. The ground truth is shown by means of the
node colors: 1: black, 2: blue, 3: red, 4: gray, incomplete
/ unfinished: cyan. While the clusters in the top clustering
mixes even the two large approaches (1) and (2), the clus-
tering in the middle is much better but does not separate
solution (3). This is only achieved by the GVUP-clustering
(bottom), which corresponds best to the ground truth. The
bubblesort used in (3) uses very similar loops as the main
task, so it was crucial to distinguish the role of variables as
done in the GVUP-approach.

A second exercise deals with the identification of happy num-
bers4. The calculations require the sum of squares of each
digit and the submissions differ mainly in the way how this
is solved. The intended solution (black) was a loop that suc-
cessively splits the last digit (using integer division and mod-
ulo). Another popular solution is based on string-conversion
(blue), a few (somewhat restricted) approaches (red) dealt
with different numbers of digits individually (avoiding a
loop). Again, the average-linkage clustering for all three
proposals is shown in Fig. 7 and the GVUP-approach sepa-
rates them best. The modulo-approaches (black) subdivide

4https://en.wikipedia.org/wiki/Happy_number

1.0 0.8 0.6 0.4 0.2 0.0

G10G25G18G71G15G23G8G5G66G67G68G57G44G38G63G22G94G78G28G24G32G2G51G7G52G73G33G31G70G62G60G34G46G56G65G48G13G4G26G20G37G3G36G35G64G42G55G14G47G54G12G53G19G29G49G50G9G11G45G39G30G43

1.0 0.8 0.6 0.4 0.2 0.0

G31G10G25G63G71G23G8G5G44G38G51G28G24G78G94G7G52G73G32G2G57G15G56G65G48G70G62G60G34G46G33G22G66G67G68G36G35G13G4G26G20G37G3G49G50G39G30G43G45G9G11G12G53G19G29G18G64G42G55G14G47G54

1.0 0.8 0.6 0.4 0.2 0.0

G31G10G25G18G63G71G8G5G66G67G68G56G70G62G60G34G46G78G32G2G51G7G52G73G28G24G44G38G94G22G15G57G33G65G48G13G4G26G20G37G3G36G35G42G47G54G55G14G64G45G9G11G49G50G39G30G43G23G12G53G19G29

Figure 7: Dendrogram for exercise ’happy number’
based on F1-measure (measure from Sect. 3.2, 3.3,
and 3.4 from top to bottom).

into two major branches, which differ in the way intermedi-
ate variables are used. Approaches that use the same kind of
utility variables (e.g. to store digits, square of a digit, etc.)
are closer matches than approaches that use different sets of
utility variables.

5. CONCLUSIONS
Assessing the variety in student’s solutions to a program-
ming exercises without having to inspect all codes manu-
ally can help a lecturer in many ways. We have proposed
a measure that captures how variables and instructions are
coupled by means of variable usage paths, and use this fin-
gerprint to match code from different solutions while at the
same time being tolerant to code repetitions. The approach
needs to be evaluated further, but the first results appear
promising. The nature of the comparison is set-based, which
allows us not only to assess similarity (using F1), but also to
use recall and precision. This enables further applications,
for instance, we may assess partial solutions by the degree
how many elements of a complete solution they contain (us-
ing recall only) or assess the student’s degree of program-
ming maturity by investigating the amount of superfluous
statements (using precision only).

466 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

6. REFERENCES
[1] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and

L. Bier. Clone detection using abstract syntax trees.
In Int. Conf. on Software Maintenance, pages
368–377. IEEE, 1998.

[2] P. Bille. A survey on tree edit distance and related
problems. Theoretical Computer Science, 337:217–239,
2005.

[3] J. Broisin and C. Herouard. Design and evaluation of
a semantic indicator for automatically supporting
programming learning. In Int. Conf. Educational Data
Mining, pages 270–275, 2019.

[4] M. Chilowicz, E. Duris, and G. Roussel. Syntax tree
fingerprinting for source code similarity detection. In
2009 IEEE 17th International Conference on Program
Comprehension, pages 243–247. IEEE, 2009.

[5] Z. Djuric and D. Gasevic. A source code similarity
system for plagiarism detection. The Computer
Journal, 56(1):70–86, 2013.

[6] X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph
edit distance. Pattern Analysis and Applications,
13(1):113–129, 2010.

[7] O. Karnalim. Syntax trees and information retrieval to
improve code similarity detection. In Proceedings of
the Twenty-Second Australasian Computing Education
Conference, pages 48–55, 2020.

[8] M. Munkres. Algorithms for the Assignment and
Transportation Problems. Journal of the Society of
Industrial and Applied Mathematics, 5(1):32–38, 1957.

[9] C. Ragkhitwetsagul, J. Krinke, and D. Clark. A
comparison of code similarity analysers. Empirical
Software Engineering, 23(4):2464–2519, 2018.

[10] T. Sager, A. Bernstein, M. Pinzger, and C. Kiefer.
Detecting similar java classes using tree algorithms. In
Int. Workshop on Mining software repositories, pages
65–71, 2006.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 467

pyBKT: An Accessible Python Library of Bayesian
Knowledge Tracing Models

Anirudhan Badrinath
University of California,

Berkeley, CA, USA
abadrinath@berkeley.edu

Frederic Wang
University of California,

Berkeley, CA, USA
fredwang@berkeley.edu

Zachary Pardos
University of California,

Berkeley, CA, USA
pardos@berkeley.edu

ABSTRACT
Bayesian Knowledge Tracing, a model used for cognitive
mastery estimation, has been a hallmark of adaptive learn-
ing research and an integral component of deployed intelli-
gent tutoring systems (ITS). In this paper, we provide a brief
history of knowledge tracing model research and introduce
pyBKT, an accessible and computationally efficient library
of model extensions from the literature. The library provides
data generation, fitting, prediction, and cross-validation rou-
tines, as well as a simple to use data helper interface to ingest
typical tutor log dataset formats. We evaluate the runtime
with various dataset sizes and compare to past implementa-
tions. Additionally, we conduct sanity checks of the model
using experiments with simulated data to evaluate the accu-
racy of its EM parameter learning and use real-world data
to validate its predictions, comparing pyBKT’s supported
model variants with results from the papers in which they
were originally introduced. The library is open source and
open license for the purpose of making knowledge tracing
more accessible to communities of research and practice and
to facilitate progress in the field through easier replication
of past approaches.

Keywords
Bayesian Knowledge Tracing; Intelligent Tutoring Systems;
Educational Software; Python Library

1. INTRODUCTION
Knowledge Tracing [6] has been a well researched approach
to estimating students’ cognitive mastery in the context of
computer tutoring systems [23]. Tutoring systems take a
problem-solving, or active approach to learning [2, 1] that
often resembles the personalized mastery learning approach
researched by Bloom [4]. The model was not originally de-
scribed using a particular statistical framework; however,
the mathematical expressions in the original work are consis-
tent with Bayes Theorem [26], and the canonical model was
subsequently coined Bayesian Knowledge Tracing (BKT).

In spite of its growing popularity in the research community,
accessible and easy to use implementations of the model and
its many variants from the literature have remained elusive.
In this paper, we introduce pyBKT1, a modernized Python-
based library, making BKT models and respective adaptive
learning research more accessible to the community. The
library’s interface and underlying data representations are
expressive enough to replicate past BKT variants and allow
for new models to be proposed. The library is designed with
data helpers and model definition functions, allowing for
convenient replication and comparison to BKT model vari-
ants and subsequently better scientific progression and eval-
uation of new state-of-the-art knowledge tracing approaches.

The Bayesian Knowledge Tracing model can be described
as a Hidden Markov Model (HMM) with observable nodes
representing students’ known binary problem response se-
quences obst and hidden nodes representing students’ latent
knowledge state at a particular time step t. Using expecta-
tion maximization, pyBKT fits the learn (transmission pa-
rameter), and guess, and slip (emission) parameters from
historical response logs, with the parameters defined below.

prior = P (L0)

learn = P (T) = P (Lt+1 = 1|Lt = 0)

guess = P (G) = P (obst = 1|Lt = 0)

slip = P (S) = P (obst = 0|Lt = 1)

Note that while P (L0) denotes the prior parameter, we also
define P (Lt) as the probability that the student has mas-
tered the skill at time step t. Bayesian Knowledge Tracing
updates P (Lt) given an observed correct or incorrect re-
sponse to calculate the posterior with:

P (Lt|obst = 1) =
P (Lt)(1− P (S))

P (Lt)(1− P (S)) + (1− P (Lt))P (G)

P (Lt|obst = 0) =
P (Lt)P (S)

P (Lt)P (S) + (1− P (Lt))(1− P (G))

The updated prior for the following time step, which incor-
porates the probability of learning from immediate feedback
and any other instructional support, is defined by:

P (Lt+1) = P (Lt|obst) + (1− P (Lt|obst))P (T)

The standard BKT model assumes no forgetting:

P (F) = P (Lt+1 = 0|Lt = 1) = 0
1https://github.com/CAHLR/pyBKT

Anirudhan Badrinath, Frederic Wang and Zach Pardos “pyBKT: An Ac-
cessible Python Library of Bayesian Knowledge Tracing Models”. 2021.
In: Proceedings of The 14th International Conference on Educational Data
Mining (EDM21). International Educational Data Mining Society, 468-
474. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

468 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://github.com/CAHLR/pyBKT

2. RELATED WORK
Since the introduction of the standard BKT model by Cor-
bett and Anderson [6], many variants of BKT have been
proposed which multiplex, or condition the four parameters
of prior, learn, guess, and slip on different factors such as
question type or student. KT-IDEM (Item Difficulty Ef-
fect) [20] captured item performance variance within skill
by allowing different guess and slip values to be fit per item.
Baker et al. [3] proposed a hybrid model using regression to
help determine if a student’s response was a guess or a slip
based on context.

Other modifications focused on conditioning the learn rate
and prior knowledge parameter [19]. Yudelson et al. [30]
explored student-level parameter individualization, finding
that the learn rate provided better predictive performance
than prior when individualized to each student. Learn rate
has also been conditioned based on the item [17], educational
resource (e.g., a video in an online course) [21], or type of
instructional intervention seen by the student at each oppor-
tunity [13] or order in which items or resources were seen
[18]. The assumption of no forgetting was relaxed in Qiu
et al. [25], finding that response correctness decreased based
on time elapsed since the last response. This decrease was
better modeled in BKT with conditional forget rates than
with increased slip rates. González-Brenes et al. [9] created
a hybrid BKT model that factored in a variety of features,
including response time. An overview of other variations of
BKT and logistic approaches to learner response prediction
can be found in Pelánek [23].

Neural network approaches to knowledge tracing have gained
in momentum since the introduction of Deep Knowledge
Tracing (DKT; [24]). Some have explored the reasons for
DKT’s apparent accuracy improvement as compared to BKT
and have attributed its success to its high dimensional hid-
den space and ability to observe interleaved skills in a single
model [14]. However, most papers using neural approaches
compare only to the standard BKT model proposed in the
1990s and not to the more modern variants. A notewor-
thy result of caution was reported in Khajah et al. [11], in
which it was found that simply enabling the forget parame-
ter of standard BKT led to performance on par with DKT
on several datasets.

There has been a brief history of BKT implementation frame-
works. Several BKT variants have used Kevin Murphy’s
Bayes Net Toolbox (BNT) for MATLAB [15], with a subse-
quent wrapper for that toolbox releases catering to knowl-
edge tracing [5]. Yudelson et al. [30] produced a C++ im-
plementation2 of BKT with a command line interface that
included support for individualized parameters. Finally, Xu
et al. [29] created a C++ implementation of BKT with a
MATLAB interface and support for parallelization and con-
ditioning of all parameters based on both problems and pas-
sive resources (e.g., a learning rate for a video).

3. PYBKT LIBRARY DETAILS
The pyBKT library builds off of xBKT developed by Xu
et al. [29] and is released under an MIT license. The library
is compatible with all platforms (Linux, Windows, Mac OS),

2https://github.com/myudelson/hmm-scalable

primarily utilizing NumPy [28] for computation. It is avail-
able on the Python PyPi repository, with installation ac-
complished through a pip one-liner: pip install pyBKT. To
increase performance, we additionally supply routines which
utilize C++ libraries and Eigen/LAPACK, which is an op-
timized linear algebra package with OpenMP support. This
accelerated version requires a C++ compiler and is currently
only tested on Linux and macOS.

We created a Scikit-learn style [22] Model class abstraction
and accompanying data helpers that further facilitate the
accessibility and expressive power of pyBKT. With one-line
fit, predict, evaluate, parameter initialization, and cross-
validate methods, pyBKT offers ease of use in ingesting re-
sponse data and applying BKT models and supported vari-
ants. We explore the interface to these methods in the next
subsection. We then detail the internal data structures,
computations, and motivations behind the development of
the two implementations of pyBKT, in pure Python and the
accelerated C++/Python, along with runtime evaluation.

3.1 Interface
pyBKT’s interface is modeled after Scikit-learn’s accessible
frontend interface for machine learning models [22]. The
ease-of-use in the pyBKT Model class abstraction allows for
increasingly expressive BKT code without the usability sac-
rifices of past BKT libraries. We aim for the library to
be easy to learn for beginners while still useful for experi-
enced users conducting knowledge tracing research. Further,
it provides a gateway into exploring multiple model exten-
sions from the literature, which have been shown to be capa-
ble competitors to DKT [11] and able to address inequities
in unmodeled differences in learning and prior ability be-
tween students [7]. Supported BKT extensions include: KT-
IDEM [20], KT-PPS (Prior Per Student) [19], BKT+Forget
[11], Item Order Effect [18] and Item Learning Effect [17,
21]. These model extensions are referred to as multigs,
multiprior, forgets, multipair, and multilearn, respec-
tively, in the model interface.

The Model class abstraction supports creating, fitting, pre-
dicting, cross-validating and evaluating BKT models using
any combination of supported extensions. Additional fea-
tures include specifying model parameter initialization be-
fore fitting, custom cross-validation fold assignment, and
multiple accuracy and error metrics - including support for
generic user-defined or Scikit-learn imported metrics. Com-
mon dataset formats are made easier to ingest through auto-
matic detection of familiar column headers seen in Cognitive
Tutor [12] and ASSISTments datasets [10]. Defaults for all
customizable parameters such as random seed, paralleliza-
tion, model variants, and evaluation metric(s) are provided
when they are not specified.

We demonstrate a few of the library’s basic capabilities in
parameter initialization, fitting, and parameter output in
the below code snippet using the learned parameters of the
”Polynomial Factors” skill from the 2009-2010 ASSISTments
dataset3. Note that all parameters of all skills found in the
dataset are fit unless otherwise specified.

3https://sites.google.com/site/assistmentsdata/
home/assistment-2009-2010-data

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 469

https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data

>>> from pyBKT.models import Model
>>> model = Model()
>>> model.fit(data path = ’assistments.csv’)
>>> model.params().loc[(’Polynomial Factors’)]
param class value
prior default 0.17452
learns default 0.13378
guesses default 0.25502
...

The internal data helper functionality converts any response-
per-row comma or tab separated file into the internal py-
BKT data format. It is designed to convert input columns
using default column mappings for skill name, student iden-
tifiers, correctness, etc. automatically for Cognitive Tu-
tor/ASSISTments data and configurable with one line for
any other dataset. It provides increased flexibility to the
user, allowing for consistency across fit and predict/evalu-
ate phases.

The included evaluation metrics are root-mean squared error
(RMSE), accuracy with a threshold of 0.5, and area under
the ROC curve (AUC). Custom metrics in the format of two-
parameter Python functions are supported for evaluation
and cross-validation, such as the regression or classification
metrics from sklearn.metrics or keras.metrics.

The cross-validate function provides a one-line interface for
fitting and evaluating any combination of model variants
with one or more error metrics. For the following exam-
ple, we specify a particular column to use for the multilearn
(answer type) along with a multigs model trained on the de-
fault template ID for ASSISTments. A skill or combination
of skills can be specified along with the seed and number of
folds (optional).

>>> model = Model(seed = 42, parallel = True)
>>> model.crossvalidate(data path = ’assistments.csv’,

skills = [’Circle Graph’, ’Box and Whisker’],
multigs = True, multilearn = ’answer type’, metric =
[’auc’, sklearn.metrics.mean absolute error])

skill mean absolute error auc
Circle Graph 0.41565 0.72782
Box and Whisker 0.33906 0.67991

3.2 Internal Implementation Details
The pure Python and C++/Python implementations of py-
BKT both make use of optimized programmatic methods, ef-
ficient internal data and model representation, multithreaded
model fitting, and optimized linear algebra libraries. The
model fitting consists of a typical Expectation Maximiza-
tion (EM) function for a Hidden Markov Model performing
forward and backward passes over the sequential data to
continuously update BKT parameters. We implement these
passes using a parallelized iterative dynamic programming
approach on the input data.

3.2.1 Model Representation
In the context of model variants with multiple learn, guess,
slip, or forget rates, a subscript P (Ti), P (Gi), P (Si), P (Fi)
denotes the corresponding probability, or rate, for class i =
1...m, respectively.

Initial and fit BKT model parameters are represented using
a Python dictionary. Inside of this dictionary, we store A,
which is a collection of matrices with each 2x2 matrix cor-
responding to the learning and forgetting probabilities for
each learn class in order to aid in efficient matrix multipli-
cation during fitting. A has the format where m is the total
number of learn rates:[[

P (¬T1) P (F1)
P (T1) P (¬F1)

]
, · · · ,

[
P (¬Tm) P (Fm)
P (Tm) P (¬Fm)

]]
We define α as a set of 2-length vectors each corresponding
to [P (¬Lt), P (Lt)] for all time steps for a specific student.
Similarly, π0 stores information about the prior, in the for-
mat of P (¬L0), P (L0).

3.2.2 EM and BKT Algorithm
We use Expectation Maximization to fit model parameters,
shown to provide desirable convergence properties, given
plausible initial parameter values [16]. Inside the EM and
inference algorithms, we use several intermediate data struc-
tures and vectorization to improve computational efficiency
in fitting the models. To calculate α[t + 1] given α[t], we
multiply it by the part of the learn/forget transition ma-
trix A corresponding to the learn class of time step t. We
element-wise multiply by the vector likelihoods which con-
sists of [P (G), P (¬S)] or [P (¬G), P (S)] for the correspond-
ing guess class of time step t, depending on whether the
student answers correctly or not, respectively. Finally, nor-
malizing this vector results in α[t+ 1]. We demonstrate the
algorithm for an example iteration of the BKT algorithm
with learn class 1, guess class 1, and an incorrect response
observed (obs = 0) at time step t.[
P (¬Lt+1)
P (Lt+1)

]
=

[
P (¬T1) P (F1)
P (T1) P (¬F1)

]
(

[
P (¬Lt)
P (Lt)

]
◦
[
P (¬G1)
P (S1)

]
)

=

[
P (¬T1) ∗ P (¬Lt|obst) + P (F1) ∗ P (Lt|obst)
P (T1) ∗ P (¬Lt|obst) + P (¬F1) ∗ P (Lt|obst)

]
At the end of this α calculation, we perform the E-step of
the EM algorithm by recursively calculating an expectation
γ for each time step by backtracking through the learned
latent states. We can then take the global average of the ex-
pectations of the learn/forget transition matrices, guess/slip
vectors, and priors during the M-step and use these as the
parameters for the next iteration of EM. In terms of the
number of students S and the typical sequence length for
each student T , the model fitting algorithm’s asymptotic
time complexity for standard BKT is Θ(TS).

3.2.3 C++/Python Implementation Details
We use a C++ extension to perform the EM iterative up-
dates and matrix multiplication for the model fit and pre-
diction process. This allows us to use efficient linear algebra
libraries in C++4 and benefit from greater support for mul-
tithreading through OpenMP.

We use Eigen to perform the matrix operations. There are
many technical advantages of using Eigen with a linear al-

4Boost was previously used as a connector between Python
and the C++ extension, but it has been deprecated since
pyBKT 1.2.2, resulting in a 3-5x performance increase.

470 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

gebra heavy model such as pyBKT. Eigen provides efficient,
thread-safe matrices and arrays, while being a relatively
portable package distributed along with pyBKT. It allows
for lazy evaluation, expression templates and compiler opti-
mizations.

We use OpenMP for parallelizing the demanding model fit-
ting process. OpenMP is a universally accepted multithread-
ing library for C/C++ that exploits multicore processors
with low overhead. With a shared memory space for forked
threads, OpenMP avoids overhead for inter-process com-
munication (IPC) unlike Python’s multiprocessing. With
Eigen’s explicit support for OpenMP-based multithreading,
heavy matrix operations and iterative processes are further
optimized in pyBKT.

3.2.4 Pure Python Implementation Details
We wish to maintain the accessibility of pyBKT across all
platforms while maintaining as much efficiency as possible.
To do this, a pure Python implementation, without C++
extensions, is included. This implementation provides quick
access to any user, including on Windows, wishing to run
a BKT model without the hassles of compilation and com-
plex dependencies. We relax this version of the library’s
requirements to include mostly native modules along with
the widely supported NumPy.

NumPy is used for the matrix operations in the pure Python
build of pyBKT as it is the most efficient and widely used
numeric computational library in Python. Technically, it
provides impressive single-threaded performance. Similarly
to other optimized mathematical libraries such as Eigen,
NumPy employs code vectorization, efficient memory map-
ping techniques for sparse matrices, and compiler optimiza-
tions.

Since NumPy is primarily a single-threaded application with
little support for multicore scaling, we use Python’s native
multiprocessing library for parallelizing the model fitting.
It provides native CPython support for multicore scaling to
bypass the Global Interpreter Lock (GIL), which allows only
one running thread of execution within a process. Although
different Python implementations (i.e JPython) exist to dis-
able the GIL or remove the memory overhead, we use a
native module for simplicity and speed.

3.3 Runtime Evaluation
We compare the runtime performance of the pure Python
and C++/Python implementations of pyBKT on five typi-
cal model fitting and prediction tasks. We present two sets
of tasks, fitting and prediction on synthetic data, that addi-
tionally showcases the way in which the runtimes scale with
the size of input data for both implementations of pyBKT.
Each of the tasks are averaged over several runs for both
implementations of pyBKT on a machine with 2 x Intel(R)
Xeon(R) CPU E5-2620 v3 CPUs at 2.4Ghz with 256GB of
system RAM. The results are shown in Table 1.

We evaluate the runtimes using two metrics. The scaling
factor is defined as the ratio of the runtime of the larger
input and the smaller input for a set of prediction or fitting
tasks. The speedup is defined as the ratio of the runtime

of our C++/Python implementation to our pure Python
implementation.

The first four tasks perform synthetic data generation for
500 students and 5,000 students respectively with a sequence
length fixed at 100 followed by prediction or fitting. These
tasks illustrate a typical medium and large workload for
model fitting and prediction tasks. The generated synthetic
data is fit or predicted using a standard BKT model. It is
clear that as the number of students scales, the pure Python
implementation of pyBKT performs and scales more poorly
with the number of students. The C++/Python implemen-
tation shows a nearly 150-600x speedup for fitting and 15-
30x speedup for prediction as compared to the pure Python
version. In comparison to its predecessor xBKT (MAT-
LAB), the C++/Python version of pyBKT gains a 3-4x
speedup across all fitting and prediction tasks. In Xu et al.
[29], it is noted that xBKT outperforms BNT by 10,000x,
which suggests a 30,000-40,000x speedup of pyBKT as com-
pared to BNT.

The final task performs a cross-validated prediction task for
a selected skill in the Cognitive Tutor dataset. We use a vari-
ety of models (standard, multigs, multiprior) to test predic-
tive accuracy and measure its runtime. This task is around
65x slower in the pure Python implementation.

While the runtimes and the overall scaling of the pure Python
port with respect to the size of input data are significantly
poorer for each task, that is an expected trade-off with re-
gards to accessibility and portability. For an end-user that is
training and testing moderately-sized BKT models or eval-
uating models, they would benefit from a portable and uni-
versal BKT model which can handle a moderate input size
with relative efficiency. For heavier research-oriented or
production-oriented tasks, the C++/Python implementa-
tion is recommended since it generally performs much more
efficiently.

4. DATA SUFFICIENCY ANALYSIS
We examine the data sufficiency requirements of the stan-
dard BKT model by exploring trade-offs between input size
and parameter error and mastery estimation accuracy. We
define the input size as the magnitude of the number of stu-
dents and the average sequence length. Through the first
analysis, practitioners may gain an intuition for the min-
imum cohort size and minimum number of questions an-
swered per student per skill to effectively apply BKT. Our
second analysis in this section focuses on mastery estimation
accuracy, also using synthetic data. This analysis depicts
how the worst-case expected mastery estimation accuracy
decreases as a function of sequence length for a given set of
prior, guess, and slip parameters.

For the following analyses, we generate synthetic data, both
responses and mastery states, from pyBKT using ground
truth parameter values set to common values seen for Alge-
bra skills5. In doing so, we are able to calculate the error of
the fit parameters and accuracy of the mastery estimation.

5prior=0.08, guess=0.15, slip=0.05, forget=0 and learn=0.3
for the first analysis and variable for the second

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 471

Table 1: Comparison of runtimes, scale factor and speedup between Python and C++/Python implementations of pyBKT.
Test Description Pure Python C++/Python Speedup

Runtime Scaling Runtime Scaling
Synthetic Data Generation, Model Fit (500 students) 160.12s 1.07s 149.64x
Synthetic Data Generation, Model Fit (5,000 students) 1,596.30s 9.97x 2.62s 2.45x 609.27x
Synthetic Data Generation, Model Predict (500 students) 8.02s 0.50s 16.04x
Synthetic Data Generation, Model Predict (5,000 students) 67.08s 8.36x 2.42s 4.84x 27.71x
Cross-validation, Cognitive Tutor 320.28s - 4.79s - 66.86x

4.1 Synthetic Model Fit Accuracy
The synthetic generation of data is performed for input sizes
from 10 to 200 students for all sequence lengths from 2 to
35. While 200 is not an uncommon number of students to
have in a cohort, more than 30 responses to a single skill
would be unusual for a student. Each combination of input
size is averaged over five fits, each of which includes the best
model over 20 random EM fit initializations.

The error of the model’s fit parameters are analyzed using
the mean absolute percentage error (MAPE) in relation to
predefined ground truth generating parameters. We plot the
fitting error of the learn, slip, guess, and prior parameters as
a function of the number of synthesized students (Figure 1,
left) and length of synthesized response sequences for each
student (Figure 1, right). While all data points cannot be
visualized on a single plot, we show the data points for the
prior parameter as an example.

For all parameters, there is a clear negative and exponential
error decay with respect to the number of students. This
is consistent with an expected asymptotic behaviour when
increasing the number of students in the fitting procedure.
Learn and slip parameters asymptote at around 50 students
while guess and prior do so after 100, given a sequence length
of 10.

There seems to be a slowly decreasing linear relationship
between the typical sequence length and parameter fit er-
ror, with the prior parameter showing the greatest improve-
ment in MAPE. These analyses show that there is not nearly
as much benefit to fitting error by increasing the sequence
length (i.e., giving students more problems) as there is by
increasing the number of students.

Figure 1: Mean absolute percentage error (MAPE) of fit pa-
rameters as a function of number of students (left) and se-
quence length (right).

4.2 Synthetic Mastery Estimation Accuracy
We look to evaluate the worst-case accuracy of the standard
BKT model’s mastery estimation, its most common task
within a computer tutoring system, using a mastery thresh-
old of P (Lt) ≥ 0.95 on simulated problem solving sequences.
We use the same predetermined ground truth BKT param-
eters and data generation methodology as in the previous
subsection with the exception of the learn rate, which is set
dynamically in this analysis.

It is known that the probability of mastery will converge to
1 − forgets in a finite number of time steps given a learn
rate > 0 [27]. This means that cognitive mastery estimation
accuracy will increase with respect to sequence length, as
student mastery state becomes more homogeneous.

In order to model the worst-case mastery estimation of the
model, we find the learn rate that will produce an average
probability of mastery close to 0.5 across students at the
final time step τ for all our chosen sequence lengths, thus
preventing a trivial estimation of a majority mastery state.
We find the learn rate via grid search with a granularity of
0.001 since this cannot be solved analytically [27].

The mastery estimation accuracy exponentially decays up-
ward with respect to sequence length with a Pearson cor-
relation Rlog(acc) = 0.73 as shown in Figure 2. The mas-
tery estimation accuracy in our analysis can be observed to
asymptote around a sequence length of 15. This suggests
that the worst-case mastery estimation accuracy scenario
can be mitigated, given our chosen predefined parameter
values, with an average response sequence length per skill of
15 or greater.

Figure 2: Worst-case accuracy of mastery estimation as a
function of sequence length for the standard BKT model.

472 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

5. EVALUATION OF PYBKT MODELS
To gauge the validity of the BKT models and extensions
supported by pyBKT, we perform predictive model evalua-
tions replicating those found in prior literature. Models were
evaluated by performing five-fold cross-validation on the AS-
SISTments 2009-2010 Skill Builder dataset, the Cognitive
Tutor 2006-2007 Bridge to Algebra dataset6, and special-
ized datasets from Feng et al. [8] and Piech et al. [24] in or-
der to validate more specific model extensions. While there
are slight differences between our results and the results of
other papers, we believe this is due to our random parameter
initialization and small differences in fitting methods. Our
complete model evaluations, data, and results are located in
a pyBKT examples repository7.

5.1 Standard BKT and BKT+Forget
In general, the predictive accuracy of the models generated
by pyBKT are in line with what others have observed from
BKT. For instance, in Khajah et al. [11], they found that
by fitting the basic BKT model on the train/test split pro-
vided by Piech et al. [24] from the 2009-2010 ASSISTments
dataset for each skill, they obtained an AUC of 0.73, whereas
pyBKT predicts with an AUC of 0.76. Similarly, when Kha-
jah et al. [11] added the forgets parameter into their model,
they achieved an AUC of 0.83, exactly the same AUC we
achieve using pyBKT.

5.2 KT-IDEM
When using the KT-IDEM model on the ASSISTments 2009-
2010 Skill Builder dataset, pyBKT achieves an average AUC
increase of 0.01932, which is very close to the 0.021 average
increase reported in Pardos and Heffernan [20]. While the
exact subset of data was not exactly specified in that paper,
we used the ten skills with the most responses, using differ-
ent template ids as the guess/slip classes as prescribed in
[20]. Since the ASSISTments data has a very high average
response to template ratio (∼1,000), the KT-IDEM model
performs very well compared to the standard BKT model
using RMSE as the metric of comparison, being lower or
equal in nine of the ten skills selected.

5.3 KT-PPS
The Prior Per Student model was applied to the ASSIST-
ments’ Groups of Learning Opportunities dataset [8] con-
sisting of 42 problem sets. In Pardos and Heffernan [19], it
was found that the KT-PPS model performed better than
the standard BKT model on 30 out of the 42 problems sets,
as evaluated on the predictions of the last response of each
student’s response sequence. This was achieved using a vari-
ant of KT-PPS that models a high and low prior and assigns
students to the high prior if they answer correctly on the first
problem of the problem set, and to the low prior otherwise.
The high prior was set to an ad-hoc value of 0.90 and the
low prior to 0.15 in that work.

The pyBKT replication of this model is done without true
multiple prior modeling. Instead, when the multiprior op-
tion is set to True, P (L0) is set to 0 and a dummy time step
is created at the beginning of the sequence. Three learn
rates are created, the first corresponding to the high prior,

6https://pslcdatashop.web.cmu.edu/KDDCup
7https://github.com/CAHLR/pyBKT-examples

the second to the low prior, and the third corresponding
to the standard P (T) applied between all subsequent time
steps. The initial values of these virtual priors were set to
the ad-hoc values from [19]; however, since pyBKT does not
support parameter fixing as of this writing, these parame-
ters were learnable. With these settings, pyBKT’s KT-PPS
performs better than standard BKT on 27 out of 42 of the
problem sets. The small difference in prediction accuracy
of this model may be attributable to the difference in the
algorithm regarding fixed parameters, but the similarity in
performance is promising.

5.4 Item Order and Item Learning Effect
Results from the Item Order Effect [18] and Item Learning
Effect [17] papers were not focused on response prediction
improvement. In fact, no prediction accuracy results were
provided. Instead, the purpose of the models was to com-
pare the learn rates of classes to flag effective and ineffective
items and orders. The examples repo of pyBKT depicts
such differences. Nevertheless, a modest 0.01 RMSE im-
provement for both model variants was obtained compared
to the standard BKT model.

6. CONCLUSIONS
We demonstrated pyBKT as a seamlessly installable, effi-
cient, and portable Python library with model extensions
such as KT-IDEM, KT-PPS, BKT+Forgets, Item Order Ef-
fect and Item Learning Effect. The Model class abstraction
in pyBKT provides an expressive way to interact with the
BKT model extensions with ease, with one-line methods to
create, initialize, fit, predict, evaluate, and cross-validate
any combination of BKT model extensions. We measured
the runtime of pyBKT to be nearly 3x-4x faster than its
predecessor, xBKT, and nearly 30,000x faster than BNT, a
standard BKT implementation. Through the analyses pre-
sented, we established 50 as a reasonable number of students
to achieve convergence to canonical parameter values with
any average student sequence length and 15 as a reasonable
sequence length to mitigate worst-case mastery estimation
accuracy. Lastly, through real-world dataset analyses, we
showed the validity of the model implementation through
its agreement with past results using established software.

Acknowledgments
We recognize Matthew J. Johnson, who co-developed xBKT,
the predecessor to pyBKT, and Cristian Garay, who devel-
oped the initial Python and Boost adaptation of xBKT.

References
[1] Vincent AWMM Aleven and Kenneth R Koedinger. An

effective metacognitive strategy: Learning by doing and
explaining with a computer-based cognitive tutor. Cog-
nitive science, 26(2):147–179, 2002.

[2] Yuichiro Anzai and Herbert A Simon. The theory
of learning by doing. Psychological review, 86(2):124,
1979.

[3] Ryan SJ Baker, Albert T Corbett, and Vincent Aleven.
More accurate student modeling through contextual
estimation of slip and guess probabilities in bayesian
knowledge tracing. In International conference on intel-
ligent tutoring systems, pages 406–415. Springer, 2008.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 473

https://pslcdatashop.web.cmu.edu/KDDCup
https://github.com/CAHLR/pyBKT-examples

[4] Benjamin S Bloom. The 2 sigma problem: The search
for methods of group instruction as effective as one-to-
one tutoring. Educational researcher, 13(6):4–16, 1984.

[5] Kai-min Chang, Joseph Beck, Jack Mostow, and Albert
Corbett. A bayes net toolkit for student modeling in
intelligent tutoring systems. In International Confer-
ence on Intelligent Tutoring Systems, pages 104–113.
Springer, 2006.

[6] Albert T Corbett and John R Anderson. Knowledge
tracing: Modeling the acquisition of procedural knowl-
edge. User modeling and user-adapted interaction, 4(4):
253–278, 1994.

[7] Shayan Doroudi and Emma Brunskill. Fairer but not
fair enough on the equitability of knowledge tracing.
In Proceedings of the 9th International Conference on
Learning Analytics & Knowledge, pages 335–339, 2019.

[8] Mingyu Feng, Neil T Heffernan, Joseph E Beck, and
Kenneth R Koedinger. Can we predict which groups
of questions students will learn from?. In EDM, pages
218–225, 2008.

[9] José González-Brenes, Yun Huang, and Peter
Brusilovsky. General features in knowledge trac-
ing to model multiple subskills, temporal item response
theory, and expert knowledge. In EDM, pages 84–91.
University of Pittsburgh, 2014.

[10] Neil T Heffernan and Cristina Lindquist Heffernan. The
assistments ecosystem: Building a platform that brings
scientists and teachers together for minimally invasive
research on human learning and teaching. International
Journal of Artificial Intelligence in Education, 24(4):
470–497, 2014.

[11] Mohammad Khajah, Robert V Lindsey, and Michael C
Mozer. How deep is knowledge tracing? arXiv preprint
arXiv:1604.02416, 2016.

[12] Kenneth R Koedinger, John R Anderson, William H
Hadley, and Mary A Mark. Intelligent tutoring goes to
school in the big city. 1997.

[13] Chen Lin and Min Chi. Intervention-bkt: incorporat-
ing instructional interventions into bayesian knowledge
tracing. In International conference on intelligent tu-
toring systems, pages 208–218. Springer, 2016.

[14] Shirly Montero, Akshit Arora, Sean Kelly, Brent Milne,
and Michael Mozer. Does deep knowledge tracing model
interactions among skills? In EDM, 2018.

[15] Kevin Murphy et al. The bayes net toolbox for mat-
lab. Computing science and statistics, 33(2):1024–1034,
2001.

[16] Zachary Pardos and Neil Heffernan. Navigating the
parameter space of bayesian knowledge tracing mod-
els: Visualizations of the convergence of the expecta-
tion maximization algorithm. In EDM, pages 161–170,
2010.

[17] Zachary A Pardos and Neil T Heffernan. Detecting the
learning value of items in a randomized problem set. In
AIED, pages 499–506, 2009.

[18] Zachary A. Pardos and Neil T. Heffernan. Determining
the significance of item order in randomized problem
sets. In EDM, pages 111–120, 2009.

[19] Zachary A Pardos and Neil T Heffernan. Modeling in-
dividualization in a bayesian networks implementation
of knowledge tracing. In International Conference on
User Modeling, Adaptation, and Personalization, pages
255–266. Springer, 2010.

[20] Zachary A Pardos and Neil T Heffernan. Kt-idem:
Introducing item difficulty to the knowledge tracing
model. In International conference on user model-
ing, adaptation, and personalization, pages 243–254.
Springer, 2011.

[21] Zachary A Pardos, Yoav Bergner, Daniel T Seaton, and
David E Pritchard. Adapting bayesian knowledge trac-
ing to a massive open online course in edx. EDM, 13:
137–144, 2013.

[22] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. Scikit-learn: Machine learning in
python. the Journal of machine Learning research, 12:
2825–2830, 2011.

[23] Radek Pelánek. Bayesian knowledge tracing, logistic
models, and beyond: an overview of learner modeling
techniques. User Modeling and User-Adapted Interac-
tion, 27(3-5):313–350, 2017.

[24] Chris Piech, Jonathan Bassen, Jonathan Huang, Surya
Ganguli, Mehran Sahami, Leonidas J Guibas, and
Jascha Sohl-Dickstein. Deep knowledge tracing. In Ad-
vances in neural information processing systems, pages
505–513, 2015.

[25] Yumeng Qiu, Yingmei Qi, Hanyuan Lu, Zachary A Par-
dos, and Neil T Heffernan. Does time matter? modeling
the effect of time with bayesian knowledge tracing. In
EDM, pages 139–148, 2011.

[26] Jim Reye. Student modelling based on belief networks.
International Journal of Artificial Intelligence in Edu-
cation, 14(1):63–96, 2004.

[27] Brett van De Sande. Properties of the bayesian knowl-
edge tracing model. EDM, 5(2):1–10, 2013.

[28] Stéfan van der Walt, S Chris Colbert, and Gael Varo-
quaux. The numpy array: a structure for efficient nu-
merical computation. Computing in science & engi-
neering, 13(2):22–30, 2011.

[29] Y Xu, M J Johnson, and Z A Pardos. Scaling cognitive
modeling to massive open environments. In Proceedings
of the Workshop on Machine Learning for Education at
the 32nd International Conference on Machine Learn-
ing (ICML), 2015.

[30] Michael V Yudelson, Kenneth R Koedinger, and Ge-
offrey J Gordon. Individualized bayesian knowledge
tracing models. In International conference on artifi-
cial intelligence in education, pages 171–180. Springer,
2013.

474 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

On the Limitations of Human-Computer Agreement in
Automated Essay Scoring

Afrizal Doewes, Mykola Pechenizkiy
Eindhoven University of Technology

{a.doewes, m.pechenizkiy}@tue.nl

ABSTRACT

Scoring essays is generally an exhausting and time-consuming task

for teachers. Automated Essay Scoring (AES) facilitates the

scoring process to be faster and more consistent. The most logical

way to assess the performance of an automated scorer is by

measuring the score agreement with the human raters. However, we

provide empirical evidence that a well-performing essay scorer

from the quantitative evaluation point of view are still too risky to

be deployed. We propose several input scenarios to evaluate the

reliability and the validity of the system, such as off-topic essays,

gibberish, and paraphrased answers. We demonstrate that

automated scoring models with high human-computer agreement

fail to perform well on two out of three test scenarios. We also

discuss the strategies to improve the performance of the system.

Keywords

Automated Essay Scoring, Testing Scenarios, Reliability and

Validity

1. INTRODUCTION
Automated Essay Scoring (AES) system is a computer software

designed as a tool to facilitate the evaluation of student essays.

Theoretically, AES systems work faster, reduce cost in term of

evaluator’s time, and eliminate concerns about rater consistency.

The most logical way to assess the performance of an automated

scorer is by measuring the score agreement with the human raters.

The score agreement rate must exceed a specific threshold value to

be considered as having a good performance. Consequently, most

studies have focused on increasing the level of agreement between

human and computer scoring. However, the process of establishing

reliability should not stop with the calculation of inter-coder

reliability, because automated scoring poses some distinctive

validity challenges such as the potential to misrepresent the

construct of interest, vulnerability to cheating, impact on examinee

behavior, and users’ interpretation on score and use of scores [1].

Bennet and Bejar [2] have argued that reliability scores are limited

in their reliance on human ratings for evaluating the performance

of automated scoring primarily because human graders are fallible.

Humans raters may experience fatigue and have problems with

scoring consistency across time. Reliability calculations alone are

therefore not adequate as the current trend for establishing validity

[3]. A well-performing essay scorer from the quantitative

evaluation perspective is too risky to be deployed before evaluating

the system’s reliability and validity.

The initial attempt to discuss validity issues regarding automated

scoring in a larger context of a validity argument for the assessment

was made by Clauser et al. [4]. They presented several outlines of

the potential validity threats that automated scoring would

introduce to the overall interpretation and use. Enright and Quinlan

[5] discussed how the evidence for a scoring process that uses both

human and e-rater scoring is relevant to validity argument. They

described an e-rater model which was proposed to score one of the

two writing tasks on the TOEFL-iBT writing section. Automated

scorer was investigated as a tool to complement to human

judgement on essays written by English language learners.

Several criticisms for Automated Essay Scoring (AES) system

were highlighted in [6]. They argued that there were limited studies

on how effective automated writing evaluation was used in writing

classes as a pedagogical tool. In their study, the students gave

negative reactions towards the automated assessment. One of the

problems was that the scoring system favored lengthiness; higher

scores were awarded to longer essays. It also overemphasized the

use of transition words, which increased the score of an essay

immediately. Moreover, it ignored coherence and content

development as an essay could achieve a high score by having four

or five paragraphs with relevant keywords, although it had major

coherence problems and illogical ideas. Another concern is

described in [7]. Specifically, knowing how the system evaluates

an essay may be a reason why students can fool the system into

assigning a higher score than what is warranted. They concluded

that the system was not ready yet as the only scorer, especially for

high-stakes testing, without the help of expert human raters.

Most researchers agree that human - automated score agreement

still serves as the standard baseline for measuring the quality of

machine score prediction. However, there is an inherent limitation

with this measurement because the agreement rate is usually

derived only from the data used for training and testing the machine

learning model. The aim of this paper is to highlight some

limitations of standard performance metrics used to evaluate

automated essay scoring model, using several input scenarios to

evaluate the reliability and the validity of the system, such as off-

topic essays, gibberish, and paraphrased answers. We show

empirical evidence that a well-performing automated essay scorer,

with high agreement rate between human-machine, is not

necessarily ready for deployment for operational use, since it fails

to perform well on two out of three test scenarios. In addition, we

also discuss some strategies to improve the performance of the

system. This paper begins with the explanation of the quantitative

performance acceptance criteria for an automated scoring model

from [1]. Then, we present the experiment settings, including the

training algorithm and the essay features, for creating the model.

Afterwards, we discuss the experiment results, model performance

analysis, reliability and validity evaluation and the strategies for

improvement, and finally, we conclude our work.

Afrizal Doewes and Mykola Pechenizkiy “On the Limitations of Human-
Computer Agreement in Automated Essay Scoring”. 2021. In: Pro-
ceedings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 475-480.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 475

2. SCORE AGREEMENT EVALUATION
According to Williamson et al. in [1], the following are some

of the acceptance criteria used for evaluation of automated scoring

with respect to human scores when automated scoring is intended

to be used in conjunction with human scoring:

1. Agreement of scores between human raters and computer

Agreement between human scores and automated scores has been

a long-established measure of the performance of automated

scoring. This is to measure whether the agreement satisfies a

predefined threshold. The quadratic weighted kappa (QWK)

between automated and human scoring must be at least .70

(rounded normally). It is important to note that the performance of

automated scorer will rely on the quality of the human scoring.

Therefore, the interrater agreement among human raters must first

be reliable.

2. Degradation from human-human score agreement

The human-automated scoring agreement cannot be more than .10

lower than the human-human agreement. This standard prevents

the case in which automated essay scoring may reach the .70

threshold but still be notably deficient in comparison with human

scoring. In addition, it does not rule out the cases in which the

automated–human agreement has been slightly less than the .70

threshold, but very close to a borderline performance for human

scoring. For example, a human-computer QWK of .69 and human-

human QWK of .71. Such model is approved for operational use

based on being highly similar to human scoring. Moreover,

Williamson et al. stated that it is relatively usual to observe

automated-human agreements that are higher than the human-

human agreements for tasks that predominantly target linguistic

writing quality (e.g. GRE Issue and TOEFL Independent tasks).

3. Standardized mean score difference between human and

automated scores.

Another measure for association of automated scores with human

scores is that the standardized mean score difference (standardized

on the distribution of human scores) between the human and

computer cannot exceed .15. The standardized difference of the

mean is formalized as follows:

𝑍 =
[𝑋𝐴𝑆−𝑋𝐻]

√𝑆𝐷𝐴𝑆
2 −𝑆𝐷𝐻

2

2

 (1)

where 𝑋𝐴𝑆 is the mean of the automated score, 𝑋𝐻 is the mean of

the human score, 𝑆𝐷𝐴𝑆
2 is the variance of the automated score, and

𝑆𝐷𝐻
2 is the variance of the human score.

3. EXPERIMENTS

3.1 DATASET
We used the Automated Student Assessment Prize (ASAP)

dataset1, hosted by the Kaggle platform, as our experiment data.

ASAP is the most widely used dataset to evaluate the performance

of AES systems [8]. All the essays provided are already human

graded. ASAP dataset consists of eight prompts, with varying score

ranges for each prompt. Table 1 highlights the topics of each

prompt in ASAP dataset.

1 https://www.kaggle.com/c/asap-aes

Table 1 Prompts in ASAP Dataset

ASAP Dataset Topics

Prompt 1 The effects computers have on people

Prompt 2 Censorship in the libraries

Prompt 3 Respond to an extract about how the

features of a setting affected a cyclist

Prompt 4 Explain why an extract from Winter

Hibiscus by Minfong Ho was concluded in

the way the author did.

Prompt 5 Describe the mood created by the author in

an extract from Narciso Rodriguez by

Narciso Rodriguez

Prompt 6 The difficulties faced by the builders of the

Empire State Building in allowing

dirigibles to dock there

Prompt 7 Write a story about patience

Prompt 8 The benefits of laughter

3.2 FEATURES EXTRACTION
Each essay is transformed into a 780 dimension of features vector.

We extract the essay features into two categories: 12 interpretable

features, and 768 dimension of Sentence-BERT vector

representation. Table 2 contains the essay features we used to train

the scoring model.

Table 2 Essay Features

Type Description

Interpretable

essay features

(12 features)

Answer Length (Character counts)

Word count

Average word length

Count of "good" POS n-grams

Number of overlapping tokens with the prompt

Number of overlapping tokens (including

synonyms) with the prompt

Number of punctuations

Spelling errors

Unique words count

Prompt – answer similarity score (SBERT

representation)

Prompt – answer similarity score (BOW

representation)

Language Errors

Sentence-

BERT

features

(768 dim)

The encoding of the essay using Sentence-BERT

pretrained model

3.2.1 Interpretable Essay Features
Six out of the twelve interpretable essay features are extracted from

EASE (Enhanced AI Scoring Engine) library2, written by one of the

winners in ASAP Kaggle competition. This features set have been

proven to be robust [9]. EASE generates 414-length features.

However, we exclude most of the features generated by EASE

library that are mostly Bag-of-Words vectors. The other six features

extracted from the text are the number of punctuations, the number

of spelling errors, unique words count, similarity scores between

2 https://github.com/edx/ease

476 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

answer and prompt using S-BERT and BOW (Bag-of-Words)

vector representations, and the number of language errors.

The grammar feature is measured by the number of good n-grams

in the essay. EASE library extracts the essay text into its POS-tags

and compares them with a list of valid POS-tag combinations in

English. Good POS n-grams are defined as the ones that separate

high- from low-scoring essays, determined using the Fisher test

[10]. Moreover, we count the number of language errors in an

answer using Language Tool Python library3. Mechanics in a

language include aspects such as the usage of punctuation and the

number of spelling errors found in the answer.

The average word length and long words count are used by Mahana

et al. to estimate language fluency and dexterity [11]. Larkey also

used the number of long words to indicate the complexity of term

usage [12]. Unique words count feature is useful to estimate the

richness of vocabulary in the answer.

The relevance factor of an answer combines two features from

EASE library, which are related to the degree of tokens overlap

between the prompt and the answer, including their synonyms. Two

additional features are the cosine similarity measurement between

the answer and the prompt, both using the Sentence-BERT and the

BOW representation.

3.2.2 Sentence-BERT representation
Sentence-BERT, introduced by Reimers and Gurevych (2019), is a

modification of pretrained BERT network using Siamese and triplet

network [13]. It converts a text into a 768-dimension feature vectors

and produces semantically meaningful sentence embedding. The

embedding result can then be compared using cosine-similarity.

3.3 MODEL TRAINING
We train the regression models using Gradient Boosting

algorithms, with 80% training data and 20% testing data (using 5-

fold cross-validation). We use Quadratic Weighted Kappa (QWK)

[14] score as the evaluation metric, which measures the agreement

between system predicted scores and human-annotated scores.

QWK is the standard evaluation metric to measure the performance

of an AES system [1]. Although ASAP dataset has 8 prompts, we

trained 9 models in total. The reason is that prompt 2 was scored in

two different domains (Writing Application and Language

Conventions). Therefore, we must create two separate predictions

for this essay prompt. To train all nine models, we used different

hyperparameters for each model.

4. RESULTS

4.1 Model Performance Evaluation
In this subsection, we evaluated the model performance based on

the quantitative evaluation criteria as discussed in Section 2.

Furthermore, we also analyzed the distribution of overall holistic

scores assigned by human raters and computer.

4.1.1 Score Agreement Evaluation
We conducted the quantitative evaluation of our models based on

the acceptance criteria by Williamson et al. in [1], and the results

are shown in Table 3. The table describes the performance

measurements for the scoring model of each prompt. The first

column is the QWK score, which measures the human-computer

agreement. The human-human agreement score in the second

3 https://github.com/jxmorris12/language_tool_python

column is used to calculate the degradation value. The last column

contains the standardized mean score difference between human

and automated scores.

Table 3 Model Performance Evaluation for ASAP Dataset

Dataset
QWK

Score

Human

Agreement
Degradation 𝑍

1 0.7826 0.72095 -0.06165 0.0056

2_dom1 0.6731 0.81413 0.14103 0.0007

2_dom2 0.6715 0.80175 0.13025 0.0394

3 0.6887 0.76923 0.08053 0.0272

4 0.7736 0.85113 0.07753 0.0094

5 0.8065 0.7527 -0.0538 0.0229

6 0.7985 0.77649 -0.02201 0.0102

7 0.7771 0.72148 -0.05562 0.0023

8 0.6668 0.62911 -0.03769
0.0147

Based on the above results, we concluded that five models (prompt

1, 4, 5, 6, and 7) satisfy the quantitative evaluation criteria defined

as a standard in [1]. Next, we continued our analysis and the

reliability and validity tests on only these well-performing models

and ignored the other underperforming models (prompt 2_dom1,

2_dom2, 3, and 8).

4.1.2 Distribution of overall holistic scores
We investigated the distribution of the overall holistic scores

assigned by human raters and the automated scorer. It is important

to understand the distribution of the scores, especially in relation to

the decision of an exam. For this purpose, we presented the decision

into three categories: passing, borderline, and failing. Table 4

shows the rubric score and resolved score range in ASAP dataset,

in which our model passed the quantitative performance evaluation

in the previous subsection. The resolved score is the final score

after combining the rubric scores from two human raters. Each

prompt has a different score resolution. In some prompts, if there

was a difference between scorer 1 and scorer 2, the final score was

always the higher of the two. In another prompt, the final score was

the sum of scores from rater 1 and rater 2 if their scores are adjacent.

If non-adjacent, an expert scorer will determine the final score.

Table 4 ASAP Rubric and Resolved Score Range

Dataset
Rubric

score

Resolved

Score

Borderline

Score

Prompt 1 1 - 6 2 - 12 6-8

Prompt 4 0 - 3 0 - 3 1

Prompt 5 0 - 4 0 - 4 2

Prompt 6 0 - 4 0 - 4 2

Prompt 7 0 - 12 0 - 24 12

To categorize the exam results, we created a borderline score from

the resolved score. It is not necessarily the exact middle score

because some datasets do not have it. We considered scores below

the borderline as failing and scores above the borderline as passing.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 477

Table 5 Frequency Comparison for Passing, Borderline, and Failing (in %)

As can be seen from Table 5, the use of automated scorer will put

the students at an advantage, compared to when the exam only

employs human raters. In all datasets, we have the same overview.

The AES models assigned scores with much higher passing rates

than both human raters. And as far as the failure rates are

concerned, the scores from AES indicate very low failing rates,

compared to human raters. This finding supports the result in [15],

with a different dataset for the experiment.

4.2 Evaluating and Improving the Model
We examined the performance of the model using three scenarios:

gibberish answer, paraphrased answer, and off-topic answer. We

discuss the evaluation results and strategies to improve the system

in the following sections.

4.2.1 Off-topic essay
One way to validate the use of an automated essay scoring system

is by checking its performance against off-topic answers. For this

study, we use ASAP dataset which has eight sub datasets (prompts).

To simulate the experiment, for each model, we used the answers

in the other seven prompts as the off-topic essays. We randomly

sampled 50 essays from each dataset, resulting in a total of 350 off-

topic essays. Using 5-fold cross-validation, we measured the

accuracy of the model in predicting the score of the off-topic

essays, which we assume should get 0 (zero), due to the complete

irrelevance with the corresponding prompt.

Table 6 Accuracy of off-topic detection

Dataset Training Data
Accuracy

(%)

QWK

Score

Prompt 1

(2 – 12)

Original 0% 0.7826

Original + 350 off-topic 55.4% 0.7031

Prompt 4

(0 – 3)

Original 4.3% 0.7736

Original + 350 off-topic 91.4% 0.7697

Prompt 5

(0 - 4)

Original 0.6% 0.8065

Original + 350 off-topic 88% 0.7951

Prompt 6

(0 – 4)

Original 5.80% 0.799

Original + 350 off-topic 97% 0.787

Prompt 7

(0 - 24)

Original 0% 0.7771

Original + 350 off-topic 45.7% 0.7225

We also investigated the change of value of the QWK scores after

retraining the model. The motivation is, we want to avoid that the

retraining process degrades the performance of the original model.

The new model should still perform well in predicting the original

essay set.

Table 6 describes the experiment results of the retraining process,

the improvement in accuracies, and the change in QWK scores. The

models trained with only the original dataset performed with very

low accuracies. The highest result is by prompt 6, with 5.8% of the

off-topic essays are correctly given 0 scores. Prompt 1 and prompt

7 are the worst with no correct prediction at all. It means all off-

topic essays are graded with scores greater than 0.

We can observe the effect of including the off-topic essays in the

training data. The model performance for prompt (4, 5, and 6)

drastically increase. For prompt 6, the accuracy on predicting the

unseen data of the off-topic essays (test set) reached 97%, with only

a slight decrease on the QWK score. There are moderate

improvements for prompt 1 and especially prompt 7. We assume

this is due to a larger score range, which for prompt 7 is 0 – 24. If

we are being less strict about the score 0 (zero) policy for off-topic

essays, for example by categorizing score between 0 – 3 as failed

score, we obtain a much better accuracy, which is 81.7%.

Meanwhile, for prompt 1, the lowest resolved score is 2. However,

we trained the model to give off-topic essays 0 score prediction. If

we create a score range 0 – 2 as failed category, the accuracy

increases to 93%. Because we have many score predictions for the

off-topic answers ranging from 0 to 2 by prompt 1.

Figure 1 SBERT representation for 8 prompts in ASAP

dataset

We conclude that the solution for detecting off-topic essays is

relatively simple. Without using additional features for detecting

off-topic essays, we found out that the SBERT features are very

helpful to be used as features for training a scoring model. Using

PCA and t-SNE, we plotted the SBERT vector representation of the

essays in all eight of ASAP dataset prompts. Figure 1 shows that

using t-SNE, all prompts are almost perfectly separated, although

we can see both dataset 7 and dataset 8 are close to each other in

the middle of the plot. We assume that it is caused by their similar

prompt topics. If we check Table 1 for the description of topics in

ASAP dataset, in prompt 7 the students are asked to write a story

about patience, while prompt 8 discusses about the benefits of

laughter. Both topics are arguably more closely related to each

other than when we compare them with the topics of prompt 1 –

prompt 6.

ASAP 1 ASAP 4 ASAP 5 ASAP 6 ASAP 7

HR1 HR2 AES HR1 HR2 AES HR1 HR2 AES HR1 HR2 AES HR1 HR2 AES

Passing 35.2 35.5 50.1 39.6 40 45.2 37.8 39.2 45.9 59.4 59.1 65 74 72.8 82

Borderline 62.7 62.5 48.8 42.7 41.9 42.3 38.5 36 38.7 25.7 25.9 25.6 8.9 9.8 4.9

Failing 2.1 2 1.1 17.7 18.1 12.5 23.7 24.8 15.4 14.9 15 9.4 17.1 17.4 13.1

Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

478 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

4.2.2 Gibberish
For the next input scenario, we want to avoid that the system

receives invalid answers such as gibberish, and undeservedly

returns scores other than zero. Ideally, any gibberish answer must

get the score zero. However, using our model, we tested several

gibberish as the answers, and the scores are not zero. We provide

some examples of the inputs as shown in Table 7. In this table, we

show the examples of wrong predictions by the scoring model that

was trained using ASAP dataset prompt 6. Nevertheless, we can

also observe similar problems in the other models.

Table 7 Examples of Wrong Predictions by Prompt 6

Answer Score (0-4)

asdafafdf adjhgladghad 1

Eyoqtuwrpituauoyeqo

ngbambgagadhkq3124 31794613

hbfka df

1

orkesbroh 1

To analyze the reason, we conducted local model interpretation,

which means that we are interested in understanding which

variable, or combination of variables, determines the specific

prediction. We use SHAP (SHapley Additive exPlanations) values

to help in determining the most predictive variables in a single

prediction [16]. In AES, the system output is a real number. Each

variable contribution will either increase or decrease the output

value. One implementation of SHAP libraries is TreeExplainer, a

faster library for obtaining SHAP values for tree ensemble methods

[17].

Figure 2 Local interpretation for a single prediction

From Figure 2, it seems that some of the most important

interpretable features (number of unique words, answer length, and

prompt overlap) have the correct effects to the prediction, they play

a role in decreasing the score. However, there is one feature from

the SBERT vector representation that helps the score of gibberish

answers to increase, i.e. sbert_356. Most of the wrong gibberish

predictions have a similar explanation to the one shown in Figure

2. SBERT vector is not interpretable, therefore we cannot explain

and analyze the reason of this peculiar model behavior. We propose

two solutions to this problem as follows:

1. Retrain model using gibberish data, with label score zero.

We created 200 gibberish essays and transformed them into a 780-

dimension vector representation of text, and then include them in

the training and testing data. Table 8 shows the performance

comparison of three model training scenarios. We can observe a

large improvement on the accuracy of the model to detect gibberish

answers, and to punish them with the scores zero. For example, by

prompt 1, the accuracy increases from 0% to 92.8% by adding only

100 gibberish data to the model training. By adding 100 more data,

the accuracy only improves by a little less than 2%. After changing

the training data by adding gibberish for the training process, we

want to make sure that the main performance metrics (QWK score)

on the original data is not being sacrificed. The results show that in

4 https://spinbot.com/

all prompts, the addition of gibberish data to the training phase did

not harm the performance of the models. The QWK scores

decreased by a very small margin, and they still have the human-

computer agreement score above the required threshold. Even in

prompt 7, the final QWK score increased with the addition of

gibberish to the training set.

Table 8 Accuracy of Gibberish Detection

Dataset Training Data
Accuracy

(%)

QWK

Score

Prompt 1

Original 0 0.7826

Original + 100 gibberish 92.8 0.7768

Original + 200 gibberish 94.4 0.7683

Prompt 4

Original 18.6 0.7736

Original + 100 gibberish 97.8 0.779

Original + 200 gibberish 98.6 0.7749

Prompt 5

Original 3.5 0.8065

Original + 100 gibberish 98 0.7986

Original + 200 gibberish 98.6 0.8049

Prompt 6

Original 18.2 0.799

Original + 100 gibberish 96 0.794

Original + 200 gibberish 97.9 0.782

Prompt 7

Original 0 0.7771

Original + 100 gibberish 68 0.7798

Original + 200 gibberish 73.4 0.781

2. Use rule-based mechanism.

This is arguably a simpler solution, without the need to involve any

additional model retraining process and could be a more

generalizable solution. The system is configured to automatically

give score zero for possible gibberish answer, this can be done

automatically for example with a valid English word detection

library. If none of the token in the answer is valid English

vocabulary, we can consider the answer as gibberish. The main

drawback is possibly the added processing time for the program to

validate each word in the answer, depending on how large the

vocabulary is.

4.2.3 Paraphrased Answer
To further evaluate the performance of the system, we investigated

the reliability of the system by testing whether the model

consistently gives the same score for the same answer. For this

experiment, we generated paraphrased answers of all answers in the

dataset. And we examine whether the model would predict the same

score for each paraphrased answer. We utilized an online

paraphrasing tool4 to generate the paraphrased version of the

answer.

We use Quadratic Weighted Kappa (QWK) to compute the

agreement between the original test set prediction and the

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 479

paraphrased test set prediction. Based on the scores in Table 9, it is

evident that the agreements for all datasets are high. Therefore, we

conclude that the models perform consistently in predicting the

scores of paraphrased answers.

Table 9 Agreement of Prediction between Original and

Paraphrased Answers

Dataset QWK

Prompt 1 0.8109

Prompt 4 0.8674

Prompt 5 0.8645

Prompt 6 0.846

Prompt 7 0.9411

The highest agreement score is achieved by the model of prompt 7,

which shows a near perfect agreement with QWK score of 0.9411.

Although not as high as the result of prompt 7, the QWK scores in

prompt 1, 4, 5, and 6 are considered as very high agreement.

5. CONCLUSION
The purpose of this research is to highlight the limitations of the

current performance measurement standard for automated essay

scoring. A quantitatively well-performing model with high human

– automated score agreement rate, is not necessarily ready for

deployment in the real-world usage. We demonstrated that such

models still possess some performance concerns against varying

input scenarios. We showed empirical evidence that those models

have some difficulties, proven by very low accuracies, in detecting

off-topic essays and gibberish. We also proposed and proved

several strategies that can successfully improve the performance of

the system. In another scenario, for consistency testing, the models

already performed quite well for predicting paraphrased answers,

judged from high agreement results with the predictions on the

original answer. While we are aware that there remain more validity

questions to be studied, this research can serve as additional

techniques towards a better holistic evaluation framework for AES.

6. References

[1] D. M. Williamson, X. Xi and F. J. Breyer, "A Framework for

Evaluation and Use of Automated Scoring," Educational

Measurement: Issues and Practice, vol. 31, pp. 2-13, 2012.

[2] R. E. Bennett and I. I. Bejar, "Validity and automad scoring:

It's not only the scoring," Educational Measurement: Issues

and Practice, vol. 17, p. 9–17, 1998.

[3] Y. Attali and J. Burstein, "Automated essay scoring with e-

rater® V. 2," The Journal of Technology, Learning and

Assessment, vol. 4, 2006.

[4] B. E. Clauser, M. T. Kane and D. B. Swanson, "Validity

Issues for Performance-Based Tests Scored With Computer-

Automated Scoring Systems," Applied Measurement in

Education, vol. 15, pp. 413-432, 2002.

[5] M. K. Enright and T. Quinlan, "Complementing human

judgment of essays written by English language learners with

e-rater® scoring," Language Testing, vol. 27, pp. 317-334,

2010.

[6] C.-F. E. Chen and W.-Y. E. C. Cheng, "Beyond the design of

automated writing evaluation: Pedagogical practices and

perceived learning effectiveness in EFL writing classes,"

Language Learning & Technology, vol. 12, p. 94–112, 2008.

[7] D. E. Powers, J. C. Burstein, M. Chodorow, M. E. Fowles

and K. Kukich, "Stumping E-Rater: Challenging the validity

of automated essay scoring," ETS Research Report Series,

vol. 2001, p. i–44, 2001.

[8] J. Liu, Y. Xu and Y. Zhu, "Automated essay scoring based

on two-stage learning," arXiv preprint arXiv:1901.07744,

2019.

[9] P. Phandi, K. M. A. Chai and H. T. Ng, "Flexible domain

adaptation for automated essay scoring using correlated

linear regression," in Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing, 2015.

[10] R. A. Fisher, "On the interpretation of χ 2 from contingency

tables, and the calculation of P," Journal of the Royal

Statistical Society, vol. 85, pp. 87-94, 1922.

[11] M. Mahana, M. Johns and A. Apte, "Automated essay

grading using machine learning," Mach. Learn. Session,

Stanford University, 2012.

[12] L. S. Larkey, "Automatic essay grading using text

categorization techniques," in Proceedings of the 21st annual

international ACM SIGIR conference on Research and

development in information retrieval, 1998.

[13] N. Reimers and I. Gurevych, "Sentence-bert: Sentence

embeddings using siamese bert-networks," arXiv preprint

arXiv:1908.10084, 2019.

[14] J. Cohen, "Weighted kappa: nominal scale agreement

provision for scaled disagreement or partial credit.,"

Psychological bulletin, vol. 70, p. 213, 1968.

[15] J. Wang and M. S. Brown, "Automated essay scoring versus

human scoring: A comparative study.," Journal of

Technology, Learning, and Assessment, vol. 6, p. n2, 2007.

[16] S. M. Lundberg and S.-I. Lee, "A Unified Approach to

Interpreting Model Predictions," in Advances in Neural

Information Processing Systems 30, I. Guyon, U. V.

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan

and R. Garnett, Eds., Curran Associates, Inc., 2017, p. 4765–

4774.

[17] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M.

Prutkin, B. Nair, R. Katz, J. Himmelfarb, N. Bansal and S.-I.

Lee, "From local explanations to global understanding with

explainable AI for trees," Nature Machine Intelligence, vol.

2, pp. 2522-5839, 2020.

480 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Predicting Student Performance Using Teacher
Observation Reports

Menna Fateen
Kyushu University

menna.fateen@m.ait.kyushu-u.ac.jp

Tsunenori Mine
Kyushu University

mine@ait.kyushu-u.ac.jp

ABSTRACT
Studying for entrance examinations can be a distressing pe-
riod for numerous students. Consequently, many students
decide to attend cram schools to assist them in preparing
for these exams. For such schools and for all educational
institutes, it is necessary to obtain the best tools to provide
the highest quality of learning and guidance. Performance
prediction is one tool that can serve as a resource for insights
that are valuable to all educational stakeholders. With ac-
curate predictions of their grades, students can be further
guided and fostered in order to achieve their optimal learning
goals. In this regard, we target middle school students to be
able to guide them on their educational journey as early as
possible. We propose a method to predict the students’ per-
formance in entrance examinations using the comments that
cram school teachers made throughout the lessons. Teachers
in cram schools observe their student’s behavior closely and
give reports on the efforts taken in their subject material.
We show that the teachers’ comments are qualified to con-
struct a tool that is capable of predicting students’ grades
efficiently. This is a new method because previous studies
focus on predicting grades mainly using student data such
as their reflection comments or earlier scores. Experimen-
tal results show that using readily available feedback from
teachers can remarkably contribute to the accuracy of stu-
dent performance prediction.

Keywords
text mining, student grade prediction, teacher observation
reports, machine learning

1. INTRODUCTION
”If you could reinvent higher education for the twenty-first
century, what would it look like?”. A question like this one
invites many observations about the advantages and issues
that the current state of higher education has in the world.
As a matter of fact, this question has been addressed specif-
ically by the founders of the Minerva Schools at KGI [1]
in the United States. At such innovative universities and

schools, active learning and student engagement with the
material are highly encouraged [2, 3, 4, 5, 6]. Additionally,
the student/teacher ratio is expected to be lower than in
traditional schools for higher teacher effectiveness [7]. Stu-
dents are assessed and observed closely by their teachers
and they can receive written feedback from their teachers
daily. These reports clarify any confusion, reinforce strong
points and give more specific advice and guidance [8, 9].
Besides, since teachers frequently engage with students, re-
search has proven that these teachers, especially those with
professional development, can accurately judge and forecast
their students’ computational skills [10].

In this paper, we propose a novel method for predicting stu-
dents’ performance or final grades. We show that we can
use reports carefully written by teachers that closely observe
the students, to construct a grade prediction model. If these
predictions can be made accurately, it would be an invalu-
able resource to help the teachers better regulate their stu-
dents’ learning. Future performance prediction is considered
a powerful means that can provide all educational stakehold-
ers with insights that are beneficial to them. Many grade
prediction models have been proposed by researchers in the
last decade [11, 12, 13], but no model has used teacher re-
ports as far as we know. The teacher reports we use are
provided by a cram school in Japan. Cram schools are
specialized in providing extra and more attentive education
for students who want to achieve certain goals, particularly
studying for high school or university entrance exams [14].
To capture the meanings of the teacher reports, we obtain
vector representations by applying the term-frequency in-
verse document-frequency (TF-IDF) method and extracting
BERT embeddings. Our model uses these vectorized reports
as the explanatory variables for a Gradient Boosting regres-
sor. The regressor then predicts the students’ scores. Our
experiment results show that when adding teachers’ reports
to the regular student exam scores, we can predict their let-
ter grade with an accuracy up to 62%. To sum up, our
contributions can be outlined as follows:

• We propose a new performance prediction method us-
ing teacher observation reports represented using TF-
IDF and BERT.
• We conducted 2 main different models of prediction

and compared the experiment results to show that us-
ing teacher reports has the potential to contribute to
an increase in accuracy of grade prediction models.

All in all, to the best of our knowledge, this is the first
study to use NLP to mine teacher observation comments

Menna Fateen and Tsunenori Mine “Predicting Student Performance
Using Teacher Observation Reports”. 2021. In: Proceedings
of The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 481-486.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 481

to predict student grades. Our research and experimental
results demonstrate the potential that these unstructured
teacher observation comments have in predicting students’
total scores and final letter grades.

2. RELATED WORK
The utilization of data mining and machine learning or deep
learning tools to construct predictive models are increas-
ingly being adopted in many different fields [15, 16]. Need-
less to say, the educational field has not been an exception.
Topics in educational data mining vary widely from course
recommendation systems [17] to automatic assessment [18].
More specifically, an extensive amount of studies have been
dedicated to prediction modeling whether it be predicting
student grades or performance such as next-term grade pre-
diction [19] or student dropout. These prediction models
are essential since they underlie applications to important
educational AI-based decision-making systems [20]. With
accurate predictions, the performance of students can be
monitored using these systems, and students that have dif-
ficulties in their studies can easily be detected and given
further guidance early on.

Over the past years, several methods have been developed
to predict student’s performance using Natural Language
Processing (NLP) techniques. It has been proven that min-
ing unstructured text using NLP has the capacity to con-
tribute to accurately predicting students’ success over the
information obtained from usual fixed-response items [21].
Luo et. al [13] proposed a method to predict student grades
based on their free-style reflection comments collected after
each lesson. The comments were collected according to the
PCN method [22] that categorizes the students’ comments.
To represent the students’ reflection comments, Word2Vec
embeddings were adopted followed by an artificial neural
network. Their experiments show a correct rate of 80%.
Teacher or advisor notes have been used by Jayaraman, not
to predict student grades, but to detect students that are
at risk of dropping out of college [23]. In their study, they
use sentiment analysis to extract the positive and negative
sentiment from the advisors’ notes and use those as features
to train a model. The model achieves 73% accuracy at iden-
tifying at-risk students.

3. DATA DESCRIPTION
The dataset obtained and used for our model was provided
by a cram school in Fukuoka, Japan. To ensure confiden-
tiality, no student names or other identifying data were pre-
sented. Reports were obtained monthly and sent as CSV
files. Since our model is focused on predicting the perfor-
mance of students in their entrance examinations, we fo-
cused on those students in their final year of middle school.
The final dataset after preprocessing composed of 11,960 re-
ports over the period from May to October for 159 students.

3.1 Monthly Reports
In addition to the student ID and the class date, each report
also consisted of the subject code, the teacher’s comments,
understanding, attitude and homework scores. More data
in the reports were also provided but were unstructured and
considered redundant for the prediction model. The fea-
tures that were extracted from the reports and used in the

Table 1: Number of Reports in Each Subject
Japanese Math Science Social English

Number of Reports
1157

(9.7%)
3547

(29.6%)
2428

(20.3%)
1669

(14%)
3159

(26.4%)

study are discussed in more detail in Section 4.1. However
our main explanatory variable used in the study is the teach-
ers’ observation comments written in Japanese. The average
length of these comments is 96 characters. In addition, by
analyzing comments, it was observed that teachers tend to
encourage and energize their students by using words such
as ”better” and ”work on”. Moreover, the words used in the
comments depend on the context or class subject to some
degree. For example, the expression ”calculation problem”
is likely to be used in math lessons.

In the cram school, students take different lessons for each
subject. These lessons fall under the 5 main subjects: Japanese,
Mathematics, Science, Social Studies and English. Since the
main objective of our model is to predict a student’s total
score, reports in all 5 subjects are required. Therefore, test-
ing the model was only possible for those students who at-
tended classes for all subjects. The number of reports that
fall under each subject are shown in Table 1. The values in
the table show that the most taken lessons and therefore the
most reports provided were in the subject of Mathematics
followed directly by English. The number of total reports
for each student varied depending on the classes attended.
The average number of total reports recorded for each stu-
dent was 82 reports with a maximum of 206 and a minimum
of 24 reports.

3.2 Test Scores
Students attending the cram school were naturally regis-
tered in many different schools. The results of their regu-
larly taken examinations at school were recorded and pro-
vided. These scores were what we considered student data
and would be traditionally used as the main feature to pre-
dict their performance in the entrance exam. To teach the
model to perform these predictions, we adopted the super-
vised learning method. In supervised learning, training data
needs to be labeled with the required outputs for each in-
put. This enables the model to train its learning function by
altering it based on the correct result so that the function
can then be applied to new inputs. In our study, we used
the students’ results in their cram school simulation exams
as the labels for the model since their actual performance in
the entrance exam was unattainable.

The simulation scores for the 159 students were recorded for
all subjects and also provided as the total score. To visual-
ize the distribution of the students’ scores, histograms were
plotted as shown in Figure 1. The shape of the graph for
the subject scores distribution and total score distribution is
approximately bell-shaped and seems symmetric about the
mean, so it is assumed that the scores follow the normal
distribution. The standard deviation, σ, for all scores are
displayed in Table 2 to show how dispersed the values are.

4. METHODOLOGY
4.1 Feature Selection

482 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 1: Distribution of Simulation Test Scores

Table 2: Standard deviation of subject scores

Japanese Math Science Social English Total
σ 11.85 16.62 20.33 16.93 18.47 70.01

For our experimental settings, we adopt 3 main feature sets
for the sake of comparison. The first feature set, FS1, con-
sists of using teachers’ report contents as the main explana-
tory variables. A teacher’s report in one lesson evaluating
the student consists of 1-Comments 2- Understanding Score
3- Attitude Score and 4-Homework Score. We use all of these
attributes except for the homework score. This is mainly be-
cause more than 36% of the reports did not include home-
work scores since not all lessons necessarily require home-
work. After each lesson, the teacher writes some comments
based on their observations, assesses the student on their un-
derstanding giving them a score of either (0-30-60-80-100)
and an attitude score of either (1-2-3-4). The second feature
set, FS2, consists of student-related data only, specifically
their gender and the score of their regularly scheduled exam
at school. Since we predict each subject score separately,
the regular score corresponds to the subject score. As for
the students’ gender, the Pearson correlation coefficient be-
tween it and the score is 0.12 while the correlation coefficient
between the regular score and the simulation score is 0.80
which suggests that the important factor in FS2 is essen-
tially the student regular score and not the gender. Finally,
we investigate using both teachers’ reports and the regu-
lar student scores to verify whether adding teachers’ reports
contributes to the accuracy of the prediction model or not.
The third feature set, FS3, is essentially a concatenation of
FS1 and FS2. A sample of FS1 is shown in Table 3.

4.2 Natural Language Processing
There are numerous ways to represent text data for a ma-
chine learning model to convey the original meanings of
the text and prevent information loss. In our experiments,
we chose to represent the teachers’ comments using two
techniques. We used the traditional TFIDF vectorization
method and compared it with BERT embeddings.

4.2.1 TF-IDF
The first essential step in transforming text into a numer-
ical representation is preprocessing the text. This step be-
gins with tokenization or splitting the sentences into words.
Tokenization in languages such as English can be done by
splitting the sentence strings at each space. However, for
Japanese, this step is merged with the next, which is mor-
phological analysis, since there are no spaces in Japanese
sentences. We use the fugashi [24] parser for this step, which
is essentially a wrapper for Mecab1, a Japanese tokenizer
and morphological analysis tool. Our parser extracts from
each report the following parts of speech: nouns, verbs, aux-
iliary verbs, adjectives and adverbs. We use the correspond-
ing terms to these extracted parts of speech to build a bag-
of-words vector with weights given by the TF-IDF method
implemented by sklearn [25]. Since the teachers’ comments
are given in Japanese, we provide the mentioned parser to
the tokenizer parameter. We also give a list of predefined
Japanese stop words to the vectorizer.

4.2.2 BERT
BERT or Bidirectional Encoder Representations from Trans-
formers is a new method of pre-training language represen-
tations presented by Google [26]. BERT obtains state-of-
the-art results on many NLP tasks. It is a Transformer
Encoder stack that pre-trains language representations. A
pre-trained BERT model is basically a general purpose lan-
guage understanding model trained on a large corpus which
can then be used for downstream tasks. The BERT model
we used for the comments was pretrained by Inui Labora-
tory, Tohoku University2. The corpus they used for pretrain-
ing was Japanese Wikipedia and the model was trained with
the same configuration as the original BERT. In the experi-
ments shown in this paper, we used the BERT [CLS] token
embeddings as our BERT embeddings.

4.3 Evaluation Metrics
To evaluate our experiments, we use the Mean Absolute Er-
ror (MAE) metric. The MAE is calculated using the follow-
ing formula :

MAE =
1

n

n∑
i=1

|scorepred,i − scoretrue,i| (1)

where scoretrue,i is the actual score that student i obtained.
The predicted score (scorepred,i) is calculated differently for
subject scores and total score. For a specific subject s ∈
S, where S = {Japanese, Math, Science, Social Studies, En-
glish}, a student i can attend a variable number t of lessons.
Therefore, to predict the subject score (SubjectScorepred,i,s)
of student i we use each of their reports as independent in-
puts to the model and obtain an ordered list Xi,s,t of pre-

1https://taku910.github.io/mecab/#parse
2https://github.com/cl-tohoku/bert-japanese

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 483

https://taku910.github.io/mecab/#parse
https://github.com/cl-tohoku/bert-japanese

Table 3: A sample of FS1: teachers’ reports (comments originally in Japanese)

Understanding Attitude Comments

80 4
We are trying applied problems of resolution into factors.
You look like making many mistakes carelessly, but know formulas very well.

80 4
We are trying applied problems of resolution into factors.
You look like making many mistakes carelessly, but know formulas very well.

100 4
He took notes while watching the commentary and focused on the problem.
If you keep going at this rate, you will be able to meet the target, the 5th time. So, let’s do
our best!

dicted scores for studenti. The estimated score for the sub-
ject is then decided using:

SubjectScorepred,i,s = Med(Xi,s,t)

=

{
Xi[

t
2
], if t is even

1
2
(Xi[

t−1
2

] +Xi[
t+1
2

]), if t is odd

(2)

To measure the central tendency, we used the median rather
than the mean as it is robust to skewness and outliers. Nev-
ertheless, if the estimations follow a normal distribution,
the median would be close to the mean. The total predicted
score (TotalScorepred,i) can then be estimated by:

TotalScorepred,i =
∑
s∈S

SubjectScorepred,i,s (3)

Finally, since students receive letter grades for their total
score, we map the estimated total score to its closest cor-
responding letter grade according to the percentages shown
in Table 4 [27]. We then compute the percentage of grades
that are x ticks away from their actual grades. A tick, as
specified by [28], is defined as the difference between two
successive letter grades. We name this metric percentage by
tick accuracy or PTA. PTA0 stands for the Percentage by 0
Tick Accuracy which means the model successfully predicted
the letter grade with no error while PTA1 is the percentage
of incorrectly predicted grades but are 1 tick away from the
true letter grade (e.g. A vs B). A similar metric was used in
previous studies regarding grade prediction models [11, 28].

Table 4: Letter grades and their corresponding percentages
Grade S A B C D F
% 90-100 80-89 70-79 60-69 50-59 0-49

5. EXPERIMENTS
5.1 Model Overview
In our experiments, we adopt gradient boosting, a composite
machine learning algorithm. We employed its sklearn im-
plementation, GradientBoostingRegressor [25] to predict
the continuous value of the students’ scores in each subject.
Since there is no prior research on the effect of using teacher
observation reports in predicting students’ grades, we use
the following method as the baseline in our experiment. At
first, subject codes were unavailable for each teacher obser-
vation record. Therefore, we constructed a model that used
all of each student’s reports, regardless of the subject, to
directly predict and estimate the total score according to

Equation 2. We call this model, the ’Direct’ model. Subject
codes then became accessible and we were able to map each
report to its corresponding subject. Leveraging that, we cre-
ated a separate regression model for each subject’s reports
and estimated the total score as shown in Equation 3. This
model is called the ’Subjects’ model.

5.2 Experimental Results
All experiments in the study were evaluated using group 10-
fold cross-validation. The advantage of group k-fold cross
validation method is that all data are used for both training
and testing, and each instance is used for testing once. This
is especially useful in situations where data is limited. Since
the dataset comprises reports for 159 students, we used 143
students’ reports for each fold as the training set and 16 as
the testing set. The number of reports or instances for each
subject model, therefore, varied depending on how many
lessons each student had attended. The average MAE, which
is calculated as in Equation 1, of all ten folds was computed
and used as the main evaluation metric. We ran the baseline
Direct model with the 3 feature sets described in Section 4.1.
Teachers’ comments were represented using BERT embed-
dings. The performance results are shown Using all 3 feature
sets, the Subjects model consistently outperforms the Direct
baseline model. Specifically, predicting the total score using
the Subjects model with FS3, which uses both teachers’ re-
ports and student data, resulted in a decrease in MAE of
5.62. Using teachers’ reports alone (FS1) resulted in a com-
paratively higher MAE in both models. However, adding
teachers’ reports to student data (FS3) showed a smaller
value in MAE than using student data only (FS2) which
suggests that teachers’ reports as features can contribute to
the accuracy of the grade prediction model.

Table 6 shows the MAE, PTA0 and PTA1 of each subject’s
score prediction model. We ran the subject model with all 3
feature sets. For FS1 and FS3, we compared the performance
of the two text representations, TF-IDF vectors and BERT
embeddings. Values in bold indicate the leading scores for
each metric in all subjects. In terms of MAE, using FS3

consistently outperforms the other feature sets. It can also
be seen that BERT embeddings tend to have better overall

Table 5: Average MAE of total score prediction with Direct
model vs Subject model using the 3 feature sets: FS2: student
data, FS1: teacher reports, FS3: FS1 + FS2

FS2 FS1 FS3

Direct 42.73 53.81 38.91
Subjects 36.83 52.02 33.29

484 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 6: Evaluation metric scores in all subjects using the 3 feature sets and comparing between using TFIDF for text repre-
sentation vs using BERT embeddings. Values in bold indicate the best metric value in a specific subject.

Japanese Math Science Social Studies English Total
MAE PTA0 PTA1 MAE PTA0 PTA1 MAE PTA0 PTA1 MAE PTA0 PTA1 MAE PTA0 PTA1 MAE PTA0 PTA1

FS2 10.32 0.37 0.20 10.96 0.53 0.12 15.02 0.49 0.12 13.43 0.51 0.087 12.48 0.58 0.12 36.83 0.58 0.15

TFIDF
FS1 9.79 0.36 0.22 12.53 0.47 0.10 17.25 0.37 0.09 13.57 0.60 0.01 14.93 0.52 0.00 54.81 0.47 0.07
FS3 9.16 0.38 0.20 10.37 0.50 0.16 14.07 0.44 0.16 12.08 0.56 0.086 12.10 0.58 0.13 35.19 0.621 0.14

BERT
FS1 9.47 0.27 0.23 12.36 0.45 0.07 16.66 0.40 0.11 13.92 0.55 0.02 14.51 0.52 0.02 52.02 0.49 0.07
FS3 9.32 0.37 0.22 10.12 0.52 0.18 13.31 0.43 0.18 12.00 0.53 0.095 10.99 0.62 0.11 33.29 0.622 0.17

Figure 2: Average MAE of subject scores across all FS

performance than the TF-IDF vectors. Moreover, running
the Subjects model with FS1 using BERT resulted in lower
MAE than when using TF-IDF. Finally, when predicting the
total score, using FS3 with BERT held the top scores across
all evaluation metrics.

Figure 2 depicts the performance of each subject seperately
in terms of MAE across the three feature sets. It can be ob-
served that FS3 continuously achieves lower MAE than FS2

and FS1. In addition, as shown in Figure 3, FS3 also con-
sistently achieves higher overall PTA. When predicting the
total score, FS3 shows an increase of 6.2% in PTA0 + PTA1.
These results provide evidence and suggest that teachers’
reports can in fact add value and contribute to grade pre-
diction models.

6. DISCUSSION
The results presented in the previous section can be sum-
marized into the following main points.
• The highest performance of the grade prediction model

can be achieved by using a concatentation of the two
feature sets, FS1 and FS2.
• When predicting the total score with teachers’ reports,

using BERT embeddings outperforms TF-IDF.
The success of BERT can be attributed to the fact that
the BERT model has been pretrained on huge corpora of
Japanese text data. TFIDF vectors, on the other hand, only
use the data on hand to produce the representations. How-
ever, an important advantage of TFIDF is that the numer-
ical vector representations are computed much faster than
extracting BERT embeddings. To further increase the ac-

Figure 3: A comparison of PTA metric evaluated when using
FS2 and FS3 across all subject scores and total score

curacy of the prediction model considering FS3 and FS1, we
aim to pre-train BERT on each of the 5 subject reports. It
has been proven that pretraining BERT on specific domains
can lead to a significant increase in performance [29].

7. CONCLUSION
At educational institutes where students are closely observed
by their teachers, large amounts of unstructured data exist
in the form of reports and comments. In this paper, we at-
tempted to employ and take advantage of these comments
to help identify students that may need extra guidance or
attention. Our model used teacher observation comments
to predict students’ total scores. We applied both TF-IDF
and BERT embeddings to the observation comments and
used the vectors as inputs to a gradient boosting regres-
sor. Three main feature sets were employed in our model,
teacher-related features, student-related features, and a con-
catenation of both. The performance of our model on each
set was then demonstrated. Our experimental results showed
that the readily available teachers’ reports have the potential
to create a grade prediction model. Using teachers’ reports
can increase the accuracy of a grade prediction model that
uses only students’ previous exam scores by 6.2%. However,
there remains room for improvement in our experiments. We
believe that with more teachers’ comments, the accuracy of
our model could increase. We also plan to enhance the text
representations by pretraining BERT on the teachers’ com-
ments in advance. Additionally, we intend to experiment
with another model architecture that would focus on clas-
sifying the students’ performance first. We hope that with

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 485

such well-defined grade prediction models, we can help guide
young students and provide a more focused and personalized
education to them.

8. ACKNOWLEDGMENTS
This work was supported in part by e-sia corporation and
JSPS KAKENHI Grant Numbers: JP21H00907, JP20H01728,
JP20H04300, JP19KK0257, and JP18K18656.

9. REFERENCES
[1] R. Kerrey, Building the intentional university:

Minerva and the future of higher education. MIT
Press, 2018.

[2] T. J. Perry and C. Robichaud, “Teaching ethics using
simulations: Active learning exercises in political
theory,” Journal of Political Science Education,
vol. 16, no. 2, pp. 225–242, 2020.

[3] M. Hernández-de Menéndez, A. V. Guevara, J. C. T.
Mart́ınez, D. H. Alcántara, and R. Morales-Menendez,
“Active learning in engineering education. a review of
fundamentals, best practices and experiences,”
International Journal on Interactive Design and
Manufacturing (IJIDeM), vol. 13, no. 3, pp. 909–922,
2019.

[4] A. Phillipson, A. Riel, and A. B. Leger, “Between
knowing and learning: New instructors’ experiences in
active learning classrooms.,” Canadian Journal for the
Scholarship of Teaching and Learning, vol. 9, no. 1,
p. n1, 2018.

[5] J. C. Shin, “University teaching: Redesigning the
university as an institution of teaching,” 2014.

[6] J. Pirker, M. Riffnaller-Schiefer, and C. Gütl,
“Motivational active learning: engaging university
students in computer science education,” in
Proceedings of the 2014 conference on Innovation &
technology in computer science education, pp. 297–302,
2014.

[7] N. Koc and B. Celik, “The impact of number of
students per teacher on student achievement,”
Procedia-Social and Behavioral Sciences, vol. 177,
pp. 65–70, 2015.

[8] G. Eyers and M. Hill, “Improving student learning?
research evidence about teacher feedback for
improvement in new zealand schools,” Waikato
Journal of Education, vol. 10, 2004.

[9] Y. Han and Y. Xu, “The development of student
feedback literacy: the influences of teacher feedback
on peer feedback,” Assessment & Evaluation in Higher
Education, vol. 45, no. 5, pp. 680–696, 2020.

[10] K. W. Thiede, J. L. Brendefur, R. D. Osguthorpe,
M. B. Carney, A. Bremner, S. Strother, S. Oswalt,
J. L. Snow, J. Sutton, and D. Jesse, “Can teachers
accurately predict student performance?,” Teaching
and Teacher Education, vol. 49, pp. 36–44, 2015.

[11] Z. Ren, X. Ning, A. S. Lan, and H. Rangwala, “Grade
prediction based on cumulative knowledge and
co-taken courses.,” International Educational Data
Mining Society, 2019.

[12] Y. Zhao, Q. Xu, M. Chen, and G. M. Weiss,
“Predicting student performance in a master of data
science program using admissions data.,” International
Educational Data Mining Society, 2020.

[13] J. Luo, S. E. Sorour, K. Goda, and T. Mine,
“Predicting student grade based on free-style
comments using word2vec and ann by considering
prediction results obtained in consecutive lessons.,”
International Educational Data Mining Society, 2015.

[14] R. J. Lowe, “Cram schools in Japan: The need for
research,” The Language Teacher, vol. 39, no. 1,
pp. 26–31, 2015.

[15] M. Chen, Y. Hao, K. Hwang, L. Wang, and L. Wang,
“Disease prediction by machine learning over big data
from healthcare communities,” Ieee Access, vol. 5,
pp. 8869–8879, 2017.

[16] M. A. Rushdi, A. A. Rushdi, T. N. Dief, A. M.
Halawa, S. Yoshida, and R. Schmehl, “Power
prediction of airborne wind energy systems using
multivariate machine learning,” Energies, vol. 13,
no. 9, p. 2367, 2020.

[17] A. Esteban, A. Zafra, and C. Romero, “A hybrid
multi-criteria approach using a genetic algorithm for
recommending courses to university students.,”
International Educational Data Mining Society, 2018.

[18] Z. Wang, A. S. Lan, A. E. Waters, P. Grimaldi, and
R. G. Baraniuk, “A meta-learning augmented
bidirectional transformer model for automatic short
answer grading.,” in EDM, 2019.

[19] S. Morsy and G. Karypis, “Cumulative
knowledge-based regression models for next-term
grade prediction,” in Proceedings of the 2017 SIAM
International Conference on Data Mining,
pp. 552–560, SIAM, 2017.

[20] A. Elbadrawy, A. Polyzou, Z. Ren, M. Sweeney,
G. Karypis, and H. Rangwala, “Predicting student
performance using personalized analytics,” Computer,
vol. 49, no. 4, pp. 61–69, 2016.

[21] C. Robinson, M. Yeomans, J. Reich, C. Hulleman, and
H. Gehlbach, “Forecasting student achievement in
moocs with natural language processing,” in
Proceedings of the sixth international conference on
learning analytics & knowledge, pp. 383–387, 2016.

[22] K. Goda and T. Mine, “Analysis of students’ learning
activities through quantifying time-series comments,”
in International conference on knowledge-based and
intelligent information and engineering systems,
pp. 154–164, Springer, 2011.

[23] J. Jayaraman, “Predicting student dropout by mining
advisor notes,” in Proceedings of The 13th
International Conference on Educational Data Mining
(EDM 2020), pp. 629–632, 2020.

[24] P. McCann, “fugashi, a tool for tokenizing Japanese in
python,” in Proceedings of Second Workshop for NLP
Open Source Software (NLP-OSS), (Online),
pp. 44–51, Association for Computational Linguistics,
Nov. 2020.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research,
vol. 12, pp. 2825–2830, 2011.

[26] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“Bert: Pre-training of deep bidirectional transformers
for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[27] C. Vroman, Japan: a Study of the Educational System
of Japan and Guide to the Academic Placement of
Students from Japan in United States Educational
Institutions: Placement Recommendations by the
Council on Evaluation of Foreign Student Credentials,
Meeting July 29-30, 1965. American Association of
Collegiate Registrars and Admissions Officers, 1966.

[28] A. Polyzou and G. Karypis, “Grade prediction with
models specific to students and courses,” International
Journal of Data Science and Analytics, vol. 2, no. 3,
pp. 159–171, 2016.

[29] S. Gururangan, A. Marasović, S. Swayamdipta, K. Lo,
I. Beltagy, D. Downey, and N. A. Smith, “Don’t stop
pretraining: Adapt language models to domains and
tasks,” arXiv preprint arXiv:2004.10964, 2020.

486 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Recommending Knowledge Concepts on MOOC Platforms
with Meta-path-based Representation Learning

Guangyuan Piao
Department of Computer Science, Hamilton Institute

Maynooth University
Maynooth, Co Kildare, Ireland
guangyuan.piao@mu.ie

ABSTRACT
Massive Open Online Courses (MOOCs) which enable large-
scale open online learning for massive users have been play-
ing an important role in modern education for both students
as well as professionals. To keep users’ interest in MOOCs,
recommender systems have been studied and deployed to
recommend courses or videos that a user might be inter-
ested in. However, recommending courses and videos which
usually cover a wide range of knowledge concepts does not
consider user interests or learning needs regarding some spe-
cific concepts. This paper focuses on the task of recom-
mending knowledge concepts of interest to users, which is
challenging due to the sparsity of user-concept interactions
given a large number of concepts. In this paper, we propose
an approach by modeling information on MOOC platforms
(e.g., teacher, video, course, and school) as a Heterogeneous
Information Network (HIN) to learn user and concept rep-
resentations using Graph Convolutional Networks based on
user-user and concept-concept relationships via meta-paths
in the HIN. We incorporate those learned user and concept
representations into an extended matrix factorization frame-
work to predict the preference of concepts for each user. Our
experiments on a real-world MOOC dataset show that the
proposed approach outperforms several baselines and state-
of-the-art methods for predicting and recommending con-
cepts of interest to users.

Keywords
User Modeling, MOOC, Learning Analytics, Knowledge Con-
cept, Recommender Systems

1. INTRODUCTION
MOOCs (Massive Open Online Courses), which are free on-
line courses available to anyone to enroll around the world,
have gained a lot of popularity in the past decade. By
the end of 2018, popular MOOC platforms such as edX1,

1https://www.edx.org/

and Coursera2 have provided 11,400 courses with 101 mil-
lion users/learners on those platforms3. Previous studies
have shown that MOOCs do have a real impact [24, 8]. For
example, Chen et al. [8] showed that 72% of survey respon-
dents reported career benefits and 61% reported educational
benefits. Despite of the popularity, one main challenge of
MOOCs is the overall completion rate of those courses is
normally lower than 10% [19, 30]. Therefore, understanding
and predicting user behaviors and learning needs are impor-
tant to keep users learning on MOOC platforms.

To this end, previous studies have focused on understanding
dropout or procrastination behavior [28, 12, 38, 14] and rec-
ommending content such as courses and learning paths that
a user might be interested in [16, 26, 4]. A MOOC can be
seen as a sequence of videos where each video is associated
with some knowledge concepts. For example, a video in a
computer science MOOC can cover several concepts such as
“software” and “hardware”. More recently, Gong et al. [13]
argued that course or video recommendations overlook user
interests regarding specific knowledge concepts. For exam-
ple, data mining courses taught by different teachers can be
quite different in a microscopic view, and a user who is in-
terested in some specific concepts such as “association rules”
might be interested in various video clips or learning materi-
als from different teachers covering those concepts from dif-
ferent perspectives. Therefore, understanding a user’s learn-
ing needs from a microscopic view and predicting knowledge
concepts that the user might be interested in are important.

In this work, we focus on predicting and recommending
knowledge concepts that might be interesting to users on
MOOC platforms. Based on the interaction history be-
tween users and concepts (i.e., a user has interacted with
a concept if the user has learned that concept), traditional
recommendation approaches such as collaborative filtering
(CF) — which recommends similar items (concepts) based
on a user’s interaction history or interesting items from sim-
ilar users — can be applied. However, the sparsity of user-
item (user–concept) relationships can limit the performance
of CF-based methods. In addition to users and concepts,
MOOC platform data normally contain other entities such
as courses, videos, and teachers as well as the relationships
among those entities.

To cope with the sparsity problem, we model those enti-

2https://www.coursera.org/
3https://bit.ly/3tScITp

Guangyuan Piao “Recommending Knowledge Concepts on MOOC Plat-
forms with Meta-path-based Representation Learning”. 2021. In: Pro-
ceedings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 487-494.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 487

https://www.edx.org/
https://www.coursera.org/
https://bit.ly/3tScITp

concept

userschool

coverteach

take related tofrom
launch

watch

teacher course

learn

next

video

contain

Figure 1: Different types of entities and relationships be-
tween two entities in MOOCs. A user u is interested in a
concept if u has learned or is going to learn it in the future.

ties and their relationships as a heterogeneous information
network (HIN) [33] consisting of the entities and relation-
ships inspired by [13], which can be used for learning user
(concept) representations/embeddings by exploring indirect
user-user (concept-concept) relationships with Graph Con-
volutional Networks (GCNs). Figure 1 illustrates such a HIN
which we discuss in detail in Section 3. For example, one
can derive a homogeneous user graph based on an indirect
path in the HIN, e.g., a graph with users and edges between
two users if they have taken the same course. Given such
a homogeneous graph, traditional GCNs can be applied to
the graph to learn the representations/embeddings of users
and concepts with respect to the chosen path.

Based on different indirect paths chosen, we can derive var-
ious user (concept) representations, and those representa-
tions of users (concepts) regarding different paths can be
aggregated, e.g., using the mean of those representations.
Instead of the straightforward mean aggregation, we propose
and investigate different attention mechanisms to derive ag-
gregated user (concept) representations based on different
paths. The intuition behind using an attention mechanism
is that different paths might have different importance for
each user. Afterwards, those learned user and concept rep-
resentations can be used for predicting the preference scores
of concepts for recommendations. Our contributions in this
work are as follows: (1) We propose an end-to-end frame-
work4 for predicting and recommending knowledge concepts
of a user’s interest in Section 4; (2) We investigate two at-
tention mechanisms for aggregating information from differ-
ent meta-paths (the definition can be found in Section 3)
to derive user and concept representations. We then incor-
porate those representations into our extended matrix fac-
torization framework for predicting the preference score of
a concept with respect to a user; (3) Finally, we evaluate
our approach with several baselines and state-of-the-art ap-
proaches in terms of well-established evaluation metrics, and
show the effectiveness of our proposed approach in Section 6.

2. RELATED WORK

Recommender Systems and User Modeling on MOOC
Platforms. There has been growing interest in recommender
systems on MOOC platforms since 2013 with respect to dif-
ferent aspects such as course, video, and learning paths [16,

4GitHub repo:https://github.com/parklize/kgc-rec

26, 3, 43, 9, 23]. For instance, the authors in [3] proposed
YouEDU, which is a pipeline for classifying MOOC forum
posts and recommending instructional video clips that might
be helpful for resolving confusion detected in those posts.
In [21], the authors showed that peer recommendations can
improve users’ engagement significantly in the context of a
Project Management MOOC. Dai et al. [9] proposed analyz-
ing course content for recommending personalized learning
paths on MOOC platforms. Khalid et al. [18] provides a
comprehensive survey on recent advances regarding differ-
ent recommender systems in the context of MOOCs. More
recently, researchers have started modeling user interests in
the context of MOOCs while user modeling has been widely
studied in other domains such as social media [42]. For ex-
ample, Li et al. [22] investigated the impact of acquiring
user interests via surveys or questionnaires on course rec-
ommendations. In [2], the authors proposed LeCoRe which
exploits user interest modeling for recommending courses as
well as similar users for promoting peer learning in enterprise
environment. Gong et al. [13] argued that course recommen-
dations overlook user interests regarding specific knowledge
concepts, and studying users’ online learning interests from
a microscopic view and recommending knowledge concepts
can capture user interests better and provide the flexibility
of choosing learning resources of their interest. In this work,
we also focus on the microscopic view for knowledge concept
recommendations.

Recommendation Approaches with HIN. The basic idea
of early recommendation approaches with HIN is to leverage
path-based semantic relatedness between users and items
over HINs, e.g., leveraging meta-path-based similarities for
recommendation [40, 32, 41]. For example, Shi et al. [32]
proposed predicting item ratings based on those from similar
users measured via different meta-paths. With the advances
of graph representation learning, the authors in [31] pro-
posed using pre-trained user and item embeddings based on
meta-path information with random walk, and incorporated
those pre-trained embeddings as features into an extended
matrix factorization framework. The most similar work to
ours is Gong et al. [13], which is one of the first works
for recommending knowledge concepts on MOOC platforms
in a heterogeneous view. The authors showed that their
proposed approach outperforms other CF-based baselines as
well as metapath2vec [11], which uses learned node represen-
tations of a given HIN for knowledge concept recommenda-
tions by measuring the similarities between two nodes. Our
work differs from [13] in several aspects. First, we formu-
late interacted concepts for each user as implicit feedback
while [13] treated the number of clicks as ratings and for-
mulated the problem as rating prediction for recommending
top–k unknown concepts with higher ratings. Secondly, we
investigate different attention mechanisms including the one
incorporating the latent features of users (items) from ma-
trix factorization. Thirdly, the prediction layer (Eq. 6) for
estimating the preference score of a concept is different from
[13] which uses the user (item) representations as features
for the final prediction.

3. PRELIMINARIES
In this work, we consider the task of predicting and recom-
mending concepts that a user might be interested in based

488 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://github.com/parklize/kgc-rec

on their learning history, which includes a set of learned
concepts and their contextual information such as courses,
videos, etc. With n users U = {u1, · · · , un}, and m con-
cepts C = {c1, · · · , cm}, we define an implicit feedback ma-
trix R ∈ Rn×m with each entry ru,c = 1 if u has learned
c and ru,c = 0 otherwise. The task can be framed in the
context of HIN which is denoted as G = {V, E} consisting
of a object set V and a link set E . A HIN is also associated
with an object type mapping function φ : V → O and a link
type mapping function ψ : E → R. O and R denote the sets
of predefined object and link types, where |O|+ |R| > 2 [33].
The MOOC data in our study can be represented as a HIN.
The HIN consists of six types of entities such as user, con-
cept, video, course, school, and teacher. In addition, there
is a set of links describing the relationships among those
entities. On top of the definition of HIN, the concept of
network schema is used to describe the meta structure of a
network [31].

The network schema [35] is denoted as S = (O, R). It is
a meta template for an information network G = {V, E}
with the object type mapping φ : V → O and the link type
mapping ψ : E → R, which is a directed graph defined over
object types O, with edges as links fromR. Fig. 1 shows the
network schema of our MOOC dataset with the six different
entity types and the semantic links between them. Given
the network schema, we can extract semantic meta-paths
between a pair of entities. A meta-path can be formally
defined as follows:

A meta-path [34] MP is defined on a network schema S =

(O, R) and is denoted as a path in the form of O1
R1−−→

O2
R2−−→ · · · Rl−−→ Ol+1, which describes a composite relation

R = R1 ◦R2 ◦ · · · ◦Rl between object O1 and Ol+1, where ◦
denotes the composition operator on relations.

4. PROPOSED APPROACH
In this section, we introduce our proposed approach MOOCIR

(MOOC Interest Recommender) based on meta-paths in the
MOOC HIN. In high level, our approach extends the matrix
factorization (MF) ŷu,c = xT

u zc, where ŷu,c denotes the pre-
dicted preference score of concept c with respect to user u,
and xu and zc refer to latent features of u and c, respec-
tively. We extend the MF with user (concept) represen-
tations/embeddings that are learned by applying GCNs to
meta-path-based graphs. Fig. 2 shows an overview of our
approach, which consists of four main components. In the
following, we describe each component in detail.

Table 1: Meta-paths selected for extracting user-user and
concept-concept relationships.

Type Meta-path

User

user → concept
−1−−→ user

user → course
−1−−→ user

user → video
−1−−→ user

user → course→ teacher
−1−−→ course

−1−−→ user

Concept
concept→ user

−1−−→ concept

concept→ course
−1−−→ concept

MOOC	HIN	shown	in	Fig.	1

Prediction	(Eq.	6)

GCN GCN

Attention

...

...GCN GCN

Attention

...

...

Adjacency	matrices
based	on	selected	
meta-paths

Matrix	Factorization

...... 1

2

3

4

Figure 2: Overview of our proposed approach MOOCIR.

Meta-path selection. As discussed in Section 3, meta-paths
provide the capability to derive entity-entity relationships
through those paths. Similar to previous studies [13, 31],
we consider user-user and concept-concept relationships via
different meta-paths. To fairly compare with [31] in our ex-
periments, we use the same set of meta-paths used in [31]
for our study. Table 1 summarizes six meta-paths used for
our work where four paths for users and two for concepts.
For each meta-path, a homogeneous graph with respect to
users (concepts) can be extracted, which is depicted as its
corresponding adjacency matrix in Fig. 2. As one might
expect, each entry in the adjacency matrix A regarding a
meta-path is equal to one if two users (concepts) can be
connected via that meta-path, and zero otherwise. After-
wards, we can learn user (concepts) representations for each
meta-path using GCNs.

Graph Convolution Networks (GCNs). GCNs learn node
representations of a graph by inspecting neighboring nodes.
In this work, we adopt the following layer-wise propaga-
tion rule to learn user (concept) representations/embeddings
with respect to a meta-path.

h(l+1) = g(PhlWl) (1)

where g(·) is an activation function which we use ReLu [25]

here. P = D−1Ã where D is the diagonal node degree

matrix of A to normalize the matrix Ã, and Ã = A + I is
an adjacency matrix with self-loops in a graph based on a
specific meta-path. Wl refers to a trainable weight matrix at
layer l for all nodes. h0 can be fed with features of each node
if there is a set of features for each node or can be initialized
and learned afterwards as well. The output representation of
the last layer can be used as user (concept) representations.
For example, when l = 2, the representation of a user u
for a meta-path MPi will be eMPi

u = h3
uMPi

where h3
uMPi

is the output of the last layer of GCNs for the meta-path
MPi with respect to u. In our study, we use a single layer
GCN where h0 is initialized randomly and learned during
the training process, but one can easily extend it with more

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 489

layers or using existing features for h0.

Attention. Attention mechanism [36] is motivated by how
we pay visual attention to different regions of an image or
relevant words in one sentence, and has been used widely to
advance various fields such as natural language processing
and recommender systems [37, 13]. In our context, different
meta-paths can have different importance with respect to
each user, and incorporating the importance of each meta-
path differently for each user can be beneficial when aggre-
gating user representations from different meta-paths, i.e.,

{eMP1
u . . . e

MP|MP |
u } → eu. In our work, we apply the atten-

tion mechanism from [6] for our context as follows:

αMPi
u =

exp(VT
uσ(Wue

MPi
u))∑

j∈|MP | exp(V
T
uσ(Wue

MPj
u))

(2)

where the output αMPi
u indicates the weight (or importance)

for eMPi
u , and VT

u and Wu are trainable matrices for users.
The attention mechanism can be formulated in the same
manner for concepts. Next, the user representations coming
from different meta-paths can be aggregated as follows:

eu =
∑

j∈|MP |

α
MPj
u e

MPj
u (3)

The above-mentioned attention mechanism takes into ac-
count different meta-paths but does not consider any con-
text in the extended MF, which can be the latent features
of users and concepts for MF. Therefore, we also investi-
gate the following attention mechanism which considers the
latent features of user xu, which has not been explored in
previous studies. In this case, a meta-path based embedding
eMPi
u and xu are concatenated together when calculating the

attention scores as follows.

βMPi
u =

exp(VT
uσ(Wu[eMPi

u ; f(xu)]))∑
j∈|MP | exp(V

T
uσ(Wu[e

MPj
u ; f(xu)]))

(4)

where f(xu) applies non-linearity with a single layer feed-
forward neural networks to xu instead of using it directly,
which is inspired by [31] where the authors showed that non-
linear fusion is required when combining latent features from
matrix factorization and entity embeddings from GCNs. Af-
terwards, the final user representation can be obtained in the
same manner as Eq. 3.

eu =
∑

j∈|MP |

β
MPj
u e

MPj
u (5)

The attention mechanism can be formulated in the same
manner for concepts.

Prediction. Given those learned user and concept repre-
sentations/embeddings eu and ec. The preference score of
a concept c for a user u can be calculated as follows by ex-
tending the matrix factorization framework:

ŷu,c = xT
u zc + γ · eT

uMec + bc (6)

where ŷu,c is the preference score, xu and zc are the latent
features for the matrix factorization, and bc is a bias term.
In addition, M is a trainable matrix to let eu in the same

space with ec, and γ is a trainable parameter for the trade-
off between the prediction scores from matrix factorization
and the user and concept embeddings.

4.1 Training Details

Loss function. We use the Bayesian Personalized Ranking
(BPR) [29] which has been widely used for recommender sys-
tems with implicit feedback [7, 5, 27]. The intuition behind
BPR is that a learned concept for a user should be ranked
higher (with a higher score) compared to a random one in
the list of concepts with which the user has not interacted,
which can be formulated as follows:

L =
∑

(u,i,j)∈Ds

−ln(σ(ŷuij)) + λ ‖Θ‖2 (7)

where (u, i, j) refers to a triplet including a user u, an in-
teracted concept i and an unknown concept j for the user.
ŷuij = ŷui − ŷuj measures the preference difference between
the interacted concept and the unknown one, σ denotes the
sigmoid function: s(x) = 1

1+e−x , λ is the regularization pa-
rameter for the L2 norm, and Θ denotes the set of parame-
ters to be learned. The training set Ds can be constructed
by paring an unknown concept randomly with an interacted
concept in the training set of a user.

To learn the parameters of our proposed approach for min-
imizing the loss in Eq. 7, we use a mini-batch gradient de-
cent with 1,024 as the batch size, and use the Adam update
rule [20] to train the model using the training set. In ad-
dition, the learning rate is set as 0.01, the regularization
parameter λ is set as 1e − 8, and the dimension of latent
features for MF and that of user (concept) embeddings are
set as 30 and 100 respectively as in [13].

To overcome the overfitting problem, we further construct a
validation set by using the last interacted concept for each
user, and randomly pair each known concept with 99 un-
known concepts. We run 500 epochs where the convergence
is observed, and monitor the performance of evaluation met-
rics (see Section 5) on the validation set. At the end, we
choose the best-performing model on the validation set in
terms of MRR (Mean Reciprocal Rank), which is one of
the evaluation metrics measuring how well a ground truth
concept is ranked in the corresponding set of 100 concepts.
Any other evaluation metric can be used for choosing the
best-performing model as well based on the preference for a
specific metric.

5. EXPERIMENTAL SETUP

MOOC Dataset. We use the MOOCCube dataset [39] from
the XuetangX platform for our experiments. The MOOC-
Cube dataset is one of the largest and comprehensive MOOC
datasets, and provides rich information about MOOCs and
user activities on the platform from 2017 to 2019 [39]. Each
course or video has a set of covered knowledge concepts in
the dataset. In this work, we use user activities from 2017-
01-01 to 2019-10-31 for training and those from 2019-11-01
to 2019-12-31 for testing. We limit users who have learned
concepts in both training and testing periods and have at
least one new concept (which did not appear in the training

490 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 2: Statistics of the MOOCCube dataset for experi-
ments.

Entities Statistics Relations Statistics
users 2,005 user-concept 930,553

concepts 21,037 user-course 13,696
courses 600 course-video 42,117
videos 22,403 teacher-course 1,875
schools 137 video-concept 295,475
teachers 138 course-concept 150,811

period) in the testing period. Overall, the dataset consists of
2,005 users 21,037 concepts, 600 courses, 22,403 videos, 137
schools, 138 teachers, and the relationships among those en-
tities. In total there are 930,553 interactions between users
and concepts with 858,072 interactions in the training set
and the rest (72,481) in the test set. The overall statistics
of the dataset are presented in Table 2.

Evaluation Metrics. We evaluate the top–k predictions of
concepts for users with the following widely used evaluation
metrics where k is set to 5, 10, and 20. We calculate all
metrics for each set of 100 concepts (with one interacted
and 99 unknown) in the test set. For each interacted con-
cept with respect to a user u, we generate the corresponding
recommendation list Ru = {r1u, r2u, . . . , rku} where riu indi-
cates concept ranked at the i–th position in Ru based on
the predicted scores of those concepts.

Hit Ratio of top–k concepts (HR@k) measures the fraction
of relevant concepts in the test set that are in the top–k con-
cepts of the recommendations: HR@k = 1

N

∑
u I(|Ru∩Tu|)

where N is the total number of sets for testing, I(x) is an
indicator function which equals one if x > 0 and equals
zero otherwise. Normalized Discounted Cumulative Gain
(nDCG@k) takes into account rank positions of the rele-
vant concepts, and can be computed as follows:nDCG@k =

1
Z
DCG@k = 1

Z

∑k
j=1

2I(|r
j
u∩Tu|)−1

log2 (j+1)
where Z denotes the

score obtained by an ideal top–k ranking which serves as
a normalization factor. Mean Reciprocal Rank (MRR) is
the average of the reciprocal ranks of positive concepts:
MRR = 1

N

∑N
1

1
ranki

where ranki refers to the rank po-

sition of the one interacted concept in the corresponding set
of 100 concepts with the rest of unknown ones.

We use the paired t-test for testing the significance where the
significance level of α is set to 0.05 unless otherwise noted.

5.1 Compared Methods
To better understand and investigate the contribution of
each component and the performance with the two atten-
tion mechanisms introduced in Section 4, we first compare
several variants of our approach. MOOCIRa1 denotes our ap-
proach with the attention mechanism only considering differ-
ent meta-paths using Eq. 3. MOOCIRa2 refers to our approach
with the attention mechanism incorporating the latent fea-
tures of users (concepts) using Eq. 4. MOOCIRa- is a variant
of our approach without any attention, i.e., different meta-
paths are treated equally and the representations learned
from those paths are averaged. MOOCIRmf- refers to a variant
without the matrix factorization part for prediction in Eq. 6,

which only uses meta-path-based user and concept represen-
tations for predicting the preference score of a concept.

Next, we compare MOOCIR with the following baselines and
state-of-the-art methods to evaluate the performance of rec-
ommending knowledge concepts for users. TopPop is a straight-
forward baseline method which ranks concepts based on
their popularity. Here, the popularity of a concept can be
measured based on the number of users that have learned
the concept. MFBPR [29] is a matrix factorization approach
which optimizes a pairwise ranking loss for the recommen-
dation task as our approach but without meta-path-based
representation learning. That is, the second component in
Eq. 6 based on user (concept) representations is removed.
FISM [17] is an item-to-item collaborative filtering approach
which provides recommendations based on the average em-
beddings of all interacted concepts and the embeddings of
the target concept. NAIS [15] is also an item-to-item collabo-
rative filtering approach, but with an attention mechanism,
which is capable of distinguishing which historical items in a
user profile are more important for a prediction. We use the
author’s implementation for both NAIS and FISM5. metap-
ath2vec [11]. metapath2vec is a meta-path-based represen-
tation learning model which leverages meta-path-based ran-
dom walks to construct the heterogeneous neighborhood of
a node and then leverages a heterogeneous skip-gram model
to learn node embeddings. We use the StellarGraph [10] im-
plementation of metapath2vec for our experiment in which
the parameters of metapath2vec are set the same as in [11]
except the number of random walks is set as 500 instead
of 10006. ACKRec [13] also models the MOOC dataset as a
HIN and extracts user (concept) representations from the
same set of meta-paths in Table 1. However, ACKRec treats
the problem as rating prediction task where the rating of
a concept for a user is the number of interactions between
the user and the concept. Also, it exploits user and concept
representations as features while extending the matrix fac-
torization framework. We use the author’s implementation7

for our experiments. MFBPR and those MOOCIR variants are
implemented using Tensorflow [1]. All experiments are run
on an Intel(R) Core(TM) i5-8365U processor laptop with
16GB RAM, and MOOCIR variants take less than two days
for training.

6. RESULTS
Table 3 summarizes the results using the variants of MOOCIR.
As we can see from the table, MOOCIRmf- — which uses user
and concept representations learned based on meta-paths
with the HIN but without the matrix factorization compo-
nent — provides worse performance compared to the other
variants. The results indicate that extending the matrix
factorization is necessary for MOOCIR.

Next, we compare MOOCIRa- and the variants with atten-
tion mechanisms (i.e., MOOCIRa1 and MOOCIRa2). We observe
that both MOOCIRa1 and MOOCIRa2 outperform MOOCIRa- in
terms of all evaluation metrics, which shows that using at-

5https://github.com/AaronHeee/
Neural-Attentive-Item-Similarity-Model
6We noticed that using 1000 random walks took more than
10 days for training and did not improve the performance
compared to using 500.
7https://github.com/JockWang/ACKRec

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 491

https://github.com/AaronHeee/Neural-Attentive-Item-Similarity-Model
https://github.com/AaronHeee/Neural-Attentive-Item-Similarity-Model
https://github.com/JockWang/ACKRec

Table 3: Performance of several variants of our proposed
approach in term of different evaluation metrics with the
best-performing scores in bold.

HR nDCG
MRR

k=5 10 20 k=5 10 20
MOOCIRmf- 0.676 0.812 0.906 0.499 0.543 0.567 0.468
MOOCIRa- 0.701 0.832 0.920 0.513 0.556 0.578 0.477
MOOCIRa1 0.704 0.836 0.922 0.520 0.562 0.584 0.484
MOOCIRa2 0.703 0.838 0.922 0.517 0.561 0.583 0.482

0 10 20 30 40 50 60 70 80 90
Randomly selected 100 users

1
2

3
4

M
et

a-
pa

th
s

fo
r u

se
rs Attention weights for different meta-paths

Figure 3: Attention weights of different meta-paths for 100
randomly chosen users learned using MOOCIRa1 where we ob-
serve different weights of meta-paths for each user. In this
heatmap, a darker cell indicates a higher attention weight.

tention can indeed improve the performance and different
meta-paths have different importance for deriving user (con-
cept) representations. This can be verified further by inves-
tigating learned attention weights for different meta-paths
in MOOCIR as well. For example, Fig. 3 shows a heatmap
regarding the learned attention weights for 100 randomly
selected users using MOOCIR. In the figure, x -axis refers to
the 100 users and y-axis indicates the attention weights for
the four different meta-paths for users described in Table 1
in Section 4. From the figure, we can notice that the first

meta-path (i.e., user → concept
−1−−→ user) overall has a

higher weight compared to others. In addition, we observe
that the attention weights vary across users, which indicates
the importance of each meta-path varies for different users.

Finally, by comparing the two different attention mecha-
nisms, we observe that the one incorporating the latent fea-
tures of users and concepts (Eq. 4) does not improve the
performance compared to the simpler one (Eq. 3), which
is different from our assumption. Instead, we observe that
MOOCIRa2 performs significantly worse than MOOCIRa1 in terms
of HR@10 and HR@20 for the users who have interacted
with a limited number of concepts. Table 4 shows the per-
formance for three groups of users with less than 150, 350,
and 550 concepts, respectively. As we can see form the
figure, MOOCIRa1 outperforms MOOCIRa2 significantly for the
first group of 353 users. The results suggest that fusing in-
formation from the latent features of users (concepts) into
the attention mechanism is a non-trivial task, and other ap-

Table 4: Results of HR@10 and HR@20 for MOOCIRa1 and
MOOCIRa2 for three groups of users (G150, G350, G550) with
less than 150, 350, 550 concepts in the training set.

HR@10 HR@20
G150 G350 G550 G150 G350 G550

MOOCIRa1 0.806 0.830 0.851 0.894 0.911 0.927
MOOCIRa2 0.801 0.829 0.852 0.886 0.908 0.925

Table 5: Performance of MOOCIRa1 and compared methods in
term of different evaluation metrics with the best-performing
scores in bold.

HR nDCG
MRR

k=5 10 20 k=5 10 20
TopPop 0.486 0.629 0.767 0.343 0.390 0.425 0.332
MFBPR 0.668 0.811 0.907 0.481 0.527 0.552 0.448
FISM 0.584 0.701 0.800 0.438 0.476 0.501 0.418
NAIS 0.568 0.691 0.811 0.420 0.461 0.491 0.403
metapath2vec 0.642 0.773 0.873 0.468 0.511 0.537 0.440
ACKRec 0.659 0.764 0.842 0.503 0.538 0.557 0.475
MOOCIRa1 0.704 0.836 0.922 0.520 0.562 0.584 0.484

proaches should be investigated in the future.

Overall, MOOCIRa1 provides the best performance among all
variants. In the following, we discuss the performance of
MOOCIRa1 compared with other baselines and state-of-the-art
methods.

Table 5 shows the performance of MOOCIRa1 and compared
methods. We first observe that all the other methods out-
perform TopPop which is a baseline method recommending
popular concepts. For example, MOOCIRa1 and ACKRec im-
proves MRR over TopPop 45.8% and 43.1%, respectively.
Among all the compared methods in Table 5, MOOCIRa1 pro-
vides the best performance followed by ACKRec, MFBPR, and
metapath2vec. ACKRec performs best in terms of nDCG
and MRR, and MFBPR performs best in terms or HR among
compared methods. In detail, a significant improvement of
MOOCIRa1 over ACKRec in MRR (+1.9%), nDCG@5 (+3.1%),
nDCG@10 (+4.5%), +nDCG@20 (4.8%) can be noticed
(α < 0.01). Compared to MFBPR, MOOCIRa1 improves the
HR scores 6.7%, 9.2%, and 9.4% when k =5, 10, 20, respec-
tively (α < 0.01). The two item-item CF methods (FISM
and NAIS) do not perform well compared to MFBPR and ACK-

Rec. One possible explanation might be due to the sparsity
of the dataset, which makes that deriving item-item similar-
ities based on interacted users for each item is challenging
and limits the performance.

Those results indicate that the proposed approach MOOCIRa1
can achieve competitive performance in terms of those evalu-
ation metrics for top–k concept recommendations compared
to the baselines and state-of-the-art methods.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented MOOCIR for predicting and recom-
mending concepts that might be of users’ interest on MOOC
platforms. The comparison of MOOCIR variants in Section 6
shows that extending the matrix factorization with user and
concept representations learned from different meta-paths
and using attention for deriving those representations play
crucial roles in achieving better performance. In addition,
the results compared to other baselines and state-of-the-
art methods indicate that MOOCIRa1 can improve the per-
formance of predicting and recommending concepts signifi-
cantly. The comparison between the two introduced atten-
tion mechanisms (Eq. 3 and 4) suggests that a more compre-
hensive approach is required while fusing the latent features
of users and concepts into the attention mechanism, which
will be investigated in the near future.

492 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

8. REFERENCES
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,

J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
et al. Tensorflow: A system for large-scale machine
learning. In OSDI, pages 265–283, 2016.

[2] K. Abhinav, V. Subramanian, A. Dubey, P. Bhat, and
A. D. Venkat. Lecore: A framework for modeling
learner’s preference. In EDM, 2018.

[3] A. Agrawal, J. Venkatraman, S. Leonard, and
A. Paepcke. Youedu: addressing confusion in mooc
discussion forums by recommending instructional
video clips. 2015.

[4] F. ALSaad and A. Alawini. Unsupervised approach for
modeling content structures of moocs. In Proceedings
of The 13th International Conference on Educational
Data Mining (EDM 2020), pages 18–28, 2020.

[5] V. W. Anelli, T. Di Noia, E. Di Sciascio, A. Ragone,
and J. Trotta. How to make latent factors
interpretable by feeding factorization machines with
knowledge graphs. In International Semantic Web
Conference, pages 38–56. Springer, 2019.

[6] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine
translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473, 2014.

[7] Y. Cao, X. Wang, X. He, Z. Hu, and T.-S. Chua.
Unifying knowledge graph learning and
recommendation: Towards a better understanding of
user preferences. In The world wide web conference,
pages 151–161, 2019.

[8] Z. Chen, A. Brandon, C. Gayle, E. Nicholas,
K. Daphne, and J. E. Ezekiel. Who’s benefiting from
moocs, and why. Harvard Business Review.

[9] Y. Dai, Y. Asano, and M. Yoshikawa. Course content
analysis: An initiative step toward learning object
recommendation systems for mooc learners.
International Educational Data Mining Society, 2016.

[10] C. Data61. Stellargraph machine learning library.
https://github.com/stellargraph/stellargraph,
2018.

[11] Y. Dong, N. V. Chawla, and A. Swami. metapath2vec:
Scalable representation learning for heterogeneous
networks. In Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and
data mining, pages 135–144, 2017.

[12] J. Gardner, Y. Yang, R. S. Baker, and C. Brooks.
Modeling and experimental design for mooc dropout
prediction: A replication perspective. International
Educational Data Mining Society, 2019.

[13] J. Gong, S. Wang, J. Wang, W. Feng, H. Peng,
J. Tang, and P. S. Yu. Attentional Graph
Convolutional Networks for Knowledge Concept
Recommendation in MOOCs in a Heterogeneous
View. In Proceedings of the 43rd SIGIR Conference on
Research and Development in Information Retrieval,
pages 79–88, 2020.

[14] H. Hajri, Y. Bourda, and F. Popineau. Personalized
recommendation of open educational resources in
moocs. In International Conference on Computer
Supported Education, pages 166–190. Springer, 2018.

[15] X. He, Z. He, J. Song, Z. Liu, Y.-G. Jiang, and T.-S.
Chua. Nais: Neural attentive item similarity model for
recommendation. IEEE Transactions on Knowledge

and Data Engineering, 30(12):2354–2366, 2018.

[16] X. Jing and J. Tang. Guess you like: course
recommendation in moocs. In Proceedings of the
International Conference on Web Intelligence, pages
783–789, 2017.

[17] S. Kabbur, X. Ning, and G. Karypis. Fism: factored
item similarity models for top-n recommender
systems. In Proceedings of the 19th ACM SIGKDD,
pages 659–667, 2013.

[18] A. Khalid, K. Lundqvist, and A. Yates. Recommender
systems for moocs: A systematic literature survey
(january 1, 2012 – july 12, 2019). The International
Review of Research in Open and Distributed Learning,
21(4):255–291, Jun. 2020.

[19] H. Khalil and M. Ebner. Moocs completion rates and
possible methods to improve retention-a literature
review. In EdMedia+ innovate learning, pages
1305–1313. Association for the Advancement of
Computing in Education (AACE), 2014.

[20] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[21] H. Labarthe, F. Bouchet, R. Bachelet, and K. Yacef.
Does a peer recommender foster students’ engagement
in moocs?. International Educational Data Mining
Society, 2016.

[22] X. Li, T. Wang, H. Wang, and J. Tang. Understanding
user interests acquisition in personalized online course
recommendation. In Asia-Pacific Web (APWeb) and
Web-Age Information Management (WAIM) Joint
International Conference on Web and Big Data, pages
230–242. Springer, 2018.

[23] F. Mi and B. Faltings. Adaptive sequential
recommendation for discussion forums on moocs using
context trees. In Proceedings of the 10th international
conference on educational data mining, number
CONF, 2017.

[24] C. Milligan and A. Littlejohn. Why study on a mooc?
the motives of students and professionals.
International Review of Research in Open and
Distributed Learning, 18(2):92–102, 2017.

[25] V. Nair and G. E. Hinton. Rectified linear units
improve restricted boltzmann machines. In ICML,
pages 807–814, 2010.

[26] Y. Pang, C. Liao, W. Tan, Y. Wu, and C. Zhou.
Recommendation for mooc with learner neighbors and
learning series. In International Conference on Web
Information Systems Engineering, pages 379–394.
Springer, 2018.

[27] G. Piao and J. G. Breslin. Transfer learning for item
recommendations and knowledge graph completion in
item related domains via a co-factorization model. In
European Semantic Web Conference, pages 496–511.
Springer, 2018.

[28] B. Prenkaj, P. Velardi, D. Distante, and S. Faralli. A
reproducibility study of deep and surface machine
learning methods for human-related trajectory
prediction. In Proceedings of the 29th ACM CIKM,
pages 2169–2172, 2020.

[29] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. Bpr: Bayesian personalized
ranking from implicit feedback. arXiv preprint

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 493

https://github.com/stellargraph/stellargraph

arXiv:1205.2618, 2012.

[30] D. T. Seaton, Y. Bergner, I. Chuang, P. Mitros, and
D. E. Pritchard. Who does what in a massive open
online course? Communications of the ACM,
57(4):58–65, 2014.

[31] C. Shi, B. Hu, W. X. Zhao, and S. Y. Philip.
Heterogeneous information network embedding for
recommendation. IEEE Transactions on Knowledge
and Data Engineering, 31(2):357–370, 2018.

[32] C. Shi, Z. Zhang, P. Luo, P. S. Yu, Y. Yue, and
B. Wu. Semantic path based personalized
recommendation on weighted heterogeneous
information networks. In Proceedings of the 24th ACM
CIKM, pages 453–462, 2015.

[33] Y. Sun and J. Han. Mining heterogeneous information
networks: a structural analysis approach. Acm Sigkdd
Explorations Newsletter, 14(2):20–28, 2013.

[34] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu.
Pathsim: Meta path-based top-k similarity search in
heterogeneous information networks. Proceedings of
the VLDB Endowment, 4(11):992–1003, 2011.

[35] Y. Sun, Y. Yu, and J. Han. Ranking-based clustering
of heterogeneous information networks with star
network schema. In Proceedings of the 15th ACM
SIGKDD, pages 797–806, 2009.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. Advances in neural
information processing systems, 30:5998–6008, 2017.

[37] C. Wu, F. Wu, M. An, J. Huang, Y. Huang, and
X. Xie. Npa: neural news recommendation with

personalized attention. In Proceedings of the 25th
ACM SIGKDD, pages 2576–2584, 2019.

[38] M. Yao, S. Sahebi, and R. F. Behnagh. Analyzing
student procrastination in moocs: A multivariate
hawkes approach. International Educational Data
Mining Society, 2020.

[39] J. Yu, G. Luo, T. Xiao, Q. Zhong, Y. Wang, J. Luo,
C. Wang, L. Hou, J. Li, and Z. Liu. MOOCCube: A
Large-scale Data Repository for NLP Applications in
MOOCs. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
3135–3142, 2020.

[40] X. Yu, X. Ren, Q. Gu, Y. Sun, and J. Han.
Collaborative filtering with entity similarity
regularization in heterogeneous information networks.
IJCAI HINA, 27, 2013.

[41] X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt,
U. Khandelwal, B. Norick, and J. Han. Personalized
entity recommendation: A heterogeneous information
network approach. In Proceedings of the 7th ACM
international conference on Web search and data
mining, pages 283–292, 2014.

[42] F. Zarrinkalam, S. Faralli, G. Piao, E. Bagheri, et al.
Extracting, mining and predicting users’ interests
from social media. Foundations and Trends® in
Information Retrieval, 14(5):445–617, 2020.

[43] J. Zhao, C. Bhatt, M. Cooper, and D. A. Shamma.
Flexible learning with semantic visual exploration and
sequence-based recommendation of mooc videos. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, pages 1–13, 2018.

494 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Automatic Assessment of the Design Quality of Python
Programs with Personalized Feedback

J. Walker Orr
George Fox University

jorr@georgefox.edu

Nathaniel Russell
George Fox University

nrussell18@georgefox.edu

ABSTRACT
The assessment of program functionality can generally be
accomplished with straight-forward unit tests. However, as-
sessing the design quality of a program is a much more dif-
ficult and nuanced problem. Design quality is an important
consideration since it affects the readability and maintain-
ability of programs. Assessing design quality and giving
personalized feedback is very time consuming task for in-
structors and teaching assistants. This limits the scale of
giving personalized feedback to small class settings. Fur-
ther, design quality is nuanced and is difficult to concisely
express as a set of rules. For these reasons, we propose a
neural network model to both automatically assess the de-
sign of a program and provide personalized feedback to guide
students on how to make corrections. The model’s effective-
ness is evaluated on a corpus of student programs written
in Python. The model has an accuracy rate from 83.67% to
94.27%, depending on the dataset, when predicting design
scores as compared to historical instructor assessment. Fi-
nally, we present a study where students tried to improve
the design of their programs based on the personalized feed-
back produced by the model. Students who participated in
the study improved their program design scores by 19.58%.

Keywords
Assessment, neural networks, intelligent tutoring

1. INTRODUCTION
Recently there has a been a lot of work in the development
of tools for education in programming and computer science.
Specifically there are many systems for intelligent tutoring
which are designed to help students learn how to solve a
programming challenge. The tutoring involved is primarily
focused in suggesting functional improvements, that is, how
to finish the program so that it works correctly.

Intelligent tutors such as [4] uses reinforcement learning to
predict a useful hint in the form of an edit to a student’s

program that will get them one step closer to the goal of
a functioning program. It uses histories of edits made by
students, starting with a blank slate and ultimately termi-
nating with a functional program to train the model. The
system is based on Continuous Hint Factory [9] which uses
a regression function to predict a vector that represents the
best hint then translates that vector into a human-readable
edit. Similarly [11] used a neural network to embed pro-
grams and predict the program output. Using that model of
the program output, an algorithm was developed to provide
feedback to the student on how to correct their program.
Also, [16] use a recurrent neural network to predict student
success at a task given a history of student submissions of
their program for evaluations.

All these systems model student programs from Hour of
Code [2]. Hour of Code is a massively open online course
platform that teaches people how to code with a visual pro-
gramming language. The language is simple and does not
contain control constructs such as loops.

Moreover, the combination of language and problem setting
are simple enough that there is a single or very few func-
tional solutions for each problem [4]. This level of simplic-
ity precludes the consideration of program design. However
for general purpose programming languages such as Python,
there are many ways of creating functionally equivalent pro-
grams. It is important for the sake of maintainability, mod-
ularity, clarity, and re-usability that students learn how to
design programs well.

When it comes to the quality of design, there are varying
standards. Further, some standards are more objective or
easier to precisely identify that others. For example, the use
of global variables are both widely recognized as poor design
and are easy to identify. For some programming languages,
“linters” exist to apply rules to check for common design
flaws. For Python, Pylint [12] is a code analysis tool to
detect common violations of good software design. It detects
design problems such as the use of global variables, functions
that are too long or take too many arguments, and functions
that use too many variables. Pylint is design to enforce the
official standards of the Python programming community
codified in PEP 8 [15].

There are aspects of good design that are difficult to iden-
tify. For example, simple logic is a good design idea, but is
quite nebulous. The complexity of a program’s logic is con-

Walker Orr and Nathaniel Russell “Automatic Assessment of the Design
Quality of Python Programs with Personalized Feedback”. 2021. In: Pro-
ceedings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 495-501.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 495

textual, it entirely depends on the problem the program is
solving. Also, modularity is universally judged as a quality
of good design, however it is not always clear to what extent
a program should be made modular. How many functions
or classes are too many? Again, it depends on the context
of the problem for which the program is designed.

In a professional setting, code reviews are often practiced
to promote quality design that goes beyond the straight-
forward rules of “linters.” Code reviews are a manual pro-
cess which require a lot of human effort. A recently de-
veloped system call DeepCodeReviewer [5] automates the
code review process with a deep learning model. By using
proprietary data on historical code reviews taken from a Mi-
crosoft software version control system, DeepCodeReviewer
was trained to successfully annotate segments of C# code
with useful comments on the code’s quality.

However, to our knowledge, there is no system to perform
in-depth code analysis for the purposes of evaluating and
assessing design for general purpose languages in an edu-
cational context. The process of assessing the design of a
program is time consuming for instructors and teaching as-
sistants and it is an important component of complete intel-
ligent tutoring system. Such a system needs to be adjusted
or calibrated for the context of particular problems or assign-
ments since there are important aspects of software design
are context dependent. Moreover the system needs to match
the particular standards of an instructor. Hence we propose
a system that models design quality with a neural network
trained on previously assessed programs.

1.1 Our Approach and Contribution
We propose a design quality assessment system based on a
feed-forward neural network that utilizes an abstract syntax
tree (AST) to represent programs. The neural network is
a regression model that is trained on assessed student pro-
grams to predict a score between zero and one. Each feature
the model uses is designed to be meaningful to human in-
terpretation and is based on statistics collected from the
program’s AST. We intentionally do not use deep learning
as it would make the representation of the program difficult
to understand. Personalized feedback is generated based
on each feature of an individual program. By swapping a
feature’s value for an individual program with the average
feature value of good programs, it is possible to determine
which changes need to be made to the program to improve
is design. The primary contributions of this work are the
following:

• The first to explicitly predict the design quality of
programs in an educational setting to the best of our
knowledge.

• High efficacy with an accuracy from 83.67% to 94.27%
with only small amounts of training data required.

• The first intelligent tutoring system for design quality
for Python.

• Personalized feedback without the explicit training or
annotation.

...

Input
Layer

Hidden
Layer

Output
Layer

...

Figure 1: The model of program design quality, a feed-
forward neural network. The“Input Layer”is the feature vec-
tor created from the AST. The “Hidden Layer” corresponds
to calculation of x′ specified in Equation 1. Finally, the “Out-
put Layer” produces a single value, the design score as found
in Equation 2.

2. METHOD
The task is to predict a design quality score for a student
program written in Python. The score y is a real number
between zero and one. The program is represented by a
feature vector ~x produced by the output of a series of feature
functions computed from the program’s AST.

For an AST T , a series of feature functions fi((T) output
is concatenated in to a feature vector ~x that represents key
aspects of the program’s design. The model g(~x; Θ) is a
feed-forward neural network with a single hidden layer. It
is a regression model that predicts the score y based on the
feature vector ~x and parameters Θ.

2.1 Features
Despite recent advances in deep learning, we chose to repre-
sent the student program with feature functions computed
on its AST. Deep learning is highly effective at learning use-
ful feature representations of everything from images to time
series to natural language texts. However, deep learning also
requires large amounts of data and in this setting the quan-
tity of manual annotated student programs is limited.

Additionally, AST are a natural and effective means of rep-
resenting and understanding programs and can be created
with free, available tools. An AST is an exact representation
of the source code of program based on the programming
language’s grammatical structure. Producing an AST rep-
resentation of a programming language is an essential first
step in compilers and interpreters. The AST of a program
contains all the content of its source but also is augmented
with the syntactic relationships between every element. A
parser and tokenizer to produce an AST for the Python pro-
gramming language is provided by its own standard library.
This makes the AST the natural representation to use, since
it is free, convenient, exact, interpretable, and does not re-
quired any additional data. In contrast, deep learning would
require a large amount of data to effectively reproduce the
same representation.

Prior to representation as an AST, a program must first be
broken into a series of tokens via the process of lexicaliza-

496 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

FunctionDef

Assignment

Store
total

Constant
0.0

For-loop

Assign
=

Store
value

Load
values AugAssign

Return

Store
total

Load
value

Add
+

BinaryOp

Division
/

Load
total

Call
len

Load
values

Arguments
values

def avg(values):
 total = 0.0

 for value in values:
 total += value

 return total / len(values)

Figure 2: An abstract syntax tree for a segment of Python code that computes the average of the values in a list. The AST has
been condensed for the sake of brevity and the restrictions of space. The related code segment is shown in blue.

tion. Lexicalization is the process of reading a program,
character-by-character and dividing into work-like tokens.
These tokens are also assigned a type such as a function call
or variable reference. The grammatical rules of the language
are applied to the lexicalized program to create the AST. In
an AST, the leaf nodes of the tree are the program’s tokens
while the interior nodes correspond to syntactic elements
and constructions. For example, an interior node could rep-
resent the body of a function or the assignment of a value
to a variable. An example of an AST is found in Figure 2.

Given that an AST is a complete representation of a pro-
gram, it is a natural basis for assessing the quality of a pro-
gram’s design. Deep learning may be able to automatically
learning the same key syntactic relationships with enough
data, however this information is simply available via AST.
Further, features computed from the AST will be human in-
terpretable unlike a representation produced by deep learn-
ing.

The features we created are all based on statistics collected
from a program’s AST. Some consist of simply counting the
number of nodes of a given type, for example, the number
of user defined functions. Other feature functions are based
of subsections of the AST, such as the number of nodes per
line or per function. Finally, some features are ratios or
percentages such as the average percent of lines in a number
in a function that are empty. All of the features are relatively
simple and fast to compute, yet generally capture the design
and quality of a program. Each of the feature functions
fi(T) we defined can be found in Appendix A.

2.2 Model
The model is a feed-forward neural network [13] with a single
hidden layer and single neuron in the output layer. The
model’s structure is illustrated in Figure 1. The values of
the input layer are the feature vector ~x. Each neuron in the
hidden layer x′j defined with the following equation:

x′j = ReLU

(d∑
i=1

wi,jxi

)
(1)

where d is the dimension of ~x and wi,j ∈ Θ are the param-

eters, “weights” of the neuron. We use the ReLU [8] as the
activation function for the hidden layer neurons. The final
prediction of the design score is made by the output layer’s
single neuron:

y = σ

(d′∑
j=1

wjx
′
j

)
(2)

where d′ is the number of hidden layer neurons and wj ∈ Θ
are weights of this neuron. The function sigmoid is used
because its domain spans from (−∞,∞) but its range is
[0, 1] which ultimately guarantees the model always outputs
a valid score. The model is trained with mean squared error
as the loss function:

MSE =
1

n

n∑
k=1

(y∗k − yk)2 (3)

where y∗k is the ground-truth design score for the kth instance
i.e. program and n is the number of instances in the training
data. The model is trained with the ADAM algorithm [7]
and each parameter in the model was regularized according
to their L2 norm [6]. For all our experiments, a hidden
layer of size 32 was used. The model was trained for 250
epochs and the model from the best round according to a
development set was selected for our experiments.

2.3 Ensemble
Due to the fact that fitting neural networks to data is a lo-
cal optimization problem, the effect of initial values of the
parameters Θ of the model remain after training. The pro-
cess of training a neural network will produce a different
model given the same data. This variation in the results of
a trained model is particularly pronounced when the train-
ing data set is relatively small. To address this variation
and mitigate its impact an ensemble of models can trained,
each with different initial parameter values. Each model is
independently trained and a single prediction is made by a
simple of the average of individual predictions i.e.

y =
1

m

m∑
l=1

yl (4)

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 497

where m is the number of models and yl is the prediction
of the lth model. For our experiments, an ensemble of 10
models was used.

2.4 Personalized Feedback
The goal of intelligent tutors is to provide personalized feed-
back and suggestions on how to improve a program. The
most straight-forward means of providing feedback would
be to simply predict which possible improvements apply to
a given program. However, training a model to directly pre-
dict relevant feedback would require a dataset of program
with corresponding feedback and such a dataset can be hard
to find or is expense to construct.

In order to avoid the need for a dataset with explicit feed-
back annotation, we use our model, trained on predicting
design score, to evaluate how changes in program features
would lead to a higher assessed score. Using the training
data, we compute an average feature vector ~x of all the
“good” programs i.e. those with a design score greater than
0.75. To generate feedback for a program, its feature vector
~x is compared to the average ~x. For each feature, a new
vector ~x′ is created by replacing the feature value xi with
value with the average’s value xi. This process is setting up
a hypothesis, what if the program was closer to the average
“good” program with regards to a particular feature? To

answer this, the trained model g(~x; ~θ) is used to predict a

design score for the new vector i.e. y′i = g(~x′; ~θ). By compar-
ing the original score of the program y with the new score y′i,
the hypothesis can be tested. If the new score y′i is greater
than the original predicted score y, then the alteration of
xi to be closer to xi is an improvement. Feedback based
on this alteration is recommended to the student as person-
alized feedback. Since each feature in ~x is understandable
to a human, feedback is given in the form of the suggestion
to increase or decrease particular features. The suggestion
for alteration is based on the comparison of xi versus xi, if
xi > xi, the feedback of decrease xi is given. In the other
case, where xi < xi the feedback is to increase xi. Based
on the feature and the feedback of increase or decrease, a
user-friendly sentence is selected from a table of predefined
responses. For example, if xi is the number of user defined
functions and xi = 3, x = 5, and y′i > y then the feedback of
“increase the number of user defined functions” is created.

3. EXPERIMENTS
The system was evaluated in two different experimental set-
tings. The first evaluation is direct test of the model’s ac-
curacy on known design scores. For this, several different
datasets and settings were compared against several base-
lines. The second evaluation is a small study of how stu-
dent’s responded to the system’s feedback. Students were
given feedback on the quality of their programs based on
the model. They were given the chance to correct their
programs after receiving feedback and have it manually re-
assessed.

3.1 Dataset
The dataset was collected over three years from an intro-
duction to computer science course which teaches Python 3.
It consists of four separate programming assignments which
involve a wide range of programming skills. The simplest

is “Travel,” an assignment that involves the distance a ve-
hicle travelled after going a constant speed for a specified
duration. There are 118 student programs for “Travel.” The
next assignment, “Budget” is a budgeting program that lets
a user specify a budget and expenses and determines if they
are over or under their budget. 168 student programs were
collected for “Budget”. The third assignment in the dataset
consists of creating a program to play “Rock-Paper-Scissors”
against the computer. For this assignment, there are 111
student programs. The last assignment is programming the
classic casino game “Craps” which involves rolling multiple
dice and placing different types of bets and wagers. This
assignment has 120 collected student programs.

All the assignments require the student to write the pro-
gram from scratch in Python 3. The programs are to have
a command-line, text-based interface and user validation.
Students are required to use if-statements, loops, user de-
fined functions. The “Craps” program also requires the stu-
dent to do exception handling, and file I/O. A requirement
of the program was to maintain a record of their winnings
across sessions of playing the game, hence the results were
required to be stored to a file. Also, the standards of design
quality go up as the course progresses and since “Craps”
is the last assignment, it has the highest standards. Each
student program has an associated design score that was
normalized to value between zero and one.

3.2 Baseline Methods
The model is compared against a variety of baseline regres-
sion methods. The simplest is linear regression, which sim-
ply learns a weight per each feature. Next is a regression
decision tree which is trained with the CART algorithm [1].
It has the advantage over linear regression in that it can
learn non-linear relationships. Non-linearity means a model
can learn “sweet-spots” rather than simply having a “more is
better” understanding of some features. For example, hav-
ing some modularity in the form of user defined functions
is good, however, too many is cumbersome. The “correct”
number of user defined functions likely should fall into a rel-
atively small range. Model selection on the maximum depth
of the tree with a development set was used to determine
that 10 was the best setting.

However, both of these models have the issue that they are
not constrained to produce a score between zero and one,
their prediction can be any real number. Hence another
baseline method was used, created to be an intermediary
step between linear regression and the neural network model.
It is a linear model with a sigmoid transformation which
guarantees the output be between zero and one. This model
is effectively the final layer of the neural network model, i.e.
the neural network without the hidden layer. The model is
specified by the equation:

y = σ

(d∑
i=1

wi,jxi

)
(5)

This model is also trained with ADAM [7]. All the baseline
models and the neural network are trained with MSE as the
loss function.

498 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Method Travel Budget RPS Craps Combined
MSE Accuracy MSE Accuracy MSE Accuracy MSE Accuracy MSE Accuracy

Linear Regression 0.009 93.09% 0.032 87.43% 0.038 83.2% 0.043 84.06% 0.027 87.03%
Decision Tree 0.018 90.10% 0.031 87.26% 0.078 77.33% 0.072 79.41% 0.076 81.42%
Sig. Linear Regression 0.022 89.60% 0.046 85.13% 0.086 77.91% 0.063 81.43% 0.070 80.64%
Neural Network 0.007 93.48% 0.024 88.48% 0.041 83.9% 0.08 79.57% 0.033 85.61%
Ensemble 0.005 94.27% 0.022 90.14% 0.022 87.66% 0.053 83.67% 0.031 86.99%

Table 1: Design Score Prediction Results

3.3 Results
The model was compared versus each baseline in five differ-
ent settings: the “Travel”, “Budget”, “Rock-Paper-Scissors”,
and “Craps” programs, and a combined dataset which in-
cludes all the programs. The results of the experiments can
be found in Table 1. Each model is evaluated according to
two different metrics: MSE and average accuracy. Average

accuracy is defined as 1
n

n∑
k=1

(
1− |yk − y∗k|

)
.

Overall, the decision tree and the sigmoid-transformed were
clearly the two worst models. This was surprising since deci-
sion trees are generally thought to be strictly more powerful
than linear models. However, decision trees look for highly
discriminative features to partition the data into more con-
sistent groups. The under-performance of the decision tree
possibly indicates that none of the features were especially
indicative of a good or bad design on their own. Instead,
the quality of a program is better described by a collection
of subtle features, which gives credence to the belief that
design quality is nuanced.

The reason sigmoid-transformed linear model under-performed
linear regression was likely due to it being trained with
ADAM. ADAM does not guarantee convergence to a global
optimum like the analytical solution to linear regression.
Apparently the restriction on predictions to be within the
specified range of zero to one was not important.

Linear regression did surprisingly well, beating both the neu-
ral network and network ensemble in the “Craps” and com-
bined datasets, though barely. In those cases, the differ-
ence between the ensemble and linear regression was less
than a percent. This is likely due to the stability of lin-
ear regression’s predictions. Though linear regression does
not have the power and flexibility of neural networks this
can also be a benefit by limiting how wrong their predic-
tions are. Neural networks and even ensembles can make
overconfident predictions on outliers or other unusual cases.
The “Craps” dataset contained the most complex programs
and it is likely a handful of predictions significantly brought
down the average.

The network ensemble outperformed the single neural net-
work in every case, which is to be expected. The margin of
improvement of the ensemble versus the single neural net-
work in accuracy on the four individual program datasets
ranged from 1% to 4%. The network ensemble did the
best overall by being the best in most cases or coming in a
close second in all the other cases. The importance of using
an ensemble is evident on the “Craps” dataset where the in-
dividual neural network under-performed significantly. On

the other datasets, the neural network outperformed linear
regression by a small margin, but on “Craps” the neural net-
work model under-performed the linear regression model by
5%. Again, this is most likely due the instability and vari-
ability of neural network predictions i.e. small differences
in features can lead to a large difference in the prediction.
In the “Craps” dataset, the improvement of the ensemble
over the single neural network model illustrates the relative
stability of the ensemble’s predictions. In every case, the
ensemble is superior to the single neural network and had
the best overall performance by producing the most accu-
rate results on three of the datasets and effectively tying for
the best on the other two.

One noticeable pattern was that all the models performed
better on the “Travel” and “Budget” datasets than on the
“RPS”, “Craps”, and combined datasets. Universally, the
most difficult dataset was “Craps” which likely lowers the
accuracy on the combined dataset. Due to the shifting stan-
dards and expectations of student assignments, a model per
assignment appears to worthwhile. This is a bit counter-
intuitive since there are many common standards and ex-
pectations across assignments.

Overall, the network ensemble produced reliable, accurate
results when trained per dataset. The accuracy of the en-
semble is arguably close to being useful in practical applica-
tion. Further, comparing the scores of an instructor versus
another instructor or even against themselves, the rate of
agreement must be less than 100% and with an accuracy of
the network ensemble ranging from 83.67% to 94.27%, the
model’s accuracy is possibly close to a realistic ceiling.

3.4 Feedback Study
In order the evaluate the effectiveness of the personalized
feedback, we conducted a small study on the effect of the
feedback on the design score of student programs. For the
“Rock-Paper-Scissors” program the network ensemble was
used to generate personalized feedback for the student pro-
grams instead of the usual instructor feedback. The network
ensemble was the same as used in the design score experi-
ments, it was trained with prior years worth of student pro-
grams. Having received the personalized feedback, students
opted into correcting their program for extra credit on their
assignment. The feedback was in form of a series of com-
ments, where each comment was “increase” or “decrease” the
name of a feature as described in Section 2.4.

The class is an introduction to computer science course with
multiple sections and two different instructors. Students
from both instructors participated in the study. Out of 73
students enrolled across the sections of the course, 15 stu-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 499

dents chose to opt-in.

The revised programs were assessed again manually for de-
sign quality and the scores were compared against the origi-
nals. The design score of the programs started at an average
of 68.33% and after the feedback and correction the average
rose to 87.92%, a 19.58% absolute improvement. Using a
paired t-test, the improvement was judged to be significant
with a p-value of 0.001.

The results of the study suggest the feedback was gener-
ally useful in guiding students to improve the design qual-
ity of their programs. The improvement was noticeable to
the instructors anecdotally as well. For example, the usage
of global variables and “magic numbers” decreased signifi-
cantly. Though the study does have some caveats including
its small sample size and opt-in participation. It could be
that those students willing to opt-in are those most willing
or able improve with a second chance.

4. CONCLUSIONS & FUTURE WORK
Overall, we proposed a neural network model ensemble for
predict the design quality score of a student program and
experimentally demonstrated its effectiveness. Further, our
system provided personalized feedback based on the differ-
ence between a program’s feature values and the average
features’ value of “good” programs. A small study provides
evidence that the feedback was of practical use to students.
Students were able to improve their programs significantly
based on the feedback they received.

There is also evidence that training models per assignment
is most effective. However, the model needs to be evaluated
on more programming assignments. Further, there is a pos-
sibility of utilizing transfer learning [10] to help the model
learn what is in common across the assignments.

The feedback given was shown to be effective, but more nu-
anced feedback could be useful. Specifically, feedback tar-
geted to individual lines or segments of code would possi-
bly help students improve their program’s more effectively.
However, this may require additional supervision i.e. anno-
tation for explicit training. Active learning [14] or multi-
instance learning [3] may be alternatives to gathering addi-
tional annotation.

5. REFERENCES
[1] L. Breiman, J. Friedman, C. J. Stone, and R. A.

Olshen. Classification and regression trees. CRC press,
1984.

[2] Code.org. Code.org: Learn computer science.
https://code.org/research.

[3] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez.
Solving the multiple instance problem with
axis-parallel rectangles. Artificial intelligence,
89(1-2):31–71, 1997.

[4] A. Efremov, A. Ghosh, and A. Singla. Zero-shot
learning of hint policy via reinforcement learning and
program synthesis. International Educational Data
Mining Society, 2020.

[5] A. Gupta and N. Sundaresan. Intelligent code reviews
using deep learning. In Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’18) Deep Learning
Day, 2018.

[6] G. E. Hinton, N. Srivastava, A. Krizhevsky,
I. Sutskever, and R. R. Salakhutdinov. Improving
neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580, 2012.

[7] D. Kingma and J. Ba. Adam: A method for stochastic
optimization. In the 3rd International Conference on
Learning Representations (ICLR), 2014.

[8] V. Nair and G. E. Hinton. Rectified linear units
improve restricted boltzmann machines. In
Proceedings of the 27th international conference on
machine learning (ICML-10), pages 807–814, 2010.

[9] B. Paassen, B. Hammer, T. W. Price, T. Barnes,
S. Gross, and N. Pinkwart. The continuous hint
factory-providing hints in vast and sparsely populated
edit distance spaces. Journal of Educational Data
Mining, 2018.

[10] S. J. Pan and Q. Yang. A survey on transfer learning.
IEEE Transactions on knowledge and data
engineering, 22(10):1345–1359, 2009.

[11] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati,
M. Sahami, and L. Guibas. Learning program
embeddings to propagate feedback on student code. In
International conference on machine Learning, pages
1093–1102. PMLR, 2015.

[12] Pylint.org. Pylint - code analysis for python.
https://pylint.org.

[13] F. Rosenblatt. Principles of neurodynamics.
perceptrons and the theory of brain mechanisms.
Technical report, DTIC Document, 1961.

[14] B. Settles. Active learning literature survey. Technical
report, University of Wisconsin-Madison Department
of Computer Sciences, 2009.

[15] G. Van Rossum, B. Warsaw, and N. Coghlan. Pep 8.
https://www.python.org/dev/peps/pep-0008/.

[16] L. Wang, A. Sy, L. Liu, and C. Piech. Learning to
represent student knowledge on programming
exercises using deep learning. International
Educational Data Mining Society, 2017.

APPENDIX
A. FEATURE FUNCTIONS
• The number of functions

• The number of assignments

• AST nodes per function

• Lines of code per function

• Total lines of code

• Number of literals

• The proportion of white-space characters to the total
number of characters

• Number of empty lines

• Deepest level of indentation

• Number of “if” statements

• Number of comments

• Number of AST nodes per lines of code

• Number of try-except statements

500 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

• AST nodes per try-except statement

• AST nodes per “if” statement

• Number of lists

• Number of tuples

• Average line number of literals

• Average line number of function definition

• Average line number of “if” statement

• Ratio of AST nodes inside functions versus total num-
ber of AST nodes

• Number of function calls

• Number of “pass” statements

• Number of “break” statements

• Number of “continue” statements

• Number of global variables

• Number of zero and one integer literals

• Average line number of “import” statement

• Number of numeric literals

• Number of comparisons

• Number of “return” statements

• Maximum number of “return” statements per function

• Maximum number of literals per “if” statement

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 501

Exploring the Importance of Factors Contributing to
Dropouts in Higher Education Over Time

Hasan Tanvir, Irene-Angelica Chounta
University of Tartu, Estonia

{hasan.mohammed.tanvir, chounta}@ut.ee

ABSTRACT
The aim of this work is to provide data-driven insights re-
garding the factors behind dropouts in Higher Education
and their impact over time. To this end, we analyzed stu-
dents’ data collected by a Higher Education Institute over
the last 11 years and we explored how socio-economic and
academic changes may have impacted student dropouts and
how these changes may have been reflected or captured by
students’ data. To analyze the data, we engineered fea-
tures that may predict student dropouts on three dimen-
sions: academic background, students’ performance and stu-
dents’ effort. Then we carried out a correlation analysis to
investigate the potential relationship between these features
and dropouts, we performed a multivariate analysis of vari-
ance (MANOVA) to investigate whether the engineered fea-
tures change significantly among student cohorts with dif-
ferent admission year and, finally, we carried out a regres-
sion analysis to confirm that the engineered features’ impact
on predicting dropouts changes over the years. The results
suggest that the importance of features regarding the aca-
demic background of students (such as the students’ prior
experience with the academic institution), and the effort
students make (for example, the number of days students
spend on academic leave) may change over time. On the
contrary, performance-based features (such as credit points
and grades) do interact with time suggesting that perfor-
mance measures are stable predictors of dropouts over time.
On the basis of the findings, we argue that the performance
of prediction models for assessing students at risk of drop-
ping out of their studies can be affected by the age of data
and we outline the possibility of including a forgetting fac-
tor for non-recent data in order to leverage their impact on
prediction performance.

Keywords
dropouts, feature engineering, predictive modeling, higher
education

1. INTRODUCTION

Student retention is pivotal for success of an educational
institute. To understand the reasons behind dropouts, indi-
vidual cases of students had to be analyzed on one by one
basis. The advent of information technology, the use of dig-
ital technologies by educational institutes and the collection
of rich data regarding students’ background, performance
and effort offer the possibility of using advanced analytical
approaches, such as machine-learning in order to identify
trends and patterns that may indicate students at risk of
dropping out from their studies [13].

To ensure quality education, Higher Education Institutes
(HEIs) typically offer analytical solutions - such as, learning
dashboards - to inform stakeholders (for example, program
directors, academic specialists and instructors) with respect
to student dropouts [2]. To do so, machine-learning models
are typically employed to analyze data collected by Study
Information Systems (SISs) and Learning Management Sys-
tems (LMSs) and to predict whether a student faces a risk to
drop out from their studies [1, 4]. This is a well-established
practice but little research has been carried out with re-
spect to the temporal aspects of data, such as the age of
data used to train predictive models for assessing dropouts.
One may argue that – in terms of predictive performance –
the more training data, the better. However, our hypothesis
is that the factors affecting dropouts in Higher Education
(HE) change significantly over time due to socio-economic
conditions [16] and to such an extent that data age may
affect the computational model’s predictive accuracy.

The goal of this research is to analyze the data collected over
11 years, 2010 to 2020 from the SIS of a national European
HEI. The objective is to engineer and identify the important
log-based features behind dropouts, how these features may
change over years, and to explore their impact on predicting
dropouts. The contribution of this work is twofold:

• to provide insights regarding log-based features that
may relate to student dropouts in HE;

• to explore the relationship between the aforementioned
features and time regarding their impact on dropout
prediction.

In the following section we provide a short overview of re-
lated research, then we present our methodological approach
and we follow up with the results of our analysis. We con-
clude with a contextualized discussion on our findings, the

Hasan Tanvir and Irene-Angelica Chounta “Exploring the Importance of
Factors Contributing to Dropouts in Higher Education Over Time”. 2021.
In: Proceedings of The 14th International Conference on Educational Data
Mining (EDM21). International Educational Data Mining Society, 502-
509. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

502 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

practical implications of this work and limitations as well as
potential future directions.

2. RELATED WORK
As dropouts in Higher Education, we identify the cases of
students who do not successfully complete their studies for
reasons that indicate lack of motivation and willingness to
pursue an academic degree. Dropouts in HE is a prominent
issue with negative impacts for students, and institutions
that also affects national and international policies1.

The reasons behind students dropouts can vary between per-
sonal (for example, students feeling isolated or homesick [8]),
academic (such as students’ lack of background knowledge
or study skills [9]) and socio-economical (for example, fi-
nancial difficulties and cultural adaptation [16, 12]). At the
same time, factors that relate to the academic institution
rather than the students themselves (such as the quality of
studies and resources that the institution offers [3]) can also
affect student dropouts. Tinto’s theoretical model of stu-
dents’ dropouts from college [15] identified two dimensions
as crucial in terms of academic success: student’s charac-
teristics (such as family background and goals) and stu-
dent’s experience with the academic system (such as stu-
dent’s performance and relationship with mentors and col-
leagues). Crosling et al. [7] attributed student dropouts to
the services the academic institutes offer to students, such
as information regarding the admission process, quality of
the teaching, and assessment and [11] investigated the re-
lationship between the socio-economic status of a country
and students dropouts. Other work [10] argued that student
dropout is often related to a combination of reasons that in-
clude individual and curriculum-level factors, for example,
inefficient study skills and inefficient academic or social en-
vironment.

In this work, we examine the case of an Estonian HEI. Es-
tonia, being a relatively new member of European Union,
is going through social, structural and economic changes in
many sectors, including higher education. We argue that
these socio-economic changes that arguably affect student
dropouts, may also affect the performance of predictive al-
gorithms that model student dropouts if temporal aspects
of students’ data (such as, the age of data as depicted for
example by students’ admission year) are not taken into ac-
count.

3. METHODOLOGY
This research was carried out in an Estonian Higher Educa-
tion Institute (HEI). Recently, the HEI launched an initia-
tive aiming to support students in successfully completing
their studies. To do so, the HEI designed a learning analyt-
ics (LA) dashboard that provided information to academic
stakeholders (in this case, program directors and academic
specialists) regarding potential reasons that may contribute
to dropouts in their programs and suggestions concerning
appropriate feedback and support that they could offer to
students-at-risk. To provide this information, the LA dash-
board used students’ data collected by the SIS of the HEI –

1http://publications.europa.eu/resource/cellar/
d9de3b17-0dcf-11e6-ba9a-01aa75ed71a1.0001.01/DOC\
_1

with the students’ informed consent – throughout the stu-
dents’ academic career [5].

To identify students at risk from dropping out from their
studies, the LA dashboard used a predictive model (de-
scribed in [5] that assessed dropout risk on three dimensions:
academic background of the student, student’s performance,
and effort. The separation of the dimensions would help the
institute to link dropout factors directly to students’ co-
horts. Each dimension was defined based on pre-selected
engineered features from the SIS database. In this work, we
used data collected for students on the bachelor level from
2010 to 2020) to explore whether the predictive features used
by the model change over time, to what extent, and what is
the impact of this change on dropout prediction.

3.1 Method of Study
Our hypothesis was that the performance of dropout pre-
dictive models that were trained with students data col-
lected over various admission years, will not be consistent
over time; the reason for that being that the predictive fea-
tures change significantly over time. For the purpose of our
research, we followed a three-step approach:

• we performed a correlation analysis to explore indica-
tions of potential relationships between log-based, en-
gineered student features and dropouts per admission
year;

• we carried out a MANOVA to establish that the log-
based features retrieved from the correlation analysis
vary significantly over student cohorts of different ad-
mission years;

• we performed a regression analysis with interaction
terms to investigate the effect of the log-based features
– retrieved from correlation analysis and MANOVA –
on dropout prediction for student cohorts admitted on
different years.

As a proof of concept, we trained a regression model as a
binary classifier to predict student dropouts using the engi-
neered features that we acquired from the aforementioned
process. Then, we tested the performance of the classifier
on unseen data. An overview of the method of study is
presented in Figure 1.

3.2 Description of data
In this work, we used data of bachelor-level students that the
HEI collected using the Study Information System (SIS) over
a period of 11 years (from 2010 to 2020). The data was orig-
inally organized in 4 tables containing information regarding
students’ academic background, demographics, study place,
and study info data.

In the SIS database, each student and each study place (or
else, curriculum enrollment) have different unique identifiers
(”person ID” and ”study place ID”, respectively). This con-
sequently means that the relationship between students and
curriculum enrollments is 1 to N - that is, one student may
be enrolled in multiple curricula at the same time. In order
to create one working dataset, we merged the four database

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 503

Figure 1: A graphical representation of the method of study,
including the three-step analytical approach and the proof-
of-concept example.

tables using a combination of the unique keys ”person ID”
and ”study place ID”. Using this dataset, we engineered a set
of features that can potentially describe student’s academic
profile on three dimensions – that is, student’s academic
background, student’s academic performance, and student’s
academic effort – and may provide insights regarding stu-
dents who may be at risk of dropping out from their stud-
ies. Following the recommendation of the ethics committee
of the HEI, we excluded information that could be linked
to students identity and demographic background to avoid
potential discrimination, gender or racial bias.

As dropouts, we identified students who terminated their
studies due to reasons (as recorded by the SIS of the HEI)
that may indicate lack of motivation, or unwillingness to
pursue an academic degree. Students can dropout at any
point during the academic year, but the HEI records stu-
dents’ ”exmatriculation” in the beginning of every semester.
In total, the dataset consisted of 9623 students who are en-
rolled in the bachelor programs offered by the HEI. Out of
these students, 3428 students dropped out at some point
during their studies before they acquire an academic degree.
Figure 2 shows the distribution of the dropout ratio – that
is, the number of students who dropped out over the whole
bachelor-level student population per admission year, over
11 years. For Year 2020 we only obtained data for the first
academic semester (February to June).

3.3 Features Engineering
For each dimension of a student’s academic career, we engi-
neered a set of features from data recorded from the SIS of
the HEI. In brief:

• Academic Background: The SIS records information
regarding students’ earlier academic background when
students enroll to a study program offered by the HEI.
We engineered features related to students earlier aca-
demic degrees, the admission score, admission special
conditions (for example, good results in Olympiads,
high scores in the academic aptitude test) and the
number of previous enrollments to study programs of-
fered by the same HEI.

• Performance: Here, we engineered features related to
students’ performance as depicted by grades and awarded

Figure 2: The dropout ratio, that is the ratio of the students
who dropped out over the whole bachelor-level student pop-
ulation per admission year, from 2010 to 2020

credits throughout the study program. Performance-
related features include credits earned, grades, and cu-
mulative positive and negative study results (that is,
numbers of passed and failed courses).

• Effort: Here, we considered features that can represent
a student’s overall effort during their studies. Some of
these features are, the number of days a student spends
on academic leave, the number of credits the student
cancelled throughout the semester, the number of the
registered courses during a semester and information
about student’s allowances and achievement stipends.

The complete set of features per dimension along with a
short description for each is presented in the appendix (Table
4).

4. RESULTS
The results are presented per each step of the analytical
process: the correlation analysis, the MANOVA and the re-
gression analysis. For simplicity, we only report statistically
significant findings at the p < 0.05 level. Then, we re-
port our exploratory findings from the prediction example
as proof-of-concept.

4.1 Correlation Analysis
We carried out a correlation analysis (Spearman’s rank-order
correlation) to explore the potential relationship between the
engineered features and student dropouts. We only report
statistically significant correlations at the p < 0.05 signifi-
cance level with medium and strong correlation coefficients
(ρ ≥ |0.3|) (Table 1). The correlation analysis suggests that
features representing student performance and effort, such
as the number of credits a student earns or the number of
courses they register, may relate negatively with the proba-
bility of dropping out from their studies (that is, the more
courses they register, the less likely to dropout). One inter-
esting finding was that the student’s economic support was
negatively correlated with student dropouts from 2010 to

504 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Performance Features

nr.of.courses.with.any.grade -0.58 -0.65 -0.71 -0.59 -0.66 -0.72 -0.78 -0.71 -0.70 -0.35
credits.earned -0.72 -0.74 -0.74 -0.76 -0.79 -0.80 -0.80 -0.74 -0.73 -0.47

extracurricular.credits.earned -0.55 -0.56 -0.56 -0.53 -0.58 -0.54 -0.59 -0.43 -0.48
all.results -0.49 -0.59 -0.62 -0.53 -0.60 -0.66 -0.75 -0.68 -0.63 -0.36

negative.results 0.32 0.38 0.37 0.30 0.31
grade.A -0.34 -0.42 -0.46 -0.46 -0.43 -0.45 -0.38 -0.34 -0.35
grade.B -0.47 -0.48 -0.50 -0.54 -0.56 -0.55 -0.53 -0.38 -0.41
grade.C -0.33 -0.35 -0.30 -0.40 -0.43 -0.46 -0.48 -0.35 -0.36
grade.F 0.31
passed -0.66 -0.69 -0.65 -0.60 -0.58 -0.64 -0.65 -0.52 -0.35

not.present 0.31
Effort Features

days.on.academic.leave 0.31
days.studying.abroad -0.30

credits.cancelled -0.34 -0.44
nr.of.courses.registered -0.58 -0.65 -0.71 -0.59 -0.66 -0.72 -0.78 -0.71 -0.74 -0.43

credits.registered -0.67 -0.71 -0.73 -0.57 -0.67 -0.71 -0.77 -0.73 -0.74 -0.47
total economic support -0.48 -0.58 -0.52 -0.31 -0.47

study period in years -0.40 -0.63 -0.40 -0.40 -0.50 -0.59 -0.83 -0.72 -0.96 -0.87

Table 1: Spearman’s Rank Correlation for the engineered features and student dropouts per admission year. Here we present
correlations where ρ ≥ |0.3| and p < 0.05. The features for the dimension of Academic Background did not appear to correlate
strongly with dropouts over the admission years.

2013 but no correlation appears for the past few years (with
the exception of 2018). This may suggest that presently
students are in a better financial situation and can therefore
afford studying until they complete their degrees. Alterna-
tively, it may indicate a change in the state’s or the univer-
sity’s policy regarding tuition fees.
The correlation analysis did not reveal any strong and sig-
nificant relationship between dropouts and features of the
student’s academic background. However, correlations only
suggest the potential existence of relationships. Therefore
additional analysis is necessary to establish whether the im-
portance of the engineered features on dropouts may change
over time.

4.2 Multivariate Analysis of Variance
Next, we performed a one-way MANOVA to investigate whether
the engineered features vary significantly for student cohorts
admitted over different academic years. The engineered fea-
tures were the dependent variables and the admission year
was the independent variable for each of the dimensions.
The results of the MANOVA are presented in Table 2. For
the academic background dimension, all the features appear
to be significantly different among the independent groups
(p < 0.05) which may indicate that the academic back-
ground features are year-dependent. For both the perfor-
mance and effort dimensions, the majority of features vary
significantly among student cohorts of different admission
years with p < 0.05.
Based on the MANOVA results we assume that the engi-
neered features appear to be significantly different for stu-
dent cohorts based on the admission year. This may conse-
quently signify that the impact of the log-based features on
dropout can be time-dependent.

4.3 Regression Analysis

To further explore whether the performance of a predic-
tive model depends on temporal aspects of training data,
we carried out a (logistic) regression analysis with the vari-
able ”dropout” as the dependent variable, the predictive fea-
tures as the independent variables and admission year as the
interaction term. Table 2 presents the features that inter-
acted with admission year. Regarding students’ academic
background, we found that the students’ previous experi-
ence with the HEI is dependent on admission year while the
normalized admission score is significant in terms of regres-
sion analysis but marginal (p = 0.07) in terms of interaction
with admission year. Time-dependency of previous experi-
ence with the HEI may reflect structural or policy changes
of the academic institution that affect students’ experience.
Regarding the admission special conditions, we did not find
any interaction with admission year or dropout (also evident
from the correlation analysis). Furthermore, the results sug-
gested that the students’ previous study level – in case of
master’s level studies – may be important for dropout pre-
diction and interact with admission year. A potential expla-
nation could be that there is a confounding effect between
the feature indicating previous studies in the same institu-
tion and the feature indicating previous study level.

Concerning students’ performance, the results suggest that
features such as the credits a student earns or the grades
they are awarded can be used to indicate dropout risk. How-
ever, performance-based features do not appear to interact
with admission year. In other words, their impact on pre-
dicting student dropout does not depend on the year a stu-
dent was admitted in the academic institution. Regarding
the importance of features that denote effort, such as the
time a student spends on an academic leave, and the num-
ber of registered credits, they seem to have a different effect
on student dropouts depending on the year of admission.
This means that the features’ weight on dropout predic-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 505

tion changes when coupled with the interaction term. This
may indicate that the impact of these features on student
dropouts is not consistent over time. We did not find any
indications that effort-related features such as the credits a
student cancels over the semester or the duration of studies
(study period in years) depend on admission year.

4.4 Proof of Concept
To further explore the impact of time on modeling student
dropouts using log-based student features, we split the data
in two sets: a training and a test set. For the training set,
we included all records of students admitted from 2010 to
2020, except those who were admitted on 2011 and on 2018
(both points representing instances close to the chronolog-
ical beginning and the ending of our data collection). We
used the training set to train a regression model, and we
used the trained model as a binary classifier to predict stu-
dent dropouts on the test set of unseen data. For both
the training and testing, there are notable differences when
examining the confusion matrices for the binary classifiers
(Table 3). The binary classifier for performance and effort
performed differently for student cohorts that were admitted
on 2011 and on 2018 performed in terms of accuracy, pre-
cision and recall while the results were similar for the aca-
demic dimension. The model performed better on the 2011
dataset while in terms of recall the model performed better
on the 2018 dataset. Recall is important here as the objec-
tive is to determine the students who are likely to dropout
(positive class) and reduce the false negative outcomes (that
is, students who were predicted as not at risk of dropping
out but actually dropped out). Higher precision in 2011
test set indicates the models’ dropout prediction inability
as the model seem to retain less relevance with older data,
(like, academic year 2011), resulting in lower false positives
and increasing the overall precision value. On the contrary,
higher recall in 2018 dataset indicates the model’s better fit
with recent data, thus contributing in lower false negatives.
However, we acknowledge that 2018 is fairly recent and some
students enrolled in that year might not have dropped out
yet, leading to inaccurate results. As for accuracy, there are
36.05% (3273 out of 9078) instances are dropout (positive
label) in the training dataset resulting in an imbalanced la-
bel distribution. The proof of concept analysis supports the
hypothesis of the paper that age of the data affects the mod-
els’ performance, therefore models’ trained on newer data is
important to increase the performance. We argue that this
finding may suggest that the age of the data is pivotal to
training predictive models. For the academic dimension,
the overall performance was poor for both student cohorts.

5. CONCLUSION
In this paper, we explored the impact of log-based, engi-
neered features that can be extracted from recorded student
data on predicting student dropouts in Higher Education. In
particular, we focused on investigating potential interactions
between the engineered features and time – as represented
by students’ admission year – that may affect the perfor-
mance of student dropout predictive models. We argued
that the age of the data we use to train machine-learning
models for predicting dropouts will impact the models’ per-
formance since socio-economic and cultural conditions, that
arguably affect student retention, can change over time. For
the purpose of this research, we engineered three sets of stu-

dent features from data collected in the SIS of the HEI: one
set describing the academic background of students, one set
describing the performance of students and one describing
the effort students put in their studies. To explore relation-
ship between dropouts and features, and relationship be-
tween features and admission year we combined correlation
analysis, MANOVA and regression analysis with admission
year as the interaction term.

The results suggested that the admission year can play a
critical role on the importance of the selected features for
predicting dropouts. The importance of the features may
change based on the socio-economic status of the state [11]
which is subject to changes for multiple reasons, such as po-
litical functions, joining an economic trade or alliance, or
even cultural changes and emergency situations, such as the
COVID pandemic. For example, in our case, this is demon-
strated by the importance of financial support provided by
the state on dropout rates over the years that seems to be
decreasing. One can argue that student dropouts in Higher
Education is a complex topic that extends beyond the aca-
demic institution and the students themselves but it reflects
socio-economic, cultural and political aspects of the society
or the state. Thus, we would expect that the predictive
power of engineered student features relating to societal or
financial aspects – such as, the academic decisions students’
make in terms of investing effort and financial support –
are susceptible to change over time. On the other hand,
performance-related features (such as grades and positive
or negative exam results) do not appear to interact with
admission year but instead their effect remains steady over
student cohorts, confirming prior work [14]. Features that
aim to represent the students’ academic background may re-
late to some extent to student dropouts – as the regression
analysis suggested – but their predictive power is limited
and their dependency on admission year requires further in-
vestigation. To demonstrate the impact of time of predictive
performance, we presented an example where we trained a
binary classifier using time-sensitive features and we tested
its performance on unseen data from two student cohorts
that were admitted in the same HEI with a 7-year differ-
ence.

As a practical implication of this work, we envision establish-
ing time-sensitive, predictive models for addressing student
dropouts. Towards that direction, one approach would be to
limit the datasets used for model training with respect to the
chronology of the data, resulting in fewer older data as new
data are received. However, this could lead to insufficient
amount of data for training purposes. Another approach
would be to incorporate ”forgetting” factors in order to min-
imize the impact of old, non-relevant data. In this case,
forgetting could be implemented by applying weights to the
training set in such a way so that temporally distant or tem-
porally irrelevant data receive lower weights (and thus, have
less impact on the training) than recent entries. Similarly,
for random forest or decision trees models one could regu-
late the threshold limits for early stopping in tree growth as
a means to include the forgetting factor.

In this research, we carried out our analysis on data collected
during the past decade from the same institution. This does
not allow us to generalize our findings across various tem-

506 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

MANOVA Regression Analysis Regression with Interaction Term
Feature Name F value Pr(> F) coef std err Pr(> |z|) coef std err Pr(> |z|)

Academic Background
normalized score 11.88 5.9e-4 -0.55 0.22 0.01 -3.5e+2 1.94e+2 0.07

admission.special.conditions 8.02 4.7e-3 0.03 0.29 0.26 1.7e+2 2.7e+2 0.52
prev.study.level Masters 4.58 0.03 -0.57 0.28 0.05 2.7e-1 1.5e-1 0.072
nr.of.prev..studies.in.UT 8.40 3.8e-3 0.10 0.06 0.079 2.3e+2 6.7e+1 7.4e-4

Performance
negative.results 56.787 6.5e-14 0.19 0.14 0.18 -7.1e-2 2.8e-1 0.80

grade.A 52.37 5.9e-13 -0.12 0.06 0.05 1.99e-3 4.3e-2 0.96
grade.B 225.32 <2.2e-16 -0.02 0.06 0.73 -5.5e-3 5.0e-2 0.91
grade.C 226.77 < 2.2e-16 -0.06 0.06 0.30 -1.6e-2 4.9e-2 0.75
grade.D 125.77 < 2.2e-16 -0.10 0.07 0.16 -2.2e-2 6.3e-2 0.73
grade.E 32.16 1.6e-08 -0.09 0.08 0.23 -7.3e-2 8.5e-2 0.39
grade.F 3.55 0.06 0.14 0.08 0.08 1.6e-3 5.96e-2 0.99

credits.earned 1685 < 2.2e-16 -0.01 0.01 0.02 1.6e-3 5.1e-3 0.75
extracurricular.credits.earned 76.613 < 2.2e-16 -2.6e-3 0.01 0.75 6.2e-3 7.5e-3 0.41

not.present 173.25 < 2.2e-16 -1.7e-3 0.01 0.87 -7.3e-3 8.1e-3 0.36
sum passed grade 1381.2 < 2.2e-16 0.18 0.14 0.19 -4.2e-2 2.9e-1 0.88
sum failed grade 108.05 < 2.2e-16 -0.01 0.02 0.66

all.results 1455.1 < 2.2e-16 -0.13 0.13 0.31 4.94e-2 2.8e-1 0.86
Effort

days.on.academic.leave 173.41 <2.2e-16 2.23 8.38e-2 <2e-16 7.5e-4 1.6e-4 2.6e-6
on.extended.study.period 253.53 <2.2e-16 2.16e-01 4.60e-02 2.6e-6 1.8e-2 4.1e-2 0.66

days.studying.abroad 240.55 <2.2e-16 -1.34e-02 1.37e-03 <2e-16 -1.2e-3 8.7e-4 0.17
days.as.visiting.student 6.8963 8.7e-3 -1.92e-3 1.6e-3 0.22

credits.cancelled.during.2w 476.68 <2.2e-16 1.01e-02 1.11e-03 <2e-16 5.5e-4 7.1e-4 0.44
workload 6.9 8.7e-3 -1.1 8.5e-1 0.21

nr.of.courses.registered 2501.5 <2.2e-16 -5.89e-01 2.81e-02 <2e-16 -1.8e-1 1.5e-2 <2e-16
credits.registered 2789.8 <2.2e-16 -3.36e-02 1.81e-03 <2e-16 1.1e-3 1.1e-3 0.32

nr.of.courses.with.any.grade 2774.9 <2.2e-16 5.44e-01 2.65e-02 <2e-16 1.7e-1 1.4e-2 <2e-16
nr.of.employment.contracts 20.657 5.6e-6 -6.1e-2 4.3e-2 0.16

total economic support 17.14 3.5e-5 -3.02e-04 4.07e-05 1.15e-13 1.4e-4 2.4e-5 1.8e-8
study period in years 3941.1 <2.2e-16 1.29 7.71e-2 <2e-16 -1.6e-2 4.6e-2 0.73

Table 2: The results of MANOVA with the engineered features as the dependent variables and the admission year as the
independent variable, Regression Analysis without any interaction terms and with admission year as an interaction term. The
features that interact with admission year on the level p<0.05 are presented in bold letters

Admission Year Accuracy Precision Recall F1
Academic Background

2011 0.718 0.500 0.025 0.048
2018 0.709 0.400 0.027 0.050

Performance
2011 0.912 0.937 0.738 0.825
2018 0.785 0.573 1.000 0.728

Effort
2011 0.905 0.982 0.675 0.800
2018 0.889 0.725 0.987 0.836

Table 3: The perfromance metrics of the three models that
predict student dropouts per dimension for two student co-
horts: the cohort admitted on year 2011 and the cohort ad-
mitted on year 2018.

poral and spatial contexts. Additionally, in this work we
only used basic information about students’ background and
study progress - excluding demographics. Further analysis
on an extended dataset may reveal significant patterns on
dropouts regarding cultural background or gender. How-
ever, it is important to ensure the safe and ethical use of
sensitive and personal information of students and to estab-
lish that future use of the outcomes aims to support students
and academic stakeholders in a fair and accountable context.
In future work, we aim to design a predictive model for ad-
dressing dropouts in HE that will implement the forgetting
factor based on data’s recency. For triangulation, we will
compare the forgetting factor’s impact both for a regression
model and for a random forest model and we will explore
further the impact of the forgetting factor in terms of pre-
dictive accuracy, effectiveness and efficiency. Moreover, we
will consider the possibility of analyzing gender segregated
data to explore if the findings show gender bias [6].

6. ACKNOWLEDGEMENTS
This research was funded by the Estonian Research Council,
grant number PSG286.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 507

7. REFERENCES
[1] D. Azcona, I.-H. Hsiao, and A. F. Smeaton. Detecting

students-at-risk in computer programming classes
with learning analytics from students’ digital
footprints. User Modeling and User-Adapted
Interaction, 29(4):759–788, 2019.

[2] D. Baneres, M. E. Rodŕıguez-Gonzalez, and M. Serra.
An early feedback prediction system for learners
at-risk within a first-year higher education course.
IEEE Transactions on Learning Technologies,
12(2):249–263, 2019.

[3] J. P. Bean. Dropouts and turnover: The synthesis and
test of a casual model of student attrition. Research in
Higher Education, 12(2):155–187, June 1980.

[4] I. Chounta, M. Pedaste, and K. Saks. Behind the
scenes: Designing a learning analytics platform for
higher education. In Companion Proceedings of the 9th
International Conference on Learning Analytics and
Knowledge, Tempe, USA, 2019.

[5] I.-A. Chounta, K. Uiboleht, K. Roosimäe, M. Pedaste,
and A. Valk. Accuracy of a cross-program model for
dropout prediction in higher education. In Companion
Proceedings of the 10th International Conference on
Learning Analytics & Knowledge LAK20, pages
750–755, 2020.

[6] C. Criado-Perez. Invisible women : data bias in a
world designed for men. Abrams Press, New York,
2019.

[7] C. Glenda, M. Heagney, and L. Thomas. Improving
student retention in higher education: Improving
teaching and learning. Australian Universities’
Review, 51(1):9–18, 2009.

[8] L. Hinton. Causes of attrition in first year students in
science foundation courses and recommendations for
intervention. Studies in Learning, Evaluation,
Innovation and Development, 4(2):13–26, 2007.

[9] I. Johnson. Enrollment, persistence and graduation of
in-site students at a public research university: Does
high school matter? Research in Higher Education,
49:776–793, 2008.

[10] K. Kori, M. Pedaste, H. Altin, E. Tõnisson, and
T. Palts. Factors that influence students’ motivation
to start and to continue studying information
technology in estonia. IEEE Transactions on
Education, 59(4):255–262, 2016.

[11] I. W. Li and D. R. Carroll. Factors influencing
dropout and academic performance: an australian
higher education equity perspective. Journal of Higher
Education Policy and Management, 42(1):14–30, 2019.

[12] I. W. Li and D. R. Carroll. Factors influencing
dropout and academic performance: an australian
higher education equity perspective. HIGHER
EDUCATION POLICY AND MANAGEMENT,
42(1):14–30, July 2020.

[13] X. Ochoa and A. Merceron. Quantitative and
qualitative analysis of the learning analytics and
knowledge conference 2018. Journal of Learning
Analytics, 5(3):154–166, 2018.

[14] C. F. Rodriguez-Hernandez, E. Cascallar, and
E. Kyndt. Socio-economic status and academic
performance in higher education: A systematic review.
Educational Research Review, 29:100305, 2020.

[15] V. Tinto. Through the eyes of students. Journal of
College Student Retention: Research, Theory &
Practice, 19(3):254–269, 2017.

[16] L. Willcoxson, J. Cotter, and S. Joy. Beyond the
first-year experience: the impact on attrition of
student experiences throughout undergraduate degree
studies in six diverse institutions. Studies in Higher
Education, 36(3):331–352, February 2011.

508 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

APPENDIX
Feature Description
Academic Background
normalized score The admission score normalized by the min and max score
admission.special.conditions Student’s admission subject to special conditions
prev.study.level Student’s latest academic degree, such as high school graduate
nr.of.prev..studies.in.UT Number of previous enrollments in the same HEI
Performance
nr.of.courses.with.any.grade Registered courses with any outcome (positive or negative)
credits.earned Sum of credits the student earned
extracurricular.credits.earned Credits for courses extra to student’s curricula
all.results Number of all results cumulatively up to today
negative.results Number of negative results up to today
pos.results Number of positive results up to today
grade{A, B, C, D, E, F} Number of all grades {A, B, C, D, E, F} up to today
passed Number of passed, non-differentiated courses up to today
not.passed Number of not passed, non-differentiated courses up to today
not.present Number of non-taken exams due to absence up to today
Effort
days.on.academic.leave Days the student was on academic leave
on.extended.study.period 1 when student was on extended study period, 0 otherwise
days.studying.abroad Days student was studying abroad (e.g. on an Erasmus exchange)
days.as.visiting.student Number of days as visiting student to other Estonian universities
credits.cancelled Number of credit points that the student cancelled
nr.of.courses.registered Number of courses the student registered
credits.registered Number of credits the student registered
credits.fulfilled Ratio of credits earned vs. credits registered
nr.of.employment.contracts Number of contracts the student has with the HEI
total financing Total amount of stipends and allowances
study.workload Full time or part time student
study period in years Number of years a student has been studying

Table 4: The engineered features for each dimension. By ”up to today”, we mean the date of the data collection (19 Oct. 2020)

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 509

Deep-IRT with independent student and item networks

Emiko Tsutsumi
University of

Electro-Communications
tsutsumi@ai.lab.uec.ac.jp

Ryo Kinoshita
University of

Electro-Communications
kinoshita@ai.lab.uec.ac.jp

Maomi Ueno
University of

Electro-Communications
ueno@ai.lab.uec.ac.jp

ABSTRACT
Knowledge tracing (KT), the task of tracking the knowledge
state of each student over time, has been assessed actively
by artificial intelligence researchers. Recent reports have
described that Deep-IRT, which combines Item Response
Theory (IRT) with a deep learning model, provides superior
performance. It can express the abilities of each student
and the difficulty of each item such as IRT. However, its
interpretability and applicability remain limited compared
to those of IRT because the ability parameter depends on
each item. Namely, the ability estimate for the same student
and time might differ if the student attempts a different
item. To overcome those difficulties, this study proposes a
novel Deep-IRT model that models a student response to an
item by two independent networks: a student network and
an item network. Results of experiments demonstrate that
the proposed method improves prediction accuracy and the
interpretability of earlier KT methods

Keywords
Deep Learning, Item Response Theory, Knowledge Tracing

1. INTRODUCTION
Recently, along with the advancement of online education,
Knowledge Tracing (KT) has attracted broad attention for
helping students to learn effectively by presenting optimal
problems and a teacher’s support [5, 14, 16, 22, 23, 24, 37,
39, 43, 45, 46]. Important tasks of KT are tracing the stu-
dent’s evolving knowledge state and discovering concepts
that the student has not mastered based on the student’s
prior learning history data. Furthermore, predicting a stu-
dent’s performance (correct or incorrect responses to an un-
known item) accurately is important for adaptive learning.
Many researchers have developed various methods to solve
KT tasks. Methods for KT are divisible into probabilistic
approaches and deep-learning approaches.

For example, Bayesian Knowledge Tracing (BKT), a tradi-

tional and well known probabilistic model for KT [1, 5, 8, 14,
16, 22, 23, 26, 45], employs a Hidden Markov Model to trace
a process of student ability growth. It predicts the proba-
bility of a student responding to an item correctly. Item
Response Theory (IRT) [3, 34, 35], which is used in the test
theory area [10, 11, 12, 13, 28, 33, 36], has come to be used
for KT [6, 40]. Actually, IRT predicts a student’s correct
answer probability to an item based on the student’s latent
ability parameter and item characteristic parameters.

Actually, a learning task is associated with multiple skills.
Students must master the knowledge of multiple skills to
solve a task. However, BKT and IRT have a restriction by
which they express only uni-dimensional ability.

To overcome the limitations, Deep Knowledge Tracing (DKT)
[24] was proposed as the first deep-learning-based method.
DKT employs Long short - term memory (LSTM) [27] to
predict a student’s performance. LSTM relaxes the restric-
tions of skill separation and binary state assumptions. How-
ever, the hidden states include a summary of the past se-
quence of learning history data in LSTM. Therefore, DKT
does not explicitly treat the student’s ability of each skill.

To improve the DKT performance, various deep-learning-
based methods have been proposed [2, 4, 17, 19, 29, 30,
31, 38, 42, 44]. Especially, the dynamic key-value memory
network (DKVMN) was developed to exploit the relations
among underlying skills and to trace the respective knowl-
edge states [46]. To trace student ability, DKVMN uses a
Memory-Augmented Neural Network and attention mecha-
nisms. Furthermore, to improve the explanatory capabilities
of the parameters, Deep-IRT was proposed by combining
DKVMN with an IRT module [43]. In fact, Deep-IRT can
estimate a student’s ability and an item’s difficulty just as
standard IRT models can. However, the ability parameter of
the Deep-IRT depends on each item characteristic because
it implicitly assumes that items with the same skills are
equivalent. The assumption does not hold when the item
difficulties for the same skills differ greatly. Items for the
same skills which are not equivalent hinder interpretation of
a student’s ability estimate.

Most recently, Gosh et al. (2020) proposed attentive knowl-
edge tracing (AKT) [7], which incorporates a forgetting func-
tion of past data to attention mechanisms. Additionally,
they indicated a problem by which earlier KT methods as-
sumed that items with the same skills are equivalent. To re-

Emiko Tsutsumi, Ryo Kinoshita and Maomi Ueno “Deep-IRT with
independent student and item networks”. 2021. In: Proceedings
of The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 510-517.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

510 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

solve that difficulty, they employed both items and skills as
inputs. The predictive accuracy of a student’s performance
was improved by AKT. However the interpretability of the
parameters is limited because it cannot express a student’s
ability transition of each skill.

Earlier studies have tackled to develop deep-learning-based
methods to give parameter interpretability similarly to IRT
models, but those studies have not achieved it for student
ability parameters, which are most important for student
modeling. The problem is the difficulty of incorporating the
ability parameters and item parameters independently into
deep-learning-based methods so as not to degrade prediction
accuracy. This study addresses that problem.

Recent studies of deep learning have shown that redundancy
of parameters for training data reduces generalization error,
contrary to Occam’s razor. The studies also clarify the rea-
sons [9, 20, 21]. Based on state-of-the-art reports, this study
proposes a novel Deep-IRT that models a student’s response
to an item by two independent redundant networks: a stu-
dent network and an item network. The proposed method
learns student parameters and item parameters indepen-
dently to avoid impairing the predictive accuracy. A student
network employs memory network architecture to reflect dy-
namic changes of student abilities as DKVMN does. There-
fore, the ability parameters of the proposed method do not
depend on each item characteristic. They have higher inter-
pretability than those of Deep-IRT. Moreover, the proposed
method employs both items and skills as inputs in a differ-
ent mode of Gosh et al. (2020) [7]. Although Tsutsumi et
al. previously proposed a Deep-IRT for test theory, it can-
not be applied to KT because a student’s ability is constant
throughout a learning process [32].

2. RELATED WORK
2.1 Item response theory
There are many item response theory (IRT) models [3, 18,
34, 35, 41]. This subsection briefly introduces two-parameter
logistic model (2PLM): an extremely popular IRT model. In
2PLM, the probability of a correct answer given to item j by
student i with ability parameter θi ∈ (−∞,∞) is assumed
as

Pj(θi) =
1

1 + exp(−1.7aj(θi − bj))
, (1)

where aj ∈ (0,∞) is the j-th item’s discrimination param-
eter expressing the discriminatory power for student’s abil-
ities, and bj ∈ (−∞,∞) is the j-th item’s difficulty param-
eter representing the degree of difficulty.

2.2 Dynamic key-value memory network
The salient feature of DKVMN is that it assumes N underly-
ing skills and relations between the input (items). Underly-
ing skills are stored in key memory Mk ∈ RN×dk . However,
value memory Mv

t ∈ RN×dt holds abilities of underlying
skills at time t. Here, dk and dt are tuning parameters. To
express the j-th item, the input of DKVMN is a one-hot vec-
tor qj ∈ {0, 1}J , where J represents the number of items for
which the j-th element is 1 and for which the other elements
are zeroes. DKVMN predicts the performance of item j at
time t as explained below.

First, DKVMN calculates the attention, which indicates how
strongly an item j is related to each skill as

β
(j)
1 = W (β1)qj + τ (β1), (2)

wtl = Softmax
(
Mk

l β
(j)
1

)
, (3)

where Mk
l represents a l th row vector and wtl signifies the

degree of strength of the relation between skill l and item
j addressed by a student at time t. In addition, W (·) is
the weight matrix and weight vector. τ (·) is the bias vector

and scalar. Next, student vector θ
(t)
1 is calculated using the

weighted sum of value memory.

θ
(t)
1 =

N∑
l=1

wtl (Mv
tl)
> . (4)

Finally, it concatenates θ
(t)
1 with β

(j)
1 and predicts correct

probability Ptj for an item j as

θ
(t)
2 = tanh

(
W (θ2)

[
θ
(t)
1 ,β

(j)
1

]
+ τ (θ2)

)
, (5)

Ptj = σ
(
W (u)θ

(t)
2 + τ (u)

)
, (6)

where Mv
tl represents the l th row vector of Mv

t , [·] is a
concatenation of vectors, and σ(·) represents the sigmoid
function. Reportedly, DKVMN has the capability of accu-
rately predicting performance. However, unfortunately, a
lack of the interpretability of the parameter remains.

2.3 Deep-IRT
Deep-IRT is implemented by combining DKVMN with an
IRT module [43] to improve the DKVMN interpretability.
Deep-IRT exploits both the strong prediction ability of DKVMN
and the interpretable parameters of IRT. Deep-IRT adds a
hidden layer to DKVMN to gain the applicable ability and
item difficulty. Specifically, when a student attempts item j

at time t, an ability θ
(t,j)
3 and item difficulty β

(j)
2 are calcu-

lated as shown below.

θ
(t,j)
3 = tanh

(
W (θ3)θ

(t)
2 + τ (θ3)

)
, (7)

β
(j)
2 = tanh

(
W (β2)β

(j)
1 + τ (β2)

)
, (8)

The prediction is based on the difference between θ
(t,j)
3 and

β
(j)
2 such as IRT.

Ptj = σ
(

3.0 ∗ θ(t,j)3 − β(j)
2

)
. (9)

Here, ability θ
(t,j)
3 is calculated using wt in equation (6),

which depends on the item to solve because it implicitly as-
sumes that items with the same skills are equivalent. In
other words, the ability estimate for the same student and
time might differ if the student attempts a different item.
Furthermore, in equation (7), Deep-IRT uses item vector

β
(j)
1 to calculate θ

(t)
2 . An important difficulty is that a stu-

dent’s ability, which depends on each item, hinders the in-
terpretability of the parameters. Although Tsutsumi et al.
[32] also proposed a Deep-IRT as a test theory, the purpose
is different from this study because it can not be available
for KT as mentioned before.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 511

𝑀!"#
$

𝑀!%#
$

𝑀!
$

𝜃	(#,%)

𝝎#
	

𝒒%	 𝜷'
(%)

𝑀	
'

𝑝#%	

𝛽	(%)

…

𝒔%	 𝜸'
(%)

𝛽(#)*
(%)

𝜸+
(%)

…

…

𝜷+
(%)

𝛽,-(..
(%)

𝜽-
(#,%)𝜽'

(#,%)

student network

item network

Figure 1: Network architecture for Deep-IRT with indepen-
dent student and item networks. The yellow components rep-
resent the process of getting the attention weight. Also, the
green components are associated with the student network
and the process of updating the value memory. The blue
components are associated with the item network.

3. DEEP-IRT WITH INDEPENDENT STU-
DENT AND ITEM NETWORKS

To resolve the difficulty described above, this study proposes
a novel Deep-IRT method comprising two independent neu-
ral networks: the student network and Item deep network,
as shown in Figure 1. The student network employs memory
network architecture such as DKVMN to ascertain changes
in student ability comprehensively. The item network in-
cludes inputs of two kinds: the item attempted by a student
and the necessary skills to solve the item. Using outputs
of both networks, the probability of a student answering an
item correctly can be calculated.

The proposed method can estimate student parameters and
item parameters independently such that prediction accu-
racy does not decline because the two independent networks
are designed to be more redundant than with earlier meth-
ods , based on state-of-the-art reports [9, 20, 21]. The pro-
posed method predicts Ptj , the probability of a correct an-
swer assigned to item j at time t, using the item difficulties
and the student abilities, as follows.

3.1 Item network
In the item network, two difficulty parameters of item j
are estimated: the item characteristic difficulty parameter
βjitem and the skill difficulty βjskill to solve item j. The
item characteristic difficulty parameter indicates the unique
difficulties of the item, excepting the required skill difficulty.
The proposed method expresses item difficulty as the sum
of the two difficulty parameters of βjitem and βjskill.

As with DKVMN, to express the j-th item, an input of the

item network is a one-hot vector qj ∈ RJ as shown below.

qjm =

{
1 (j = m)

0 (otherwise)
(10)

Here, J stands for the number of items. The item network
comprises n layers. The item characteristic difficulty pa-
rameter of item j is calculated using a feed forward neural
network as

βj1 = tanh
(
W (q1)qj + τ (q1)

)
, (11)

βjk = tanh
(
W (βk)βjk−1 + τ (βk)

)
, (12)

βjitem = W (βitem)βjn + τ (βitem), (13)

where k = {2, ..., n}. The last layer β
(j)
item represents the j-th

item characteristic difficulty parameter.

Similarly, to compute the difficulty of skills, the proposed
method uses the input of necessary skills sj ∈ RS as pre-
sented below.

sjm =

{
1 (item j requires skill m)

0 (otherwise)
(14)

Here, S represents the number of skills:

γj1 = tanh
(
W (γ1)sj + τ (γ1)

)
, (15)

γjk = tanh
(
W (γk)γjk−1 + τ (γk)

)
, (16)

βjskill = W (βskill)γjn + τ (βskill), (17)

where k = {2, ..., n}. The last layer βjskill denotes the diffi-
culty parameter of the required skills to solve the j-th item.

3.2 Student network
In the student network, the proposed method calculates θt1
based on the past response history as

θ
(t,j)
1 =

N∑
l=1

Mv
t,l, (18)

where Mv
t is a memory matrix holding a students’ latent

knowledge state, which are estimated similarly to DKVMN.
Next, an interpretable student’s ability vector θtn is esti-
mated as follows. Therein, n represents a number of hidden
layers decided depending on the prediction accuracy of ac-
tual data.

θ
(t,j)
k = tanh

(
W (θk)θ

(t,j)
k−1 + τ (θk)

)
, (19)

θ(t,j) = w>t θ
(t,j)
k , (20)

where k = {2, ..., n}. As a difference between the proposed
method and Deep-IRT, the proposed method does not mul-

tiply the attention in equation (18). In addition, θ
(t,j)
k is

not calculated using features of items such as equations (5)

and (7). Therefore, the ability parameter vector θ(t,j) does
not depend on each item. Namely, it is independent from
the difficulty parameter. The value of which denotes the
ability for the corresponding latent skill because it is inde-

pendent of any item. Therefore, θ
(t,j)
k can be interpreted as

a measurement model such as a multidimensional IRT [25].

512 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

3.3 Prediction of student response to an item
The proposed method predicts a student’s response prob-
ability to an item using the difference between a student’s
ability θ(t,j) to solve item j at time t and the sum of two
difficulty parameters βjitem and βjskill.

Ptj = σ
(

3.0 ∗ θ(t,j) − (βjitem + βjskill)
)
. (21)

After the procedure, the value memory is updated using
cj based on the input qj and actual performance such as
DKVMN [46].

The loss function of the proposed method employs cross-
entropy, which reflects classification errors. The cross-entropy
of the predicted responses Ptj and the true responses utj is
calculated as

`(ut, Ptj) = −
∑
t

(utj logPtj + (1− utj) log(1− Ptj)) ,

(22)
where utj is the true response to item j at time t. The
student’s response utj is recorded as 1 when the student
answers the item correctly and 0 otherwise. All parameters
are learned simultaneously using a well known optimization
algorithm: adaptive moment estimation [15].

4. PREDICTIVE ACCURACY
4.1 Datasets
We conduct experiments to compare the performance of our
approach against existing solutions. This section presents
comparison of the prediction accuracies for student perfor-
mance of the proposed method with those of earlier methods
(DKT, DKVMN, Deep-IRT, AKT) using four benchmark
datasets as ASSISTments20091, ASSISTments20152, Stat-
ics2011 3, KDDcup4. ASSISTments2009 and KDDcup have
item and skill tags, although most methods explained in
the relevant literature adopt only the skill tag as an input.
However, methods with skill inputs rely on the assumption
that items with the same skill are equivalent [7]. That as-
sumption does not hold when an item’s difficulties in the
same skill differ greatly. Therefore, as inputs to AKT and
the proposed method, we employ not only skills but also
items.ASSISTments2015 has only the skill tag. Therefore,
we employ only the skill tag as an input.

Table 1 presents the number of students (No. Students),
the number of skills (No. Skills), the number of items (No.
Items), the rate of correct responses (Rate Correct), the
average length of items which students addressed (Learning
length), and the rate of items in which the number of student
addressed is less than 10 (Sparsity). For all the datasets,
we excepted students who addressed fewer than five items.
Additionally, we set 200 items as the upper limit of the input
length according to an earlier study [43]. When the input
length of items becomes greater than 200, we use the first
200 response data for all methods.

1https://sites.google.com/site/assistmentsdata/home/
assistment-2009-2010-data
2https://sites.google.com/site/assistmentsdata/home/2015-
assistments-skill-builder-data
3https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId
=507
4https://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp

2 4 6 8 10

0
.7

9
0

0
.7

9
5

0
.8

0
0

0
.8

0
5

0
.8

1
0

0
.8

1
5

The number of layers n

A
U

C

Figure 2: AUC and the Number of Layers

4.2 Hyperparameter selection and evaluation
We used ten-fold cross-validation to evaluate the prediction
accuracies of the methods. The item parameters and the
hyperparameters are learned using 70% of datasets. Given
the estimated hyperparameters, a student’s ability can be
estimated at each time using the remaining 30% of each
dataset. For all methods, the hidden layer size and memory
dimension are chosen from {10, 20, 50, 100, 200} using cross-
validation. In addition, for the earlier methods, we used the
hyperparameters reported from earlier studies [7, 43].

To ascertain the number of layers n for the proposed method,
we conducted some experiments to gain experience using
ASSISTments2009 while changing the layer number. The
results are presented in Figure 2. As shown in the figure,
AUC score reaches its highest level when n = 2 and n = 4.
Based on this result, we employ n = 2 for the following
experiments because the computation time of the proposal
increases exponentially as the number of layers increases.

If the predicted correct answer probability for the next item
is 0.5 or more, then the student’s response to the next item
is predicted as correct. Otherwise, the student’s response
is predicted as incorrect. For this study, we leverage three
metrics for prediction accuracy: Accuracy (Acc) score, AUC
score, and F1 score. The first, Acc, represents the con-
cordance rate between the student predictive performance
and the true performance. The second, AUC, represents
the predictive accuracy of the correct answer probabilities.
F1 indicates the average of the F1 score of incorrect answer
prediction and the F1 score of correct answer prediction.

4.3 Results
The respective values of Acc, AUC, and F1 for those bench-
mark datasets are shown in Table 2. Results show that
the proposed method with item and skill inputs provides
the best performance for the metrics: averages of Acc and
F1. Especially noteworthy is that the proposed method out-
performs AKT, which is the most advanced method. Fur-
thermore, the proposed method with item and skill inputs
provides better performance than that with skill or item in-
puts. These results indicate that parameter estimation, not
only with skill but also with item, improves the predictive
accuracy.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 513

Table 1: Summary of Benchmark Datasets
Dataset No. students No. skills No. Items Rate Correct Learning Length Sparsity

ASSIST2009 4,151 111 26,684 68.0% 70.8 55.2%
ASSIST2015 19,840 100 N/A 73.2% 34.2 12.6%
Statics2011 333 156 1,223 77.7% 180.9 2.6%
KDDcup 820 43 476 78.3% 11.9 57.8%

Table 2: Predictive Accuracy of Student Performance with Benchmark Datasets
DKT DKVMN Deep-IRT AKT AKT Proposed Proposed

(item&skill) (item&skill)
Acc 0.759 0.763 0.768 0.692 0.755 0.768 0.765

ASSIST2009 AUC 0.781 0.807 0.806 0.717 0.811 0.818 0.810
F1 0.697 0.714 0.718 0.639 0.726 0.725 0.722
Acc 0.754 0.749 0.747 0.757 N/A 0.752 N/A

ASSIST2015 AUC 0.730 0.732 0.727 0.760 N/A 0.751 N/A
F1 0.433 0.541 0.540 0.616 N/A 0.543 N/A
Acc 0.769 0.805 0.817 0.809 0.818 0.819 0.822

Statics2011 AUC 0.666 0.819 0.822 0.821 0.827 0.821 0.821
F1 0.483 0.679 0.681 0.690 0.677 0.679 0.690
Acc 0.784 0.773 0.792 0.774 0.780 0.786 0.802

KDDcup AUC 0.538 0.594 0.588 0.606 0.610 0.588 0.610
F1 0.439 0.439 0.455 0.441 0.449 0.469 0.478

Acc 0.767 0.773 0.781 0.758 0.784 0.781 0.796
Average AUC 0.679 0.738 0.736 0.726 0.749 0.745 0.747

F1 0.513 0.593 0.599 0.597 0.617 0.604 0.630

However, AKT with item and skill inputs shows the best
average values of AUC. Actually, AKT with item and skill
inputs also provides higher performance than that achieved
with skill or item inputs, as shown in [7]. Gosh et al. (2020)
reported that AKT is more effective for large datasets. There-
fore, AKT provides the best performance for all the metrics
of ASSISTments2015, which has an extremely large number
of students.

Furthermore, surprisingly, the averages of ACC, AUC, and
F1 obtained using the proposed method with skill input are
better than Deep-IRT, although the proposed method sepa-
rates student and item networks. This result implies that re-
dundant deep student and item networks function effectively
for performance prediction. These results are explainable
from reports of state-of-the-art methods [9, 20, 21].

The performance results obtained using DKVMN are almost
identical to those obtained using Deep-IRT because they
have almost identical network structures. Results show that
DKT provides the worst performance among the methods
studied here.

5. PARAMETER INTERPRETABILITY
5.1 Interpretability of difficulty parameters
To evaluate the interpretability of the difficulty parameters
of the proposed method, we compare the parameters of IRT
with those of Deep-IRT using a simulation data. The dataset
includes 2000 students’ responses to 50 items and it is gen-
erated from 2PLM as shown in equation (1). The priors of
the parameters have θ ∼ N(0, 1),a ∼ LN(0, 1), b ∼ N(0, 1).
We estimated the parameters of the proposal and Deep-IRT
using the dataset. Table 3 shows the Pearson correlation
between the true parameters of the true models and the es-
timated parameters, respectively, of the proposed method

Table 3: Pearson correlation
parameter Deep-IRT Proposed
difficulty 0.611 0.886

accuracy 0.694 0.695

and Deep-IRT. Additionally, we show the prediction accu-
racies of the proposed method and Deep-IRT for the dataset.
The proposal provides higher correlations with true parame-
ters than Deep-IRT does, whereas the proposed method has
higher accuracy than Deep-IRT has. The results demon-
strate that the two independent networks of the proposed
method function effectively for the interpretability of the
estimated parameters and for the prediction accuracies.

5.2 Student ability transitions
This section shows student ability transitions using the pro-
posed method. Visualizing the ability transition for each
skill is helpful for both students and teachers because they
can discover student strengths and weaknesses and can im-
prove the learning method to fill in the learning gaps. Ye-
ung [43] demonstrated a student ability transition for each
skill using Deep-IRT. However, their results included some
counter-intuitive ability estimates. For example, even when
the student answered incorrectly, the corresponding student
ability estimate increased. Moreover, Deep-IRT cannot iden-
tify a relation among multidimensional skills. There are
cases in which a student’s ability for low-level skills decreases
even when the student responds correctly to items for high-
level skills. These unstable behaviors of Deep-IRT might
engender serious difficulties, which will consequently confuse
students and teachers, as a student model.

Figure 3 depicts a student’s ability transitions of the pro-
posal for the ASSIST2009 dataset. The vertical axis shows

514 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 3: An example of a student ability transition from the ASSIST2009 dataset. The skill tags are classified respectively as
equation solving two or fewer steps (blue), ordering fractions (orange), finding percents (green), and equation solving more than
two steps (red). The student responses to items are shown at the bottom of the graph.

the student ability on the left side, with the student’s re-
sponse to an item on the right side. The horizontal axis
shows the item number. The student’s response is 1 when
the student answers the item correctly; it is 0 otherwise. The
student attempted skills of ”equation solving more than two
steps” (shown in red), ”equation solving two or few steps”
(shown in blue), ”ordering factions” (shown in orange), and
”finding percents” (shown in green). Figure 3 can be inter-
preted as explained below.

1. Theta 1 decreases when the student responds to item 2
”ordering factions”(orange) incorrectly and it increases
when the student responds to item 3 correctly. There-
fore, theta 1 indicates the ability of ”ordering factions”.

2. Items 6–17 correspond to the skill of ”equation solving
two or few steps”(blue). Theta 2 indicates the ability
of ”equation solving two or few steps” because theta 2
greatly increases while the student answers correctly.

3. For the skill of ”finding percents” (green), the student
answers all items incorrectly. Theta 3 indicates the
ability of ”finding percents” (green) because it greatly
decreases in items 18–24.

4. Items 4, 5, and 25–30 correspond to the skill of ”equa-
tion solving more than two steps” (red). Theta 4 de-
creases when the student answers to item 4 and 5 in-
correctly, and increases when the student answers to
items 26–29 correctly. Therefore, theta 4 represents
the ability of ”equation solving more than two steps”
(red).

Figure 3 shows that the proposed method estimates the abil-
ity of each skill to reflect the student responses. Addition-
ally, it estimates relations among the skills. Therefore, when

a student responds to an item correctly/incorrectly, not only
does the corresponding skill ability increase/decrease; those
for other skills increase/decrease as well. Consequently, the
results demonstrate that the proposed method improves both
the interpretability and the prediction accuracies of Deep-
IRT.

6. CONCLUSIONS
This study proposed a novel Deep-IRT that models a stu-
dent’s response to an item by two independent redundant
networks: a student network and an item network. Because
two independent redundant neural networks are used, the
parameters of the proposed method can be highly inter-
preted with keeping hight prediction accuracy. Moreover,
the proposed method employs both items and skills as in-
puts. Experiments demonstrated that the proposed method
with item and skill inputs provided the best performance for
the metrics: averages of Acc and F1. deep-learning-based
methods. The result also showed AKT with item and skill
inputs provided the best average values of AUC. Especially,
AKT provided the best performances for large datasets as
Gosh et al. (2020) reported [7]. In addition, results of ex-
periments show that the parameters of the proposed method
are more interpretable than those of Deep-IRT. This study
employed slightly redundant deep networks compared to ear-
lier methods. As future work, we intend to use the proposed
method to investigate the performances of more redundant
and deeper networks. In addition, we will try to optimize a
forgetting function for past data to maximize the prediction
accuracy for large data sets.

7. ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI Grant Num-
bers 19H05663 and 19K21751.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 515

8. REFERENCES
[1] D. Agarwal, R. Baker, and A. Muraleedharan.

Dynamic knowledge tracing through data driven
recency weights. In Proceedings of the 13th
International Conference on Educational Data Mining,
EDM, pages 725–729, 2020.

[2] F. Ai, Y. Chen, Y. Guo, Y. Zhao, Z. Wang, G. Fu,
and G. Wang. Concept-aware deep knowledge tracing
and exercise recommendation in an online learning
system. In EDM, 2019.

[3] F. Baker and S. Kim. Item Response Theory:
Parameter Estimation Techniques, Second Edition.
Statistics: A Series of Textbooks and Monographs.
Taylor & Francis, 2004.

[4] P. Chen, Y. Lu, V. Zheng, and Y. Pian.
Prerequisite-driven deep knowledge tracing. In In
IEEE International Conference on Data Mining,
ICDM 2018, pages 39–48, 2018.

[5] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User Model. User-Adapt. Interact., 4(4):253–278, Dec
1995.

[6] C. Ekanadham and Y. Karklin. T-skirt: Online
estimation of student proficiency in an adaptive
learning system. CoRR, abs/1702.04282, 2017.

[7] A. Ghosh, N. Heffernan, and A. S. Lan. Context-aware
attentive knowledge tracing. In Proceedings of the 26th
ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020.

[8] S. Gowda, J. Rowe, R. Baker, M. Chi, and
K. Koedinger. Improving models of slipping, guessing,
and moment-by-moment learning with estimates of
skill difficulty. In EDM 2011 – Proceedings of the
Fourth International Conference on Educational Data
Mining, pages 199–208, 01 2011.

[9] H. He, G. Huang, and Y. Yuan. Asymmetric valleys:
Beyond sharp and flat local minima. In Advances in
Neural Information Processing Systems 32, pages
2553–2564. Curran Associates, Inc., 2019.

[10] T. Ishii, P. Songmuang, and M. Ueno. Maximum
clique algorithm for uniform test forms assembly. In
The 16th International Conference on Artificial
Intelligence in Education, volume 7926, pages
451–462, 07 2013.

[11] T. Ishii, P. Songmuang, and M. Ueno. Maximum
clique algorithm and its approximation for uniform
test form assembly. IEEE Transactions on Learning
Technologies, 7:83–95, 01 2014.

[12] T. Ishii and M. Ueno. Clique algorithm to minimize
item exposure for uniform test forms assembly. In
International Conference on Artificial Intelligence in
Education, pages 638–641, 06 2015.

[13] T. Ishii and M. Ueno. Algorithm for uniform test
assembly using a maximum clique problem and integer
programming. In Artificial Intelligence in Education.
Springer International Publishing, pages 102–112, 06
2017.

[14] M. Khajah, Y. Huang, J. Gonzalez-Brenes, M. Mozer,
and P. Brusilovsky. Integrating knowledge tracing and
item response theory: A tale of two frameworks.
Personalization Approaches in Learning
Environments, 1181:5–17, 2014.

[15] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. In Proceedings of the ICLR,
2014.

[16] J. Lee and E. Brunskill. The impact on individualizing
student models on necessary practice opportunities. In
Proceedings of the Fifth International Conference on
Educational Data Mining, pages 118–125, 01 2012.

[17] X. Liangbei and D. Mark. Dynamic knowledge
embedding and tracing. In Proceedings of the 13th
International Conference on Educational Data Mining,
EDM, pages 524–530, 2020.

[18] F. Lord and M. Novick. Statistical Theories of Mental
Test Scores. Addison-Wesley, 1968.

[19] Y. Lu, D. Wang, Q. Meng, and P. Chen. Towards
interpretable deep learning models for knowledge
tracing. In Proceedings of the 13th International
Conference on Educational Data Mining, EDM, pages
185–190, 2020.

[20] A. Morcos, H. Yu, M. Paganini, and Y. Tian. One
ticket to win them all: generalizing lottery ticket
initializations across datasets and optimizers. In
Advances in Neural Information Processing Systems
32, pages 4932–4942. Curran Associates, Inc., 2019.

[21] V. Nagarajan and J. Z. Kolter. Uniform convergence
may be unable to explain generalization in deep
learning. In Advances in Neural Information
Processing Systems 32, pages 11615–11626. Curran
Associates, Inc., 2019.

[22] Z. Pardos and N. Heffernan. T.: Modeling
individualization in a bayesian networks
implementation of knowledge tracing. In In
Proceedings of the 18th International Conference on
User Modeling, Adaption, and Personalization, pages
255–266, 06 2010.

[23] Z. Pardos and N. Heffernan. Kt-idem: Introducing
item difficulty to the knowledge tracing model. In
Proceedings of 19th International Conference on User
Modeling, Adaptation and Personalization (UMAP
2011), pages 243–254, 01 2011.

[24] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,
L. J. Guibas, and J. Sohl-Dickstein. Deep knowledge
tracing. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, pages
505–513. Curran Associates, Inc., 2015.

[25] M. Reckase. Multidimensional item response theory
models, springer. 2009.

[26] J. Reye. Student modelling based on belief networks.
International Journal of Artificial Intelligence in
Education, 14:63–96, 2004.

[27] H. Sepp and S. Jurgen. Long short-term memory.
Neural Computation, 14:1735–1780, 1997.

[28] P. Songmuang and M. Ueno. Bees algorithm for
construction of multiple test forms in e-testing. IEEE
Transactions on Learning Technologies, 4:209–221, 07
2011.

[29] Y. Su, Q. Liu, Q. Liu, Z. Huang, Y. Yin, E. Chen,
C. H. Q. Ding, S. Wei, and G. Hu. Exercise-enhanced
sequential modeling for student performance
prediction. In AAAI, pages 2435–2443, 2018.

[30] X. Sun, X. Zhao, Y. Ma, X. Yuan, F. He, and J. Feng.
Multi-behavior features based knowledge tracking

516 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

using decision tree improved dkvmn. In Proceedings of
the ACM Turing Celebration Conference – China,
New York, NY, USA, 2019. Association for
Computing Machinery.

[31] H. Tong, Y. Zhou, and Z. Wang. Exercise hierarchical
feature enhanced knowledge tracing. In Proceedings of
the 13th International Conference on Educational
Data Mining, EDM, pages 324–328, 2020.

[32] E. Tsutsumi, R. Kinoshita, and M. Ueno. Deep item
response theory as a novel test theory based on deep
learning. Electronics, 10(9), 2021.

[33] M. Ueno. Adaptive testing based on bayesian decision
theory. International Conference on Artificial
Intelligence in Education, pages 712–716, 2013.

[34] M. Ueno and Y. Miyazawa. Probability based
scaffolding system with fading. Artificial Intelligence
in Education – 17th International Conference, AIED,
pages 237–246, 2015.

[35] M. Ueno and Y. Miyazawa. Irt-based adaptive hints to
scaffold learning in programming. IEEE Transactions
on Learning Technologies, 11(4):415–428, Oct 2018.

[36] M. Ueno and S. Pokpong. Computerized adaptive
testing based on decision tree. In Advanced Learning
Technologies (ICALT), 2010 IEEE Tenth
International Conference, pages 191–193, 2010.

[37] X. Wang, J. Berger, and D. Burdick. Bayesian analysis
of dynamic item response models in educational
testing. The Annals of Applied Statistics,
7(1):126–153, 2013.

[38] Z. Wang, X. Feng, J. Tang, G. Huang, and Z. Liu.
Deep knowledge tracing with side information. In The
20th International Conference on Artificial Intelligence
in Education (AIED), pages 303–308, 2019.

[39] R. Weng and D. Coad. Real-time bayesian parameter
estimation for item response models. Bayesian
Analysis, 13, 12 2016.

[40] K. H. Wilson, Y. Karklin, B. Han, and C. Ekanadham.
Back to the basics: Bayesian extensions of irt
outperform neural networks for proficiency estimation.
In 9th International Conference on Educational Data
Mining, volume 1, pages 539–544, 06 2016.

[41] W.J. van der Linden. Handbook of Item Response
Theory, Volume Two: Statistical Tools. Chapman and
Hall/ CRC Statistics in the Social and Behavioral
Sciences. Chapman and Hall/ CRC, 2016.

[42] X. Xiong, S. Zhao, V. Inwegen, E. G., and J. E. Beck.
Going deeper with deep knowledge tracing. In
Proceedings of International Conference on Education
Data Mining, 2016.

[43] C. Yeung. Deep-irt: Make deep learning based
knowledge tracing explainable using item response
theory. In Proceedings of the 12th International
Conference on Educational Data Mining, EDM, 2019.

[44] C. K. Yeung and D.-Y. Yeung. Addressing two
problems in deep knowledge tracing via
prediction-consistent regularization. In Proceedings of
the Fifth ACM Conference on Learning @ Scale, pages
1–10, 2018.

[45] M. V. Yudelson, K. R. Koedinger, and G. J. Gordon.
Individualized bayesian knowledge tracing models. In
Artificial Intelligence in Education, pages 171–180,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[46] J. Zhang, X. Shi, I. King, and D.-Y. Yeung. Dynamic
key-value memory network for knowledge tracing. In
Proceedings of the 26th International Conference on
World Wide Web, WWW ’17, pages 765–774,
Republic and Canton of Geneva, CHE, 2017.
International World Wide Web Conferences Steering
Committee.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 517

Modeling Creativity in Visual Programming: From Theory
to Practice

Anastasia Kovalkov
Ben-Gurion University of the

Negev
Kovalkov@post.bgu.ac.il

Benjamin Paaßen
Humboldt-University of Berlin
benjamin.paassen@hu-

berlin.de

Avi Segal
Ben-Gurion University of the

Negev
kobig@bgu.ac.il

Kobi Gal
Ben-Gurion University of the

Negev
University of Edinburgh

kobig@bgu.ac.il

Niels Pinkwart
Humboldt-University of Berlin

niels.pinkwart@hu-
berlin.de

ABSTRACT
Promoting creativity is considered an important goal of edu-
cation, but creativity is notoriously hard to define and mea-
sure. In this paper, we make the journey from defining a
formal creativity and applying the measure in a practical
domain. The measure relies on core theoretical concepts in
creativity theory, namely fluency, flexibility, and original-
ity, We adapt the creativity measure for Scratch projects.
We designed a machine learning model for predicting the
creativity of Scratch projects, trained and evaluated on rat-
ings collected from expert human raters. Our results show
that the automatic creativity ratings achieved by the model
aligned with the rankings of the projects of the expert raters
more than the experts agreed with each other. This is a first
step in providing computational models for describing cre-
ativity that can be applied to educational technologies, and
to scale up the benefit of creativity education in schools.

Keywords
Creativity, Creativity Tests, Visual Programming Environ-
ments

1. INTRODUCTION
Modern education generally tries to foster creativity in stu-
dent problem solving [7, 11, 17]. There is wide agreement
that creative solutions must not only solve the task but
should additionally be original, i.e. distant from usual so-
lutions to the task, flexible, i.e. employ very different con-
cepts, and fluent, i.e. employ many concepts [10, 23]. How-
ever, creativity is notoriously hard to quantify in practice [7].
When being confronted with two student solutions for a
given learning task, different teachers may well disagree which
one is more creative [14].

In this paper, we make the journey from a definition of cre-
ativity which relate to prior concepts in the literature [23],
to applying the definition to the Scratch programming envi-
ronment, and using the measure to automatically quantify-
ing the creativity score of projects in Scratch. We formalize
originality of a product as the distance to usual solutions,
flexibility as the distance between concepts in the student’s
solution, and fluency as the distance to an empty solution.

We apply the formalization to automatically measure the
creativity on a set of projects from the popular visual pro-
gramming language Scratch [13]. Using machine learning,
we build a model that predicts the creativity ratings of
Scratch projects using fluency, flexibility, and originality
measures of our approach. We compare these automatic cre-
ativity ratings to those of five human experts, which were
collected using a comprehensive user study. We find that
the automatic ratings agree with the rankings of the experts
more than the experts agreed with each other. We provide
several examples that highlight the benefit of the model in
light of the fact that human raters may disagree on the de-
gree of creativity of Scratch projects.

The contribution of this work is in providing an automatic
framework for defining and detecting creativity, that can
scale up teacher’s abilities to support creative thinking in
students.

2. RELATED WORK
Prior works on measuring creativity have mostly been con-
cerned with psychological tests, such as Williams’ tests on
creative thinking [25] or the Torrance test of creative think-
ing [10, 23]. However, such tests do not account for changes
in creative ability, motivation, knowledge, and social con-
text over time [2]. Accordingly, one should wish to measure
creativity often and monitor the development across chang-
ing circumstances. This could be supported by automatic
creativity assessment, towards which we work in this paper.

To measure creativity at one specific point in time, we follow
Torrance’s work and grade creativity on three scales, namely
fluency, flexibility, and originality [10, 23]. Historically, these
three scales grew out of Guilford’s model of the structure of

Anastasia Kovalkov, Benjamin Paassen, Avi Segal, Kobi Gal and Niels
Pinkwart “Modeling Creativity in Visual Programming: From Theory to
Practice”. 2021. In: Proceedings of The 14th International Conference on
Educational Data Mining (EDM21). International Educational Data Mining
Society, 518-524. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

518 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

intellect [6], which includes divergent production, i.e. the
skill of generating a wide variety of ideas on the same topic.
In particular, fluency refers to the sheer amount of ideas gen-
erated, flexibility to the number of distinct classes of ideas,
and originality to the infrequency of the ideas compared to a
general sample of the population. In addition to these three
scales, Torrance’s tests also include scales regarding the ab-
stractness of generated ideas, the elaboration on ideas, and
the resistance to premature closure during the generation
process [10]. In this work, we stick to fluency, flexibility, and
originality because they permit quite a direct formalization
in mathematical and computeable terms. We further cover
elaboration, to some extent, in our notion of fluency.

Multiple works focused on using technologies to infer cre-
ative thinking in numerous educational disciplines, such as
math and programming [21, 12]. Previous research has shown
that creativity is related to positive learning gains, and us-
ing technology to generate creativity is an active field of
study [24]. Hershkovitz et al. [8, 9] examined the relation-
ship between creativity and computational thinking within
a block-based multi-level game environment for children’s
programming. Their findings show that creativity can con-
tribute to the acquiring of computational thinking and can
also be transferred across domains, stressing the importance
of fostering creativity while promoting computational think-
ing.

Finally, the application domain of our work is Scratch, a
block-based visual programming language targeted primar-
ily at children. The environment allows users to create in-
teractive stories, games, and animations [13]. Scratch blocks
are designed to fit together in ways that make syntactic
sense which generates the program logic. Users can use a
wide variety of pre-defined basic code blocks, such as When
Key Pressed, Move etc. Furthermore, programmers can use
additional blocks such as Pen Down and Language from ex-
isting extensions such as ‘Pen’ and ‘Translate’, as well as
define custom blocks. The environment allows the use of
external data through importing images, music recordings,
captured voices, and user-specific graphics [18]. By using
Scratch, which is designed to enable creative expression in
terms of code, graphical and audio aspects, we can expand
the identification of creativity beyond the programming as-
pect [3, 5, 12].

3. COMPUTING CREATIVITY IN SCRATCH
In this section, we describe how we measure creativity of
code and visual aspects of Scratch programs.

A Scratch project consists of the project’s background called
stage and the objects that appear on it called sprites1. Fig-
ure 1 presents a sample project, a game called ‘Scratch in
Scratch’. As its name implies, it simulates the Scratch en-
vironment. The player has to select a character and add
block instances to a stack of blocks that control the char-
acter’s behavior on the stage. The figure shows the white
stage and different sprites (buttons, arrows and a cartoon
character), as well as the graphics output area. Blocks are
code elements that control the behavior of the stage and
sprites [13]. When a sprite is selected, its blocks element

1https://www.scratch-wiki.info/

are shown in the Code panel. Figure 1 (center) shows the
blocks that are connected to the cartoon cat, whose sprite
is selected (e.g., blocks Hide and Show).

Inspired by the creativity test of Torrance [23], we measure
creativity on three scales: fluency, flexibility, and originality.
Generally speaking, fluency refers to the amount of ideas in-
volved in the Scratch project, flexibility to the diversity of
ideas, and originality to the distance between a project and
typical projects [10]. In the following, we describe how we
compute these scales for code and visual aspects, respec-
tively. For both aspects, our strategy is to first define a
distance between building components (e.g. code blocks and
images) and then compute fluency, flexibility, and originality
based on that distance.

Code Creativity. We represent the Scratch code as a col-
lection of syntax trees, one representing the stage, and one
for each sprite. Each syntax tree, in turn, consists of code
blocks. Figure 2 shows a graph of the blocks in Scratch,
where blocks are connected to the semantic sub-category
they belong to (like move or events) and sub-categories
are connected to categories, namely basic blocks, extension
blocks, and custom blocks. Let now δ be the shortest-path
distance between blocks in this graph. More specifically, we
define δ as zero for equal blocks (e.g., two Move blocks), as 1
if the blocks are different but within the same sub-category
of blocks (e.g., Move, Turn), and as 2 if the blocks are dif-
ferent and from different sub-categories (e.g., Move, When
Key Pressed). To explain, we add one unit of distance for
the transition between the sub-categories and another for
the blocks being different.

For different categories, the distance between the pre-defined
blocks and the extension blocks is defined as 3, and the dis-
tance between the pre-defined blocks to the custom blocks
is defined 4. To explain, we add one one unit of distance
for the block’s difference, the second unit of distance due to
the different sub-categories, and the third for the category
change. Since the Scratch environment provides by default
the pre-defined blocks, while custom blocks require the user
to build something new, we add an additional unit of dis-
tance.

Based on the distance, we define code fluency of a Scratch
project as the sum

∑
x δ(x, 0), where x are the code blocks

in the project and 0 is the gray zero node in Figure 2. The
distance δ(x, 0) to basic blocks (e.g. Move) is defined as
3, the distance δ(x, 0) to extension blocks (e.g., Pen-Up,
Language) is 4, and the distance δ(x, 0) to custom blocks is 5.
In other words, we assign higher fluency for the production
of non-existent components or the use of custom blocks that
require additional user effort. For example, in the ‘Scratch
in Scratch!’ program the Show block presented in Figure 1
is a basic block from the sub-category ‘Looks’. The program
gets 3 points for this block, and an overall fluency score of
105232.

To compute code flexibility, we remove all duplicated blocks,

2For mathematical reasons we square the distances, thus
yielding large numbers.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 519

https://www.scratch-wiki.info/

Code blocks Code for sprite 1

G
ra

p
h
ics

o
u
tp

u
t

Sprites Stage

Figure 1: A screenshot of an example Scratch project. Left: A selection of possible code blocks. Center: The code blocks related
to the currently selected sprite (the cat). Top right: The current graphical output. Bottom right: An overview of all sprites
and the stage (i.e. the background).

0

basic

...

...
...

extensions
...

...

custom blocks

2

1

0.5

0.5

0.5

0.5

1

0.5 0.5

1

Figure 2: A graph of code blocks in scratch. We compute the
distance between blocks by their shortest path distance in the

graph, e.g. δ(,) = 0.5 + 0.5 + 1 + 0.5 + 0.5 = 3.

then compute the sum of all pairwise distances
∑

x

∑
y δ(x, y)

between code blocks in the project and divide by the num-
ber of unique code blocks. This measures how different the
code blocks were, capturing the idea of flexibility as vari-
ability of concepts [10]. For example, the project ‘Scratch
in Scratch!’ uses the blocks Hide and Show for each sprite.
This increases fluency but not flexibility. Further, these two
pre-defined blocks belong to the same sub-category ’Looks’
and so δ(Hide,Show) = 1. Overall, after normalizing by the
number of the unique blocks in the program (58), it obtained
a flexibility score of 395.37

We define code originality as the average distance of a Scratch
project to a sample of typical projects in our data set, i.e.
a project that is more distant from typical projects is con-
sidered more original. To compute the distance between

projects, we follow the approach of Price et al. [22]. In
particular, we use a three-step algorithm to construct an
alignment between two Scratch projects. First, we compute
the tree edit distance [26] between the stage syntax trees
of both programs. Then, we compute all pairwise tree edit
distances between sprites in both programs. Finally, we feed
this result into the Hungarian algorithm [15] to obtain an
alignment between the sprite trees. This is because sprites
in a Scratch project do not have a clear ordering, making an
unordered representation more natural.

While fluency and flexibility are based only on the program
itself, the originality requires a reference sample of projects,
i.e. we need a reference point with respect to which a project
is original or not [23, 20]. To illustrate the effect of the
reference set, we note that the originality of the ‘Scratch in
Scratch!’ with respect to a reference set of 3 different project
groups from the user study was 4488.84, 4168.89, and 2759,
respectively.

Visual creativity. To represent visuals, we first collect all
images (i.e. sprite and stage images) in our training data set
and feed them into a ResNet50 neural network3. ResNet50
has been shown to generalize diverse image processing tasks
and classifications [19, 16]. Accordingly, we hope that the
representation of ResNet50 also helps to capture the seman-
tic distance between images for our case. The output is a
set of vectors, one for each image. To measure distance
δ between images, we use the Cosine distance δ(x, y) =

1− xT ·y
‖x‖·‖y‖ because it is invariant against effects of scale/size,

which would otherwise be a confounder in our data.

We compute visual fluency as the number of images in the
Scratch projects, which is equivalent to the fluency definition
of Torrance [23]. For example, in the project ‘Scratch in

3https://www.kaggle.com/keras/resnet50

520 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://www.kaggle.com/keras/resnet50

Scratch!’ we have 47 images and that is its fluency score.

To measure visual flexibility, we use the same approach as
for code flexibility, i.e. we compute the sum

∑
x

∑
y δ(x, y)

of all pairwise distances over images in the project and then
divide by the number of images. To illustrate, the program
‘Scratch in Scratch’ contains 2 similar button images ‘Save’
and ‘Load’ (see Figure 1). The Cosine distance between
these images is relatively small δ(′Save′,′ Load′) = 0.19,
based on the vectors created by the ResNet50 network. The
flexibility score of the visual aspect of the project is 12.42.

We compute visual originality as the average distance of
each image in a project to images in typical projects. To
illustrate, the project ‘Scratch in Scratch!’ received an orig-
inality score of 0.57, 0.57 and 0.58 when using 3 different
reference sets.

4. HUMAN CREATIVITY ASSESSMENT
In this section, we describe a user study to collect expert
evaluations of creativity of Scratch projects. The experts
were Scratch instructors without prior knowledge in creativ-
ity theory. Each expert was assigned a set of pre-selected
Scratch projects and asked to separately evaluate the cre-
ativity of projects according to four different aspects: code,
visual, audio and idea behind the project, which was iden-
tified in past work as an important factor in the creative
process in Scratch [18].

We designed an online application to facilitate the rating
process and to allow the experts to play and review each
project as they see fit. The application was divided into
three main screens. The Home Screen displays all of the
projects that are assigned to an expert. When clicking on
a project in the Home Screen, experts were able to see ad-
ditional information about the project (e.g., the number of
views and likes that the project received) and information
about the user (e.g., country, date of registration in Scratch,
and age if available) and also a link to the editor environ-
ment for the project’s code and visuals and the embedded
playable project.

For each project, experts were asked to answer questions
that relate to the creativity of the four aspects of the Scratch
project. Questions relating to visual aspects, such as whether
the project contained images provided by scratch or origi-
nally created by the user. Experts were also asked to rate
the novelty/quality and effort put into the visual aspects of
the project. Questions relating to the project code, such as
evaluating the code complexity, efficiency and novelty, and
rating the effort put into the code. Questions about the
project idea asked to include a short description of the idea
and ratings for how much novelty and effort were required
for developing the idea. If the project included sounds, ex-
perts were asked if these sounds were recorded by the user,
imported or were provided by Scratch. Additionally, the ex-
perts rated the novelty of the sounds and the effort invested
in the audio aspect.

Experts were also asked to provide a creativity score for each
of the aspects (0-100), shown in Figure 3, as well as provide
a weight (between 0 and 1, summing to 1) for each aspect
according to its subjective importance in determining the

Figure 3: Overall creativity assessment.

Table 1: Experts grading statistics of code, visual and final
creativity scores

Expert Statistic Code Visual Final score

1
Mean 69.55 75.85 67.59
SD 24.04 24.97 21.31

2
Mean 66.75 67.70 66.89
SD 13.11 14.28 13.80

3
Mean 70.75 77.65 65.30
SD 10.18 10.50 11.89

4
Mean 72.90 83.40 76.11
SD 24.00 20.11 17.78

5
Mean 64.60 68.55 63.52
SD 15.27 13.15 13.17

creativity of a project. The creativity score of a given project
for an expert is computed as the weighted summation of the
creativity ratings for each aspect. The creativity score for
each project is shown in the Home Screen, allowing experts
to compare the scores and revise them at will.

4.1 User Study
We recruited 5 experts from 4 countries: Cuba, Vietnam, In-
dia and Israel. All experts had at least two years of Scratch
training experience to students of different ages in schools
and after-school activities. We selected 45 unique projects
of different types (games and stories), created by different
users (age ranged between 9 to 18, from 25 different coun-
tries, and with different experience, from 4 to 258 projects).
We uniformly sampled projects to each of the experts from
this set, so that there is a sufficient spread of creativity as-
sessments across project, while still having some projects
being rated by several experts. Four of the experts evalu-
ated 20 projects, while one evaluated 10 projects.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 521

Table 1 presents the statistics of the scores for code, visuals,
and the final creativity scores provided by the experts. We
note that the highest scores were provided by expert 4 and
that this expert as well as expert 1 had the highest standard
deviation across all aspects. Experts 2 and 5, on the other
hand, gave relatively lower scores with a lower standard de-
viation.

4.2 Agreement between experts
Experts differed widely in the creativity scores they assigned
to projects. For example, experts 1, 2, and 3 all evaluated
the project ‘Scratch in Scratch!’. Expert 1 gave this project
a creativity score of 91 for the code aspect, while expert 2
gave it a score of 67, and expert 3 gave a score of 82.

We note that the low agreement between raters should not
signify a mistake or lack of expertise. It reflects the fact
that creativity assessment is largely subjective, and that ex-
perts can differ about which aspects are more or less im-
portant when measuring creativity, as we show in this sec-
tion. To compensate for this, we measure agreement using
the Kendall Rank Correlation Coefficient [1]. This measure
ranges from −1 (complete disagreement between rankings)
to 1 (perfect match) and is determined based on overlapping
projects for each pair of experts.

Figure 4 displays for each pair of experts the number of over-
lapping projects (in parentheses) and the Kendall-τ score.
Note that experts 2 and 4 had only one overlapping project,
therefore the Kendall-τ score cannot be calculated for them.
As shown in the figure, the highest agreement (Kendall-
τ = 0.67) is between expert 5 and 2. The other positive
agreement scores are much lower and vary between 0.2 and
0.33. Moreover, we see four pairs of experts with negative
Kendall-τ scores, with 2 of them including expert 4.

The experts with the highest agreement score (experts 2 and
5) also exhibited similar scores for code and visual aspects
(See Table 1), suggesting that they interpret creativity for
these aspects in similar ways. However, the same expert
5 commonly disagreed with expert 1 (Kendall-τ = −0.6).
Their scores and rankings of overlapping projects differed
substantially, suggesting that they differ in their interpreta-
tion of creativity. For example for the code aspect, the same
project was ranked 1st by expert 5 and 16th by expert 1.

We observe that most experts found the visual aspect more
significant than the code aspect when evaluating creativity.
For the majority of experts, the project idea was the most
important aspect. By contrast, experts assigned low weights
to audio aspects. We note that the project idea is very
difficult to model computationally. This is an interesting
avenue to explore in future work.

5. PREDICTING CREATIVITY SCORES
In this section we report on the design and evaluation of
a computational model to predict the creativity scores of
Scratch projects. We build an automatic tool to support
teachers (and students) in Scratch that can be trained on
examples taken from individual or multiple experts.

We use an XGBoost Regressor [4] to predict the expert cre-
ativity scores for each project. As input features we used the

Figure 4: Kendall-τ Agreement between pairs of experts with
overlapping projects on the final creativity score. (The num-
ber of overlapping projects is shown in parentheses.)

originality, flexibility, and fluency measures for both visual
and code aspects, as described in Section 3. This provided
us with 6 features for each instance (project). The reference
sample for computing originality included all of the projects
that the expert rated.

We created 2 types of XGBoost models: (1) a single rater
model trained on projects for each expert separately and (2)
a combined model trained on the projects from all experts
together. Note that for the combined model, projects that
were evaluated by more than one rater were treated as dif-
ferent instances. For each type of model, we created three
different prediction models (a) predicting the code creativity
score. (b) predicting the visual creativity score. (c) predict-
ing the overall project score by the weighted combination
score (visual and code). The features consisted of the origi-
nality, flexibility and fluency for the code aspect (model a),
the visual aspect (model b), or both (model c).

The combined model and the single rater models were de-
veloped using the official implementation of XGBoost4. We
selected the hyperparameters based on the structure of our
data. We set the upper complexity limit of the model to six
trees for the rater with 10 projects, 14 for the rest of the
raters, and 29 trees for the combined raters and the maxi-
mum tree depth based on the number of features. The com-
bined model was evaluated using 10-fold cross-validation.
The single rater models were evaluated using 5 folds to en-
sure that the test set contained at least two projects.

Because of the high degree of variance between the raters, we
do not seek to minimize error with respect to the predicted
creativity score. Instead, we compare rankings. Ideally, we
would compare the rankings of the projects in the test set
with the true rankings for each expert. However, the size
of the test set for some folds for some of the experts was
small (4 projects for most experts). To increase the number
of comparisons for Kendall-τ , we built a complete ranking

4https://github.com/dmlc/xgboost

522 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://github.com/dmlc/xgboost

Table 2: Kendall-τ score between XGBoost Regressor and
experts scores - code creativity score, visual creativity score,
and the weighed visual and code score

Experts Kendall-τ

Expert Code Visual Weighed visual and code

1 0.52 0.52 0.42
2 0.51 0.42 0.42
3 0.53 0.58 0.36
4 0.46 0.52 0.57
5 0.52 0.42 0.50

Combined 0.43 0.44 0.42

over all projects for an expert, by combining the predicted
scores of projects in the test-set with the scores of projects
in the training set. However, we compute the Kendall-τ
agreement only for project pairs with at least one project in
the test set. We make a similar computation with respect
to computing the Kendall-τ for the combined model.

Table 2 presents the Kendall-τ performance, computed as
described above. As seen from the table, when predicting
the creativity score for visual and code aspects, we achieve
a Kendall-τ score of 0.51 and above for 3 out of 5 experts.
When predicting the weighted creativity score, we achieve
a Kendall-τ score of over 0.42 for 4 out of 5 experts. Over-
all, the agreement measure is higher than that of the inner-
agreement between the experts themselves that is reported
in Figure 4 (except for the pair 2 and 5).

The bottom row in Table 2 presents the results for the XG-
Boost model that is trained over the combined set for all ex-
perts. In all cases we achieve a Kendall-τ score above 0.42,
which is higher than the inner-agreement scores for most
pairs of experts. For visual aspects, the combined model is
less successful than the individual models. In contrast, for
the visual creativity, the combined model is better than the
single rater model for two of the experts (experts 2 and 5);
for weighted visual and code creativity score, the combined
model is better or equal than the single rater model for 3
experts (experts 1, 2 and 3). This suggests that our models
can define useful rules for aggregating creativity rankings by
different experts despite the disagreement between them.

6. DISCUSSION AND CONCLUSION
In this paper we presented a formalization of creativity in
terms of fluency, flexibility, and originality. We automati-
cally computed creativity both for code and for visual as-
pects of Scratch projects and we intend to add the other
possible modalities of that environment to our future work.
Further, we set up a web application to rate the creativity
in Scratch projects independently of our formalization. Fi-
nally, we recorded the ratings of five human experts on 45
Scratch projects via this application.

We observed that human raters tend to disagree on which
projects are creative and which are not. Still, we were able
to train regression forests, which achieved a higher ranking
agreement with the human raters than they achieved with
each other, and which only used the automatically generated
ratings as input. We observed that the regression forest

model could further improve its accuracy when being applied
to individual experts instead of their shared data.

Our approach makes a step towards supporting teacher’s
abilities to detect and support creative outcomes in stu-
dents’ work. Ample future work is still to be done. Fur-
thermore, we plan to analyze creativity ratings over time,
thus tracking students’ creative learning process. Future
work will also need to address how an automatic assessment
of creativity can support creativity at scale in technolog-
ical environments, taking into account different subjective
interpretations.

7. ACKNOWLEDGMENTS
This paper was made possible by funding from the Ger-
man Research Foundation (DFG) under grant number PA
3460/2-1.

References
[1] H. Abdi. The Kendall rank correlation coefficient. En-

cyclopedia of Measurement and Statistics. Sage, Thou-
sand Oaks, CA, 1:508–510, 2007.

[2] T. M. Amabile. Creativity in context: Update to the
social psychology of creativity. Routledge, 2018.

[3] J. Bustillo and P. Garaizar. Using Scratch to foster
creativity behind bars: Two positive experiences in jail.
Thinking Skills and Creativity, 19:60 – 72, 2016.

[4] T. Chen and C. Guestrin. XGBoost: A scalable tree
boosting system. In Proc. SIGKDD, page 785–794,
2016.

[5] M. N. Giannakos, L. Jaccheri, and R. Proto. Teach-
ing computer science to young children through cre-
ativity: Lessons learned from the case of Norway. In
Proc. CSERC, page 103–111, 2013.

[6] J. P. Guilford. The structure of intellect. Psychological
bulletin, 53(4):267–293, 1956.

[7] D. Henriksen, P. Mishra, and P. Fisser. Infusing cre-
ativity and technology in 21st century education: A
systemic view for change. Educational Technology &
Society, 19(3):27–37, 2016.

[8] A. Hershkovitz, R. Sitman, R. Israel-Fishelson,
A. Egúıluz, P. Garaizar, and M. Guenaga. Creativity in
the acquisition of computational thinking. Interactive
Learning Environments, 27(5-6):628–644, 2019.

[9] R. Israel-Fishelson, A. Hershkovitz, A. Egúıluz,
P. Garaizar, and M. Guenaga. The associations between
computational thinking and creativity: The role of per-
sonal characteristics. Journal of Educational Comput-
ing Research, 58(8):1415–1447, 2021.

[10] K. H. Kim. Can we trust creativity tests? A review of
the torrance tests of creative thinking (TTCT). Cre-
ativity Research Journal, 18(1):3–14, 2006.

[11] M. Knobelsdorf and R. Romeike. Creativity as a
pathway to computer science. In Proc. ITiCSE, page
286–290, 2008.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 523

[12] A. Kovalkov, A. Segal, and K. Gal. Inferring creativity
in visual programming environments. In Proc. L@S,
page 269–272, 2020.

[13] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and
E. Eastmond. The scratch programming language and
environment. ACM Transactions on Computing Edu-
cation, 10(4), Nov. 2010.

[14] D. R. Mullet, A. Willerson, K. N. Lamb, and T. Ket-
tler. Examining teacher perceptions of creativity: A
systematic review of the literature. Thinking Skills and
Creativity, 21:9–30, 2016.

[15] J. Munkres. Algorithms for the assignment and trans-
portation problems. Journal of the society for industrial
and applied mathematics, 5(1):32–38, 1957.

[16] A. S. B. Reddy and D. S. Juliet. Transfer learning
with resnet-50 for malaria cell-image classification. In
Proceedings of the International Conference on Com-
munication and Signal Processing (ICCSP 2019), pages
0945–0949, 2019.

[17] M. Resnick, K. Brennan, C. Cobo, and P. Schmidt. Cre-
ative learning @ scale. In Proc. L@S, page 99–100, 2017.

[18] M. Resnick, J. Maloney, A. Monroy-Hernández,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, et al. Scratch:
programming for all. Communications of the ACM,
52(11):60–67, 2009.

[19] E. Rezende, G. Ruppert, T. Carvalho, F. Ramos, and
P. de Geus. Malicious software classification using
transfer learning of resnet-50 deep neural network. In
Proceedings of the 16th IEEE International Conference
on Machine Learning and Applications (ICMLA 2017),
pages 1011–1014, 2017.

[20] M. A. Runco and G. J. Jaeger. The standard definition
of creativity. Creativity Research Journal, 24(1):92–96,
2012.

[21] R. Shillo, N. Hoernle, and K. Gal. Detecting creativity
in an open ended geometry environment. International
Educational Data Mining Society, 2019.

[22] P. Thomas W., Z. Rui, and B. Tiffany. Evaluation of
a data-driven feedback algorithm for open-ended pro-
gramming. In Proc. EDM, pages 192–197, 2017.

[23] E. P. Torrance. Predictive validity of the torrance tests
of creative thinking. The Journal of creative behavior,
6(4):236–252, 1972.

[24] S. Wheeler, S. Waite, and C. Bromfield. Promoting
creative thinking through the use of ict. Journal of
Computer Assisted Learning, 18(3):367–378, 2002.

[25] F. E. Williams. Assessing creativity across williams
”cube” model. Gifted Child Quarterly, 23(4):748–756,
1979.

[26] K. Zhang and D. Shasha. Simple fast algorithms for the
editing distance between trees and related problems.
SIAM Journal on Computing, 18(6):1245–1262, 1989.

524 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

ALL-IN-ONE: Multi-Task Learning BERT models for
Evaluating Peer Assessments

Qinjin Jia, Jialin Cui, Yunkai Xiao, Chengyuan Liu, Parvez Rashid, Edward Gehringer
Department of Computer Science

North Carolina State University
Raleigh, NC, USA

qjia3, jcui9, yxiao28, cliu32, mrashid4, efg@ncsu.edu

ABSTRACT
Peer assessment has been widely applied across diverse aca-
demic fields over the last few decades, and has demonstrated
its effectiveness. However, the advantages of peer assess-
ment can only be achieved with high-quality peer reviews.
Previous studies have found that high-quality review com-
ments usually comprise several features (e.g., contain sug-
gestions, mention problems, use a positive tone). Thus, re-
searchers have attempted to evaluate peer-review comments
by detecting different features using various machine learn-
ing and deep learning models. However, there is no single
study that investigates using a multi-task learning (MTL)
model to detect multiple features simultaneously. This pa-
per presents two MTL models for evaluating peer-review
comments by leveraging the state-of-the-art pre-trained lan-
guage representation models BERT and DistilBERT. Our
results demonstrate that BERT-based models significantly
outperform previous GloVe-based methods by around 6% in
F1-score on tasks of detecting a single feature, and MTL
further improves performance while reducing model size.

Keywords
Peer assessment, peer feedback, automated peer-assessment
evaluation, text analytics, educational data mining

1. INTRODUCTION
Peer assessment is a process by which students give feedback
on other students’ work based on a rubric provided by the
instructor [20, 24]. This assessment strategy has been widely
applied across diverse academic fields, such as computer sci-
ence [28], medicine [27], and business [1]. Furthermore, mas-
sive open online courses (MOOCs) commonly use peer as-
sessment to provide feedback to students and assign grades.
There is abundant literature [7, 24, 25, 11] demonstrating
the efficacy of peer assessment. For example, Doubling et al.
[7] conducted a meta-analysis of 54 controlled experiments
for evaluating the effect of peer assessment across subjects
and domains. The results indicate that peer assessment is

more effective than teacher assessment, and also remarkably
robust across a wide range of contexts [7].

However, low-quality peer reviews are a persistent problem
in peer assessment, and considerably weaken the learning
effect [17, 22]. The advantages of peer assessment can only
be achieved with high-quality peer reviews [14]. This sug-
gests that peer reviews should not be simply transmitted
to other students but rather should be vetted in some way.
Course staff could check the quality of each review comment1

and assess its credibility manually, but this is not efficient.
Sometimes (e.g., for MOOCs), this is not remotely possi-
ble. Therefore, to ensure the quality of peer reviews and
the efficiency of evaluating their quality, the peer-assessment
platform should be capable of assessing peer reviews auto-
matically. We call this Automated Peer-Review Evaluation.

Previous research has determined that high-quality review
comments usually comprise several features [14, 2, 25]. Ex-
amples of such features are, “contains suggestions”, “men-
tions problems”, “uses a positive tone”, “is helpful”, “is local-
ized” [14]. Thus, one feasible and promising way to evalu-
ate peer reviews automatically is to adjudicate the quality
of each review comment based on whether it comprises the
predetermined features, by treating this task as a text classi-
fication problem. If a peer-review comment does not contain
some of the features, the peer-assessment platform could
suggest that the reviewer should revise the review comment
to add missing features. Additionally, containing sugges-
tions, mentioning problems, and using a positive tone, are
among the most essential features. Thus, we use them for
this study.

Previous work for automatically evaluating review comments
has focused on tasks that detect a single feature. For exam-
ple, Xiong and Litman [33] designed sophisticated features
and used traditional machine-learning methods for identify-
ing peer-review helpfulness. Zingle et al. [37] utilized differ-
ent rule-based, machine-learning, and deep-learning meth-
ods for detecting suggestions in peer-review comments. How-
ever, to the best of our knowledge, no single study exists
that investigates using a multi-task learning (MTL) model
to detect multiple features simultaneously (as illustrated in
Figure 1), albeit extensive research has been carried out on

1In some peer-assessment systems, reviews are “holistic”. In
others, including the systems we are studying, each review
contains a set of review comments, each comment gives a
response to a different criterion in the rubric.

Qinjin Jia, Jialin Cui, Yunkai Xiao, Chengyuan Liu, Parvez Rashid
and Edward Gehringer “ALL-IN-ONE: Multi-Task Learning BERT mod-
els for Evaluating Peer Assessments”. 2021. In: Proceedings
of The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 525-532.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 525

Figure 1: Illustration of the single-task and multi-task learning settings

the topic of automated peer-review evaluation (e.g., [34, 32,
33, 31, 30, 37, 13, 19, 8]).

There are at least two motivations for using multi-task learn-
ing (MTL) to detect features simultaneously. Firstly, the
problem naturally leads itself well to MTL, due to multiple
features usually needing to be employed for a comprehensive
and precise evaluation of peer-review comments. If we treat
this MTL problem as multiple independent single tasks, to-
tal model size and prediction time will increase by a factor of
the number of features used for evaluating review comments.
Secondly, MTL can increase data efficiency. This implies
that learning tasks jointly can lead to performance improve-
ment compared with learning them individually, especially
when training samples are limited [5, 36]. More specifically,
MTL can be viewed as a form of inductive transfer learn-
ing, which can help improve the performance of each jointly
learned task by introducing an inductive bias [3].

Additionally, the pre-trained language model, BERT (Bidi-
rectional Encoder Representations from Transformers) [6],
has become a standard tool for reaching the state of the art
in many natural language processing (NLP) tasks. BERT
can significantly reduce the need for labeled data. There-
fore, we propose multi-task learning (MTL) models for eval-
uating review comments by leveraging the state-of-the-art
pre-trained language representation models BERT and Dis-
tilBERT. We first compare a BERT-based single-task learn-
ing (STL) model with the previous GloVe-based STL model.
We then propose BERT and DistilBERT based MTL models
for jointly learning different tasks simultaneously.

The rest of the paper is organized as follows: Section 2
presents related work. Section 3 describes the dataset used
for this study. The proposed single-task and multi-task text
classification models are elaborated in Section 4. Section 5
details the experimental setting and results. In Section 6, we
conclude the paper, mention the limitations of our research,
and discuss future work.

2. RELATED WORK
2.1 Automated Peer-Review Evaluation
The earliest study on automated peer-review evaluation was
performed by Cho in 2008 [4]. They manually broke down
every peer review comment into review units (self-contained

messages in each review comment) and then coded them
as praise, criticism, problem detection, solution suggestion.
Cho [4] utilized traditional machine learning methods, in-
cluding naive Bayes, support vector machines (SVM), and
decision trees, to classify the review units.

Xiong et al. attempted to use features (e.g., counts of nouns,
verbs) derived from regular expressions and dependency parse
trees and rule-based methods to detect localization in the
review units [32]. Then, they designed more sophisticated
features by combining generic linguistic features mined from
review comments and specialized features, and used SVM to
identify peer-review helpfulness [33]. After that, Xiong et al.
upgraded their models to comment-level (use whole review
comment instead of review units as the input) [15, 16].

Then, researchers started to use deep neural networks on
tasks of automated peer-review evaluation for improving ac-
curacy. Zingle et al. compared rule-based machine-learning
and deep neural-network methods for detecting suggestions
in peer assessments, and the result showed that deep-learning
methods outperformed other traditional methods [37]. Xiao
et al. collected around 20,000 peer-review comments and
leveraged different neural networks to detect problems in
peer assessments [31].

2.2 Multi-Task Learning
Multi-task learning (MTL) is an important subfield of ma-
chine learning in which multiple tasks are learned simulta-
neously [35, 5, 3] to help improve the generalization perfor-
mance of all the tasks. A task is defined as {p(x), p(y|x), L)},
where p(x) is the input distribution, p(y|x) is the distribu-
tion over the labels given the inputs, and L is the loss func-
tion. For the MTL setting in this paper, all tasks have the
same input distribution p(x) and loss function L, but differ-
ent distributions over the labels given the inputs p(y|x).

In the context of deep learning, all methods of MTL can
be partitioned into two groups: hard-parameter sharing and
soft-parameter sharing [3]. For hard-parameter sharing, the
hidden layers are shared between all tasks while keeping sev-
eral task-specific output layers. For soft-parameter sharing,
each task has its independent model, but the distance be-
tween the different models’ parameters is regularized. For
this study, we use the hard-parameter sharing approach.

526 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 1: Sample Rubric Criteria
Does the design incorporate all of the functionality required?
Have the authors converted all the cases discussed in the test plan into automated tests?
Does the design appear to be sound, following appropriate principles and using appropriate patterns?

Table 2: Sample Data
Peer-Review Comments (lower-cased) Sugg. Prob. Tone

lots of good background details is given but the testing and implementation sections are missing. 0 1 1
the explanation is clear to follow but it could also include some explanation of the use cases. 1 0 1
only problem statement is explained and nothing about design. please add design and diagrams. 1 1 0

3. DATA
3.1 Data Source: Expertiza2

The data in this study is collected from an NSF-funded
peer-assessment platform, Expertiza. In this flexible peer-
assessment system, students can submit their work and peer-
review the learning objects (such as articles, code, and web-
sites) of other students [9]. This platform supports multi-
round peer review. In the assignments that provided the
review comments for this study, two rounds of peer review
(and one round of meta-review) were used:

1. The formative-feedback phase: For the first round of
review, students upload substantially complete projects.
The system then assigns each student to review a set
number of these submissions, based on a rubric pro-
vided. Sample rubric criteria are provided in Table
1.

2. The summative-feedback phase: After students have
had an opportunity to revise their work based on feed-
back from their peers, final deliverables are submit-
ted and peer-reviewed using a summative rubric. The
rubric may include criteria such as “How well has the
team has addressed the feedback given in the first re-
view round?”. Many criteria in the rubric ask review-
ers to provide a numeric rating as well as a textual
comment.

3. The meta-review phase: After the grading period is
over, course staff typically assess and grade the reviews
provided by students.

For this study, all textual responses to the rubric crite-
ria from the formative-feedback phase and the summative-
feedback phase of a graduate-level software-engineering course
are extracted to constitute the dataset. Each response to a
rubric criterion constitutes a peer-review comment. All re-
sponses from one student to a set of criteria in a single rubric
are called a peer review or a review. In this study, we fo-
cus on evaluating each peer-review comment. After filtering
out review comments that only contain symbols and special
characters, the dataset consists of 12,053 review comments.
In the future, we will update the platform, and this type of
review comments will be rejected by the system directly.

3.2 Annotation Process
One annotator who is a fluent English speaker and familiar
with the course context annotated the dataset. For qual-
ity control, 100 reviews were randomly sampled from the
2https://github.com/expertiza/expertiza

Table 3: Inter-Annotator Agreement (Cohen’s κ)
Label Suggestion Problem Tone Average
Cohen’s Kappa 0.92 0.84 0.87 0.88

dataset and labeled by a second annotator who is also a
fluent English speaker and familiar with the course con-
text. The inter-annotator agreement between two annota-
tors was measured by Cohen’s κ coefficient, which is gen-
erally thought to be a more robust measure than simple
percent agreement calculation [12]. Cohen’s κ coefficient for
each label is shown in Table 3. The result suggests that the
two annotators had almost perfect agreement (>0.81) [12].
Sample annotated comments are provided in Table 2.

We define each feature (label) in the context of automated
peer-review evaluation as follows:

Suggestion: A comment is said to contain a suggestion if it
mentions how to correct a problem or make improvements.

Problem: A comment is said to detect problems if it points
out something that is going wrong in peers’ work.

Positive Tone: A comment is said to use a positive tone if it
has an overall positive semantic orientation.

3.3 Statistics on the Dataset
The minority class for each label includes more than 20%
of samples, and thus the dataset is mildly imbalanced. It
consists of 12,053 peer-review comments, and the average
number of words for each peer-review comment is 29. We
found that most students (over three-quarters) use a pos-
itive tone in their peer-review comments. Around half of
the review comments mention problems with their peers’
work, but only one-fifth of review comments give sugges-
tions. Characteristics of the dataset are shown in Table 4
below,

Table 4: Statistics on the Dataset

Label Class %samples avg.#words max#words

Sugg. 0 79.2% 22 922
1 20.8% 58 1076

Prob. 0 56.7% 22 479
1 43.3% 38 1076

Pos. Tone 0 22.2% 28 1040
1 77.8% 29 1076

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 527

4. METHODOLOGY
In this section, we first briefly introduce Transformer [26],
BERT [6], and DistilBERT [21]. Then we describe BERT
and DistilBERT based single-task and multi-task models.

4.1 Transformer
In 2017, Vaswani et al. published a groundbreaking paper,
“Attention is all you need,” and proposed an architecture
called Transformer, which significantly improved the perfor-
mance of sequence-to-sequence tasks (e.g., machine trans-
lation) [26]. The Transformer is entirely built upon self-
attention mechanisms without using any recurrent or con-
volutional layers. As shown in Figure 2, the Transformer
consists of two parts: the left part is an encoder, and the
right part is a decoder. The encoder block takes a batch of
sentences represented as sequences of word IDs. Then the
sequences pass through an embedding layer, and the posi-
tional embedding adds positional information of each word.

Figure 2: Architecture of the Transformer [26]

The encoder block is then briefly introduced since BERT
reuses it. Each encoder consists of two layers: a multi-head
attention layer and a feed-forward layer. The multi-head
attention layer uses the self-attention mechanism, which en-
codes each word’s relationship with every other word in the
same sequence, paying more attention to the most relevant
ones. For example, the output of this layer for the word
“like” in the sentence, “we like the Educational Data Mining
conference 2021!” will depend on all the words in the sen-
tence. However, it will probably pay more attention to the
word “we” than to the words “data” or “mining.”

4.2 BERT
BERT is a state-of-the-art pre-trained language representa-
tion model proposed by Devlin et al. [6]. It has advanced
the state-of-the-art results in many NLP tasks and signif-
icantly reduced the need for labeled data by pre-training
on unlabeled data over different pre-training tasks. Each
BERT model consists of 12 encoder blocks of the Trans-

former model. The input representation is constructed by
summing the corresponding token and positional embed-
dings. The length of the output sequence is the same as
the input length, and each input token has a corresponding
representation in the output. The output of the first token
‘[CLS]’ (a special token added to the sequence) is utilized
as the aggregate representation of the input sequence for
classification tasks [6].

The BERT framework consists of two steps: pre-training
and fine-tuning. During pre-training, the model is trained
on unlabeled data, BooksCorpus (800M words) and En-
glish Wikipedia (2,500M words), over two pre-training tasks,
Masked language model (MLM) and Next sentence predic-
tion (NSP). For fine-tuning, the BERT model is first ini-
tialized with the pre-trained parameters, and then all of
the parameters are fine-tuned using labeled data from the
downstream tasks (e.g., text classification). For this study,
we use HuggingFace pre-trained BERT3 to initialize mod-
els and then fine-tune models with annotated peer-review
comments for automated peer-review evaluation tasks.

4.3 DistilBERT
Although BERT has shown remarkable improvements across
various NLP tasks and can be easily fine-tuned for down-
stream tasks, one main drawback of BERT is that it is very
compute-intensive (i.e., it takes a huge amount of param-
eters, ∼110M parameters). Therefore, researchers are at-
tempting to apply different methods for compressing BERT,
including pruning, quantization, and knowledge distillation
[10]. One of the compressed BERT models is called Dis-
tilBERT [21]. DistilBERT is compressed from BERT by
leveraging the knowledge distillation technique during the
pre-training phase. The authors [21] demonstrated that
DistilBERT has 40% fewer parameters and is 60% faster
than the original BERT while retaining 97% of its language-
understanding capabilities. We will investigate whether we
can reduce model size while retaining performance for our
task with DisilBERT.4

4.4 Input Preparation
Text Preprocessing: First, URL links in peer-review com-
ments are removed. Then, we lowercase all comments and
leverage a spellchecker API5 to correct typos and misspellings.
Finally, two special tokens ([CLS], [SEP]) are added to each
review comment, as required for BERT. The [CLS] token
is added to the beginning of each review for classification
tasks. The [SEP] token is added at the end of each review.

Subword Tokenization: The tokenizer used for BERT is a
subword tokenizer called“WordPiece” [29]. Traditional word
tokenizers suffer the out-of-vocabulary (OOV) word prob-
lem. However, a subword tokenizer could alleviate the OOV
problem. It splits a text into subwords, which then are con-
verted to token IDs.

Input Representation: The token IDs are padded or trun-
cated to 100 for each sequence and then pass through a
trainable embedding layer to be converted to token embed-
dings. The input representation for BERT is constructed by
summing the token embeddings and positional embeddings.

3https://huggingface.co/bert-base-uncased
4https://huggingface.co/distilbert-base-uncased
5https://pypi.org/project/pyspellchecker/

528 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 3: BERT and DistilBERT based single-task and multi-task learning architectures

4.5 Single-Task and Multi-Task Models
As mentioned in the BERT paper [6] and other studies [23],
the pre-trained BERT model can be fine-tuned with just one
additional output layer to create state-of-the-art models for
a wide range of tasks, including text classification. There-
fore, only one dense layer is added on top of the original
BERT or DistilBERT model and used as a binary classifier
for the single-task learning models. Three dense layers are
added to the multi-task learning models, one for each label.

5. EXPERIMENTS AND RESULTS
In this section, we first introduce training details and eval-
uation metrics and then show experimental results.

5.1 Training
Train/Test split: We find by experiments that increasing
training size does not help the classifier when the number of
training samples is over 5000. Therefore, 5000/2053/5000
data samples are used for training/validation/testing.

Loss Functions: For BERT and DistilBERT based Single-
Task Learning (STL) models, the cross-entropy loss is used.
For BERT and DistilBERT base Multi-Task Learning (MTL)
models, the cross-entropy loss is used for each task. The to-
tal loss will be the sum of the cross-entropy loss of each
task.

Cost-Sensitive method: As mentioned in Section 3.3, the
dataset is mildly imbalanced (minority class > 20%). Thus,
a cost-sensitive method is used in this study for alleviating
the problem of class imbalance and improving performance,
by weighting the cross-entropy loss function during training
based on the frequency of each class in the training set.

Hyperparameters: As we mentioned in Section 4.2 and Sec-
tion 4.3, we use HuggingFace pre-trained BERT and Distil-
BERT to initialize models. The hidden size for BERT and
DistilBERT is 768. We then fine-tune the BERT and Dis-
tilBERT based single-task learning and multi-task learning
models with a batch size of 32, max sequence length 100,
learning rate 2e-5/3e-5/5e-5, epochs of 2/3, dropout rate
0.1, and Adam optimizer with β1=0.9 and β2=0.99.

5.2 Evaluation Metrics
We use accuracy, macro-F1 score (average for each class of
each label instead of each label), and AUC (Area Under
ROC Curve) to evaluate models. Since the dataset is merely
mildly imbalanced, accuracy can still be a useful metric. The
Macro-F1 instead of F1-score for the positive class is used,
since both positive class and negative class for each label
are important for our task. For this study, we mainly use
accuracy and macro-F1 to compare different models.

5.3 Results
Table 5 shows the performance of all models when train-
ing with a different number of training samples (1K, 3K,
and 5K). The first column indicates the models (GloVe,
BERT, DistilBERT) and training settings (single-task learn-
ing (STL), multi-task learning (MTL)).

RQ1 Does BERT outperform previous methods?
We first implemented a baseline single-task learning model
by leveraging pre-trained GloVe (Global Vectors for Word
Representation)6 [18] word embeddings. We added a Batch-
Normalization layer on top of GloVe, and the aggregate
representation of the input sequence for classification was
obtained by AveragePooling the output of the BatchNor-
malization layer. A dense layer was added on the top for
performing classification.

We compared GloVe and BERT for every single task. As
shown in Table 5, the results clearly showed that a BERT-
based STL model yields substantial improvements over the
previous GloVe-based method. The STL-BERT model trained
with 1000 data samples outperformed the STL-GloVe model
trained with 5000 data samples on all tasks. This suggests
that the need for labeled data could be significantly reduced
by leveraging a pre-trained language model BERT.

RQ2 How does multi-task learning perform?
By comparing MTL-BERT with STL-BERT and MTL-Distil-
BERT with STL-DistilBERT when trained with a different
number of training samples, we found that jointly learning

6https://nlp.stanford.edu/projects/glove/

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 529

Table 5: Performance evaluation (average performance of 5 independent runs)

Suggestion Problem Pos. Tone

Acc. Macro-F1 AUC Acc. Macro-F1 AUC Acc. Macro-F1 AUC

Training with 1000 labeled data samples
1 STL-GloVe (Baseline) 82.0% .744 .865 80.2% .790 .879 76.0% .700 .823
2 STL-BERT 90.0% .868 .975 89.2% .892 .955 87.0% .828 .940
3 MTL-BERT 94.0% .904 .974 89.0% .890 .955 89.4% .846 .941
4 STL-DistilBERT 92.4% .890 .970 88.0% .880 .950 86.2% .822 .933
5 MTL-DistilBERT 93.8% .910 .971 89.0% .886 .951 88.6% .824 .939

Training with 3000 labeled data samples
1 STL-GloVe (Baseline) 88.4% .836 .929 83.0% .830 .898 82.4% .770 .872
2 STL-BERT 93.8% .910 .980 90.6% .904 .964 89.6% .858 .948
3 MTL-BERT 94.6% .916 .981 91.0% .906 .964 90.0% .854 .947
4 STL-DistilBERT 94.0% .910 .979 89.8% .900 .962 89.0% .850 .942
5 MTL-DistilBERT 94.2% .916 .978 89.6% .892 .960 90.2% .850 .945

Training with 5000 labeled data samples
1 STL-GloVe (Baseline) 89.9% .852 .947 84.2% .832 .908 85.0% .794 .883
2 STL-BERT 94.4% .916 .980 91.2% .912 .968 89.4% .852 .950
3 MTL-BERT 94.8% .922 .982 91.0% .908 .966 90.8% .854 .951
4 STL-DistilBERT 94.2% .912 .978 90.4% .902 .964 89.8% .860 .944
5 MTL-DistilBERT 94.2% .914 .980 90.4% .902 .964 90.6% .852 .951

Table 6: The # of parameters for each setting

Setting # of parameters

STL-BERT * 3 328M
STL-DistilBERT * 3 199M
MTL-BERT 109M
MTL-DistilBERT 66M

related tasks improves the performance of the suggestion-
detection task and the positive-tone detection task, espe-
cially when we have limited training samples (i.e., when
training with 1K and 3K data samples). This suggests that
MTL can increase data efficiency. However, for the problem-
detection task, there is no significant difference between the
performance of the STL and MTL settings.

Additionally, MTL can considerably reduce the model size.
As shown in Table 6, three BERT-based STL models would
have more than 328M parameters, and this number would
be 199M for the DistilBert-based models. However, if we
employ the MTL models for evaluating peer-review com-
ments, the number of parameters would be reduced to 109M
and 66M, respectively. This demonstrates that using MTL
to evaluate reviews can save considerable memory resources
and reduce the response time of peer-review platforms.

RQ3 How does DistilBERT perform?
By comparing DistilBERT and BERT on both STL and
MTL settings, we found that BERT-based models slightly
outperformed DistilBERT-based models. This result im-
plied a trade-off between performance and model size when
selecting the model to be deployed on peer-review platforms.
If we focus on high accuracy instead of memory resource
usage and response time of the platforms, the MTL-BERT
model is the choice. Otherwise, the MTL-DistilBERT should
be deployed.

6. CONCLUSIONS
In this study, we implemented single-task and multi-task
models for evaluating peer-review comments based on the
state-of-the-art language representation models BERT and
DistilBERT. Overall, the results showed that BERT-based
STL models yield significant improvements over the previous
GloVe-based method on tasks of detecting a single feature.
Jointly learning different tasks simultaneously further im-
proves performance and saves considerable memory usage
and response time for peer-review platforms. The MTL-
BERT model should be deployed on peer-review platforms,
if our focus is on high accuracy instead of memory resource
usage and response time of the platforms. Otherwise, the
MTL-DistilBERT model is preferred.

There are three limitations to this study. Firstly, we em-
ployed three features of high-quality peer reviews to eval-
uate a peer-review comment. However, it is still unclear
how MTL will perform if we learn more tasks simultane-
ously. Secondly, we mainly focused on a hard-parameter
sharing approach for constructing MTL models. However,
some studies have found that the soft-parameter sharing ap-
proach might be a more effective method for constructing
multi-task learning models. Thirdly, the performance of the
model has not been evaluated in actual classes. We intend to
deploy the model on the peer-review platform and evaluate
the model extrinsically in real-world circumstances.

These preliminary results serve as a basis for our ongoing
work, in which we are building a more complex all-in-one
model for comprehensively and automatically evaluating the
quality of peer review comments to improve peer assessment.
In the future, we will attempt to evaluate peer reviews based
on more predetermined features and use fine-grained labels
(e.g., instead of evaluating whether a peer-review comment
contains suggestions, we will evaluate how many suggestions
are contained in a review comment).

530 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

7. REFERENCES
[1] S. Brutus, M. B. Donia, and S. Ronen. Can business

students learn to evaluate better? evidence from
repeated exposure to a peer-evaluation system.
Academy of Management Learning & Education,
12(1):18–31, 2013.

[2] P. Caligiuri and D. C. Thomas. From the editors: How
to write a high-quality review, 2013.

[3] R. Caruana. Multitask learning. Machine learning,
28(1):41–75, 1997.

[4] K. Cho. Machine classification of peer comments in
physics. In Educational Data Mining 2008, 2008.

[5] M. Crawshaw. Multi-task learning with deep neural
networks: A survey. arXiv preprint arXiv:2009.09796,
2020.

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[7] K. S. Double, J. A. McGrane, and T. N. Hopfenbeck.
The impact of peer assessment on academic
performance: A meta-analysis of control group
studies, 2020.

[8] M. Fromm, E. Faerman, M. Berrendorf, S. Bhargava,
R. Qi, Y. Zhang, L. Dennert, S. Selle, Y. Mao, and
T. Seidl. Argument mining driven analysis of
peer-reviews. arXiv preprint arXiv:2012.07743, 2020.

[9] E. Gehringer, L. Ehresman, S. G. Conger, and
P. Wagle. Reusable learning objects through peer
review: The expertiza approach. Innovate: Journal of
Online Education, 3(5):4, 2007.

[10] M. Gupta, V. Varma, S. Damani, and K. N. Narahari.
Compression of deep learning models for nlp. In
Proceedings of the 29th ACM International Conference
on Information & Knowledge Management, pages
3507–3508, 2020.

[11] H. Li, Y. Xiong, C. V. Hunter, X. Guo, and
R. Tywoniw. Does peer assessment promote student
learning? a meta-analysis. Assessment & Evaluation
in Higher Education, 45(2):193–211, 2020.

[12] M. L. McHugh. Interrater reliability: the kappa
statistic. Biochemia medica, 22(3):276–282, 2012.

[13] S. Negi and P. Buitelaar. Suggestion mining from
opinionated text. Sentiment Analysis in Social
Networks, pages 129–139, 2017.

[14] M. M. Nelson and C. D. Schunn. The nature of
feedback: How different types of peer feedback affect
writing performance. Instructional Science,
37(4):375–401, 2009.

[15] H. Nguyen, W. Xiong, and D. Litman. Classroom
evaluation of a scaffolding intervention for improving
peer review localization. In International Conference
on Intelligent Tutoring Systems, pages 272–282.
Springer, 2014.

[16] H. Nguyen, W. Xiong, and D. Litman. Instant
feedback for increasing the presence of solutions in
peer reviews. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Demonstrations, pages
6–10, 2016.

[17] D. Omar, M. Shahrill, and M. Zuraifah Sajali. The use

of peer assessment to improve students’ learning of
geometry. European Journal of Social Science
Education and Research, 5(2):187–206, 2018.

[18] J. Pennington, R. Socher, and C. D. Manning. Glove:
Global vectors for word representation. In Proceedings
of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543, 2014.

[19] L. Ramachandran et al. Automated assessment of
reviews. 2013.

[20] P. M. Sadler and E. Good. The impact of self-and
peer-grading on student learning. Educational
assessment, 11(1):1–31, 2006.

[21] V. Sanh, L. Debut, J. Chaumond, and T. Wolf.
Distilbert, a distilled version of bert: smaller, faster,
cheaper and lighter. arXiv preprint arXiv:1910.01108,
2019.

[22] H. K. Suen. Peer assessment for massive open online
courses (moocs). International Review of Research in
Open and Distributed Learning, 15(3):312–327, 2014.

[23] C. Sun, X. Qiu, Y. Xu, and X. Huang. How to
fine-tune bert for text classification? arXiv preprint
arXiv:1905.05583, 2019.

[24] K. Topping. Peer assessment between students in
colleges and universities. Review of educational
Research, 68(3):249–276, 1998.

[25] M. Van Zundert, D. Sluijsmans, and
J. Van Merriënboer. Effective peer assessment
processes: Research findings and future directions.
Learning and instruction, 20(4):270–279, 2010.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[27] C. Violato and J. Lockyer. Self and peer assessment of
pediatricians, psychiatrists and medicine specialists:
implications for self-directed learning. Advances in
Health Sciences Education, 11(3):235–244, 2006.

[28] Y. Wang, H. Li, Y. Feng, Y. Jiang, and Y. Liu.
Assessment of programming language learning based
on peer code review model: Implementation and
experience report. Computers & Education,
59(2):412–422, 2012.

[29] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,
W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, et al. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

[30] Y. Xiao, G. Zingle, Q. Jia, S. Akbar, Y. Song,
M. Dong, L. Qi, and E. Gehringer. Problem detection
in peer assessments between subjects by effective
transfer learning and active learning.

[31] Y. Xiao, G. Zingle, Q. Jia, H. R. Shah, Y. Zhang,
T. Li, M. Karovaliya, W. Zhao, Y. Song, J. Ji, et al.
Detecting problem statements in peer assessments.
arXiv preprint arXiv:2006.04532, 2020.

[32] W. Xiong and D. Litman. Identifying problem
localization in peer-review feedback. In International
Conference on Intelligent Tutoring Systems, pages
429–431. Springer, 2010.

[33] W. Xiong and D. Litman. Automatically predicting

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 531

peer-review helpfulness. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
502–507, 2011.

[34] W. Xiong, D. Litman, and C. Schunn. Assessing
reviewers’ performance based on mining problem
localization in peer-review data. In Educational Data
Mining 2010-3rd International Conference on
Educational Data Mining, pages 211–220, 2010.

[35] Y. Zhang and Q. Yang. A survey on multi-task
learning. arXiv preprint arXiv:1707.08114, 2017.

[36] Y. Zhang and Q. Yang. A survey on multi-task
learning. IEEE Transactions on Knowledge and Data
Engineering, 2021.

[37] G. Zingle, B. Radhakrishnan, Y. Xiao, E. Gehringer,
Z. Xiao, F. Pramudianto, G. Khurana, and A. Arnav.
Detecting suggestions in peer assessments.
International Educational Data Mining Society, 2019.

532 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Quizzing Policy Using Reinforcement Learning
for Inferring the Student Knowledge State

Joy He-Yueya
University of Washington

joyhe@cs.washington.edu

Adish Singla
MPI-SWS

adishs@mpi-sws.org

ABSTRACT
The prevalence of online education systems provides oppor-
tunities to deliver personalized learning at scale. Educa-
tional systems need to assess students so that they can pro-
vide better curricula tailored to each student’s unique needs.
Since there is a limited amount of time for quizzing a stu-
dent, we need to test each student using those questions
that capture the most information about their level of un-
derstanding of various concepts. In this paper, we formally
pose the problem and present multiple approaches for learn-
ing a quizzing policy to determine a personalized sequence of
questions for each student that best predicts their knowledge
state. We first introduce simple heuristics including random
selection and an uncertainty sampling approach inspired by
an active learning framework. We then develop a reinforce-
ment learning (RL) approach for designing a quizzing policy.
Using simulations of students’ knowledge states, we provide
initial evidence that an RL-based approach can improve over
simple heuristics. We further demonstrate the effectiveness
of our approaches using a real-world dataset consisting of
over 1.5 million examples of students’ answers to mathe-
matics questions from Eedi, an online educational platform.

Keywords
reinforcement learning, knowledge state, quizzing policy

1. INTRODUCTION
Online education systems are making high-quality educa-
tion more accessible for students across the globe. These
systems provide various educational resources such as in-
structional videos and exercises. To provide personalized
curricula for improving the learning outcomes of students,
an online education system needs to accurately infer each
student’s knowledge state (i.e., their level of understanding
of various concepts) by quizzing them. This is a challeng-
ing task because the quizzing time is limited. To make the
most efficient use of each student’s time, it is important to
prioritize those questions that reveal the most information

about the student’s knowledge.

We focus on a specific goal for student assessment: given a
limit to the number questions we are allowed to ask each stu-
dent, how can we determine a sequence of questions for each
student that best predicts their knowledge state? Specifically,
when an education system needs to assess a student for in-
ferring their knowledge, the system suggests a personalized
question to query for the student and gets their response
to the question. Based on the student’s response history
(i.e., a sequence of question-response pairs), the system se-
lects another question to query for the student until it has
exhausted its query budget (i.e., the maximum number of
queries allowed). We refer to the function that provides the
next question to query based on students’ response histories
as quizzing policy (QP).

We define the task of learning a QP in the context of the
NeurIPS 2020 Education Challenge [27] launched by Eedi
[6], an online educational platform with thousands of ac-
tive users daily around the globe. We consider a set of 948
multiple-choice mathematics questions that correspond to
57 different concepts. Specifically, the task is to obtain a
limited set of answers from each student for inferring the
student’s knowledge on the 57 concepts and then predict
the student’s performance on unseen questions based on the
inferred knowledge state.

The key challenge in designing a QP is related to a cru-
cial task in machine learning: active learning (AL). For
many learning tasks (e.g., image classification, text classi-
fication), obtaining sufficient labeled data for training high-
performance models is costly [16, 18, 32]. AL aims to reduce
the amount of annotated data needed by having the model
carefully select which data points should be labeled.

Existing methods for AL include heuristics such as select-
ing the data points about which the model is most uncer-
tain (i.e., uncertainty sampling) [15, 26, 31, 24], picking
the instances about which a set of possible different mod-
els disagree the most (i.e., query by committee) [23, 10], or
choosing the example that can lead to the most immediate
improvement in model performance (i.e., estimated error re-
duction) [22, 12].

In addition to these heuristics for AL, recent studies [30,
19, 9] have explored how to use reinforcement learning (RL)
to learn the AL strategy itself. RL [20, 25] is a powerful

Joy He-Yueya and Adish Singla “Quizzing Policy Using Reinforcement
Learning for Inferring the Student Knowledge State”. 2021. In: Pro-
ceedings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 533-539.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 533

framework where an agent learns how to make good deci-
sions (actions) in different situations (states) through trial
and error. In the RL terminology, the action space provides
the set of actions that can be taken by the RL agent at a
given point in time; the state space defines the “state of the
world” that is visible to the RL agent; and the reward func-
tion assigns a value to the outcome of each action taken by
the RL agent. In this case, the set of possible instances to
be labeled defines the action space; the state space is a rep-
resentation of the sequence of instances that have already
been annotated; and the gain in prediction accuracy as a re-
sult of an action defines the reward. The RL agent learns to
improve its decision-making over time based on the reward
signals it receives. Inspired by these studies, we investigate
using RL to learn a QP for personalized student assessment.

1.1 Our approach and contributions
In this paper, we formalize the problem of learning a QP for
inferring the student knowledge state and present several
different approaches including simple heuristics and an RL-
based approach. Our contributions are:

• We formulate the problem of learning a QP to infer stu-
dent knowledge.

• We propose simple heuristics (i.e., random selection, un-
certainty sampling) and an RL-based approach for learn-
ing a QP.

• We evaluate the performance of different QPs on a syn-
thetic dataset and a publicly available dataset consisting
of over 1.5 million examples of students’ answers to math-
ematics questions from Eedi.

For the reproducibility of experimental results and facilitat-
ing research in this area, the code and dataset are publicly
available.1

1.2 Related work
AL is a popular methodology in machine learning that aims
to reduce the amount of annotated data needed by hav-
ing the model carefully select which data points should be
labeled. The task of designing a QP is closely related to
AL because the goal is to optimally select a set of ques-
tions to ask students to gain the most information about
their knowledge states. Uncertainty sampling [15, 26, 31,
24] is one of the most popular heuristics for AL because it is
straightforward and computationally efficient. Specifically,
it suggests labeling instances that are closest to the model’s
decision boundary (i.e., the most uncertain). Woodward and
Finn [30] propose the first application of RL to the task of
AL for image classification. Other studies [19, 9] explore
how to train an AL policy that can generalize across diverse
datasets.

RL has also been applied to various tasks in education such
as learning an instructional policy [2, 3, 5, 13, 17, 21, 28],
learning a hint policy for helping students solve multi-step
problems [7], and generating new educational tasks [1]. We
introduce a different policy, a quizzing policy for inferring
the student knowledge state, which has not been designed
using RL in previous literature.

1https://github.com/joyheyueya/quizzing-policy

c2 c3

c5 c6

c4

c1

Figure 1: Graphical representation of knowledge. This is
an example of an undirected graph where each node (circle)
represents a concept, and each edge connects a pair of similar
concepts: c1 is an independent concept, c2 and c3 are similar,
and c4, c5, and c6 are similar.

There is prior work on the efficient assessment of knowledge
[8]. Our student knowledge model is inspired by the knowl-
edge components (i.e., concepts / skills) used in Bayesian
Knowledge Tracing (BKT) [4], which represents the state
for each knowledge component as a binary variable: 1 if the
knowledge component is known, 0 otherwise.

2. PROBLEM FORMULATION
In this section, we formalize the problem of learning a quizzing
policy (QP) for inferring the student knowledge state.

2.1 Student knowledge state
Our goal is to infer student knowledge on a set of n con-
cepts C = {c1, ..., cn} associated with a set of m questions
X = {x1, ..., xm}. For simplicity, each question corresponds
to a single concept, but each concept might be associated
with more than one question (m >> n). A student’s knowl-
edge state h is defined as h = [v1, ..., vn] where v1, ..., vn are
binary variables that indicate whether or not the student
knows each concept in C: vi = 1 if ci is known, and vi = 0
otherwise. Formally, we define a hypothesis space H for all
possible knowledge states: H = {0, 1}n. We assume h is
fixed during the assessment.

2.2 Graphical representation of knowledge
We consider two assumptions that are useful for inferring
the student knowledge state: 1) difficult concepts are more
likely to be unknown, and easy concepts are more likely to
be known; 2) similar concepts are more likely to have the
same value (i.e., a student who knows one concept is also
likely to know the other concepts that are similar to the one
that is already known). These influences can be represented
by an undirected graph where each node corresponds to a
concept, and each edge connects a pair of concepts that are
similar (see Figure 1). In the Eedi dataset (described in
Section 4.2.1), we consider every pair of concepts that share
the same super-concept to be similar (e.g., there is an edge
between “Rearranging Formula and Equations” and “Substi-
tution into Formula” because they are both under the same
super-concept “Formula”). Based on this graphical struc-
ture, we model a student’s knowledge state using a Markov
Random Field (MRF).

An MRF is a probability distribution over a set of vari-
ables that satisfy certain properties defined by an undirected
graph. In our case, we define a probability distribution
p over binary variables v1, ..., vn defined by an undirected
graph G = (V ∪ F,E) where V is the set of nodes (con-

534 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://github.com/joyheyueya/quizzing-policy

cepts), F is the set of factors that define a set of functions
over the variables that they are connected with, and E is
the set of edges (see Figure 2).

An MRF allows us to calculate the probability of each way of
assigning values to binary variables v1, ...vn, which represent
the knowledge state of the corresponding concepts c1, ..., cn.
The probability p has the form:

p(v1, ..., vn) =
1

Z

∏
ψα∈F

ψα(vα) (1)

where α represents a subgraph of G, and ψα denotes a factor
that defines a non-negative function over the set of variables
vα in α. Z is a normalizing constant that ensures the distri-
bution sums to one:

Z =
∑

v1,...vn

∏
ψα∈F

ψα(vα) (2)

We specify factors for an MRF based on two assumptions
about variables v1, ..., vn. For our first assumption that dif-
ficult concepts have a higher probability of being unknown,
we define unary factors:

ψi(vi) =

{
1− difficultyci if vi = 1

difficultyci otherwise

where difficultyci is a real number that represents the dif-
ficulty of the concept ci that vi corresponds to, and 0 ≤
difficultyci ≤ 1. A higher difficultyci value means ci is more
difficult.

For our second assumption that variables corresponding to
similar concepts are more likely to have the same values,
we define binary factors between every pair of nodes (vi, vj)
that are connected by an edge in graph G:

ψ{i,j}(vi, vj) =

{
influence if vi = vj

1− influence otherwise

where influence represents a constant that satisfies 0.5 ≤
influence ≤ 1. A greater influence value means we want to
assign a higher probability to an assignment that gives the
same values to variables corresponding to similar concepts.
In our work, we fix influence to be 0.7. We also tried similar
values, and they lead to similar results.

2.3 Quizzing policy for knowledge inference
Since there is a cost associated with each question we query
students (e.g., time, student’s energy), we need to select a
limited number of questions that reveal the most about their
knowledge state. Thus, student knowledge prediction can
be framed as a pool-based active learning (AL) task with a
given query budget T . For simplicity, we assume querying
each exercise leads to the same cost and define T to be the
total number of queries we are allowed.

We describe the AL framework in detail, see Algorithm 1.
At a given time step t, we have a labelled set L that con-
sists of all the questions we have asked the student and their
responses. Formally, L = {(xi, yi)}ti=1 where xi ∈ X, and
yi ∈ {0, 1} is the student’s response to xi (yi = 0 if the
response is incorrect, yi = 1 if the response is correct). We

𝑣2 𝑣3

𝑣5 𝑣6

𝑣4

𝑣1

ψ2

ψ{2,3}

ψ4

ψ{4,5} ψ{4,6}

ψ{5,6}
ψ3

ψ1

ψ5 ψ6

Figure 2: Modeling graphical student knowledge using
MRF. This models the knowledge representation in Figure
1 as a factor graph. Each node vi is a binary variable that
represents the knowledge state of the corresponding concept
ci. Factors are represented by rectangles. There is a unary
factor for every node and a binary factor between every pair
of nodes connected by an edge to model the dependency
between variables.

also have an unlabelled set U consisting of all the questions
that we have not asked). Based on L, we have a belief Bh
about the student’s knowledge h. Formally, Bh = [b1, ..., bn]
where bi is the probability of knowing the concept ci (i.e.,
vi = 1 with a probability of bi). We define Binary(Bh)
as a function that converts probabilities into binary values
using a threshold of 0.5 (1 if bi ≥ 0.5 and 0 otherwise).
Binary(Bh) gives the inferred binary knowledge state. We
update Bh based on L by running the Loopy Belief Propaga-
tion algorithm (LBP) [11] on our graph defined in Section
2.2. LBP takes L as input and outputs the probabilities
b1, ..., bn (0 ≤ bi ≤ 1). Additionally, we have a QP that
takes Bh as input and outputs the next question to ask the
student. Specifically, a policy π(·|Bh) provides a probability
distribution with support over all questions in U given Bh.
We can then sample a question from π(·|Bh).

Algorithm 1: Active learning for inferring knowledge

Input: budget T , quizzing policy π
Output: ĥ
Initialize L0 ← ∅, U0 ← {xi}mi=1

for t = 1, 2, 3, . . . , T do
Bht = LBP(Lt−1)
xt ∼ π(·|Bht)
Lt ← Lt−1 ∪ (xt, yt)
Ut ← Ut−1\xt

end

ĥ← Binary(BhT)

Algorithm 1 runs as follows: at each time step t, we first
get our current belief Bht based on the previously labelled
set Lt−1 (i.e., the set of all the questions we have asked the
student before time step t and their responses). We then
select a question xt from the previously unlabelled set Ut−1

to ask the student by sampling from π(·|Bht), which defines
a probability distribution with support over all questions in
Ut−1 given Bht . Then, we update Ut−1 to Ut by removing xt

from Ut−1 and update Lt−1 to Lt by adding xt and its label
yt to Lt−1. The quizzing process terminates when the query
budget is exhausted. In this work, we fix T = 10 as required

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 535

by the NeurIPS 2020 Education Challenge [27]. The final

output of the algorithm ĥ is the student’s knowledge state
at time step T , which is inferred based on BhT .

2.4 Evaluation
We evaluate our QPs using two methods. First, we create a
synthetic dataset consisting of simulated students (see Sec-
tion 4.1). We predict each student’s knowledge state using

Algorithm 1. Given a prediction result ĥ, we calculate the
prediction accuracy using the following equation:

Acc(ĥ) =
1

n

n∑
i=1

1(ĥ[i] = h?[i]) (3)

where h? is the actual knowledge state.

Second, we apply our QPs to the NeurIPS 2020 Education
Challenge (see Section 4.2). The challenge is to obtain a
limited set of answers from each student for predicting the
correctness of their answers to the remaining questions. Our
approach to this challenge is to first infer a student’s knowl-
edge state using Algorithm 1 and then predict the student’s
responses to the remaining questions based on the inferred
knowledge state. Specifically, we design an additional model
(see Section 4.2.2) that takes in our belief about the stu-
dent’s knowledge state at the final time step BhT and out-
puts the student’s response to each of the m questions. For-
mally, the vector Ŷ ∈ Rm denotes the output of the model.
We calculate the prediction accuracy as:

Acc(Ŷ) =
1

|UT |
∑
xi∈UT

1(Ŷ[i] = Y?[i]) (4)

where UT is the set of unlabelled questions at the final time
step (unseen by the model), Y?[i] is the student’s actual

response to xi, and Ŷ[i] is the predicted response.

3. DESIGNING QUIZZING POLICIES
In this section, we present heuristics-based approaches and
a reinforcement learning (RL)-based approach to designing
a quizzing policy (QP) that takes in a belief Bh about a
student’s knowledge state and outputs the next question to
ask the student.

3.1 Heuristic approaches
We present two simple heuristics for designing a QP: random
selection (QP-Random) and uncertainty sampling (QP-
Uncertain). QP-Random is straightforward: we always
randomly select a question from the unlabelled set U (i.e.,
π(a|Bh) = 1

|U| for each a ∈ U). QP-Uncertain suggests

picking a question corresponding to a concept that our cur-
rent model is most uncertain about (i.e., the concept with a
probability of being known that is closest to 0.5). Formally,
we define:

b? = arg min
bi∈Bh

|bi − 0.5|

We first pick a concept c? with a probability of being known
that is equal to b?. We break ties randomly. We define Uc?
as the set of questions that have not been asked and are
associated with c?. We then define the policy:

π(a|Bh) =

{
1
|Uc? |

if a ∈ Uc?
0 otherwise

𝜃Bht 𝜋𝜃(a|st)LBP
(𝑥1 , 𝑦1)
(𝑥2 , 𝑦2)

…
(𝑥t-1 , 𝑦t-1)

at = 𝑥t
rt

(𝑥t , 𝑦t) student

Figure 3: QP-RL approach.

3.2 RL-based approach
We now propose an RL-based approach (QP-RL) for learn-
ing a QP. An RL agent learns how to make good decisions
over time by interacting with an environment that is typi-
cally modeled as a Markov Decision Process (MDP). In our
problem setting, we define the MDP M = (S,A, P,R, s0) as
follows:

• The state space S is the set of beliefs Bh about student
knowledge (i.e., S = {[b1, ..., bn]|0 ≤ bi ≤ 1});

• The action space A is the set of questions that have not
been asked;

• The transition dynamics P : S × A × S → R define the
probability of transitioning from one state to another by
taking a particular action. In our case, we transition to
state st+1 from st based on the student’s response yt.

• The reward function R : S ×A× S → R is defined as the
difference in prediction accuracy between the current time
step and previous step: for predicting student knowledge,
given the inferred knowledge state ht+1 after taking action
at, we calculate the reward for time step t as Acc(ht+1)−
Acc(ht);

• The initial state s0 corresponds to the initial belief about
student knowledge: each concept has a 0.5 probability of
being known.

Figure 3 shows an overview of the QP-RL approach. For
training the RL agent, we consider an episodic, finite-horizon
setting. During each episode, we train on one student’s data,
and the length of the episode is the query budget T . At each
time step t, we run the LBP algorithm that takes in the
student’s response history Lt−1 = {(xi, yi)}t−1

i=1 to update
our belief about the student’s knowledge state Bht . Then,
the RL model, which is a neural network with parameters
θ, takes Bht as input (i.e., st = Bht) and outputs a vector
pc ∈ Rn which represents the probability of selecting a ques-
tion corresponding to each of the n concepts. We first select
a concept ci by sampling based on pc and then randomly
select one question from Uci (a set of questions that have not
been asked and are associated with ci). We then define the

final policy parametrized by θ: πθ(a|Bht) = pc[i]
|Uci |

for ci ∈ C
and a ∈ A. Our policy πθ(a|Bht) allows us to select the
next question to query and add the next question-response
pair (xt, yt) to the response history. We then update Bht
based on the updated response history using the LBP al-
gorithm. We calculate the reward for the current time step
rt = Acc(Binary(Bht+1))−Acc(Binary(Bht)).

536 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

We use REINFORCE policy gradient method [25, 29] to
learn our policy πθ parametrized by θ. In each episode cor-
responding to a single student, the RL agent performs an
update as follows. First, an initial state s0 (the initial belief
that each concept has a 0.5 probability of being known by
the student) is generated. Then, the policy πθ is executed
until the episode ends, generating a sequence of experience
given by (st, at, rt)t=1,2,...,T . Then, in this episode, for each
t ∈ {1, 2, ..., T}, we use the following gradient update with
η as learning rate:

θ ← θ + η ·
(T∑
τ=t

rτ

)
·
(
∇θ log

(
πθ(at | st)

))
︸ ︷︷ ︸

gradient at time step t in an episode

(5)

In experiments, we use the architecture used in [7]. Specifi-
cally, the policy network is a 3-layer fully connected neural
network with the following architecture: the input layer has
n = 57 units for Bh; the first and second hidden layers
have 128 hidden units; and the output is a vector pc ∈ Rn
where n = 57 to produce a probability of selecting each of
the 57 concepts. The first two hidden layers use ReLU ac-
tivations, and the final layer uses the softmax function to
ensure probabilities sum to 1. We use ADAM [14] optimizer
for training.

4. EXPERIMENTAL EVALUATION
We first evaluate and compare our quizzing policies (QPs)
using a synthetic dataset. We then apply our QPs to the
Eedi dataset from the NeurIPS 2020 Education Challenge.

4.1 Simulations
We simulate virtual students taking the assessment quiz and
test how well we can predict students’ knowledge states in
a controlled setting using different QPs.

4.1.1 The synthetic dataset
We generate a dataset consisting of 24, 000 simulated stu-
dent knowledge states. To do so, we first construct a graph
for representing the student knowledge state that we aims
to infer (see Section 2.2) and then get a probability distri-
bution over the binary variables in the knowledge state that
satisfies a set of assumptions about the student’s knowledge.
We then sample ground-truth student knowledge state val-
ues from the probability distribution. In this simulation, we
use the same 57 concepts in the Eedi dataset (described in
Section 4.2.1) for constructing the graph. We assume some
of these concepts have different levels of difficulty, and simi-
lar concepts are more likely to be assigned the same knowl-
edge state values.2 Based on these assumptions, we assign
a value of difficulty to each of the 57 concepts. We define
difficultyci = 1− the average correctness of the concept ci
2Although our assumptions might not hold in a real-world
setting, the goal of this experiment is to compare differ-
ent QPs and investigate the potential of QP-RL for learn-
ing a strategy tailered to a pre-defined knowledge struc-
ture. For instance, compared to the heuristic approach QP-
Uncertain, QP-RL should learn to select the questions
that are not only uncertain but can also give more infor-
mation about other questions that are not selected (e.g.,
selecting questions corresponding to concepts that are con-
nected with a lot of the other concepts).

Table 1: Test performance of different QPs on the syn-
thetic dataset. QP-Uncertain achieves a better perfor-
mance than QP-Random, and QP-RL improves over QP-
Uncertain significantly.

QP Accuracy
QP-RL 0.721± 0.004

QP-Uncertain 0.700± 0.002
QP-Random 0.675± 0.003

0 5000 10000 15000 20000
Number of episodes

0.64

0.66

0.68

0.70

0.72

Cu
m

ul
at

iv
e

av
er

ag
e

ac
cu

ra
cy

QP-RL
QP-UNCERTAIN
QP-RANDOM

Figure 4: Training performance of QP-RL on the synthetic
dataset compared to heuristics. QP-RL improves over QP-
Random and QP-Uncertain after about 6, 000 episodes of
training. The cumulative average accuracy at each episode
is calculated as the average accuracy across all previous
episodes. It is important to note that QP-Random and
QP-Uncertain are fixed policies that are not being trained.
The cumulative average accuracy for the first few episodes
might seem noisy due to small sample size.

across all students’ answers in the Eedi dataset.3 We run
the LBP algorithm on the constructed graph to get a proba-
bility distribution from which we sample student knowledge
states. Specifically, the output of the LBP algorithm gives
the probability of knowing each concept, and we sample val-
ues of 0 or 1 for each concept to generate the ground-truth
student knowledge states in our synthetic dataset.

4.1.2 Results
We split the dataset into 23, 000 students as the training
set and 1, 000 students as the test set. We train QP-RL
until the cumulative average accuracy converges. Figure
4 shows the training performance of QP-RL compared to
fixed heuristics. After training, we run each QP 10 times
on the test set to calculate the average accuracy and stan-
dard deviation across these 10 trials, see Table 1. Although
QP-RL leads to a 2% gain in accuracy compared to QP-
Uncertain, it requires a moderate amount of training data
(> 6, 000 students in this case). QP-Uncertain is a less
optimal strategy but can achieve a reasonably good per-
formance without any training data. These results provide
initial evidence that QP-RL can learn an effective QP, and
the performance can be improved further with more data.

3For simulations, one could also try other difficulty values,
but it does not matter which specific difficulty value we as-
sign to each concept because the goal is to model a setting
where we have concepts of varying levels of difficulty.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 537

Figure 5: An example of a question in the Eedi dataset
[27]. For each multiple-choice question, exactly one choice
is correct.

4.2 NeurIPS 2020 Education Challenge
We then apply our QPs to one of the tasks in the NeurIPS
2020 Education Challenge (see Section 4.2), which is to ob-
tain a limited set of answers from each student for predicting
the correctness of their answers to the remaining questions.
Our approach to this challenge is to first infer a student’s
knowledge state using Algorithm 1 and then predict the stu-
dent’s responses to the remaining questions based on the
inferred knowledge state.

4.2.1 The Eedi dataset
The Eedi dataset contains student responses to multiple-
choice questions (see Figure 5) on various math topics, which
was collected between September 2018 and May 2020. It
contains 948 questions and a total number of 1, 508, 917 re-
sponses to these questions from 6, 148 students. The dataset
is split into the training set (4918 students), the validation
set (615 students), and the test set (615 students).

Each question in the dataset is associated with a list of sub-
jects. Each subject covers an area of mathematics. These
subjects are arranged in a tree structure by experts based
on the generality of the subjects. For instance, “Fractions”
is the parent subject of “Multiplying Fractions” and “Simpli-
fying Fractions”. For simplicity, we only consider the most
granular subject (i.e., the leaves in the tree) as the concept
that each question corresponds to. The 948 questions cor-
respond to 57 unique concepts. We consider concepts that
share the same super-concept (i.e., parent) to be similar (see
Figure 1).

4.2.2 Student performance prediction
To predict a student’s responses to unseen questions based
on the inferred knowledge state, we propose a neural network-
based model that takes in the belief about the student’s
knowledge BhT at time T = 10 (our belief about their
knowledge after we have asked 10 questions) and outputs
the probability of answering each of the 948 questions in
the dataset correctly. The student performance prediction
model is a 3-layer fully connected neural network with the

Table 2: Test performance different QPs on the Eedi dataset.
QP-RL improves slightly over QP-Uncertain.

QP Accuracy
QP-RL 0.690± 0.005

QP-Uncertain 0.680± 0.003
QP-Random 0.684± 0.003

following architecture: the input layer has n = 57 units for
BhT ; the first hidden layer has 256 hidden units; the sec-
ond hidden layer has 512 units; and the output is a vector
Ŷ ∈ Rm where m = 948 to represent the probability of cor-
rectness for each of the 948 questions. The first two hidden
layers use ReLU activations, and the final layer uses the sig-
moid function to ensure the output values are between 0 and
1. We use ADAM [14] optimizer for training. We convert
the output probabilities into binary values of 0 or 1 (0 if the
probability is less than 0.5, 1 otherwise) and calculate the
prediction accuracy using Equation 4. We train the model
using randomly selected queries until the validation accu-
racy converges. The model parameters are updated based
on binary cross-entropy loss.

4.2.3 Results
Given a trained performance prediction model from Section
4.2.2, we then train QP-RL using the difference in final
prediction accuracy between time steps as reward signals:
rt = Acc(Binary(Ŷt)) − Acc(Binary(Ŷt−1)). After train-
ing, we run each QP 10 times on the test set to calculate the
average accuracy and standard deviation across these 10 tri-
als. Table 2 shows that QP-RL improves slightly over QP-
Uncertain, but the difference between QP-RL and QP-
Random is not significant. Results in Section 4.1.2 show
that in a more controlled setting, QP-RL already requires a
moderate amount of training data (> 6, 000 students) to im-
prove over heuristics. However, we only have training data
from about 5, 000 students in this experiment. Learning a
QP from real students’ data that are noisy is more challeng-
ing, and it may be the case that improving QP-RL further
would require a much larger dataset. Even though QP-RL
seems to require a substantial amount of training data, this
is a one-time training, and the learned policy can be applied
to future students.

5. CONCLUSION
Student assessment is a crucial component of many online
education systems for improving student learning outcomes.
Inferring student knowledge state by quizzing poses a tech-
nical challenge: maximizing accuracy while minimizing the
quizzing cost. In this paper, we show initial evidence that
reinforcement learning (RL) provides a potential solution,
improving over heuristics given sufficient training data.

There are several research directions for future work. Fur-
ther gains in accuracy could be achieved by exploring more
powerful RL techniques and more complex student knowl-
edge modeling techniques. In this work, we model all con-
cepts that share the same super-concept as having the same
relationship; however, there could be prerequisites as well
as weaker and stronger relationships in reality. It would be
important to study whether varying the influence values be-
tween concepts would lead to gains in model performance.

538 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

6. REFERENCES
[1] U. Z. Ahmed, M. Christakis, A. Efremov,

N. Fernandez, A. Ghosh, A. Roychoudhury, and
A. Singla. Synthesizing tasks for block-based
programming. In NeurIPS, 2020.

[2] J. Bassen, B. Balaji, M. Schaarschmidt, C. Thille,
J. Painter, D. Zimmaro, A. Games, E. Fast, and J. C.
Mitchell. Reinforcement learning for the adaptive
scheduling of educational activities. In CHI, pages
1–12, 2020.

[3] M. Chi, K. VanLehn, D. Litman, and P. Jordan.
Empirically evaluating the application of
reinforcement learning to the induction of effective
and adaptive pedagogical strategies. User Modeling
and User-Adapted Interaction, 21(1):137–180, 2011.

[4] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction,
4(4):253–278, 1994.

[5] S. Doroudi, V. Aleven, and E. Brunskill. Where’s the
reward? International Journal of Artificial Intelligence
in Education, 29(4):568–620, 2019.

[6] Eedi. Eedi: Online maths lessons with live teacher
support. https://eedi.com.

[7] A. Efremov, A. Ghosh, and A. Singla. Zero-shot
learning of hint policy via reinforcement learning and
program synthesis. In EDM, 2020.

[8] J.-C. Falmagne, M. Koppen, M. Villano, J.-P.
Doignon, and L. Johannesen. Introduction to
knowledge spaces: How to build, test, and search
them. Psychological Review, 97(2):201, 1990.

[9] M. Fang, Y. Li, and T. Cohn. Learning how to active
learn: A deep reinforcement learning approach. CoRR,
abs/1708.02383, 2017.

[10] R. Gilad-Bachrach, A. Navot, and N. Tishby. Query
by committee made real. In NIPS, volume 5, pages
443–450, 2005.

[11] M. R. Gormley and J. Eisner. Structured belief
propagation for nlp. In ACL, pages 5–6, 2015.

[12] S. C. Hoi, R. Jin, J. Zhu, and M. R. Lyu. Batch mode
active learning and its application to medical image
classification. In ICML, pages 417–424, 2006.

[13] A. Iglesias, P. Mart́ınez, R. Aler, and F. Fernández.
Reinforcement learning of pedagogical policies in
adaptive and intelligent educational systems.
Knowledge-Based Systems, 22(4):266–270, 2009.

[14] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. In ICLR, 2015.

[15] D. D. Lewis and W. A. Gale. A sequential algorithm
for training text classifiers. In SIGIR, pages 3–12,
1994.

[16] Y. Liu. Active learning with support vector machine
applied to gene expression data for cancer
classification. Journal of chemical information and
computer sciences, 44(6):1936–1941, 2004.

[17] T. Mandel, Y.-E. Liu, S. Levine, E. Brunskill, and
Z. Popovic. Offline policy evaluation across
representations with applications to educational
games. In AAMAS, pages 1077–1084, 2014.

[18] R. Moskovitch, Y. Elovici, and L. Rokach. Detection
of unknown computer worms based on behavioral

classification of the host. Computational Statistics &
Data Analysis, 52(9):4544–4566, 2008.

[19] K. Pang, M. Dong, Y. Wu, and T. Hospedales.
Meta-learning transferable active learning policies by
deep reinforcement learning. CoRR, abs/1806.04798,
2018.

[20] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley &
Sons, Inc., 1st edition, 1994.

[21] J. Rollinson and E. Brunskill. From predictive models
to instructional policies. In EDM, 2015.

[22] N. Roy and A. McCallum. Toward optimal active
learning through monte carlo estimation of error
reduction. ICML, pages 441–448, 2001.

[23] H. S. Seung, M. Opper, and H. Sompolinsky. Query by
committee. In COLT, pages 287–294, 1992.

[24] A. Singla, S. Tschiatschek, and A. Krause. Actively
learning hemimetrics with applications to eliciting
user preferences. In ICML, pages 412–420, 2016.

[25] R. S. Sutton and A. G. Barto. Reinforcement learning:
An introduction. MIT press, 2018.

[26] S. Tong and D. Koller. Support vector machine active
learning with applications to text classification.
Journal of machine learning research, 2(Nov):45–66,
2001.

[27] Z. Wang, A. Lamb, E. Saveliev, P. Cameron,
Y. Zaykov, J. M. Hernández-Lobato, R. E. Turner,
R. G. Baraniuk, C. Barton, S. P. Jones, et al.
Diagnostic questions: The neurips 2020 education
challenge. CoRR, abs/2007.12061, 2020.

[28] J. Whitehill and J. Movellan. Approximately optimal
teaching of approximately optimal learners. IEEE
Transactions on Learning Technologies, 11(2):152–164,
2017.

[29] R. J. Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229–256, 1992.

[30] M. Woodward and C. Finn. Active one-shot learning.
CoRR, abs/1702.06559, 2017.

[31] Y. Yang, Z. Ma, F. Nie, X. Chang, and A. G.
Hauptmann. Multi-class active learning by uncertainty
sampling with diversity maximization. International
Journal of Computer Vision, 113(2):113–127, 2015.

[32] J. Zhang and K. Cho. Query-efficient imitation
learning for end-to-end autonomous driving. CoRR,
abs/1605.06450, 2016.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 539

https://eedi.com

From Detail to Context: Modeling Distributed Practice
Intensity and Timing by Multiresolution Signal Analysis

Cheng-Yu Chung
Computer Science

Arizona State University
Cheng.Yu.Chung@asu.edu

I-Han Hsiao
Computer Science

Arizona State University
Sharon.Hsiao@asu.edu

ABSTRACT
The distributed practice effect suggests that students re-
tain learning content better when they pace their practice
over time. The key factors are practice dosage (intensity)
and timing (when to practice and how in between). In-
spired by the thriving development of image recognition,
this study adopts one of the successful techniques, multires-
olution analysis (MRA), to model distributed and spaced
practice (SP). We consider a sequence of practice sessions
as a signal of the student’s learning strategy. Then, we
apply the stationary wavelet transform (SWT) to extract
practice patterns spaced by three periods: small, medium,
large. The result reveals a positive correlation between the
small-spaced practice and the exam grade. The benchmark
against baseline feature models shows that the SP patterns
significantly improve the goodness-of-fit and complements
the baseline models. This work successfully demonstrates
1) the use of MRA in modeling sequential patterns by event
intensity and event timing; 2) the MRA approach can be
used as an alternative method to improve existing student
models of practice effort.

Keywords
distributed practice effect, testing effect, stationary wavelet
transforms, signal multiresolution analysis, feature extrac-
tion

1. INTRODUCTION
In the midst of blended and distance learning environments,
it is increasingly important for students to manage their
time efficiently. Numerous researchers have proposed and
developed various student models to capture how students
utilize their time during the learning process. The results
have shown that distributed practice is a simple but effective
time-management strategy for learning [5]. Essentially, dis-
tributed practice comprises the testing and spacing effects,
which suggest that the retention of information increases
when the learner practices retrieving it in multiple spaced-

out practice sessions [3].

Optimal distributed practice requires a combination of both
the intensity and the timing of the practice events. In other
words, an expressive student model must capture the in-
tensity of practice sessions spaced by different periods. Al-
though the two features appear to be straightforward, it is
not easy to incorporate them in a sequential behavior model.
For example, typical sequence analysis or sequential pattern
mining would expect discrete input data and extract com-
mon patterns in the data according to the sequence sup-
port (the number of occurrences). Finding a meaningful
and interpretable threshold is usually an ad-hoc process and
particularly challenging [4]. A great threshold value may
increase the chance of losing detail, and a small value may
introduce more noises and miss the context. In the case of
distributed practice, when the practice sessions are far apart,
such a frequency-based approach will require more data to
ensure sufficient within- and between-sequences support for
a pattern of interest. To address this modeling challenge,
we are motivated to explore an alternative computational
method to capture the detail as well as the context, which
can capture both the intensity and the timing of events at
the same time.

We rationalize that a student’s practice sessions distributed
over a timeline resemble a signal to her/his learning process
where the strength of learning is quantified as the increasing
or decreasing values about the occurrences of the underlying
events. With this definition, we can utilize a signal process-
ing tool to extract the structural variation which approxi-
mates distributed practice patterns. In this work, we adopt
the stationary wavelet transform (SWT) algorithm for this
purpose. SWT is a widely-used signal processing tool in an
application such as image pattern recognition. The algo-
rithm decomposes an input signal into multiple components
and represents the original signal by information at different
resolutions. With the emphasis on the structure, we believe
that SWT will allow us to overcome the challenge where the
amount of sequential data may not be big enough to main-
tain the sequence support. Additionally, applying SWT as
a feature extraction method also allows us to examine struc-
tural nuances in behavior sequences.

2. RELATED WORK
2.1 Sequence Analysis in Educational Data

Mining

Cheng-Yu Chung and I-Han Hsiao “From Detail to Context: Modeling Dis-
tributed Practice Intensity and Timing by Multiresolution Signal Analysis”.
2021. In: Proceedings of The 14th International Conference on Educational
Data Mining (EDM21). International Educational Data Mining Society,
540-546. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

540 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

A behavior sequence is a chronicle of an activity. It describes
a collection of events, and the order of them is meaningful.
We can choose different features to characterize such a se-
quence, e.g., types of events, arrangements of events, time
gaps between events. The features directly affect what we
can find out from the analysis. Sequence analysis, in gen-
eral, can refer to any data model that involves a kind of
behavior sequences its characterization. Extensive research
in EDM has been using behavior sequence analysis to model
students’ development of knowledge or skills.

The most intuitive approach is sequential pattern mining,
which aims to discover repeated string patterns, alignments,
or the very next possible items [11]. For example, Gitin-
abard et al. characterize behavior sequences by students’
interactions with online tools [7]. They map the interaction
sequences to study habits and use sequence patterns to dif-
ferentiate the high-performing and low-performing students.
Dermy and Brun argue that the time interval is the key to
model students’ activities [4]. They characterize behavior se-
quences by time intervals between events and formalize the
temporal information in sequential pattern mining. Their
experiment suggests a strong correlation between the stu-
dents’ activities and the time information.

One research gap we notice is that most of the reviewed
works focus on the behavior sequences at a single time scale.
For example, for a given behavior sequence e1, e2, ..., et where
ei is an event that occurs at time i. A typical sequence analy-
sis focuses on the relationship of adjacent events ej−1, ej , ej+1

where j ∈ 1, ..., t. Since the step size is 1, sometimes such
a sequence is called 1-sequence. Following this setting, a
pattern must be a consecutive 1-sequences that meets pre-
defined criteria, e.g., the support. One limitation of 1-
sequences is that they cannot capture an inconsecutive event.
Such an inconsecutive event can provide a coarser view of
the behavior sequence, therefore the context. Indeed, we can
try to increase the step size to have 2-sequences, 3-sequences,
or k-sequences where k ∈ Z. Nonetheless, the increment of
step size inevitably reduces the number of k-sequences we
can find in a dataset. This situation may exclude potential
sequences of interest due to the threshold of the support
or the shortage of data. To tackle this challenge, we inves-
tigate an alternative model that focuses on the structural
information of behavior sequences.

3. MULTIRESOLUTION SIGNAL ANALY-
SIS

In pattern recognition, the information of a given object
usually is determined by the variations of signal intensity.
For example, we can recognize a building as a building in
an image because the distinct contours and shapes are for-
mulated by their unique signal value sequences and different
from the other objects. Such signal features are essentially
sequences of values (sets of numbers) where a variation of
intensity could suggest a potential event of interest, e.g., a
change of shapes or colors. However, because the objects
to analyze may have different shapes and sizes, the feature
extraction must consider “how far away” an event is from its
neighborhood to recognize the objects’ structures at mul-
tiple resolutions. The field of computer vision and signal
processing have developed various methods to address this
challenge. One of which is the multiresolution analysis and

Figure 1: The Decomposition of Multiresolution Analysis.
The process consists of two filters: the high-pass filter H and
the low-pass filter G. They iteratively extract the detail sig-
nal and the approximation signal at the resolution 2j from the
input signal f(x) until a maximum level L. We can associate
the interpretation of the detail signal to the underlying time
scale. For example, say the sampling rate of the input signal
is 1. The detail signal at level 1 (a coarser level) denotes the
information from the frequency band [1/2, 1/4].

wavelet transforms, which fit in the scope of this research.

The multiresolution analysis (MRA) is a hierarchical frame-
work that describes how to decompose a signal from fine
to coarse levels [12]. The decomposition consists of a high-
pass filter (H) and a low-pass filter (G). They are a pair of
quadrature mirror filters and have the following relationship:
g(n) = (−1)1−nh(1 − n) [12]. The high-pass filter extracts
impulses, and meanwhile, the low-pass one retains the other
information. This process is also known as Discrete Wavelet
Transform (DWT). By convolution (∗), the filtering process
iteratively produces series of detail signals (D2jf(x)) and
approximation signals (A2jf(x)) for the input signal f(x):

D2jf = (f(u) ∗ ψ2j (−u))(2−jn) (1)

A2jf = (f(u) ∗ φ2j (−u))(2−jn) (2)

where n ∈ Z. The high-pass and low-pass filters rely on a
wavelet function (ψ) and a scaling function (φ) that trans-
late and scale the input signal at different resolutions, re-
spectively. We illustrate the whole filtering process in Fig-
ure 1 for reference. See [2] and [12] for more details about
the math properties of the wavelet function and the scaling
function.

3.1 Analyzing Distributed Practice via Signals
In this study, we focus on the practical implication of MRA
and illustrate how it can help identify students’ distributed
practice patterns. Students, especially those in an online
learning or a blended learning environment, usually have
greater flexibility in self-pacing their studies. In other words,
they can watch the lecture videos and practice quiz ques-
tions anytime at their convenience. This nature makes it
challenging to analyze their behaviors on the timeline.

For example, in scenario A, when a semester is two to three
months long, we may find out that the students’ practice
sessions are sparse and do not follow one unified schedule.
This makes the time of sessions less discriminating in find-
ing common behavioral patterns. Thus, the researcher may
choose to ignore the time feature. An alternative approach
(scenario B) is aggregating the practice sessions by a priori

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 541

assumption (e.g., students always study on a week-by-week
basis or right before a deadline). However, all the above ap-
proaches may inevitably lose some detail about how exactly
the students utilize their schedules, either missing discrim-
inating patterns over time (scenario A) or limited to those
strictly abiding by the class-paced schedule (scenario B).

To model students’ distributed practice behavior over time,
his/her behavior can be denoted as a sequence of the events,
f with T discrete time steps: f = {e1, e2, ..., eT } where ei
for 1 ≤ i ≤ T can be any activity event of our interest.
A student distributes his/her practice sessions at different
rates or frequencies according to his/her preferences, path,
or pace. This representation is like a signal and enables the
feasibility to apply a signal processing algorithm.

Similar to the pattern recognition in computer vision, a stu-
dent’s practice sessions are like the shapes and colors that
may evolve according to the sequences of signals. The ses-
sions may have different sizes, i.e., time gaps between any
two sessions. In other words, we aim to extract distributed
spaced practice (SP) that are subsets of the input behavior
sequence: SPk ⊆ f where k ∈ N and any two consecutive
event items {ei, ej} ⊂ SPk are spaced by k time steps. Fol-
lowing this idea, MRA is used to extract such a “feature”
from sequences of practice sessions, and thereby interpret
the output as distributed practice patterns. For a practice
signal at sampling rate = 1/day, the output signals can rep-
resent the information at coarser rates, e.g., 1 per 4 days
and 1 per 8 days.

3.2 Stationary Wavelet Transform
The output of DWT are signals that represent information
at different resolutions (or frequencies). The typical imple-
mentation of DWT keeps downsampling the input signal to
obtain the detail signal and the approximation signal at each
resolution [12]. Therefore, the transform is time-variant.
The detail signal at one level is a half shorter than the one at
the previous level. This property may cause a misalignment
in time/frequency, which will make the decomposition gener-
ate fewer feature values for analysis. In this study, we follow
an alternative implementation of MRA, Stationary Wavelet
Transform (SWT), which is time-invariant. SWT replaces
the downsampling by upsampling at each step [6]. Research
has shown that SWT can improve the approximation and
a preferred approach for applications like breakdown point
detection and denoising [1].

4. DATASETS
To evaluate the method, we use two semesters’ datasets from
the same undergraduate class offered in a four-year univer-
sity in the United States: Spring 2018 (SP18) and Fall 2018
(FA18). Both sessions lasted about 3-month. The class was
a typical lecture-style in-person class with weekly assign-
ments and monthly exams. The two sessions were prac-
tically identical, having exactly the same syllabus, same
instructor, same teaching assistants, except for minor ad-
justments to the exam questions. Note most students in
FA18 shared a similar background in engineering because the
class was a required class for first-year engineering students.
In SP18, there were more students from non-engineering
schools, which resulted in much more diverse student back-
ground.

An online practice platform was introduced to the students
at the beginning and available throughout the semester. On
the platform, students could take multiple-choice questions
to practice and review the class content. For any given prac-
tice question, the students had unlimited chances to retry;
for any attempt, the corrective feedback (correct answer)
would be provided upon submission. The questions served
like so-called “tasks” in the context of tutoring systems [16].
Each of the tasks aims to help the student master some
knowledge (or embedded knowledge components). However,
the practice activity is different from working with assign-
ments: there is no “hard deadline” by which the students
must complete the practice questions. The students can
practice on the platform as a kind of self-assessment [13].
In other words, the activity is “self-paced” [18] and aligned
with the actions of reviewing slides, taking quizzes, or other
practices that students can do for their benefit whenever
they want.

The students’ practice activities were logged as transactions
of events, including the timestamps, the questions, and the
correctness of the attempts. We processed and transformed
the data into sequences of daily practice intensity. Here, the
term “intensity” refers to the number of unique questions
solved by a student. Each day is assumed to be a complete
practice session. The sequence of daily intensity thereby
resembles a discrete-time signal sampled at a constant rate
equal to 1 sample per day. We excluded some students’ data
from the analysis due to low usage (those who only had only
one practice session throughout the semester). An overview
of the datasets is described in Table 1.

In this study, the exam letter grade is used as the students’
learning performance index. The exam letter grade ranges
from A (M ≥ 90), B (80 ≤ M < 90), to C/D/F (M < 80)
where M is the raw average of three exam scores.

5. REPRESENTING DISTRIBUTED PRAC-
TICE BY SWT SIGNALS

There are several parameters required for our model pipeline:
the wavelet for SWT, the padding scheme, the maximum
decomposition level, and the penalty of change point detec-
tion. The Haar wavelet is adopted in the SWT algorithm
implementation, due to the simplest form of wavelet [14]. It
creates a shape like a step function that produces 1, 0, and
-1, following the formula

ψ(x) =

1 if 0 ≤ x < 1

2

−1 if 1
2
≤ x < 1

0 otherwise

(3)

This property makes it a good option for detecting edges
(e.g., sudden signal transitions or changes) [17] in discrete
signals like the datasets in this study. The implementation
of SWT used in this study requires the length of input to be
a multiple of 2L where L is the maximum number of levels to
decompose [9]. To meet this requirement, we preprocessed
all input sequences by adding a prefix of zeros. In our ex-
periment, we found that the SWT signals at L > 3 did not
work. It was likely due to short input sequences. Therefore,

542 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Dataset # of Students # of Included Max Length of Sequence (Days) # of Questions M (SD) of Intensity
SP18 121 76 (63%) 93 96 0.26 (0.36)
FA18 200 67 (34%) 82 95 0.32 (0.49)

Table 1: Statistics of the Two Datasets

Figure 2: The SWT Signals in the SP18 Dataset. From left to right, the SWT signals D1, D2, D3 capture practice sessions in
the period bands [2d, 4d], [4d, 8d], and [8d, 16], small-, medium- and largely-spaced respectively. These signals capture practice
sessions spaced by different periods. From D1 (more detail) to D3 (more context), we can see the focus gradually spreads out
when the level increases. For readability, the plot excludes practice sequences not having any change points in the SWT signals.

we set L = 3 in our experiment. Once the SWT algorithm is
built, we applied the change point detection algorithm with
the penalty = 0.5 to search for sudden changes in the SWT
signals [8]. We decided on this penalty value by maximizing
the group difference (Section 5.2) and the goodness-of-fit of
regression (Section 6.2). The experiment program and data
are available at the link for future work1.

5.1 Characteristics of SWT Signals
The SWT algorithm decomposes the input signal by multi-
level filtering. Filtering at a level k extracts information at
the frequency band [1/2kf, 1/2k+1f] where f is the sampling
rate of the input. In our datasets, because the sampling
rate is 1 sample per day (1 cycle per day), the three de-
composition levels (Dk where k = 1,2,3) filter the input in
the frequency bands [1/2, 1/4], [1/4, 1/8], and [1/8, 1/16]. In
other words, the algorithm filters the input into the period
(the duration of time of one cycle) bands D1=[2(d)ays, 4d],
D2=[4d, 8d], and D3=[8d, 16d]. We map these three bands
to small-spaced, medium-spaced, and largely-spaced prac-
tice patterns, respectively. Following this interpretation, we
expect the SWT signals to identify students’ practice ses-
sions spaced by different periods. For example, D1 can iden-
tify sessions spaced by 2 to 4 days, which are small-spaced
practice.

To further illustrate this characteristic, Figure 2 demon-
strates what the algorithm found in the SP18 dataset. The
visualization shows the SWT signals at the three levels. We
can see that D1 highlights small-spaced practice sessions.
The D2 and D3 signals spread their focus and “blur” the se-
quences not fitting their period bands. Note, there may be
redundancy in the information captured by different compo-
nents. For example, an input sequence having meaningful
change points in D3 can also have ones in D1. Overall,
the information about practice sessions at different levels
provides an insight into how the students distribute their
practice over time. In our analysis of distributed practice

1https://github.com/rickchung/edm21-msa

patterns, we use the number of change points as the feature
to represent the information from the three SWT signals.

For readability, we use the lower bound of the frequency
band to denote the spaced practice patterns. We call the
practice patterns found in the D1, D2, D3 signals 2SP (2-day
spaced practice), 4SP, and 8SP patterns, respectively. For
reference, the input daily practice sessions are called 1SP. In
the SP18 dataset, the means (M) / standard deviation (SD)
from the three levels are 2SP = 1.83/2.68, 4SP = 1.79/2.63,
and 8SP = 1.75/2.63. In the FA18 dataset, the values are
2SP = 1.12/2.29, 4SP =1.27/2.14, and 8SP = 1.37/2.30.

5.2 Marginal Relationship of Spaced Patterns
with Exam Grades

We analyzed the relationships between the practice pat-
terns and student grades by the marginal distribution. The
Kruskal-Wallies H-test was applied to test if the groups had
the same population median (Figure 3). The method was
selected because the sample size was small, and therefore
the sample might not follow the normal distribution. The
results showed that there was only 2SP that appeared to
be significant for both datasets (SP18: H=8.89, p=0.01;
FA18: H=7.95, p=0.02). The visualization of the distri-
bution showed that in SP18 A students had a higher 2SP
(M = 3.12, SD = 3.11) than C (M = 1.50, SD = 2.32) and
B (M = 0.72, SD = 1.79); in FA18, the B students had a
higher value (M = 2.17, SD = 3.05) than A (M = 0.62, SD
= 1.50) and C (M = 0.41, SD = 1.14).

There are more spaced patterns discovered for B students
in FA18 but not A students, which suggests there could
be other factors in the correlation of their practice with
even higher exam grades. For example, engineering and
non-engineering students may have/need different practice
strategies adapted to their learning conditions. Despite this
slight difference across the two semesters, if we focus on the
difference between the higher-performing students (A/B)
and the C/D/F ones, the result consistently suggests a posi-
tive correlation between exam grades and small-spaced prac-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 543

Figure 3: Marginal Distribution of the SP patterns from the
Three Grade Groups. The Kruskal-Wallies H-test found that
only 2SP was significant in both datasets. The result consis-
tently showed that higher-performing students (A in SP18 or
B in FA18) had more small-spaced practice than the C/D/F
ones in SP18 and FA18.

tice.

5.3 Quantifying the Schedule of Distributed
Practice

We have seen how the SP patterns can help identify practice
spaced by different periods. However, this feature alone does
not depict the entire picture of distributed practice strate-
gies. Another key factor in the distributed practice effect is
the timing of practice. We develop an index to quantify the
skewness in practice schedules and investigate its correla-
tion to exam grades. One simple measure of the skewness is
the lag time. We can use the lag time between the occasion
of a practice session and a specific event of interest (e.g.,
exam dates, assignment deadlines) to model the schedule
skewness. Due to programming is inherently accumulative,
a later exam covers the content from all the previous ex-
ams, we cannot assert that a practice session only affects
the upcoming exam. Considering this case, we focus on the
time lag since the beginning of the semester. Specifically,
for an SWT signal at level i, Di, we can compute the lag of
days between the start of the semester and the occurrences
of change points. Then, we can transform a practice se-
quence into a sequence of lags {TDi

1 , TDi
2 , TDi

3 , ..., TDi
n }. To

know where on the timeline the student has more practice,
we compute the sample mean, µDi

T . The number, therefore,
represents how far the schedule is away from the beginning
of the semester. We further divide the number by the total
number of days (Nday) in the semester for interpretation.
The equation of the schedule skewness is defined as

SS =
µDi
T

Ndays
(4)

When a student has all his/her practice sessions early in the
semester, SS will be close to zero. If s/he has more practice
sessions over the middle of the semester, SS will be some
value over 0.5. We can apply the formula to the input signal
(1SS) and the SWT signals (2SS, 4SS, 8SS). The result will
indicate the schedule of different spaced-practice patterns.

6. MIXED PRACTICE EFFECTS IN MUL-
TIVARIATE ANALYSIS

A distributed practice strategy is multifaceted. The univari-
ate analysis is insufficient because it does not consider the
confounding variables. There are two cases remain unclear.

Figure 4: The Standardized Values (Means) and the Inter-
actions of the Basic and Experiment Features. The plot
groups the features into intensity and timing according to
their functions. The y-axis shows the standardized values (by
(X −MX)/SDX in each feature category X) for between-
features comparison. The vertical dashed lines separate the
basic and experiment features. The A students in SP18 have
the highest TotalIntensity. On the contrary, the B students
in FA18 have the highest TotalIntensity. Although the basic
features somehow correlate with the experiment features, we
can find more discriminating differences in the experiment
spaced-practice patterns.

First, the C/D/F students from SP18 do not have better
performance, even though they put efforts into practice just
like the better performing students do (A students). Second,
in FA18, the analysis does not explain the practice strategy
of the A students. They achieve a good grade but do not
show significantly more SP. These cases suggest that there
could be other factors in the distributed practice effects.

Following this idea, we try to use multivariate analysis that
includes experiment SWT features and commonly-used ba-
sic features. The basic set comprises the following. For
the practice intensity, we use the total number of questions
solved (TotalIntensity) and the total number of daily prac-
tice sessions (1SP). For the practice schedule, we use the
standard deviation of the daily intensity (SDIntensity) and
the SS of daily practice sessions (1SS). For reference, we plot
the standardized values of the features in Figure 4. The fig-
ure shows that although the basic features correlate with the
experiment features, we can potentially find more discrim-
inating difference in the spaced practice patterns between
the grade groups.

6.1 Assessing the Marginal Effects by Multi-
nominal Logit Regression

To understand the relationship between multiple feature and
exam grades, we use the multinominal logistic regression and
investigate the marginal effects of the feature values. The
multinominal logistic regression (MLogit) is a generalized
version of the logistic regression for multiclass classification
problems [15]. We can use MLogit when the dependent vari-
able in a query is nominal (categorical) and has more than
two possible categories. The setup of MLogit is similar to
the logistic regression. We assume a linear relationship be-
tween the independent variables (predictors), X, and the
dependent variable (response), Y, and model the probabil-
ity of the Y ∈ {y1, ..., yk} by the logistic function (sigmoid)

544 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

and k-1 sets of weights (wk for the label yk):

P (Y = yk|X = X1, ..., Xn) =
exp(wk0 +

∑
i wkiXi)

1 +
∑

j exp(wj0 +
∑

i wjiXi)

(5)

We can obtain the prediction by picking up the class with
the highest probability. The main advantage of MLogit over
other classification techniques is the interpretability. We can
explain the contribution of individual features to the output
probability (dx/dy) similar to the linear regression [15]. In
the analysis, we set Y as the grade groups (A, B, C/D/E)
and examine the marginal effects with respect to X when
the model fits different sets of predictors.

6.2 Comparing Alternative Models
To understand the capability and limitation of the SWT
model of distributed practice, we use MLogit to fit various
baseline and experiment feature sets. Afterward, we bench-
mark the quality of these models by the goodness-of-fit. Due
to MLogit does not use the standard R2, we use the mea-
sure of the goodness-of-fit by McFadden’s pseudo R2 [10].
McFadden’s pseudo R2 uses the formula

R2 = 1− lnL(Mfull)

lnL(Mintercept)
(6)

where L is the estimated likelihood. A small ratio of the
two log-likelihoods (or a large McFadden’s pseudo R2) sug-
gests that the full model is better than the intercept model.
We can use this measure to benchmark one model against
another if they fit the same data.

We compared the experiment and alternative baseline mod-
els. The result showed that none of the baseline models
were competitive with even the simplest SWT model (using
only 2SP, 4SP, 8SP). The best baseline model (MBaseAll)
used all the baseline variables and achieved R2 = 0.04 in
SP18 and R2 = 0.07 in FA18. The simplest SWT model
(MExpDose) achieved R2 = 0.07 in SP18 and R2 = 0.09 in
FA18. The best experiment model (MExpAll) used all the
SWT variables and achieved R2 = 0.12 in both SP18 and
FA18. Using all the baseline and experiment variables, the
ensemble model (MEnsemble) unsurprisingly outperformed
all the other models and achieved R2 = 0.13 and R2 = 0.23
in SP18 and FA18, respectively.

6.3 Marginal Effects in the Regression
Models

In SP18, MExpDose found 2SP was a significantly-positive
predictor for the A students (dx/dy = 0.07, p = 0.01).
MExpAll also found that 2SP was a significant predictor
for the A students (dx/dy = 0.10, p = 0.00). Besides, it
found 4SS and 8SS were significant for the C/D/F students
(dx/dy = 2.55, p = 0.02; dx/dy = -2.58, p = 0.03). In FA18,
MExpDose found 2SP was significantly-positive predictor for
the B students (dx/dy = 0.12, p = 0.00). MExpAll, however,
did not find any significant predictor.

Part of the result is similar to the analysis of marginal distri-
bution. In SP18, an increase of small-spaced practice adds
to the likelihood of A. In FA18, the same effect works for
B. It is worth noting an additional finding in MEnsemble

from SP18. When we control the intensity and SS, the
model shows two extra significant predictors for the grade
C/D/F: 4SS and 8SS. The marginal effect suggests that an
increase/decrease in 4SS/8SS adds to/reduces the likelihood
of C. Since an increase in SS means the schedule becomes
later in the semester, these two findings somewhat suggest
the same thing: students who practice early and space the
practice largely are less likely to obtain C/D/F.

It is also worth noting that the one in FA18 improves the
most from the best experiment model and reaches R2 =
0.23. When predicting the A students, the model shows
1SS (dy/dx = 1.01, p = 0.00) and the total intensity (dy/dx
= -0.02, p = 0.04) are significant predictors; when the model
predicts the C students, 1SS is the only significantly-negative
predictor (dy/dx = -0.90, p = 0.01). We do not find the
same effect in any of the baseline models. The result com-
plements a missing part of our analysis about the A and C
students’ practice strategies in FA18. It suggests that an
increase in 1SS adds to the likelihood of A. Conversely, the
same increase reduces the one of C/D/F. In other words,
more early or late practices in the semester may reduce or
improve the probability of C/D/F or A, respectively.

7. CONCLUSIONS
Students’ practice behavior is challenging to model because
they can practice anytime and do not necessarily follow a
unified schedule. This study aims to build such a feature
model that can help researchers describe the distributed
practice behavior. We adopted the method from multireso-
lution analysis to extract patterns of our distributed prac-
tices, focusing on two factors in the distributed practice ef-
fect: intensity and timing. In the experiment, we applied
the MRA model and extracted features that could repre-
sent practices spaced by different periods, including small
(2-4 days), medium (4-8 days), and large (8-16 days). These
three kinds of practice patterns were analyzed to explain
their correlation to the exam grades. We found that stu-
dents who practiced early and spaced the practice by the
small and large periods were more likely to get a higher grade
than C/D/F. Also, the students having more small-spaced
practices throughout the semester (i.e., practicing more per-
sistently) were more likely to get better exam grades. Addi-
tionally, the MRA model was benchmarked against baseline
models. The result showed that the MRA model not only
achieved a better goodness-of-fit than the baselines when
working alone, but it could complement a baseline model
and achieve better performance.

8. REFERENCES
[1] R. R. Coifman and D. L. Donoho.

Translation-Invariant De-Noising. Wavelets and
Statistics, pages 125–150, 1995.

[2] I. Daubechies. Ten Lectures on Wavelets. Society for
Industrial and Applied Mathematics, 1 1992.

[3] P. F. Delaney, P. P. Verkoeijen, and A. Spirgel.
Spacing and Testing Effects. In Psychology of Learning
and Motivation - Advances in Research and Theory,
volume 53, pages 63–147. Elsevier Inc., 1 edition, 2010.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 545

[4] O. Dermy, A. Brun, and U. D. Lorraine. Can we Take
Advantage of Time-Interval Pattern Mining to Model
Students Activity ? In Proceedings of the 13th
International Conference on Educational Data Mining,
EDM 2020, pages 69–80, 2020.

[5] J. Dunlosky, K. A. Rawson, E. J. Marsh, M. J.
Nathan, and D. T. Willingham. Improving Students’
Learning With Effective Learning Techniques.
Psychological Science in the Public Interest,
14(1):4–58, 1 2013.

[6] J. Fowler. The redundant discrete wavelet transform
and additive noise. IEEE Signal Processing Letters,
12(9):629–632, 9 2005.

[7] N. Gitinabard, T. Barnes, S. Heckman, and C. F.
Lynch. What will you do next? A sequence analysis
on the student transitions between online platforms in
blended courses. In Proceedings of the 12th
International Conference on Educational Data Mining,
EDM 2019, pages 59–68, 2019.

[8] R. Killick, P. Fearnhead, and I. A. Eckley. Optimal
Detection of Changepoints With a Linear
Computational Cost. Journal of the American
Statistical Association, 107(500):1590–1598, 12 2012.

[9] G. Lee, R. Gommers, F. Waselewski, K. Wohlfahrt,
and A. O’Leary. PyWavelets: A Python package for
wavelet analysis. Journal of Open Source Software,
4(36):1237, 4 2019.

[10] J. S. Long and J. Freese. Regression models for
categorical dependent variables using Stata, volume 7.
Stata press, 2006.

[11] N. R. Mabroukeh and C. I. Ezeife. A taxonomy of
sequential pattern mining algorithms. ACM
Computing Surveys, 43(1):1–41, 11 2010.

[12] S. Mallat. A theory for multiresolution signal
decomposition: the wavelet representation. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 11(7):674–693, 7 1989.

[13] E. Panadero. A review of self-regulated learning: Six
models and four directions for research. Frontiers in
Psychology, 8(APR):1–28, 2017.

[14] D. B. Percival and A. T. Walden. Wavelet Methods for
Time Series Analysis. Cambridge University Press,
Cambridge, 2000.

[15] R. L. Strawderman, A. C. Cameron, and P. K. Trivedi.
Regression Analysis of Count Data. Journal of the
American Statistical Association, 94(447):984, 9 1999.

[16] K. VanLehn. The Behavior of tutoring systems.
International Journal of Artificial Intelligence in
Education, 16(3):227–265, 2006.

[17] P. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. In Proceedings of
the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR
2001, volume 1, pages I–511–I–518. IEEE Comput.
Soc, 2001.

[18] Y. Zhang, Y. Dang, and B. Amer. A Large-Scale
Blended and Flipped Class: Class Design and
Investigation of Factors Influencing Students’
Intention to Learn. IEEE Transactions on Education,
59(4):263–273, 11 2016.

546 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

A Novel Algorithm for Aggregating Crowdsourced
Opinions

Ethan Prihar
Worcester Polytechnic Institute

100 Institute Road
Worcester, Massachusetts

ebprihar@wpi.edu

Neil Heffernan
Worcester Polytechnic Institute

100 Institute Road
Worcester, Massachusetts

nth@wpi.edu

ABSTRACT
Similar content has tremendous utility in classroom and on-
line learning environments. For example, similar content
can be used to combat cheating, track students’ learning over
time, and model students’ latent knowledge. These different
use cases for similar content all rely on different notions of
similarity, which make it difficult to determine contents’ sim-
ilarities. Crowdsourcing is an effective way to identify sim-
ilar content in a variety of situations by providing workers
with guidelines on how to identify similar content for a par-
ticular use case. However, crowdsourced opinions are rarely
homogeneous and therefore must be aggregated into what is
most likely the truth. This work presents the Dynamically
Weighted Majority Vote method. A novel algorithm that
combines aggregating workers’ crowdsourced opinions with
estimating the reliability of each worker. This method was
compared to the traditional majority vote method in both
a simulation study and an empirical study, in which opin-
ions on seventh grade mathematics problems’ similarity were
crowdsourced from middle school math teachers and college
students. In both the simulation and the empirical study the
Dynamically Weighted Majority Vote method outperformed
the traditional majority vote method, suggesting that this
method should be used instead of majority vote in future
crowdsourcing endeavors.

Keywords
Crowdsourcing, Similarity, Community Detection, Hierar-
chical Clustering

1. INTRODUCTION
Within online learning platforms and intelligent tutoring
systems there is a tremendous opportunity to utilize knowl-
edge of content similarity. Similar problems can help prevent
cheating during exams by randomly selecting from multi-
ple similar problems when students receive the exam, mea-
sure students’ learning gains by spreading out similar prob-
lems between assignments, and measure the effects of in-

structional interventions by comparing a student’s scores on
similar problems before and after the intervention. Similar
instructional material can be used to offer students choices
in which instructional material they receive, which has been
shown to increase engagement and achievement [7]. While it
is possible to implement these methods with general knowl-
edge of content similarity, such as similarity in prerequisite
knowledge or difficulty, if a more informed definition of con-
tent similarity is used, the success of these methods is likely
to grow.

Although there is a lot of value in knowing what content is
similar to other content, what content should be considered
similar is highly dependent on use case. This makes it a
challenge for content creators to define the similarity in the
content, as they don’t necessarily know what their content
will be used for. While some content is obviously similar,
for example, two mathematics problems that are identical
except for the numbers used in the problems, in other situ-
ations it is much more difficult, especially when content is
being aggregated from multiple sources that may not even
use the same metrics for prerequisite knowledge or difficulty.

Crowdsourcing offers a way to derive which content is similar
to other content for specific use cases. Crowdsourced opin-
ions on similar content can be gathered each time a new use
case for similar content arises. By informing the workers,
whose opinions are being crowdsourced, of the specific use
case and requirements for similarity, the methods that rely
on content being similar are more likely to be successful.
However, crowdsourcing opinions on similar content poses
some challenges as well. Before an online learning platform
or intelligent tutoring system uses crowdsourced assertions
of similarity, steps must be taken to assess the trustworthi-
ness of workers whose opinions are being crowdsourced and
ensure the truthfulness of the final assertions of similarity.

In this work we present a novel algorithm that both mea-
sures the reliability of the workers whose opinions are be-
ing crowdsourced, and determines, from these individual’s
opinions, what content is most likely to be similar to other
content. To evaluate this method, we first simulated a wide
range of conditions in which assertions of similarity were
made, and compared the performance of our algorithm to
the traditional alternative. We then performed a case study
where teachers and college students were told to identify
middle-school mathematics problems that evaluated a simi-

Ethan Prihar and Neil Heffernan “A Novel Algorithm for Ag-
gregating Crowdsourced Opinions”. 2021. In: Proceedings
of The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 547-552.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 547

lar skill set. The assertions of similarity collected from the
case study were used to identify groups of similar problems
and measure the reliability of each worker’s assertions.

Ultimately, this work seeks to answer the following three
research questions:

1. Can we exploit properties of community detection to
more accurately form groups of content from crowd-
sourced opinions?

2. How does the resulting algorithm perform in a simula-
tion study compared to the more traditional method?

3. How does the resulting algorithm perform in a case
study using workers of various expertise to determine
which mathematics problems are similar to each other?

2. BACKGROUND
2.1 Ensembling Crowdsourced Opinions
Identifying the truth from crowdsourced opinions is not a
new problem. Most of the techniques employed to ensure
the accuracy of crowdsourced opinions rely on ensuring that
workers have sufficient knowledge of the subject matter.
This can be done through testing workers before giving them
tasks, tailoring tasks specific to their skill sets, recruiting
high quality workers, and educating workers before assign-
ing them tasks. This can also be done through encourage-
ment with extrinsic motivators like money, promotions, or
prizes, or intrinsic motivators like a sense of purpose, or by
gamifying the crowdsourcing tasks [1].

While there are many methods to encourage individuals
whose opinions are being crowdsourced to be accurate, this
work is focused on how to validate the quality of individuals’
opinions after their task is complete. Current methods for
accomplishing this place the burden of validation back onto
the workers. Having workers rank the quality of other work-
ers assertions is one method of validation. Another common
method for validation is to have multiple workers perform
the same task and merge the output of each worker, either
as an average or as a majority vote [1].

There are also more advanced ways of algorithmically val-
idating crowdsourced opinions. Item response theory and
latent factor analysis based models have out-performed ma-
jority voting based validation methods on tasks related to
identifying facial expressions and answering questions about
geography [6, 10]. These models also determine the quality
of individuals whose opinions are being crowdsourced, which
can be used to refine the pool of individuals used for future
crowdsourcing tasks [6, 10]. The novel algorithm in this
work also aggregates crowdsourced opinions while evaluat-
ing the quality of each worker.

2.2 Community Detection
The field of community detection is focused around deter-
mining groups of similar items from a network of connected
items. This has many applications throughout mathemat-
ics, physics, biology, computer science, and social sciences.
Many things can represented as a network, for example, in-
terstellar objects, neurons, city streets, and social media can

all be represented as networks of interconnected items [3].
Finding similar educational content can be framed as a com-
munity detection problem by representing educational con-
tent as a network in which items are connected by topic,
difficulty, language, prerequisite knowledge, or, in the case
of this work, opinions on similarity. Structuring the task of
identifying similar educational content as a community de-
tection problem allows for the use of various well-established
community detection algorithms, such as hierarchical clus-
tering. In hierarchical clustering, each item begins in it’s
own cluster. Then, clusters are merged based on the merge
strategy and distance between clusters [5]. Hierarchical clus-
tering was used in both the simulation and empirical study.

3. METHODOLOGY
3.1 Dynamically Weighted Majority Vote
The Dynamically Weighted Majority Vote (DWMV) method
is our alternative to the traditional majority vote method for
combining multiple crowdsourced opinions on tasks with bi-
nary outputs. The DWMV method calculates the weighted
majority opinion for each task, then determines the weight
of each worker by how closely their opinion agreed with the
majority opinion. The closeness of a worker’s opinion to
the majority opinion can be determined with any function
for comparing two vectors that results in a value greater
than or equal to zero. For example, accuracy or Dice co-
efficient[2]. DWMV initializes all workers’ weights to be
equal at the beginning of the algorithm, and iteratively up-
dates these weights until the weighted majority vote does
not change between iterations. Once the weighted majority
vote remains constant from one iteration to the next, the
weights of the workers can be interpreted as a measure of
confidence in each worker, and the final weighted majority
vote can be used downstream in the same way the traditional
majority vote would have been used. Algorithm 1 formally
defines the DWMV algorithm. In Algorithm 1, the func-
tion s(x, y) determines the closeness of worker i’s opinion,
(Bij [Aij = 1])tj=1, to the majority opinion, (uj [Aij = 1])tj=1.
The algorithm requires a matrix A of response indicators, in
which aij = 1 if worker i completed task j, and aij = 0
otherwise, and a matrix B of worker’s responses to tasks, in
which bij contains the binary response of worker i to task j.
In Algorithm 1, vector u contains the final weighted majority
vote for each task, and vector c contains the final measure of
confidence for each worker, based on the similarity between
the weighted majority votes and the individual worker’s re-
sponses.

3.2 Simulation Study
To determine if DWMV had a positive impact on forming
groups from crowdsourced opinion, a simulation study was
performed to compare the DWMV method to the traditional
majority vote method in a variety of conditions. Figure 1
illustrates the simulation process. In the simulation study,
hierarchical clustering was used to form groups from simu-
lated workers’ opinions of item similarity aggregated using
both the majority vote method and the DWMV method.
Table 1 lists the different initial parameters and their values
used in the simulation. Five trials of every possible combi-
nation of the values in Table 1 were simulated for a total of
37,500 simulation runs.

548 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Algorithm 1 Dynamically Weighted Majority Vote

Require: s(x, y) : function for the similarity of two vectors
Require: w : number of workers
Require: t : number of tasks
Require: A = (awt) : matrix of response indicators
Require: B = (bwt) : matrix of response values

v ← (0)tj=1 . initialize with values different from u
u← (–1)tj=1 . initialize with values different from v
c← (1)wi=1 . start with equal confidence in all workers
while u 6= v do

v ← u

u←

({
1, if

∑w
i=1(c�B�A)ij∑w

i=1(c�A)ij
≥ 1

2

0, otherwise

)t

j=1

c←

(
s
(

(uj [Aij = 1])tj=1, (Bij [Aij = 1])tj=1

))w

i=1
end while

Figure 1: A flowchart of the simulation process, DWMV and
majority vote were compared to each other through their use
in community detection through hierarchical clustering.

Table 1: Simulation Parameters and Simulated Values
Parameter Values

i 50, 100, 150, 200
g 5, 10, 15, 20, 25

wfp 0.1, 0.2, 0.3, 0.4, 0.5
wfn 0.1, 0.2, 0.3, 0.4, 0.5
p 20, 40, 60, 80, 100
d 0.25, 0.5, 0.75

The simulation began by randomly placing i items into g
groups, where i and g are initial parameters of the simula-
tion. Then the simulation crated ten workers. Each worker
had a false positive rate and a false negative rate. These
values were calculated separately to make the simulation
more true to real life. In real life, it is not often that a
worker would have an equal chance of incorrectly asserting
that two items are or are not similar. The more likely case is
that some workers think there is more similarity and other
workers think there is less similarity between items than the
actual similarity of items. The false positive and false neg-
ative rates of the workers were sampled separately for each
worker from a uniform distribution in the range [0, wfp] and
[0, wfn] respectively, where wfp and wfn are initial parame-
ters of the simulation. Once the items were randomly placed
in groups, and the error rates of the workers were randomly
determined, a random p percent of all pairs of items were
given to each worker, where p is an initial parameter of the
simulation. Each worker then determined whether or not
the items in each pair they received were similar to each
other, taking into account their error rates.

Once all workers asserted whether or not each item pair they
were given contained similar items, the majority vote and
DWMV for the similarity of each item pair was calculated.
The majority votes and DWMVs of item similarity were then
used to form a network of item similarity, where each item
is connected to every other item it was voted to be similar
to. The majority vote network and DWMV network were
both used to form groups through hierarchical clustering
with Jaccard Index as the distance metric. Jaccard Index
was used as the distance metric because Jaccard Index does
not take into account true negatives [8]. Most items are not
similar to each other, so a metric that takes into account
true negatives would be over-inflated and not as informative
in this context. After forming groups from the majority vote
and DWMV similarity networks, the difference in accuracy,
precision, and recall between the groups formed from the
majority vote and DWMV similarity networks were used to
determine if the DWMV method improved upon tradition
majority vote.

3.3 Empirical Study: Similar Problems
In addition to a simulation, an empirical study was per-
formed to compare DWMV to majority vote on a real crowd-
sorcing task. In this study, middle school mathematics teach-
ers and college students were given 50 seventh grade math-
ematics problems from the Engage New York1, Illustrative
Mathematics2, and Utah Middle School Math Project3 cur-
ricula. Each worker was told to identify problems that eval-
uate similar mathematics skills. The workers’ crowdsourced
opinions of similarity were aggregated using both DWMV
and majority vote, and then grouped using hierarchical clus-
tering, with Jaccard Index as the distance metric with a
threshold of 0.75. The resulting groups were then compared
to a ground truth, provided by ASSISTments, an online
learning platform [4], in the form of Common Core State
Standards Mathematics Skill Codes4, which each problem

1https://www.engageny.org/
2https://illustrativemathematics.org/
3http://utahmiddleschoolmath.org/
4http://www.corestandards.org/

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 549

was tagged with. These ground truth skill tags were de-
termined by trained experts and the designers of the above
stated curricula. The difference in accuracy, precision, and
recall between groups formed with hierarchical clustering
from DWMV and majority vote were again used to evaluate
the quality of the DWMV algorithm.

4. RESULTS
4.1 Simulation Study
To compare the DWMV method to the traditional majority
vote method, the difference in accuracy, precision, and recall
as a function of wfp, wfn, i, g, and p, as described in Section
3.2, were calculated. The first positive takeaway from the
simulation is that DWMV was almost always more accurate
than majority vote, regardless of the simulation parameters.
Only when the simulation had more than twenty groups or
the maximum false negative rate of workers was 20% or less
did DWMV not reliably out perform majority vote, but it
did not significantly underperform either. At most, DWMV
was slightly less accurate than majority vote when workers
had very low false negative rates. Interestingly this increase
in performance was not shared by both precision and re-
call. While recall followed the trend of accuracy and showed
almost entirely positive improvements from using DWMV
over majority vote, precision did not.

Another interesting finding is that all three performance
metrics increased as both the maximum false negative rate
and fraction of links seen by workers increased. This implies
that as workers answer more problems, and become worse
at correctly identifying when items are similar, the benefit
of using DWMV over majority vote increases.

Overall, t-tests [9] showed that using DWMV led to a sta-
tistically reliable (p < 0.001) 0.18% increase in accuracy,
a statistically reliable 1.78% (p < 0.001) increase in recall,
but no statistically reliable (p = 0.28) change in precision.
While small, these reliable improvements in accuracy and
recall over the traditional majority vote method are an in-
dication of the potential positive effects of transitioning to
using DWMV instead of majority vote when aggregating
crowdsourced opinion.

There were also some interesting differences in how different
types of error affected the weights of workers as determined
by the DWMV method. Figure 2 shows the average and
95% confidence interval of the DWMV weights of workers
as a function of the workers’ false positive and false nega-
tive rates. The false positive rate of the workers seems to
decrease their weight in the final weighted majority vote of
the DWMV method much more quickly than their false neg-
ative rate. A potential cause of this is that, in the simulated
groups of similar items, there were far more pairs of items
that were not similar to each other than there were pairs of
items that were similar. For example, to have an equal num-
ber of items that are similar and not similar to each other,
each item would have to be similar to half the items. The
only way to facilitate that in the context of this simulation
would be to have only two equally sized groups of items. In
the simulation there were always at least five groups, and
up to 25 groups of similar items, which caused most prob-
lems to not being similar to each other. Therefore, when
a worker had a large false positive rate, there were more

Figure 2: The average and 95% confidence interval of the
DWMV weights of workers as a function of the workers’ false
positive and false negative rates.

opportunities for them to make a mistake compared to a
worker with a large false negative rate. Additionally, the
large number of dissimilar problem pairs compared to the
number of similar problem pairs caused workers with very
low false positive rates to have higher weights than work-
ers with equally low false negative rates, because workers
with low false positive rates, regardless of their false nega-
tive rates, had much fewer opportunities to make a mistake.
These findings suggest that the distribution of correct re-
sponses in crowdsourcing tasks affects which type of worker
error has a larger impact on workers’ weights in the DWMV
method.

4.2 Empirical Study: Similar Problems
In total, six teachers and four students completed the crowd-
sourcing task of grouping 50 seventh grade mathematics
problems. Using each worker’s assertions of similarity, the
DWMV method and traditional majority vote were used to
aggregate the opinions of the workers into a final network
of similarity, which was then used to create groups of simi-
lar problems using hierarchical clustering. This is the exact
same process that was used to form groups in the simu-
lation study. Figure 3 shows the progressive iterations of
DWMV. Iteration 1 shows the unweighted average of each
workers assertions. The DWMV method’s process of iterat-
ing between calculating a weight for each worker and calcu-
lating the weighted majority vote shifted the weighted aver-
age of workers assertions toward the ground truth similarity
of problems. This convergence was present in the simulated
example in Section 3.1 as well. The benefit of the DWMV
method over traditional majority vote lies in this ability to
converge towards ground truth. Figure 4 shows the weight
of each worker as a function of their error rate. The cohort
of middle school mathematics teachers performed much bet-
ter overall than the cohort of college students. The average
accuracy of the teachers was about 97% while the average ac-

550 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 3: Progressive iterations of DWMV converging on em-
pirical data.

curacy of the college students was only about 81%. Based on
these weights, it is clear that the DWMV method valued the
opinions of middle school mathematics teachers more than
the opinions of college students, which is expected given the
context and task. While, in this scenario, it might have been
easy for a human in the loop to recognize that the teachers’
opinions should be valued more, it will not always be the
case that one group of workers is clearly more qualified than
another group, and thus the DWMV method can help elu-
cidate which workers are the most reliable.

Table 2 shows the difference in accuracy, precision, and re-
call between groups formed through hierarchical clustering
from the assertions of similarity aggregated using DWMV
and traditional majority vote. Similar to the simulation re-
sults, DWMV had the largest positive impact on recall, the
second largest positive impact on accuracy, but no impact
on precision. In this empirical study, both the traditional
majority vote method and the DWMV method led to perfect
precision, meaning all problems that were placed in groups
together were similar to each other. However, traditional
majority vote led to worse recall than DWMV. When tradi-
tion majority vote was used, three of the 50 problems were
not placed in a group with any other problems, which is why
the recall was so low. However, when DWMV was used, only
one problem was not placed in a group of similar problems.
This outlier problem, that neither traditional majority vote
nor DWMV was able to correctly identify as similar to other
problems in its group, had the following text:

22% of 65 is 14.3. What is 22.6% of 65? Round
your answer to the nearest hundredths (second)
decimal place.

Below are examples of problems in the same group as this
problem, which were all correctly identified as similar to each
other.

Figure 4: DWMV’s confidence in each worker after the
DWMV method converged.

Josiah and Tillery have new jobs at YumYum’s
Ice Cream Parlor. Josiah is Tillery’s manager. In
their first year, Josiah will be paid $14 per hour,
and Tillery will be paid $7 per hour. They have
been told that after every year with the com-
pany, they will each be given a raise of $2 per
hour. Is the relationship between Josiah’s pay
and Tillery’s pay rate proportional?

To make a punch, Anna adds 8 ounces of apple
juice for every 4 ounces of orange juice. If she
uses 32 ounces of apple juice, which proportion
can she use to find the number of ounces of or-
ange juice x she should add to make the punch?

A recent study claimed that in any given month,
for every 5 text messages a boy sent or received,
a girl sent or received 7 text messages. Is the re-
lationship between the number of text messages
sent or received by boys proportional to the num-
ber of text messages sent or received by girls?

Although all these problems are related to ratios and pro-
portions, the other problems in the group with the outlier
problem are longer word problems that do not explicitly
use percentages. The teachers and students whose opin-
ions were crowdsourced could have missed the connection
due to the different wording in the problems, or they could
believe that calculating percentages is a different skill than
calculating proportions from word problems. Based on the
differences between this single outlier problem and the other
problems in its group, it is possible that the outlier problem
was consciously excluded from its group and not simply an
oversight.

The impact of using DWMV was larger in this empirical

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 551

Table 2: A comparison of majority vote to DWMV used to
form groups of similar problems from crowdsourced assertions
of similarity.

Metric Majority Vote DWMV % Increase
Accuracy 0.987 0.997 1.054
Precision 1.000 1.000 0.000

Recall 0.903 0.977 8.228

study than it was in the simulation. In the simulation there
was a larger than average improvement in accuracy and
recall when the workers had very low false positive rates.
Given that in this empirical study both sets of groups of
similar problems had perfect precision, it is likely that the
workers in this study had very low false positive rates, which
likely contributed to why the positive impact of using DWMV
instead of majority vote was larger in this empirical study
than in the simulation as a whole. The results of this em-
pirical study suggest that not only can DWMV out-perform
traditional majority vote in simulations, but can also im-
prove the recall and accuracy of groups of similar problems
formed from crowdsourced opinions on content similarity in
real-life scenarios as well.

5. CONCLUSION
Within online learning platforms and intelligent tutors, there
is tremendous utility to knowing what content is similar to
other content within the platform, but each application of
similar content is likely to have different criteria for what
is considered similar. Crowdsourcing opinions on the sim-
ilarity of content is an accessible way for new applications
to recognize similar content. However, crowdsourcing poses
some difficulties, namely, how to identify reliable workers
and properly aggregate opinions from multiple workers. This
work has demonstrated the ability of the Dynamically Weigh-
ted Majority Vote method, a novel algorithm for aggregating
crowdsourced opinion while rating workers, to accomplish
those goals. DWMV has been shown, in both a simula-
tion study and an empirical study, to lead to higher accu-
racy and recall that the traditional majority vote method
on crowdsourcing tasks related to identifying similar con-
tent. In the simulation study, using DWMV before identi-
fying groups of similar items through hierarchical clustering
resulted in a statistically significant 0.18% increase in accu-
racy and a 1.78% increase in recall over using majority vote.
The simulation study also revealed how the distribution of
correct responses in the crowdsourcing tasks effects how the
false positive and false negative rates of workers effects their
weight in the DWMV method. In the empirical study, us-
ing DWMV before identifying groups of similar problems
through hierarchical clustering resulted in about a 1% in-
crease in accuracy and an 8% increase in recall over using
majority vote, and provided perspective on the differences
in accuracy between the expert middle school math teach-
ers and the novice college students. Moving forward, when
faced with the need to aggregate crowdsourced opinions, the
learning science community can look to the DWMV method
as an alternative to the traditional majority vote method.
The DWMV method is a promising tool for increasing the
reliability of crowdsourced opinion and, when paired with
hierarchical clustering, identifying groups of similar content.

6. ACKNOWLEDGMENTS
We would like to thank multiple NSF grants (e.g., 1917808,
1931523, 1940236, 1917713, 1903304, 1822830, 1759229, 172-
4889, 1636782, 1535428, 1440753, 1316736, 1252297, 11094-
83, & DRL-1031398), as well as the US Department of Ed-
ucation for three different funding lines; a) the Institute for
Education Sciences (e.g., IES R305A170137, R305A170243,
R305A180401, R305A120125, R305A180401, & R305C1000-
24), b) the Graduate Assistance in Areas of National Need
program (e.g., P200A180088 & P200A150306), and c) the
EIR. We also thank the Office of Naval Research (N00014-
18-1-2768), Schmidt Futures, and an anonymous philanthro-
pic foundation.

7. REFERENCES
[1] F. Daniel, P. Kucherbaev, C. Cappiello, B. Benatallah,

and M. Allahbakhsh. Quality control in
crowdsourcing: A survey of quality attributes,
assessment techniques, and assurance actions. ACM
Computing Surveys (CSUR), 51(1):1–40, 2018.

[2] L. R. Dice. Measures of the amount of ecologic
association between species. Ecology, 26(3):297–302,
1945.

[3] S. Fortunato. Community detection in graphs. Physics
reports, 486(3-5):75–174, 2010.

[4] N. T. Heffernan and C. L. Heffernan. The assistments
ecosystem: Building a platform that brings scientists
and teachers together for minimally invasive research
on human learning and teaching. International
Journal of Artificial Intelligence in Education,
24(4):470–497, 2014.

[5] S. C. Johnson. Hierarchical clustering schemes.
Psychometrika, 32(3):241–254, 1967.

[6] P. Ruvolo, J. Whitehill, and J. R. Movellan.
Exploiting commonality and interaction effects in
crowdsourcing tasks using latent factor models. In
Neural Information Processing Systems. Workshop on
Crowdsourcing: Theory, Algorithms and Applications.
Citeseer, 2013.

[7] D. M. Stenhoff, B. J. Davey, B. Lignugaris, et al. The
effects of choice on assignment completion and percent
correct by a high school student with a learning
disability. Education and treatment of Children,
31(2):203–211, 2008.

[8] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction
to data mining. Pearson Education India, 2016.

[9] B. L. Welch. The generalization ofstudent’s’ problem
when several different population variances are
involved. Biometrika, 34(1/2):28–35, 1947.

[10] J. Whitehill, T.-f. Wu, J. Bergsma, J. Movellan, and
P. Ruvolo. Whose vote should count more: Optimal
integration of labels from labelers of unknown
expertise. Advances in neural information processing
systems, 22:2035–2043, 2009.

552 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Experimental Evaluation of Similarity Measures for
Educational Items

Jaroslav Čechák
Masaryk University

Brno, Czech Republic
xcechak1@fi.muni.cz

Radek Pelánek
Masaryk University

Brno, Czech Republic
pelanek@fi.muni.cz

ABSTRACT
Measuring similarity of educational items has several ap-
plications in the development of adaptive learning systems,
and previous research has already proposed a wide range of
similarity measures. In this work, we provide an experimen-
tal evaluation of selected similarity measures using a large
dataset. The used items are alternate-choice questions for
the practice of English grammar for second language learn-
ers; the dataset contains thousands of items and over 10
million student answers. Our results provide warnings about
the generalizability of results presented in EDM works: 1)
the results vary significantly between knowledge components
and 2) the size of available data is an important factor.

Keywords
item similarity, evaluation, generalizability

1. INTRODUCTION
Learning environments often contain thousands of educa-
tional items (questions, problems). A useful data mining
contribution is to quantify the pairwise similarity of these
items [9]. Such similarity measures have many applications.
There are useful particularly for the management of the con-
tent, e.g., adding and deleting new items, preparing and
revising explanations and hints, or deciding when to split
knowledge components. Similarity measures can also be
used in algorithms that guide the presentation of the con-
tent, e.g., in the presentation of error explanations, it may be
useful to group similar items together; in sequencing items,
we may want to avoid giving students two very similar ques-
tions in close succession. Item similarities may also be used
for student modeling [6, 12].

Item similarity can be computed in many ways [9]; the basic
two approaches are to use the item content data (e.g., the
text of the question) and student performance data (e.g., the
correctness of answers and response times). The content-
based measures are, to a large degree, dependent on the

specific type of data. The techniques based on student per-
formance data are content-agnostic and widely applicable;
the disadvantage is that they require (potentially large) stu-
dent data. Previous research has proposed several specific
measures [11, 7, 10].

In this work, we focus on the evaluation of previously pro-
posed measures on a large and interesting dataset. The used
items are alternate-choice questions for the practice of En-
glish grammar for second language learners (see examples in
Table 1). The dataset contains thousands of items, which are
categorized into knowledge components and difficulty levels.
The items are alternate-choice questions, i.e., they consist of
a stem, correct answer, and a single distractor. Items also
have explanations, which are written in the Czech language.
The dataset contains approximately 10 million student an-
swers.

For this dataset, we evaluate various similarity measures and
explore their relations. We focus particularly on the relation
between performance-based measures and measures based
on the text of explanations. We explore the issue of the suffi-
cient size of data on student performance. In EDM research,
this issue is often neglected; the performance of techniques is
often studied using a fixed dataset (“all available data”). Our
experiment shows that the studied methods are quite data-
hungry; they require thousands of answers per item and the
amount of available data seems to be more important than
differences caused by choice of a measure (which is a type
of result common with other machine learning applications
[2, 4]). Experiments also show large differences in results
between different knowledge components, even though all
of these knowledge components come from a single domain
(English grammar) and all the used items are of the same,
simple format (alternate-choice questions). This result pro-
vides a warning about the generalizability of research results
in educational data mining.

2. EXPERIMENTAL SETTING
In this section, we describe the data we used for experiments
and the specific similarity measures.

2.1 Data
For the evaluation, we use data from the adaptive learning
system Umı́me anglicky, umimeanglicky.cz. The system
contains various exercises for English grammar and vocab-
ulary learning for second language learners (for Czech na-
tive speakers). We use only one type of exercise—alternate

Jaroslav Čechák and Radek Pelánek “Experimental Evaluation of Sim-
ilarity Measures for Educational Items”. 2021. In: Proceedings
of The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 553-558.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 553

Table 1: Examples of items from the knowledge component Present simple vs. present continuous. For the sake of
readability, explanations are given here in English; in the used data, they are in the Czech language.

item stem correct distractor explanation

I to the gym once a week. go am going When talking about periodical events, we use
present simple tense.

I the film that we’re watching. hate am hating The verb to hate is not used in continuous form.
We use present simple form instead.

I can’t hear you! Everybody so loudly. is talking talks When the activity is still in progress, we use
present continuous tense.

choice question of the form fill-in-the-blank with two options
(the correct answer and a distractor). The number of op-
tions is not crucial and our analyses could also be applied
to questions with multiple distractors. The questions have
explanations (in the Czech language).

The questions are divided into item sets. Each item set
contains questions of similar difficulty from a single knowl-
edge component. The system uses three difficulty levels. An
example of an item set is Present simple vs. present contin-
uous, medium difficulty, for which examples of questions are
provided in Table 1.

Our dataset consists of 54 knowledge components divided
into 68 item sets that in total contain 4 348 items. Some
item sets share the same knowledge component, and they
only differ in the difficulty of items. Concerning student
performance, we use the answer (correct or incorrect) and
response time (measured in milliseconds). We have 9 752 957
answers from 151 904 students.

Since details of data collection can often have a nontrivial
impact on the results of the evaluation [8], we provide a
basic description of the core aspects of system behavior that
influence the collected data:

• In the system, students answer a sequence of items
from a single item set in random order.

• The system uses mastery learning on the level of item
sets. Students are motivated to answer a sufficient
number of items correctly to satisfy the mastery crite-
rion.

• The choice of an item set that a student solves can
be done in a variety of ways: student free choice, as-
signment by a teacher (homework, assignment within
a class), or recommendation by the system (based on
past activity).

• The item sets differ widely in their difficulty. The
samples of solvers may differ significantly for individ-
ual item sets (e.g., Second conditional, hard is solved
by more advanced students than Present simple tense,
easy).

• Items may move between difficulty levels (“design level
adaptivity” [1]). This aspect may be important for
some measures.

2.2 Similarity Measures
In our experiments, we use similarity measures that are vari-
ations on previously studied measures [9].

2.2.1 Measures Based on Item Content
One type of measure utilizes that available data about items.
One possibility is to utilize item statements, e.g., to measure
the similarity of item texts or match on options (the correct
answer and distractor). In the case of grammar learning,
this approach is hard to use: two questions that practice
the same grammar rule can have completely different texts,
answers, and distractors. We have performed preliminary
experiments with various measures based on item text; these
experiments showed very weak results. Therefore, we do not
discuss these measures in more detail.

A more applicable content data are explanations. In the
used dataset, each item has an associated explanation shown
as feedback to students (particularly when they make a mis-
take). To quantify similarity based on explanations, we com-
pute the text similarity of the explanations. To do so, we
considered two common methods: Levenshtein edit distance
[5] and Jaccard index.

Both methods compute the pairwise similarity of two expla-
nations. Levenshtein edit distance operates at the character
level and computes the minimal number of edits (character
addition, removal, and substitution) required to transform
one explanation into another explanation. Jaccard index
only compares sets of words appearing in the two explana-
tions regardless of their position. It is defined as

|E1 ∩ E2|
|E1 ∪ E2|

where E1 is a set of words in one explanation and E2 is a
set of words in another explanation.

2.2.2 Measures Based on Student Performance
For computing similarity based on student performance, we
consider two basic aspects: the correctness of answers and
response times. These aspects are easy to collect and rele-
vant for a vast range of items. In our experiments, we use
similarity measures based on either of the two types of data
and their combination.

Answer Correctness. The correctness of a student’s an-
swer is a simple binary indication of whether the student
has answered an item correctly (selected the correct option

554 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 2: Agreement matrix for items i and j. Values a, b, c,
and d are numbers of students that answered both items in
a particular way. For example, c is number of students that
answered item i correctly but answered item j incorrectly.

n = a+ b+ c+ d
item i

correct incorrect

item j
correct a b

incorrect c d

Sp =
(ad− bc)√

(a+ c)(a+ b)(b+ d)(c+ d)

Sc =
(Po − Pe)

(1− Pe)

Po =
(a+ d)

n

Pe =
((a+ b)(a+ c) + (b+ d)(c+ d))

n2

Skl =
(ad− bc)

(a+ c)(c+ d)

in our case). Similarity measures based on the answer cor-
rectness then measure “agreement” between answers given
by the same students to different items. This is best illus-
trated on an agreement matrix for two items i and j. There
are only four possible ways a student can make binary re-
sponses to two items, as illustrated in Table 2. Similarity
measures then differ in how exactly they compute the agree-
ment from the individual components of the matrix. In our
experiments, we use Pearson correlation coefficient (Sp), Co-
hen’s Kappa (Sc) [3], and Kappa Learning [7] (Skl).

Answer correctness measures can be extended by including a
“second step“ [9], i.e., computing similarity of similarities. In
the first step, binary vectors of student answers for two items
are compared to obtain the two items’ similarity. The result
is a similarity matrix with real-valued elements si,j equal to
the similarity of items i and j. The second step compares
real-valued vectors si,∗ and sj,∗ to obtain similarities of items
i and j. In our experiments, we use Pearson-Pearson which
is a Pearson correlation coefficient used in both first and
second step.

Response Time. Response time is measured as the time it
takes a student to answer the item (read the item statement
and click on one of the options in our case). Student re-
sponse times can vary due to external distractions during
answering or even technical reasons like unreliable internet
connection. To make the measure more robust, we opted
to bin each item’s response times into percentiles. The sim-
ilarity of two items i and j is then measured as Pearson
correlation coefficient of student response time percentiles
vectors for items i and j.

Combined. Both correctness and response time can be com-
bined to extract more bits of information. There are mul-
tiple ways to combine correctness and response time into a

single score [9]. In our experiments, we use linear time trans-
formation for correct answers as a combined score defined
as r = c ·max(1 − t/2τ), 0) where c ∈ {0, 1} is correctness,
t ∈ R+ is response time, and τ is the median time for a
given item. Similarities of items i and j are then Pearson
correlation coefficient of score vectors for items i and j.

Table 3: Overview of all item similarity measures used in this
study.

name measure type data used

Levenshtein edit distance content explanations
Jaccard index content explanations
Pearson corr. coef. performance correctness
Cohen’s Kappa performance correctness
Kappa Learning performance correctness
Pearson-Pearson performance correctness
Response time percentile performance response time

Response time score performance
correctness +
response time

3. RESULTS
In this section, we present our findings. We use the expla-
nations as “ground truth” for item similarity. The reasoning
is that explanation describes the aspect of knowledge com-
ponent that the item is practicing, and similar aspects are
described in a similar way (e.g., same tense or conditional).
This approach has its limitations, and it is heavily depen-
dent on the quality of explanations. Not all explanations are
necessarily ideal (different granularity between knowledge
components, human errors), but it is a reasonable proxy.

For intuition behind the performed evaluation, Figure 1 pro-
vides an illustration using two knowledge components. The
figure shows a PCA projection of items into plain based on
the Pearson similarity measure that uses only the correct-
ness of answers. The color of points is based on the expla-
nations provided in the system. As we can see, these two
approaches to measuring item similarity to a large degree
agree—the points with the same color (similar with respect
to explanations) are close to each other (similar with respect
to performance). We now explore these relations in a more
qualitative manner.

3.1 Relations Among Measures
Table 3 provides an overview of measures introduced in Sec-
tion 2.2. Other measures can be defined in a similar fashion.
An obvious question is whether they differ in any significant
way or measure the same thing. To explore relations among
measures, we first look at how much they are correlated.
The correlation of two measures is computed as the Pear-
son correlation coefficient of item similarity matrices, each
produced by applying item similarity measure to all pairs of
items. A high correlation of two measures means that they
generally agree on which pairs of items are similar.

Figure 2 shows correlations among measures based on per-
formance and explanation averaged across all item sets. Both
explanation-based item similarity measures are strongly cor-
related, and they also have comparable correlations with all
performance-based measures. Therefore, it is not important

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 555

Figure 1: PCA projections based on measures using perfor-
mance data (Pearson correlation). Points with the same color
share the same explanations.

which one we choose as the ground truth for later experi-
ments. This result is not surprising as both measures quan-
tify text similarity, albeit in a different way.

Answer correctness measures Cohen’s Kappa and Pearson
behave almost identically, and their correlations across item
sets are 0.96 or higher. The Kappa Learning measure also
behaves similarly and has high correlations with both mea-
sures dropping below 0.75 only for one item set. When
compared to explanation-based measures, all three measures
achieve the same result. In most cases, it is not important
which of the three we choose, and the amount of available
data is a much more important factor (more details in Sec-

Figure 2: Heatmap of correlation among measures averaged
across 68 item sets.

tion 3.2). This result is in contrast to previous research [7],
which argued that the Kappa Learning measure brings im-
portant improvement.

The second step similarity Pearson-Pearson has mostly the
same or worse correlation with explanation-based measures
compared to the previous three measures. It is related to
Pearson and Cohen’s Kappa, with correlation ranging from
0.3 to 0.8 for most item sets. The correlation with explanation-
based measures is weaker compared to other measures using
correctness. Thus for the used dataset, the second step does
not seem useful. This observation is in contrast to previous
research in another context [11].

The measures with response time do not provide any tan-
gible benefits. When compared to explanation-based mea-
sures, they achieve either similar correlations in case of Re-
sponse time score or very poor and mostly zero correlation
in case of Response time percentile. A combination of an-
swer correctness and response time in Response time score
results in the best correlation for some item sets, but it is
not significantly different on average. These results suggest
that answer correctness might be a better indication of item
similarity for our dataset.

3.2 Size of Data
Item similarity measures based on student performance are
based on statistics of student performance data. All statis-
tics need at least some amount of data to become stable and
to start approximating the true statistical feature of the un-
derlying data generating process. The question is then, how
much data, i.e., answers per item, is required to obtain a
good stable approximation?

In Figure 3, we have visualized the stability of performance-
based measures in terms of correlation with the explanation-
based measure. To simulate different numbers of answers,
we have started with knowledge components with a suffi-
cient amount of data and randomly subsampled each item’s
answers. We report correlation with an explanation-based
measure; we report only the Jaccard index as it is highly cor-

556 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 3: Correlation between performance-based measures and Jaccard index with an increasing number of answers per item
across multiple knowledge components. Note that y-axis ranges differ between plots.

related with Levenshtein edit distance and has higher mean
correlations with performance-based measures.

Figure 3 shows that performance-based measures are data-
hungry. There are nontrivial differences in correlations until
2000 answers per item, and some improvement can be ob-
served even for more data. The general shape of the curves
is mostly similar across multiple knowledge components and
final achieved correlations. There are a few changes in the
relative ordering of measure, but these could be partly at-
tributed to random noise for low data quantities. Differ-
ent answer correctness measures have similar correlations
regardless of data available. Response time score measures
utilize more information from the data, and thus we ex-
pected them to converge faster. This, however, does not
happen.

3.3 Differences among Knowledge Components
There are significant differences in the best achieved cor-
relations among knowledge components. The best correla-
tion achieved between any performance-based measure and
explanation-based measure for a given knowledge compo-
nent ranges from 0.06 to 0.67. Even if we filter out item
sets with fewer than 2000 answers per item, the best cor-
relation achieved are still between 0.25 and 0.67. More-
over, the ordering of performance-based measures in terms
of achieved correlation with explanation measures differs be-
tween knowledge components. For example, Response time
score with Levenshtein edit distance has the best correlation
0.61 for Present simple tense but the same pair has the worst
correlation 0.06 for Passive voice. Therefore, the choice of
knowledge component is more significant than the choice of
similarity measures.

There is a multitude of factors causing these differences.
We have identified some of these factors and give examples
of their effect on correlations. The identified factors are
features of the knowledge component, differences in student
populations, and biases in data caused by the addition of
content to the system.

Features of knowledge components describe how students
use the knowledge component to answer an item. One such
feature is how much the component is rule-based. There are
more factual components, e.g., Past simple tense of irregu-
lar verbs, and more rule-based components, e.g., Past simple
tense of regular verbs. In our data, more rule-based compo-
nents achieve higher correlations on average. For example,
Past simple tense of regular verbs achieved a correlation of
0.63 while Past simple tense of irregular verbs achieved only
a correlation of 0.32.

The difference in student populations is especially impor-
tant in systems that target a wider audience. The audi-
ence of item sets in our dataset range from grades 4 to 10,
and thus the student population solving each item set differ.
Simpler item sets for grades 4 to 7 achieve a better correla-
tion of performance and explanation-based measures, while
more advanced item sets for grades 8 to 10 achieve lower
correlations.

Our dataset comes from a system that continuously evolves
and has its content modified. These modifications also in-
clude the addition of new items among existing items. This
poses a challenge for measuring similarity from performance
data. Groups of items with varying amounts of collected
data can make recently added items artificially different from
the rest. For example, item set Past tense: questions and
negative has 63 items with around 1700 answers per item
and 20 newly added items with only around 800 answers
per item. The best correlation between performance- and
explanation-based measures rises from 0.3 to 0.36 when we
filter out newly added items.

4. DISCUSSION
In this work, we have evaluated previously proposed mea-
sures for quantifying educational items’ similarity based on
students’ performance. We have used a large dataset from a
widely used learning system. The results provide important
warnings for both practitioners and researchers.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 557

Many educational data mining techniques require a large
size of data for good performance. However, research pa-
pers often do not provide any indication of what size of data
is good enough. Our results show that performance-based
measures are data-hungry and may require upwards of 2000
answers per item before converging. Results reported on
smaller datasets thus may be misleading in some aspects.
Note that even a large university class would mean only
around 200 answers per item which is still an order of mag-
nitude smaller than the required 2000.

Another understudied issue is the generalizability of results
across knowledge components. Our dataset is in many as-
pects very homogeneous: we consider only alternate-choice
questions for English grammar. Nevertheless, there are non-
trivial differences between the knowledge components (rule-
based vs. fact-based, simple vs. advanced), and we have
observed significant differences in results depending on the
choice of a knowledge component. This observation raises a
question of the generalizability of results reported on just a
few knowledge components.

5. REFERENCES
[1] V. Aleven, E. A. McLaughlin, R. A. Glenn, and K. R.

Koedinger. Instruction based on adaptive learning
technologies. Handbook of research on learning and
instruction, pages 522–560, 2016.

[2] M. Banko and E. Brill. Scaling to very very large
corpora for natural language disambiguation. In
Proceedings of the 39th annual meeting of the
Association for Computational Linguistics, pages
26–33, 2001.

[3] J. Cohen. A coefficient of agreement for nominal
scales. Educational and psychological measurement,
20(1):37–46, 1960.

[4] A. Halevy, P. Norvig, and F. Pereira. The
unreasonable effectiveness of data. IEEE Intelligent
Systems, 24(2):8–12, 2009.

[5] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. In Soviet physics
doklady, volume 10, pages 707–710. Soviet Union,
1966.

[6] Q. Liu, Z. Huang, Y. Yin, E. Chen, H. Xiong, Y. Su,
and G. Hu. Ekt: Exercise-aware knowledge tracing for
student performance prediction. IEEE Transactions
on Knowledge and Data Engineering, 33(1):100–115,
2019.

[7] T. Nazaretsky, S. Hershkovitz, and G. Alexandron.
Kappa learning: A new item-similarity method for
clustering educational items from response data.
International Educational Data Mining Society, 2019.

[8] R. Pelánek. The details matter: methodological
nuances in the evaluation of student models. User
Modeling and User-Adapted Interaction,
28(3):207–235, 2018.

[9] R. Pelánek. Measuring similarity of educational items:
An overview. IEEE Transactions on Learning
Technologies, 13:354–366, 2020.

[10] R. Pelánek, T. Effenberger, M. Vaněk, V. Sassmann,
and D. Gmiterko. Measuring item similarity in
introductory programming. In Proc. of Learning at
Scale. ACM, 2018.

[11] J. Řihák and R. Pelánek. Measuring similarity of
educational items using data on learners’ performance.
In Educational Data Mining, pages 16–23, 2017.

[12] S. Zhao, C. Wang, and S. Sahebi. Modeling knowledge
acquisition from multiple learning resource types.
arXiv preprint arXiv:2006.13390, 2020.

558 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Analyzing Student Success and Mistakes in Virtual
Microscope Structure Search Tasks

Benjamin Paaßen∗
Insitute of Infomatics

Humboldt-University of Berlin
Berlin, Germany

benjamin.paassen@hu-
berlin.de

Andreas Bertsch
Educational Technology Lab
German Research Center for

Artificial Intelligence
Berlin, Germany

Katharina Langer-Fischer
Institute of Molecular and

Cellular Anatomy
University of Ulm
Ulm, Germany

Sylvio Rüdian
Humboldt-University of Berlin

& Weizenbaum Institute
Berlin, Germany

Xia Wang
Educational Technology Lab
German Research Center for

Artificial Intelligence
Berlin, Germany

Rupali Sinha
Educational Technology Lab
German Research Center for

Artificial Intelligence
Berlin, Germany

Jakub Kuzilek
Insitute of Infomatics

Humboldt-University of Berlin
Berlin, Germany

Stefan Britsch†
Institute of Molecular and

Cellular Anatomy
University of Ulm
Ulm, Germany

Niels Pinkwart†
Insitute of Infomatics

Humboldt-University of Berlin
Berlin, Germany

ABSTRACT
Many modern anatomy curricula teach histology using vir-
tual microscopes, where students inspect tissue slices in a
computer program (e.g. a web browser). However, the edu-
cational data mining (EDM) potential of these virtual micro-
scopes remains under-utilized. In this paper, we use EDM
techniques to investigate three research questions on a vir-
tual microscope dataset of N = 1, 460 students. First, which
factors predict the success of students locating structures in
a virtual microscope? We answer this question with a gener-
alized item response theory model (with 77% test accuracy
and 0.82 test AUC in 10-fold cross-validation) and find that
task difficulty is the most predictive parameter, whereas stu-
dent ability is less predictive, prior success on the same task
and exposure to an explanatory slide are moderately pre-
dictive, and task duration as well as prior mistakes are not
predictive. Second, what are typical locations of student
mistakes? And third, what are possible misconceptions ex-
plaining these locations? A clustering analysis revealed that
student mistakes for a difficult task are mostly located in
plausible positions (’near misses’) whereas mistakes in an
easy task are more indicative of deeper misconceptions.

∗Corresponding author
†Shared senior authors

Keywords
anatomy education, clustering, item response theory, perfor-
mance modeling, virtual microscopes

1. INTRODUCTION
Histology is a core subject that all medicine students have to
pass in their studies. An important part of classic histology
training is the microscopy course where students examine a
large number of slides of human or animal tissue with an op-
tical microscope in order to identify cellular structures with
the aim of establishing structure-function relationships [21].
In recent years, more and more virtual microscopes (VMs)
have been developed and integrated into teaching [21]. Such
VMs reduce the need for resources (students only require a
computer and a software), offer the opportunity to annotate
slides with teacher notes, and enhance the student learn-
ing experience [21]. Prior work has provided numerous case
studies of VMs being successfully integrated into anatomy
education around the globe, e.g. [5, 6, 10, 13, 21, 22]. More-
over, several evaluation studies have shown that students
using VMs perform at least as well as students using optical
microscopes [11, 15].

To the best of our knowledge, no study to date has con-
sidered the educational data mining potential of VMs. For
example, VMs enable us to record which slides students have
seen, which areas on the slides they have focused on, etc. In
this work, we consider the MyMi.mobile VM that is used
in anatomy courses at two German universities [10]. In this
VM, students can view a slide with expert annotations (ex-
ploration), and they can test their knowledge by either locat-
ing a structure in a slide (structure search; refer to Figure 1),
or identifying the tissue sample and staining (diagnosis).

Benjamin Paaßen, Andreas Bertsch, Katharina Langer-Fischer, Sylvio
Rüdian, Xia Wang, Rupali Sinha, Jakub Kuzilek, Stefan Britsch
and Niels Pinkwart “Analyzing Student Success and Mistakes in Vir-
tual Microscope Structure Search Tasks”. 2021. In: Proceedings
of The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 559-565.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 559

We analyze the performance of N = 1, 460 students in struc-
ture search tasks with respect to three research questions:

RQ1: Which features predict student success?

RQ2: What are typical locations of student mistakes?

RQ3: What are possible misconceptions explaining these lo-
cations?

To answer RQ1, we analyzed the collected learning data with
a generalized item response theory [2, 12] model, which con-
sists of a difficulty parameter for each task, an ability pa-
rameter for each student, and four weights for additional
features (see section 3.2). To answer RQ2 and RQ3, we
employed a Gaussian mixture model [7] on the locations of
mistakes and interpreted the resulting clusters with the help
of domain experts. Our results can contribute to enhanced
teaching quality in VM courses as well as establish inter-
pretable models to analyze data from such courses.

In the remainder of this paper, we cover related work, our
experimental setup, the results, and a conclusion.

2. RELATED WORK
Prior work on machine learning on virtual microscope data
has focused on applications outside education. For example,
major prior work has been done in training convolutional
neural networks to solve classification tasks on microscope
images such as detecting fluorescence on images [4]. Suc-
cessful applications can assist anatomy experts in predicting
carcinogens in human cells [23]. Due to the high accuracy
of these models [1], they are helpful in cancer diagnostics.

Related to education, prior work of virtual microscopes can
be roughly distributed into two categories. First, there are
case studies describing how virtual microscopes were inte-
grated into anatomy curricula and the requirements for suc-
cessful integration, e.g. [5, 6, 10, 13, 21, 22]. Second, several
studies have investigated whether students with optical mi-
croscopes have higher learning gain compared to students
with a virtual microscope and found that this is not the
case, e.g. [11, 15].

One of our research questions in this paper is to identify
factors that are related to success in locating structures in
a virtual microscope. Models that predict student success
are a common topic of educational data mining research [3].
For example, Dietz-Uhler et al. [8] summarized which kind
of data is often used to predict students success, classified
into data gathered from the Learning Management System
(e.g. clicks on resources) and performance data (e.g. feed-
back or grades, created by the instructor or respectively the
system). Other papers use demographic data and prior suc-
cess to predict success rates, e.g. [16]. Prior work has shown
that, depending on the knowledge domain, different features
have high importance to predict students’ success. For ex-
ample, Ramos et al. [20] found that hits in a discussion forum
have high importance to predict students success. Yuksel-
turk et al. [24] used a correlational research design and
concluded that self-regulation variables have a highly sta-
tistically significant relation to learning success using inter-
pretable methods. To our best knowledge, there is no prior

Figure 1: Screenshot of the MyMi.mobile structure search
mode.

work on success prediction in virtual microscopes. We want
to close this research gap.

To do so, we turn to item response theory. Item response
theory is concerned with modeling the probability of success
of a student i at a task j via a logistic distribution over the
difference between a student’s ability parameter θi and a
task’s difficulty parameter bj [2, 12]. Generalizations of this
model include more parameters and other distributions [2,
12]. In this paper, we use the standard logistic distribution
but include auxiliary parameters for features that capture
student behavior.

To analyze the locations of typical mistakes, we perform a
clustering analysis using Gaussian mixture models [7]. Clus-
tering is a well-established technique in educational data
mining [3], e.g. to identify groups of student solutions that
may warrant similar feedback [9]. Our reasoning is similar:
We wish to identify typical locations of mistakes in structure
searches such that we have a reasonably sized set of repre-
sentative locations that a teacher can inspect and for which
feedback may be developed.

3. METHOD
3.1 MyMi.mobile VM and Dataset
The MyMi.mobile VM provides three modes: exploration,
which shows expert annotations, structure search, where stu-
dents need to locate a structure in a slide, and diagnosis,
where students need to identify the slide and the stain. The
structure search mode is shown in Figure 1. Students see
a tissue slice and are supposed to move the field of view
(by panning and zooming) until the crosshair is located over
the correct structure. Then, they confirm their choice by
clicking the arrow on the bottom right. As additional in-
terface elements, students see an explanatory text at the
bottom of the screen (“Position the area to be searched in
the center of the screen and confirm your decision by press-
ing the ’continue-button’. Start now!”), a ’minimap’ of the
slide on the bottom left, and a timer on the top right. Stu-
dents can select structure searches in any order from a list
sorted alphabetically according to the slides (e.g. armpit,
eye, colon)1. Students can attempt the same search as many

1The alphabetical ordering probably introduces an ordering
bias. In particular, we observe that the two most attempted

560 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

failures
successes

explored
duration

student i
task j

x1 x2 x3 x4 . . . 1 1 . . .

w1 w2 w3 w4 . . . θi −bj . . .

Figure 2: Illustration of the feature vector ~x (top) for an
attempt of student i on task j, and the parameter vector ~w
(bottom) of the item response theory model.

times as they want.

We consider a dataset of 19, 525 structure search attempts
by 1, 460 students recorded in the summer term 2020 at two
German universities. Most students were second semester
undergraduate students of medicine, with some students
from fourth semester dentistry (45) and molecular medicine
in the second or fourth semester (39). Most students (817)
did not attempt any structure search. Of the 643 who did,
most attempted few structure searches (median 7) with some
’heavy users’ making hundreds of attempts (mean 30.37,
maximum 649). 68.19% of attempts were successful.

For the purpose of validating our model, we also asked four
anatomical teachers using the VM to rate the difficulty of
the 30 most attempted structure search tasks on the plat-
form. The teachers received the following instruction: any
structure search that at least 65% of students are expected
to solve on their first try should be rated as ’easy’; any struc-
ture search between 40 − 65% should be rated ’moderate’;
and any structure search below 40% should be rated as ’dif-
ficult’. These boundaries were chosen based on the actual
success rates of students: 10 of the tasks had an actual suc-
cess rate over 65%, 10 had an actual success rate between
40%− 65%, and 10 had an actual success rate below 40%.

3.2 Item Response Theory
In order to investigate RQ1, we trained a generalized item re-
sponse theory model implemented via logistic regression. In
particular, we pre-processed each structure search attempt
to be represented as a 1, 859 dimensional, highly sparse fea-
ture vector (see Figure 2). The first four dimensions (gray)
contain auxiliary features, namely: 1) How often has the
student failed on the same structure search? (failures) 2)
How often has the student succeeded on the same struc-
ture search? (successes) 3) Has the student already seen
the same slide in the exploratory mode? (explored), and 4)
How many minutes has the student spend on the current
structure search? (duration). The next 1, 460 dimensions
(blue) indicate which student made the attempt, i.e. fea-
ture x4+i = 1 if the current attempt was made by student
i ∈ {1, . . . , 1460} and 0 otherwise. The remaining 395 fea-
tures (orange) indicate which task the attempt was made
on, i.e. feature x1464+j = 1 if the current attempt was made
on task j ∈ {1, . . . , 395} and 0 otherwise.

structure searches are both on the alphabetically first slide.

Our model, then, has the form

P (1|~x) =
1

1 + exp(−~wT · ~x)
(1)

=
1

1 + exp(bj − θi − w1 · x1 . . .− w4 · x4)

where ~x is the sparse feature vector of an attempt and ~w is
the parameter vector (see Figure 2). Note that we obtain a
classic IRT model if the first four features x1, x2, x3, and
x4 are 0. We used the implementation of logistic regression
from the scikit-learn library [19].

3.3 Clustering
To investigate RQ2 and RQ3, we applied clustering on the
locations of mistakes. More specifically, we used a Gaussian
mixture model with K components, which approximates the
probability density over locations (x, y) of mistakes in an
image as

p(x, y) =
K∑

k=1

N
(
(x, y)

∣∣~µk,Σk

)
· πk, (2)

where N ((x, y)|~µk,Σk) denotes the 2D Gaussian density
with mean ~µk ∈ R2 and covariance matrix Σk ∈ R2×2; and
where πk ∈ [0, 1] is the prior for the kth Gaussian compo-
nent. Compared to other clustering algorithms, Gaussian
mixtures have at least two advantages. First, they can deal
with non-spherical clusters by adjusting the covariance ma-
trix accordingly. Second, they provide a probability density
of the data. Moreover, they remain fast to train with an
expectation maximization scheme [7]. We use the scikit-
learn implementation of Gaussian mixtures [19]. To select
the optimal number of components K, we use the Bayesian
information criterion [18].

4. RESULTS AND DISCUSSION
In this section, we present the results of our experiments.
We begin with the teacher difficulty ratings, then continue
with the item response theory model (regarding RQ1), and
conclude with the clustering analysis (regarding RQ2 and
RQ3).

4.1 Teacher difficulty ratings
As the result of our teacher survey, we obtained difficulty
ratings (’easy’, ’moderate’, or ’difficult’) for the 30 most at-
tempted structure search tasks. We observe that the teach-
ers agreed moderately. On average, the Kendall τ for pair-
wise agreement is 0.4 and the overall Krippendorff’s α is
0.44. To enhance reliability, we consider the average rating
of each task in the subsequent analysis. On average, teach-
ers ranked most tasks as ’easy’ (about 55%), fewer as ’mod-
erate’ (just below 35%), and very few as ’difficult’ (about
10%; refer to blue bars in Figure 3). Recall that, according
to actual success rate, all blue bars would have height 1/3.
This indicates that teachers tended to underestimate the ac-
tual difficulty, which may be an instance of the ’expert blind
spot’, i.e. the phenomenon that experts may fail to imagine
the difficulties of novices [17]. We will use the teacher rat-
ings as reference to further validate our item response theory
model below.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 561

easy
moderate

difficult

0
0.2
0.4
0.6
0.8

1
frequency

success rate

easy
moderate

difficult

0

1

2

3

m
o
d
el

d
iffi

cu
lt

y

teacher difficulty rating

Figure 3: Left: The frequency (blue) and the mean actual
success rate (orange) of tasks rated as easy, moderate, or
difficult by teachers. Right: The average difficulty parameter
assigned by the model to tasks rated as easy, moderate, or
difficult by teachers.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

predicted success rate

a
ct

u
a
l

su
cc

es
s

ra
te

0.1

0.2
fr

eq
u
en

cy
o
f

p
re

d
ic

ti
o
n

Figure 4: Calibration plot of the IRT model. Dashed lines
indicate bin width. The color indicates how full each bin is.

4.2 Factors of student success
In order to investigate which factors contribute to student
success (RQ1), we trained an item response theory model
(refer to Section 3.2) on our data.

Model validation To validate the model, we performed
three analyses. First, we performed a 10-fold cross-validation
over attempts, yielding 80.19% ± 0.13% training accuracy
and 77.73% ± 1.83% test accuracy on average ± standard
deviation. Because our data is imbalanced (with less fail-
ures than successes), we also considered AUC (0.86± 0.001
in training and 0.82±0.02 in test), and F1 score (0.69±0.003
in training and 0.66 ± 0.024 in test with a test precision of
0.73 ± 0.06 and a test recall of 0.60 ± 0.03). All measures
indicate good generalization from training to test set. For
the remainder of this section, we consider a model trained
on all data.

Second, we assessed model calibration. Calibration means
that the predicted success probability of a student corre-
sponds to the actual success rate [14]. To analyze this, we
aggregated data into bins according to the predicted suc-
cess probability (each bin had a width of 10%) and then
computed the actual success rate within each bin. Figure 4
shows the corresponding calibration curve, where the dashed
lines indicate the width of each bin in the analysis. Given
that the curve remains within the dashed zone, we con-
clude that our model was well-calibrated. Most predictions

failures successes explored duration

0

0.2

0.4

0.6

w
ei

g
h
t

Figure 5: The scaled weights of auxiliary features.

(27.5%) were in the 90% − 100% bin (orange dot), i.e. our
model predicted successful attempts with high confidence.

Third, we compared the difficulty parameters of our model
with the human ratings from Section 4.1. Figure 3 (right)
displays the average difficulty parameter assigned by the IRT
model for each difficulty class. We observe that tasks rated
as more difficult by teachers were also rated as more difficult
by the model. Tasks rated as ’easy’ by the teachers have a
mean difficulty parameter of 0.5, tasks rated as ’moderate’
have a mean difficulty parameter of 2, and tasks rated as
’difficult’ a mean parameter of 3.

Overall, we note that the model is reasonably accurate, well-
calibrated, and agrees with teacher ratings of difficulty.

Factors to Success Next, we inspect the weights of our
model to infer which features are predictive of student suc-
cess. To make the weights comparable, we normalized the
auxiliary features to the same scaling as the binary features.

Regarding auxiliary features (Figure 5), we observe that the
number of prior failures had a low negative weight, i.e. it is
not predictive of student success. This is likely explained by
the design of the MyMi.mobile VM. On a failure, students
only learned that they were wrong but not where the right
answer might be. This ensures that students can not get
the right answer by trial and error. Attempt duration also
had a low negative weight. This may be because duration
is an ambiguous feature. Students may take longer both for
productive reasons – e.g. inspecting the slide in more detail
to validate the image against the definition of the structure
– and unproductive reasons – e.g. being distracted. Ac-
cordingly, duration may not provide predictive information
either way.

By contrast, we obtained positive scaled weights for the suc-
cesses (0.39) and explored (0.47) features. The explanation
for the former is obvious: If you have found the correct
solution for the task once, chances are you memorized the
location and can find it again. An explanation for the latter
is that having seen an annotated example of the structure
helps to find another instance of it in a structure search.
That being said: We can not make causal inferences in this
model. It is also possible that students who are more likely
to succeed for other reasons are also more likely to consult
the exploratory slides. On the other hand, we account for
a general underlying student ability via the student ability
parameter (Figure 6).

We observe that student ability parameters vary in the range
from−1.97 to 1.55 and most parameters are clumped around

562 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

−2 −1 0 1

0

0.5

1

student ability θi

su
cc

es
s

ra
te

200

400

600

n
o
.

a
tt

em
p
ts

Figure 6: The success rate vs. the student ability of structure
searches. Each dot represents a student. Color indicates the
number of attempted structure searches by a student.

−2 0 2

0.2

0.4

0.6

0.8

1

task difficulty bj

su
cc

es
s

ra
te

200

400

600

800

n
o
.

a
tt

em
p
ts

Figure 7: The success rate vs. the task difficulty of structure
searches. Each dot represents a task. The heatmap colors
indicate the number of attempts of a given task.

0 ± 0.54 (Figure 6). We also observe that the correlation
between the ability parameter and actual success rate is rel-
atively weak (Kendall τ = 0.52). To further investigate
the role of student ability, we performed another 10-fold
cross validation over students instead of attempts, i.e. we
tried to generalize to students that the model had never
seen before and who thus had an ability parameter of 0.
In this setting, we still obtained an average training accu-
racy of 80.19% ± 0.13% and an average test accuracy of
77.93%± 1.83%, indicating that the student ability param-
eters contributed little to an accurate prediction. We have
two possible explanations for this finding: First, it may just
be that the underlying ’true’ student ability is relatively uni-
form because almost all students were in the same semester
at the same two universities. Second, student ability may
change during usage of the microscope, such that a single
parameter may not be able to capture student ability par-
ticularly well.

Finally, we find that the task difficulty had the clearest re-
lation to success compared to the other features. As shown
in Figure 7, parameters range from −2.22 to 3.19 (mean
0±1.19) and anti-correlate very well with the actual success
rate (Kendall τ = −0.91). This indicates that tasks had a
roughly consistent difficulty across students. It also explains

how our IRT model generalized well to new students.

In summary, we observe that prior success on the same task,
having seen the corresponding exploratory slide, and task
difficulty were most predictive of student success, whereas
student ability was only moderately predictive and prior fail-
ures as well as duration were not predictive.

4.3 Typical mistakes
To investigate RQ2 and RQ3, we consider the two most at-
tempted structure search tasks, namely searching for the
nucleus of a myoepithelial cell and searching for an apoc-
rine gland in human armpit tissue (refer to Figure 8 left and
right, respectively).

The myoepithelial cell search (Figure 8, left) was the hardest
task in the whole dataset with only 16.87% correct guesses
(shown as green dots), with a difficulty parameter of 3.19,
and unanimous consent of all four experts that it is diffi-
cult. Figure 8 (left) illustrates why the task is difficult: The
correct regions (in green) are small and hard to spot.

By contrast, the slide for the apocrine gland task (Figure 8,
right) exhibits many and large correct regions. Accordingly,
57.72% of guesses were correct (green dots), the model as-
signed a lower difficulty rating (1.28), and all experts agreed
that this task is easy.

To identify typical mistakes, we trained a 10-component2

Gaussian mixture model to cluster all the mistake locations
(shown as blue dots). The cluster means are plotted as or-
ange shapes in Figure 8. Interestingly, most clusters for the
myoepithelial cell search task, namely the orange squares in
Figure 8 (left) could plausibly be cell cores of myoepithe-
lial cells. The bottom-most orange diamond is also located
near a correct region. Only the remaining orange diamonds
are clearly wrong because they are not located at cell cores.
Generally, many students seemed to have a correct under-
standing of the structure to be found but failed to spot un-
ambiguously correct locations.

By contrast, the cluster means for the apocrine gland search
(Figure 8, right) indicate deeper misconceptions. All cluster
centers are clearly wrong. More specifically, the diamond
in the bottom right corresponds to an eccrine instead of
andocrine gland, and the center diamond corresponds to a
broken structure.

In both tasks, we can use cluster centers as a tool to find
typical misconceptions that need to be discussed in class.

5. CONCLUSION
In this paper, we investigated three research questions re-
garding structure search tasks in virtual microscopes, namely
1) Which features predict student success? 2) What are typ-
ical locations of student mistakes? 3) What are underlying
misconceptions explaining these locations?

2We observed that only little improvement in Bayesian infor-
mation criterion could be achieved for more than 10 compo-
nents. We also observed that 10 components were sufficient
such that some components ended up unused in Figure 8.
For other slides, different numbers may be needed.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 563

Figure 8: Students’ correct (green) and wrong (blue) guesses on structure searches for myoepithelial cell cores (left) and apocrine
glands (right). Correct structures are outlined in green. The centers of mistake clusters are orange shapes.

To answer the first question, we trained a generalized item
response theory (IRT) model, obtaining 77% accuracy and
0.82 AUC in 10-fold cross-validation as well as solid cal-
ibration. Of the features considered, we found that task
difficulty was particularly predictive of student success and
the obtained difficulty parameters aligned well with actual
student success rates and expert ratings. We observed less
predictive value of student ability, illustrated by the fact
that IRT models could generalize without loss of accuracy
to new students. Moreover, prior success on the same task
and having seen an annotated version of the same histolog-
ical slide were predictive of success, whereas prior failures
and duration spent on the task were not. This is interesting
because it suggests that time stamps could be removed from
the data, enhancing the privacy of the system.

Regarding the second and third research question, we ap-
plied clustering on mistake locations and interpreted the
cluster centers in terms of misconceptions that may have led
students to wrongly click at these locations. Such miscon-
ceptions can then be discussed in class to improve students’
learning, or can be used to provide adaptive feedback in the
virtual microscope tool.

Overall, this work represents the first step towards educa-
tional data mining on virtual microscope data with results
that can be used to improve virtual microscope education,
e.g. by ordering structure searches according to difficulty, by
discussing typical misconceptions in class, and by enhancing
annotations. Further work remains to be done, though. In
particular, more features should be included to both enhance
accuracy and find educational interventions that support
student performance (like the exploratory view). Further,
one could include relations between tasks in the model, thus
identifying tasks that share an underlying skill, and extend
the analysis to more advanced knowledge tracing methods.
Finally, convolutional neural networks could be utilized to
generalize teacher annotations and to identify regions of im-
ages that are easy to confuse with a structure to be searched.

6. ACKNOWLEDGMENTS
BP has been supported by the German Research Foundation
(DFG) under grant number PA 3460/2-1, SR has been sup-
ported by the German Federal Ministry of Research (BMBF)

under grant number 16DII127, and SB has been supported
by grants from the Ministerium für Wissenschaft, Forschung
und Kunst (MWK) Baden-Wuerttemberg, and by the Med-
ical Faculty of the University of Ulm.

7. REFERENCES
[1] I. Anagnostopoulos and I. Maglogiannis. Neural

network-based diagnostic and prognostic estimations
in breast cancer microscopic instances. Medical and
Biological Engineering and Computing, 44:773–784,
2006.

[2] F. Baker. The basics of item response theory. ERIC
Clearinghouse on Assessment and Evaluation, College
Park, MD, USA, 2001.

[3] R. S. Baker and K. Yacef. The state of educational
data mining in 2009: A review and future visions.
Journal of Educational Data Mining, 1(1):3–17, 2009.

[4] R. Brent and L. Boucheron. Deep learning to predict
microscope images. Nature methods, 15:868–870, 2018.

[5] L. David, I. Martins, M. Ismail, . . ., and C. Carrilho.
Interactive digital microscopy at the center for a
cross-continent undergraduate pathology course in
Mozambique. Journal of Pathology Informatics,
9(1):42, 2018.

[6] F. R. Dee. Virtual microscopy in pathology education.
Human Pathology, 40(8):1112 – 1121, 2009.

[7] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society.
Series B, 39(1):1–38, 1977.

[8] B. Dietz-Uhler and J. E. Hurn. Using learning
analytics to predict (and improve) student success: A
faculty perspective. Journal of interactive online
learning, 12(1):17–26, 2013.

[9] S. Gross, B. Mokbel, B. Paaßen, B. Hammer, and
N. Pinkwart. Example-based feedback provision using
structured solution spaces. International Journal of
Learning Technology, 9(3):248–280, 2014.

[10] K. Langer-Fischer, D. Brandt, C. Braun, . . ., and
S. Britsch. MyMi.mobile - adaptives individualisiertes
lernen in der mikroskopischen anatomie. In Joint
Annual Conference of the Medical Education Society
(GMA), AKWLZ, and CAL, 2019. German.

564 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

[11] B.-C. Lee, S.-T. Hsieh, Y.-L. Chang, . . ., and S.-C.
Chang. A web-based virtual microscopy platform for
improving academic performance in histology and
pathology laboratory courses: A pilot study.
Anatomical Sciences Education, 13(6):743–758, 2020.

[12] G. J. Mellenbergh. Generalized linear item response
theory. Psychological Bulletin, 115(2):300–307, 1994.

[13] M. Merk, R. Knuechel, and A. Perez-Bouza.
Web-based virtual microscopy at the rwth aachen
university: Didactic concept, methods and analysis of
acceptance by the students. Annals of Anatomy -
Anatomischer Anzeiger, 192(6):383 – 387, 2010.

[14] M. E. Miller, S. L. Hui, and W. M. Tierney. Validation
techniques for logistic regression models. Statistics in
Medicine, 10(8):1213–1226, 1991.

[15] S. Mione, M. Valcke, and M. Cornelissen. Evaluation
of virtual microscopy in medical histology teaching.
Anatomical Sciences Education, 6(5):307–315, 2013.

[16] B. Naik and S. Ragothaman. Using neural networks to
predict mba student success. College Student Journal,
38(1):143–150, 2004.

[17] M. J. Nathan and A. Petrosino. Expert blind spot
among preservice teachers. American Educational
Research Journal, 40(4):905–928, 2003.

[18] A. A. Neath and J. E. Cavanaugh. The Bayesian
information criterion: background, derivation, and
applications. WIREs Computational Statistics,
4(2):199–203, 2012.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, . . ., and
E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[20] C. Ramos and E. Yudko. “hits” (not “discussion
posts”) predict student success in online courses: A
double cross-validation study. Computers &
Education, 50(4):1174–1182, 2008.

[21] C. Schmidt, M. Reinehr, O. Leucht, N. Behrendt,
S. Geiler, and S. Britsch. MyMiCROscope—intelligent
virtual microscopy in a blended learning model at Ulm
university. Annals of Anatomy - Anatomischer
Anzeiger, 193(5):395–402, 2011.

[22] M. M. Triola and W. J. Holloway. Enhanced virtual
microscopy for collaborative education. BMC medical
education, 11(1):4, 2011.

[23] K.-H. Yu, C. Zhang, G. J. Berry, R. B. Altman,
C. Ré, D. L. Rubin, and M. Snyder. Predicting
non-small cell lung cancer prognosis by fully
automated microscopic pathology image features.
Nature Communications, 7:12474, 2016.

[24] E. Yukselturk and S. Bulut. Predictors for student
success in an online course. Journal of Educational
Technology & Society, 10(2):71–83, 2007.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 565

What you apply is not what you learn! Examining students'
strategies in German capitalization tasks

Nathalie Rzepka
Hochschule für Technik und Wirtschaft

Berlin
nathalie.rzepka@htw-berlin.de

Hans-Georg Müller
Universität Potsdam

Potsdam
hgmuelle@uni-potsdam.de

Katharina Simbeck
Hochschule für Technik und Wirtschaft

Berlin
katharina.simbeck

@htw-berlin.de

ABSTRACT
The ability to spell correctly is a fundamental skill for participating
in society and engaging in professional work. In the German lan-
guage, the capitalization of nouns and proper names presents major
difficulties for both native and nonnative learners, since the defini-
tion of what is a noun varies according to one’s linguistic perspec-
tive. In this paper, we hypothesize that learners use different cogni-
tive strategies to identify nouns. To this end, we examine capitali-
zation exercises from more than 30,000 users of an online spelling
training platform. The cognitive strategies identified are syntactic,
semantic, pragmatic, and morphological approaches. The strategies
used by learners overlap widely but differ by individual and evolve
with grade level. The results show that even though the pragmatic
strategy is not taught systematically in schools, it is the most wide-
spread and most successful strategy used by learners. We therefore
suggest that highly granular learning process data can not only pro-
vide insights into learners’ capabilities and enable the creation of
individualized learning content but also inform curriculum devel-
opment.

Keywords
Student strategies, Learning type, Online learning, German lan-
guage, Spelling, Learning analytics
1. INTRODUCTION
The German language is known to be difficult to learn not only for
nonnative speakers but also for native speakers who struggle with
orthography [26]. However, a high degree of orthographic compe-
tence is crucial for successful communication with authorities and
for professional success, as studies on employers and personnel se-
lection show [21, 27].
One of the many peculiarities in the German language is capitali-
zation. While nouns and proper names are generally capitalized,
there are different linguistic perspectives on which words are con-
sidered nouns. Subsequently, learners can apply various redundant
strategies to identify nouns.

Previous research has further indicated that these cognitive strate-
gies for capitalization result in different patterns of errors that can
be distinguished from each other [18]. While some learners con-
sider the entire phrase when deciding whether to capitalize a word,
others focus on only the word itself, especially the word ending, as
an indication of the correct capitalization. Other learners use the
words’ meaning or take a pragmatic approach.
This paper aims to contribute to a better understanding of learners’
cognitive strategies while processing capitalization tasks in Ger-
man spelling courses. To this end, we use anonymized learning data
on capitalization from the online platform orthografietrainer.net.
The dataset consists of 9,647,385 single exercises completed by
30,658 users.
Identifying learners’ cognitive strategies for capitalization tasks
can enable educators and learning platforms to offer individualized
help. Moreover, it can improve learning success by informing the
implementation of personalized adaptive learning environments.
Furthermore, comparing the predominant cognitive strategies in
our large dataset to widely taught strategies in school can help in-
form future curriculum development. Previous studies of textbooks
show that the set of rules taught in school contains semantic, mor-
phological, and syntactic properties but almost completely lacks
pragmatic strategy instruction [20]. Nonetheless, we found strong
evidence that the pragmatic perspective is the major approach used
by students of German.
In summary, we study the following research questions:

RQ 1: Which cognitive strategies for capitalization are used
by learners in grades 5 to 9?

RQ 2: How does the use of capitalization strategies differ by
grade level and gender?

RQ 3: How do the predominant capitalization strategies used
by learners compare to the strategies taught in school?

To answer the research questions, we proceeded as follows: The
words used in the capitalization exercises on the online learning
platform were manually one-hot encoded with 18 grammatical fea-
tures associated with the four cognitive strategies for capitalization.
In the next step, the four cognitive strategies for solving capitaliza-
tion tasks were modeled as decision trees. Subsequently, the results
of the four decision tree models were compared word by word with
the solutions of more than 30,000 users.

2. RELATED WORK
2.1 Grammatical and cognitive approaches to

German noun capitalization
The German orthographic system is complex and difficult to mas-
ter. In contrast to other European writing systems, the difficulties
relate less to spelling and more to the indication of grammatical
structures. This can be illustrated by the capitalization of nouns, a

Nathalie Rzepka, Hans-Georg Müller and Katharina Simbeck “What you
apply is not what you learn! Examining students’ strategies in German cap-
italization tasks”. 2021. In: Proceedings of The 14th International Confer-
ence on Educational Data Mining (EDM21). International Educational Data
Mining Society, 566-572. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

566 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

peculiarity of the German spelling system. Unlike in many other
languages, in German, all nouns are capitalized. The ostensibly
simple spelling rule that “nouns have to be capitalized” forces the
speller to define precisely what is considered a noun and what is
not. On closer examination, this question has a variety of very dif-
ferent possible answers.
On the one hand, there are many obvious nouns, such as people,
places, things, and proper nouns. However, beyond that, every part
of speech in German can be formally or functionally transformed
into a noun. This is sometimes recognizable by a change in suffixes
(cf. Ex. 1). In other cases, it can only be inferred from the syntactic
context, for example, when articles or prepositions are added (cf.
Ex. 2).
 Ex. 1: fahren (V) → der Fahrer (N)
 to drive → the driver
 Ex. 2: fahren (V) → das Fahren (N)
 to drive → the driving
The situation is further complicated by idiomatic expressions that
formally contain a noun but that, from a pragmatic point of view,
have lost their nominal characteristics (cf. Ex. 3). For instance, the
supposed noun in Example 3 can still be formally complemented
by an adjective, but this otherwise typical procedure for nouns is
contrary to what a native German speaker would say. For this rea-
son, the capitalization of such phrases is highly controversial in or-
thographic theory [5] and is a common source of error among stu-
dents.
Ex. 3: im Allgemeinen → but not: im *häufigen Allgemeinen
 in general → in *common general

Consequently, all of the nouns in the first sentence of Jane Austen's
“Pride and Prejudice” can be identified as nouns across several lin-
guistic levels and work in both English and German:

Ex. 4: “It is a truth universally acknowledged that a sin-
gle man in possession of a good fortune must be in want
of a wife.”
Ex. 5:“Es ist eine allgemein anerkannte Wahrheit, dass
ein Junggeselle im Besitz eines schönen Vermögens sich
nichts mehr wünschen muss als eine Frau.”

Four of the nouns in the sentence occur with articles and in a typical
syntactic environment for nouns. In addition, "man" and "wife" are
identifiable as nouns by their concrete semantics. The words "truth"
and “possession” are also marked morphologically since they were
derived from the adjective "true" and the verb “to possess” with the
help of a derivative ending.
The difficulties of coherent noun definition thus lie in the fact that
a term may have a different extension depending on the linguistic
perspective, although the semantic, morphological, syntactic and
pragmatic perspectives agree in regard to a broad core of words. On
the periphery, however, different perspectives lead to different con-
ceptual boundaries and, consequently, to different orthographic de-
cisions. The ground truth for what constitutes correct writing is
therefore a mix between these different perspectives and defined by
the Council of German Orthography [15].
The teaching of these different perspectives has been shown by an
analysis of different textbooks [18]. The author found that capitali-
zation is practically always introduced semantically. With the be-
ginning of grammatical education in later primary school classes,
morphological properties of nouns are added (especially the prop-
erty numerus and some typical derivational endings), and articles
as typical noun companions are introduced. At the secondary level,
this knowledge is supplemented more systematically by further

morphological and, especially, syntactic properties of the noun
group (e.g., gender, case, other determiners besides the article).
However, in all courses, noun identification is based exclusively on
formal-grammatical grounds. Only one of the textbooks examined
also refers to pragmatic properties of the nouns [20].
Müller [20] demonstrated that errors in capitalization correlate
strongly with different linguistic perspectives. Thus, some learners
are apparently guided more by semantic aspects and others more by
morphological, syntactic or pragmatic factors. These findings pro-
vide a starting point for our study, in which we attempt to model
the different perspectives on noun capitalization using learning an-
alytics methods to test whether different learning types can be dis-
tinguished.

2.2 Cognitive strategies of capitalization
Very little literature exists on the differentiation of orthographic
strategies. Theoretical models [16, 24] distinguish between lexical
and syntactic approaches, which roughly correspond to semantic
and morphological strategies on the one hand and syntactic and
pragmatic strategies on the other. Studies on the success of both
approaches [28] have been limited to very small corpora and have
produced partly contradictory results. The proposal of a division
into four individual strategies was made by [19], who also found
initial indications of different error profiles on the basis of an em-
pirical study.
According to our linguistic considerations, the investigation is
based on four theoretically distinguishable capitalization strategies:
The semantic strategy capitalizes words that have a concrete mean-
ing. This strategy is primarily taught in early elementary first grade:
“Things that can be touched have to be capitalized.”
 Katze, Hand → but not: *nacht, *meinung,
 cat, hand → night, opinion
The morphological strategy is to capitalize words that are classified
as nouns because of the type of word and the word ending (word
derivation):
 Läufer → but not: (das) *laufen
 Runner → (the) running

The syntactic strategy is to capitalize words that occur in a typical
nominal syntactic environment, preferably in combination with at-
tributes, articles or other determiners.
Die (totale) Dunkelheit → but not: *dunkelheit

ängstigt mich.
The (total) darkness → Darkness frightens me.

The pragmatic strategy is to capitalize words that are used in the
current discourse like a nominal unit, which does not apply to all
nouns. Pragmatically proper nouns can be supplemented with at-
tributes or substituted with pronouns, which is often not possible
with nouns in fixed phrases.
 Der Grund → but not: im *grunde
 the ground → in the ground
 (saying for: “basically”)

Typically, the use of several strategies leads to success. Further-
more, there are many words with which capitalization errors are
made only very rarely, for example, articles, prepositions, and pro-
nouns. There are only a few words where using only one strategy
leads to the correct result, and these words are not representative in
the German language. Nevertheless, learners apply the strategies to
different degrees and thus arrive at different results.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 567

2.3 Spelling error analysis
We identify the learners’ use of the previously introduced cognitive
strategies through the analysis of error patterns. The analysis of
spelling errors can help in understanding students’ cognitive ap-
proaches to assignments [2]. Many studies use spelling error anal-
yses to gain knowledge about second language learners; for exam-
ple, studies [3, 4] analyzed spelling errors of native Arabic speakers
in English courses or programs. Others investigate special subpop-
ulations, as the authors of [2, 23] did with dyslexic learners. In ad-
dition to differences between native language and foreign language
learning and between subpopulations, there are different classifica-
tion schemes for spelling errors. Some authors have used Cook’s
classification from 1999 [9], which differentiates between omis-
sion, substitution, addition, transposition and sound-based errors
[3, 4]. There are major differences between writing systems, and
Abu-rabia [1] showed that these differences also affect spelling er-
rors. For the German language, Landerl and Wimmer [14] used the
“phoneme distance score” as a scoring method for spelling errors.
Defior and Serrano [10] divided Spanish spelling errors into seven
different classes of errors, which consist of substitutive spelling,
partial spelling, random letters and nonorthographic spelling.
Czech spelling errors were divided into phonological errors on the
one hand and orthographic, morphological, grammatical, and lexi-
cal errors on the other hand [7]. The information gained about the
learners can later be used in adaptive environments for different
educational approaches to best address each student's abilities [11].

2.4 Learner-Level Adaptation
Adaptive learning environments aim to improve learning success
by building personalized models of each student's knowledge, pref-
erences and difficulties [6, 12]. The goal of such an adaptation is to
individually optimize the learning path for each student [17]. This
can lead to higher motivation, less overload and frustration, and,
thus, better results [17]. Personalized adaptation to the student's
needs can appear in a variety of forms, including task sequencing,
intelligent solution analyses and problem-solving support [6]. The
adaptations and the subsequent assessment of adaptive learning en-
vironments use a range of different data [8]. The parameters used
most often in learner-level adaptation are parameters that refer to
the user him or herself and his or her profile as a learner to optimize
content [17, 22]. The learner profile consists, among other compo-
nents, of the learner’s behavioral pattern, learner preferences, cog-
nitive traits or learning style as well as performance data [8, 17].
The learner’s behavioral pattern can be analyzed by tracing his or
her activities on an online platform. Learner preferences thus basi-
cally describe learners’ preferred materials [22]. Another approach
is to adapt a system based on learners’ cognitive traits. These traits
are their cognitive abilities, for example, their working memory ca-
pacity, abstraction ability or analysis ability [22]. There are various
definitions of learning style. However, they all agree that there are
different ways that learners experience learning [13]. Fang et al.
[11] also differentiated between features of a learner’s interaction
with a system and individual differences between learners in terms
of, for example, skill and knowledge.
All this information can be used by teachers to gain a better under-
standing of their students, leading to opportunities to adapt their
teaching, materials or tests [13]. In addition, learners can be pro-
vided with appropriate materials and tasks that meet their needs.
Finally, learning styles differ in terms of the sequencing of tasks
[13]. The relationship between learning styles and the structure of
the learning material has been investigated by, for example, the au-
thors of [25], who found that students whose learning styles and

multimedia preferences match the material in their online course
have higher scores.

In the context of this article, we suggest using the information
gained about cognitive strategies for capitalization to display
matching tips on online spelling platforms and to evaluate the dif-
ficulty of an exercise task in terms of which strategy is used.

3. DATASET
3.1 Orthografietrainer.net platform
The learning platform orthografietrainer.net offers online exercises
for improving German spelling skills, including exercises on capi-
talization, punctuation, and spelling. The platform provides imme-
diate and extensive individual feedback, which is impossible in a
classroom setting. The training platform is built based on the peda-
gogical assumption that spelling requires not only knowledge but
also skills. Thus, the focus is not on the regular learning of rules but
on repeated practice [18].
The platform offers material for three different user groups: teach-
ers, students and guests. Teachers register themselves and their en-
tire class. They assign appropriate tasks to their students, who work
on the tasks. Teachers can view their students’ results via a dash-
board. Additionally, any interested person can log in as a guest and
complete tasks and tests.
A special exercise form on the platform is the competence test,
which determines competence levels in capitalization, punctuation
and separated or combined spelling. Any identified knowledge
gaps are visualized, and appropriate exercises are suggested. A pre-
test, an intermediate test and a posttest are available and show im-
provements made over time. For this study, we use only data from
competence tests on capitalization, not regular training data, as the
test’s standardized structure allows for better comparison. Moreo-
ver, in competence tests, all sentences are new to users.

3.2 Description of the dataset
For this paper, anonymized, event-level competence test data from
orthografietrainer.net from April 1, 2020 to November 17, 2020 are
used. Each answer to a sentence corresponds to one record in our
dataset. During the analyzed time period, schools in Germany, Aus-
tria and Switzerland were closed for several weeks due to the
COVID-19 pandemic. In this period, 46,356 users visited the online
platform and completed a total of 65,645 capitalization task ses-
sions. When processing the tasks, nearly 50% of the sentences were
answered incorrectly, which means that the answers each contained
at least one mistake.
The platform was heavily used during the first wave of the COVID-
19 pandemic. During the German school holidays in July and Au-
gust, there was less practice; online training activity increased again
in autumn.
The dataset contains information about the class level and gender
of users. The German school system includes grades 1 to 13, with
1 being the youngest children and 13 being the oldest (Figure 1).

We decided to exclude all users in grades 1 to 4, as those learners
are not well represented in the data set and the difficulty of the cap-
italization exercises is not adjusted for them. Students in grade 10
and above are also excluded. Older students who are still assigned
capitalization exercises are well behind the average learning path
and thus represent a marginal group that would bias the data. Most
of the users are in grade 7. Our dataset contains slightly more girls
(51%) than boys (49%).

568 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 1. German School System (simplified)

3.3 Using decision trees to replicate different
cognitive strategies

The capitalization of German words depends on various grammat-
ical categories, such as the beginning of sentences, word types and
clauses. The 180 sentences in the competency test that deal with
capitalization contain 2679 words that begin with either lowercase
or uppercase letters. These 2679 words were manually categorized
into 18 grammatical categories. After one-hot encoding of the la-
bels, we obtained a data frame with dimensions of 2679 x 58.
It cannot be assumed that people use only one strategy; instead, it
is likely that each person uses different manifestations of a variety
of strategies. To be able to analyze the students’ adoption rates of
the strategies in regard to capitalization, we first needed to gain in-
sight into how a student would process a word if he or she were
only to use one strategy and had only one preferred learning type.
For this purpose, decision trees were used to replicate the four cog-
nitive strategies by attributing to them only the grammatical fea-
tures corresponding to the given strategy. Afterwards, the sentences
from the competence tests were predicted by the decision trees and
then validated to determine whether the user classified the words
correctly or incorrectly in terms of capitalization. This provided us
with the error profiles that would result if only one of the four strat-
egies were used to decide on proper capitalizations. Table 1 shows
the strategies and their grammatical features.

Table 1. Strategies with grammatical features

Strategy Grammatical features
Syntactic Clause, Article, 2nd person,

Determinator, Is prefix, Attribute,
Complement of a prepositional phrase,
Beginning of sentence, Core nominal pronoun

Semantic Concrete, Polite form, Semantic word type
Pragmatic Theme-Rheme, Attributable,

Proper name, as an attribute not separable
from noun sequence

Morphological Word type, Noun ending

In the decision trees, 77 % of the words were processed correctly
by all four strategies. These are mostly words, where users make
only a few mistakes, such as articles, pronouns, prepositions, and
conjunctions. They are not interesting for further analyses, as they
do not provide insights into differences between the strategies. The
beginnings of sentences are also filtered out because they are a spe-
cial case and cause bias in the data: in the structure of the exercises

on the online platform, the beginnings of sentences are in upper
case letters per default. Students rarely click on such words to
change the letter to lower case. However, as the beginning of a sen-
tence is a syntactical feature, only the syntactic strategy processes
these words correctly. Keeping the sentence beginnings part in the
dataset would lead to bias, as most users would have a high adop-
tion rate of the syntactic strategy precisely because the sentence be-
ginnings are correct by default.

Table 2. Percentage of correct words per strategy

Syntactic Semantic Morphological Pragmatic
74,11% 32,14% 62,05% 79,69%

The distribution of the remaining 448 words shows that strategies
have different success rates (Table 2). The semantic strategy only
processes approximately 30% of the words correctly, while the syn-
tactic and pragmatic approaches are much better. This is not sur-
prising, as the meaning of a word is less informative for the deter-
mination of capitalization than its grammatical use in a sentence.

Table 3. Sample of a merged data set

Word
ID

User
ID

Suc-
cess

Syn-
tactic

Seman-
tic

Mor-
pho-
logical

Prag-
matic

255 452 1 1 1 1 0
256 128 0 1 0 0 1
257 427 1 0 0 0 1

In the next step, user data and the results from the decision trees are
merged. The resulting data frame contains a word processed by a
user in each row. For each word, there is information on whether
the user capitalized the word correctly and how the decision tree
models processed the item. Table 3 shows a sample of the resulting
data set. In total, there are 1,355,641 records from more than 30,000
users.

4. RESULTS
To answer the first research question “Which cognitive strategies
for capitalization are used by learners in grades 5 to 9”, we compare
users’ error profiles with the error profiles of the decision tree clas-
sifiers. That for, we calculated the percentage of answers that
matched. The adoption rate was calculated by dividing the sum of
matching responses by the sum of processed words for each cogni-
tive strategy. In this calculation, we did not consider whether the
word was capitalized correctly. Instead, the result expresses only
whether the words were processed in the same way by a user and
by one of the four models.
Table 4 presents the average adoption rate per strategy in percent-
ages. The models implementing the syntactic, morphological and
pragmatic strategies were in alignment with the users’ answers for,
on average, 65% to 72% of the words. However, the result for the
semantic strategy matched only approximately 40% of users’ an-
swers.

Table 4. Adoption rate by strategy
Syntactic Semantic Morphological Pragmatic
65,33% 39,92% 66,32% 72,27%

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 569

When interpreting the results, it must be considered that several
strategies can be used simultaneously when answering a task. This
is always the case if the word cannot be answered exclusively by
one strategy. Thus, overall, the adoption rate is over 100%.

4.1 Success rates
Thus far, we have primarily discussed the adoption of the four cap-
italization strategies. Now, we will examine the successful applica-
tion of strategies for determining correct capitalization. Figure 2
shows the correlation between the adoption rates and the success
rates per strategy.

Figure 2. Correlation of success rate and adoption rate by

strategy
The adoption of pragmatic, syntactic and morphological strategies
led to increased success rates. The correlation is strongest for the
pragmatic strategy. In contrast, the higher the share of words solved
in agreement with the semantic strategy, the lower the success rate
was. These correlations also exist when grade levels are considered
in isolation. The success rates of the different strategies are also
similar across grade levels.
The success distributed by class level and gender shows that stu-
dents in higher grades tended to have lower success rates (Figure
3). While grades 5 to 7 had similar success rates, these declined
from grade 8 onwards. The lowest success rates were found in
grade 9. There is a very small difference between male and female
success rates; however, in grades 7 to 9, male students correctly
capitalized fewer words than female students did. It is possible that
the data in these years reflect cognitive strategy shifts and corre-
sponding temporary uncertainties.

Figure 3. Success rates by class level and gender

4.2 Distribution by class level and gender
The second research question “How does the use of capitalization
strategies differ by grade level or gender” is addressed by Figure 4.
Looking at the distribution of the average adoption rate by strategy
and grade level, we see that preferred strategies evolve over time
and shift according to gender.

Figure 4. Distribution of adoption rates by class level and gen-

der
The rate of adoption of the pragmatic strategy is very high from the
beginning until it decreases sharply after grade 7 for girls and after
grade 6 for boys. This is interesting, as the pragmatic strategy is the
only strategy that is not explicitly taught in school even though it is
very useful for determining correct capitalization (Figure 2). The
pragmatic strategy is only surpassed in frequency by the syntactic
strategy in grade 9, and the latter increases in use with every grade.
Although the use of the syntactic strategy increases more for girls
than for boys, in both cases, it ends up being on par with the prag-
matic strategy.
Apparently, this reflects stronger grammatical skills among older
students. Learners often start a second foreign language in grade 7
(usually Spanish or French), which increases the need for under-
standing grammatical concepts that are less explicit in their first
foreign language, English. At the same time, usage of the morpho-
logical strategy also decreases from grade 7 onwards (as early as
grade 6 for boys). These findings fit the students’ learning biog-
raphy, as grammatical instruction progresses from morphological
to syntactic issues, and therefore orthographic instruction focuses
on morphological strategies first. The adoption rate of the semantic
strategy decreases until grade 7 but then increases again. This fits
with the results regarding the success rate of the semantic strategy,
which shows a weakening of knowledge from grade 8 onwards. The
increase in semantic strategy use thus goes hand in hand with the
students’ lower success rates.
Looking at the differences in gender, we have already seen in Fig-
ure 3 that boys in grades 7 to 9 answer fewer words correctly than
girls. If we now look at the use of the strategies by boys and girls

570 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

in Figure 4, we see that boys, especially in grades 7 to 9, use the
semantic strategy more frequently, which is the least successful
strategy and whose use correlates negatively with the success rate.
Girls, on the other hand, use the other three strategies more fre-
quently during this period, which correlate positively with the suc-
cess rate.
In summary, we can again identify a difference between the seman-
tic strategy and the other strategies. Even though the semantic ap-
proach is taught first, most learners do not adopt it for subsequent
learning. The adoption rate of the pragmatic and morphological
strategy decreases, while the syntactic strategy adoption rate in-
creases. However, the pragmatic approach, which is rarely taught,
is applied most frequently.

5. DISCUSSION
We used event-level learning data from an online spelling trainer
to analyze cognitive strategies used by students for processing Ger-
man language capitalization tasks. We built four decision tree clas-
sifiers to model capitalization strategies that use only syntactic, se-
mantic, morphological or pragmatic features. As expected, as
grammatical information in language is redundant, models often
produce overlapping results. We compared the models’ output to
user error profiles. We found that the strategies are adopted to dif-
ferent degrees and that strong correlations—both positive and neg-
ative—between the adoption rates of strategies exist.

Furthermore, the distribution of adoption rates by grade level shows
that strategies are represented among older and younger teenagers
to different degrees. This variation by grade level is particularly in-
teresting when compared to the rules taught at school, which an-
swers the third research question “How do the predominant capi-
talization strategies used by learners compare to the strategies
taught in school?”. The first capitalization strategy taught at school
is the semantic strategy: things that can be touched have to be cap-
italized. Even though this is taught first, students follow it only
partly—and rightly so, as the semantic strategy is the least success-
ful in determining correct capitalization. The pragmatic strategy
(capitalizing a word if it occurs in a typical textual context for
nouns), however, is the only one that is not taught explicitly in
school. Nevertheless, this is the strategy with the highest adoption
rate and with the highest success rate in our research. The syntactic
strategy presupposes a deeper understanding of grammar than the
semantic and pragmatic strategies and thus increases with grade
level. Although the syntactic strategy and the grammatical
knowledge required for employing it begin to be introduced in
grade 5, it is only later that students apply it. This may be because
students' actual understanding of German grammar increases when
they begin learning a second foreign language in grade 7. Since
many grammatical concepts are not present in English, a deeper en-
gagement with grammar might only begin when students begin
learning a second foreign language. This could lead to a different
way of looking at spelling, which is then reflected in the use of the
syntactic strategy. The use of the morphological strategy decreases
over time as the use of the syntactic strategy increases.

When considering the success rates in combination with the adop-
tion rates, it is particularly interesting that the semantic strategy
adoption rate correlates negatively with success rate. This again
shows that the teaching of the semantic strategy as the basic rule
does not lead to success. The strongest positive correlation with the
success rate is the pragmatic strategy adoption rate.

6. CONCLUSION
In this paper, we have contributed to three aspects of learning ana-
lytics. We have identified cognitive strategies of learners using er-
ror analyses, compared adoption rates and drawn conclusions for
curriculum development from the results.

First, we were able to model cognitive strategies for solving Ger-
man language capitalization tasks. The four strategies (syntactic,
semantic, morphological and pragmatic) do partially overlap. We
have shown that the different learning strategy adoption rates can
be observed in user error profiles (RQ1). This opens up opportuni-
ties for individualized training and therefore for higher motivation
and learning success for students.

Second, we found that learners prefer different strategies depending
on their grade level and gender (RQ2). This information can be
used to adapt the online platform orthografietrainer.net to various
learner levels. For example, based on this information, the diffi-
culty of the words can be calculated more specifically for each user,
and task sequencing can be adjusted to be neither too difficult nor
too easy. This reduces the potential for frustration caused by tasks
that are too difficult and also increases motivation. Furthermore,
with tasks that represent typical sources of error for a user, the plat-
form could display appropriate tips and hints. If the error analysis
results are made available to the teacher on the dashboard of the
online platform, he or she can see which rules have not yet been
observed by the students and can adapt lessons accordingly. Further
research could include the implementation and subsequent valida-
tion through A/B testing of such improvements.

Finally, our findings lead to a better understanding of how capital-
ization is learned and taught (RQ3). Our research shows that there
is a great discrepancy between which strategies are taught in class
and which strategies are used by students. We therefore suggest that
highly granular learning process data can not only provide insights
into learners' abilities and enable individualized learning content
but also inform curriculum development.

Other future analyses could investigate whether the learning strate-
gies can be applied to other grammatical areas, such as separated
and combined spelling.

7. ACKNOWLEDGEMENTS
This research was funded by the Federal Ministry of Education
and Research of Germany in the framework “Digitalisierung im
Bildungsbereich” (project number 01JD1812A).

REFERENCES
[1] Abu-rabia, S. 2002. Reading in a root–based–morphology

language: the case of Arabic. Journal of Research in
Reading 25, 3, 299–309. DOI=
https://doi.org/10.1111/1467-9817.00177.

[2] Abu-rabia, S. and Taha, H. 2004. Reading and spelling er-
ror analysis of native Arabic dyslexic readers. Reading
and Writing: An Interdisciplinary Journal 17, 7-8, 651–
690. DOI= https://doi.org/10.1007/s11145-004-2657-x.

[3] Alhaisoni, E. M., Al-Zuoud, K. M., and Gaudel, D. R.
2015. Analysis of Spelling Errors of Saudi Beginner
Learners of English Enrolled in an Intensive English Lan-
guage Program. English Language Teaching 8, 3, 185–
192.

[4] Al-Oudat, A. 2017. Spelling Errors in English Writing
Committed by English-Major Students at BAU. Journal of
Literature, Languages and Linguistics 32.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 571

[5] Bredel, U., Müller, A., and Hinney, G. 2010. Schriftsys-
tem und Schrifterwerb. Linguistisch - didaktisch - empi-
risch 289.

[6] Brusilovsky, P. and Peylo, C. 2003. Adaptive and Intelli-
gent Web-based Educational Systems. International Jour-
nal of Artificial Intelligence in Education 13, 159–172.

[7] Caravolas, M. and Volín, J. 2001. Phonological spelling
errors among dyslexic children learning a transparent or-
thography: the case of Czech. Dyslexia 7, 4, 229–245.
DOI= https://doi.org/10.1002/dys.206.

[8] Chen, W., Joe-Wong, C., Brinton, C. G., Zheng, L., and
Cao, D. 2018. Principles for Assessing Adaptive Online
Courses. International Educational Data Mining Society.

[9] Cook, V. 1999. Teaching spelling.
[10] Defior, S. and Serrano, F. 2005. The initial development

of spelling in Spanish: From global to analytical. Reading
and Writing 18, 1, 81–98. DOI=
https://doi.org/10.1007/s11145-004-5893-1.

[11] Fang, Y., Shubeck, K., Lippert, A., Chen, Q., Shi, G.,
Feng, S., Gatewood, J., Chen, S., Cai, Z., Pavlik, P.,
Frijters, J., Greenberg, D., and Graesser, A. 2018. Cluster-
ing the Learning Patterns of Adults with Low Literacy
Skills Interacting with an Intelligent Tutoring System.
Proceedings of the 11th International Conference on Edu-
cational Data Mining 11.

[12] Gaudioso, E. and Boticario, J. G. 2003. Towards web-
based adaptive learning communities. Proceedings of the
11th International Conference on Artificial Intelligence in
Education 11.

[13] Klašnja-Milićević, A., Vesin, B., Ivanović, M., and Budi-
mac, Z. 2011. E-Learning personalization based on hybrid
recommendation strategy and learning style identification.
Computers & Education 56, 3, 885–899. DOI=
https://doi.org/10.1016/j.compedu.2010.11.001.

[14] Landerl, K. and Wimmer, H. 2000. Deficits in phoneme
segmentation are not the core problem of dyslexia: Evi-
dence from German and English children. Applied Psy-
cholinguistics 21, 2, 243–262. DOI=
https://doi.org/10.1017/s0142716400002058.

[15] Lange, J. Über den Rat. Retrieved April 26, 2021 from
https://www.rechtschreibrat.com/ueber-den-rat/.

[16] Maas, U. 1992. Grundzüge der deutschen Orthographie.
Niemayer, Tübingen.

[17] Muhammad, A., Zhou, Q., Beydoun, G., Xu, D., and
Shen, J. 2016. Learning path adaptation in online learning
systems. In 2016 IEEE 20th International Conference on
Computer Supported Cooperative Work in Design
(CSCWD). IEEE, 421–426. DOI=
https://doi.org/10.1109/CSCWD.2016.7566026.

[18] Müller, H.-G. 2008. Das Onlineportal Orthografietrai-
ner.net - Lernpsychologische und didaktische Überlegun-
gen zu einem automatisierten digitalen Übungskonzept.

[19] Müller, H.-G. 2014. Zur textpragmatischen Funktion der
Groß- und Kleinschreibung des Deutschen. ZGL Zeit-
schrift für germanistische Linguistik 42, 1, 1–25.

[20] Müller, H.-G. 2016. Der Majuskelgebrauch im Deutschen.
Groß- und Kleinschreibung theoretisch, empirisch, onto-
genetisch. Reihe Germanistische Linguistik 305, Haber-
mann, M. and Hausendorf, H., Eds. Berlin: de Gruyter.

[21] Nimz, K. and Möhlmann, H. 2021. Zum Einfluss ortho-
graphischer Fehler in Bewerbungsschreiben. Eine experi-
mentelle Untersuchung mit Personalverantwortlichen. In
Neue Wege des Orthografieerwerbs. Forschung-Vermitt-
lung-Reflexion, Kepser, M., Schallenberger, S. and Mül-
ler, H.-G. Eds. Lemberger, Wien.

[22] Premlatha, K. R. and Geetha, T. V. 2015. Learning con-
tent design and learner adaptation for adaptive e-learning
environment: a survey. Artificial Intelligence Review 44,
4, 443–465. DOI= https://doi.org/10.1007/s10462-015-
9432-z.

[23] Protopapas, A., Fakou, A., Drakopoulou, S., Skaloumba-
kas, C., and Mouzaki, A. 2013. What do spelling errors
tell us? Classification and analysis of errors made by
Greek schoolchildren with and without dyslexia. Reading
and Writing 26, 5, 615–646. DOI=
https://doi.org/10.1007/s11145-012-9378-3.

[24] Röber-Siekmeyer, C. 2003. Ein anderer Weg zur Groß-
und Kleinschreibung. Klett-Grundschulverlag, Leipzig.

[25] Surjono, H. D. 2015. The Effects of Multimedia and
Learning Style on Student Achievement in Online Elec-
tronics Course. Turkish Online Journal of Educational
Technology - TOJET 14, 1, 116–122.

[26] Thomé, G. and Eichler, W. 2008. Rechtschreiben Deutsch.
In Unterricht und Kompetenzerwerb in Deutsch und Eng-
lisch. Ergebnisse der DESI-Studie, Klieme, E. Ed. Beltz
Pädagogik. Beltz, Weinheim, Basel, 104–111.

[27] Varnhagen, C. K. 2000. SHOOT THE MESSENGER
AND DISREGARD THE MESSAGE? CHILDRENS AT-
TITUDES TOWARD SPELLING. Reading Psychology
21, 2, 115–128. DOI=
https://doi.org/10.1080/02702710050084446.

[28] Wahl, S., Rautenberg, I., and Helms, S. 2017. Evaluation
einer syntaxbasierten Didaktik zur satzinternen Groß-
schreibung. Didaktik Deutsch: Halbjahresschrift für die
Didaktik der deutschen Sprache und Literatur 22, 42, 32–
52.

572 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Integrating Deep Learning into An Automated Feedback
Generation System for Automated Essay Scoring

Chang Lu, Maria Cutumisu
Department of Educational Psychology

Faculty of Education, University of Alberta

{clu4, cutumisu}@ualberta.ca

ABSTRACT

Digitalization and automation of test administration, score

reporting, and feedback provision have the potential to benefit

large-scale and formative assessments. Many studies on automated

essay scoring (AES) and feedback generation systems were

published in the last decade, but few connected AES and feedback

generation within a unified framework. Recent advancements in

machine learning algorithms enable researchers to develop more

models that explore the potential of automated assessments in

education. This study makes the following contributions. First, it

implements, compares, and contrasts three AES algorithms with

word-embedding and deep learning models (CNN, LSTM, and Bi-

LSTM). Second, it proposes a novel automated feedback

generation algorithm based on the Constrained Metropolis-

Hastings Sampling (CGMH). Third, it builds a classifier to

integrate AES and feedback generation into a systematic

framework. Results show that (1) the scoring accuracy of the AES

algorithm outperforms that of state-of-the-art models; and (2) the

CGMH method generates semantically-related feedback sentences.

The findings support the feasibility of an automated system that

combines essay scoring with feedback generation. Implications

may lead to the development of models that reveal linguistic

features, while achieving high scoring accuracy, as well as to the

creation of feedback corpora to generate more semantically-related

and sentiment-appropriate feedback.

Keywords

Automated essay scoring, deep learning, feedback generation,

assessment, machine learning, natural language processing

1. INTRODUCTION
Automatic essay scoring (AES), the task of machine-grading essays

or constructed-response items, has been gaining attention due to

technology-powered advances in educational assessment [16]. The

goal of AES is to produce reliable and valid scores using machine

scoring rather than human scoring [43]. Previous research has made

advances in automatic grading essays with handcrafted features

[16, 30, 40]. Currently, with the availability of large volumes of

trainable corpora extracted online and the development of models

for word representation in the Natural Language Processing (NLP),

deep learning approaches have produced highly reliable scores

using text classification methods [10, 12, 22]. However, few studies

have approached automated essay scoring and automated feedback

generation to achieve a fully automated computer-based testing

system (CBT).

Earlier attempts at implementing feedback have been made using

real-time online tutoring by humans [18, 31]. Findings show that

human tutoring is effective at improving students’ performance, but

it is time consuming and labor intensive. Also, human tutoring is

not applicable to large-scale practice and open-ended platforms

with large numbers of students. Research on automated feedback

generation emerged in the last decade to fill this gap by developing

tools to scaffold students within computer-based testing

environments [24, 36]. Previous studies have focused on generating

formative feedback using rule-based approaches [3, 38]. Although

rule-based feedback generation is relatively easy to achieve and the

generated sentences can be considered to be appropriate feedback,

this approach is usually restricted to pre-designed templates.

Recent efforts have been made to engage students in more

communicative and adaptive environments and to propose

feedback-generation frameworks using sentence generation with

constraints, where the constraints are often defined by domain-

specific terms [8, 11]. Nevertheless, few studies have empirically

examined automated language generation in CBTs. This study

proposes a framework that introduces an algorithm based on deep

learning models with an unsupervised sentence-generation

approach to automatically grade essays and to generate feedback.

2. RELATED WORK

2.1 Automated Essay Scoring
Automated essay scoring constitutes the task of automatically

assigning scores to written essays based on features or

characteristics in the text. Several systems for Automated Essay

Scoring (AES) have already been developed and used in large-scale

high-stakes assessments for several decades. Page [33] designed

the first intelligent scoring system, Project Essay Grade (PEG),

using simple linear regression with hand-crafted features such as

essay length and proposition counts to perform text classification

tasks based on these features. Since then, other systems for

automated essay scoring emerged such as Intelligent Essay

Assessor [25], e-rater [6], IntelliMetric [41], and My Access! [41].

Several AES methods have been later adopted to make predictions

on student writing scores. Yannakoudakis et al. [44] approached

AES as a preference-ranking problem and evaluated essays based

on pairwise comparisons of features, such as POS n-grams features

and complex grammatical features. Gierl et al. [16] demonstrated

the application of AES in medical exams with Support Vector

Machine (SVM). Phandi et al. [34] approaches AES with Bayesian

Linear Ridge Regression. Taghipour and Ng [40] designed an

‘Enhanced AI Scoring Engine’ (EASE) based on four genres of

Chang Lu and Maria Cutumisu “Integrating Deep Learning into An Auto-
mated Feedback Generation System for Automated Essay Scoring”. 2021.
In: Proceedings of The 14th International Conference on Educational Data
Mining (EDM21). International Educational Data Mining Society, 573-
579. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 573

features: length-based features, Parts-of-Speech (POS), word-

prompt overlap, and bag of n-grams. These features were fed into

several model architectures such as Convolutional Neural Network

(CNN) and the Recurrent Neural Network (RNN)-variants, namely

Long Short-Term Memory (LSTM) and Bidirectional LSTM (Bi-

LSTM), to compare the prediction performance of the models.

Phandi et al.’s [34] attempt to employ deep learning models to

predict essay scores was later used as a baseline for related studies.

Previous studies on automated essay scoring rely heavily on hand-

crafted feature engineering and knowledge on linguistic discourse.

Inspired by recent advances of deep learning models and word

embedding techniques, a substantial body of literature has emerged,

which has contributed to applying deep learning methods in

automated essay scoring tasks. Alikaniotis et al. [1] implemented a

two-layer bidirectional LSTM with score-specific word

embeddings to learn essay representations and conduct AES tasks.

The proposed model outperformed the baseline SVM model. Later,

Dong and Zhang [9] established a three-layer model architecture

combining CNN for character representation and LSTM for

sentence representation with an extra attention-pooling layer,

which performed better than Taghipour and Ng’s [40] model and

their two-layer CNN model. Taghipour and Ng’s attempt of

combining feature engineering and deep learning models inspired

later trials of applying word embeddings and deep learning

methods on AES.

2.2 Automated Feedback Generation
Providing feedback is a key ingredient in performance

improvement. In education, feedback is defined as the information

provided by an agent regarding aspects of one’s performance or

understanding [17]. High-quality personalized and timely feedback

can improve learners’ performance [17], but feedback provision is

often reported as the long-standing weakness of ITSs and

computer-based assessment systems [27]. On the one hand,

students complain that they receive too little quality feedback in the

process of learning [5, 13]. On the other hand, students are reported

to misuse and abuse the feedback or hints provided by the ITSs

[37]. Thus, knowing how and when to provide real-time

personalized feedback that guides and motivates students’ learning

remains a challenge.

Williams and Dreher [42] advocated the potential of fully-

automated systems that perform both scoring and feedback

provision with machines in tasks such as essay grading. Previous

efforts have been made to produce feedback in intelligent tutoring

or assessment systems [7, 19, 21] for various disciplines, such as

computer science [14, 23], information and communication

technology (ICT [7]), and English as a Second Language (ESL

[26]). However, most automated assessment systems adopt a

template-based method to generate feedback [4, 26, 42], which

usually produces feedback that is limited to fixed expressions.

Recent advances on constrained sentence generation shed some

light onto flexible feedback generation. For example, Su et al. [39]

proposes a Gibbs sampling method to meet the constraints of

sentiment control. However, Gibbs sampling is not able to vary the

sentence length or handle keywords when generating the sentence.

Miao et al. [32] extends the Gibbs sampling to a novel unsupervised

sampling approach, named Constrained Generation by Metropolis-

Hastings sampling (CGMH). The CGMH is a subtype of the

Markov Chain Monte Carlo (MCMC [15]) methods. The CGMH

allows for more flexible operations on word tokens in a sentence

space, thus it is easier to generate content with constraints and

varying sentence lengths. Miao et al. [32] tested the CGMH on

three tasks including key-to-sentence generation with hard

constraints, paraphrase, and error correction with soft constraints.

The CGMH method outperformed state-of-art sentence-generation

algorithms. Yet, one of the reasons that the research on automated

feedback generation with NLP is lagging behind may be that there

is no publicly-available feedback corpus.

2.3 Present Study
We propose an AES and an automated feedback generation

framework to support students’ performance. Specifically, the

current study implements three deep learning models for automated

essay scoring: (1) CNN; (2) CNN and LSTM; and (3) CNN and Bi-

LSTM. In addition, a novel unsupervised sentence-generation

approach uses CGMH to automatically provide feedback for test

takers based on their predicted essay scores. The remaining sections

are guided by the following research questions:

1. To what extent can the AES algorithms generate accurate

performance on essay scoring?

2. To what extent can the CGMH algorithms generate fluent and

semantically-related feedback?

The contributions of the present study are three-fold. First, the

study advances computer-based testing by incorporating automated

feedback generation into the assessment framework, especially for

unstructured text (e.g., essays). Second, the flexible unsupervised

learning approach creates a corpus of semantically-related and

sentiment-appropriate feedback for scaffolding. Third, the scalable

automatic assessment and feedback provision system is automated

and performs accurately, which paves the way for future

implementations of feedback generation for various domains

within intelligent tutoring systems.

3. METHOD

3.1 Datasets and Corpus
The dataset for the AES task was retrieved from a Kaggle challenge

named Automated Student Assessment Prize (ASAP) sponsored by

the Hewlett Foundation in 2012 and detailed in Table 1.

Table 1. Summary of ASAP dataset

Prompt Genre Grade

Level

Training

set size

Score

Range

Ave

Length

1 persuasive

/narrative /

expository

8 1783 2-12 350

2 persuasive
/narrative /

expository

10 1800 1-6 350

3 source
dependent

10 1726 0-3 350

4 source

dependent

10 1772 0-3 150

5 source
dependent

8 1805 0-4 150

6 source

dependent

10 1800 0-4 150

7 persuasive
/narrative/

expository

7 1569 0-30 250

8 persuasive

/narrative /
expository

10 723 0-60 650

The ASAP is the benchmark dataset for piloting AES studies. It

consists of 8 prompts and 4 genres, including persuasive, narrative,

574 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

expository, and source-dependent responses. In total, 12,979 essays

were released. Since the ASAP has not made the official test sets

publicly available, we used 60% of the training set for training, 20%

for validation, and 20% for testing. We first performed text

cleaning, tokenization, and padding. Then, we used Stanford’s

publicly-available GloVe 300-dimensional model to conduct word

embeddings [35]. The GloVe 300-dimensional embeddings were

trained on 6 billion words scraped from Wikipedia and other web

texts. The writing prompts have different score ranges as shown in

Table 1. To address the issue of inconsistent score ranges, we

followed Phandi et al.’s [34], Taghipour and Ng’s [40], and Dong

and Zhang’s [9] method by approaching the AES as a regression

task, rescaling the essay score to [0, 1] in the training, validating,

and test stages, and projecting the scores back to their original

scales in the evaluation stage.

The corpus used to train language models for sentence generation

consisted of the publicly-available IMDB dataset, which contains

25,000 positive reviews and 25,000 negative reviews. The dataset

was split into three parts: the training set consisted of 20,000

negative reviews and 20,000 positive reviews, the validation test

consisted of 1,250 negative and 1,250 positive reviews, and the test

set consisted of 1,250 negative and 1,250 positive reviews. A third-

party corpus, the Reuters corpus from NLTK, was used for

evaluation of the quality of the generated sentences.

3.1.1 AES Step
The present study was conducted in two steps. Step 1 addressed

automated essay scoring, whereas Step 2 addressed automated

feedback generation. An essay performance classifier was added to

synthesize the two steps into a unified framework.

In the AES task, three deep-learning algorithms were implemented

and compared regarding their performance and efficiency to select

the optimal algorithm as the foundation of the feedback generation

step: CNN, CNN + LSTM, and CNN + Bi-LSTM. The

convolutional layer is seen as a function that could learn features

from n-grams, and can be represented as:

 𝑍𝑖 = ƒ (𝑊𝑧[𝑥𝑖
𝑗

∶ 𝑥𝑖
𝑗+ℎ𝑤−1

] + 𝑏𝑧),

where 𝑥𝑖 is the ith embedded word, 𝑊𝑧 is the weight matrix, 𝑏𝑧 is

the bias vector, ℎ𝑤 is the window size of the convolutional layer, ƒ
is a non-linear activation function (i.e., sigmoid, tanh, or ReLu),

and 𝑍𝑖 is the output of feature representation.

LSTM is an RNN model for processing sequence data [20]. The

unit or memory cell of LSTM consists of an input gate, a forget

gate, and an output gate to control information flow. The gates

decide preserving, forgetting, and passing information as a vector

sequence at each time step.

More specifically, assuming there are T sentences in an essay in

total, the composite functions at sentence t can be written as:

 𝑖𝑡 = 𝜎(𝑊𝑖𝑠𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖),

 𝑓𝑡 = 𝜎(𝑊𝑓𝑠𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓),

 𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔𝑠𝑡 + 𝑈𝑔ℎ𝑡−1 + 𝑏𝑔),

 𝑐𝑡 = 𝑖𝑡⨀𝑔𝑡 + 𝑓𝑡𝑐𝑡−1,

 𝑂𝑡 = 𝜎(𝑊𝑜𝑠𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜),

 ℎ𝑡 = 𝑂𝑡⨀tanh (𝑐𝑡),

in which 𝑠𝑡 is the input vector, ℎ𝑡 is the output vector, 𝑊𝑖, 𝑊𝑓, 𝑊𝑔,

𝑊𝑜, 𝑈𝑖 , 𝑈𝑓 , 𝑈𝑔, 𝑈𝑜 are the estimated weight matrices, and 𝑏𝑖 , 𝑏𝑓 ,

𝑏𝑔, 𝑏𝑜 are the bias vectors.

Bi-LSTM is an extension of unidirectional-LSTM for deeper

representations. Compared with unidirectional-LSTM that can only

preserve and pass information from history, Bi-LSTM can also

make use of information from future. In AES tasks, Bi-LSTM could

process the words in the input vector in both a forward and a

backward manner. The composite function for Bi-LSTM is similar

with LSTM:

𝑦𝑡 = 𝑊𝑦ℎ (

ℎ𝑡
→

ℎ𝑡
←) + 𝑏𝑦 .

The summary of the model architectures for the three models is

shown in Table 2.

Table 2. Model architecture summary

Layer Hyperparameter Value

CNN

Embeddings dimension 300

Convolutional filters, kernel size 100, 5

CNN + LSTM

Embeddings dimension 300

Convolutional filters, kernel size 100, 5

LSTM units 32

CNN + Bi-LSTM

Embeddings dimension 300

Convolutional filters, kernel size 100, 5

Bi-LSTM layers 16

3.1.2 Feedback Generation Step
The feedback generation phase included two steps. In Step 1

(Corpus Development), we will develop a corpus of feedback using

CGMH based on the expert-derived essay descriptors. In Step 2

(Feedback Generation & Provision), we will develop feedback

based on the essay scores provided by the AES algorithms.

Table 3 shows the part of the essay-scoring rubrics (the score

ranged from 1 to 6) and descriptors developed by experts.

Table 3. Sample descriptor for Essay Prompt 1

Score Descriptors

1 An undeveloped response that may take a position but

offers no more than very minimal support.

Element Contains few or vague details.

Is awkward and fragmented.

May be difficult to read and understand.

May show no awareness of audience.

2 An under-developed response that may or may not take a

position.

Element Contains only general reasons with unelaborated and/or

list-like details.

Shows little or no evidence of organization.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 575

May be awkward and confused or simplistic.

May show little awareness of audience.

To expand the corpus, we will adopt the Constrained Sentence

Generation by Metropolis-Hastings Sampling method (CGMH

[32]) to perform unsupervised paraphrase generation. The CGMH

facilitates the generation of content with constraints and varying

sentence lengths. Miao et al. [32] tested the CGMH on three tasks,

including keywords-to-sentence generation with hard constraints,

paraphrase, and error correction with soft constraints. In the present

research, we will implement unsupervised paraphrasing to augment

the feedback corpus. Specifically, we will first train a language

model based on the IMDB review corpus [29]. The IMDB dataset

consists of 25,000 positive and 25,000 negative movie reviews. It

was selected for the feedback-generation task for the following

reasons. First, to date, there is no database of academic feedback,

the IMDB was the closest commentary corpus available. More

importantly, this corpus is split into positive and negative phrases,

which makes it domain-independent. Thus, it can transfer more

easily to other domains. Then, we will perform the paraphrase

generation.

A Markov model is used to train the language model on the selected

corpus. The Markov Chain is commonly used to model natural

language as a function of the probability that a word appearing in

position n is only dependent on the previous z ϵ [1, n-1] such that:

p(𝑤1, 𝑤2, … , 𝑤𝑛)= p(𝑤1) 𝑝(𝑤2|𝑤1),……, p(𝑤𝑛|𝑤𝑛−𝑧, … , 𝑤𝑛−1),

where p(𝑤1, 𝑤2, … , 𝑤𝑛) refers to the probability of a specific

sentence based on the trained corpus, that is, the joint probability

of all words within the sentence. In the present research, we used

forward-backward dynamic programming to train the language

model.

In Step 2 (feedback paraphrase), we performed the CGMH task of

unsupervised sentence paraphrasing. The CGMH is concerned with

a goal of stationary distribution that defines the sentence

distribution sampled from the corpus and three actions, namely,

replacement, insertion, and deletion. Specifically, 𝜋(𝑥) was set as

the distribution from which we plan to sample sentences, where x

denotes a particular sentence and 𝑥0 refers to the feedback template

that is fed to the algorithm at time step 0. The MH sampler either

accepts or rejects a word from the given distributions 𝜋(𝑥) to

finally form a desired joint distribution of all words based on a

predefined stationary distribution. The process is intuitive, as it

mainly involves two actions: accepting or rejecting a word

monitored by the acceptance rate α:

α = min{1,
𝜋(𝑥′)𝑔(𝑥𝑡−1|𝑥′)

𝜋(𝑥𝑡−1)𝑔(𝑥′|𝑥𝑡−1)
}

At time step t, the word sampling is conducted to update the

previous state x to a candidate distribution 𝑥′ from a proposed

distribution 𝑔(𝑥′|𝑥𝑡−1), where 𝑥𝑡−1 refers to the distribution from

previous step (t-1), thus 𝑥′ = 𝑥𝑡 . Therefore, α determines the

acceptance or rejection of a sample. In our paraphrase generation,

the desired distribution denotes the most likely and logical sentence

related to the original sentence.

At each step, a selected word in the sentence will be updated by the

actions such as insertion, deletion, and replacement, randomly,

where the respective probabilities are [𝑝𝑖𝑛𝑠𝑒𝑟𝑡, 𝑝𝑑𝑒𝑙𝑒𝑡𝑒 , 𝑝𝑟𝑒𝑝𝑙𝑎𝑐𝑒]. At

the first time step, these probabilities are set as being equal. At the

following step, if Replacement is applied on a selected word 𝑤𝑚 in

a sentence 𝑥 = [𝑤1, 𝑤2, … , 𝑤𝑚−1, 𝑤𝑚 , 𝑤𝑚+1, … , 𝑤𝑛], then the

conditional probability of choosing 𝑤𝑚
𝑛𝑒𝑤 to replace 𝑤𝑚 to form

candidate sentence 𝑥′ from x can be computed as:

𝑔𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑥′|𝑥) = 𝜋(𝑤𝑚
𝑛𝑒𝑤|𝑥−𝑚) =

𝜋(𝑤1,𝑤2,…,𝑤𝑚−1,𝑤𝑚
𝑛𝑒𝑤,𝑤𝑚+1,…,𝑤𝑛)

∑ (𝑤1,𝑤2,…,𝑤𝑚−1,𝑤,𝑤𝑚+1,…,𝑤𝑛)𝑤∈𝑉
,

where V refers to the vocabulary, and 𝑤𝑚 is the selected word. If,

on the other hand, Insertion is applied, an additional step of

inserting a placeholder will be conducted before taking the action

Replacement, and then a real word will be sampled to replace the

placeholder token with the Replacement token. Finally, if Deletion

is applied, the 𝑤𝑚 word selected will be deleted, and

𝑔𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛(𝑥′|𝑥) =1 if 𝑥′ = [𝑤1, 𝑤2, … , 𝑤𝑚−1, 𝑤𝑚+1, … , 𝑤𝑛], and 0

otherwise. The detailed settings of the sentence-generation phase,

including the hyperparameter values determined in the tuning

process are included in Table 4.

Table 4. MCMC hyperparameter

Hyperparameters Value

Dictionary size 50,000

Hidden nodes per LSTM layer 300

Number of steps 50

Maximum sentence length 50

Max epoch 30

Minimum of Sentence Length 7

Initial action probability [0.3, 0.3, 0.3, 0.1]

3.1.3 Synthesis
One important purpose of the present study is to develop a

framework linking automated essay scoring and automated

feedback generation. Thus, the study can be decomposed in two

parts: a supervised text classification task using CNN and RNN

models and an unsupervised learning paraphrase generation task

using MCMC sampling method with constraints. In the synthesis,

a performance classifier was applied to extract feedback that

corresponds to the score that is assigned by the AES algorithms.

3.2 Evaluation Metrics
The objective of the AES training stage is to minimize the mean

squared error (MSE) between the scores provided by human raters

and the prediction scores generated by the models.

In the automated essay scoring tasks, several measures including

the quadratic weighted kappa (QWK [9, 10]), exact agreement, and

alternate-form reliabilities [2] have been used to evaluate the

performance of AES models in previous studies. In the current

study, we present the results of QWK, which measures the degree

of agreement between human raters and the machine on one essay

and can be calculated by:

QWK = 1 −

∑ 𝑊𝑖,𝑗𝑖,𝑗 𝑂𝑖,𝑗

∑ 𝑊𝑖,𝑗𝑖,𝑗 𝐸𝑖,𝑗
.

where 𝑊𝑖,𝑗 is calculated by 𝑊𝑖,𝑗 =
(𝑖−𝑗)2

(𝑁−1)2 (i: represents the

human-rated score; 𝑗: represents machine-rated score; 𝑁: represents

the score range), 𝑂𝑖,𝑗 represents the number of essays that receive a

rating 𝑖 by the human and a rating 𝑗 by the machine, and E is the

outer product of the histogram vectors of the two scores. According

to Williamson, Xi, and Breyer [43], QWK scores higher than 0.7

indicate high accuracy.

576 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

For the feedback generation task, we used several measures to

evaluate the generated sentences. The first step is concerned with

language model training, whereas the second step is concerned with

generating sentences with the MCMC sampling method. More

specifically, we first reported the training process of the language

model over epochs. The objective of the first training process is to

minimize the perplexity of the language model, which can be

calculated by:

 𝑃𝑃𝐿 = 2−
1

𝑁
∑ log p(𝑤𝑖)𝑁

𝑖=1 ,

where N equals the number of words in the corpus and p(𝑤𝑖)

indicates the probability of a word appearing in the position. The

lower the PPL is, the more precisely the corpus is modeled.

For the generated sentences, we evaluated the model performance

using two measures. First, we computed the Negative Likelihood

(NLL) of the sentences to evaluate their fluency using the Reuters

corpus released by NLTK modules. The lower the NLL is, the more

fluent the sentences are. Second, we invited two volunteers to rate

the quality of 50 pieces of feedback in terms of the sentence fluency

and relatedness at a scale of 0-1, and the higher the scores are, the

more fluent and related the generated feedback sentences are.

4. RESULTS

4.1 Rating Accuracy of AES Algorithms
The results show that, for Prompt 1, the most accurate algorithm is

CNN + Bi-LSTM, whereas for Prompts 2 to 8, the most accurate

algorithm is CNN + LSTM. The average QWK of CNN + LSTM

reaches 0.734, as shown in Table 5. In general, the models that

integrate LSTM/Bi-LSTM perform better than CNN. Compared

with the baseline [34], the CNN+LSTM model in the present study

performs better on Writing Prompt 1-7, but poorer on Prompt 8. In

addition, the average QWK of CNN+LSTM also outperforms the

baseline model [34].

Table 5. Comparisons of QWK of the implemented models

Prompt CNN CNN +

LSTM

CNN + Bi-

LSTM

Phandi et

al., 2015

1 0.81 0.87 0.88 0.76

2.1 0.62 0.64 0.52 0.61

2.2 0.51 0.61 0.51 -*

3 0.73 0.63 0.62 0.62

4 0.83 0.83 0.72 0.74

5 0.77 0.86 0.76 0.78

6 0.77 0.85 0.8 0.78

7 0.72 0.79 0.75 0.73

8 0.35 0.53 0.54 0.62

Ave 0.68 0.73 0.68 0.71

Note: *indicates that prompts 2.1 and 2.2 were combined into a single score.

Results of the average QWK across genres (e.g., persuasive,

narrative, and expository) and source-independent writing can be

found in Table 6, which shows that CNN+LSTM outperformed

CNN and CNN+Bi-LSTM on both genres. However, the three

models all performed poorly on the persuasive, narrative, and

expository criteria. The results are consistent with previous studies

[34], as the models generally have better predictions on the prompts

with smaller score ranges. The wide-score range may cause more

complexities for the training process of deep learning models. In

addition, previous studies on applying deep neural networks in AES

yielded similar results showing that models generally performed

poorly on Prompts 2 and 8 [9, 10, 34, 40]. The present study also

found that the three deep learning algorithms showed higher

efficiency on scoring certain types of genres of writing, but less

accuracy on Prompts 2, 3, and 8. One possible explanation is that,

for Prompt 2, two domain scores instead of one single global score

are provided. The inherent inconsistency or low reliability of a

single human rater’s scoring makes it difficult for machines to learn

the scoring pattern. While for Prompt 8, the score range is 0 to 60,

as shown in Table 1. Compared with other prompts whose score

ranges are narrow (0 to 3 or 0 to 4), this extremely wide range (i.e.,

the categories of the outcome variable) may hinder the learning

process of deep learning models.

Table 6. Average QWK across genres

QWK persuasive /narrative/

expository

(Prompt 1,2,7,8)

source

independent

(Prompt 3,4,5,6)

CNN 0.601 0.775

CNN+LSTM 0.688 0.793

CNN+Bi-LSTM 0.640 0.726

4.2 Runtime of AES
Prediction accuracy is of utmost priority in machine learning.

However, in a fully-automated scoring and reporting system,

scoring efficiency represented as the time it took to run one epoch

(i.e., the runtime) also plays an important role. Table 7 shows the

average runtime for one epoch of the three models: CNN was the

fastest of the three on average. Therefore, it can be concluded that

CNN+LSTM has the highest performance, but also has relatively

high efficiency (i.e., it is the second fastest algorithm of the three).

Thus, it was chosen as the AES algorithm for the feedback-

generation step.

Table 7. Average runtime and memory

Model Runtime for one epoch N of Parameters

CNN 51s 5117233

CNN + LSTM 53s 4988977

CNN + Bi-LSTM 55s 4986929

4.3 NLL of Generated Feedback and Human

Ratings
For the sentence generation process, the generated sentences were

the ones with the lowest NLL after 50 steps of running. The

feedback phrases were generated using a sentence paraphrasing

CGMH approach before being passed on to the performance

classifier. The feedback templates were sampled from the ASAP

rating descriptors and feedback phrases were generated based on

the language model trained on the IMDB dataset.

Figure 1 presents the training process of the language model, and

Table 8 shows the NLL and human-rater evaluations of the

generated sentences regarding Fluency and Relatedness on a scale

of 0 to 1. The higher the scores, the more fluent and related the

generated feedback sentences. The results revealed that the MCMC

method is able to generate fluent and semantically-relevant

sentences.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 577

Table 8. NLL and rater evaluation on sentence generation

Evaluation Methods Measures

NLL 10.01

Human Rating: Fluency 0.62

Human Rating: Relatedness 0.52

5. DISCUSSION AND CONCLUSION
This study proposed and implemented a novel framework for an

automated assessment and reporting framework with a combination

of supervised deep learning models and unsupervised MCMC

sampling method. Specifically, this study compared the

performances of three models, namely CNN, CNN+LSTM, and

CNN+Bi-LSTM, on AES tasks in the same context. Results

revealed that CNN+LSTM demonstrated the highest performance

on the AES tasks among the three algorithms. Moreover, the

CNN+LSTM outperformed the baseline model on seven out of

eight writing prompts, which demonstrates the potential of word-

embeddings and deep learning models on automated essay scoring.

A recent literature review revealed that text-based feedback was

more effective in improving performance [28]. Providing feedback

within digital learning and assessment systems is essential for

students’ self-directed learning. However, it is laborious to

manually devise a large amount of expert-derived quality feedback.

Compared with sentence-generation supervised-learning methods,

the CGMH sentence-paraphrasing unsupervised-learning method

can augment the expert-driven feedback template corpus by

generating feedback phrases with higher efficiency and flexibility.

Thus, the proposed method is promising in promoting text-based

feedback generation within automated assessment systems. Results

of the current study could facilitate future implementations and

validations of personalized automated feedback provision for ITSs

and other virtual learning systems.

6. LIMITATIONS AND FUTURE WORK
We identified several limitations in the present study. First, this

study does not empirically validate the AES and the automated

feedback generation system in educational settings. Future research

will be conducted to provide empirical evidence on the validity and

efficiency of the framework. Second, the present framework

generates feedback using a holistic score for essays. Future research

will incorporate linguistic components into AES to enhance the

interpretability of the scoring results and to generate more fine-

grained feedback.

7. ACKNOWLEDGEMENT
We would like to thank the reviewers for their helpful feedback and

the following granting agencies for supporting this research: the

Social Sciences and Humanities Research Council of Canada -

Insight Development Grant (SSHRC IDG) RES0034954 and

Insight Grant (SSHRC IG) RES0048110, Natural Sciences and

Engineering Research Council Discovery Grant (NSERC DG)

RES0043209, Killam Cornerstone Operating Grant RES0043207,

Alberta Innovates, and Alberta Advanced Education.

8. REFERENCES
[1] D. Alikaniotis, H. Yannakoudakis, and M. Rei. Automatic

text scoring using neural networks. arXiv:1606.04289, 2016.

[2] Y. Attali and J. Burstein. Automated essay scoring with e-

rater® V. 2. The Journal of Technology, Learning and

Assessment, 4(3):i-21, 2006.

[3] T. Barnes and J. Stamper. Automatic hint generation for

logic proof tutoring using historical data. Journal of

Educational Technology & Society, 13(1):3-12, 2010.

[4] P. Blayney and M. Freeman. Automated formative feedback

and summative assessment using individualised spreadsheet

assignments. Australasian Journal of Educational

Technology, 20(2):209-231, 2004.

[5] D. Boud and E. Molloy. (Eds.). Feedback in Higher and

Professional Education: Understanding it and Doing it Well.

Routledge, 2013.

[6] J. Burstein, J. Tetreault, and N. Madnani. The E-rater®

automated essay scoring system. In Handbook of Automated

Essay Evaluation, pages 77-89. Routledge, 2013.

[7] J. Debuse, M. Lawley, and R. Shibl. The implementation of

an automated assessment feedback and quality assurance

system for ICT courses. Journal of Information Systems

Education, 18(4):491-502, 2007.

[8] B. Di Eugenio, D. Fossati, D. Yu, S. M. Haller, and M.

Glass. Natural Language Generation for Intelligent Tutoring

Systems: A case study. In AIED, pages 217-224, 2005.

[9] F. Dong and Y. Zhang. Automatic features for essay scoring–

an empirical study. In Proceedings of the 2016 Conference

on EMNLP, pages 1072-1077, 2016.

[10] F. Dong, Y. Zhang and J. Yang. Attention-based recurrent

convolutional neural network for automatic essay scoring.

In Proceedings of the 21st Conference on CoNLL, pages

153-162, 2017.

[11] M. Dzikovska, N. Steinhauser, E. Farrow, J. Moore, and G.

Campbell, G. BEETLE II: Deep natural language

understanding and automatic feedback generation for

intelligent tutoring in basic electricity and

electronics. International Journal of Artificial Intelligence in

Education, 24(3):284-332, 2014.

[12] Y. Farag, H. Yannakoudakis, and T. Briscoe. Neural

automated essay scoring and coherence modeling for

adversarially crafted input. arXiv:1804.06898, 2018.

[13] P. Ferguson. Student perceptions of quality feedback in

teacher education. Assessment & Evaluation in Higher

Education, 36(1):51-62, 2011.

Figure 1. Learning curves of the training process of

the language model (NLL convergence w.r.t. epochs).

0

5

10

15

1 3 5 7 9 11 13 15 17 19 21 23 25

N
L

L
 L

o
ss

Epoch

Training Process

Backward Forward

578 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

[14] J. Gao, B. Pang, and S. S. Lumetta. Automated feedback

framework for introductory programming courses.

In Proceedings of the 2016 ACM Conference on Innovation

and Technology in Computer Science Education, pages 53-

58. ACM, 2016.

[15] C. J. Geyer. Practical Markov Chain Monte Carlo. In

Statistical Science, pages 473-483, 1992.

[16] M. J. Gierl, S. Latifi, H. Lai, A. P. Boulais, and A. De

Champlain. Automated essay scoring and the future of

educational assessment in medical education. Medical

Education, 48(10):950-962, 2014.

[17] J. Hattie and H. Timperley. The Power of Feedback. Review

of Educational Research. Review of Educational Research.

77(1):81-112, 2007.

[18] N. T. Heffernan and K. R. Koedinger. An intelligent tutoring

system incorporating a model of an experienced human tutor.

In International Conference on Intelligent Tutoring Systems,

pages 596-608. Springer, 2002.

[19] R. Higgins, P. Hartley, and A. Skelton. The conscientious

consumer: Reconsidering the role of assessment feedback in

student learning. Studies in Higher Education, 27(1):53-64,

2002.

[20] S. Hochreiter and J. Schmidhuber. Long short-term

memory. Neural Computation, 9(8):1735-1780, 1997.

[21] L. E. Holmes and L. J. Smith. Student evaluations of faculty

grading methods. Journal of Education for Business,

78(6):318-323, 2003.

[22] C. Jin, B. He, K. Hui, and L. Sun. TDNN: a two-stage deep

neural network for prompt-independent automated essay

scoring. In Proceedings of the 56th Annual Meeting of the

ACL (Volume 1: Long Papers), pages 1088-1097, 2018.

[23] H. Keuning, J. Jeuring, and B. Heeren. Towards a systematic

review of automated feedback generation for programming

exercises. In Proceedings of the 2016 ACM Conference on

ITiCSE, pages 41-46. ACM, 2016.

[24] E. Kosba, V. Dimitrova, and R. Boyle. Adaptive feedback

generation to support teachers in web-based distance

education. User Modeling and User-Adapted

Interaction, 17(4):379-413, 2007.

[25] T. K. Landauer, P. W. Foltz, and D. Laham. An introduction

to latent semantic analysis. Discourse Processes, 25(2-

3):259-284, 1998.

[26] M. Liu, Y. Li, W. Xu, and L. Liu. Automated essay feedback

generation and its impact on revision. IEEE Transactions on

Learning Technologies, 10(4):502-513, 2016.

[27] M. Maniktala, C. Cody, A. Isvik, N. Lytle, M. Chi, and T.

Barnes. Extending the hint factory for the assistance

dilemma: A novel, data-driven HelpNeed predictor for

proactive problem-solving help. Journal of Educational Data

Mining, 12(4): 24-65, 2020.

[28] S. Marwan, N. Lytle, J. J. Williams, and T. Price. The impact

of adding textual explanations to next-step hints in a novice

programming environment. In Proceedings of the 2019 ACM

Conference on ITiCSE, pages 520-526, 2019.

[29] A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and

C. Potts. Learning word vectors for sentiment analysis. In

Proceedings of the 49th Annual Meeting of the ACL: HLT,

pages 142-150, 2011.

[30] D. S. McNamara, S. A. Crossley, R. D. Roscoe, L. K. Allen,

and J. Dai. A hierarchical classification approach to

automated essay scoring. Assessing Writing, 23:35-59, 2015.

[31] D. C. Merrill, B. J. Reiser, M. Ranney, and J. G. Trafton.

Effective tutoring techniques: A comparison of human tutors

and intelligent tutoring systems. The Journal of the Learning

Sciences, 2(3):277-305, 1992.

[32] N. Miao, H. Zhou, L. Mou, R. Yan, and L. Li. CGMH:

Constrained sentence generation by Metropolis-Hastings

sampling. In Proceedings of the AAAI Conference on

Artificial Intelligence (Vol. 33), pages 6834-6842, 2019.

[33] E. B. Page. Computer grading of student prose, using modern

concepts and software. The Journal of Experimental

Education, 62(2):127-142, 1994.

[34] P. Phandi, K. M. A. Chai, and H. T. Ng. Flexible domain

adaptation for automated essay scoring using correlated

linear regression. In Proceedings of the 2015 Conference on

EMNLP, pages 431-439, 2015.

[35] J. Pennington, R. Socher, and C. D. Manning, C. D. Glove:

Global vectors for word representation. In Proceedings of the

Conference on EMNLP, pages 1532-1543, 2014.

[36] I. Perikos, F. Grivokostopoulou, and I. Hatzilygeroudis.

Assistance and feedback mechanism in an intelligent tutoring

system for teaching conversion of natural language into

logic. International Journal of Artificial Intelligence in

Education, 27(3):475-514, 2017.

[37] T. W. Price, R. Zhi, and T. Barnes, T. Hint generation under

uncertainty: The effect of hint quality on help-seeking

behavior. In International Conference on Artificial

Intelligence in Education, pages 311-322. Springer, 2017.

[38] S. Shatnawi, M. M. Gaber, and M. Cocea. Automatic content

related feedback for MOOCs based on course domain

ontology. In International Conference on Intelligent Data

Engineering and Automated Learning, pages 27-35.

Springer, 2014.

[39] J. Su, J. Xu, X. Qiu, and X. Huang. Incorporating

discriminator in sentence generation: A Gibbs sampling

method. In Proceedings of the AAAI Conference on Artificial

Intelligence (Vol. 32, No. 1), pages 5496-5503, 2018.

[40] K. Taghipour and H. T. Ng. A neural approach to automated

essay scoring. In Proceedings of the 2016 Conference on

EMNLP, pages 1882-1891, 2016.

[41] Vantage Learning. Research summary: IntelliMetricTM

scoring accuracy across genres and grade levels, 2006.

[42] R. Williams and H. Dreher. Automatically grading essays

with markit?. Issues in Informing Science and Information

Technology, 1:0693-0700, 2004.

[43] D. M. Williamson, X. Xi, and F. J. Breyer. A framework for

evaluation and use of automated scoring. Educational

Measurement: Issues and Practice, 31(1):2-13, 2012.

[44] H. Yannakoudakis, T. Briscoe, and B. Medlock. A new

dataset and method for automatically grading ESOL texts.

In Proceedings of the 49th Annual Meeting of the ACL: HLT,

pages 180-189, 2011.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 579

 Investigating SMART Models of Self-Regulation and their
Impact on Learning

Stephen Hutt1, Jaclyn Ocumpaugh1, Juliana Ma. Alexandra L. Andres1, Nigel Bosch2, Luc
Paquette2, Gautam Biswas3, and Ryan S. Baker1

1 University of Pennsylvania
2 University of Illinois at Urbana-Champaign

3 Vanderbilt University

hutts@upenn.edu

ABSTRACT

Self-regulated learning (SRL) is a critical 21st-century skill. In this

paper, we examine SRL through the lens of the searching,

monitoring, assessing, rehearsing, and translating (SMART)

schema for learning operations. We use microanalysis to measure

SRL behaviors as students interact with a computer-based

learning environment, Betty's Brain. We leverage interaction data,

survey data, in situ student interviews, and supervised machine

learning techniques to predict the proportion of time spent on each

of the SMART schema facets, developing models with prediction

accuracy ranging from rho = .19 for translating to rho = .66 for

assembling. We examine key interactions between variables in

our models and discuss the implications for future SRL research.

Finally, we show that both ground truth and predicted values can

be used to predict future learning in the system. In fact, the

inferred models of SRL outperform the ground truth versions,

demonstrating both their generalizability and their potential for

using these models to improve adaptive scaffolding for students

who are still developing SRL skills.

Keywords

Self Regulation, SMART, Self Regulated Learning, Machine

Learning, Student Interviews

1. INTRODUCTION
In traditional classrooms, most support for acquiring self-

regulated learning (SRL) strategies comes from teachers, who

might check in on projects and/or provide advice about next steps

[33] in order to keep students focused on their end goals.

However, teachers’ external regulation alone is insufficient to

encourage educational success [24]; the learner must also develop

internal regulation schemas. SRL demands may increase when the

student is completing a project in a computer-based learning

environment that is no longer teacher-led. The software might

scaffold learning activities, but identifying the complex behaviors

involved with SRL is still not a typical function of most

computer-based learning systems.

In most computer-based learning environments, learners must

control, manage, plan, and monitor their learning [12], i.e.,

implement the definitional components of SRL. SRL has

consistently been shown to facilitate knowledge acquisition and

retention among learners in a structured and systematic way [12].

As such, work has called for a deeper understanding of SRL

impacts in online learning [1, 8, 37].

A range of techniques have been used to better understand SRL

both in computer-based learning environments (e.g., [1, 5, 12,

34]) and in other contexts (see [17, 27] for meta-analyses).

Research in computer-based learning can be split into two groups:

supporting SRL and detecting SRL behaviors [46]. Supporting

SRL has taken a number of forms, but in general, these

approaches typically scaffold students in either their goal-setting,

self-evaluation, help-seeking, self-efficacy, or some combination

of these [29]. This might be through verbal prompts (e.g. "Take

time to read everything,") [7, 22] or more intricate support

systems [25], such as progress bars [14], or tools such as

notebooks, that better facilitate student reflection [2, 35].

In terms of detecting SRL in computer-based learning

environments, Azevedo and colleagues have (using MetaTutor)

considered the role that emotion plays in regulation, posing that

affect should be considered as we scaffold SRL behaviors [4].

Segedy et al. [36] used interaction data and coherence analysis to

measure self-regulation. Learner behaviors were tracked using log

files to assess action coherence (i.e., did a student’s actions

present a coherent strategy relevant to the current tasks), which

was shown to predict learning. Winne et al. [45] also leveraged

log data in a scalable system that traces student actions,

classifying each learning event into SRL categories in order to

better understand student cognition, motivation, and

metacognition. We build upon this approach in this work.

While interaction data has been successfully used to detect SRL, a

number of researchers argue that this data should not be

considered in isolation [3, 37, 40]. Instead, we must also consider

contextual factors and individual differences not easily inferred

from logs. This work combines interaction data with data from

targeted in-situ student interviews and student survey data to

predict SRL as characterized by the COPES and subsequent

SMART models of SRL [42] (discussed in detail below). We

examine the impact of SRL on learning, analyzing contextual and

student-level factors that may influence SRL behavior and

demonstrating the potential of the latent encoding of SRL for

identifying students who need further support.

1.1 Related Works
At a high level, SRL is a process in which learners take initiative

to identify their learning goals and then adjust their learning

strategies, cognitive resources, motivation, and behavior to

optimize their learning outcomes [11, 42]. First characterized in

Stephen Hutt, Jaclyn Ocumpaugh, Juliana Ma. Alexandra L. Andres,
Nigel Bosch, Luc Paquette, Gautam Biswas and Ryan Baker “Investigating
SMART Models of Self-Regulation and their Impact on Learning”. 2021.
In: Proceedings of The 14th International Conference on Educational Data
Mining (EDM21). International Educational Data Mining Society, 580-
587. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

580 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

1989 [47], SRL is now widely acknowledged as an essential skill

for learning in the modern knowledge-driven society [23]. In

learning technologies specifically, recent work has called for a

deeper understanding of SRL and for learning technology that

supports the development of SRL strategies [1, 3, 8, 20, 37].

In order to provide insight into how SRL works, researchers have

proposed a number of theoretical models (e.g., [30, 47]). Winne &

Hadwin's model [43], grounded in information processing theory,

characterizes SRL as a series of events that happen over four

recursive stages: (1) task definition, (2) goal setting and planning,

(3) studying tactics, and (4) metacognitive adaption of studying

techniques. Each stage is then characterized by Conditions,

Operations, Products, Evaluations, and Standards (COPES). In

later work, Winne subcategorized the COPES model further by

detailing five kinds of operations—searching, monitoring,

assembling, rehearsing, and translating—known as the SMART

model [42].

In the context of educational data mining, we can study SRL by

measuring these theoretical constructs and studying their

relationships to each other and to external measures (such as

achievement). SRL constructs can be measured either online

(while an activity is happening) or offline (before or after an

activity) [34]. Offline assessments typically rely on self-report

questionnaires, but student interviews have also been used. These

can be implemented either online and offline and can offer

advantages over questionnaires that may limit students to pre-

defined answers [16, 40].

Trace analysis is perhaps the main approach used (and endorsed

[37]) to measure SRL online. Traces (such as log data) capture

learning actions along with additional contextual and timing

information, providing a detailed window into a learner's

processes and behaviors [40]. This data can support microanalytic

approaches, as sequences of actions can be aligned with different

facets of a self-regulation model [21, 45]. Models that

conceptualize SRL in terms of events or student actions (such as

the COPES model [43]) lend themselves more to a trace-based

analysis [42] than to offline measurement. However, many

researchers argue that trace data should be supplemented with

additional measurements (e.g., self-reports or think-alouds) when

measuring SRL [3, 37, 40].

1.2 Current Study
The current study was conducted within the context of Betty’s

Brain, a computer-based learning environment for middle school

science. We combine multiple data sources (interaction, surveys,

and interview data) to analyze SRL patterns through the lens of

Winne’s COPES and SMART models [42].

We first demonstrate that combining features from different data

sources yields the most successful models of the SMART facets.

We present a feature analysis to investigate the key interactions in

each model. We next examine how the different facets of SRL

influence student learning. We consider not only the ground truth

calculations of SMART facets but also our predicted models of

these facets, showing that the latter better predicts future student

outcomes than the original variables.

To our knowledge, this work presents the first exploration of how

student interviews, surveys, and interaction data may be used in

concert to predict SRL and learning. This approach provides

detailed insight into how we may best support students in an

environment where external regulation may be harder to provide.

2. DATA

2.1 The Learning Environment
In this project, we used the learning environment Betty’s Brain.

This system implements a learning-by-teaching model [9], where

students teach a virtual agent named “Betty” by creating a causal

map of scientific processes (e.g., thermoregulation or climate

change). Betty demonstrates her “learning” by taking quizzes,

graded by a mentor agent, Mr. Davis. In this open-ended system,

students choose how to navigate a variety of learning sources,

how to build their maps, and how often to quiz Betty. They may

also interact with Mr. Davis, who can support their learning and

teaching endeavors [10].

Betty’s Brain is a suitable environment for examining SRL

behaviors for two reasons. Firstly, students choose when and how

to perform each step of the learning process (both their own and

Betty’s) [20, 33]. Indeed, the pedagogical agents in Betty’s Brain

are designed to facilitate the development of SRL behaviors by

providing a framework for the gradual internalization of effective

learning strategies. Secondly, students’ interactions with Betty’s

Brain are logged to an online database with detailed timing

information, enabling the microanalysis of student actions [37] for

the measurement of SRL behaviors and strategies.

Figure 1. Screenshot of Betty's Brain showing a partial causal

map constructed by a student.

2.2 Data Collection
This study examines data from 93 sixth graders who used Betty’s

Brain during their 2016–2017 science classes in an urban public

school in Tennessee. The first data collection occurred over seven

school days. On day 1, students completed a 30–45-minute paper-

based pre-test that measured knowledge of scientific concepts and

causal relationships. On day 2, students participated in a 30-

minute training session about the learning goals and user

interface. Afterwards (days 2–6), students used the Betty’s Brain

software for approximately 45–50 minutes each session, using

concept maps to teach Betty about the causal relationships

involved in the process of climate change. On day 7, students

completed a post-test with the same questions as the pre-test. In

addition to the data described, we also surveyed students on self-

efficacy [31] and the task value [31].

A second data collection period occurred two months later, during

which students were asked to model the causal relationships

involved in thermoregulation. This was otherwise identical to the

first session, but we consider only the learning data (pre – post

test) from this second scenario (see section 4.2).

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 581

2.3 In-Situ Interviews
As students interacted with Betty’s Brain, automatic detectors of

educationally relevant affective states [19] and behaviors [26],

already embedded in the software, identified key moments in the

students’ learning processes, either from specific affective

patterns or theoretically aligned behavioral sequences. This

detection was then used to prompt student interviews through

Quick Red Fox (QRF), an app which integrates interview data

with Betty’s Brain events. Interviewers sought to take a helpful

but non-authoritative role when speaking with students.

Interviews were open-ended and occurred without a set script;

however, students were often asked what their strategies were (if

any) for getting through the system. As new information emerged

in these open-ended interviews, questions were designed to elicit

information about intrinsic interest (e.g., “What kinds of books do

you like to read and why?”). Overall, however, students were

encouraged to provide feedback about their experience with the

software and talk about their choices as they used the software

2.4 Interview Transcription and Coding
A total of 358 interviews were conducted during this study and

stored on a secure file management system. Interviews were

manually transcribed by three members of the research team,

preserving all metadata but scrubbing any identifying information.

The code development process followed [38]’s 7-stage recursive,

iterative process: conceptualization, generation, refinement,

codebook generation, revision and feedback, implementation, and

continued revision. The conceptualization of codes involved a

literature review to capture experiences relevant to affect and

SRL. Using grounded theory [13], we worked with the lead

interviewer (2nd author) to identify categories that were (1)

theoretically valid and pertinent to the conditions in the COPES

model and (2) likely to saliently emerge in the interviews.

We iteratively refined the coding scheme until the entire research

team reached a shared understanding. Following the coding

manual's production, external coders reached acceptable inter-

rater reliability with the 3rd author before coding all of the

transcripts. All codes had Cohen’s kappa > .6, and the average

Cohen’s kappa across codes was .83. See Table 1 for details.

2.5 SMART Encoding
We operationalized SRL behavior within the log data using the

COPES and SMART SRL frameworks [42]. In this work, we

categorize all student actions recorded in the log files as

“operations” within the COPES model (defined as “cognitive and

behavioral actions applied to perform the task”). We then evaluate

these operations using the SMART model, which subcategorizes

actions by the information taken as input and product generated

[39]. Specifically, the SMART model presents five primitive

cognitive operation subcategories: Searching, Monitoring,

Assembling, Rehearsing, and Translating [39]. Each category is

briefly described below; for more details, see [39, 41, 42, 45].

Examples specific to Betty’s Brain are shown in Table 2.

Searching is the operation where a learner focuses their attention

on a knowledge base or resource to update their working memory.

Monitoring considers two types of information: (1) learner

perceptions (current understanding, quiz answers, etc.), (2)

standards for performance. In monitoring activities, the learner

evaluates their perceptions compared to the standards.

Assembling involves building a network of internal links between

acquired information to understand relationships (X precedes Y,

Table 1. Interview codes

Code N Description

Helpfulness 51 Utility of system resources for learning, and

positive evaluations of the resources. κ=.643

Interestingness 11 Interestingness of system resources and

continued desire to use the platform. κ=.726

Strategic Use 205 Indicates plan for interacting with the

platform, or changes in strategy or interaction

based on experiences. κ=.911

Positive Mr.

Davis

Attribution

8 Explicitly mentions interactions with Mr.

Davis as positive experiences. κ=.838

Positive

Science

Attribution

26 Explicitly (positively) mentions science in

relation to books, future careers, school

subjects, and overall evaluations. κ=.837

Positive

Persistence

105 Expression of a desire for challenge and that

the current task is a challenge; there is active

pursuit of a goal, and repeated attempts to

complete a step/problem. κ=.911

Procedural

Strategy

225 Step by step approach to the learning activity,

active use of within-platform tools, reference

to previous or upcoming step. κ=.862

Motivational

Strategy

151 Explicit indication of expected outcome from

behaviors/actions, explicitly mentions a

pursuit for mastery, contains positive

attribution/emotion for completion, and/or

mentions desire to meet task demands. κ=.870

Self-

Confidence

174 Positive description of own progress or

ability, self-assessments of learning progress,

willingness to encounter learning challenges/,

recognition of helpful resources. κ=.877

Y causes Z, etc.). Assembling activities help students to connect

individual items of knowledge in working memory.

Rehearsing operations repeatedly direct attention to information

that the learner is currently working on. These actions reinforce

the same information and prevent decay in working memory.

Translating operations reformat information into a new

representation, providing the potential for alternate interpretations

and understanding. Examples include converting a diagram to

plain text or answering a question about a diagram.

To enable a trace analysis of student SRL patterns [37] we first

assigned each of the possible student operations within Betty’s

Brain to one SMART category. We categorized operations that

added new items to the concept map within Betty’s Brain as

assembling, and operations that edited existing items as

monitoring. In ambiguous cases, such as between translation and

monitoring tasks, we considered student agency. Specifically,

actions initiated by the system were classified as translating even

if they had an evaluative component. In our operationalization of

the SMART model, we found that Betty’s Brain logged no

rehearsing actions; thus, this category was not analyzed.

3. MODEL TRAINING METHODS
We built supervised machine learning models to detect each facet

of the SMART model. We leveraged a combination of activity,

survey, and interview data (described further below).

582 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 2. Example Betty’s Brain actions by SMART facet.

SMART Facet N Example

Searching 8 Searching the virtual textbook (initiated by

the student)

Monitoring 22 Reviewing and updating the label of a

causal link (initiated by the student)

Assembling 2 Adding a causal link to the map (initiated

by the student)

Rehearsing 0 -

Translating 3 Responding to a system-initiated multiple-

choice questions (vs. those initiated by the

student)

3.1 Features
We split features into three groups based on their origin. Each

group is described in detail below. Due to differences in scale, we

Z-scored each feature prior to model training.

(Other) Student Activity Features (N = 4). These features

provide a high-level description of student actions: the raw

number of student actions, the proportion of links made that were

ineffective, time spent off-task/idle (as characterized in [36]), and

number of successful quizzes. These features were designed to be

more coarse-grained than the log data used to derive the SMART

variables. None of the fine-grained features used to calculate the

SMART encoding are included in this feature set.

Student Interview Codes (N = 9). These were derived from the

transcribed student interviews (described in section 2.3). In cases

where students had multiple interviews, codes were averaged to

provide one feature per code per student.

Survey Features (N = 2). Survey features come from the two

survey measures described in section 2.2: self-efficacy and task

value. While each measure consisted of multiple survey questions,

both were summarized down to one variable, respectively.

3.2 Dependent Variables
We initially considered four dependent variables, the proportion

of the time a student spent on each of the SMART variables

discussed in section 2.5. We considered time spent rather than raw

action counts for a more standardized comparison and to avoid

misinterpretation. For example, there are more monitoring actions

than searching actions; however, it is common for students to

spend considerably more time searching than monitoring. Due to

time spent idle (at least 30 seconds of inactivity [36]), the sum of

these four variables for any given student may not be 1. The most

common category was searching (M=0.65, SD=0.07), followed by

monitoring (M=0.16, SD=0.06), translating (M=0.10, SD=0.02),

and assembling (M=0.09, SD=0.04).

We also considered a second set of dependent variables related to

student learning. We derived two variables, one for the current

scenario from which the rest of the data was collected, and one for

the future scenario. In both cases, learning was characterized by

post test – pre test. We consider both scenarios to examine how

well our approach generalizes to future interactions and

understand how immediate context may influence prediction.

3.3 Regression Models
We used scikit-learn [28] to implement Bayesian ridge regression,

linear regression, Huber regression, and random forest regression,

and also implemented XGBoost with a separate library [15].

Hyperparameters were tuned on the training set using scikit-

learn’s cross-validated grid search [28] where appropriate.

All models were trained using 4-fold student-level cross-

validation and repeated for ten iterations, each with a new random

seed. For evaluation, predictions were pooled across folds, and

averaged across iterations. These models then underwent a

decision tree based secondary analysis, discussed below.

4. RESULTS
We compare model accuracy by computing the correlation

between the model predictions and the ground truth values

derived from student logs. We measured the Spearman rho

correlation coefficient in the test folds to evaluate models. In the

majority of cases, random forest regressors yielded the best

results. As such, results from these models are reported below.

4.1 Predicting SMART Operations
We first consider results predicting the proportion of time a

student spent on each of the four SMART operations. For each

operation (i.e., searching, monitoring, assembling, and

translating), we developed models drawn from various

combinations of our feature types (actions, surveys, and interview

codes). Thus, we were able to test the modeling potential of seven

different combinations of features for each SMART operation (see

Table 3). To provide a point of comparison, we generated a

chance baseline for each variable by shuffling the ground truth

values. This allowed us to estimate a random baseline that still

preserved the original distribution.

Table 3. Spearman correlations predicting ground truth labels

of self-regulated learning operations

Features S
ea

rc
h

in
g

M
o

n
it

o
ri

n
g

A
ss

em
b

li
n

g

T
ra

n
sl

at
in

g

Chance Baseline 0.01 0 0.01 0

Individual Feature Sets

 Student Surveys (Surveys) 0.28 0.29 0.28 0.08

 Student Interviews (Int) 0.31 0.37 0.35 0.09

 Student Actions (Act) 0.27 0.47 0.59 0.11

Combined Feature Sets

 Int + Surveys 0.35 0.42 0.62 0.13

 Act + Surveys 0.29 0.47 0.63 0.12

 Act + Int 0.34 0.51 0.64 0.1

 Act + Int + Surveys 0.39 0.55 0.66 0.19

We note that all models outperformed baseline, and that models

consistently performed worst at predicting Translating. This may

be due to the low variance between students as noted above. We

note that the best model performance was achieved by combining

the three feature sets (Actions + Interviews + Surveys). This

suggests that even though these operations are derived from

student log data, additional context from interviews and surveys

can improve SRL predictions.

4.1.1 Feature Interaction Analysis
Our most successful models were tree-based, meaning that they

may contain nonlinear relationships that would be unsuitable for

linear feature analysis. Therefore, we trained one decision tree

regressor per outcome and examined each tree’s top two levels to

observe the most important interactions, each of which was

classified as “High” or “Low.”

As Table 4 shows, Self-Confidence and Self-Efficacy frequently

occur in these interactions, implying students’ self-regulation

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 583

hinged on their perception of themselves. For example, students

with high Self-Confidence who spent less time off task were still

likely to have lower searching values, ostensibly because they

may not feel the need to consult external resources.

4.2 Predicting Student Learning
Next, we explored how the four SMART facets predicted student

learning (operationalized as post-test – pre-test) in both the

current scenario (from which all the data used in the models was

collected) and then the future scenario (collected in a second

round of data collection with the same students; see section 2). In

this future scenario, the content was different (climate change vs.

thermoregulation), but the software remained the same.

We consider three feature sets: 1) the three feature sets used in

section 4.1 combined; 2) the ground truth values for the SMART

encodings (dependent variables in section 4.1); 3) predicted

values for each of the SMART operations generated using the best

models from section 4.1.

For both learning outcomes, we tested both the Ground Truth

values collected from the first scenario (i.e., the actual searching

or monitoring behaviors from that scenario) and Predicted

SMART values (as predicted by the Act + Int + Survey models

from the current scenario). This allowed us to examine how data

collected in the current scenario generalizes to a future learning

session.

As Table 5 shows, each learning model outperformed chance,

demonstrating both predictive validity and generalizability. These

results also present two findings of note. Firstly, learning models

constructed from Predicted SMART values outperformed those

constructed from the Ground Truth SMART values for both

scenarios. It is possible that our models in fact, smooth over some

of the noise that is present in the ground truth, thus presenting a

more robust measure than the raw encodings [6].

Second, we note that for the future scenario, the predicted

SMART values outperform model constructed directly from the

Act + Int + Survey variables, despite this being the values from

which the SMART predictions are made. The SMART values

may provide a latent encoding of this data, which is more

generalizable than the raw values to future occurrences, however

further study would be required to confirm this hypothesis.

Table 5. Spearman rho for models predicting learning gains.

All features are derived from the current scenario

Features Current

Scenario

Future Scenario

Chance Baseline .01 .01

Act + Int + Survey .45 .37

Ground Truth SMART .21 .29

Predicted SMART .32 .43

4.2.1 Feature Interaction
Using the same feature analysis methods described in section

4.1.1 we again examined the interactions involved when

predicting learning gains. These results are shown in Table 6.

We note the need for the balance between SMART operations.

For example, high monitoring and low translating resulted in

lower learning on the current scenario, but so did high searching

with low monitoring, suggesting it would be insufficient to simply

increase monitoring activities; we must encourage more effective

combinations of operations. Similarly, these results imply the

need for a careful structure approach to assembling.

The results shown for the future scenario focus on more

transferrable features than results for the current scenario. This

makes sense given that we are no longer considering the

immediate context. We found that students who had low off task

time and high persistence in the first scenario were more likely to

perform well in the second. Students with lower monitoring but

high translating were likely to have lower learning, indicating it is

not enough to simply test your knowledge, it is also important to

review feedback and compare work to standards.

5. DISCUSSION
Adaptive learning technology that responds to students’ learning

patterns can improve both immediate and long-term goals by

supporting the internalization of appropriate self-regulated

learning behaviors. In this paper, we infer SRL using a

combination of data mining and interviews/surveys.

5.1 Main Findings
Automated detection of SRL behaviors poses several challenges,

as many of the processes it entails are highly internal [42]. In this

work, we demonstrate that a combination of activity data, data

from surveys, and student interviews provides a more robust

prediction of SRL than any individual data stream. We find that

predicted SRL behaviors (from students’ first system interactions)

predict future performance. In fact, models based on our inferred

SRL measures outperform models constructed from the original

features used to train them (action, interview, and survey data)

and the SMART ground truth values. This finding is important for

environments where detailed trace analysis may not be possible,

but coarser-grained activity can be distilled.

Further, we show that a balanced combination of SRL behaviors

is required for successful learning. For example, students with low

learning are likely not spending enough time monitoring, but

simply requiring them to check their work more often may not

create improvement if they have not yet fully assembled the

knowledge necessary to effectively examine their previous efforts.

Future work should design scaffolds to create this balance.

Table 4. Top 8 interactions for predicting SMART facets

Feature 1 Feature 2 Predicted Value

Low Self-Confidence + Low Successful Quizzes = High Searching

High Self-Confidence + Low Off Task Time = Low Searching

Low Off Task Time + Low Self-Efficacy = High Monitoring

High Off Task Time + High Self-Efficacy = High Monitoring

Low Action Count + Low Self-Efficacy = High Assembling

High Action Count + Low Ineffective Links = Low Assembling

Low Procedural Strategy + Low Self Confidence = Low Translating

High Procedural Strategy + Low Motivational Strategy = High Translating

584 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

These results demonstrate the importance of considering log data

in the context of other measures when understanding student SRL.

This, in turn, underscores the need for more automated measures

of complex noncognitive measures such as self-efficacy and

persistence. Our work shows that these codes collected from

interview data boost SRL detection. In order to scale SRL

detection, we must first consider how we might automate the

detection of some of the constructs discussed here (see future

work below). These results offer the potential for designing pre-

emptive interventions, providing a more informed, asset-based

intervention as opposed to responding to a negative event.

5.2 Applications
The key application of this work is to develop adaptive online

learning environments that respond to student SRL. As SRL

detection continues to improve, systems like Betty’s Brain might

choose from wide range of intervention strategies that have

already been shown to improve SRL (e.g., discussion in section

1). For example, once students who are not employing optimal

strategies have been identified, additional scaffolding tasks might

be used to encourage new behaviors. Similarly, the software could

deliver interventions to increase motivation or interest.

It is important to note that the proposed intervention strategies

rely on SRL detection, which is likely always to be imperfect.

Self-regulation is highly internal [32], and as such, it is unlikely

that we will ever be able to infer SRL perfectly. Any interventions

should be designed to be “fail-soft” in that there are no damaging

effects to student learning or future SRL if delivered incorrectly.

In situations where computer-based learning is being used to

augment classroom instruction, a further application of this work

would be in providing feedback to teachers. Such feedback could

help them dynamically adapt their instruction, as outlined in [18]

for example, providing real-time feedback or an early warning

system, etc.

5.3 Limitations and Future Work
This work has limitations that should be addressed going

forwards. Firstly, the SMART features only characterize student

operations, and they do not give a complete SRL picture. Future

work should look to combine the SMART framework with the

broader COPES model [43]. The interview and survey measures

used in this work may also capture aspects of the cognitive and

task conditions referred to in the COPES model, but additional

study would be required to confirm this hypothesis.

A further limitation is the slightly cyclic nature of using student

activity features derived from log data, to predict SRL, also

derived from log data. While we made every effort to ensure that

our models were not confounded in some way, future work should

consider an external measure of SRL for additional validation

[44].

Finally, interview data is time-consuming to collect, limiting

scalability. In the future, we will employ alternate measures for

some of the interview codes measured in this work, such as

student surveys. It is possible that voice recognition and natural

language processing could be used in the future to support this

type of data collection.

5.4 Conclusions
This paper investigates predicting student SRL behavior in a

computer-based learning environment from a complex dataset of

coarse-grained activity data, in-situ student interviews, and

student surveys. Our analyses indicated that SRL was best

predicted from a combination of the three feature sets. We found

our predicted SRL operations were better at predicting future

learning than their ground truth equivalents, suggesting the

potential for a smoother latent encoding and better supporting

students in future endeavors. We envision this paper contributing

to future technologies that will track and respond to student SRL

behaviors and create more positive learning experiences.

6. ACKNOWLEDGMENTS
This work was supported by NSF #DRL-1561567.

7. REFERENCES
[1] Azevedo, R., Johnson, A., Chauncey, A. and Burkett, C.

2010. Self-Regulated Learning with MetaTutor: Advancing

the Science of Learning with MetaCognitive Tools BT -

New Science of Learning: Cognition, Computers and

Collaboration in Education. (2010), 225–

247.https://doi.org/10.1007/978-1-4419-5716-0_11.

[2] Azevedo, R., Johnson, A., Chauncey, A. and Graesser, A.

2015. Use of Hypermedia to Assess and Convey Self-

Regulated Learning. Handbook of Self-Regulation of

Learning and Performance. 10622

(2015).https://doi.org/10.4324/9780203839010.ch7.

[3] Azevedo, R., Moos, D.C., Johnson, A.M. and Chauncey,

A.D. 2010. Measuring Cognitive and Metacognitive

Regulatory Processes during Hypermedia Learning: Issues

and Challenges. Educational Psychologist.

(2010).https://doi.org/10.1080/00461520.2010.515934.

[4] Azevedo, R. and Strain, A.C. 2011. Integrating Cognitive,

Metacognitive, and Affective Regulatory Processes with

MetaTutor. New Perspectives on Affect and Learning

Technologies. (2011).https://doi.org/10.1007/978-1-4419-

9625-1_11.

[5] Azevedo, R., Witherspoon, A., Chauncey, A., Burkett, C.

Table 6. Top interactions for predicting learning. * indicates a predicted value

Scenario Feature 1 Feature 2 Predicted Value

Current

Scenario

High Monitoring* + Low Translating* = Low Learning

High Searching + Low Monitoring = Low Learning

High Successful Quizzes + High Self-Efficacy = High Learning

Low Successful Quizzes + High Ineffective Links = Low Learning

Future

Scenario

High Monitoring* + Low Assembling* = High Learning

Low Monitoring* + Low Assembling* = Low Learning

Low Off Task Time + High Positive Persistence = High Learning

Low Monitoring + High Translating = Low Learning

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 585

and Fike, A. 2009. MetaTutor: A MetaCognitive Tool for

Enhancing Self-Regulated Learning. AAAI Fall Symposium -

Technical Report. FS-09-02, (2009), 14–19.

[6] Baker, R.S.J. d., Corbett, A.T. and Aleven, V. 2008.

Improving Contextual Models of Guessing and Slipping with

a Truncated Training Set. (2008).

[7] Bannert, M. and Reimann, P. 2012. Supporting Self-

Regulated Hypermedia Learning through Prompts.

Instructional Science. 40, 1 (2012), 193–211.

[8] Biswas, G., Baker, R.S. and Paquette, L. 2017. Data Mining

Methods for Assessing Self-Regulated Learning. Handbook

of Self-Regulation of Learning and Performance. (2017),

388–403.https://doi.org/10.4324/9781315697048-25.

[9] Biswas, G., Leelawong, K., Schwartz, D., Vye, N., Davis, J.,

Belynne, K., Viswanath, K., Brandsford, J. and Katzlberger,

T. 2005. Learning by Teaching: A New Agent Paradigm for

Educational Software. Applied Artificial Intelligence.

(2005).https://doi.org/10.1080/08839510590910200.

[10] Biswas, G., Segedy, J.R. and Bunchongchit, K. 2016. From

Design to Implementation to Practice a Learning by

Teaching System: Betty’s Brain. International Journal of

Artificial Intelligence in Education.

(2016).https://doi.org/10.1007/s40593-015-0057-9.

[11] Boekaerts, M. and Pekrun, R. 2016. Emotions and Emotion

Regulation in Academic Settings. Handbook of Educational

Psychology. (2016), 76–

90.https://doi.org/10.1017/S0954579400006301.

[12] Broadbent, J. and Poon, W.L. 2015. Self-Regulated Learning

Strategies & Academic Achievement in Online Higher

Education Learning Environments: A Systematic Review.

Internet and Higher Education. 27, (2015), 1–

13.https://doi.org/10.1016/j.iheduc.2015.04.007.

[13] Charmaz, K. 1983. The Grounded Theory Method: An

Explication and Interpretation. Contemporary Field

Research. (1983), 109–126.

[14] Chen, C.-M. and Huang, S.-H. 2014. Web-Based Reading

Annotation System with an Attention-Based Self-Regulated

Learning Mechanism for Promoting Reading Performance.

British Journal of Educational Technology. 45, 5 (2014),

959–980.

[15] Chen, T. and Guestrin, C. 2016. XGBoost: A Scalable Tree

Boosting System. Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining (New York, NY, USA, 2016), 785–

794.https://doi.org/10.1145/2939672.2939785.

[16] Cleary, T.J. and Zimmerman, B.J. 2012. A Cyclical Self-

Regulatory Account of Student Engagement: Theoretical

Foundations and Applications. Handbook of Research on

Student Engagement. (2012).https://doi.org/10.1007/978-1-

4614-2018-7_11.

[17] Dignath, C., Buettner, G. and Langfeldt, H.-P. 2008. How

Can Primary School Students Learn Self-Regulated Learning

Strategies Most Effectively?: A Meta-Analysis on Self-

Regulation Training Programmes. Educational Research

Review. 3, 2 (2008), 101–

129.https://doi.org/https://doi.org/10.1016/j.edurev.2008.02.0

03.

[18] Holstein, K., McLaren, B.M. and Aleven, V. 2017.

Intelligent tutors as teachers’ aides: exploring teacher needs

for real-time analytics in blended classrooms. Proceedings of

the Seventh International Learning Analytics & Knowledge

Conference (2017), 257–266.

[19] Jiang, Y., Bosch, N., Baker, R.S., Paquette, L., Ocumpaugh,

J., Andres, J.M.A.L., Moore, A.L. and Biswas, G. 2018.

Expert feature-engineering vs. Deep neural networks: Which

is better for sensor-free affect detection? Artificial

Intelligence in Education (2018), 198–

211.https://doi.org/10.1007/978-3-319-93843-1_15.

[20] Kinnebrew, J.S., Biswas, G., Sulcer, B. and Taylor, R.S.

2013. Investigating Self-Regulated Learning in Teachable

Agent Environments. International Handbook of

Metacognition and Learning Technologies. (2013), 451–

470.https://doi.org/10.1007/978-1-4419-5546-3_29.

[21] Kinnebrew, J.S., Segedy, J.R. and Biswas, G. 2014.

Analyzing the Temporal Evolution of Students’ Behaviors in

Open-Ended Learning Environments. Metacognition and

Learning. (2014).https://doi.org/10.1007/s11409-014-9112-4.

[22] Kizilcec, R.F., Pérez-Sanagustin, M. and Maldonado, J.J.

2017. Self-Regulated Learning Strategies Predict Learner

Behavior and Goal Attainment in Massive Open Online

Courses. Computers & Education. 104, (2017), 18–33.

[23] Klug, J., Ogrin, S. and Keller, S. 2011. A Plea for Self-

Regulated Learning as a Process : Modelling , Measuring and

Intervening. Psychological Test and Assessment Modeling.

53, 1 (2011), 51.

[24] de la Fuente, J., Sander, P., Kauffman, D.F. and Yilmaz

Soylu, M. 2020. Differential Effects of Self- vs. External-

Regulation on Learning Approaches, Academic

Achievement, and Satisfaction in Undergraduate Students.

Frontiers in Psychology. 11, (2020),

2678.https://doi.org/10.3389/fpsyg.2020.543884.

[25] Lee, H.W., Lim, K.Y. and Grabowski, B.L. 2010. Improving

Self-Regulation, Learning Strategy Use, and Achievement

with Metacognitive Feedback. Educational Technology

Research and Development. 58, 6 (2010), 629–648.

[26] Munshi, A., Rajendran, R., Ocumpaugh, J., Biswas, G.,

Baker, R.S. and Paquette, L. 2018. Modeling learners’

cognitive and affective states to scaffold srl in open-ended

learning environments. UMAP 2018 - Proceedings of the

26th Conference on User Modeling, Adaptation and

Personalization (2018), 131–

138.https://doi.org/10.1145/3209219.3209241.

[27] Pandey, A., Hale, D., Das, S., Goddings, A.-L., Blakemore,

S.-J. and Viner, R.M. 2018. Effectiveness of Universal Self-

Regulation–Based Interventions in Children and

Adolescents: A Systematic Review and Meta-Analysis.

JAMA Pediatrics. 172, 6 (Jun. 2018), 566–

575.https://doi.org/10.1001/jamapediatrics.2018.0232.

[28] Pedregosa, F. et al. 2011. Scikit-Learn: Machine Learning in

Python. Journal of Machine Learning Research. 12, (2011),

2825–2830.https://doi.org/10.1007/s13398-014-0173-7.2.

[29] Pérez-Álvarez, R., Maldonado-Mahauad, J. and Pérez-

Sanagust\’\in, M. 2018. Tools to support self-regulated

learning in online environments: literature review. European

conference on technology enhanced learning (2018), 16–30.

[30] Pintrich, P.R. 2000. The Role of Goal Orientation in Self-

Regulated Learning. Handbook of Self-Regulation. (2000),

451–502.https://doi.org/10.1016/b978-012109890-2/50043-

586 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

3.

[31] Pintrich, P.R.R., Smith, D., Garcia, T. and McKeachie, W.

1991. A Manual for the Use of the Motivated Strategies for

Learning Questionnaire (MSLQ). Ann Arbor. Michigan.

(1991).https://doi.org/ED338122.

[32] Puustinen, M. and Pulkkinen, L. 2001. Models of Self-

regulated Learning: A review. Scandinavian Journal of

Educational Research.

[33] Roscoe, R.D., Segedy, J.R., Sulcer, B., Jeong, H. and

Biswas, G. 2013. Shallow Strategy Development in a

Teachable Agent Environment Designed to Support Self-

Regulated Learning. Computers and Education.

(2013).https://doi.org/10.1016/j.compedu.2012.11.008.

[34] Schraw, G. 2010. Measuring Self-Regulation in Computer-

Based Learning Environments. Educational Psychologist.

(2010).https://doi.org/10.1080/00461520.2010.515936.

[35] Schwartz, D.L., Chase, C., Chin, D.B., Oppezzo, M., Kwong,

H., Okita, S., Biswas, G., Roscoe, R., Jeong, H. and Wagster,

J.D. 2009. Interactive Metacognition: Monitoring and

Regulating a Teachable Agent. Handbook of Metacognition

in Education. (2009), 340–358.

[36] Segedy, J.R., Kinnebrew, J.S. and Biswas, G. 2015. Using

Coherence Analysis to Characterize Self-Regulated Learning

Behaviours in Open-Ended Learning Environments. Journal

of Learning Analytics.

(2015).https://doi.org/10.18608/jla.2015.21.3.

[37] Siadaty, M., Gasevic, D. and Hatala, M. 2016. Trace-Based

Microanalytic Measurement of Self-Regulated Learning

Processes. Journal of Learning Analytics. 3, 1 (2016), 183–

214.https://doi.org/https://doi.org/10.18608/jla.2016.31.11.

[38] Weston, C., Gandell, T., Beauchamp, J., McAlpine, L.,

Wiseman, C. and Beauchamp, C. 2001. Analyzing Interview

Data: The Development and Evolution of a Coding System.

Qualitative Sociology. 24, 3 (2001), 381–

400.https://doi.org/10.1023/A:1010690908200.

[39] Winne, P.H. 2011. A Cognitive and Metacognitive Analysis

of Self-Regulated Learning. Handbook of Self-Regulation of

Learning and Performance. (2011), 15–

32.https://doi.org/10.4324/9780203839010.ch2.

[40] Winne, P.H. 2010. Improving Measurements of Self-

Regulated Learning. Educational Psychologist. 45, 4 (2010),

267–276.https://doi.org/10.1080/00461520.2010.517150.

[41] Winne, P.H. 2014. Issues in Researching Self-Regulated

Learning as Patterns of Events. Metacognition and Learning.

9, 2 (2014), 229–237.https://doi.org/10.1007/s11409-014-

9113-3.

[42] Winne, P.H. 2017. Learning Analytics for Self-Regulated

Learning. Handbook of Learning Analytics. (2017), 241–

249.https://doi.org/10.18608/hla17.021.

[43] Winne, P.H. and Hadwin, A.F. 1998. Studying as Self-

Regulated Learning. Metacognition in Educational Theory

and Practice. (1998), 277–304.

[44] Winne, P.H. and Perry, N.E. 2000. Measuring Self-Regulated

Learning. Handbook of Self-Regulation.

(2000).https://doi.org/10.1016/b978-012109890-2/50045-7.

[45] Winne, P.H., Teng, K., Chang, D., Lin, M.P.C., Marzouk, Z.,

Nesbit, J.C., Patzak, A., Rakovic, M., Samadi, D. and

Vytasek, J. 2019. NStudy: Software for Learning Analytics

about Learning Processes and Self-Regulated Learning.

Journal of Learning Analytics.

(2019).https://doi.org/10.18608/jla.2019.62.7.

[46] Wong, J., Baars, M., Davis, D., Van Der Zee, T., Houben,

G.J. and Paas, F. 2019. Supporting Self-Regulated Learning

in Online Learning Environments and MOOCs: A

Systematic Review. International Journal of Human-

Computer Interaction. 35, 4–5 (2019), 356–

373.https://doi.org/10.1080/10447318.2018.1543084.

[47] Zimmerman, B.J. 1989. Models of Self-Regulated Learning

and Academic Achievement. Self-Regulated Learning and

Academic Achievement. (1989), 1–

25.https://doi.org/10.1007/978-1-4612-3618-4_1.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 587

The effects of a personalized recommendation system on
students’ high-stakes achievement scores: A field

experiment

Nilanjana Chakraborty
Department of Statistics

University of Florida
nchakraborty@ufl.edu

Samrat Roy
Department of Statistics

University of Florida
samratroy@ufl.edu

Walter L. Leite
College of Education
University of Florida

walter.leite@coe.ufl.edu

Mohamad Kazem Shirani
Faradonbeh

Department of Statistics
University of Georgia

mohamadksf@uga.edu

George Michailidis
Department of Statistics and

the Informatics Institute
University of Florida

gmichail@.ufl.edu

ABSTRACT
This study examines data from a field experiment investigat-
ing the effects of a personalized recommendation algorithm
that proposes to students which videosto watch next, after
they complete mini-assessments for algebra that available
on the Math Nation intelligent virtual learning environment
(IVLE). The end users of Math Nation are students enrolled
in an Algebra 1 course in middle and high schools of the
state of Florida, and the IVLE is used both during and out
of school time. The objective of the developed recommenda-
tion algorithm is to increase student preparation to take the
state-mandated End-of-Course (EoC) Algebra 1 assessment
at the end of the school year. The algorithm is based on a
Markov Decision Process framework that uses as input the
students’ responses to a series of mini-assessment tests. The
current study randomly assigned 16,406 students to either
treatment or control conditions, which were blind to both
students and teachers. The results indicate that the effects
of the recommendation algorithm depend on the level of us-
age of students, showing significant improvements on EoC
test scores of students who have a moderate level of usage.
However, there was no effect for low usage students. The
study also shows that students practicing with the mini-
assessments available on Math Nation, helps them improve
by a small margin their performance on the End-of-Course
test, irrespective of the usage level. Finally, the study pro-
vides insights on challenges posed for implementing person-
alized recommendation algorithms at a large scale, related
both to student self-regulation and teacher orchestration of
technology use in the classroom.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses in Edu-
cation

Keywords
Personalized Recommendation, Randomized Control Study,
Hierarchical Clustering, Markov Decision Process, Algebra

1. INTRODUCTION
There is a growing trend in employing intelligent virtual
learning environments (IVLE) to aid students in improving
their math performance in K-12 education [8, 26, 23]. While
there is a robust body of literature that shows that students’
preparedness together with various demographic and school
characteristics are key factors for predicting students’ perfor-
mance in various math tests [15], IVLE have been viewed as
an especially promising way of improving students’ achieve-
ments in mathematics. Given the investment of resources
into technology products and the time and effort needed to
integrate them into the curriculum, there has been consid-
erable interest in determining their effectiveness. A number
of studies have reported positive effects based both on small
scale randomized control trials and longer term interventions
[14, 13, 19, 16, 15], as well as based on observational data
[12]. There have also been a series of meta-analysis stud-
ies showing that IVLE have substantial effects on student
outcomes [10, 11, 24, 27].

IVLE have the potential of offering personalized learning ex-
periences. The latter refer to instruction “in which the pace
of learning the instructional approach are optimized for the
needs of each learner”, according to the United States Na-
tional Education Technology Plan 2017. IVLE that offer
some degree of personalization include Khan Academy at the
K-12 level and Newton at the higher education level. As dis-
cussed in [3], at the core of personalized learning strategies
is a recommendation algorithm aiming to propose appropri-
ate learning materials and topics to the student at the right
time, leveraging the student’s prior history of interactions
with the IVLE.

Nilanjana Chakraborty, Samrat Roy, Walter Leite and George Michai-
lidis “The effects of a personalized recommendation system on students’
high-stakes achievement scores: A field experiment”. 2021. In: Pro-
ceedings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 588-594.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

588 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Many personalized learning strategies leverage ideas and
tools from the field of Reinforcement Learning [4, 5, 9, 20].
The key components of a reinforcement learning based al-
gorithm are the triplet of state, reward, action. The state
reflects information on the student’s knowledge and skills
set on the topic(s) under consideration, the reward relates
to the goals of the strategy (e.g. performance on tests, en-
gagement with the IVLE, etc.) and the action refers to an
activity, (e.g. watch a video on a topic of interest, take
an assessment test, etc.) that, based on the current state
information, aims to maximize the expected reward.

This study reports the results of a large-scale randomized
field experiment that focuses on the impact of a simple per-
sonalized strategy implemented on the Math Nation IVLE,
on a high-stakes, state-mandated End-of-Course (EoC) al-
gebra test. Although many evaluations of IVLE have been
published, most of them rely on locally developed standard-
ized tests, rather than high-stakes statewide tests [10]. Math
Nation, is an online video-based tutoring program aiming to
prepare students in the state of Florida for the EoC, which
is required for high school graduation. The platform offers
videos on various algebra topics recorded by different tu-
tors, explaining the main concepts and walking the student
through related examples, 3-question assessments for each
topic and 10-question assessments for sets of related topics,
with video explanations for each question. Therefore, stu-
dents can assess their progress by taking both the short (3-
question) and the long (10-question) tests. Further, the plat-
form offers a monitored discussion area, wherein students
can pose questions to peers and volunteer tutors. Hence,
at launch time, it shared a number of characteristics with
Khan Academy, both being self-guided and easy to use on
an ad hoc basis, without the need for extensive professional
development training for teachers. The content of the videos
and assessments are aligned with the curriculum adopted by
the state and also the content and format of the EoC test.

A new feature of Math Nation is the introduction of an al-
gorithm to recommend videos to students, leveraging infor-
mation on their performance on the mini-assessments asso-
ciated with each video. Specifically, Math Nation divides
the whole Algebra 1 course materials into 10 sections. Each
section is further divided into several topics, thus result-
ing in a total of 93 topics for the entire course. For each
topic, there is a tutorial video associated with it, recorded
by different tutors. At the end of the video the student is
presented with a 3-question assessment (henceforth called a
mini-assessment) and based on the score obtained, a video
recommendation (the action) is offered aiming to maximize
the student’s expected score (the reward) on these mini-
assessments. The student can follow the recommendation
or decide to ignore it and select another video of her/his
own choice by the same or another tutor. To compare the
effectiveness of the recommendation algorithm, a “business-
as-usual”competitor is implemented, which recommends the
next video in a predetermined sequence related to the struc-
ture of the algebra state curriculum, irrespective of the score
achieved in the mini-assessment.

The objectives of the study are twofold: (i) estimate the
average treatment effect of the recommendation algorithm
vis-a-vis its competitor together with its interactions with

previous achievement and level of usage of the algorithm,
and (ii) understand the relationship between performance in
the mini-assessments and the EoC test, after accounting for
math preparedness and school characteristics of the students
that participated in this randomized control study.

The remainder of the paper is structured as follows. Sec-
tion 2 presents the developed personalized recommendation
strategy. Section 3 describes in detail the data recorded from
the algorithm, as well as other covariates used in the anal-
ysis. Section 4 presents the statistical methods used in the
analysis and the main results of the study. Finally, Section
5 discusses the implications of our findings and suggestions
to modify the recommendation algorithm.

2. PERSONALIZED RECOMMENDATION
STRATEGY

Next, we describe the data-driven algorithm for recommend-
ing a suitable tutoring video to each individual student.
As previously mentioned, the content of the course is di-
vided into 93 topics, with each topic accompanied by a video
recorded by 5 tutors in English and 1 tutor in Spanish. Stu-
dents can freely select the tutor for each video.

To rigorously set the stage for the video recommendation
algorithm, fix a single student, and let sk (t) be the corre-
sponding “mini-score” for topic k ∈ {1, 2, · · · , 93}, at time
t = 0, 1, · · · . These mini-scores, representing the knowledge
level of the student, are obtained by assessing responses to
the mini-assessments comprising of 4-choice questions, with
a single correct choice. Thus, the set of possible outcomes
consists of i correct answer(s), together with 3− i wrong an-
swer(s), for i = 0, 1, 2, 3. Then, we center and normalize the
corresponding scores (henceforth referred to as mini-scores),
so that on average, simply guessing the answers lead to a
zero score. Thus, we have sk (t) ∈ {−3, 1, 5, 9}, and if the
answers are selected completely at random, E [sk (t)] = 0.

With the above setting, the full state of the student at time
t is given by S (t) = [s1 (t) , · · · , s93 (t)]′ ∈ {−3, 1, 5, 9}93,

while ||S (t)|| =
93∑

k=1

sk (t) reflects the (total) score of the

student under consideration at time t. The dynamical model
for topic k consists of a Markov chain for which the state
is sk (t). For the time being, suppose that the parameters
of the Markov chain consisting of 4 × 4 tables of transition
probabilities among the states {−3, 1, 5, 9} are available. We
will shortly discuss a statistical method leveraging transfer
learning techniques, for estimating the Markov transition
kernels according to the observed data.

The recommendation strategy is to propose to the student
the tutoring video corresponding to the topic with the largest
predicted growth in the mini-score. Formally, at time t, the
IVLE recommends the student to watch the tutoring video
of topic k?, wherein

k? = arg max
k

E
[
sk (t+ 1)− sk (t)

∣∣∣S (t)
]
,

where the notation“ | ”is used to indicate a conditional prob-
ability distribution. The student can either accept the rec-
ommendation, watch the video and take the mini-assessment,
or can ignore the recommendation and select another video

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 589

to watch (by possibly another tutor).

Note that in order to compute the above expected values,
for every topic i ∈ {1, · · · , 93} it suffices to have only the 4
probabilities corresponding to the transition of the Markov
chain from the current state si (t) to the next one si (t+ 1).
Intuitively, the difference quantity sk (t+ 1)− sk (t) reflects
the predicted growth of the student in topic k. Therefore,
the high level idea of the recommendation strategy is to
propose to the student to work on the topic (s)he is capable
of improving her/his knowledge level the most. Therefore,
the recommendation aligns with Vygotsky’s theory [28] of
zone of proximal development by providing a video that is
neither too easy, nor too challenging. Further, the recom-
mended topic is totally personalized to the student, since
the state S (t) at time t is unique to each student.

Finally, we describe the statistical learning procedure for es-
timating the Markov transition probabilities. For this pur-
pose, the students are clustered in 12 different groups, based
on their demographic and other background data, so that
students of similar learning abilities will be assigned to the
same group (cluster). The details of the clustering proce-
dure are provided in Section 3. We assume that students in
each group share the Markov transition probabilities reflect-
ing their cognitive responses to watching the tutoring video
of a specific topic. Thus, in order to estimate the transition
probabilities for students in a fixed group, we divide the
total number of transitions between every pair of the possi-
ble states {−3, 1, 5, 9} in the group, with the total number
of transitions in the group. We emphasize the following
points. First, while the Markov transition probabilities are
the same for all students in one demographic/background
group, the states are uniquely personalized to each student.
Second, the estimates of the transition probabilities change
over time as the platform collects more data from the re-
sponses of the students to the mini-assessments. Further,
when Math Nation starts being used by the students, the
initial estimates of the transition probabilities are selected
randomly, and are updated throughout the academic year
as the students continue to use it. Finally, if there is more
than one k? maximizing the predicted growth, one will be
selected at random.

Before the algorithm was deployed within Math Nation plat-
form, it was extensively tested on synthetic data generated
based on data collected in previous years from the platform.
Specifically, students that have used the platform in previous
years were clustered in 12 groups (see also Section 3) based
on their demographic and background information. Note
that the distributions of such data are very similar to those
in the academic year that the recommendation algorithm
was launched and evaluated in the current study. Subse-
quently, the response data to the mini-assessment tests of
the students within each cluster were used to estimate the
corresponding Markov transition probabilities. The latter
were then used to initialize the recommendation algorithm
and to generate synthetic data for students in different clus-
ters. The upshot of this analysis was that the algorithm
required adequate engagement (t ≥ 45) to show significant
improvement in performance in the mini-assessments. We
revisit this point in the Discussion section.

Table 1: Distribution of the students across different Math
Achievement Levels, School Grades and Student Grades

Achievement Level No. of Students School Grades No. of Students Student Grades No. of Students

1 473 A 4,377 5 3
2 1,453 B 2,001 6 1463
3 3,487 C 4580 7 3599
4 2,711 8 5893
5 2,834

Total 10,958 Total 10,958 Total 10,958

Note: Data based on previous school year performance

Figure 1: Distribution of Pre-Score

3. DATA DESCRIPTION
In this study, we randomly assign a sample of 16,406 middle
and high school students enrolled in Algebra 1 in a large
school district in the state of Florida, to a treatment (pro-
posed recommendation strategy) or a control (business as
usual recommendation strategy) group. The assignment was
blind to students and teachers. The treatment group re-
ceived video recommendations as described in the previous
section, while the control group received a recommendation
to watch the next video in the curriculum sequence. To
initialize the recommendation, a randomized cluster design
was employed. Specifically, students were first matched ac-
cording to their grade, school characteristics and math pre-
paredness test scores from the previous school year and then
randomly assigned to the two groups. The variables used
for matching purposes were the scores on the state stan-
dardized mathematics test, called the Mathematics Florida
Standards Assessment1(henceforth, referred to as Pre-Score
and the corresponding test referred to as Pre-Test), as well
as an achievement level assigned to them by their schools,
while the quality of each school is reflected by a grade as-
signed to it by the state Department of Education2. The
latter grades are based on several components and have five
different levels (‘A’ being the highest level and ‘F’ being the
lowest one). Due to lack of data for many of these variables,
5,448 students were removed from any further analysis and
hence Table 1 that shows the distributions of the students
across different Achievement Levels, School Grades and Stu-
dent Grades and Figure 1 that depicts the distribution of the
Pre-Score are based on the remaining 10,958 students.

1http://www.fldoe.org/accountability/assessments/k-12-
student-assessment/fsa.stml
2http://www.fldoe.org/accountability/accountability-
reporting/school-grades/

590 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

28
0

30
0

32
0

34
0

36
0

38
0

Pre−Score

TG: 7,8 A: 1, SG: C Size: 370

TG: 7,8 A: 1, SG: B Size: 19

TG: 7,8 A: 1,2 SG: A Size: 458

TG: 6,7,8 A: 2,3 SG: C Size: 1603

TG: 6,7,8 A: 2,3 SG: B Size: 574

TG: 6,7,8 A: 3,4 SG: A Size: 1570

TG: 7,8 A: 3,4,5 SG: C Size: 2008

TG: 6,7,8 A: 3,4 SG: B Size: 862

TG: 6,7 A: 4,5 SG: C Size: 599

TG: 5,6,7 A: 4,5 SG: A Size: 1072

TG: 5,6,7,8 A: 5 SG: B Size: 546

TG: 7,8 A: 5 SG: A Size: 1277TG: Test Grade

A: FSA Achievement Level

SG: School Grade

Figure 2: Boxplots of clusters hierarchically ordered based
on Pre-score: For each cluster, School Grade, Achievement
Level and Student Grade and Cluster Size are reported.

Using the above information, students were assigned to clus-
ters/groups. This cluster assignment is used as a categor-
ical variable in the analysis presented in Section 4. The
clusters are designed in such a way that each of them cor-
responds to a group with a unique combination of math
preparedness and school grade. In summary, the following
four variables were considered by the clustering algorithm:
Pre-Score, Math Achievement Level, School Grade and Stu-
dent Grade. An agglomerative hierarchical clustering algo-
rithm was employed for this task and using the dendrogram
with Gower’s distance metric, along with silhouette values
[7], the number of clusters was chosen to be 12. Figure 2
provides a pictorial representation of the key features of the
clusters. Specifically, for each cluster the Figure depicts the
boxplot of the Pre-Score and also the corresponding Student
Grade, Math Achievement Level, School Grade and Size of
the cluster. For ease of comparison, the clusters are ordered
according to the distribution of the Pre-Score. Hence, clus-
ter 1 corresponds to the group of students having the lowest
Pre-Score, while cluster 12 is the group with the highest Pre-
Score. As Figure 2 shows, the size of cluster 2 was very small
and hence it was merged with cluster 1 for the subsequent
analyses.

The number of times a particular student takes the mini-
assessment after watching a video, is defined as the usage by
that student. Figure 3 depicts the average usage per student
for each of the clusters for both the control and treatment
groups. It can readily be seen that the overall average across
the study population is 2.88, with many clusters exhibiting
significantly lower usage. There are also a few clusters ex-
hibiting high usage; e.g. cluster 5 for the control group and
cluster 9 for the treatment group.

4. METHODS AND RESULTS
The analyses described below, aim to provide answers to
the two objectives outlined in Section 1. In our first analy-
sis, we estimate the average treatment effect of the recom-
mendation algorithm on EoC scores, using a simple linear
regression model, with the following two categorical vari-

0

1

2

3

4

5

6

7

8

9

10

Per student usage across clusters

Overall average

2.88

Figure 3: Average usage per student for different clusters,
for both treatment and control groups

ables and the interaction between them; (i) the first cate-
gorical variable TC, comprises of two levels: the first rep-
resents the Treatment group that watched the personal-
ized recommended videos and took the corresponding mini-
assessments, and the second level corresponds to the Control
group; (ii) the second categorical variable Previous Achieve-
ment Level, comprises of five categories, each corresponding
to a different level of achievement in the Pre-test. Level 1
stands for the lowest achievement, whereas the highest level
is coded by level 5. Then, the linear regression model with
the above two predictors and their interaction is given by:

y = µ+ β1 TC + β2 Achievement+

β3 (TC ×Achievement) + ε (1)

where y represents the EoC score and we further assume
that ε ∼ N(0, σ2). Based on this model, the estimate of
the average treatment effect of the personalized recommen-
dation on EoC score, is the coefficient β1 corresponding to
the variable TC. Further, estimates of standard errors of the
regression coefficients are based on cluster-robust estimators
[2]. To answer the first research question discussed in Sec-
tion 1, we test HTC

0 : β1 = 0 vs. HTC
1 : β1 6= 0. The coeffi-

cient β1 is the difference between the mean EoC score of the
Treatment and the Control group, after accounting for the
effect of all the other covariates. The estimated coefficients
(scaled) and corresponding p-values are reported in Table 2.
Table 2 shows that the achievement levels are statistically
significant, while the treatment effect (i.e., the impact of the
developed recommendation algorithm) is not. Further, there
is a small positive significant effect for the interaction of the
treatment with Achievement level 2. However, as shown in
Figure 3, usage patterns vary widely across different groups
(clusters) of students.

To that end, and in order to gain a deeper understanding
of how the average treatment effect behaves across different
IVLE usage levels, we fit model (1) separately on groups of
students exhibiting different usage levels. After some initial
exploratory analysis, we divided the students in approxi-
mately evenly distributed usage groups as shown in Table
3. The results are summarized in Table 3, whose first col-
umn specifies the usage levels of the group. As an example,
students who have taken at least 10 mini-assessments tests,
are categorized as a group with usage level 10 or higher.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 591

Table 2: Estimated coefficients and corresponding p-values
for Model (1)

Variable Scaled Coefficient p-value
Intercept 348.45 <0.001

Treatment -0.99 0.32
Achievement level 2 11.28 <0.001
Achievement level 3 23.14 <0.001
Achievement level 4 35.31 <0.001
Achievement level 5 50.02 <0.001

TC*Achievement level 2 1.94 0.05
TC*Achievement level 3 0.94 0.34
TC*Achievement level 4 1.25 0.21
TC*Achievement level 5 1.09 0.27

Note: The scaled coefficients are obtained by dividing the
estimated coefficients by their standard error.

The second and third columns contains= the p-values cor-
responding to the test β1 = 0 and the scaled version of the
estimated coefficients, respectively. As it is evident from
Table 3, the first few rows that correspond to lower usage
groups, have high p-values and thus the average treatment
effect is not statistically significant. The treatment effect be-
comes significant for students who used the platform more
extensively (≥ 48).

The model also controls for the level of achievement of stu-
dents. Table 4 presents the results for the β2 regression coef-
ficient for different usage levels. The corresponding p-values
are given in parentheses. It can be seen that the effect is sta-
tistically significant (marked in bold font) across almost all
Previous Achievement levels and usage levels, as expected
based on the overall results presented in Table 2. Further,
this result is in accordance with a large body of literature
that has found a positive association between level of math
preparation and test scores (see, e.g.,[16, 15] and references
therein). Further, the magnitude of the coefficient is larger
for higher achievement levels.

Model (1) also estimates the interaction effect between the
treatment and the Previous Achievement level. Table 5
summarizes the scaled estimates of the interaction effects
and the p-values (given in parentheses). Since the Previous
Achievement level has 5 categories, we obtain the estimates
for all the levels except the baseline category, i.e., Previous
Achievement level 1, which is absorbed in the intercept of
the model. As usage increases, Table 5 displays more signifi-
cant interaction effects (in bold font) between treatment and
achievement level as compared to low usage groups. Note
that due to lack of data in selected categories, some of the in-
teraction effects could not be estimated and hence left blank.

Note that most of the interaction effects are not statistically
significant. There are selected ones with a positive coef-
ficient, corresponding to higher achievement levels (3 and
above) for high usage groups (e.g., 33 and 65). Analogously,
there are selected interaction effects with a negative coef-
ficient corresponding to the lower achievement level 2, and
relative high usage level.

To answer the second research question on the relationship
between the performance of the students in mini-assessments
and in the EoC test, we obtain the Average Mini-Assessments

Table 3: Usage-wise effect of the recommendation: p-values
and scaled coefficients for different usage levels

Usage Level p-value Scaled Coefficient Sample size
9 0.64 0.46 1097
13 0.40 0.85 932
27 0.29 1.07 515
33 0.17 1.39 411
48 0.02 2.41 254
52 0.01 2.56 230
55 0.05 1.93 207
59 0.06 1.91 183
65 0.02 2.31 140
74 0.08 1.78 92

Table 4: Usage-wise effect of the Previous Achievement
level: p-values and scaled coefficients for different usage lev-
els

Usage Level Level 2 Level 3 Level 4 Level 5

9
4.65

(<0.001)
7.41

(<0.001)
10.67

(<0.001)
15.76

(<0.001)

13
4.94

(<0.001)
7.51

(<0.001)
- 10.74

(<0.001)
15.37

(<0.001)

27
1.87

(0.06)
2.64

(0.008)
4.61

(<0.001)
6.76

(<0.001)

33
2.45

(0.01)
3.02

(0.002)
4.72

(<0.001)
6.19

(<0.001)

48
3.23

(0.001)
3.19

(0.001)
4.18

(<0.001)
5.41

(<0.001)

52
3.16

(0.002)
3.29

((0.001))
4.16

(<0.001)
5.42

(<0.001)

55
2.97

(0.003)
3.07

(0.002)
3.97

((<0.001))
5.41

(<0.001)

59
2.05

(0.04)
1.92

(0.05)
2.65

(0.008)
3.58

(<0.001)

65 -
-0.13
(0.89)

1.83
(0.06)

4.15
(<0.001)

74 -
0.50

(0.62)
1.34

(0.18)
2.70

(0.008)

Table 5: Usage-wise interaction effect of treatment and Pre-
vious Achievement level: scaled coefficients (p-values) for
different usage levels

Usage Level TC * Level 2 TC * Level 3 TC * Level 4 TC * Level 5

9
-0.47
(0.64)

-0.20
(0.84)

-0.40
(0.69)

-0.06
(0.94)

13
-1.08
(0.27)

-0.68
(0.49)

- 0.81
(0.42)

-0.34
(0.74)

27
0.62

(0.54)
1.19

(0.23)
1.05

(0.29)
1.60

(0.11)

33
0.78

(0.43)
1.47

(0.14)
1.32

(0.19)
2.13

(0.03)

48
-2.82

(0.005)
-1.21
(0.22)

-2.05
(0.04) -

52
-2.85

(0.004)
-1.47
(0.14)

-2.13
(0.03) -

55
-2.49
(0.01)

-1.18
(0.24)

-1.73
(0.08) -

59
-2.40
(0.02)

-0.71
(0.48)

-1.68
(0.09) -

65 -
2.56

(0.01)
2.01

(0.04)
2.85

(0.005)

74 -
-0.98
(0.32)

-1.28
(0.20) -

592 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Score for each of the ∼ 11,000 registered students, wherein
the average is computed over the mini-scores for all the mini-
assessments the student has completed.

Then, the following Analysis of Covariance model is fitted to
the data. To control for the students math preparedness and
school characteristics, we include the cluster information as
a factor in the model.

yij = µ+ αi + βxij + εij , (2)

wherein yij is the EoC score and xij is the Average Mini-
Assessments Score for the jth student in the ith cluster. Fur-
ther, µ is the overall mean effect and αi is the additional ef-
fect due to the assignment of the student to the i−th cluster
that accounts for prior math knowledge, grade and school
characteristics of the students.

Table 6 depicts the estimated regression coefficients, their
standard errors, together with the value of the test statis-
tic and the p-value corresponding to the significance test
for each of the coefficients. All p-values are significantly
smaller than the nominal 0.05 (or 0.01) level, thus indicat-
ing that the corresponding predictor has a significant effect
on the EoC test score. The estimated coefficient for the
mini-assessment is 1.15. This small, but statistically signifi-
cant coefficient indicates that an increase of one point in the
average student score on the mini-assessment corresponds
to an expected improvement in the EoC score of 1.15 (the
corresponding scaled regression coefficient is 7.46) points.
At first glance, this relationship between the average mini-
score performance and the EoC test seems of limited practi-
cal significance. However, when examining the distribution
of EoC scores across all students (∼ 90, 000) that used the
Math Nation platform at some point in time (not necessar-
ily participants in the current study), we find that about
1.9% are within 1 point of the passing threshold. Hence, in
light of this information, it is reasonable to posit that the
recommendation algorithm would have been beneficial for a
good number of students, if it were adopted and used by all
platform participants.

Table 6: Results of the Analysis of Covariance model: Re-
sponse EoC Score; categorical predictor cluster and numer-
ical predictor Average Mini-Assessments Score

Coefficients Estimate Std. Error t-value p-value
Intercept 464.29 2.61 178.18 <2e-16
Cluster 3 29.79 3.63 8.21 3.9e-16
Cluster 4 29.61 2.77 10.70 <2e-16
Cluster 5 37.06 2.92 12.70 <2e-16
Cluster 6 38.99 3.13 12.46 <2e-16
Cluster 7 36.84 2.77 13.29 <2e-16
Cluster 8 49.74 2.92 17.02 <2e-16
Cluster 9 53.47 2.87 18.62 <2e-16
Cluster 10 73.48 2.90 25.33 <2e-16
Cluster 11 68.89 3.21 21.49 <2e-16
Cluster 12 75.34 2.88 26.13 <2e-16

Avg. Mini-Assessments 1.15 0.15 7.46 1.3e-13

5. DISCUSSION
The analysis of the data from the randomized control study
provide a number of useful insights in designing recommen-
dation strategies for IVLE. Firstly, the recommendation al-
gorithm holds a lot of promise, but as it is well known in rein-
forcement learning, it requires adequate amount of usage to

“explore” various possibilities in order to maximize expected
reward. The adequate usage requirement is also discussed
in the literature evaluating recommendation strategies for
Massive Online Open Courses; see [6, 17, 18] and references
therein. As mentioned in Section 3, an initial evaluation of
the proposed algorithm during its development phase based
on synthetic data indicated that it starts yielding satisfac-
tory results, in terms of students improving their perfor-
mance on the mini-assessments, once students follow its rec-
ommendations for over 45 times. The results of the analysis
in Section 4 are in line with the aforementioned finding. As
Table 3 indicates, the recommendation strategy shows sig-
nificant impact starting from a usage level of 48. Further,
note that in our study the primary outcome under consid-
eration is the EoC test that takes place at the end of the
academic year, as opposed to a more direct outcome related
to the recommendation algorithm, such as performance over
time on the mini-assessment tests. In many studies in the
literature (e.g., [1, 22], assessment of a recommendation al-
gorithm was based on more immediate outcomes (e.g., the
mini-assessments in our setting), as opposed to a more distal
outcome, such as the EoC. Nevertheless, the results of our
experiment indicate that with stronger student engagement
the developed algorithm could be more widely beneficial.

To address the issue of low usage, a new experiment has
been designed, wherein the teachers are directly involved
in the implementation of the recommendation system in the
classroom, which is expected to yield higher levels of engage-
ment of students with the IVLE platform. This experiment
is under way at the time of this publication.

It is also worth mentioning that our first analysis was of
“Intent-to-Treat” type, because it evaluated the effect of be-
ing randomly assigned to treatment or control groups with-
out consideration of the extent that students used the rec-
ommendation strategy. On the contrary, traditional Com-
plier Average Causal Effect analysis [21, 25] is based on
“Treatment-on-the-Treated”principle, wherein one estimates
the treatment effect for those who complied with the treat-
ment. The latter constitutes a direction of future research.

Another issue of broader interest is that many IVLE recom-
mendation algorithms are designed to assign test problems
in an adaptive way, as opposed to assigning videos that Math
Nation does. However, in the modified implementation of
the algorithm currently under evaluation, the student can
skip watching the recommended video and take the mini-
assessment directly; in case, (s)he gets less than two of the
questions correctly, the algorithm recommends to watch the
segment of the video that covers the corresponding mate-
rial and then retake the mini-assessment. This modification
aims to enhance the emphasis of the recommendation al-
gorithm on solving problems, but at the same time enable
students to review relevant material to questions that they
answered incorrectly.

6. ACKNOWLEDGMENTS
The research reported here was supported by the Institute of
Education Sciences, U.S. Department of Education, through
Grant R305C160004 to the University of Florida. The opin-
ions expressed are those of the authors and do not represent
views of the Institute or the U.S. Department of Education.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 593

7. REFERENCES
[1] J. Bassen, B. Balaji, M. Schaarschmidt, C. Thille,

J. Painter, D. Zimmaro, A. Games, E. Fast, and J. C.
Mitchell. Reinforcement learning for the adaptive
scheduling of educational activities. In Proceedings of
the 2020 CHI Conference on Human Factors in
Computing Systems, pages 1–12, 2020.

[2] A. C. Cameron and D. L. Miller. A practitioner’s
guide to cluster-robust inference. Journal of human
resources, 50(2):317–372, 2015.

[3] Y. Chen, X. Li, J. Liu, and Z. Ying. Recommendation
system for adaptive learning. Applied psychological
measurement, 42(1):24–41, 2018.

[4] M. Chi, K. VanLehn, D. Litman, and P. Jordan.
Empirically evaluating the application of
reinforcement learning to the induction of effective
and adaptive pedagogical strategies. User Modeling
and User-Adapted Interaction, 21(1-2):137–180, 2011.

[5] S. Doroudi, K. Holstein, V. Aleven, and E. Brunskill.
Towards understanding how to leverage sense-making,
induction and refinement, and fluency to improve
robust learning. International Educational Data
Mining Society, 2015.

[6] K. S. Hone and G. R. El Said. Exploring the factors
affecting mooc retention: A survey study. Computers
& Education, 98:157–168, 2016.

[7] L. Kaufman and P. J. Rousseeuw. Finding groups in
data: an introduction to cluster analysis, volume 344.
John Wiley & Sons, 2009.

[8] K. R. Koedinger, J. R. Anderson, W. H. Hadley, and
M. A. Mark. Intelligent tutoring goes to school in the
big city. 1997.

[9] K. R. Koedinger, E. Brunskill, R. S. Baker, E. A.
McLaughlin, and J. Stamper. New potentials for
data-driven intelligent tutoring system development
and optimization. AI Magazine, 34(3):27–41, 2013.

[10] J. A. Kulik and J. Fletcher. Effectiveness of intelligent
tutoring systems: a meta-analytic review. Review of
educational research, 86(1):42–78, 2016.

[11] W. Ma, O. O. Adesope, J. C. Nesbit, and Q. Liu.
Intelligent tutoring systems and learning outcomes: A
meta-analysis. Journal of educational psychology,
106(4):901, 2014.

[12] S. Mojarad, A. Essa, S. Mojarad, and R. S. J.
de Baker. Studying adaptive learning efficacy using
propensity score matching. In Proceedings of the 8th
International Conference on Learning Analytics and
Knowledge (LAK18), 2018.

[13] P. Morgan and S. Ritter. An experimental study of
the effects of cognitive tutor algebra I on student
knowledge and attitude. Pittsburgh, CA: Carnegie
Learning Inc., 2002.

[14] R. Murphy, L. Gallagher, A. Krumm, J. Mislevy, and
A. Hafter. Research on the use of Khan Academy in
schools. Menlo Park, CA: SRI Education, 2014.

[15] S. A. Niaki, C. P. George, G. Michailidis, and C. R.
Beal. The impact of an online tutoring program for
algebra readiness on mathematics achievements;
results of a randomized experiment. In Proceedings of
the 9th International Conference on Learning
Analytics & Knowledge, pages 363–372. ACM, 2019.

[16] J. F. Pane, B. A. Griffin, D. F. McCaffrey, and

R. Karam. Effectiveness of cognitive tutor algebra I at
scale. Educational Evaluation and Policy Analysis,
36(2):127–144, 2014.

[17] J. Reich. Mooc completion and retention in the
context of student intent. EDUCAUSE Review Online,
8, 2014.

[18] J. Reich and J. A. Ruipérez-Valiente. The mooc pivot.
Science, 363(6423):130–131, 2019.

[19] S. Ritter, J. Kulikowich, P. Lei, C. McGuire, and
P. Morgan. Big data comes to school: Implications for
learning, assessment, and research. In 15th
International Conference on Computers in Education:
Supporting Learning Flow through Integrative
Technologies, ICCE 2007, pages 13–20, 2007.

[20] J. P. Rowe and J. C. Lester. Improving student
problem solving in narrative-centered learning
environments: A modular reinforcement learning
framework. In International Conference on Artificial
Intelligence in Education, pages 419–428. Springer,
2015.

[21] B. J. Sagarin, S. G. West, A. Ratnikov, W. K. Homan,
T. D. Ritchie, and E. J. Hansen. Treatment
noncompliance in randomized experiments: Statistical
approaches and design issues. Psychological methods,
19(3):317, 2014.

[22] S. Shen, M. S. Ausin, B. Mostafavi, and M. Chi.
Improving learning & reducing time: A constrained
action-based reinforcement learning approach. In
Proceedings of the 26th Conference on User Modeling,
Adaptation and Personalization, pages 43–51, 2018.

[23] S. Shen, B. Mostafavi, C. Lynch, T. Barnes, and
M. Chi. Empirically evaluating the effectiveness of
pomdp vs. mdp towards the pedagogical strategies
induction. In International Conference on Artificial
Intelligence in Education, pages 327–331. Springer,
2018.

[24] S. Steenbergen-Hu and H. Cooper. A meta-analysis of
the effectiveness of intelligent tutoring systems on
college students’ academic learning. Journal of
Educational Psychology, 106(2):331, 2014.

[25] E. A. Stuart, D. F. Perry, H.-N. Le, and N. S. Ialongo.
Estimating intervention effects of prevention
programs: Accounting for noncompliance. Prevention
Science, 9(4):288–298, 2008.

[26] K. Vanlehn. The behavior of tutoring systems.
International journal of artificial intelligence in
education, 16(3):227–265, 2006.

[27] K. VanLehn. The relative effectiveness of human
tutoring, intelligent tutoring systems, and other
tutoring systems. Educational Psychologist,
46(4):197–221, 2011.

[28] L. S. Vygotsky. Mind in society: The development of
higher psychological processes. Harvard university
press, 1980.

594 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Student Practice Sessions Modeled as ICAP Activity Silos

Adam M. Gaweda, Collin F. Lynch
North Carolina State University

Raleigh, NC, USA
agaweda,cflynch@ncsu.edu

ABSTRACT
There are a number of novel exercise types that students can
utilize while learning Computer Science, each with its own level
of complexity and interaction as outlined by the ICAP Frame-
work [10]. Some are Interactive, like solving coding problems;
Constructive, like explaining code; Active, like retyping source
code; and Passive, like reviewing slides. To date, there has been
little research on how students vary their study and engagement
habits by exercise type and when they do so. In this paper, we
present our findings on student activity sequences from an online
professional development course. We isolated student activities
into sessions and then produced activity transition visualizations
to compare the behavior of students who complete the course
to those who do not. We then used multiple factor analyses to
examine how students transition from one type of activity to the
next. From this analysis we identified platform silos in student’s
work. We further expand this concept to the presence of activity
silos grouping by type. We find that this siloing behavior is
consistent in both completers and non-completers but is weaker
for the latter group. Finally, we discuss our findings and how
instructors and researchers may use this information to ensure
that students show persistence through practice.

Keywords
novel exercises, ICAP framework, study sessions, activity se-
quences, platform silos, activity silos, student modeling

1. INTRODUCTION
CS Education have introduced a number of novel exercise types
to better scaffold students’ experiences. These include retyping
source code [14], arranging scrambled code fragments (Parsons
Puzzles) [21], debugging provided code [8], predicting output [26],
fill in the blanks [4], self-explanation [4], and small scale coding
exercises [2, 12]. Each of these exercise types can also be mapped
onto the ICAP framework [10]. This framework defines four
categories of instructional activities based upon students’ level of
engagement: Interactive, Constructive, Active, and Passive. Pas-
sive learning includes reading static course materials or watching
lecture videos. Active learning is described as rehearsing or copy-
ing solution steps. Constructive learning includes self-explanation

of content or creation of novel externalized outputs like summaries.
Finally, Interactive learning involves directly engaging with a peer,
agent, or instructor to explore information and receive feedback
which can be expanded upon.

While these exercise types have made their way into classrooms
there is little evidence of how these types of engagement interact
with one-another. Traditional intervention studies have focused on
the overall impact of one or more exercise types [20, 19, 14, 8], or
on the automated selection/recommendation of future excercises
based upon a student model [27], but not on how students work
with or across them in the absence of guidance. Nor has this recom-
mendation work been extended to nontraditional learning contexts.
Absent an understanding of how students orchestrate multiple in-
teraction modes we face challenges in scaffolding effective learning
opportunities and in evaluating the impact of novel learning envi-
ronments. Providing students with ineffective, or overly complex
learning opportunities risks trapping them in a fail/skip practice
cycle that would inhibit any functional learning gains [17].

In this paper we report our investigation of how students di-
rect their practice of CS concepts when presented with a set of
options. Our study was conducted in the context of an online
professional development course for Python programming. This
course is part of a research study funded by the Department of
Labor to create novel learning pathways for existing technical
professionals to move into AI and Data-Science areas. We ex-
tracted students’ practice/study sessions and analyzed the activity
transitions within each session. We then analyzed these activity
sequences to answer the following research questions (RQs):

RQ1 Can we replicate the existence of platform silos introduced
in [1] with a new dataset?

RQ2 Are there common activity transitions between students?
RQ3 How do activity sequences connect with the ICAP Frame-

work?
RQ4 How do the practice sessions of completers of the course

differ from non-completers?

To answer these questions, we first produced and analyzed
a set of activity transition diagrams for students in the course
comparing those who completed the course to those who did not.
Through this analysis, we confirmed the presence of platform silos
which we extend this notion to include activity silos, where stu-
dents primarily focus on a single mode of engagement (consistent
with ICAP) during a given practice session. When students did
transition between modes, it was only to move up the ICAP chain
and never to ‘downgrade’ to a lower level of engagement. We
support our findings through two different factor analyses, which
help explain the 42-62% of variance between the sessions. From

Adam Gaweda and Collin Lynch “Student Practice Sessions
Modeled as ICAP Activity Silos”. 2021. In: Proceedings of
The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 595-601.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 595

our results, we found ICAP categories isolated into individual
sessions, as well as LMS content consumption and quiz taking.

2. BACKGROUND
2.1 ICAP Framework
The ICAP Framework seeks to classify the modes of student
engagement while engaging in learning activities [10]. These
categories, Interactive, Constructive, Active and Passive respec-
tivel. Passive engagement includes activities such as reading a
text or observing a video. Active engagement includes rehearsing
steps or copying solutions. Constructive engagement includes
self-explanation or comparing and contrasting materials. Finally,
Interactive engagement includes responding and interacting with
an agent, system, or another person. Tthe framework is hierar-
chical, suggesting I > C > A > P, or that activities with higher
levels of engagement promote the greatest levels of learning.

Chi and Wylie present a literature review of several empirical
studies supporting their ICAP hypothesis [10]. The first study
consisted of all four modes of engagement in materials science
and showed learning improved significantly at a rate of 8-10%
per mode. They then present two studies which used active,
passive, and constructive modes in evolutionary biology and plate
tectonics. Finally, Chi and Wylie present comparisons of two
modes across note taking, concept mapping, and self-explanation.
In each of these studies, the results again showed that higher
modes of engagement had higher learning gains.

Chi and Wylie’s work, as well as our own personal communica-
tions with Chi [9], note that identifying the mode of a particular
activity can be a non-trivial task. For example, a toy example
task could be presenting steps toward making a peanut butter and
jelly sandwich given randomly shuffled segments of instructions.
This task could be constructed as an active exercise if the student
already knows the recipe and the task is simply picking the appro-
priate sequence from the list of steps. However, if the student had
not learned the appropriate order, then the task of figuring out
the right sequence would be construed as a constructive exercise.
Computer Science has a similar task, known as Parsons Puzzles,
that mirrors this toy example, discussed in more detail in the
following section.

2.2 Novel Exercise Types
In this section, we describe eight different exercise type studied in
Computer Science education, provide some research background
on the exercise type, and justifications for which ICAP mode we
will classify them as for of our study.

2.2.1 Typing Exercises
Typing Exercises (TE) require students to retype source code
that has been presented to them [14]. Typing Exercises can be
used as active learning activities under the ICAP Framework
as they require students to retype verbatim the code presented
to them. Previously, we presented images of source code and
showed that self-selected students that completed optional typing
exercises earned higher course grades and submitted less code
with build failures. Leinonen et. al. also presented optional typing
exercises to students before programming tasks [19], but were not
able to find the same results as ours. However their study only
lasted two weeks and many of their selected participants did not
attempt the exercises at all.

2.2.2 Fill in the Blank
Fill in the Blank (FitB) exercises remove a small portion of code
from a snippet and asks students to ‘fill in’ the blank. Students

need to have an understanding of the snippet as a whole to
deduce what needs to be included at a particular blank location.
Reviewing incomplete worked examples reduces ineffective self-
explanations and enhances the transfer of learned materials [4,
5]. Based on the results from Atkinson et. al., we consider
FitB-style exercises to require lower levels of engagement than
self-explanation, and thus classify them as an active ICAP mode.

2.2.3 Parsons Puzzles
Parsons Puzzles (PP) present snippets of code that have been
separated into segments and then shuffled in order [21]. Students
are then tasked with placing the segments back into the correct
order. While Parsons Puzzles are helpful for learning how to
structure code, performance on Parsons Puzzles has not been
shown to correlate with students’ ability to read or trace code
[11, 20] and ‘distractor’ variants are not beneficial to young learn-
ers [13, 16]. These findings further support our research goals,
as not every exercise type may be beneficial for learning all the
technical skills necessary for Computer Science.

Chi and Wylie’s definition of constructive modes of engagement
include “learners generate or produce additional externalized out-
puts... beyond what is provided”. As mentioned in the previous
section, Parsons Puzzles are similar to our toy peanut butter and
jelly exercise. While Parsons Puzzles could be construed as active,
students may not fully comprehend the appropriate order of code
syntax and must figure out the right sequence as part of the exer-
cise. In our communications with Chi about Parsons Puzzles, Chi
states that determining the particular ICAP mode for an activity
can be non-trivial [9]. ‘If a student already [knows] the recipe, then
re-ordering it is just picking out the sequencing, guided by the se-
quence information [they] already know’ then it is active. However,
‘if the student [has] not learned the order from some other source,
and you are asking her to figure out the right sequence’, it is a con-
structive exercise. Since novices may not have proficiency at the
time of the exercise, we elect to use the upper bound ICAP mode
and consider Parsons Puzzles as a constructive learning activity.

2.2.4 Output Prediction
Output Prediction (OP), also known as variable tracing, exercises
ask students to analyze code and then state the expected outputs
of code execution or the expected value of a variable as the code
progresses. Often, variable tracing is done during conditional and
loop instruction to demonstrate how the values of the variables
change after each iteration. Like Parsons Puzzles, OP-style ex-
ercises require students to process code snippets and externalize
their expected outputs. Thus, we consider output prediction as
another constructive learning activity.

2.2.5 Self-Explanation
Self-explanation (SE) exercises present students with source code
and ask the student to explain how the code operates, describe
the overall efficiency of the code, or create a documentation string
to appear as a comment for the program or function. These
are open-ended exercises that are subjective in nature and are
considered to be constructive [10]. However, Chi and Wylie do
note that students’ may treat the self-explanation activity as
active if “the student’s self-explanation is verbatim to what was
read”. However, novices may struggle with reading and evaluating
programming code in a linear fashion, focusing more on what
each line of code did, rather than how each line interacted with
each other, or in general produce poor explanations [25, 5]. While
constructive SE activities may produce higher learning gains than
lower-level modes, they may also not be the most appropriate
activity for students who are struggling, Thus, similar to our

596 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

decisions for Parsons Puzzles, we use the upper bound to classify
self-explanation as a constructive learning activity.

2.2.6 Find and Fix the Bug
Resolving errors, or debugging, is one of the first hurdles students
encounter when learning to program [3]. Once they find that
an error has occurred, it will be necessary for them to resolve
it before addressing any remaining subgoals for their solution.
For the purposes of our study, we separated debugging into two
separate activities - Find the Bug (FnB) and Fix the Bug (FxB).
Find the Bug exercises present students with code that contains a
common misconception for novices. Instead of resolving the error,
students are asked to highlight the area of code where this error
exists. Though the ICAP framework considers highlighting text
as an active learning activity, Chi and Wylie define constructive
behaviors as requiring some level of “inference”, or adding in
additional detail or qualification. Since students must assess if
a line of code is ‘correct’ or not, they are producing qualifications
and therefore, we elect to label FnB exercises as constructive.

Fix the Bug exercises follow the natural progression of debug-
ging tasks by requiring students to resolve broken code[8]. FxB
activities could be considered constructive or interactive depend-
ing on the context. Similar to FnB exercises, Chi and Wylie
include ‘repairing’ as a constructive behavior. However, FxB-style
exercises can also be interactive because students often rely on the
code interpreter’s feedback during the debugging process. Fixing
one error may produce new errors with new feedback, or the
repair made by the student could be incorrect. Thus, we again
choose use the upper bound to label FxB exercises as interactive.

2.2.7 Coding Exercises
The final exercise type we used in our study is the de facto
standard of introductory CS courses - the Coding Exercise (CE).
While Computer Science is more than programming, coding ex-
ercises are often used by instructors as graded course material for
students to demonstrate their understanding of the current course
topic. There has been work on the use of ‘many-small programs’
and ‘simple syntax exercises’, which simply require students to
complete small-scale coding exercises to become familiar with the a
particular implementation before utilizing it as part of larger-scale
problems [2, 12]. In both cases, completing these smaller-scale
programming exercises improved student performance and yielded
happier students. Students often rely on feedback from the inter-
preter as they construct their solutions and more than likely need
to debug their own work during this process. Thus, we consider
Coding Exercises as an interactive learning activity.

2.3 Student Modeling and Activity Mining
Seshadri et. al. analyzed how student study sessions operated
across multiple platforms for three separate courses [1]. Their
results found that given multiple education platforms, students
will often operate within platform silos, or only utilize one educa-
tional platform during an individual study session. Of the student
sessions, more than 90% of them included only one platform. In a
follow-up study, they compared the activities of higher performing
students to the lower performing group and showed that both
groups were most likely to stick within platform silos [15]. Their
work serves as the motivation for our RQ1. Our hypothesis is
that the presence of these ‘platform silos’ will continue to hold
across other educational platforms not studied in their research.

3. STUDY
3.1 Design
We studied problem solving in the context of an online professional
development course in Python programming. This is a preparatory
course for a series in AI that is aimed at non-traditional students
making a career transition. The course used the Moodle Learning
Management System and TYPOS, a CS exercise platform [14], and
is organized into 10 modules Each module includes a set of static
reading material, lecture slides, prerecorded videos, optional prac-
tice exercises, and a module assessment. There were 24 optional
exercises per module, 3 exercises for each of the 8 types previously
described. Students were free to work on the practice exercises or
assessments as much as they liked. The only requirement for pro-
gressing to the next module was to earn a passing grade (80% or
higher) on the prior module’s assessment. In order to complete the
course, students needed to earn passing grades on all assessments.

We had 69 students consent to the study. Of those students, 37
successfully completed the course. Student interactions on both
platforms were logged. We omitted some Moodle interactions
such as like “file downloading” and “viewing the course”which did
not pertain to the explicit learning actions we were foucused on.

The resulting dataset contained a total of 29,190 interactions
from all the students. We then used a similar strategy as [1]
to extract user sessions from these interactions based upon an
exploratory analysis of the gaps between interactions. The time
deltas between course interactions were measured. If a delta
between interactions exceeded a predefined cutoff threshold, that
session was considered over, and a new session was created. This
was repeated for all interactions a student had for the course.
While Seshadri et. al. used a 40 minute cutoff to establish the end
and start of a new session, we chose a 60 minutes as it was our most
frequently observed delta between interactions. We extracted 1,313
sessions in total. Students that completed the course accounted
for 71%, or 20,748, of the course interactions, with 1,041 sessions
total, at an average of 28.1 (±17.9) sessions per completer.

3.2 Activity Session Transition Probabilities
The route that students take through online materials can be
modeled as discrete Markov processes, in which each state rep-
resents an activity within the session. For example, a student
may transition from reviewing lecture slides to viewing lecture
videos on Moodle, or MS→MV . Jeffries et. al. [17] used a
similar process to analyze success and help seeking behaviors with
students in an introductory CS course.

Figure 1 visualizes the transition probabilities for completers:
transitions within TYPOS appear as dashed blue lines, transitions
within Moodle are solid red lines, and transitions between TYPOS
and Moodle are solid black lines. For visibility, only transitions
involving the start/end of a session or those with a frequency
above 5% are presented. Module assessment (MA) accounted
for 39% of starting session behavior, TYPOS practice accounted
for 36%, and lecture slides and videos (Content Consumption)
accounted for 26%. This figure shows students’ practice was
largely siloed by platform with each session taking place within a
single mode of interaction. With the exception of the MS→TE
transition, students either interacted with TYPOS or Moodle,
but rarely together. Since MA showed the highest starting ses-
sion probability, one assumption is that students enrolled in the
course with prior coding experience may have reviewed the course
material to become familiar with Python syntax before going on
to complete the module assessment.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 597

Figure 1: Completer activity transition probabilities during sessions.

One interesting observation from Figure 1 is that TYPOS
practice sessions involved only one or a small subset of the ex-
ercise types available to the students. For example, the TE, PP ,
and FitB exercises were typically completed alone. Among two
exercise pairs, SE→CE, OP→FnB, and FnB→FxB showed
higher probabilities than ending the session.

We can further classify the activities by their respective ICAP
modes. For example, the SE→CE transition can also be viewed
as a Constructive→ Interactive transition, MS→ TE can be
viewed as Passive→ Active, and so on. From this perspective,
transitions between activities rarely ‘downgraded’ to a lower mode.
With the exception ofMS→MA andMV →MA, mode changes
primarily shifted by one level of engagement.

3.3 Activity Session Factor Analysis
The probabilities shown in Figure 1 raise new questions about
students’ practice behaviors. Not only were we able to confirm
the existence of platform silos from our RQ1, but based on the
observed transition probabilities, we found that students may also
operate within what we term an activity silo, focusing primarily
on one ICAP mode per session. In this section we report on two
factor analyses which we use to identify the latent variables for
each practice session in order to strengthen our claim.

Factor Analysis is a dimension reduction method to describe
the variability of observed variables into, potentially, lower latent
variables, or factors. To prepare our dataset for factor analysis,
each activity was converted into a binary value, representing the
presence or absence of the activity in the session. For example, if
a session only involves passive content consumption, the resulting
vector for the session would be [1,1,0,0,0,0,0,0,0,0,0], where
the 1s represent the presence of lecture slides and videos and 0
represents the absence of all other activities.

In order to evaluate the appropriateness of our data for fac-
tor analysis, we use the Bartlett’s and Kaiser-Meyer-Olkin tests.
Bartlett’s test compares our correlation matrix against an iden-
tify matrix to test whether our samples are from populations
with equal variance. Our samples were statistically significant
(χ2=3360.05,p=0.0) and thus we can continue with our factor
analysis. Kaiser-Meyer-Olkin checks the adequacy for our vari-
ables to determine the suitability of factor analysis. Our KMO
score was 0.83, which again shows our dataset is adequate.

The next step for our analysis was to determine the appropriate

number of factors. Table 1 shows the eigenvalues for each factor
and their cumulative variance. Based on these results, we utilized
two separate factor analyses. The first analysis uses 3-factors to
correspond to the 3 eigenvalues greater than 1, as suggested by
Kaiser [18]. The second analysis increases to 5-factors based on
the variance extraction rule, which specifies a 0.7 threshold for
eigenvalues [6, 24, 23].

Table 1: Eigenvalues for Factor Analysis of Completers
Factor Eigenvalue Cumulative Variance
1 3.860695 30.51%
2 1.390921 37.21%
3 1.170659 41.79%
4 0.916401 52.26%
5 0.810977 62.27%
6 0.665925 60.91%
7 0.649612 69.59%
8 0.486275 70.05%
9 0.446064 55.23%
10 0.391094 55.42%
11 0.211376 55.42%

Our next task was to identify load factor thresholds for our
latent variables. While there is no universal standard for loading
thresholds, the goal is to only observe variables that share a strong
association with each other and is a non-trivial process [22]. For
our paper, we will focus our attention to variables above a 0.50
(or 25% of the variable’s variance) threshold, highlighting them
in our tables as green. Since the difference between a 0.50 and
0.49 loading is minimal, we will also highlight values greater than
0.4 (or 16% variance) in yellow for additional reference.

Table 2 shows the factor load values for our 3-factor analysis.
F1 has high loadings for OP , FnB, FxB, SE, and CE. If
we consider the ICAP modes for this factor, this indicates a
transition of Constructive → Interactive TYPOS Practice. F2
has high loadings for FitB and PP , or Active→ Constructive
TYPOS Practice. Finally, F3 has high load for MS, or Passive
Moodle Interaction. From Table 2, we once again can confirm the
presence of platform silos, however we expand our factor analysis
in order to see the presence of activity silos. Moreover, 3-factors
only accounts for 41.79% of the cumulative variance and so using
the 0.7 eigenvalue threshold will allow us to account for 62.27%.

And finally, Table 3 shows the factor load values for our 5-
factor analysis. Similar to Table 2, we see a separation between

598 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 2: Loadings for 3 Factor Analysis for Completers. Values
greater than 0.4 are in yellow and greater than 0.5 are in green.

Activity F1 F2 F3
MS 0.0306 -0.0294 0.5073
MV -0.1006 -0.0999 0.3891
MA -0.0269 -0.2862 0.2177
TE 0.0193 0.4336 -0.1345
FitB 0.4703 0.5471 -0.0286
PP 0.3300 0.6726 0.0392
OP 0.6257 0.3885 0.0216
FnB 0.8215 0.2149 0.0307
FxB 0.8399 0.1546 0.0059
SE 0.6802 0.1020 -0.0933
CE 0.5019 0.0135 -0.1306

TYPOS activity and Moodle activity. Further, the activities for
each factor are confined to a single ICAP mode, or within one
mode. F1 contains mostly Constructive activities (as well as
FxB), F2 contains Active→ Constructive activities, F3 contains
Passive activities, and F4 and F5 contain Interactive activities. In
addition, F3 and F4 show a separation between Passive Moodle
content consumption and Interactive assessment taking. Thus,
from the results of our 5-factor analysis, we confirm the presence
of activity silos within our students.

Table 3: Loadings for 5 Factor Analysis for Completers. Values
greater than 0.4 are in yellow and greater than 0.5 are in green.

Activity F1 F2 F3 F4 F5
MS 0.0224 -0.0065 0.2411 0.1061 -0.0150
MV -0.0836 -0.1009 0.9838 -0.0982 -0.0264
MA -0.0438 -0.1664 0.1175 0.9759 -0.0124
TE 0.0364 0.3448 -0.0843 -0.2002 -0.0106
FitB 0.4344 0.5629 -0.0451 -0.0445 0.0772
PP 0.2740 0.7467 0.0004 -0.0193 0.0369
OP 0.5520 0.4568 -0.0008 0.0282 0.1792
FnB 0.8419 0.2321 0.0035 -0.0110 0.0829
FxB 0.8759 0.1568 0.0058 -0.0255 0.0980
SE 0.5963 0.1562 -0.0318 -0.0450 0.2602
CE 0.3227 0.0549 -0.0631 -0.0088 0.8891

3.4 Comparing Completers to Non-Completers
Having shown the basic activity structures and identified relevant
factors we then chose to explore was the difference between com-
pleter and non-completer students. We used the same methods for
the non-completer group for comparison. There were 32 students
that failed to complete our course. Non-completers made 8,442
course interactions across 341 sessions, with an average 10.7 (±7.8)
sessions per non-completer.

We first produced the same transition probabilities diagram
for non-completer activity sessions, seen in Figure 2. Similar to
completers, module assessment accounted for 31% of starting
session behavior, TYPOS practice accounted for 49%, and lecture
slides and videos (Content Consumption) accounted for 22%. Non-
completers primarily operated within a single platform, though
there was more interactions between Moodle and TYPOS. For ex-
ample, 12% ofMV ’s transitions migrated to TYPOS exercises and
5% of SE transitions migrated toMA. While completer students
separated SE→CE and OP→FnB→FxB transitions, these
two sequences were combined for non-completers. However, this
could potentially be due to the size differences. Both populations
had similar population sizes, but non-completers did not complete
each module assessment and would not produce as many sessions.

We then carried out the same factor analyses for non-completers.
The results of a Bartlett’s test showed statistically significant

differences (χ2=997.8,p>0.0001) and our KMO score was also
adequate for analysis (0.77). Similar to Table 1, we found support
for 3- and 5-factor analysis, seen in Table 4. We note that a
6-factor analysis is also possible, but to mirror the factor analysis
for completers, we elected not to pursue it.

Table 4: Eigenvalues for Factor Analysis of Non-completers
Factor Eigenvalue Cumulative Variance
1 3.480694 26.26%
2 1.503161 34.57%
3 1.286916 41.39%
4 0.888718 47.44%
5 0.821608 54.51%
6 0.719444 62.12%
7 0.657629 66.31%
8 0.520019 63.79%
9 0.499220 57.46%
10 0.375677 57.69%
11 0.246915 57.69%

Table 5 shows our 3-factor analysis for non-completers. The
same activities having high loadings as F1 and F2 as the 3-factor
analysis for completers (Table 2) and also show similar platform
silos. Likewise, the ICAP mode considerations are similar for
each factor. F1 shows Constructive→ Interactive behaviors, F2
shows Active→ Constructive behaviors, and F3 shows Passive
Moodle interaction.

Table 5: Loadings for 3 Factor Analysis for Non-completers.
Activity F1 F2 F3
MS 0.0362 0.0014 0.4167
MV -0.0334 0.0106 0.6616
MA -0.0136 -0.2524 0.2999
TE 0.0756 0.4637 -0.0719
FitB 0.3176 0.6024 -0.0202
PP 0.1082 0.7404 0.0221
OP 0.5310 0.3499 0.1105
FnB 0.5573 0.4837 -0.0910
FxB 0.6636 0.3369 -0.1218
SE 0.8012 0.0568 0.0573
CE 0.5900 0.0201 0.0056

Table 6 shows our 5-factor analysis for non-completers. Non-
completers maintained the Constructive→ Interactive connection
for F1 and F2 also maintains the Active→ Constructive connection.
The remaining factors do differ, F3 separated the FnB→FxB
exercises from F1 and F4 focuses primarily on TE. The ab-
sence of MA was expected since course progression requires
passing module assessments. From our analysis, we conclude that
non-completers still operated within activity silos.

Table 6: Loadings for 5 Factor Analysis for Non-completers.
Activity F1 F2 F3 F4 F5
MS 0.0271 0.0234 0.0080 -0.0129 0.4040
MV -0.0191 0.0204 -0.0417 0.0373 0.7123
MA 0.0049 -0.1705 -0.0558 -0.1637 0.2922
TE 0.0541 0.2612 0.0605 0.9570 -0.0716
FitB 0.2259 0.6333 0.1698 0.1275 -0.0557
PP 0.0224 0.6734 0.1463 0.1925 -0.0155
OP 0.4707 0.4584 0.1711 0.0080 0.0735
FnB 0.2516 0.4546 0.6255 0.0378 -0.0543
FxB 0.3618 0.2049 0.8444 0.0752 -0.0706
SE 0.8072 0.0883 0.2525 0.0740 0.0496
CE 0.6201 0.1006 0.1092 -0.0054 -0.0206

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 599

Figure 2: Non-completer activity transition probabilities during sessions.

4. DISCUSSION
The results from our probability transition diagrams confirm the
presence of both platform silos and activity silos in student work.
They also serve to highlight areas where educators and researchers
can tailor more appropriate learning paths for students and in par-
ticular those students that may be struggling with course material.

Our study allowed students to self-select which activities they
wanted to focus their attentions on. While this style of course
design could be adopted, it does still present limitations. However,
students that primarily focus on lower-level ICAP mode activities
may be reluctant to move into high-level modes. Instructors or sys-
tems that can identify this stagnate practice behavior could encour-
age students to move into high-level ICAP modes. There is grow-
ing interest in the concept of nudge theory to “alter behavior with-
out incentives or banning alternatives”[7] to encourage progression.

Similarly, we presented students with a number of different
activities, at different complexities, for their learning experience.
Based on our results, students were more than willing to complete
each type of exercise. Some students even asked for more activ-
ities in our post-course survey. While increasing the workload for
students and learning material creators, many of the activities
we used are not overly complex and required a minimal amount
of time to create, or from the students’ perspectives complete.
Activities like typing exercises or Parsons puzzles can be created
from existing course materials and offer little incentive for students
to cheat. They simply allow students an opportunity to practice
the concepts they learned rather passively given to them, refining
their understanding, before needing to apply it to problem solving
activities like coding exercises.

5. LIMITATIONS
We acknowledge some limitations with our study. First, our course
ran during the COVID-19 pandemic, which has altered many
individuals’ habits. Our population also contained non-traditional
students who were balancing their studies with working from home
and supporting other family members. Thus, non-completion may
have been driven by external constraints that are not reflected
in our dataset, and the observed habits may change somewhat
during non-COVID times.

Second, the exercise types were presented in a consistent man-
ner for each module. Thus they were implicitly sequenced with
lower-level ICAP modes appearing on the top. As we mentioned in
our introduction, discerning the appropriate order for 11 different
activities is a non-trivial matter and measuring the appropriate
order of exercise types was not a part of our study. Thus, we
presented exercises in an order that progressively increased the
level of engagement. This may have influenced next practice
selections by students.

Finally, we acknowledge that the ICAP modes associated with
each exercise type are somewhat subjective and open for discussion.
Moreover the exact evaluation of exercises like Parsons Puzzles
or self-explanation may require additional research and context.
For the purposes of this study, when faced with uncertainty we
classified exercises according to a higher level mode of interaction.

6. CONCLUSIONS
In this work, we extracted the practice and study session behaviors
from non-traditional students learning Python. Among completers
and non-completers of the course, they primarily focused on a sin-
gle platform. The activities within these platforms were mapped
to the ICAP framework. Further, we used factor analyses to
identify the presence of activity silos within practice sessions.
Completers and non-completers shared similar behaviors during
these practice sessions, primarily focusing on one or two modes
of engagement and rarely ‘downgraded’ to lower level modes.

We can utilize these activity sequences to help shape our overall
course designs for ensuring student learning. Lower-level activities
can provide students with the foundational knowledge necessary
as a part of the technical skills for the content, while higher-level
activities can refine and encourage additional learning gains. As
the research in this area expands, we hope the information pre-
sented in this study encourages educators and researchers alike
to provide practice in both levels and can serve as a guide for
recommendations on how to best build long-term proficiencies.

Acknowledgements
This work was supported in part by the National Science Founda-
tion under Grant DRL 1721160. Kristy Boyer, Eric Wiebe, and
Collin F. Lynch (co-PIs).

600 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

7. REFERENCES
[1] Sheshadri Adithya, Niki Gitinabard, Collin F Lynch, Tiffany

Barnes, and Sarah Heckman. Predicting student performance
based on online study habits: A study of blended courses.
International Educational Data Mining Society, 2018.

[2] Joe Michael Allen, Frank Vahid, Alex Edgcomb, Kelly
Downey, and Kris Miller. An analysis of using many small pro-
grams in cs1. In Proceedings of the 50th ACM Technical Sym-
posium on Computer Science Education, pages 585–591, 2019.

[3] A. Altadmri and N. Brown. 37 million compilations:
Investigating novice programming mistakes in large-scale
student data. In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education, SIGCSE
’15, pages 522–527, New York, NY, USA, 2015. ACM.

[4] Robert K Atkinson, Sharon J Derry, Alexander
Renkl, and Donald Wortham. Learning from examples:
Instructional principles from the worked examples research.
Review of educational research, 70(2):181–214, 2000.

[5] Robert K Atkinson and Alexander Renkl. Interactive
example-based learning environments: Using interactive
elements to encourage effective processing of worked examples.
Educational Psychology Review, 19(3):375–386, 2007.

[6] Deborah L Bandalos and Sara J
Finney. Exploratory and confirmatory. The reviewer’s
guide to quantitative methods in the social sciences, 93, 2010.

[7] Chris Brown. Digital nudges for encouraging
developer actions. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), pages 202–205. IEEE, 2019.

[8] Nick Cheng and Brian Harrington. The Code Mangler:
Evaluating coding ability without writing any code. In
Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education, pages 123–128, 2017.

[9] Michelene TH Chi. Private Communication, August 2020.
[10] Michelene TH Chi and Ruth Wylie. The ICAP

framework: Linking cognitive engagement to active learning
outcomes. Educational psychologist, 49(4):219–243, 2014.

[11] Paul Denny, Andrew Luxton-Reilly, and Beth
Simon. Evaluating a new exam question: Parsons problems.
In Proceedings of the fourth international workshop on
computing education research, pages 113–124. ACM, 2008.

[12] John Edwards, Joseph Ditton, Dragan Trninic, Hillary Swan-
son, Shelsey Sullivan, and Chad Mano. Syntax exercises in
CS1. In Proceedings of the 2020 ACM Conference on Interna-
tional Computing Education Research, pages 216–226, 2020.

[13] Barbara J Ericson, Lauren E Margulieux, and Jochen Rick.
Solving parsons problems versus fixing and writing code. In
Proceedings of the 17th Koli Calling International Conference
on Computing Education Research, pages 20–29, 2017.

[14] Adam M Gaweda, Collin F Lynch, Nathan Seamon,
Gabriel Silva de Oliveira, and Alay Deliwa. Typing exercises
as interactive worked examples for deliberate practice in CS
courses. In Proceedings of the Twenty-Second Australasian
Computing Education Conference, pages 105–113, 2020.

[15] Niki Gitinabard, Tiffany Barnes, Sarah
Heckman, and Collin F. Lynch. What will you do next?
A sequence analysis on the student transitions between
online platforms in blended courses. In Proceedings of the
12th International Conference on Educational Data Mining,
EDM 2019, Montréal, Canada, July 2-5, 2019, 2019.

[16] Kyle James Harms, Jason Chen, and
Caitlin L Kelleher. Distractors in parsons problems decrease
learning efficiency for young novice programmers. In
Proceedings of the 2016 ACM Conference on International
Computing Education Research, pages 241–250, 2016.

[17] Bryn Jeffries, Timothy Baldwin, Marion Zalk,
and Ben Taylor. Online tutoring to support programming
exercises. In Proceedings of the Twenty-Second Australasian
Computing Education Conference, pages 56–65, 2020.

[18] Henry F Kaiser. The application
of electronic computers to factor analysis. Educational
and psychological measurement, 20(1):141–151, 1960.

[19] Antti Leinonen, Henrik Nygren, Nea Pirttinen,
Arto Hellas, and Juho Leinonen. Exploring the applicability
of simple syntax writing practice for learning programming.
In Proceedings of the 50th ACM Technical Symposium
on Computer Science Education, pages 84–90. ACM, 2019.

[20] Mike Lopez, Jacqueline Whalley, Phil Robbins,
and Raymond Lister. Relationships between reading,
tracing and writing skills in introductory programming.
In Proceedings of the fourth international workshop on
computing education research, pages 101–112. ACM, 2008.

[21] Dale Parsons and Patricia Haden.
Parson’s programming puzzles: A fun and effective learning
tool for first programming courses. In Proceedings of
the 8th Australasian Conference on Computing Education -
Volume 52, ACE ’06, pages 157–163, Darlinghurst, Australia,
Australia, 2006. Australian Computer Society, Inc.

[22] Robert A Peterson. A meta-analysis
of variance accounted for and factor loadings in exploratory
factor analysis. Marketing letters, 11(3):261–275, 2000.

[23] Keenan A Pituch and James P Stevens.
Applied multivariate statistics for the social sciences:
Analyses with SAS and IBM’s SPSS. Routledge, 2015.

[24] John Ruscio and Brendan Roche. Determining
the number of factors to retain in an exploratory
factor analysis using comparison data of known factorial
structure. Psychological assessment, 24(2):282, 2012.

[25] Susan Wiedenbeck, Vikki Fix, and Jean Scholtz.
Characteristics of the mental representations of novice
and expert programmers: an empirical study. International
Journal of Man-Machine Studies, 39(5):793–812, 1993.

[26] Greg Wilson. Teaching
Tech Together: How to Make Your Lessons Work and Build
a Teaching Community around Them. CRC Press, 2019.

[27] Guojing Zhou, Jianxun Wang, Collin F
Lynch, and Min Chi. Towards closing the loop: Bridging
machine-induced pedagogical policies to learning theories.
International Educational Data Mining Society, 2017.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 601

LANA: Towards Personalized Deep Knowledge Tracing
Through Distinguishable Interactive Sequences ∗

Yuhao Zhou
Sichuan University, China
sooptq@gmail.com

Xihua Li
Tencent Inc. China

lixihua9@126.com

Yunbo Cao
Tencent Inc. China

yunbocao@tencent.com

Xuemin Zhao
Tencent Inc. China

xueminzhao@tencent.com

Qing Ye
Sichuan University, China
fuyeking@gmail.com

Jiancheng Lv
Sichuan University, China

lvjiancheng@scu.edu.cn

ABSTRACT
In educational applications, Knowledge Tracing (KT) has
been widely studied for decades as it is considered a funda-
mental task towards adaptive online learning. Among pro-
posed KT methods, Deep Knowledge Tracing (DKT) and
its variants are by far the most effective ones due to the
high flexibility of the neural network. However, DKT often
ignores the inherent differences between students (e.g. mem-
ory skills, reasoning skills, ...), averaging the performances
of all students, leading to the lack of personalization, and
therefore was considered insufficient for adaptive learning.
To alleviate this problem, in this paper, we proposed Leveled
Attentive KNowledge TrAcing (LANA), which firstly uses a
novel student-related features extractor (SRFE) and pivot
modules to distill and distinguish students’ unique inherent
properties from their respective interactive sequences. More-
over, inspired by Item Response Theory (IRT), the inter-
pretable Rasch model was used to cluster students by their
ability levels, and thereby utilizing leveled learning to assign
different encoders to different groups of students. With pivot
module reconstructed the decoder for individual students
and leveled learning specialized encoders for groups, person-
alized DKT was achieved. Extensive experiments conducted
on two real-world large-scale datasets demonstrated that our
proposed LANA improves the AUC score by at least 1.00%
(i.e. EdNet ↑ 1.46% and RAIEd2020 ↑ 1.00%), substantially
surpassing the other State-Of-The-Art KT methods.

Keywords
Education, Personalized Learning, Adaptive Learning, Knowl-
edge Tracing, Machine Learning, Deep Learning

∗A full version of this paper is available at https://github.
com/Soptq/LANA-pytorch/raw/main/LANA_EDM2021.pdf

1. INTRODUCTION
Knowledge Tracing (KT) aims to accurately retrieve stu-
dents’ knowledge states at a certain time by his past sequen-
tial exercising interactions. To evaluate KT’s performance,
it is asked to predict the correctness of students’ future ex-
ercises with the retrieved knowledge states as Equation 1
represented.

P (rsit+1|I
si
1 , I

si
2 , I

si
3 , ..., I

si
t , {I

si
t+1−r

si
t+1}), I

si
t = (e

si,qj
t , cqj , rsit)

(1)
Where e

si,qj
t is referred as student si ∈ N+ answering ques-

tion qj ∈ N+ at discrete time step t ∈ N+, cqj represents
the contextual information of question qj (e.g. related con-
cepts, part, etc.) [23, 14, 10, 4], and rsit ∈ {0, 1} repre-
sents the correctness of student si’s answer to qj at time
t. Additionally, the student’s interaction sequence is de-
fined as Ssit0,t1 = {Isit |t0 < t < t1} and κ is defined as
κsit = {si, qj , cqj , rsit }, referring to all features that partici-
pated in one interaction Isit for latter explanation.

Traditionally, KT was regarded as a sequential behavior
mining task [8, 17], and therefore various methods estab-
lished models with the theory of bayesian probability (BKT [3])
and psycho-statistics (IRT [5]), providing excellent inter-
pretability and good performance. Nevertheless, recently
proposed Deep Knowledge Tracing (DKT) [16] and its vari-
ants [13, 4, 14, 1, 18] significantly outperform other KT
methods in metrics using Recurrent Neural Network (RNN)
and Long Short Term Memory (LSTM [6]). However, DKT
distinctly lacks personalization for students compared to
BKT and IRT [15, 25], which are capable of separately train-
ing unique models for each student, while DKT only trains
a unified model for all students due to massive training data
and abundant computing resources required by deep learn-
ing. Hence, DKT weakly reflects the large inherent property
(i.e. memory skills, reasoning skills, or even guessing skills)
gaps between students.

Assumption 1. For any interactive sequences satisfying∣∣∣∣Ssit0,t1 ∣∣∣∣ > Θ >> 1, ||κ|| > Ψ and t2 − t1 > E, Ssit0,t1 can be

distinguished from S
sj
t0,t1

and Ssit2,t3 respectively.

Is it possible to bring personalization back to DKT? To an-
swer this question, we observed that the proactive behavior

Yuhao Zhou, Xihua Li, Yunbo Cao, Xuemin Zhao, Qing Ye and
Jiancheng Lv “LANA: Towards Personalized Deep Knowledge Tracing
Through Distinguishable Interactive Sequences”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 602-608.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

602 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://github.com/Soptq/LANA-pytorch/raw/main/LANA_EDM2021.pdf
https://github.com/Soptq/LANA-pytorch/raw/main/LANA_EDM2021.pdf

sequence (i.e. interactive sequences) of each individual is
unique and changeable over time. Hence, we argue that the
minimal personalized unit in KT is “a student at a certain
time ti” instead of just “a student”, and student’s inherent
properties at time ti can be represented by his interactive
sequences around time ti (Assumption 1). In such a way,
these student-related features could tremendously help per-
sonalize the KT process since they could be used to identify
different students at different stages. Consequently, in our
proposed Leveled Attentive KNowledge TrAcing (LANA),
unique student-related features are distilled from students’
interactive sequence by a Student-Related Features Extrac-
tor (SRFE). Moreover, inspired by BKT and IRT that assign
completely different models to different students, LANA, as
a DKT model, successfully achieves the same goal in a dif-
ferent manner. Detailedly, instead of separately training
each student a model like BKT and IRT, LANA learns to
learn correlations between inputs and outputs on attention
of the extracted student-related features, and thus becomes
transformable for different students at different stages. More
specifically, the transformation was accomplished using pivot
module and leveled learning, where the former one is a model
component that seriously relies on the SRFE, and the lat-
ter one is a training mechanism that specializes encoders for
groups with interpretable Rasch model defined ability levels.
Formally, the LANA can be represented by:

Adaptive by Pivot Module︷ ︸︸ ︷
rsit ∼ (f(psit))(hsit) , psit ∼ k(hsit), hsit ∼ g(hsi<t, S

s1
0,t)︸ ︷︷ ︸

Adaptive by Leveled Learning

,

(2)
where hsit is referred as student si’s knowledge state at time t
respectively, f(·) (decoder), g(·) (encoder) and k(·) (SRFE)
are three main modules that LANA seeks to learn.

2. METHODOLOGY
2.1 Base Modifications
There are mainly two base modifications in the LANA model
(Figure 1) that were made to the basic transformer. Firstly,
in the LANA model, the positional information (e.g. posi-
tional encoding, positional embedding) was directly fed into
the attention module with a private linear projection, in-
stead of being added to the input embedding and shared
the same linear projection matrix with other features in
the input layer. Although experiments in [22] suggested
that blending input embedding with positional information
is effective, recently some work [19] debated that when the
model becomes deeper, it tends to “forget” the positional
information fed into the first layer. Moreover, some other
work [9] believed that adding positional information to the
input embedding and offering them to the attention module,
is essentially making them share the same linear projection
matrix, which is not reasonable since the effects of the input
embedding and the positional information are clearly dis-
tinctive. For exactly the same reason, in the LANA model,
multiple input embeddings (i.e. question ID embedding,
student ID embedding, etc.) are concatenated instead of
added, leading to the second base modification. Specifically,
assumes there are m input embeddings in total, each with
a dimension of Df . Then after concatenating, the input
embedding would have a total dimension of Dmf . Hence, a
Dmf → Df linear projection layer was used to map the con-

Figure 1: The overall model architecture of LANA.
There are mainly three differences compared to vanilla
transformer-based KT method [1, 18]: I. Modifications to
the basic transformer model. II. Introduced SRFE and III.
Introduced PMA Module and PC-FFN Module, which col-
lectively referred to as pivot module.

catenated input embedding of dimension Dmf to dimension
Df .

2.2 Student-Related Features Extractor (SRFE)
Student-Related Features Extractor (SRFE) summaries stu-
dents’ inherent properties from their interactive sequences
with Assumption 1 for the pivot module to personalize the
parameters of the decoder. Specifically, SRFE contains an
attention layer and several linear layers, where the atten-
tion layer was used to distill student-related features from
the provided information by the encoder, and the linear lay-
ers were leveraged to refine and reshape these features. It is
notable that in the LANA model there were primarily two
SRFEs: memory-SRFE and performance-SRFE, where the
former one was utilized to derive students’ memory-related
features for the PMA module (be introduced later) and the
latter one was dedicated to distill students’ performance-
related features (i.e. Logical thinking skill, Reasoning skill,
Integration skill, etc.) for PC-FFN module (introduced later
either). The reshaping process was drawn in Figure 3 for
better illustration, where bs, nheads, seq and dpiv are re-
ferred to as the model’s batch size, the number of atten-
tion heads [22], the length of the input sequence and the
dimension of performance-related features. The intuition
that memory-related features have a second dimension of
nhead comes from the theory that each attention head only
pays attention to one perspective of the features. Thus it is
reasonable that each student has different memory skills for
different attention heads (e.g. for different concepts).

2.3 Pivot Module

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 603

Figure 2: The workflow of leveled learning: interpretable
Rasch model was leveraged to analyze students’ overall abil-
ity levels, and then cluster students into multiple layers,
where each layer would respectively fine-tune the LANA
model by its own training data.

Figure 3: The data shape transformation of two SRFE:
Memory-SRFE and Performance-SRFE.

Provided an ordinary input x, a student-related features p
and a target output y, pivot module learns the process of
learning how to project x to y based on p, instead of simply
learning to project x to y (i.e. Pivot module learns to learn)
as Equation 3 shown.

y = (f(p))(x), (3)

where f(·) here is the function that pivot module learns to
learn. That is, the projection matrix of x is adapted to p
instead of being fixed. To accomplish this dynamic mapping,
the weight and bias of x need to be a projection from p.
Assumes p ∈ RDp , x ∈ RDx and y ∈ RDy , Equation 3 could
be formally presented in Equation 4:

y = W xx+ bx, (4)

where W x ∈ RDy×Dx and bx ∈ RDy . Since W x and bx is de-
rived from p, the detailed transformation could be revealed
in Equation 5, which was also depicted in Figure 4 for better
illustration.

W x = W p
1 p+ bp1, bx = W p

2 p+ bp2, (5)

where W p
1 ∈ R(Dy×Dx)×Dp , bp1 ∈ R(Dy×Dx), W p

2 ∈ RDy×Dp
and bp2 ∈ RDy .

By simplification, Equation 3 can be defined as Equation 6,
being named as PivotLinear(x, p).

y = (Wp)x+ b = PivotLinear(x, p), (6)

where W ∈ RDy×Dx×Dp and b ∈ RDy .

In the LANA model, there are primarily two modules that
pertain to the pivot module: Pivot Memory Attention (PMA)
Module and Pivot Classification Feed Forward Network (PC-
FFN) Module. In many methods [4, 14], Vanilla Mem-
ory Attention (VMA) Module was employed to consider the
“forgetting” behavior of students, which is pivotal in KT’s
context since students are very likely to have done similar
exercises to the one he is going to do, and if the student
could remember the answers to previous similar exercises,
the probability of him correctly answering the future related
exercises will be increased greatly. Inspired by the Ebbing-
haus Forgetting Curve [12] and much previous work [14, 4],
“forgetting”behavior of students are defined as exponentially
decaying weights of corresponding interactions in the time-
line. Detailedly, in the original attention module, the weight
of item j on item k, i.e. αj,k, is determined by the sigmoid

result of the similarity between item j and item k:

αj,k =
sim(j, k)∑
k
′ sim(j, k′)

, (7)

where sim(·) is a function to calculate the similarity between
item i and item j by dot production. In order to take “for-
getting” behavior into αj,k’s account (e.g. The further away
from j, the lower the weight αj,k would be), we replaced
Equation 7 with Equation 8:

αj,k,m =
e−(θ+m)·dis(j,k) · sim(j, k)∑

k
′ sim(j, k′)

, (8)

where m is the student’s memory-related features extracted
in memory-SRFE, θ is a private learnable constant that de-
scribes all students’ average memory skill in the PMA mod-
ule, and dis(·) calculates the time distance between item
j and item k (e.g. item j is done dis(j, k) minutes after
item k is done). The reason for representing the memory
skill with two learnable parameters is to reduce the diffi-
culty for model converging since m has a much longer back-
propagation path compared to θ. When θ is introduced to fit

Figure 4: An illustration of the data transformation in the
pivot module.

604 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

the average memory skill of all students, the distribution of
m becomes a Gaussian distribution, which makes the model
much easier to learn.

On the other hand, PC-FFN was utilized to make the final
prediction in reference to the performance-related features,
which essentially is a PivotLinear module with a dropout
and activation. The idea of this module comes from many
investigations that the early layers in a deep neural network
are often used as a feature extractor while the latter layers
are often used as a decision-maker to decide which feature
is useful to the output of the model. As a result, these in-
vestigations point out that many models are actually having
similar early layers, and it is the latter layers that make these
models distinctive in usage. Consequently, PC-FFN in the
LANA model was utilized as a personalized decision-maker
to adaptively make the final prediction based on students’
distinctive inherent properties:

PC−FFN(x, p) = x+PivotLinear(PivotLinear(x, p), p),
(9)

where p is the students’ performance-related features ex-
tracted in the performance-SRFE.

2.4 Leveled Learning
While the pivot module enables the decoder to be trans-
formable for different students, the encoder and the SRFE
of the LANA model that provides necessary information for
the pivot module remains the same for all students. This is
not problematic if the length of the input sequence is large
enough since Assumption 1 assures long sequences are al-
ways distinguishable, unless they both belong to the same
student at the same time period. However, DKT, espe-
cially transformer-based DKT, can only be inputted with
the latest n (commonly n = 100) interactions at once due to
the limited memory size and high computational complex-
ity. Consequently, it is possible for the encoder and SRFE
to output similar results for two different students, resulting
in a failure for the decoder to adapt. To alleviate this prob-
lem, it is natural to think of assigning different students with
different encoders and SRFEs that are highly specialized
(sensitive) to their assigned students’ patterns. However,
in practice, it is not feasible to train a unique encoder for
each individual student considering both the limited train-
ing time and the limited training data. As a result, a novel
leveled learning (Figure 2) method was proposed to address
this problem, which was initially inspired by the fine-tuning
mechanism in transfer learning [20], where we consider each
student a unique task, and we want to transfer a model that
fits well on all students to one student si efficiently.

Leveled learning holds the view that the earlier layers of a
model are similar for similar tasks. Thus, to save training
time and enlarge the training set, instead of training each
student a unique encoder and SRFE by his private train-
ing data, students with similar ability levels are considered
to be grouped together, sharing their private training data
and having the same encoder and SRFE. Therefore, LANA
firstly utilizes an interpretable Rasch model to analyze the
ability level asi for each student si, then groups students
into different independent layers li. Assuming the ability
distribution of all students and students at the level li are
Gaussian distribution N(µa, σ

2
a) and N(µi, σ

2
i) respectively,

we have the Equation 10:

µa =

∑
i µi

L
, σ2

a =
∑
i

σ2
i . (10)

In LANA, for simplicity, we consider all layers share the
same variance σ2 1, and the difference of mean µi between
consecutive layers is a constant τ . Hence, µi and σ2

i are
given by:

µi = µa −
L− 1

2
× τ + i× τ, σ2

i =
σ2
a

L
. (11)

where L = ||li|| is the number of layers. With both µi and σ2
i

retrieved for every layer li, given a student’s ability constant
asi , we can now calculate the probability of si been grouped
into different layers by Equation 12:

psii =
φi(a

si)∑
i
′ φi′ (a

s
i
′)
, φi(a

si) =
1

σi
√

2π
e
− (asi−µi)

2

2σ2
i (12)

where psii is referred as the probability of student si be-
ing grouped into layer li. As it can be seen from Equa-
tion 12, students that have high ability levels are not neces-
sarily grouped into layers with high expected ability levels
µi. Contrarily, these high ability students only have a higher
probability of been grouped into high ability layers in com-
parison with those low ability students, which obeys rules
in reality (e.g. high ability students may also come from
normal schools).

Then, the LANA model that has been pre-trained on all stu-
dents was duplicated L times, each cloned model mi would
be assigned to a layer li to be dedicatedly fine-tuned with
li’s private training data by weighted back-propagation:

lossi = pi × loss(predicti, target), (13)

where predicti is the prediction of the model mi.

While the training phase of leveled learning seems promising,
the inference phase of it suffers problems. The first prob-
lem is how to make the prediction using multiple specialized
models. In LANA, the prediction was made by top−k mod-
els fusion. Detailedly, when student si’s future responses
are needed to be predicted, LANA firstly computes pi, then
feed si’s interactive sequence to all models mi that satis-
fies pi ∈ top − k(p), where k needs to be manually set up
to control the predicting time. Then, the outputs of these
models would be multiplied by sigmoid(pi) to form the final
prediction. The workflow of leveled learning’s inference step
could be described in Equation 14:

ri =
∑
i
′

(mi(x)×
∑
h∈i′

ph∑
h
′ ph′

), i
′
∈ { i | pi ∈ top− k(p) },

(14)
where ri is the leveled learning’s final prediction and x is
the input of the model. This workflow seems similar to the
ensemble where multiple models are unitized to generate the
final answer. Nonetheless, weights of models in LANA are
probabilities that come from an interpretable Rasch model

1In practice, if the number of layers is small, their variances
then need to be manually measured and tuned based on the
targets. If the number of layers is large, then multiple layers
can be regarded as one layer and therefore sharing the same
variance for all layers should be fine.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 605

so that it is clear which model is dominant to x. Moreover,
unlike in ensemble, where the role of each model is ambigu-
ous, in LANA, every model has its explainable effect (e.g. lL
is committed to high ability students, and therefore a stu-
dent with large pL indicates he must be similar to those high
ability students in lL), suggesting that leveled learning sig-
nificantly outperforms ensemble in interpretability. Detailed
comparison was shown in Table 1. On the other hand, the

Table 1:
Comparison Between Leveled Learning And

Ensemble

Leveled Learning Ensemble

Sub-set Select Psycho-statistics Random
Interpretability Good Bad
Predicting Time Controllable (top-k) Uncontrollable

second problem of the leveled learning is how to compute pi
for students that LANA has never met in training, namely
the “cold start” problem [24]. In vanilla KT context, we can
only initiate newly arrived students’ ability levels to the av-
erage ability level of all students. However, in practice, we
can estimate their ability levels more accurately by asking
them to do a couple of sample exercises or using ranking at
school.

3. EXPERIMENTS
3.1 Experimental Setup
In order to evaluate the effectiveness of the proposed LANA2,
we applied it to two real-world large-scale datasets in com-
parison with many other State-Of-The-Art (SOTA) KT meth-
ods. Specifically, EdNet [2] and RAIEd2020 [7] are em-
ployed in our experiments, where EdNet is currently the
largest publicly available benchmark dataset in education
domain, consisting of over 90,000,000 interactions and nearly
800,000 students. On the other hand, RAIEd2020 is a re-
cently published real-world dataset that has approximately
the same size as EdNet with nearly 100,000,000 interactions
and 400,000 students. Particularly, the average number of
exercising interactions per student in RAIEd2020 is double
to EdNet’s. Moreover, 6 KT methods that had previously
achieved SOTA performance have participated in the com-
parison: DKT [16], DKVMN [26], SAKT [13], SAINT [1],
SAINT+ [18], AKT [4]. In terms of the basic experimen-
tal environment, all experiments were conducted with Py-
torch3 1.6 on a Linux server that is equipped with an Nvidia
V100 GPU. For hyper-parameters setup, the learning rate
was set to 5e − 4 with AdamW [11] optimizer, the length
of the input sequence was set to 100, the batch size was
set to 256, and other detailed configurations were listed in
our source code. The input features κ in EdNet contains
Question ID, Question part, Students’ responses, Time in-
terval between two consecutive interactions and Elapsed time
of an interaction, whereas in RAIEd2020, a new feature is
additionally added to κ, which indicates Whether or not the
student check the correct answer to the previous question.
Finally, The Area Under the receiver operating character-
istic Curve (AUC) was leveraged in our experiments as the

2https://github.com/Soptq/LANA-pytorch
3https://pytorch.org/

Table 2:
The AUC Comparison Of Different Methods
Tested On EdNet And RAIEd2020 datasets

Dataset Model AUC

EdNet DKT 0.7638r

EdNet DKVMN 0.7668r

EdNet SAKT 0.7663r

EdNet SAINT 0.7816
EdNet SAINT+ 0.7913
EdNet SAINT+ & BM 0.7935
EdNet LANA 0.8059

RAIEd2020 SAKT 0.7832
RAIEd2020 AKT 0.7901
RAIEd2020 SAINT+ 0.7956
RAIEd2020 SAINT+ & BM 0.7991
RAIEd2020 LANA 0.8056

Table 3:
Investigation Of The Effectiveness Of Different

Improvements In LANA

Dataset BM
Pivot Module

LL AUC Boost
PMA PC-FFN

EdNet 0.7913 -
EdNet X 0.7935 ↑ 0.0022
EdNet X 0.7997 ↑ 0.0084
EdNet X 0.7923 ↑ 0.0010
EdNet X 0.7933 ↑ 0.0020
EdNet X X 0.8029 ↑ 0.0116
EdNet X X 0.8015 ↑ 0.0102
EdNet X X X 0.8038 ↑ 0.0125
EdNet X X X 0.8050 ↑ 0.0137
EdNet X X X X 0.8059 ↑ 0.0146

RAIEd2020 0.7956 -
RAIEd2020 X 0.7991 ↑ 0.0035
RAIEd2020 X 0.8020 ↑ 0.0064
RAIEd2020 X 0.7965 ↑ 0.0009
RAIEd2020 X 0.7977 ↑ 0.0021
RAIEd2020 X X 0.8031 ↑ 0.0075
RAIEd2020 X X 0.8027 ↑ 0.0071
RAIEd2020 X X X 0.8035 ↑ 0.0079
RAIEd2020 X X X 0.8051 ↑ 0.0095
RAIEd2020 X X X X 0.8056 ↑ 0.0100

performance metric, which has been widely used in many
other KT-related proposals.

For the ease of explanation, hereinafter Base Modification
(Section 2.1), Pivot Module (Section 2.3) and Leveled Learn-
ing (Section 2.4) would be abbreviated as BM, PM and LL
respectively.

3.2 Results And Analysis
The overall experimental results of different KT methods
on different datasets were illustrated in Table 2. Because
we had successfully reproduced the performance of SAINT
and SAINT+ that was previously reported in SAINT+’s pa-
per [18] (with considerable precision), AUCs of other models
are therefore directly cited from the paper (labeled with sub-
script r).

From the comparison table, it can be seen that in both Ed-

606 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://github.com/Soptq/LANA-pytorch
https://pytorch.org/

(a) (b)

(c) (d)

Figure 5: The visualization of intermediate features in
SAINT+ (a) and in LANA (b). Compared to (a), stu-
dents in (b) (different colors) are notably clustered (marked
arrows). The learning process of student #3 overtime in
SAINT+ (c) and in LANA (d). compared to (c), a clear
learning path appeared in (d).

Net and RAIEd2020 datasets, LANA (marked bold) outper-
forms the previous SOTA method (marked italic) by 1.46%
and 1.00% respectively, readily verifying the effectiveness
of our proposed improvements. Moreover, LANA also sur-
passes SAINT+ & BM by 1.24% and 0.65% respectively,
suggesting adaptability contributes most to LANA’s AUC
increment. Considering experimented datasets are by far the
two largest knowledge tracing datasets in the world, these
results undoubtedly provide strong evidence of the validity
of the proposed LANA method.

3.3 Ablation Studies
In this section, we investigated the effectiveness of each of
our proposed improvements: BM that customizes the basic
transformer architecture, PM that enables the decoder to
be adaptive to the students’ personal characteristics, and
LL that interpretably specializes encoders and SRFEs for
better predicting performance. The results of the ablation
study were shown in Table 3.

The table shows in EdNet, applying BM alone was already
capable of improving the predicting AUC by approximately
0.2% averagely, verifying the importance of both the action
of positional embedding and the personalized linear projec-
tion for each input feature in KT’s context. Meanwhile,
applying LL solely can benefit the model performance as
well, by generally 0.2% compared to 0.1% with the vanilla
ensemble. Considering without PM, LL would just per-
form fitting on students with different ability levels, the

performance gain from sole LL could be interpreted as re-
ductions in students’ inherent properties gaps. Moreover,
BM + PM drastically boosts the model performance by
nearly 1.25%, suggesting PM makes proper use of extracted
student-related features from SRFE to adaptively reparame-
terize the model’s decoder for different students at different
stages, and therefore contributes most to the final perfor-
mance gain. Finally, by combining all improvements to-
gether, BM + PM + LL (i.e. LANA) achieves a final AUC
of 0.8059, substantially outperforms previous SOTA by at
least 1.46%.

3.4 Features Visualization
For vividly illustrating the validity of student-related fea-
tures distilling in LANA, 20 students’ intermediate features
from PC-FFN module was sampled to generate Figure 5 by
t-SNE[21]. In figure 5 (a) and (b), each sample represents in-
termediate features of different students with different colors
in SAINT+ and LANA respectively. It can be seen that in
SAINT+, samples are almost randomly distributed, indicat-
ing the correlation between samples of the same student is
not more significant compared to samples of the others due
to the ignorance of students’ personalities. On the other
hand, in LANA, clusters (marked arrows) of samples have
notably appeared in comparison to (a). Thus, we concluded
that LANA is capable of successfully extracting student-
related features from their interactive sequences, summariz-
ing the similarities and differences, which eventually results
in more distinguishable features for the final classifier.

Furthermore, we individually visualized student #3’s (ran-
domly picked) samples along the time axis to investigate the
transitioning pattern of features in Figure 5 (c)(SAINT) and
(d)(LANA). In (c), there is no clear pattern in the change
of features over time, while in (d), a clear transitioning path
could be noticed. Since many other students are sharing the
same pattern in LANA, we argue that it represents the tra-
jectory of the student’s ability changes with more and more
exercising. Namely, it is the learning path of the student.
Consequently, we contended that it is potentially helpful
for other applications, such as learning stages transfer and
learning path recommendation.

4. CONCLUSION
In this paper, we proposed a novel Leveled Attentive KNowledge
TrAcing (LANA) method that was committed to bringing
adaptability back to DKT. Instead of directly learning the
model parameters of different students, LANA distills stu-
dents’ inherent properties from their respective interactive
sequences by a novel SRFE, and learns the function to repa-
rameterize the model with these extracted student-related
features. Consequently, innovative pivot module was pro-
posed to produce an adaptive decoder. Besides, a novel
leveled learning training mechanism was introduced to clus-
ter students by interpretable Rasch model defined ability
level, which not only specializes the encoder and therefore
enhances the significance of students’ latent features, but
also saves much training time. Extensive experiments on
the two largest public benchmark datasets in the education
domain strongly evaluate the feasibility and effectiveness of
the proposed LANA, features visualization also suggests ex-
tra impacts of LANA, be it learning stages transfer or learn-
ing path recommendation.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 607

5. REFERENCES
[1] Y. Choi, Y. Lee, J. Cho, J. Baek, B. Kim, Y. Cha,

D. Shin, C. Bae, and J. Heo. Towards an appropriate
query, key, and value computation for knowledge
tracing. In Proceedings of the Seventh ACM
Conference on Learning@ Scale, pages 341–344, 2020.

[2] Y. Choi, Y. Lee, D. Shin, J. Cho, S. Park, S. Lee,
J. Baek, C. Bae, B. Kim, and J. Heo. Ednet: A
large-scale hierarchical dataset in education. In
International Conference on Artificial Intelligence in
Education, pages 69–73. Springer, 2020.

[3] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction,
4(4):253–278, 1994.

[4] A. Ghosh, N. Heffernan, and A. S. Lan. Context-aware
attentive knowledge tracing. In Proceedings of the 26th
ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages
2330–2339, 2020.

[5] J. González-Brenes, Y. Huang, and P. Brusilovsky.
General features in knowledge tracing to model
multiple subskills, temporal item response theory, and
expert knowledge. In The 7th international conference
on educational data mining, pages 84–91. University of
Pittsburgh, 2014.

[6] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[7] R. Inc. Riiid aied challenge 2020.
https://www.kaggle.com/c/riiid-test-answer-
prediction/data, 2020. [Online; accessed
6-Oct-2020].

[8] A. Jalal and M. Mahmood. Students’ behavior mining
in e-learning environment using cognitive processes
with information technologies. Education and
Information Technologies, 24(5):2797–2821, 2019.

[9] G. Ke, D. He, and T.-Y. Liu. Rethinking the
positional encoding in language pre-training. arXiv
preprint arXiv:2006.15595, 2020.

[10] Q. Liu, Z. Huang, Y. Yin, E. Chen, H. Xiong, Y. Su,
and G. Hu. Ekt: Exercise-aware knowledge tracing for
student performance prediction. IEEE Transactions
on Knowledge and Data Engineering, 33(1):100–115,
2019.

[11] I. Loshchilov and F. Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017.

[12] J. M. Murre and J. Dros. Replication and analysis of
ebbinghaus’ forgetting curve. PloS one,
10(7):e0120644, 2015.

[13] S. Pandey and G. Karypis. A self-attentive model for
knowledge tracing. arXiv preprint arXiv:1907.06837,
2019.

[14] S. Pandey and J. Srivastava. Rkt: Relation-aware
self-attention for knowledge tracing. In Proceedings of
the 29th ACM International Conference on
Information & Knowledge Management, pages
1205–1214, 2020.

[15] Z. A. Pardos and N. T. Heffernan. Modeling
individualization in a bayesian networks
implementation of knowledge tracing. In International
Conference on User Modeling, Adaptation, and
Personalization, pages 255–266. Springer, 2010.

[16] C. Piech, J. Spencer, J. Huang, S. Ganguli,
M. Sahami, L. Guibas, and J. Sohl-Dickstein. Deep
knowledge tracing. arXiv preprint arXiv:1506.05908,
2015.

[17] S. Shang, L. Chen, C. S. Jensen, J.-R. Wen, and
P. Kalnis. Searching trajectories by regions of interest.
IEEE Transactions on Knowledge and Data
Engineering, 29(7):1549–1562, 2017.

[18] D. Shin, Y. Shim, H. Yu, S. Lee, B. Kim, and Y. Choi.
Saint+: Integrating temporal features for ednet
correctness prediction. arXiv preprint
arXiv:2010.12042, 2020.

[19] V. L. Shiv and C. Quirk. Novel positional encodings to
enable tree-based transformers. In NeurIPS, pages
12058–12068, 2019.

[20] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and
C. Liu. A survey on deep transfer learning. In
International conference on artificial neural networks,
pages 270–279. Springer, 2018.

[21] L. Van der Maaten and G. Hinton. Visualizing data
using t-sne. Journal of machine learning research,
9(11), 2008.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[23] Z. Wang, X. Feng, J. Tang, G. Y. Huang, and Z. Liu.
Deep knowledge tracing with side information. In
International conference on artificial intelligence in
education, pages 303–308. Springer, 2019.

[24] K. H. Wilson, X. Xiong, M. Khajah, R. V. Lindsey,
S. Zhao, Y. Karklin, E. G. Van Inwegen, B. Han,
C. Ekanadham, J. E. Beck, et al. Estimating student
proficiency: Deep learning is not the panacea. In In
Neural Information Processing Systems, Workshop on
Machine Learning for Education, page 3, 2016.

[25] M. V. Yudelson, K. R. Koedinger, and G. J. Gordon.
Individualized bayesian knowledge tracing models. In
International conference on artificial intelligence in
education, pages 171–180. Springer, 2013.

[26] J. Zhang, X. Shi, I. King, and D.-Y. Yeung. Dynamic
key-value memory networks for knowledge tracing. In
Proceedings of the 26th international conference on
World Wide Web, pages 765–774, 2017.

608 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Recommendation System for Engineering Programs
Candidates

Bruno Mota da Silva
Instituto Superior Técnico

brunomotadasilva@tecnico.ulisboa.pt

Cláudia Antunes
Instituto Superior Técnico

claudia.antunes@tecnico.ulisboa.pt

ABSTRACT
Automatic discovery of information in educational data has
been broadening its horizons, opening new opportunities to
its application. An open wide area to explore is the recom-
mendation of undergraduate programs to high school stu-
dents. However, traditional recommendation systems, based
on collaborative filtering, require the existence of both a
large number of items and users, which in this context are
too small to guarantee reasonable levels of performance.

In this paper, we propose a hybrid approach, combining col-
laborative filtering and a content-based architecture, while
exploring the hierarchical information about programs or-
ganization. This information is extracted from courses pro-
grams, through natural language processing, and since pro-
grams share some courses, we are able to present recommen-
dations, not just based on the performance of students, but
also on their interests and results in each of the courses that
compose each program.

Keywords
Recommendation systems, higher education programs, edu-
cational data mining

1. INTRODUCTION
Nowadays, it is common to have teenagers applying to a
higher education program after finishing their high school.
Every year, new programs appear and thousands of candi-
dates must choose which one is the best for them.

This type of problem is very well-known in Educational
Data Mining and in Recommendation Systems community
[3, 11]. This past decade, many studies were made on cre-
ating engines that help students in choosing the courses
that are suited for them, using different approaches, like
content-based or collaborative filtering recommendation sys-
tems. The last type is the most used due to the large amount
of data community can give.

Despite courses recommendation being a more studied prob-
lem, we want to apply these systems to programs recommen-
dation that is not very researched yet. This brings an impor-
tant challenge, since courses recommenders have already the
target user inside the system rating previous courses among
the others students, and in our problem candidates did not
rate anything to be compared to other users in first hand.

Considering all of these aspects, our work aims for creat-
ing a recommendation system that will receive candidates
personal data and high-school academic records, with the
proper consent given by them considering general data pro-
tection regulations (GDPR), and will output the programs
that most fit to their profile, comparing to the current stu-
dent community. The system will consider the personal
characteristics of the students as a matching measure and
the programs’ courses, objectives and description to find
keywords that define the corresponding programs. These
keywords will allow to compute ratings for every program
considering the academic marks of the students on their own
program.

This paper is divided in four more sections. Literature re-
view covers the basic aspects of recommendation systems,
with special focus on their use for educational purposes. Af-
ter this, we present the architecture of our system that can
be applied at a common university structure. After sys-
tem architecture, current results are shown, followed by the
reached conclusions at this time.

2. LITERATURE REVIEW
Recommendation Systems (RS) are software tools and tech-
niques that provide suggestions for items to be of use to a
user [10]. A RS can be exploited for different purposes, such
as, to increase the number of items sold, to better under-
stand what the user wants or, in another point of view, to
recommend a specific item to that user.

There are two main types of recommendation engines, Content-
based and Collaborative Filtering. The first one is focused
on item similarities, and the second one use past behaviors
of users to recommend items to the active user [1].

There is also a third type of recommendation systems, knowledge-
based approaches where recommendations are given based
on explicit specification of the kind of content the user wants.
These systems are very similar to content-based ones, but
with domain knowledge input. Finally, a hybrid recommen-

Bruno Mota da Silva and Claudia Antunes “Recommendation Sys-
tem for Engineering Programs Candidates”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 609-613.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 609

dation system is constructed if there is a combination of
two or more RS philosophies in order to improve the global
performance.

Over the years, a large amount of educational data is being
generated and there are being applied more collaborative fil-
tering approaches than content-based methods in this area.

Morsomme and Alferez proposed a collaborative recommen-
dation system that outputs courses to the target users, by
exploiting courses that other similar students had taken,
through k-means clustering and K-nearest neighbors tech-
niques [2].

A recommendation system for course selection was devel-
oped in Liberal Arts bachelor of the University College Maas-
tricht [6], using two types of data, students and courses.
Student data consisted of anonymized students’ course en-
rollments, and course data consisted of catalogues with de-
scriptions of all courses, which allowed to find the topics of
each one, using the Latent Dirichlet Allocation statistical
model. Recurring to regression models of student data, the
authors could predict his grade for each course. In the end,
the system outputs 20 courses whose content best matches
the user’s academic interest in terms of Kullback-Leibler dis-
tance.

This content-based approach was applied as well in Dublin
[8], where the authors used an information retrieval algo-
rithm to compute course-course similarities, based on the
text description and learning outcomes of each one.

In Faculty of Engineering of the University of Porto, it was
created an engine to help students choosing an adequate
higher education program to access a specific job in the fu-
ture [5]. Therefore, it was implemented a recommendation
system that uses the data from alumni and job offers and
outputs a ranking of programs that could lead to the candi-
dates’ desired careers. The collaborative filtering approach
can match the skills needed for that job and the skills given
to the students of a specific degree.

Fábio Carballo made an engine that predicts students mas-
ters courses marks, using collaborative filtering methods,
singular value decomposition (SVD) and as-soon-as-possible
(ASAP) classifiers. With his work, he could recommend the
more suitable program for students skills [4].

The topic around course and programs recommendations
gained even more attention recently, with several published
studies in the last years, following a variety of approaches
[13, 14, 7, 9, 12].

3. RECOMMENDATION SYSTEM
The proposed system shall enlighten candidates about the
degrees that are more compatible with their interests and
that were successfully concluded by similar students, using
a hybrid approach.

Our system must recommend higher education programs to
a specific high-school student who wants to enroll at uni-
versity. Usually, the candidate searches information about
each program at universities web pages, such as courses or

professional careers, or talks with students who are already
enrolled at the programs he or she likes. The process of
choosing a degree is very important to a high school student
and it must be done analysing all the information available.
Therefore, the main use case of our system focuses on can-
didates point of view.

As we can see on Figure 1, when the candidate uses our sys-
tem, he or she must be able to give personal data that will be
considered during the recommendation process. After that,
the system must output a ranking of the programs that are
most suitable to the candidate. Candidate’s personal data
can be academic interests, high school grades, personal data,
such age or gender, among others. Since we are collecting
data, it must be made according to the GDPR, applying
anonymization techniques when necessary.

Figure 1: Use cases of the system.

Looking at the system from Admin point of view, there are
several tasks he or she must be able to do, as we can see
on Figure 1. System Administrator is the one responsible
for system updates: upload new students data every year,
upload students grades at the end of each semester, and
update programs and courses when necessary. All the es-
sential data to relate the candidate to current students and
to make proper recommendations must be inputted before
the system launching.

Finally, analysts staff can use this system when useful, to get
a summary of student community and a characterization of
new students.

3.1 Architecture
The overview of our system architecture can be seen on Fig-
ure 2, where we can distinguish two main modules: Students
Profiler and Programs Recommender.

Candidates start using our system by inputting their per-
sonal data that will be used to find their profile. Current
students data allow us to compute candidate profiles that
will feed the second module. Programs Recommender uses
the previous output to estimate a program success measure
considering estimated grades, returning in the end a ranking
of the most suitable programs to the candidates.

Figure 2: Proposed architecture.

610 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

3.1.1 Students Profiler
There is a major difference between our recommendation
system and the common ones, where the target user is inside
the system among the others. Here, the target user candi-
date is not in the system, since he or she is not enrolled at
a higher education degree yet, and therefore can not rate
programs or take courses. Hence, it must be developed a
strategy where we can compare users.

Students Profiler computes the candidate profile as if he or
she was inside the system, by comparing him with current
students using shares personal variables. Therefore, the first
step was to collect these data and to build a students profil-
ing model, where we performed a feature engineering study.

A simple choice to implement Students Profiler is to apply
the K Nearest Neighbors (KNN) method, after choosing the
best similarity measure and number of neighbors, K. To
compute the similarity, we used five different measures which
results were studied. We also tuned the KNN process as well
by trying to find the optimal value for K, that was the one
having the minimum error rate.

In the end, Students Profiler returned candidate profile that
will be fed to the next module.

3.1.2 Programs Recommender
Programs Recommender module is a more complex one which
aims at finding the ranking of the best programs to the can-
didates, considering their profile and interests.

In order to reach its goal, this module has to create two mod-
els. The first one, called Grades Model, for estimating the
candidate performance in each possible academic units, and
the second one, the Ranking Model, for mapping students
to programs.

As usual, the Grades Model is constructed by following a col-
laborative filtering approach, meaning that it uses a singular
value decomposition (SVD) matrix factorization. This fac-
torization performs a feature extraction step, reducing the
number of elements to the minimum required for estimat-
ing students grades. When in the presence of the candidate
profile, the Grades Model is applied to estimate the candi-
date grades. Using the candidate profile, instead of its orig-
inal data, is the first difference in our approach, but there is
more, achieved through the use of a content-based approach.

RS usually deal with a very large number of items, but the
number of programs available in any university is just a few,
when compared. Additionally, each student is enrolled on
just one program, which means that our grades matrix would
be very sparse, not contributing for a good recommendation.
A third aspect is that programs share some courses (for ex-
ample all engineering students study Physics and Maths,
while all art students study Drawing and Geometry). But
we can go a step further, and understand that courses cover
some topics present in different areas. For example, several
engineering courses study systems, their architecture and
their dynamics.

The third proposal is the possibility of dealing with the aca-
demic units at different levels of granularity: we can aggre-

gate everything to recommend programs, or we can simply
identify a ranking of topics that are recommend for the can-
didate. This ability is very important to reach a new level
of explainability, so needed in the field.

4. PRELIMINARY RESULTS
A recommendation system validation is a hard task to take.
In contexts, like education, where these systems can not be
made available before being proved ‘correct’, this task is
even harder.

In our case, we made use of students data collected at the
time of their enrollment in the university, to mimetize can-
didates surveys. Then, we used students data from 2014
to 2018 for training and data from 2019 for evaluation pur-
poses. Moreover, every model of the system has to be vali-
dated independently, in order to better estimate each com-
ponent performance, and only after tuning each of them
evaluate its global quality.

We started by evaluating the Students Module, which has
the use of KNN to estimate candidate profile on its basis.
As data sources for this phase, we had personal data from
7918 students and grades from 7302 students, that resulted
in a dataset of 7300 instances by intersecting the first ones.
This dataset is composed by 101 variables, where enrolled
program is the only categorical one, all of the others are
numeric. Note that, we had no missing values on the dataset.

In this module, we wanted to find the K students that are
most similar to the candidate. Therefore, we made a study
to find the best pair (K, similarity measure) mimetizing a
KNN performance study, but without focusing on the clas-
sification task. First, we needed to define which condition
must students achieve to have success on their program,
based on their Grade Point Average (GPA), from a 0-20
scale. Hence, a histogram was made and it is shown at Fig-
ure 3.

Figure 3: Number of students by each GPA class.

Since the average of students GPA is 12.99, we labeled as
having success students which GPA was equal to 13 or more,
and not having success otherwise. This way we guaranteed a
balanced dataset. After the labelling, we computed ten trials

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 611

of data train-test split for five similarity measures (cheby-
shev, correlation, cosine, euclidean, and manhattan) and for
K between 5 and 155 in multiples of 5. For each pair (K, sim-
ilarity measure), we computed the average of KNN model
accuracies, since 70% train and 30% test datasets are ran-
dom in each trial. The results are shown in Figure 4, and
zoomed in Figure 5.

Figure 4: K and similarity measure study.

Figure 5: Zoom of K and similarity measure study.

Students Profiler module has five conditions that will be
tested in the global system: (120, chebyshev); (100, correla-
tion); (90, cosine); (30, euclidean) and (20, manhattan).

We implemented as well a simple recommendation system
where we used the candidate profile, composed by the av-
erage grades of all neighbors for all courses taken by them,
to predict the candidate grades for all available courses. In
this component, four conditions were used for testing the
system behaviour for all similarity measures: A) using SVD
as matrix factorization technique with the K values men-
tioned above and considering all the variables from students
data; B) same as A), but using K equals to 5; C) using SVD
with the best K values predicted using a reduced students
dataset with only academic records; and D) same as C) but
using the Slope One prediction method.

After that, we used 1509 candidates to test the system,
where we computed the GPA that each of them would have
in each one of the available programs using their predicted
course grades and ranked them by GPAs. Then, we com-
puted the mean absolute error for those which first recom-

Table 1: Mean Absolute Errors for each prediction method
and for each similarity measure

Similarity
Measure

A B C D

chebyshev 2.065 2.378 2.139 2.289
correlation 2.149 2.580 2.359 2.325

cosine 2.153 2.583 2.430 2.451
euclidean 2.538 2.497 2.153 2.289

manhattan 2.313 2.488 2.376 2.451

mended program coincides with their current program in
terms of GPA, and results are showed in Table 1.

The next steps will consist of improving the way we recom-
mend the programs and its ranking model, considering dif-
ferent ensembles, namely random forests and gradient boost-
ing. At this time, we are predicting GPA with almost 90%
accuracy.

5. CONCLUSIONS
The current educational context, even more after the begin-
ning of the pandemic situation, demands new educational
systems. Systems able to address the difficulties inherent
to distance learning contexts, where students are far from
educators, and plenty of times try to follow their path with-
out any guidance. Most of the times, online education tools
deal with students in a ‘one-fit-all’ approach, that ignore
each students preferences.

In this paper, we propose a new architecture for a recommen-
dation system, designed for suggesting programs to univer-
sity candidates. Our system benefits from an hybrid archi-
tecture, that combines collaborative filtering with a content-
based philosophy, exploring the full documentation of pro-
grams and courses available. Additionally, we explored the
notion of feature stores to easily update the data repositories
to support our system.

The proposed architecture is adaptable to smaller contexts,
for example for suggesting learning resources at any abstrac-
tion levels, such as exercises.

6. ACKNOWLEDGMENTS
This work was supported by national funds by Fundação
para a Ciência e Tecnologia (FCT) through project Game-
Course (PTDC/CCI-CIF/30754/2017).

7. REFERENCES
[1] C. C. Aggarwal. Recommender Systems: The

Textbook. Springer Publishing Company, Incorporated,
1st edition, 2016.

[2] A. Al-Badarneh and J. Alsakran. An automated
recommender system for course selection.
International Journal of Advanced Computer Science
and Applications, 7, 03 2016.

[3] R. S. Baker and K. Yacef. The state of educational
data mining in 2009: A review and future visions.
Journal of Educational Data Mining, 1(1):3–17, 2009.

[4] F. O. G. Carballo. Masters’ courses recommendation:
Exploring collaborative filtering and singular value

612 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

decomposition with student profiling. 2014.

[5] A. I. N. A. de Sousa. Market-based higher education
course recommendation. 2016.

[6] R. Morsomme and S. V. Alferez. Content-based course
recommender system for liberal arts education. 2019.

[7] B. MS, Y. Taniguchi, and S. Konomi. Course
recommendation for university environments. 07 2020.

[8] M. P. O’Mahony and B. Smyth. A recommender
system for on-line course enrolment: An initial study.
page 133–136, 2007.

[9] A. Polyzou, A. N. Nikolakopoulos, and G. Karypis.
Scholars walk: A markov chain framework for course
recommendation. 05 2019.

[10] F. Ricci, L. Rokach, and B. Shapira. Recommender
systems handbook. Recommender Systems Handbook,
1-35:1–35, 10 2010.

[11] A. Rivera, M. Tapia-Leon, and S. Luján-Mora.
Recommendation systems in education: A systematic
mapping study. pages 937–947, 01 2018.

[12] F. Scherzinger, A. Singla, V. Wolf, and
M. Backenköhler. Data-driven approach towards a
personalized curriculum. 07 2018.

[13] R. Yu, Q. Li, C. Fischer, S. Doroudi, and D. Xu.
Towards accurate and fair prediction of college success:
Evaluating different sources of student data. 07 2020.

[14] Y. Zhao, Q. Xu, M. Chen, and G. M. Weiss.
Predicting student performance in a master of data
science program using admissions data. 07 2020.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 613

Deep learning for sentence clustering in essay grading
support

Li-Hsin Chang, Iiro Rastas, Sampo Pyysalo, and Filip Ginter
TurkuNLP Group

Department of Computing
University of Turku

{lhchan, iitara, sampyy, figint}@utu.fi

ABSTRACT
Essays test student knowledge on a deeper level than short-
answer and multiple-choice questions but are more labori-
ous to evaluate. Automatic clustering of essays, or their
fragments, prior to evaluation may reduce the manual effort
required. Such clustering presents numerous challenges due
to the variability and ambiguity of natural language. In this
paper, we introduce two datasets of undergraduate student
essays in Finnish, manually annotated for salient arguments
on the sentence level. Using these datasets, we evaluate sev-
eral deep-learning embedding methods for their suitability
to sentence clustering in support of essay grading. We find
the suitable method choice to depend on the nature of the
exam question and the answers, with deep-learning methods
being capable of, but not guaranteeing better performance
over simpler methods based on lexical overlap.

Keywords
deep learning, essay clustering, text similarity, paraphrase,
grading support

1. INTRODUCTION
Essay-type questions have been shown to help with the re-
tention of learned material [10] but are time- and labour-
consuming to evaluate. Computational methods can be used
to grade essays, or to assist in their evaluation. Examples of
the latter approach include pre-processing to show statistics
of student answers such as average answer length and key-
words [11], comparing student answers to a given text [11],
generating word clouds of student answers [6], and grouping
student answers into clusters of similar answers [2]. Most of
these systems target the pre-processing and analysis of short
answers, and less effort has been dedicated to computer-
aided assessment of longer essays. One approach to reducing
human effort in fact-based student essay assessment compu-
tationally would be to identify similar arguments in student
essays. This approach draws inspiration from qualitative re-
search methods where interviews are first transcribed verba-

tim, and categories are then formed and themes are created
[5]. By identifying recurring arguments across a cohort of
essays, it is expected that human grading effort could be re-
duced, much like the analysis of interviews is made simpler
after forming categories.

In this paper, we evaluate the applicability of several rep-
resentative deep learning methods to the task of identify-
ing distinctly-phrased, but semantically near-equivalent seg-
ments of student essays1. We approach the task from two
angles. As an information retrieval (IR) problem, whereby
given a query text, e.g. a reference answer or an essay, the
task is to retrieve the matching essays from the cohort,
and establish their mutual correspondence down to sentence
level. The other approach is that of clustering, where the
objective is to discover groups of sentence-long segments
with same meaning in the essay cohort. We test several
algorithms, including TF-IDF [7], LASER [1], BERT [4],
and Sentence-BERT [13]. To evaluate these algorithms, we
gather and annotate two sets of factual essays written in
exams by Finnish university students.

2. DATASETS
We collected Finnish essays written by bachelor’s level stu-
dents as answers to exam questions. Two sets of essays re-
plying to questions from two courses were selected for man-
ual annotation. The annotator was a PhD student from a
different discipline than the domain of the essays. The goal
of the annotation was to identify similar arguments in sep-
arate essays. The data were annotated by cross-referencing
the arguments found in every essay, and assigning textual la-
bels to recurring arguments or concepts on a sentence level.
Specifically, all essays were first segmented into sentences,
and each sentence was then assigned zero or more textual
labels representing its content. If an argument appears more
than once, it is given a distinct label which is assigned to
all sentences containing that argument. For an argument to
be considered recurring, the two sentences are required to
clearly aim to communicate the same information about a
common subject matter. An example of two sentences that
are considered to have the same argument (on the pros and
cons of group interviews in research): “It is not the quieter
and more timid individuals that come out, but the loudest
ones come to the fore.” and “In a group interview, there is a
danger that some will talk too much and some will not have
a turn to speak at all.” Both of these sentences describe

1We refer readers to https://arxiv.org/abs/2104.11556
for a more detailed version of the paper

Li-Hsin Chang, Iiro Rastas, Jenna Kanerva, Valtteri Skantsi, Sampo
Pyysalo and Filip Ginter “Deep learning for sentence clustering in essay
grading support”. 2021. In: Proceedings of The 14th International Confer-
ence on Educational Data Mining (EDM21). International Educational Data
Mining Society, 614-618. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

614 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://arxiv.org/abs/2104.11556

Table 1: Dataset statistics

Research Accounting
methods standards

No. of essays 47 10
Total no. of sentences 486 158

No. of labels 59 34
Avg. no. of labels per sentence 1.29 0.82

the imbalance of expression of opinions in group interviews.
In the next example, however, the two sentences are consid-
ered to have different arguments, despite both of them being
related to the role of trust in interviews. “In interviews, a
trusting relationship must be established between the inter-
viewee and the interviewer, which can be challenging.” and
“If the interviewee remains anonymous, one can also openly
discuss more sensitive topics, especially when one is alone
with the interviewer.” This is because the two sentences
make opposing arguments: the former takes a positive per-
spective towards the role of trust in interviews, while the
latter views it as a challenge. Clearly, these communicate
different information. For each dataset, the number of labels
thus depends on the number of recurring arguments in the
essays, and the annotation scheme differs. We estimate that
the development of the annotation scheme and the annota-
tion effort required about two person-weeks in total. We
note that we do not expect to annotated all sets of essays
that are to be evaluated. Instead, these two sets of annota-
tions serve as benchmarks for testing ideas on automatically
assisting essay evaluation. The two resulting datasets are
introduced below. The key statistics of the two datasets are
summarized in Table 1 and the distribution of the labels in
the two datasets is illustrated in Figure 1 in the Appendix.

2.1 Research methods dataset
The first dataset is created from student essays from the
course “Research process and qualitative research methods”
(henceforth Research methods). The essays answer the ques-
tion, “Consider the positive and negative aspects of inter-
views”. Several main points are frequently mentioned by
students: for example, almost all students discussed how
time consuming interviews can be (label time_consuming).
93% of the dataset sentences have at least one label, indi-
cating that the great majority of sentences involve at least
one argument repeated in other essays.

2.2 Accounting standards dataset
The second dataset consists of student essays from the course
titled“IAS/IFRS accounting standards”(henceforth Account-
ing standards). The essay prompt is “What are the compo-
nents of IFRS financial statements? Consider the signifi-
cance of the various components in the light of the qualita-
tive criteria for the financial statement information”. The
label distribution of this dataset is more even, and almost a
third of the sentences do not have a label. This may be due
to the fact that there are fewer essays in this dataset. This
implies that given one main argument, it is less likely that
the argument is also mentioned by somebody else.

3. SENTENCE REPRESENTATIONS
To identify sentences with similar arguments, we consider a
set of methods for representing each sentence with a vector,

which allows efficient computation of sentence similarity via
the similarity of their vectors. As baselines, TF-IDF vectors
and average of word embeddings are used for sentence repre-
sentation. For deep learning methods, the encoders LASER,
BERT, and Sentence-BERT are tested. The distance mea-
sure used is the cosine similarity between two sentence vec-
tors, a standard metric applied also in previous studies.

3.1 TF-IDF
Term frequency–inverse document frequency (TF-IDF) is a
family of popular IR metrics that estimate the importance
of a given word in a document from a document collection
based on the number of times the word appears in the doc-
ument (term frequency) and the inverse of the number of
documents the word appears in (document frequency) [7].
TF-IDF can be applied with words or character sequences.
For this baseline, all the tokens in a sentence are first lemma-
tized using the Universal Lemmatizer [8]. Character ngrams,
specifically bigrams, trigrams, 4-grams and 5-grams, are cre-
ated out of text inside word boundaries. We note that the
TF-IDF encoding generates sparse high-dimensional vectors
where there is no inherent similarity between words.

3.2 Average of word embeddings
This baseline represents each sentence using the average
of the vector representations of the words in the sentence.
We use the Finnish word embeddings created by Kanerva
et al. [9] and refer readers to this paper for further details
of the embeddings. These embedding were induced using
the implementation of the skip-gram algorithm [12] in the
word2vec software package on Finnish Common Crawl data.
The average of word embeddings produces dense, compara-
tively low-dimensional representations that can capture the
similarity between words, but the representation of words is
independent of the context they appear in.

3.3 LASER
The Language-Agnostic SEntence Representations (LASER)
released by Facebook is a sentence embedding method that
aims to achieve universality with respect to language and
NLP task. The encoder can encode 93 languages, all of
which share a byte-pair encoding [14] vocabulary. The en-
coder consists of a BiLSTM with max-pooling operation,
coupled with an LSTM layer during training on parallel cor-
pora [1]. LASER produces dense, low-dimensional represen-
tations that can capture the contextual meaning of words.

3.4 BERT
Bidirectional Encoder Representations from Transformers
(BERT) introduced by Google is a deep contextual language
representation model [4]. The training objectives of BERT
make them cross-encoders, i.e. the model takes in a pair of
sentences at a time. However, we encode one sentence at
a time and use the mean-pooling of the resulting outputs
as the sentence representation. We use the uncased vari-
ant of FinBERT, a monolingual Finnish BERT Base model
that has been demonstrated to provide better performance
in Finnish text processing tasks than multilingual BERT
[16]. Like LASER, BERT produces dense, low-dimensional
representations that account for context.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 615

Table 2: Results of the IR evaluation

Accounting Avg Avg Avg Avg MRR MAP
standards First Med Mean Last
TF-IDF 4% 9% 11% 24% 0.47 0.48
word2vec 6% 17% 20% 40% 0.47 0.34
LASER 4% 13% 15% 33% 0.53 0.42
BERT 5% 15% 17% 37% 0.53 0.41
SBERT 5% 11% 14% 31% 0.46 0.42
Research Avg Avg Avg Avg MRR MAP
methods First Med Mean Last
TF-IDF 1% 18% 24% 72% 0.46 0.28
word2vec 2% 26% 31% 79% 0.34 0.19
LASER 2% 19% 26% 73% 0.42 0.23
BERT 1% 17% 23% 70% 0.49 0.28
SBERT 2% 17% 22% 65% 0.43 0.28

3.5 Sentence-BERT
Sentence-BERT (SBERT) trains BERT models using Siamese
and/or triplet networks to induce a single-sentence encoder
specialized for cosine-similarity comparison [13]. We obtain
machine translated versions of the SNLI [3] and MNLI [17]
corpora using the English to Finnish Opus-MT model [15].
Finnish SBERT is subsequently trained from FinBERT-base-
uncased using these two natural language inference corpora.
Specifically, the model is fine-tuned for an epoch with learn-
ing rate 2e-5 and batch size of 16, with mean pooling as the
pooling method. The representations produced by SBERT
are dense, low-dimensional, and context-sensitive, like those
of LASER and BERT.

4. EVALUATION
The sentence representations are evaluated from IR and clus-
tering perspectives. Six evaluation metrics are used for the
IR approach: two well-known metrics mean reciprocal rank
(MRR) and mean average precision (MAP), and four met-
rics tailored to our specific task setting. average of highest
rank (Avg first), average of median rank (Avg med), average
of mean rank (Avg mean), and average of lowest rank (Avg
last) measure the rank of the highest, median, mean, and
lowest rank of the relevant items respectively, as percent-
age of the whole (0% first rank, 100% last rank), averaged
over all items. These four metrics give more insight into the
distribution of the relevant retrievals by measuring where,
on average, the first, median, mean, and last relevant items
are ranked. Since some sentences have more than one label,
sentences with at least one overlapping label are considered
relevant retrievals for all metrics.

The clustering evaluation measures how well the clustering
induced by the vector embeddings corresponds to the clus-
tering induced by the sentence labels. Cluster accuracy is
based on the most frequent label of a cluster: for each clus-
ter, the majority label is obtained from the ground truth an-
notations of the sentences in the cluster. A sentence is con-
sidered to be correctly clustered if it has the majority label of
its cluster as one of its labels. The number of correctly and
incorrectly clustered sentences can then be interpreted as
an accuracy percentage. We note that random baseline per-
formance varies drastically between different datasets with
this metric, so accuracy values are not directly comparable
between datasets. Adjusted Rand index and adjusted mu-
tual information are established clustering metrics. We use
sampling to work around the multi-label nature of the an-

Table 3: Results of the two clustering evaluation methods.
Average adjusted Rand (Avg adj. Rand), Average adjusted
mutual information (Avg adj. mutual info.), Cluster accu-
racy (Clus. acc.), Standard deviation (Std dev).

Accounting Avg Std Avg adj. Std Clus.
standards adj. dev mutual dev acc.

Rand info.
TF-IDF 0.31 0.02 0.33 0.02 73%
word2vec 0.18 0.02 0.23 0.02 69%
LASER 0.21 0.01 0.27 0.01 72%
BERT 0.21 0.01 0.27 0.02 72%
SBERT 0.28 0.01 0.33 0.02 73%
Research Avg Std Avg adj. Std Clus.
methods adj. dev mutual dev acc.

Rand info.
TF-IDF 0.12 0.01 0.22 0.01 55%
word2vec 0.05 0.00 0.13 0.01 41%
LASER 0.08 0.00 0.17 0.01 46%
BERT 0.11 0.01 0.23 0.01 50%
SBERT 0.11 0.01 0.22 0.01 51%

notations: For each sentence with multiple labels, one label
is randomly chosen. Then the clusters are evaluated against
these labels with the two metrics. This process is repeated
50 times and the values of the metrics are subsequently av-
eraged. The resulting scores are between -1 and 1, and they
are adjusted for chance, so that a random clustering has a
score close to zero. We use the agglomerative clustering al-
gorithm with ward linkage. Sentences that have no labels,
i.e. containing a unique argument, are each given a unique
label for the purposes of the clustering evaluation, effectively
each forming one singleton cluster. The resulting true num-
ber of clusters (60 for the research methods dataset and 95
for the accounting standards dataset) is the clustering model
input.

5. RESULTS
The IR evaluation results are shown in Table 2. We find
that there is no single method that systematically outper-
forms the others. Surprisingly, for the accounting standards
dataset, the advanced methods fail to outperform the TF-
IDF baseline, which achieves the highest results for all met-
rics except MRR. This indicates that while TF-IDF is not
the most competitive in consistently ranking relevant items
at the highest ranks, it is able to concentrate relevant items
towards higher ranks in general. This is particularly evident
for the average of the lasts metric, where TF-IDF scores 7%
points higher than the second best performer, SBERT. Here
the number 24% indicates that, for the accounting standards
dataset, TF-IDF on average ranks all the relevant items
within rank 24 out of 100. The high performance of TF-
IDF on this dataset may be attributed partly to the essay
prompt requiring students to list the correct keywords. The
elements of the IFRS financial statements are only so many,
and these items cannot be paraphrased. Methods that com-
pare strings directly thus outperform methods that use dense
vector representations that approximate their meaning.

The research methods dataset, however, does not have such
a strong emphasis on exact keyword matching: there are
no fixed numbers of keywords that have to be mentioned
in the answers. Rather, the pros and cons of interviews as
a research method are described, and thus sentences that

616 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

describe the same concept using different words are more
likely to occur. On this dataset, considering the retrieval
of the first relevant item, both TF-IDF and BERT perform
best on the average of the firsts metric, while BERT per-
forms best on the mean reciprocal rank. Since the average
of the firsts metric is more lenient on lower rankings of first
relevant items, we can infer that BERT performs more con-
sistently on the retrieval of the first relevant item. Overall,
BERT-based methods obtain better results, with SBERT in
particular outperforming the other methods by 5% points on
the retrieval of the last relevant items. BERT and SBERT
both obtain the highest results on four out of six metrics.

The results of the clustering evaluation are summarized in
Table 3. These results clearly tend towards the TF-IDF
baseline, while the word2vec-based approach is the weak-
est, tallying with the IR evaluation. Of the neural meth-
ods, SBERT is particularly strong in the accounting stan-
dards dataset, while being in line with BERT in the research
methods dataset. Of the two sentence embedding methods,
SBERT outperforms LASER in all tests. We are surprised
to find that the TF-IDF model seems to be better suited to
the clustering objective than the neural methods, and will
examine this in future work.

Overall, we find that the comparative ranking of the meth-
ods varies strikingly depending on the dataset, evaluation
setting, and metric. The dataset dependence may partly be
explained by the nature of the arguments made: if the argu-
ment is required to contain certain specific terms, TF-IDF
can be a very strong method. On the other hand, if the argu-
ment involves more abstract concepts that can be expressed
in many ways, neural methods may have an advantage over
methods that are based on exact string matching. While
deep neural methods have led to breakthroughs in many
NLP tasks, the gain they show here over the simple TF-IDF
baseline is quite small even in the cases where they outper-
form it. This may indicate challenges specific to the task and
domain beyond those we have identified here, and calls for
further research into the topic. This includes searching for
more suitable encoding methods, improved evaluation meth-
ods, and also study of how data should best be annotated
to develop methods serving the needs of essay graders.

6. DISCUSSION
Our annotation makes at least two assumptions that call for
further investigation: the sentence is the unit of annotation,
and the labels are categorical and non-overlapping. Figure 1
shows that approximately 57% and 64% of the sentences in
the Accounting standards and Research methods datasets
(respectively) have exactly one label. Another 33% and 7%
(resp.) of sentences do not have any labels. Since labels
are only assigned if a main argument appears more than
once, these sentences can be seen as singleton clusters with a
label that occurs exactly once. With the current annotation
granularity, the annotation is best applicable to cases where
each sentence conveys a single main argument. However, the
annotation statistics indicate that sentence may not always
be the most suitable unit of annotation. These include cases
where an argument is made across several sentences, and
where a sentence makes several arguments.

In addition to issues related to the sentence as a unit of anno-

tation, there is also a degree of subjectivity to their labeling.
For example, in the Research methods dataset, the two la-
bels workload and time_consuming, which state that inter-
views are labor-intensive and time-consuming respectively,
could arguably be merged. For such boundary decisions to
be helpful for essay graders, the marking criteria play a cen-
tral role and there is no universal cut-off. As an alterna-
tive to disjoint categorical labels, one could consider that
the arguments (and the labels that represent them) can be
organized hierarchically. For instance, in the research meth-
ods dataset, the label interviewer_influence represents
the argument that the stance of the interviewer may affect
the research results, and the label unnatural_performance
describes the affect of the interview situation on the per-
formance of interviewees. On a higher level, both of the
labels convey the research results being negatively affected
by artificial factors. For these two datasets, the boundary
decisions also depend on the sample size: if there are more
essays, chances are that a small number of students make
the exact same argument, in which case the boundary is
unambiguous, or could be seen as a subcluster of a bigger
cluster. We hope to address these and related challenges in
future work.

One focus of our ongoing work is the practical use of the clus-
ters. An approach to capitalizing on these clusters would be
to make them manually adjustable, i.e. examiners can adjust
the contents of the clusters, create new clusters, and delete
clusters. These clusters can then be color-coded or anno-
tated with text, indicating whether the presence of a certain
cluster is desirable in an essay. In addition, if reference an-
swers are available, essays with more overlapping clusters
with the reference answers can be automatically identified.

7. CONCLUSIONS AND FUTURE WORK
We focused on the task of computer-assisted assessment of
comparatively long essays through the perspectives of IR
and clustering. We have created two datasets based on
two exam questions from different fields, on which we tested
several deep-learning methods with respect to their ability
to retrieve and cluster sentences containing the same argu-
ments paraphrased. We found no method to be universally
best; rather, the results depend on the nature of the es-
says under assessment. Overall, the difference between the
state-of-the-art deep learning methods and the much sim-
pler TF-IDF baseline is not numerically large, leaving clear
room for further development and application of more ad-
vanced methods for embedding meaning. Developing such
methods, as well as further practical testing of the approach
constitute our future work.

8. ACKNOWLEDGMENTS
The research presented in this paper was partially supported
by the European Language Grid project through its open
call for pilot projects. The European Language Grid project
has received funding from the European Union’s Horizon
2020 Research and Innovation programme under Grant Agree-
ment no. 825627 (ELG). The research was also supported
by the Academy of Finland and the DigiCampus project
coordinated by the EXAM consortium. Computational re-
sources were provided by CSC — the Finnish IT Center for
Science. We thank Kaapo Seppälä and Totti Tuhkanen for
administrative support and data collection.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 617

9. REFERENCES
[1] M. Artetxe and H. Schwenk. Massively multilingual

sentence embeddings for zero-shot cross-lingual
transfer and beyond. Transactions of the Association
for Computational Linguistics, 7:597–610, 09 2019.

[2] S. Basu, C. Jacobs, and L. Vanderwende.
Powergrading: a clustering approach to amplify
human effort for short answer grading. Transactions of
the Association for Computational Linguistics,
1:391–402, 2013.

[3] S. R. Bowman, G. Angeli, C. Potts, and C. D.
Manning. A large annotated corpus for learning
natural language inference. In EMNLP, 2015.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
BERT: Pre-training of deep bidirectional transformers
for language understanding. In NAACL, 2019.

[5] C. L. Erlingsson and P. Brysiewicz. A hands-on guide
to doing content analysis. In African journal of
emergency medicine : Revue africaine de la medecine
d’urgence, 2017.

[6] S. Jayashankar and R. Sridaran. Superlative model
using word cloud for short answers evaluation in
elearning. Education and Information Technologies,
22:2383–2402, 2016.

[7] K. S. Jones. A statistical interpretation of term
specificity and its application in retrieval. Journal of
documentation, 1972.

[8] J. Kanerva, F. Ginter, and T. Salakoski. Universal
Lemmatizer: A sequence to sequence model for
lemmatizing Universal Dependencies treebanks.
Natural Language Engineering, pages 1–30, 2020.

[9] J. Kanerva, M. Luotolahti, V. Laippala, and
F. Ginter. Syntactic N-gram collection from a
large-scale corpus of internet Finnish. In Proceedings
of the Sixth International Conference Baltic HLT
2014, pages 184–191. IOS Press, 2014.

[10] J. D. Karpicke and H. Roediger. The critical
importance of retrieval for learning. Science, 319
5865:966–8, 2008.

[11] J. McDonald and A. C. M. Moskal. Quantext:
Analysing student responses to short-answer
questions. Me, Us, IT, pages 133–137, 2017.

[12] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space, 2013.

[13] N. Reimers and I. Gurevych. Sentence-BERT:
Sentence embeddings using Siamese BERT-networks.
In EMNLP-IJCNLP, pages 3982–3992, 2019.

[14] R. Sennrich, B. Haddow, and A. Birch. Neural
machine translation of rare words with subword units.
In ACL, 2016.

[15] J. Tiedemann and S. Thottingal. OPUS-MT —
Building open translation services for the World. In
EAMT, 2020.

[16] A. Virtanen, J. Kanerva, R. Ilo, J. Luoma,
J. Luotolahti, T. Salakoski, F. Ginter, and S. Pyysalo.
Multilingual is not enough: BERT for Finnish. arXiv
preprint arXiv:1912.07076, 2019.

[17] A. Williams, N. Nangia, and S. Bowman. A
broad-coverage challenge corpus for sentence
understanding through inference. In ACL, pages

1112–1122, 2018.

APPENDIX
A. LABEL DISTRIBUTION

Figure 1: Number of labels per sentence

618 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

To Scale or Not to Scale: Comparing Popular Sentiment
Analysis Dictionaries on Educational Twitter Data

Conrad Borchers
University of Tübingen

conrad.borchers@student.uni-
tuebingen.de

Joshua M. Rosenberg
University of Tennessee,

Knoxville
jmrosenberg@utk.edu

Ben Gibbons
Emory University

ben.gibbons@emory.edu

Macy Alana Burchfield
University of Tennessee,

Knoxville
mburchf3@vols.utk.edu

Christian Fischer
University of Tübingen

christian.fischer@uni-
tuebingen.de

ABSTRACT
The extraction of sentiment from text requires many method-
ological decisions to make inferences about mood, opinion,
and engagement in informal learning contexts. This study
compares sentiment software (SentiStrength, LIWC, tidy-
text, VADER) on N = 1,382,493 tweets in the context of the
Next Generation Science Standards reform (N = 546,267)
and U.S. State Educational Twitter Hashtags (N = 836,226).
Automated sentiment classifications were validated on N =
300 hand-coded tweets. Additionally, we developed a dis-
crepancy measure to identify tweet features associated with
scale inconsistency. Results indicated that binary sentiment
classifications (positive/neutral vs. negative) were more ac-
curate than trinary classifications (positive, neutral, neg-
ative). Combined tidytext dictionaries and VADER out-
performed LIWC for negative sentiment, which was overall
difficult to classify reliably while positive sentiment was clas-
sified with high accuracy across all four dictionaries. Thus,
researchers are encouraged to (a) consider employing overall
sentiment scales or positive/neutral to negative ratios based
on binary classification to characterize their sample, (b) ag-
gregate multiple dictionaries or use domain-specific senti-
ment dictionaries, and (c) be aware of the current limitations
of detecting negativity through dictionary-based sentiment
analysis in educational contexts.

Keywords
Social media data, sentiment analysis, online communities

1. INTRODUCTION
Sentiment analysis extracts positive and negative emotions
from text. Its many applications include stock market pre-
diction [22], marketing research [29], and, recently, inves-
tigating public sentiment on educational reforms on Twit-

ter [32, 38]. Sentiment analysis typically requires numerous
methodological decisions, such as deciding whether to use a
dictionary-based or a supervised machine learning approach
and determining how sentiment measures are suited to the
investigation of a particular domain (e.g., VADER for social
media data) [13, 30].

User-defined sentiment dictionaries (UDDs) rely on matches
of word occurrences with a value in their dictionary, with lit-
tle overlap often yielding less valid results. Whereas many
sentiment measure validation studies investigate binary (i.e.,
positive and negative) sentiment classifications [1, 25, 28],
less research has systematically compared trinary classifica-
tions (i.e., positive, neutral, negative) and sentiment scales.
Furthermore, as sentiment classifiers do not generalize well
across domains [2], sentiment validation studies are needed
to inform educational researchers utilizing the increased avail-
ability of big data in education [7]. This study examines the
performance of popular sentiment analysis methods in the
context of a particular, social media-based data source: large
education-related Twitter communities.

The motivation of this study is two-fold. First, sentiment
measures can give insight into how and why teachers en-
gage in online communities on Twitter, a potentially novel
form of informal teacher learning [6, 33]. Second, public
opinion and sentiment can be viewed as a proxy for success-
ful reform implementation [4, 27]. Wang and Fikis applied
SentiStrength on more than 660,000 tweets related to the
Common Core State Standards, finding sentiment, includ-
ing that expressed by teachers, to be largely negative [38].
In contrast, Rosenberg et al. found largely positive sen-
timent in 570,000 NGSS-related tweets through the same
SentiStrength algorithm [32]. However, the validity of the
utilized sentiment methods was not examined.

2. RESEARCH BACKGROUND
2.1 Sentiment Analysis Methods and Tools
Sentiment analysis is frequently carried out through user-
defined dictionaries (UDDs) [9]. UDDs contain sets of la-
beled words that are rated on affect dimensions (e.g., va-
lence, potency, activity) and matched to word occurrences
in texts [23]. Researchers can either use pre-defined dic-
tionaries or create their own dictionaries [9]. UDD methods

Conrad Borchers, Joshua Rosenberg, Ben Gibbons, Macy Alana Burchfield
and Christian Fischer “To Scale or Not to Scale: Comparing Popular Sen-
timent Analysis Dictionaries on Educational Twitter Data”. 2021. In: Pro-
ceedings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 619-624.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 619

examine words individually, potentially neglecting figurative
language and ambiguous phrases [36]. This study examines
four popular examples of UDD software: (a) SentiStrength,
(b) Linguistic Inquiry and Word Count (LIWC), (c) the R-
package tidytext, and (d) the social-media attuned software
VADER.

SentiStrength outputs two truncated five-point scales [37]
which is different from many other UDD implementations.
It offers feature selection options and measures sentiment
weight, which is the intensity or strength of positivity or
negativity in a text, as opposed to simply comparing the
frequency of sentiments in a text [14].

LIWC is possibly the most popular text analysis software
[17]. It uses a well-validated default dictionary [16] and con-
tains around eighty subdictionaries of topics for which it
outputs individual scales [26]. LIWC has been used to in-
fer psychological processes and constructs (e.g., emotional
expressions) from text [36].

Tidytext [34] does not provide its own default dictionary.
At its core, it strives to pre-process input text which is then
analyzed through any input dictionary [35]. Tidytext pro-
vides functions for converting text into a “one-token-per-
document-per-row” format which may ease text analysis.

VADER (Valence Aware Dictionary for Sentiment Reason-
ing) features multiple subdictionaries and considers word
order and degree modifiers (e.g., ”very”, ”slightly”, ”some-
what”) [5]. It performs well in sentiment analyses of social
media content (including from Twitter) while remaining ap-
plicable to other contexts [5, 13]. That said, we found the R
implementation of VADER to take around 80 times longer
to compute compared to the other methods.

2.2 Research Questions
This study examined the validity of SentiStrength, LIWC,
tidytext, and VADER in the context of educational Twitter
data with the following research questions (RQs):

RQ1: How valid are the employed sentiment measures with
respect to human coding of sentiment?

RQ2: How discrepant are sentiment scales and are correla-
tions among scales consistent with these discrepancies?

RQ3: Which features of texts (i.e., the number of words,
likes, retweets, and context) account for scale discrepancy?

3. METHOD
3.1 Sample
The study utilized tweets related to the Next Generation
Science Standards reform and large educational state-wide
hashtags (1,382,493 tweets, 156,446 users) posted between
July 2008 and October 2020. Search terms included the
#NGSSchat hashtag (N = 175,094 tweets, N = 67,060 of
which being inside of designated chat-sessions), the terms
“ngss” (without #NGSSchat, N = 312,167 tweets) or “next
gen[eration] science standard[s]” (N = 59,006 tweets). In ad-
dition, we included tweets from 47 State Educational Twit-
ter Hashtags (N = 836,226). Tweets not recognized as of
English language by the Twitter API were omitted (5.0%).

3.2 Sentiment Measures
To investigate the validity of different sentiment measures,
we used SentiStrength [37], LIWC [26], tidytext [34], and
VADER [13] to obtain (a) binary and trinary classifications,
(b) unidimensional (positive and negative) sentiment scales,
and (c) a bidimensional sentiment scale rating for all tweets.
While SentiStrength has binary and trinary classification
methods, we subtracted negativity ratings from positivity
ratings to obtain overall scores and defined a tweet as neu-
tral if that overall rating was 0 (over 0 as positive, under 0
as negative) for LIWC and tidytext. For tidytext, we used
the NRC [24], Loughran-McDonald [20], AFINN [10], and
Bing [12] dictionaries, standardizing ratings by the number
of words in each tweet and averaging across available ratings.
The remaining non-matches were assigned a 0. For VADER,
we used its internal compound score as overall scale and
classified tweets as neutral if that score was between -0.05
and 0.05 (instead of 0) [13]. Binary classification combined
positive and neutral tweets, such that neutral tweets were
coded as positive, as done in previous validation studies [8]
and since we observed that SentiStrength always classified
tweets rated neutral in its trinary method positive in its bi-
nary method. Additionally, we defined ambiguity measures
for all sentiment dictionaries as the sum of the absolute val-
ues of their positivity and negativity ratings.

3.3 Additional Variables
Continuous predictor variables included the number of likes,
retweets, and words (excluding links and user mentions) of
each tweet. To account for some features of the specific data
sets we analyzed, we created a categorical predictor variable
indicating whether a tweet was from the NGSS or SETHs
data set (and, for the NGSS data set, whether the tweet
was posted inside of #NGSSchat, designated chat-sessions
of #NGSSchat, or included the term ”ngss”).

3.4 Data Analysis
3.4.1 Hand-coding and validation

To provide a validation set of tweets to investigate how
UDDs compare to human-evaluated sentiment (RQ1), two
raters hand-coded 300 randomly sampled tweets on two 1-5
scales for positivity and negativity, similar to SentiStrength.
Our two raters reached a consensus of κ = 0.728 for posi-
tivity and κ = 0.689 for negativity after coding 70 tweets
independently, fulfilling common thresholds for satisfactory
agreement [21]. After discussing and resolving any disagree-
ments, an additional 230 tweets were coded independently.
The binary and trinary sentiment classifications of human
coders were assigned analogously to how they were created
for the other UDDs. We calculated accuracy, precision,
recall, and F -score for each category in each classification
method (binary and trinary).

3.4.2 Scale consistency and discrepancy index
To quantify scale discrepancy for RQ2, we normalized the
sentiment scales to M = 0 and SD = 1, accounting for Sen-
tiStrength’s truncation of scales at |5| (contrasting LIWC,
tidytext and VADER). As a discrepancy index, we calcu-
lated the absolute difference between normalized scales for
positivity, negativity, and overall scales for all six pairs of
sentiment measures. For each tweet and scale type, the to-
tal scale discrepancy was summed up and divided by the

620 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

number of comparisons. As a robustness check for our dis-
crepancy measure, we calculated pairwise scale correlations
between methods.

3.4.3 Predictive modeling of scale discrepancy
To examine RQ3, we conducted three ordinary least square
linear regression models to predict discrepancy in the (a)
positivity, (b) negativity, and (c) overall scales through var-
ious tweet properties. Model assumptions (normal distri-
bution of residuals, homoscedasticity, linearity assumptions
and leverage) were investigated through graphical model
tests in R. Robust standard errors (HC3 estimator [19]) were
used to address residual heteroscedasticity for discrepancy in
the positivity scales. Independent variables included tweet
context and the number of words, likes, and retweets of a
tweet. We also included binary classifications (0: negative,
1: positive or neutral) to investigate whether scale discrep-
ancies varied with sentiment polarity and ambiguity ratings
to estimate whether tweets being high in positivity and nega-
tivity were less consistently rated than tweets with less emo-
tional valence. All independent variables had a generalized
variance inflation factor (GVIF) of less than 5 [3].

4. RESULTS
4.1 Validation of Sentiment Measures (RQ1)
4.1.1 Dictionary coverage

Coverage characterizes the fit of user-defined dictionaries
with the data. Coverage is the relative frequency of texts
that had a least one match inside a specific dictionary. We
observed a coverage of 58.91% for SentiStrength, 55.7% for
LIWC, and 67.7% for VADER. The combined tidytext dic-
tionaries had a coverage of 84.9%. As subdictionaries, cover-
age was 70.5% for NRC, 62.0% for AFINN, 56.9% for Bing,
and 34.9% for the Loughran-McDonald dictionary.

4.1.2 Hand-coded tweets and validation
Comparing human coders with SentiStrength’s scale ratings
(LIWC, tidytext and VADER do not output 1-5 scales; we
describe these later in this section), we found a moderate
two-way random effects ICC for absolute agreement [18] for
both the positivity scale, ICC2k = 0.690 [0.57, 0.77] and the
combined, overall scale, ICC2k = 0.683 [0.59, 0.75]. The
negativity scale exhibited worse agreement, ICC2k = 0.448
[0.31, 0.56]. Notably, Cohen’s kappa ratings were not sat-
isfactory with κ = 0.301 for positivity, κ = 0.270 for the
overall scale, and κ = 0.183 for negativity [21].

Tables 1 and 2 describe the validity of the binary and tri-
nary classifications for SentiStrength, LIWC, tidytext, and
VADER. We found trinary classifications to have higher ac-
curacy scores than binary classification (ranging from 85.00%
to 88.33% and 56.33% to 67.00%, respectively). Notably,
we found classifications of negative tweets to be less accu-
rate than for positive tweets, with F -scores of tidytext and
VADER (0.45 and 0.44, respectively) being higher compared
to SentiStrength and LIWC (0.38 and 0.29, respectively). To
test whether these differences were significant or random, we
ran permutation tests with 250,000 simulations [39]. Tidy-
text and VADER improved compared to LIWC, but not
to SentiStrength, (albeit marginally) significantly (p = .058
and p = .047, respectively), although only 11.67% of tweets
were rated as negative by human coders.

Table 1: Binary validation results
SentiStr. LIWC
Accuracy 85.50 88.33

Pos/Neut Neg Pos/Neut Neg
Precision 0.92 0.36 0.90 0.50
Recall 0.91 0.40 0.97 0.20
F -Score 0.91 0.38 0.94 0.29
tidytext VADER
Accuracy 87.00 88.33

Pos/Neut Neg Pos/Neut Neg
Precision 0.93 0.44 0.93 0.50
Recall 0.92 0.46 0.94 0.40
F -Score 0.93 0.45 0.93 0.44

Note: Positive Tweets are either positive or neutral in bi-
nary classification. Support: 265 Pos/Neut, 35 Neg

Table 2: Trinary validation results
SentiStr. LIWC
Accuracy 66.00 67.00

Pos Neut Neg Pos Neut Neg
Precision 0.66 0.75 0.36 0.65 0.71 0.50
Recall 0.77 0.63 0.40 0.78 0.69 0.20
F -Score 0.71 0.69 0.38 0.71 0.70 0.29
tidytext VADER
Accuracy 56.33 65.33

Pos Neut Neg Pos Neut Neg
Precision 0.50 0.88 0.44 0.59 0.79 0.50
Recall 0.90 0.33 0.46 0.84 0.57 0.40
F -Score 0.64 0.48 0.45 0.69 0.66 0.44

Note: Support: 115 Pos, 150 Neut, 35 Neg

4.2 Consistency of Sentiment (RQ2)
4.2.1 Positivity scale

For positivity scales, LIWC and VADER were the most con-
sistent with each other based on scale correlation (r = .83)
and mean discrepancy (0.41 SDs) followed by tidytext and
VADER (r = .71, 0.53 SDs) and LIWC and tidytext (r =
.63, 0.61 SDs). On average, positivity scales yielded pair-
wise correlations of r = .63 and scale discrepancies of 0.60
SDs (Table 3).

4.2.2 Negativity scale
For negativity scales, LIWC and VADER were the most con-
sistent with each other based on scale correlation (r = .68)
and mean discrepancy (0.33 SDs) followed by SentiStrength
and LIWC if based on scale correlation (r = .61, 1.14 SDs)
and LIWC and tidytext if based on scale discrepancy (r =
.09, 0.59 SDs). On average, negativity scales yielded pair-
wise correlations of r = .35 and scale discrepancies of 0.83
SDs (Table 3).

4.2.3 Overall scale
For overall scales, LIWC and VADER appeared to be closest
based on scale correlation (r = .69) and mean discrepancy
(0.54 SDs) followed by LIWC and tidytext (r = .65, 0.59
SDs), SentiStrength and VADER (r = .64, 0.65 SDs), and
SentiStrength and LIWC (r = .56, 0.64 SDs), respectively.
On average, overall scales yielded pair-wise correlations of r
= .61 and scale discrepancies of 0.64 SDs (Table 3).

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 621

Table 3: Pairwise scale correlations (Corr) and discrepancy
(Disc) for positivity, negativity, and overall scales of Sen-
tiStrength (SS), LIWC (LI), tidytext (TT), and VADER (VA)

Pos Neg Scale
Corr Disc Corr Disc Corr Disc

SS, LI 0.54 0.64 0.61 1.14 0.56 0.64
LI, TT 0.63 0.61 0.09 0.59 0.65 0.59
SS, TT 0.43 0.78 0.13 1.04 0.52 0.74
SS, VA 0.59 0.66 0.58 1.19 0.64 0.65
LI, VA 0.83 0.41 0.68 0.33 0.69 0.54
TT, VA 0.71 0.53 -.01 0.69 0.60 0.65
∅ 0.63 0.60 0.35 0.83 0.61 0.64

Table 4: Linear models predicting aggregated scale discrep-
ancy measures; N = 1,382,493

Predictor Pos Neg Scale
(Intercept) -0.56*** 1.52*** -0.23***
Number of Words -0.00*** 0.01*** 0.01***
Number of Likes 0.00 0.00 0.00
Number of Retweets 0.00*** 0.00*** 0.00***
Context [#NGSSchat] 0.02*** -0.01*** 0.03***
Context [SETHs] -0.01*** 0.05*** -0.02***
Context [Chat Hour] 0.00 -0.03*** 0.00
Ambiguity [SentiStr.] 0.07*** 0.21*** 0.07***
Ambiguity [LIWC] 0.11*** 0.14*** 0.11***
Ambiguity [tidytext] 0.08*** 0.19*** 0.10***
Ambiguity [VADER] 0.04*** 0.06*** 0.04***
SentiStr. Binary [1] 0.16*** -0.64*** 0.00
LIWC Binary [1] 0.29*** -0.28*** 0.30***
tidytext Binary [1] 0.30*** -0.47*** 0.11***
VADER Binary [1] 0.14*** -0.48*** -0.03***

R2 0.22 0.75 0.24

Note: ***p<0.001 **p<0.01 *p<0.05.

4.3 Understanding Scale Discrepancies (RQ3)
Linear models for evaluating scale discrepancies included
four notable associations between tweet properties and scale
discrepancies (Table 4). First, all four ambiguity measures
were positively associated with scale discrepancy measures
across all three models, most notably SentiStrength’s ambi-
guity measure with negativity scale discrepancy, β = 0.21,
t(1382478) = 229.30, p < .001. Second, for binary classifi-
cations (i.e., positive/neutral vs. negative), negative tweets
tended to have higher negativity discrepancy and vice versa.
For example, discrepancy in negativity scales was negatively
associated with tweets classified as positive/neutral by Sen-
tiStrength, β = -0.64, t(1382478) = -281.13, p < .001. Mean-
while, tidytext classifying tweets as positive was associated
with increased positivity discrepancy, β = 0.30, t(1382478)
= 129.71, p < .001. Third, text- and tweet-specific variables
(e.g., number of words, likes, and retweets) did not seem to
be associated with scale discrepancy, while tweet context
had a small effect size. For instance, tweets from State Ed-
ucational Twitter Hashtags were positively associated with
negativity scale discrepancy, β = 0.05, t(1382478) = 52.86,
p < .001. Fourth, the explained variance in scale discrep-
ancy was highest for negativity scales at 75.3%, followed by
overall scales (23.5%) and positivity scales (22.4%).

5. DISCUSSION
5.1 Key Findings
This study evaluates sentiment analysis methods on educa-
tional Twitter data. Our three main findings are as follows:

First, negative sentiment is difficult to reliably detect with
dictionary approaches. This could be due to nuanced lin-
guistic markers (e.g., sarcasm) that require advanced algo-
rithms to be detected [31]. While this finding aligns with
previous work [30], it contrasts initial validations of Sen-
tiStrength [37] on a set of around 1,000 MySpace comments
[37]. Nonetheless, this highlights the importance of validat-
ing commonly used sentiment analysis tools across multiple
contexts. Thus, we encourage researchers to carefully exam-
ine how negativity may be expressed in their study context.

Second, in the context of educational Twitter data, binary
sentiment classifications that combine positive and neutral
sentiment are substantially more robust than trinary clas-
sifications. Thus, researchers may consider computing the
ratio of negative to positive/neutral tweets, similar to a re-
cent Twitter study on the Common Core State Standards
[38]. For a continuous variable, our findings suggest using an
overall scale, as discrepancy in negativity was substantially
associated with ambiguity and binary classifications.

Third, in the context of educational Twitter data, tidytext
and VADER produce more accurate classifications of neg-
ative sentiment than LIWC. Notably, tidytext also has the
highest dictionary coverage. Thus, educational researchers
are encouraged to aggregate multiple dictionaries or to cre-
ate domain-specific sentiment dictionaries for more reliable
measures of negative sentiment, for instance, similar to a
previous study investigating political expression [11].

5.2 Limitations
This study has two notable limitations. First, the sample
size of the training data is relatively small (N = 300). That
said, it is comparable to sample sizes of previous sentiment
measure validation studies [28]. Similarly, the lack of neg-
ative tweets in our training data (11.67%) may limit infer-
ences about that particular type of sentiment. The number
of negative tweets is considerably smaller compared to pre-
vious validation studies utilizing text data from sources such
as MySpace, Twitter, BBC forums, and YouTube that in-
clude up to 86.84% negative sentiment [8]. Therefore, future
validation studies should deliberately sample more negative
tweets [13] or sample from contexts with higher expected
negativity, such as Common Core State Standards hashtags
[38]. Second, this study focuses on dictionary-based senti-
ment analysis, while future studies might also consider fea-
ture extraction and word co-occurrence methods [15].

5.3 Implications
This study highlights the importance of coverage, validity,
and scale discrepancy in sentiment analysis, specifically for
negative sentiment. For educational Twitter data, this study
recommends using binary classifications or overall scales,
preferably derived from tidytext or VADER, and encour-
ages replication studies1 across more educational contexts.

1Code: https://github.com/jrosen48/comparing-sentiment

622 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

6. REFERENCES
[1] A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and

R. Passonneau. Sentiment analysis of Twitter data. In
Proceedings of the workshop on language in social
media (LSM 2011), pages 30–38, 2011.

[2] A. Aue and M. Gamon. Customizing sentiment
classifiers to new domains: A case study. In
Proceedings of recent advances in natural language
processing (RANLP), volume 1, pages 2–1. Citeseer,
2005.

[3] T. A. Craney and J. G. Surles. Model-dependent
variance inflation factor cutoff values. Quality
Engineering, 14(3):391–403, 2002.

[4] A. Edgerton. Learning from standards deviations:
Three dimensions for building education policies that
last. American Educational Research Journal,
57(4):1525–1566, 2020.

[5] S. Elbagir and J. Yang. Twitter sentiment analysis
using natural language toolkit and vader sentiment. In
Proceedings of the International MultiConference of
Engineers and Computer Scientists, volume 122,
page 16, 2019.

[6] C. Fischer, B. Fishman, and S. Y. Schoenebeck. New
contexts for professional learning: Analyzing high
school science teachers’ engagement on Twitter.
AERA Open, 5(4), 2019.

[7] C. Fischer, Z. Pardos, R. Baker, J. Williams,
P. Smyth, R. Yu, S. Slater, R. Baker, and
M. Warschauer. Mining big data in education:
Affordances and challenges. Review of Research in
Education, 44(1):130–160, 2020.

[8] P. Gonçalves, M. Araújo, F. Benevenuto, and M. Cha.
Comparing and combining sentiment analysis
methods. In Proceedings of the first ACM conference
on Online social networks, pages 27–38, 2013.

[9] J. Grimmer and B. Stewart. Text as data: The
promise and pitfalls of automatic content analysis
methods for political texts. Political analysis,
21(3):267–297, 2013.

[10] L. Hansen, A. Arvidsson, F. Nielsen, E. Colleoni, and
M. Etter. Good friends, bad news-affect and virality in
twitter. In Future information technology, pages
34–43. Springer, 2011.

[11] M. Haselmayer and M. Jenny. Sentiment analysis of
political communication: combining a dictionary
approach with crowdcoding. Quality & quantity,
51(6):2623–2646, 2017.

[12] M. Hu and B. Liu. Mining and summarizing customer
reviews. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 168–177, 2004.

[13] C. Hutto and E. Gilbert. Vader: A parsimonious
rule-based model for sentiment analysis of social
media text. In Proceedings of the International AAAI
Conference on Web and Social Media, volume 8, 2014.

[14] M. Ibrahim. Extracting weight in Twitter
SentiStrength dataset to determine sentiment polarity.
Journal of Information Systems Research and
Innovation, 10(3):245–265, 2016.

[15] R. Iliev, M. Dehghani, and E. Sagi. Automated text
analysis in psychology: Methods, applications, and
future developments. Language and Cognition,

7(2):265–290, 2015.

[16] J. Kahn, R. Tobin, A. Massey, and J. Anderson.
Measuring emotional expression with the linguistic
inquiry and word count. The American journal of
psychology, pages 263–286, 2007.

[17] M. Kern, G. Park, J. Eichstaedt, A. Schwartz, M. Sap,
L. Smith, and L. Ungar. Gaining insights from social
media language: Methodologies and challenges.
Psychological methods, 21(4):507, 2016.

[18] T. K. Koo and M. Y. Li. A guideline of selecting and
reporting intraclass correlation coefficients for
reliability research. Journal of chiropractic medicine,
15(2):155–163, 2016.

[19] J. S. Long and L. H. Ervin. Using heteroscedasticity
consistent standard errors in the linear regression
model. The American Statistician, 54(3):217–224,
2000.

[20] T. Loughran and B. McDonald. When is a liability not
a liability? Textual analysis, dictionaries, and 10-ks.
The Journal of Finance, 66(1):35–65, 2011.

[21] M. McHugh. Interrater reliability: the kappa statistic.
Biochemia medica: Biochemia medica, 22(3):276–282,
2012.

[22] A. Mittal and A. Goel. Stock prediction using Twitter
sentiment analysis. Standford University, CS229, 15,
2012.

[23] S. Mohammad. Sentiment analysis: Detecting valence,
emotions, and other affectual states from text. In
Emotion Measurement, pages 201–237. Woodhead
Publishing, 2016.

[24] S. Mohammad and P. Turney. NRC emotion lexicon.
Technical report, National Research Council, Canada,
2013.

[25] I. Mozetič, L. Torgo, V. Cerqueira, and J. Smailović.
How to evaluate sentiment classifiers for Twitter
time-ordered data? PloS one, 13(3):e0194317, 2018.

[26] J. Pennebaker, M. Francis, and R. Booth. Linguistic
inquiry and word count: LIWC 2001. Mahway:
Lawrence Erlbaum Associates, 71, 2001.

[27] M. Polikoff, T. Hardaway, J. Marsh, and D. Plank.
Who is opposed to Common Core and why?
Educational Researcher, 45(4):263–266, 2016.

[28] R. Prabowo and M. Thelwall. Sentiment analysis: A
combined approach. Journal of Informetrics,
3(2):143–157, 2009.

[29] M. Rambocas, J. Gama, et al. Marketing research:
The role of sentiment analysis. Technical report,
Universidade do Porto, Faculdade de Economia do
Porto, 2013.

[30] F. Ribeiro, M. Araújo, P. Gonçalves, M. A. Gonçalves,
and F. Benevenuto. Sentibench - a benchmark
comparison of state-of-the-practice sentiment analysis
methods. EPJ Data Science, 5(1):1–29, 2016.

[31] E. Riloff, A. Qadir, P. Surve, L. De Silva, N. Gilbert,
and R. Huang. Sarcasm as contrast between a positive
sentiment and negative situation. In Proceedings of the
2013 conference on empirical methods in natural
language processing, pages 704–714, 2013.

[32] J. Rosenberg, C. Borchers, E. Dyer, D. Anderson, and
C. Fischer. Advancing new methods for understanding
public sentiment about educational reforms: The case

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 623

of Twitter and the Next Generation Science
Standards. OSF Preprints, 2020.

[33] J. Rosenberg, J. Reid, E. Dyer, M. Koehler,
C. Fischer, and T. McKenna. Idle chatter or
compelling conversation? the potential of the social
media-based #ngsschat network for supporting science
education reform efforts. Journal of Research in
Science Teaching, 57(9):1322–1355, 2019.

[34] J. Silge and D. Robinson. tidytext: Text mining and
analysis using tidy data principles in R. JOSS, 1(3),
2016.

[35] J. Silge and D. Robinson. Text mining with R: A tidy
approach. O’Reilly Media, Inc., 2017.

[36] Y. Tausczik and J. Pennebaker. The psychological
meaning of words: LIWC and computerized text
analysis methods. Journal of language and social
psychology, 29(1):24–54, 2010.

[37] M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, and
A. Kappas. Sentiment strength detection in short
informal text. Journal of the American society for
information science and technology, 61(12):2544–2558,
2010.

[38] Y. Wang and D. Fikis. Common Core State Standards
on Twitter: Public sentiment and opinion leaders.
Educational Policy, 33(4):650–683, 2019.

[39] P. Yeh. More accurate tests for the statistical
significance of result differences. arXiv preprint
cs/0008005, 2000.

624 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Knowledge Tracing Models’ Predictive Performance when
a Student Starts a Skill

Jiayi Zhang, Rohini Das, Ryan S. Baker, Richard Scruggs

University of Pennsylvania
{joycez, rybaker, rscr}@upenn.edu, rohinidas604@gmail.com

ABSTRACT
Previous studies on the accuracy of knowledge tracing models
have typically considered the performance of all student actions.
However, this practice ignores the difference between students’
initial and later attempts on the same skill. To be effective for uses
such as mastery learning, a knowledge tracing model should be
able to infer student knowledge and performance on a skill after
the student has practiced that skill a few times. However, a
model’s initial performance prediction – on the first attempt at a
new skill – has a different meaning. It indicates how successful a
model is at inferring student performance on a skill from both
their performance on other skills and from the difficulty and other
properties of the first item the student encounters. As such, it may
be relevant to differentiate prediction in these two contexts when
evaluating a knowledge tracing model. In this paper, we describe
model performance at a more granular level and examine the
consistency of model performance across the number of student
instances on a given skill. Results from our research show that
much of the difference in performance between classic algorithms
such as BKT (Bayesian Knowledge Tracing) and PFA
(Performance Factors Analysis), as compared to a modern
algorithm such as DKVMN (Dynamic Key-Value Memory
Networks), comes down to the first attempts of a skill. Model
performance is much more comparable by the time the student
reaches their third attempt at a skill. Thus, while there are many
benefits to using contemporary knowledge tracing algorithms,
they may not be as different as previously thought in terms of
mastery learning.

Keywords

Knowledge Tracing, Cold Start, Deep Knowledge Tracing,
Bayesian Knowledge Tracing, Performance Factors Analysis,
Dynamic Key-Value Memory Networks

1. INTRODUCTION
Knowledge Tracing (KT), attempting to measure student
knowledge through performance during learning, is a critical
component in modern intelligent tutoring systems and adaptive
learning systems [18]. These models use students’ previous
performance to predict their proficiency on latent knowledge and

infer their likelihood of success in future attempts within the
learning system.

For well over a decade, Bayesian Knowledge Tracing (BKT; [5])
was the dominant algorithm in research on knowledge tracing – it
remains the dominant algorithm in use in systems used at scale by
students today. Later on, two waves of competing algorithms
emerged – a first wave around 2010, including many
psychometrically-influenced algorithms such as Performance
Factor Analysis (PFA; [17]) and a second wave in the mid-to-late
2010s based on neural networks, including Deep Knowledge
Tracing (DKT; [19]) and Dynamic Key-Value Memory Networks
(DKVMN; [26]). Work over the last decade has shown that variants
of BKT and PFA that take individual differences and timing into
account perform better [9, 15, 25]. The current wave of algorithms
based on neural networks, such as DKT and DKVMN, have
reported further improvements to model fit [12, 26].

The comparisons between these algorithms have generally focused
on metrics comparing overall success at predicting on later items,
within the learning system applied to held-out students. In these
comparisons, multiple large data sets are typically used, but
performance is considered evenly across the data set. However,
there are some reasons to think this may be a concerning practice.
For one thing, even though the data sets used are typically large,
these papers generally do not report if samples are large for all skills.
Coetzee [4] notes that BKT parameter estimation is more precise
for larger data sets than smaller data sets. Furthermore, Gervet [10]
concluded that algorithms based on logistic regression, such as PFA,
tend to underfit large datasets, while deep learning based
algorithms, like DKT, tend to overfit larger datasets.

More concerningly, many data sets used in student modeling have
skills which have only been encountered once or twice by many
students, either due to stop-out [3] or rarely-tagged secondary skills.
Slater and Baker [22] suggest that BKT models cannot be reliably
fit unless there is sufficiently large pool of students who have at
least three opportunities to practice each skill. As such, large
proportions of existing data sets may reflect a seeming special case.
Indeed, accurate prediction on these items likely reflects something
different than accurate prediction after a student has had more
practice. When a student has not yet worked on a skill, predicting
their performance at this point represents what is referred to as a
“cold start problem” – needing to perform well before having
sufficient data for the current student [24]. It is possible that some
more recent algorithms may perform better in these situations than
earlier algorithms, either by using information from the student’s
performance on other skills or information on the difficulty or other
properties of specific items. However, this better performance may
reflect something different than the student’s knowledge of the
current skill being studied. As such, it may be meaningful to
separate out cold start situations (for a given student and skill) from
situations where the model has sufficient data to estimate the
current skill by itself, when comparing KT algorithms.

Jiayi Zhang, Rohini Das, Ryan S. Baker and Richard Scruggs “Knowledge
Tracing Models’ Predictive Performance when a Student Starts a Skill”.
2021. In: Proceedings of The 14th International Conference on Educational
Data Mining (EDM21). International Educational Data Mining Society,
625-629. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 625

In this paper, we study how the performance of three KT algorithms
changes, depending on how much data the algorithms have on the
current student’s performance on the current skill. We compare the
classic algorithms BKT and PFA to a more recent neural network-
based algorithm, DKVMN, using the ASSISTments 2009-2010
Skill Builder data [7]. Within each model, the predictive
performance, determined by AUC ROC (Area Under the Receiver-
Operating Characteristic Curve) and RMSE (Root Mean Square
Error) was analyzed at students’ first through eighth encounter on
a skill, reflecting the changes in model performance as students
practice a skill more. We conclude with a discussion of the
implications of our finding, for both the evaluation and use of
knowledge tracing models.

2. METHODS
2.1 Data
In this study, we utilized the ASSISTments Skill Builder 2009-
2010 dataset [7], using the updated version which represents an
item requiring multiple skills as a single data point [23]. This
specific dataset was chosen because it has clearly defined skills and
because this dataset had frequently been used to compare KT
models in previous research [11, 13, 14, 23, 27].
In the data preprocessing stage, we removed items not linked to any
skill. Each student attempt was annotated with how many
opportunities to practice the relevant skill(s) the student had
encountered so far – i.e., the first instance means the learner is
encountering a skill for the first time, the eighth instance indicates
that the learner is encountering the skill for the eighth time. The
resultant data set consisted of 4,151 students who attempted 16,891
unique problems on 101 skills, resulting in 274,590 responses.
While all the skills were included in model training, only the four
most common skills are discussed below (see Table 1).

While using the ASSISTments platform, students have to
correctly answer n problems in a row to achieve mastery of a skill
(where n is set by the teacher, but is usually three) and can only
then move on to another skill. Given the design of the platform’s
three-in-a-row mastery learning approach, there is a drop in
sample size as the number of instances increases (a common
pattern in adaptive learning systems). There is also attrition due to
stop-out, where students stop working on a problem set without
mastering it [3]. Table 1 shows that across all four skills, the
number of students encountering a specific skill n times decreased
with instance. Of the four skills, an average 20% and 45%
attrition rate is observed on the third and eighth instances,
respectively.
Table 1: Number of students per instance in each skill

Skill Name 1 2 3 4 5 6 7 8

Addition and Subtraction
Fractions 1353 1066 978 920 836 756 692 625

Addition and Subtraction
Integers 1226 1021 790 693 640 579 510 460

Conversion of Fractions
Decimals & Percents 1225 1145 1121 1034 982 928 852 781

Equation Solving Two or
Fewer Steps 961 877 857 821 795 745 722 690

2.2 Model Construction
We constructed the following three knowledge tracing models
with the preprocessed ASSISTments 2009 dataset: BKT, PFA and
DKVMN. Each model was implemented with 5-fold student-level
cross-validation. For the cross-validation, the dataset was split
into five folds at the student level. Four folds were used to train

the model and the trained model predicted student’s performance
in the 5th fold. Each part acted as the test set once. Predictions in
the test sets were combined and used to compute AUC and RMSE
for each opportunity to practice, within each skill. For
comparability, the original skills were used to calculate
opportunities to practice rather than the new skills derived by
DKVMN. The folds were kept the same across models, reducing
the likelihood of randomly favoring one algorithm over another.
The metrics were averaged across the four skills in each instance
for each model.

BKT and PFA predict students’ success at each attempt based on
their previous performance on the skill. When predicting a
student’s success on the first attempt of a new skill, without
having any prior data, the initial prediction made by BKT and
PFA reflect the overall student performance across the entire
(training) data set on that skill, instead of the individual student’s
knowledge level on the skill. By contrast, the deep learning model
DKVMN utilizes all of a student’s historical data and exploits the
underlying relationships between concepts. This transferability of
prediction across skills can be expected to give the algorithm an
advantage of making the initial predictions on a newly-
encountered skill. In fact, [14] studied the effect of interaction
among skills in DKT, a closely-related deep learning model, and
compared it to BKT. By comparing different approaches to
leverage skill data, they concluded that DKT’s better performance
may be largely due to their use of a student’s performance on one
skill to predict performance on another skill, whereas skills are
strictly separated in BKT. PFA occupies a middle ground, as skills
do not directly influence each other, but their combinations in the
training set may influence the model parameters found during
fitting.

The two widely studied deep learning algorithms DKT and
DKVMN utilize neural networks to discover underlying
relationships among skills and items when predicting student
performance. Because of this, both algorithms have shown
significant improvements in model fit compared to traditional
algorithms. However, DKT maps the relationships on item level
while DKVMN fits a skill model from scratch by considering the
relationship among skills and items. Given the purpose of the
study is to understand whether transferring information between
skills influences a model’s accuracy during the first few
opportunities, DKVMN is a closer comparison to BKT and PFA
within the class of deep learning-based KT algorithms.

2.2.1 Bayesian Knowledge Tracing
Bayesian Knowledge Tracing (BKT; [5]) inputs performance into
a simple Markov model that is also a Bayesian Network [20]. To fit
BKT, we applied BKT-Brute Force [1] to the data set with a floor
of 0.01 for all probabilities and a ceiling of 0.3 for guess and slip to
avoid model degeneracy [2]. The algorithm produced estimations
for guessing, slipping, initial knowledge, and learning transition
probabilities for each of the skills, which were then used to predict
the probability of success for each student on each opportunity to
practice each skill.
2.2.2 Performance Factors Analysis
Performance Factors Analysis (PFA; [17]) is a model that predicts
learner performance using a logistic function that models changes
in performance through learners’ success and failures within a skill.
In this study, following the formulas in [17], the basin hopping
algorithm was used to fit the model to obtain the optimal parameters.
A set of parameters for success, failure and skill difficulty was
derived for each skill, which were then used to compute the

626 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

probability P(m) that the student would perform correctly, for each
student at each opportunity to practice each skill.

2.2.3 Dynamic Key-Value Memory Networks
Developed based on neural networks, Dynamic Key-Value
Memory Networks (DKVMN; [26]) employs two matrices that
capture states and the relationships between skill and student
mastery to predict performance on items and estimate mastery on a
set of automatically-derived skills. We utilized code from Zhang et
al. [26] to implement the DKVMN model and used the set of
parameters that produced the optimal outcome for the
ASSISTments 2009 dataset in the study. The model outputs a
probability of success for each student at each problem.
3. RESULTS

3.1 AUC Results
Table 2 summarizes the average AUC results for each of the eight
opportunities to practice each skill and the combined AUC for
opportunities three through eight in the BKT, PFA, and DKVMN
models. Additionally, the overall AUC across the first eight
opportunities is also reported for the four skills. Note that the
overall AUC only includes the targeted four skills in the first eight
attempts and therefore, should not be considered to be the overall
AUC of the algorithm across the entire data set.
For the first eight instances, a general upward trend is observed in
AUC for all three models. Starting at the first instance, the AUC
value for BKT is 0.49, PFA is 0.52, and DKVMN is 0.65. At this
point, the AUC value for the DKVMN model is much greater than
that of other two models, by approximately 0.15. Compared to BKT
and PFA, DKVMN is better at making the initial prediction on the
very first time a student sees a skill. In fact, at this point, both BKT
and PFA are performing at or below chance.

In the following instances, the values of BKT and PFA became
closer to the performance of DKVMN. In fact, by the fourth
instance, the models’ AUC values were fairly similar, having a
range of 0.65-0.70. From the fourth opportunity to the eighth, the
AUC values increased by 0.02 to 0.06 across skills. Performance
stayed similar between algorithms at this point, but DKVMN still
tended to achieve slightly higher performance. Across the 3rd-8th
opportunities, DKVMN averaged AUC 0.02-0.05 higher than the
other two algorithms (0.70 versus 0.68 for BKT and 0.65 for PFA).
These trends can be seen in Figures 1-3.

Table 2: Average AUC values in each instance

Model Type 1 2 3 4 5 6 7 8 3-8
All

(1-8)

BKT 0.49 0.63 0.68 0.68 0.68 0.68 0.66 0.70 0.68 0.66

PFA 0.52 0.59 0.63 0.65 0.65 0.65 0.66 0.71 0.65 0.63

DKVMN 0.65 0.68 0.70 0.70 0.70 0.69 0.69 0.72 0.70 0.69

Figure 1: AUC results for BKT model across instances

Figure 2: AUC results for PFA model across instances

Figure 3: AUC results for DKVMN model across instances

3.2 RMSE Results
Table 3 summarizes the average RMSE results for each opportunity
to practice the skills and the combined RMSE for the 3rd-8th
opportunities and the 1st-8th opportunities in the BKT, PFA, and
DKVMN models. Again, the RMSE reported in the table only
considers the targeted four skills in the first eight opportunities.

The RMSE demonstrates a downward trend across the first eight
opportunities in all three models. As RMSE measures the
difference between actual and predicted values, lower RMSE
values indicate more accurate predictions. In the first instance, the
RMSE value for BKT is 0.49, PFA is 0.51, and DKVMN is 0.47.
As the RMSE value for DKVMN is better than that of BKT and
PFA, similar to the AUC value, DKVMN is better able to predict
student knowledge at the first attempt (0.02 better than BKT and
0.04 better than PFA).

In the following instances, the values of BKT and PFA became
closer to the performance of DKVMN. In fact, by the fourth
instance, the models’ RMSE values were fairly similar, having a
range of 0.43-0.46. From the fourth opportunity to the eighth, the
RMSE values in all three models roughly remained the same across
skills. Across the 3rd-8th opportunities, DKVMN’s average RMSE
was similar to BKT and 0.02 lower than PFA (0.44 versus 0.44 and
0.46). These trends can be seen in Figures 4-6.
Table 3: Average RMSE values for all models in each instance

Model Type 1 2 3 4 5 6 7 8 3-8
All

(1-8)

BKT 0.49 0.46 0.44 0.44 0.44 0.44 0.45 0.44 0.44 0.45

PFA 0.51 0.48 0.46 0.46 0.47 0.46 0.48 0.46 0.46 0.47

DKVMN 0.47 0.45 0.44 0.43 0.44 0.44 0.45 0.43 0.44 0.45

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8

BKT: AUC

Addi4onandSubtrac4onFrac4ons Addi4onandSubtrac4onIntegers
ConversionofFrac4onDecimalsPercents Equa4onSolvingTwoorFewerSteps
Average

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8

PFA: AUC

Addi3onandSubtrac3onFrac3ons Addi3onandSubtrac3onIntegers

ConversionofFrac3onDecimalsPercents Equa3onSolvingTwoorFewerSteps

Avg

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8

DKVMN: AUC

Addi4on and Subtrac4on Frac4ons Addi4on and Subtrac4on Integers

Conversion of Frac4on Decimals Percents Equa4on Solving Two or Fewer Steps

Avg

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 627

Figure 4: RMSE results for BKT model in each instance

Figure 5: RMSE results for PFA model in each instance

Figure 6: RMSE results for DKVMN model in each instance

4. CONCLUSION AND DISCUSSION
In the last few years, there has been an explosion of interest in new
variants to knowledge tracing that achieve higher predictive
performance using neural networks. However, this work has
generally not yet explored where and when these algorithms
perform better, and what the implications are for using these models
in practice. More specifically, previous practices have averaged
predictions across students’ entire learning history, ignoring the
difference between the earliest work and later work on a skill.

In this study, we examined the performance of three KT models,
BKT, PFA and DKVMN, across students’ history of work on
specific skills, and compared how the three models differ in
predictive accuracy during the earliest and later opportunities to
practice each skill. With all eight opportunities considered together,
DKVMN outperformed BKT and PFA in both AUC and RMSE.
However, DKVMN’s better performance appears to be largely due
to its initial prediction on the first attempt on a skill, in which
DKVMN ‘s AUC was 0.16 higher than BKT and 0.13 higher than
PFA, and RMSE was 0.02-0.04 better. After the first attempt, BKT
and PFA’s predictive performance improved substantially, and
model performance became closer across the three algorithms after
the third attempt, though DKVMN remained slightly better.

The results suggest that much of the difference in performance
between these algorithms is due to DKVMN’s ability to make more
accurate initial predictions by using factors other than mastery of
the current skill, such as past performance on other skills and other
students’ performance on the same item. In other words, a
substantial amount of the difference between algorithms appears to
be due to factors other than estimating mastery of the current skill
the student is working on, from their performance on that skill. This
may be especially true in datasets where students stop-out on
specific skills [3], or where the skill model is added to or modified
after the system is built. In these cases, many student/skill
combinations may only occur once or twice, and having relatively
higher performance on the first attempt will inflate AUC and
RMSE values for models such as DKVMN. This raises the question
of what the application is for having better knowledge prediction at
the first time when a student sees a new skill. This type of
improvement in prediction may be useful to systems that decide
which skill a student should work on next (i.e., [6, 28]) but may be
less useful in systems that have a predefined order of skills for the
student to work on (i.e. [5, 8]) and the student does not move on
until they have demonstrated mastery on the current skill.

Given the difference in predictive performance between situations,
it may be appropriate to separate out cold start situations (for a
given student and skill) from situations where the model has
sufficient data to estimate the current skill by itself, when
comparing KT algorithms. Specifically, we propose that the
calculation of predictive metrics should separate out the predictions
on the initial two opportunities to practice each skill from the rest.
Adopting this approach will increase our ability to interpret the
difference between algorithms and understand how much better a
specific algorithm will be for specific use cases.
Two limitations to the current analyses can be addressed in future
work. First, our recommendations may not be meaningful for all
learning systems where contemporary KT is used. In specific, some
systems may not have skill models at all, and may never intend to
make inference at the level of interpretable skills. Although these
systems typically use an entirely different family of KT models (i.e.
[16, 21]), our recommendations would not be relevant in these
cases. Second, we have only investigated these issues in the context
of a single system and a set of skills for which there is extensive
data, and for three algorithms; the generalizability of the findings
presented here should be further investigated, using data from other
learning systems where, for instance, the granularity of the skills
differs. However, only limited effort is needed to separate out
practice on early learning opportunities from later learning
opportunities when calculating model AUC/RMSE. Therefore, it
may be warranted to adopt this approach and see whether practical
differences are also found for other contexts and algorithms as well.
Overall, we find initial evidence that one key factor leading to
better performance for DKVMN compared to earlier algorithms is
its performance in situations, before a student has had significant
opportunity to work on a skill. This result leads to
recommendations in how to better evaluate KT algorithms and
suggests that the benefits of this algorithm may be greater for some
applications (deciding which skill a student should work on next)
than others (deciding if a student has reached mastery in the current
skill they are working on). From the results of this study, future
studies conducting research involving KT models may find it useful
to calculate performance separately for a student’s initial
performance and their later performance on a skill; this would
provide researchers with more information on how their models are
working, and where their greatest benefits and potential are.

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

1 2 3 4 5 6 7 8

BKT: RMSE

Addi4onandSubtrac4onFrac4ons Addi4onandSubtrac4onIntegers

ConversionofFrac4onDecimalsPercents Equa4onSolvingTwoorFewerSteps

Average

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

1 2 3 4 5 6 7 8

PFA: RMSE

Addi3onandSubtrac3onFrac3ons Addi3onandSubtrac3onIntegers

ConversionofFrac3onDecimalsPercents Equa3onSolvingTwoorFewerSteps

Avg

0.2

0.3

0.3

0.4

0.4

0.5

0.5

1 2 3 4 5 6 7 8

DKVMN: RMSE

Addi4on and Subtrac4on Frac4ons Addi4on and Subtrac4on Integers

Conversion of Frac4on Decimals Percents Equa4on Solving Two or Fewer Steps

Avg

628 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

5. REFERENCES
[1] Baker, R.S.J. d. et al. 2010. Contextual Slip and Prediction
of Student Performance after Use of an Intelligent Tutor. User
Modeling, Adaptation, and Personalization (Berlin, Heidelberg,
2010), 52–63.
[2] Baker, R.S.J.D. et al. 2008. More Accurate Student
Modeling through Contextual Estimation of Slip and Guess
Probabilities in Bayesian Knowledge Tracing. Intelligent Tutoring
Systems (Berlin, Heidelberg, 2008), 406–415.
[3] Botelho, A.F. et al. 2019. Refusing to try: Characterizing
early stopout on student assignments. Proceedings of the 9th
International Conference on Learning Analytics & Knowledge
(New York, NY, USA, Mar. 2019), 391–400.
[4] Coetzee, D. 2014. Choosing sample size for knowledge
tracing models. CEUR Workshop Proceedings (2014), 117–121.
[5] Corbett, A.T. and Anderson, J.R. 1995. Knowledge
Tracing : Modeling the Acquisition of Procedural Knowledge. User
Modeling and User-Adapted Interaction. (1995), 253–278.
[6] Craig, S.D. et al. 2013. The impact of a technology-based
mathematics after-school program using ALEKS on student’s
knowledge and behaviors. Computers and Education. 68, (2013),
495–504.
[7] Feng, M. et al. 2009. Addressing the assessment challenge
with an online system that tutors as it assesses. User Modeling and
User-Adapted Interaction. 19, 3 (2009), 243–266.
[8] Feng, M. et al. 2009. Addressing the assessment challenge
with an online system that tutors as it assesses. User Modeling and
User-Adapted Interaction. 19, 3 (Aug. 2009), 243–266.
[9] Galyardt, A. and Goldin, I. 2015. Move your lamp post:
Recent data reflects learner knowledge better than older data.
Journal of Educational Data Mining. 7, 2 (2015), 83–108.
[10] Gervet, T. et al. 2020. When is Deep Learning the Best
Approach to Knowledge Tracing? Journal of Educational Data
Mining. 12, 3 (2020), 31–54.
[11] Gong, Y. et al. 2010. Comparing Knowledge Tracing and
Performance Factor Analysis by Using Multiple Model Fitting
Procedures. Intelligent Tutoring Systems (Berlin, Heidelberg,
2010), 35–44.
[12] Khajah, M. et al. 2016. How deep is knowledge tracing?
Proceedings of the 9th International Conference on Educational
Data Mining, EDM 2016 (2016), 94–101.
[13] Minn, S. et al. 2018. Deep Knowledge Tracing and Dynamic
Student Classification for Knowledge Tracing. 2018 IEEE
International Conference on Data Mining (ICDM) (Singapore,
Nov. 2018), 1182–1187.
[14] Montero, S. et al. 2018. Does deep knowledge tracing model
interactions among skills? Proceedings of the 11th International
Conference on Educational Data Mining (2018).

[15] Pardos, Z.A. and Heffernan, N.T. 2010. Modeling
Individualization in a Bayesian Networks Implementation of
Knowledge Tracing. In International Conference on User
Modeling, Adaptation, and Personalization (2010), 255–266.
[16] Pavlik, P. et al. 2008. Using Optimally Selected Drill
Practice to Train Basic Facts. Intelligent Tutoring Systems (Berlin,
Heidelberg, 2008), 593–602.
[17] Pavlik, P.I. et al. 2009. Performance Factors Analysis – A
New Alternative to Knowledge Tracing. Proceedings of the 14th
International Conference on Artificial Intelligence in Education
(Brighton, England, 2009), 531–538.
[18] Pelánek, R. 2017. Bayesian knowledge tracing, logistic
models, and beyond: an overview of learner modeling techniques.
User Modeling and User-Adapted Interaction. 27, 3–5 (2017),
313–350.
[19] Piech, C. et al. 2015. Deep knowledge tracing. Advances in
Neural Information Processing Systems. 2015-Janua, (2015), 505–
513.
[20] Reye, J. 2004. Student Modelling based on Belief Networks.
International Journal of Artificial Intelligence in Education,. 14,
(1) (2004), 63–96.
[21] Settles, B. and Meeder, B. 2016. A trainable spaced
repetition model for language learning. 54th Annual Meeting of the
Association for Computational Linguistics, ACL 2016 - Long
Papers. 4, (2016), 1848–1858.
[22] Slater, S. and Baker, R.S. 2018. Degree of error in Bayesian
knowledge tracing estimates from differences in sample sizes.
Behaviormetrika. 45, 2 (Oct. 2018), 475–493.
[23] Xiong, X. et al. 2016. Going Deeper with Deep Knowledge
Tracing. Proceedings of the 9th International Conference on
Educational Data Mining. (2016), 545–550.
[24] Yang, T.-Y. et al. 2019. Active Learning for Student Affect
Detection. Proceedings of The 12th International Conference on
Educational Data Mining (2019), 208–217.
[25] Yudelson, M. V. et al. 2013. Individualized bayesian
knowledge tracing models. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). 7926 LNAI, (2013), 171–180.
[26] Zhang, J. et al. 2017. Dynamic key-value memory networks
for knowledge tracing. 26th International World Wide Web
Conference, WWW 2017 (2017), 765–774.
[27] Zhang, J. et al. 2017. Dynamic Key-Value Memory
Networks for Knowledge Tracing. Proceedings of the 26th
International Conference on World Wide Web (Perth Australia,
Apr. 2017), 765–774.
[28] Zou, X. et al. 2019. Towards Helping Teachers Select
Optimal Content for Students. International Conference on
Artificial Intelligence in Education (Cham, 2019), 413–417.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 629

Analysis of stopping criteria for Bayesian Adaptive
Mastery Assessment

Androniki Sapountzi
Vrije Universiteit Amsterdam

Faculty of Behavioral and
Movement Sciences
a.sapountzi@vu.nl

Sandjai Bhulai
Vrije Universiteit Amsterdam

Faculty of Sciences
Department of Mathematics

s.bhulai@vu.nl

Ilja Cornelisz
Vrije Universiteit Amsterdam

Faculty of Behavioral and
Movement Sciences

i.cornelisz@vu.nl

Chris van Klaveren
Vrije Universiteit Amsterdam

Faculty of Behavioral and
Movement Sciences

c.p.b.j.van.klaveren@vu.nl

ABSTRACT
Computer-based learning environments offer the potential
for automatic adaptive assessments of student knowledge
and personalized instructional policies. In prior work, we
introduced an individualized Bayesian model to dynami-
cally assess student’s knowledge, based on observed response
times and response accuracy. In this paper, we leverage
that model as a stopping instructional policy to determine
when to stop the assessment. We evaluate several criteria
based on the change of performance measures as questions
are presented. These include the mean assessment level and
the Kullback-Leibler divergence. Student performances are
simulated considering their sensitivity to the prior belief for
mastery over different educational cases. Our results indi-
cate which criteria offer an efficient assessment, a confident
assessment, and which can effectively handle wheel-spinning
students.

Keywords
Bayesian Adaptive Mastery Assessment; stopping policy;
individualization; empirical analysis; performance model;
mastery criteria

1. INTRODUCTION
In adaptive learning systems, mastery is measured as a stu-
dent performs a skill and demonstrates knowledge by solving
a sequence of questions that tap that skill. Learner models
that rely on the mastery learning theory are widely used
in various personalized adaptive learning systems to infer
student mastery sequentially.

In a mastery learning framework, ’under-practicing’ and ’over-
practicing’ are two common pitfalls that cause students to

face a practicing or testing burden rather than focus on the
skill of their level [1, 2]. This might cause demotivation
and low engagement [3, 4, 2, 1, 5, 6]. Particularly, stu-
dents trapped in a mastery assessment cycle are referred to
as wheel-spinning students [7, 3, 8, 9]. They are consis-
tently unable to reach the mastery-success criterion set for
the skill, which triggers the system to present even more
items. In our previous paper, we proposed,Bayesian Adap-
tive Mastery Assessment(BAMA), a framework we created
to assess a student individually on a single skill given an
explicit mean success criterion. From an educational per-
spective, it can be used as a criterion-referenced assessment
to assure mastery [10, 6, 11, 12, 13]. We evaluated the util-
ity function of BAMA as a when-mastery-is-attained policy
and show that it accurately recovers the true mastery effi-
ciently, i.e., with few responses. However, this strategy is
not sufficient as it assumes that all students at some point
will reach that criterion [7, 2, 3, 4, 14, 9].

In this paper, we thereby evaluate the impact of the util-
ity function of BAMA as a stopping policy. We design im-
plicit stopping criteria and we provide an empirical analysis
considering the variance of length practice across simulated
student performances. We demonstrate that the developed
policy delivers meaningful results and identifies any student
profile, including wheel-spinners.

2. RELATED WORK
Student profiles aim to portray the individual performance
of each learner. Based on the response time of student per-
formances, learning sciences distinguish between struggling
fluent from fluent as the latter provide correct responses
with short response times [15]. An individual who has not
yet acquired the skill and will not demonstrate successful
performance is commonly modeled as having a low proba-
bility of a correct response [8, 2, 7, 9, 16]. These students
are termed as wheel-spinning students [7, 3, 8, 9] and have
been linked with long response times [8].

An instructional policy, also known as a stopping policy,
refers to the total length of the assessment when a pre-
specified stopping criterion accompanies the model. The cri-
teria are divided into two categories: (i) an explicit threshold

Androniki Sapountzi, Sandjai Bhulai, I. Cornelisz and Chris Van Klaveren
“Analysis of stopping criteria for Bayesian Adaptive Mastery Assessment”.
2021. In: Proceedings of The 14th International Conference on Educational
Data Mining (EDM21). International Educational Data Mining Society,
630-634. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

630 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

set to a statistic of the mastery estimator, known as a mas-
tery success criterion, and (ii) an implicit threshold set to the
size of change of a statistic of the mastery estimator. The
former framework is typically referred to as when-mastery-
is-attained policy, and the latter as a when-to-stop policy, as
it stops, independent of whether the student has mastered
the skill [7].

Substantial research efforts have focused on the impact of
a learner model concerning the total number of questions
it administers. Machine learning models were designed to
detect wheel spinner performance [9]. Frameworks of in-
structional policies [7, 14] and metrics [5] were proposed
for an evaluation of well-known prediction models on the fi-
nal proposed length. Other work specified a framework for
a conceptual interpretation over the stopping criterion [3].
Typically, these models assume a homogeneous class of stu-
dents and they consider solely response accuracy. Previous
research has shown that individualized models lead to signif-
icantly different policies [4] and highlighted the importance
of response times in stopping policies [9, 12, 17, 18, 13, 10,
19, 2].

3. MODEL AND STOPPING POLICY
Below we briefly discuss the assessment model, the stopping
criteria we consider, and the steps of our experiment.

3.1 Bayesian Adaptive Mastery Assessment
In the BAMA model, a student has a constant mastery level
Z on a single skill which is the product of two independent
random variables, the response time T ∼ Exponential(λ)
and the accuracy P ∼ Bernoulli(θ). We denote with τ the
maximum response time. The score Z is close to 1 when
a student answers correctly and relatively fast with respect
to τ . The value of Z becomes zero when a student answers
incorrectly, or when the response time exceeds τ . That is

operationalized as follows: Z = P ·
(
1− T

τ

)+
.

To keep the formulation tractable, we adopt a Bayesian ap-
proach to estimate the true unknown parameters θ and λ of
a student. We model θ by a Beta(α, β) distribution, and λ
by a Gamma(n, γ) distribution. This represents the prior
distribution over the unknown parameters (θ, λ), denoted as
p0, as an initial belief over a student’s mastery. The model
updates the belief on a posterior distribution p over these
parameters under the Bayes rule. As more responses be-
come available, the posterior distributions of the accuracy
(the Beta distribution) and the response time (the Gamma
distribution) become more centered and peaked around the
true values of θ and λ. However, this information is not
known in practice and needs to be estimated from the ob-
servations received over the assessment.

3.2 Stopping Criteria
A respective policy is concerned with the nature of the es-
timated Z-score and adopts a different stopping rule. We
employ the change of a point estimate, and the change of the
distribution. These are computed according to the change
observed between consecutive pairs of responses over the se-
quence. For the analysis and the evaluation of a policy, the
following four properties are typically considered [20, 7]: 1)
number of administered items, 2) number of non-stopping

situations, 3) accuracy with regard to the true value, 4) un-
certainty of the experiment and of the model.

The derivative-based stopping rule considers the reduction
of changes observed between consecutive pairs of responses
as measured with a pre-specified sample statistic of the Z
distribution. To put this formally, let ∆fi = fi−1−fi for any
function f . Then, our policy proposes to stop after response
i when the following decision rule holds.

|∆hi−1| < ε ∧ |∆hi| < ε, (1)

where hi denotes the value of a sample statistic of the dis-
tribution Z after the i-th observation, such as the mean,
variance, or any other function. The rule indicates that in a
sequence of three responses so far, two values for that rule
are computed. Similar to all implicit-based stopping rules,
the threshold value denoted as ε will also inevitably affect
the length of the assessment, i.e., as ε gets smaller, the longer
the assessment becomes. That is a special case of the prob-
abilistic stopping rule proposed in [7] which doesn’t directly
generalize to our model.

In our first experiment, we leverage the derivative-based rule
by considering the change of the posterior mean from the
prior mean. Point-based estimates from sample statistics
are all informative metrics that can be employed. However,
other estimated statistics may exist to describe the informa-
tion of a distributional score that may better accommodate
a balanced length assessment. Thereby, a more elegant solu-
tion would be to calculate a metric that considers the whole
distributional information obtained for Z at once.

We compute the second rule based on the reduction of di-
vergence between two consecutive distributions of responses,
the starting prior Zi−1 and the updating posterior Zi, after
item i has been administered. We formulate this with the
Kullback-Leibler (KL) divergence DKL as follows:

DKL(Zi−1 ‖ Zi) =

∫ 1

0

zi−1(x) log

(
zi−1(x)

zi(x)

)
dx. (2)

The quantity zi(x) describes the density of the distribution
Zi at response i evaluated at x.

3.3 Simulated performance profiles
A student is characterized by the pair (θ, λ) for their per-
formance. For the exposition of our purpose, we take four
equidistant intervals of Z defined as: mastered or fluent (Z ∈
[0.75−0.95]), accurate or struggling fluent (Z ∈ [0.5−0.74]),
undetermined or average (Z ∈ [0.2 − 0.49]), wheel-spinning
(Z ∈ [0− 0.19]). Then, we arbitrarily draw a specific pair of
(θ, λ) corresponding to the Z score from each interval. Par-
ticularly, we illustrate the following levels: mastered with
high accuracy and short response times (θ = 0.9, λ = 1) →
Z = 0.85 , accurate with high accuracy and long response
times (θ = 0.9, λ = 0.1) → Z = 0.50, undetermined with
(θ = 0.5, λ = 0.5) → Z = 0.46, and wheel-spinning with
(θ = 0.1, λ = 0.1)→ Z = 0.08.

4. RESULTS
We evaluate our stopping criteria through simulated student
performances. In practice, this translates to n observations
of responses x1, . . . , xn according to the student profile (θ, λ)

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 631

Figure 1: The size of the change between consecutive estimated expected values of Z for a prior p−0 = 0.3 and a prior p+0 = 0.7.

Figure 2: The KL divergence between consecutive estimated distributional scores for a prior p−0 = 0.3 and a prior p+0 = 0.7.

and prior p0. We update the prior distribution as observa-
tions arrive, i.e., pi based on pi−1 and xi−1. This allows
us to collect statistics on the Z-score for each administered
question. We repeat this 1,000 times to get accurate results
for the statistics. To ensure that the practice length is not
highly sensitive to the choice of the prior belief p0, we simul-
taneously consider two priors. An optimistic view, denoted
as p+0 , assuming a student who has mastered the skill, and
a pessimistic view denoted as p−0 , assuming a student who
has not yet mastered the skill. Considering a fixed maxi-
mum number of responses n and updating simultaneously
p+0 and p−0 additionally balances the efficiency and certainty
of the assessment.

We perform our experiments according to the above proce-
dure for each student profile (θ, λ) and prior p0 for a se-
quence of length n = 20, similarly to previous research [7,
3, 9]. We set symmetric values of priors as p+0 = 0.7 and
p−0 = 0.3. The value of the maximum permitted response
time is arbitrarily set to τ = 20, and the fastest answer to
λ = 1.

4.1 Change of the posterior predictive mean
Figure 1 shows the derivative rule described in Equation (1)
implemented for the posterior mean µ̂. Particularly, the
magnitude of change ∆µ̂i is depicted over consecutive re-

sponses i across the student profiles (θ, λ). The response
interval at which ∆µ̂i does not change anymore is observed
by the converging lines.

Intuitively, one would expect that the algorithm would pro-
pose more questions to wheel-spinning and undetermined
students compared to mastered students. However, that is
not the case when our starting belief, p−0 = 0.3, is closer
to the true posterior. Instead, the mastered students will
be proposed to provide more responses. The situation is
reversed when we start with an optimistic prior p+0 .

Second, the algorithm adjusts quickly to the student’s prac-
tice despite the presence of a non-representative prior. To
illustrate this, take the mastered student. Also, take the
same length of items, e.g., the first three questions. When
we start with a representative prior for the student, in this
case p+0 , the reduction of the change will be twice smaller
compared to the reduction of the change observed when we
start with the non-representative prior, p−0 .

4.2 Statistical divergence between consecutive
distributional scores

Figure 2 shows the divergence of the estimated distribution
DKL(i) described in (2). Wheel-spinners have DKL(i) ≥ 0,

632 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 1: Analysis and evaluation of stopping policies per profile, criterion, prior and threshold.

Assessment length: (SE, σ̂, |µ−µ̂
µ
|%)

Stopping rule Mastered Accurate Undetermined Wheel-spin

∆µ̂
p+0
.01 5: (0.0, 0.2, 2.84) 7: (0.0, 0.33, 8.67) 8: (0.01, 0.4, 16.76) 12: (0.0, 0.27, 135.04)

∆µ̂
p+
0
.02 4: (0.0, 0.19, 3.49) 5: (0.0, 0.32, 9.99) 4:(0.01, 0.36, 26.62) 7: (0.0, 0.3, 217.43)

∆µ̂
p−0
.01 11: (0.0, 0.31, 11.04) 7: (0.0, 0.35, 5.43) 8: (0.01, 0.4, 6.93) 8:(0.0, 0.23, 81.34)

∆µ̂
p−0
.02 9: (0.0, 032, 12.66) 4: (0.01, 0.35, 9.55) 3: (0.01, 0.36, 14.4) 5:(0.0, 0.25, 119.89)

∆DKL
p+0
.02 6: (0.0, 0.2, 1.92) 12: (0.0, 0.34, 5.76) 8: (0.01, 0.4, 16.76) 7: (0, 0.3, 217.43)

∆DKL
p+
0
.05 4: (0.0, 0.19, 3.49) 8: (0.0, 0.33, 7.11) 5: (0.01, 0.38, 21.53) 6: (0.0, 0.31, 242.25)

∆DKL
p−0
.02 12: (0.0, 0.31, 10.39) 14: (0.0, 0.35, 4.1) 19: (0.0, 0.43, 2.56) 6: (0.0, 0.24, 95.95)

∆DKL
p−
0
.05 7: (0.0, 0.32, 15.77) 8: (0.0, 0.35, 4.94) 4: (0.01, 0.38, 11.09) 6: (0.0, 0.24, 95.95)

in contrast to the mastered students, who have DKL(i) ≤ 0.
This can be attributed to the prior under- or overestimating
the Z score.

The results of DKL(i) are consistent to the posterior mean
µ̂. We observe a shorter length between two responses when
the prior is representative for the posterior.

4.3 Analysis and evaluation of the policies
Table 1 reports the results of the implemented stopping poli-
cies. For each student profile and stopping rule, as presented
by the columns and rows, we find the number of items at
which each rule proposes to stop and the variance of the
assessment length for different profiles. For each stopping
criterion, the prior distribution p0 is depicted as a super-
script and the threshold ε as a subscript.

For ∆µ̂ and the optimistic prior, the simulated students need
to solve at most 5-12 questions; whereas for ∆µ̂ and the pes-
simistic prior, the simulated students need to solve at most
3-11 questions, depending on the chosen threshold. Con-
sidering a single prior, the optimistic one performs better
across all students compared to the pessimistic one. Those
policies are depicted in bold letters.

For ∆DKL and the optimistic prior, the simulated students
need to solve at most 4-12 questions, depending on the
threshold value. For ∆DKL and the pessimistic prior, there
is a chance of a non-convergent policy. That holds for the
undetermined student as the policy converges only at the
end. This is depicted with the italic letters in the table.

The assessment length is short when the prior is close to
reality. This is depicted for the lenient threshold, e.g., in
the case of p+0 for a mastered student and p−0 for an unde-
termined student. Therefore, we satisfy both priors simul-
taneously. In that case, the maximum number of questions
is 9 for ∆µ̂. We get the same estimate of items with almost
the same uncertainty for both thresholds. Hence, we argue
that a shorter assessment length is preferred. It also shows
that the policy is less dependent on the value of ε.

The results of the lenient threshold stopping policies of ∆DKL

and the ∆Dµ̂ show that we achieve an efficient assessment
for both priors across all student performances. The satis-
faction of both priors is an efficient length considering that

in criterion-referenced assessments, at least n = 4 responses
are required to estimate the mastery of a single skill. Fur-
thermore, we observe that using both priors results in more
efficient assessment of wheel-spinning students. In the en-
vironment we have simulated, we see that one metric is
preferred towards the other under a certain objective. To
achieve efficiency for mastered and wheel-spinners, the KL
can be used. When the objective is shifted towards effi-
ciency among the average profiles, then the mean could be
a more appropriate metric. That doesn’t generalize to other
settings.

5. CONCLUSIONS
To conclude, we analyzed the performance of different stop-
ping policy rules for the utility function of the BAMA frame-
work. The stopping policy is constructed using both the
pessimistic and the optimistic prior for the assessment with
a maximum length of n = 20. This has several advantages:
fluent students will be picked up by the optimistic prior,
wheel-spinners by the pessimistic prior, and the other two
profiles by either one of the prior distributions. Consistent
behavior was found between the two criteria. Furthermore,
the lenient threshold is favored in both criteria. The mean
assessed mastery level (i.e., ∆µ̂) stopping criterion slightly
outperformed the divergence of assessed mastery level (i.e.,
∆DKL). The evaluation of the stopping policies is based
on these properties – fewer items, none non-convergent per-
formance case, and relative percentage approximation error
is low with high certainty. The simulated data has features
that we modelled explicitly. As future work, we plan to eval-
uate the stopping policies in real-world scenarios with real
data and provide a way to represent the average response
time and the average response accuracy of the student per-
formance.

6. REFERENCES
[1] E. Joseph, Engagement tracing: using response times

to model student disengagement, Artificial intelligence
in education: Supporting learning through intelligent
and socially informed technology 125 (2005) 88.

[2] R. Pelánek, Bayesian knowledge tracing, logistic
models, and beyond: an overview of learner modeling
techniques, User Modeling and User-Adapted
Interaction 27 (3-5) (2017) 313–350.

[3] R. Pelánek, Conceptual issues in mastery criteria:
Differentiating uncertainty and degrees of knowledge,

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 633

in: International Conference on Artificial Intelligence
in Education, Springer, 2018, pp. 450–461.

[4] J. I. Lee, E. Brunskill, The impact on individualizing
student models on necessary practice opportunities,
International educational data mining society (2012).

[5] J. P. González-Brenes, Y. Huang, ” your model is
predictive–but is it useful?” theoretical and empirical
considerations of a new paradigm for adaptive
tutoring evaluation., International Educational Data
Mining Society (2015).

[6] B. S. Bloom, Time and learning., American
psychologist 29 (9) (1974) 682.

[7] T. Käser, S. Klingler, M. Gross, When to stop?:
towards universal instructional policies, in:
Proceedings of the Sixth International Conference on
Learning Analytics & Knowledge, ACM, 2016, pp.
289–298.

[8] Z. Aghajari, D. S. Unal, M. E. Unal, L. Gómez,
E. Walker, Decomposition of response time to give
better prediction of children’s reading comprehension.,
International Educational Data Mining Society (2020).

[9] Y. Gong, J. E. Beck, Towards detecting
wheel-spinning: Future failure in mastery learning, in:
Proceedings of the Second (2015) ACM Conference on
Learning@ Scale, ACM, 2015, pp. 67–74.

[10] J. P. Lalley, J. R. Gentile, Classroom assessment and
grading to assure mastery, Theory Into Practice 48 (1)
(2009) 28–35.

[11] M. Bulger, Personalized learning: The conversations
we’re not having, Data and Society 22 (1) (2016).

[12] H. Peng, S. Ma, J. M. Spector, Personalized adaptive
learning: an emerging pedagogical approach enabled
by a smart learning environment, Smart Learning
Environments 6 (1) (2019) 9.

[13] J. R. Anderson, A. T. Corbett, K. R. Koedinger,
R. Pelletier, Cognitive tutors: Lessons learned, The
journal of the learning sciences 4 (2) (1995) 167–207.

[14] J. Rollinson, E. Brunskill, From predictive models to
instructional policies, International Educational Data
Mining Society (2015).

[15] C. Binder, E. Haughton, B. Bateman, Fluency:
Achieving true mastery in the learning process,
Professional Papers in special education (2002) 2–20.

[16] W. J. González-Espada, D. W. Bullock, Innovative
applications of classroom response systems:
Investigating students’ item response times in relation
to final course grade, gender, general point average,
and high school act scores, Electronic Journal for the
Integration of Technology in Education 6 (2007)
97–108.

[17] C. Lin, S. Shen, M. Chi, Incorporating student
response time and tutor instructional interventions
into student modeling, in: Proceedings of the 2016
Conference on user modeling adaptation and
personalization, 2016, pp. 157–161.

[18] R. Ellis, Measuring implicit and explicit knowledge of
a second language: A psychometric study, Studies in
second language acquisition 27 (2) (2005) 141–172.

[19] P. De Boeck, M. Jeon, An overview of models for
response times and processes in cognitive tests,
Frontiers in psychology 10 (2019) 102.

[20] R. E. Stafford, C. R. Runyon, J. M. Casabianca, B. G.
Dodd, Comparing computer adaptive testing stopping
rules under the generalized partial-credit model,
Behavior research methods 51 (3) (2019) 1305–1320.

634 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Detecting Careless Responding to Assessment Items in a
Virtual Learning Environment Using Person-fit Indices and

Random Forest
Sanaz Nazari, Walter L. Leite, and A. Corinne Huggins-Manley

University of Florida

sanaznazari@ufl.edu

ABSTRACT

Careless responding and keeping students motivated for different

tests have been common problems in many areas, especially in

education. This study’s objective was to demonstrate a novel

approach to detect careless responding using person-fit indices

developed within the field of psychometrics combined with a

random forest. The data used was obtained from various tests in

the Math Nation virtual learning platform. The result of person-fit

indices as previously used measures of careless responding as

well as the result of a random forest classifier to capture careless

responding were compared by Receiver Operating characteristic

(ROC) analysis and the area under the curve (AUC). The result

showed that random forest combined with person-fit indices

outperformed person-fit indices directly in detecting careless

responding. Some important applications of this method for

applied researchers are discussed in the conclusion section.

Keywords

Careless responding, Person-fit index, Random forest classifier,

Virtual learning environment

1. INTRODUCTION

 Sanaz Nazari, Walter Leite and Anne Huggins-Manley “Detecting Care-
less Responding to Assessment Items in a Virtual Learning Environ-
ment Using Person-fit Indices and Random Forest”. 2021. In: Pro-
ceedings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 635-640.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 635

Table 1: Used Person-fit indices in PerFit package

1.1 Theoretical Framework

2. METHODS

2.1 Participants

2.2 Measures

636 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

2.3 Analysis

𝑃(𝑌𝑖𝑠 = 1|𝜃𝑠) =
𝑒𝑥𝑝1.7𝑎𝑖(𝜃𝑠−𝑏𝑖)

1 + 𝑒𝑥𝑝1.7𝑎𝑖(𝜃𝑠−𝑏𝑖)

Figure 1: Frequency graph of correct responses versus

incorrect responses across time for item 2.

3. PRELIMINARY RESULT

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 637

Table 2: AUC of 14 person-fit indices

Figure 2: AUC of ROC plot for random forest classifier

4. DISCUSSION AND CONCLUSSION

5. ACKNOWLEDGMENTS

6. REFERENCES
[1] Artner, R. (2016). A simulation study of person-fit in the

Rasch model. Psychological Test and Assessment

Modeling, 58(3), 531-563. Retrieved from

https://lirias.kuleuven.be/retrieve/523896

[2] Beck, M. F., Albano, A. D., & Smith, W. M. (2019). Person-

Fit as an Index of Inattentive Responding: A Comparison of

Methods Using Polytomous Survey Data. Applied

Psychological Measurement, 43(5), 374-387..

https://doi.org/10.1177%2F0146621618798666

[3] Birnbaum, A. (1968). Some latent trait models and their use

in inferring an examinee’s ability, Contributed

638 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://lirias.kuleuven.be/retrieve/523896
https://doi.org/10.1177%2F0146621618798666

chapter. Statistical theories of mental test scores, Chapters-

17.

[4] Breiman, L. (1996). Bagging predictors. Machine

learning, 24(2), 123-140.

https://doi.org/10.1007/BF00058655

[5] Breiman, L. Random Forests. Machine Learning 45, 5–32

(2001). https://doi.org/10.1023/A:1010933404324

[6] Cheung, G. W., & Rensvold, R. B. (2000). Assessing

extreme and acquiescence response sets in cross-cultural

research using structural equations modeling. Journal of

cross-cultural psychology, 31(2), 187-212.

https://doi.org/10.1177%2F0022022100031002003

[7] Donlon, T. F., & Fischer, F. E. (1968). An index of an

individual’s agreement with group-determined item

difficulties. Educational and Psychological

Measurement, 28(1), 105-113.

https://psycnet.apa.org/doi/10.1177/001316446802800110

[8] Drasgow, F., Levine, M. V., & Williams, E. A. (1985).

Appropriateness measurement with polychotomous item

response models and standardized indices. British Journal of

Mathematical and Statistical Psychology, 38(1), 67-86.

https://doi.org/10.1111/j.2044-8317.1985.tb00817.x

[9] Embretson, S. E., & Reise, S. P. (2013). Item response

theory. Psychology Press.

[10] Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim,

D. (2014). Do we need hundreds of classifiers to solve real

world classification problems?. The journal of machine

learning research, 15(1), 3133-3181.

https://doi.org/10.1117/1.JRS.11.015020

[11] Hanley, J. A., & McNeil, B. J. (1982). The meaning and use

of the area under a receiver operating characteristic (ROC)

curve. Radiology, 143(1), 29-36.

https://doi.org/10.1148/radiology.143.1.7063747

[12] Harnisch, D., & Linn, R. (1981). Analysis of Item Response

Patterns: Questionable Test Data and Dissimilar Curriculum

Practices. Journal of Educational Measurement, 18(3), 133-

146. Retrieved October 15, 2020, from

http://www.jstor.org/stable/1434737

[13] Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X.

(2013). Applied logistic regression (Vol. 398). John Wiley &

Sons.

[14] Kane, M. T., & Brennan, R. L. (1980). Agreement

coefficients as indices of dependability for domain-

referenced tests. Applied Psychological Measurement, 4(1),

105-126. https://doi.org/10.1177%2F014662168000400111

[15] Karabatsos, G. (2003). Comparing the aberrant response

detection performance of thirty-six person-fit statistics.

Applied Measurement in Education, 16(4), 277-298.

https://doi.org/10.1207/S15324818AME1604_2

[16] Lastinger Center for Learning, & University of Florida.

(2019). Algebra Nation. Retrieved 9/20/2019 from

http://lastingercenter.com/portfolio/algebra-nation-2/

[17] Leite W.L., Nazari S. (2020) Marlowe-Crowne Social

Desirability Scale. In: Zeigler-Hill V., Shackelford T.K. (eds)

Encyclopedia of Personality and Individual Differences.

Springer, Cham. https://doi.org/10.1007/978-3-319-24612-

3_45

[18] Liaw, A., & Wiener, M. (2002). Classification and regression

by randomForest. R news, 2(3), 18-22. Retrieved from

https://www.r-project.org/doc/Rnews/Rnews_2002-3.pdf

[19] Meade, A. W., & Craig, S. B. (2012). Identifying careless

responses in survey data. Psychological methods, 17(3), 437.

http://dx.doi.org/10.1037/a0028085

[20] Meijer, R. R. (1994). The number of Guttman errors as a

simple and powerful person-fit statistic. Applied

Psychological Measurement, 18(4), 311-314.

https://doi.org/10.1177%2F014662169401800402

[21] Patton, J. M., Cheng, Y., Hong, M., & Diao, Q. (2019).

Detection and treatment of careless responses to improve

item parameter estimation. Journal of Educational and

Behavioral Statistics, 44(3), 309-341.

https://doi.org/10.3102%2F1076998618825116

[22] Paulhus, D. L. (1991). Measures of personality and social

psychological attitudes. In J. P. Robinson & R. P. Shaver

(Eds.), Measures of social psychological attitudes series

(Vol. 1, pp. 17–59). San Diego: Academic.

https://doi.org/10.1016/C2013-0-07551-2

[23] R Core Team (2018). R: A language and environment for

statistical computing. R Foundation for Statistical

Computing, Vienna, Austria. Available online

at https://www.R-project.org/.

[24] Rios, J. A., & Soland, J. (2020). Parameter Estimation

Accuracy of the Effort-Moderated Item Response Theory

Model Under Multiple Assumption Violations. Educational

and Psychological Measurement, 0013164420949896.

https://doi.org/10.1177%2F0013164420949896

[25] Sato, T. (1975). The construction and interpretation of SP

tables. Tokyo, Japan: Meiji Tosho.

[26] Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S.

(1998). Boosting the margin: A new explanation for the

effectiveness of voting methods. Annals of Statistics, 26(5),

1651-1686. https://doi.org/10.1214/aos/1024691352

[27] Sijtsma, K. (1986). A coefficient of deviance of response

patterns. Kwantitatieve Methoden, 7(22), 131-145. Retrieved

from

https://research.tilburguniversity.edu/files/1030745/COEFFI

CI.PDF

[28] Sijtsma, K., & Meijer, R. R. (1992). A method for

investigating the intersection of item response functions in

Mokken’s nonparametric IRT model. Applied Psychological

Measurement, 16(2), 149-157.

https://doi.org/10.1177%2F014662169201600204

[29] Snijders, T. A. (2001). Asymptotic null distribution of person

fit statistics with estimated person parameter. Psychometrika,

66(3), 331-342. https://doi.org/10.1007/BF02294437

[30] Tatsuoka, K. K., & Tatsuoka, M. M. (1982). Detection of

aberrant response patterns and their effect on

dimensionality. Journal of Educational Statistics, 7(3), 215-

231. https://doi.org/10.3102%2F10769986007003215

[31] Tatsuoka, K. K., & Tatsuoka, M. M. (1983). Spotting

erroneous rules of operation by the individual consistency

index. Journal of Educational Measurement, 221-230.

[32] Tatsuoka, K., & Tatsuoka, M. (1983). Spotting Erroneous

Rules of Operation by the Individual Consistency

Index. Journal of Educational Measurement, 20(3), 221-230.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 639

https://doi.org/10.1007/BF00058655
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1177%2F0022022100031002003
https://psycnet.apa.org/doi/10.1177/001316446802800110
https://doi.org/10.1111/j.2044-8317.1985.tb00817.x
https://doi.org/10.1117/1.JRS.11.015020
https://doi.org/10.1148/radiology.143.1.7063747
http://www.jstor.org/stable/1434737
https://doi.org/10.1177%2F014662168000400111
https://doi.org/10.1207/S15324818AME1604_2
http://lastingercenter.com/portfolio/algebra-nation-2/
https://doi.org/10.1007/978-3-319-24612-3_45
https://doi.org/10.1007/978-3-319-24612-3_45
https://www.r-project.org/doc/Rnews/Rnews_2002-3.pdf
http://dx.doi.org/10.1037/a0028085
https://doi.org/10.1177%2F014662169401800402
https://doi.org/10.3102%2F1076998618825116
https://doi.org/10.1016/C2013-0-07551-2
https://www.r-project.org/
https://doi.org/10.1177%2F0013164420949896
https://doi.org/10.1214/aos/1024691352
https://research.tilburguniversity.edu/files/1030745/COEFFICI.PDF
https://research.tilburguniversity.edu/files/1030745/COEFFICI.PDF
https://doi.org/10.1177%2F014662169201600204
https://doi.org/10.1007/BF02294437
https://doi.org/10.3102%2F10769986007003215

Retrieved October 15, 2020, from

http://www.jstor.org/stable/1434713

[33] Tendeiro, J. N., Meijer, R. R., & Niessen, A. S. M. (2016).

PerFit: An R package for person-fit analysis in IRT. Journal

of Statistical Software, 74(5), 1-27.

http://dx.doi.org/10.18637/jss.v074.i05

[34] van Barneveld, C. (2007). The effect of examinee motivation

on test construction within an IRT framework. Applied

Psychological Measurement, 31(1), 31-46.

https://doi.org/10.1177%2F0146621606286206

[35] Van der Flier, H. (1977). Environmental factors and deviant

response patterns. Basic problems in cross cultural

psychology, Amsterdam: Swets & Seitlinger.

[36] Van der Flier, H. (1980). Vergelijkbaarheid van individuele

testprestaties. Swets & Zeitlinger.

[37] Van der Flier, H. (1982). Deviant response patterns and

comparability of test scores. Journal of Cross-Cultural

Psychology, 13(3), 267-298.

https://doi.org/10.1177%2F0022002182013003001

[38] Voss, N. M., & Vangsness, L. (2020). Is Procrastination

Related to Low‐Quality Data?. Educational Measurement:

Issues and Practice. https://doi.org/10.1111/emip.12355

[39] Weller, M. (2007). Virtual learning environments: Using,

choosing and developing your VLE. Routledge.

[40] Wise, S. L. (2015). Effort analysis: Individual score

validation of achievement test data. Applied Measurement in

Education, 28(3), 237-252.

https://doi.org/10.1080/08957347.2015.1042155

[41] Wise, S. L. (2017). Rapid‐guessing behavior: Its

identification, interpretation, and implications. Educational

Measurement: Issues and Practice, 36(4), 52-61.

https://doi.org/10.1111/emip.12165

[42] Wise, S. L., & DeMars, C. E. (2010). Examinee noneffort

and the validity of program assessment results. Educational

Assessment, 15(1), 27-41.

https://doi.org/10.1080/10627191003673216

[43] Wise, S. L., & Kong, X. (2005). Response time effort: A new

measure of examinee motivation in computer-based

tests. Applied Measurement in Education, 18(2), 163-183.

https://doi.org/10.1207/s15324818ame1802_2

[44] Xue, K., Huggins-Manley, A. C., & Leite, W. L. (2020).

Semi-supervised Learning Method for Adjusting Biased Item

Difficulty Estimates Caused by Nonignorable Missingness

under 2PL-IRT Model In A. N. Rafferty, J. Whitehill, C.

Romero, & V. Cavalli-Sforza (Eds.), Proceedings of The

13th Conference of Educational Data Mining.

https://educationaldatamining.org/files/conferences/EDM202

0/papers/paper_217.pdf

640 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

http://www.jstor.org/stable/1434713
http://dx.doi.org/10.18637/jss.v074.i05
https://doi.org/10.1177%2F0146621606286206
https://doi.org/10.1177%2F0022002182013003001
https://doi.org/10.1111/emip.12355
https://doi.org/10.1080/08957347.2015.1042155
https://doi.org/10.1111/emip.12165
https://doi.org/10.1080/10627191003673216
https://doi.org/10.1207/s15324818ame1802_2
https://educationaldatamining.org/files/conferences/EDM2020/papers/paper_217.pdf
https://educationaldatamining.org/files/conferences/EDM2020/papers/paper_217.pdf

Tracing Knowledge for Tracing Dropouts: Multi-Task
Training for Study Session Dropout Prediction

Seewoo Lee*
Riiid! AI Research

seewoo.lee@riiid.co

Kyu Seok Kim*
Riiid! AI Research

kyuseok.kim@riiid.co

Jamin Shin
Riiid! AI Research

jamin.shin@riiid.co
Juneyoung Park
Riiid! AI Research

juneyoung.park@riiid.co

ABSTRACT
Study session dropout prediction allows for educational systems to
identify when a student would stop a study session which gives vital
information to prolong learning activity. Student session dropout
can depend on many factors that are involved with the engage-
ment when using the system. The student’s knowledge level and
their track records within the system are closely related to the stu-
dent’s willingness to continue with their study. Knowledge trac-
ing as a task models the user’s knowledge level given study his-
tory. The information from knowledge tracing can have significant
impact on predicting the student’s willingness to continue, which
is why it is natural to train two tasks jointly for better general-
ization in dropout prediction task. While extensive research has
been conducted individually on dropout prediction and knowledge
tracing, the effect of jointly modeling two tasks has not been thor-
oughly investigated. Hence, we show that multi-task training of
the study session dropout prediction model along with knowledge
tracing boosts the performance of study session dropout predic-
tion, especially on more challenging tasks and datasets. Specifi-
cally, with Transformer-based models, multi-task training signifi-
cantly improves Area Under Receiving Operator Curve (AUROC)
by 3.62% in further N -step dropout prediction task, which is a
study session dropout prediction task under a more practical set-
ting. Moreover, under label-scarce and class-imbalance settings,
our method shows improvements of AUROC up to 12.41% and
11.22%, respectively. Our results imply that knowledge tracing is
closely related to study session dropout prediction and can transfer
positive knowledge in multi-task training, which provides a new
way to better predict dropouts especially in difficult settings.

Keywords
Dropout prediction, Multi-task Training, Knowledge Tracing

1. INTRODUCTION
The advantages of e-learning has gathered the attention of both ed-
ucators and researchers. One of the lasting problems in e-learning
is the ability to maintain the user’s attention during the system use.

For instance, students in mobile learning environments are more
prone to distractions and exhibit difficulties in concentration [16,
20, 5]. Thus, being able to properly identify when these issues oc-
cur will allow an Intelligent Tutoring System (ITS) [1] to appropri-
ately and preemptively intervene. This task is called Study Session
Dropout Prediction and has been recently proposed by [21]. Pre-
dicting such session dropout is a crucial task in Educational Data
Mining (EDM) to understand student’s behaviors and learning en-
vironments, which can lead to increased learning effect.

However, study session dropout prediction has not yet been exten-
sively studied. Many recent research works have instead focused
on predicting student dropout in environments like universities or
Massive Open Online Courses (MOOC) [3, 13, 27, 33, 35]. Inter-
estingly, [22, 9, 26] has also shown that one of the main reasons
students drop out from schools or classes is their academic perfor-
mance which is highly relevant to their knowledge states. Given
such knowledge, we hypothesize that study session dropout can
also be attributed to the knowledge states of students.

Hence, in this paper, we jointly model study session dropout pre-
diction with knowledge tracing, which is a heavily studied task
that [12, 23, 8] that aims to predict the student’s future performance
on knowledge components (e.g. questions or concepts) given the
student’s historical data. In this study, we address this issue through
a machine learning methodology known as multi-task learning [4].
Multi-task learning jointly trains multiple tasks together to formu-
late a comprehensive understanding of the nature of the data. Specif-
ically, we implement a multi-task training model that is trained with
both session dropout prediction and knowledge tracing.

The contributions of this paper are as such:

• We provide a multi-task training framework to jointly model
study session dropout prediction and knowledge tracing.

• We show that our multi-task training framework boosts the
performance of the trained model on study session dropout
prediction. Also, we show that our method elevates the per-
formance in further N -step dropout prediction task, where
the model has to predict dropouts not only in immediate time
step, but also in future time steps.

• We perform extensive ablation studies to show that multi-
task training shows even higher performance on more dif-
ficult experimental settings such as label scarcity and class-
imbalance. We also show with ablation studies that the thresh-

Seewoo Lee, Kyu Seok Kim, Jamin Shin and Juneyoung Park
“Tracing Knowledge for Tracing Dropouts: Multi-Task Training for
Study Session Dropout Prediction”. 2021. In: Proceedings
of The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 641-647.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 641

old of lag time that we use to define session dropout also
affects the performance of multi-task training.

2. RELATED WORKS
2.1 Dropout prediction
There have been many attempts to predict dropouts in various envi-
ronments. Traditionally, dropout prediction has been incorporated
to predict student dropouts [3, 27]. Following the proliferation of
internet, dropout prediction became applicable in online services.
[2, 15] incorporated deep learning methods in Spotify Sequential
Skip Prediction Challenge, where the task is to infer the songs that
will be skipped in the second half session after the first half. Mod-
els such as denoising autoencoder and variants of Long Short Term
Memory (LSTM) network were utilized. [13, 33, 35] used deep
learning methods such as Convolutional Neural Network (CNN) to
predict students’ dropouts in MOOC. Study session dropout pre-
diction has been studied to discover student’s involvements in mo-
bile learning environments. [21] utilized the Transformer network
[31], which replaced the recurrent architecture of Recurrent Neural
Networks (RNN) by self-attention blocks, to predict the study ses-
sion dropout probability in mobile learning environment. We used
Deep Attentive Study Session Dropout prediction (DAS) model in
[21] with multi-task training approach in our experiments.

2.2 Multi-Task training
Multi-task training or multi-objective training is a method to train a
machine learning model with multiple objectives [37], which tries
to enhance the performance on original task by sharing features
with auxiliary tasks. It has been used across various domains in
machine learning, such as Computer Vision and Natural Language
Processing. For example, in [24], the authors used multi-task train-
ing for face labeling by training a CNN to handle both likelihoods
and pairwise label dependencies. Multi-Task Deep Neural Network
(MT-DNN, [25]), is a BERT [11] based model with several task-
specific layers for multi-task learning, which outperforms vanilla
BERT’s performance on the GLUE benchmark [32].

There are also several applications of multi-task training in an edu-
cational field. Huang et al. [18] presents a transformer-based model
that identifies whether a given voice of a teacher corresponds to a
question or not, which solve the problem as a multi-class classifi-
cation problem to recognize question types. Geden et al. [14] pro-
posed LSTM-based model to predict correctness rate of all ques-
tions instead of the average correctness rate for the related ques-
tions. In [19], Huang et al. suggests Deep Reinforcement Learning
based exercise recommendation system whose reward function is
designed to satisfy multiple objectives.

2.3 Knowledge Tracing
Knowledge tracing is a task of modeling students’ knowledge level
given their learning activities. Knowledge tracing and dropout pre-
diction shares the aspect that they both model students’ responses
given their learning histories. Bayesian Knowledge Tracing (BKT)
is a traditional method which treats student’s learning activities
as binary variables representing whether the student understands
a certain concept or not [36]. Some works proposed to incorporate
deep learning methods in knowledge tracing. [29] feeds the users’
one-hot encoded learning activities into RNN-based model archi-
tectures to output the correctness prediction probability. [7, 28] are
the works that use Transformer-based architectures for knowledge
tracing. SAINT [7] has a similar architecture to DAS, which uses
Transformer’s both encoder and decoder structure.

3. METHODS
3.1 Study Session Dropout Prediction
Formally, a student’s learning history is given as a sequence of in-
teractions

I = (I(1), I(2), I(3), . . . , I(T))

where each I(j) = (e(j), l(j)) includes meta-data of the question
e(j) that a student solves at j-th step (e.g. question id, category of
the question, question text, ...) and the meta-data of the student’s
response l(j) (e.g. response correctness, elapsed time, timeliness,
...) at j-th step. Then the study session dropout prediction is to
estimate the probability

P[y
(j)
DP = 1|I(1), I(2), . . . , I(j−1), e(j)]

that the session dropout occurs after solving j-th question. Note
that a sequence can contain multiple sessions. As in [21], we define
one-hour inactivity as a session dropout, so that the dropout label
at j-th step is given by

y
(j)
DP =

{
1 lt(j) := st(j+1) − st(j) ≥ 1 hour
0 otherwise

where st(j) is the start time at j-th step, i.e. the time that user
start to solve the question, and lt(j) is the lag time for the j-th
interaction.

3.2 Input Representation
The representation of each interaction I(j) = (e(j), l(j)) is formu-
lated similarly to the settings in [21]. Here are some minor differ-
ences of feature settings between our model and the original DAS
model in [21]:

1. Instead of start time, we use the lag time feature. It is more
directly related to the dropout and leads to the substantial
gain in the model’s performance. Since the distribution of a
lag time is long-tailed, we use the logarithm of the lag time
instead of the lag time itself. (See Figure 2 for the distribu-
tion of the lag time). It is used as a decoder’s input, not for
an encoder.

2. We use continuous embedding for elapsed time, instead of
discrete embedding. More precisely, we first clip the actual
elapsed time with maximum 300 seconds, then normalize it
by dividing it with 300. After that, we get a latent embed-
ding vector for the elapsed time et by v = v(et) = et ·wet,
where wet is a single trainable vector which has same di-
mension as the model.

3.3 Model
In this section, we describe our methodology to jointly perform
training in dropout prediction and knowledge tracing. We use the
shared model f to generate the shared feature representations for
both dropout prediction and knowledge tracing. An arbitrary model
f takes the sequences of question embeddings e = [e(1), . . . , e(j)]

and response embeddings l = [l(1), . . . , l(j−1)] to produce the
shared feature representation for dropout prediction and knowledge
tracing. Then, the feature representation is fed into the final sepa-
rate prediction layers to output predicted dropout probabilities and
response correctness:

ŷDP = σ
(
WDP(f(e, l)) + bDP

)
ŷKT = σ

(
WKT(f(e, l)) + bKT

)
642 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Further Steps N = 1 (Positive label 4.06%) N = 5 (Positive label 18.34%) N = 10 (Positive label 32.52%)

model AUROC AUPRC AUROC AUPRC AUROC AUPRC

vanilla multi-objective vanilla multi-objective vanilla multi-objective vanilla multi-objective vanilla multi-objective vanilla multi-objective

LSTM 0.8704 0.8717 0.3208 0.3229 0.7586 0.7599 0.4577 0.4598 0.736 0.7367 0.5880 0.5886
GRU 0.8652 0.8670 0.3083 0.3133 0.7567 0.7570 0.4547 0.4556 0.7338 0.7349 0.5842 0.5855
DAS 0.8807 0.8836 0.3469 0.3534 0.7579 0.7734 0.4598 0.4815 0.7229 0.7491 0.5717 0.6061

Table 1: Test AUROCs and AUPRCs of DAS and RNN-based dropout prediction models. Further steps N of each task and its positive label proportions of
the dataset are indicated in the top row (N = 1 corresponds to the original session dropout prediction task). Best result for each model is indicated in bold.

Figure 1: Overall architecture of our multi-task training scheme. Note that
s is the starting token.

The major difference between our method and the previous dropout
prediction models is that we are jointly training the model to predict
both student dropout and response correctness, by using different
prediction layer for each task at the end of the shared model. Using
separate prediction layers, we produce both ŷDP = [ŷ

(1)
DP , . . . , ŷ

(j)
DP]

and ŷKT = [ŷ
(1)
KT , . . . , ŷ

(j)
KT], which are predicted probabilities for

study session dropout (ŷDP) and response correctness (ŷKT) for
each time step. Training scheme of our approach is described in
Figure 1. The major baseline that we use for our methodology is
DAS [21], which is a Transformer-based model to predict study
session dropout. The details of the architecture of DAS is described
in Appendix A. We also do experiments with RNN-based model
architectures - including LSTM and GRU [6, 17] - which are pro-
vided as baselines in [21] for comparison. For RNN-based models,
we use encoder-only structure instead of encoder-decoder structure.

3.4 Training objectives
Typically, Binary Cross-Entropy (BCE) loss is used in 2-class clas-
sification tasks, which include the cases of dropout prediction and
knowledge tracing. We use the BCE function to compute LDP and
LKT, which are the losses for dropout prediction and knowledge
tracing. We train the model with the loss

L = LDP + λKTLKT

where λKT is a balancing hyper-parameter. Our experiments are
performed with λKT = 0.5.

4. EXPERIMENTS
4.1 Experiment setup

Figure 2: Distribution of data points with respect to the lag time. The lag
time in the graph ranges from 600s (10 minutes) to 7200s (2 hours). The
number of data points exponentially decays as their lag time increases.

mask rate Positive
Label Proportion

AUROC AUPRC

vanilla multi-objective vanilla multi-objective

50% 3.80% 0.8381 0.8832 0.2599 0.3521
90% 3.80% 0.7752 0.8740 0.1602 0.3304
95% 3.80% 0.7264 0.7598 0.1202 0.1322
99% 3.81% 0.6826 0.6837 0.0984 0.0901

50% 1.90% 0.8418 0.8833 0.2775 0.3520
90% 0.38% 0.7677 0.8204 0.1504 0.2093
95% 0.19% 0.7175 0.7980 0.1163 0.1726
99% 0.04% 0.6782 0.7304 0.0923 0.1095

Table 2: Test AUROCs and AUPRCs of the DAS model with various mask-
ing rates on both labels (first 4 rows) and only positive dropout labels (last
4 rows). The first two columns indicate the rate of random masking and the
proportion of labels in the training data for each mask rate. Best result for
each masking rate indicated in bold.

We use the EdNet-KT1 dataset [8], the largest publicly available
student interaction dataset collected by Santa*, which is a mobile
application for preparing Test of English for International Commu-
nication (TOEIC) exam. The proportion of the logs where session
dropout occurred was 4.06% with the definition of dropout as one-
hour lag time. The distribution of dropout labels w.r.t. the change
of lag time in defining the dropout is described in Figure 2.

For RNN-based model architectures, we use the embedding and
model dimension size of 256 and feedforward layer dimension size
of 1024 with 2 number of layers. For DAS, we use the embed-
ding and model dimension size of 512 and feedforward layer di-
mension size of 2048 with 4 number of layers. While training,
we set the model’s input sequence size as 100, and all the mod-
els are trained with Adam optimizer with Noam scheduling where
the warmup step is 40000. We set the initial learning rate and the
model’s dropout rate as 0.001 and 0.1 respectively.

We evaluate our models with two metrics: Area Under Receiving
Operator Curve (AUROC) and Area Under Precision Recall Curve
(AUPRC). AUROC is the most widely used metric in the litera-

*https://aitutorsanta.com/

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 643

lag time Positive
Label Proportion

AUROC AUPRC

vanilla multi-objective vanilla multi-objective

600s 6.33% 0.8853 0.8876 0.4327 0.4387
1800s 4.61% 0.8786 0.8821 0.3582 0.3657
3600s 4.06% 0.8807 0.8836 0.3469 0.3534
5400s 3.79% 0.8768 0.8857 0.3309 0.3519
7200s 3.60% 0.8789 0.8876 0.3298 0.3508

Table 3: Test AUROCs and AUPRCs of the DAS model with various stan-
dards of lag time on defining dropouts (in seconds). The first two columns
indicate the lag time used to define session dropout and the proportion of
positive labels in the total dataset for each definition. Best result for each
indicated in bold.

ture for evaluating the dropout prediction models because labels in
dropout prediction settings are usually imbalanced. It is known that
AUPRC is especially more informative than the AUROC when the
dataset’s labels are imbalanced [10, 30].

We evaluate the effect of multi-task training on two tasks. The
first is the standard study session dropout prediction described in
3.1, where the task is to estimate the probability that the session
dropout occurs after the current time step. However, in the ac-
tual service, it is more important to predict whether the user will
dropout within several future time steps in order to respond to the
user’s engagement in advance. Thus, we also evaluate our method
on further N -step dropout prediction task, which predicts whether
the user will dropout within further N time steps. In further N -
step dropout prediction, the number of future time steps that the
model has to consider increases as N increases. We perform fur-
ther N -step dropout predictions with N ∈ {5, 10}. For all tasks,
we measure AUROC and AUPRC on LSTM, GRU, and DAS with
and without multi-task training to validate the effect of our method.

4.2 Main results
The results of multi-task training on the study session dropout pre-
diction are given in Table 1. The multi-task training with knowl-
edge tracing improves AUROC and AUPRC for the dropout pre-
diction across all models. We also present the effect of our method
in further N -step dropout predictions in Table 1. The results show
that in further N -step dropout prediction tasks, multi-task training
increases the performance of the model by larger margins than in
immediate dropout prediction task. Note that multi-task training
shows higher increase in AUROC when N = 10 since the future
steps that the model has to consider increases withN , leaving more
room for multi-task training to help the model. Table 1 also in-
cludes the proportion of positive labels of the dataset in each task
to explain the difference of AUPRCs between the tasks. Although
further 10-step prediction shows lower AUROCs compared to other
tasks, since its dataset is less imbalanced, it shows higher AUPRCs.

4.3 Ablation study
We performed ablation studies on immediate study session dropout
prediction task for fair comparisons. We perform ablations on la-
bel scarcity, imbalanced datasets, and various standards on dropout
definition as follows.

4.3.1 Scarce Label for Dropout Prediction
It has been known that multi-task training shows higher perfor-
mance when the label of target domain is scarce [34]. To verify
this notion, we evaluated the multi-task training on datasets with
different levels of dropout prediction label scarcity. Specifically,
we randomly masked out both positive and negative dropout labels

in different proportions ranging in {50%,90%,95%,99%}. The re-
sults in Table 2 shows that multi-task training indeed shows higher
performance when dropout prediction labels are scarce. Since at
least some amount of labels are needed for the models to converge,
the result with 99% mask rate fails to show meaningful results.

4.3.2 Imbalanced Dataset
As we mentioned before, study session dropout prediction usually
suffers from the imbalanced dataset. In our case, the rate of the pos-
itive label is only 4.06% of the total data. We conjecture that our
multi-task training approach is also helpful when the label of the
dataset is extremely imbalanced. To show this, while training, we
randomly masked out certain proportion of positive dropout labels
during training, and evaluated the model on the same validation and
test set as before. Note that this is different from 4.3.1 since 4.3.1
performs random masking on both positive and negative dropout
prediction labels. The proportion of random masking also ranges
in {50%,90%,95%,99%}. The results are given in the Table 2. Re-
sults show that multi-task training outperforms vanilla model more
heavily on imbalanced datasets.

4.3.3 Definition on Dropout
Although we define one-hour (3600s) inactive lag time as a session
dropout, other definitions of a dropout may be utilized to better
analyze student’s learning activities. Thus, we see how the effect
of multi-task training varies with the change in the definition of a
session dropout. Figure 2 shows the distribution of the number of
dropout labels w.r.t. the inactivity duration (lag time). We compare
the results with various lag time standards of a session dropout in
{600s, 1800s, 3600s, 5400s, 7200s}. The results are given in Ta-
ble 3. Results show that multi-task training tends to perform bet-
ter in tasks with higher inactivity duration standards of a session
dropout. This is because the tasks with higher lag time standards
have more imbalanced datasets. Since imbalanced datasets tend
to have lower AUPRC, tasks with higher lag time standards have
lower AUPRCs.

5. CONCLUSIONS
In this paper, we proposed a multi-task training approach with knowl-
edge tracing to boost the performance of study session dropout
prediction. We hypothesized that the commonality between the
dropout prediction and knowledge tracing tasks would be beneficial
to predict dropouts. We empirically validated with Transformer-
based and RNN-based models that multi-task training enhances
the dropout prediction performance especially in further N -step
dropout prediction, which is a more practical task in real service.
Moreover, we performed extensive ablation studies to demonstrate
that multi-task training shows even better performance on more dif-
ficult experimental settings. We remain the multi-task training with
other tasks in the field of Artificial Intelligence in Education (AIEd)
as the future work.

6. REFERENCES
[1] J. R. Anderson, C. F. Boyle, and B. J. Reiser. Intelligent

tutoring systems. Science, 228(4698):456–462, 1985.
[2] F. Beres, D. M. Kelen, and A. A. Benczur. Sequential skip

prediction using deep learning and ensembles. In
International Conference on Web Search and Data Mining,
2019.

[3] F. D. Bonifro, M. Gabbrielli, G. Lisanti, and Z. Stefano.
Student dropout prediction. In International Conference on

644 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Artificial Intelligence in Education, pages 129–140.
Springer, 2020.

[4] R. Caruana. Multitask learning. Machine learning,
28(1):41–75, 1997.

[5] Q. Chen and Z. Yan. Does multitasking with mobile phones
affect learning? a review. Computers in Human Behavior,
54:34–42, 2016.

[6] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase
representations using rnn encoder-decoder for statistical
machine translation. In EMNLP, 2014.

[7] Y. Choi, Y. Lee, J. Cho, J. Baek, B. Kim, Y. Cha, D. Shin,
C. Bae, and H. Heo. Towards an appropriate query, key, and
value computation for knowledge tracing. In Proceedings of
the Seventh ACM Conference on Learning, pages 341–344,
2020.

[8] Y. Choi, Y. Lee, D. Shin, J. Cho, S. Park, S. Lee, J. Baek,
C. Bae, B. Kim, and J. Heo. Ednet: A large-scale hierarchical
dataset in education. In International Conference on
Artificial Intelligence in Education, pages 69–73. Springer,
2020.

[9] F. J. da Costa, M. de Souza Bispo, and R. de Cássia de
Faria Pereira. Dropout and retention of undergraduate
students in management: a study at a brazilian federal
university. RAUSP Management Journal, 53(1):74–85, 2018.

[10] J. Davis and M. Goadrich. The relationship between
precision-recall and roc curves. In Proceedings of the 23rd
international conference on Machine learning., pages
233–240, 2006.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert:
Pre-training of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4171–4186, 2019.

[12] M. Feng, N. Heffernan, and K. Koedinger. Addressing the
assessment challenge with an online system that tutors as it
assesses. User modeling and user-adapted interaction,
19(3):243–266, 2009.

[13] W. Feng, J. Tang, and T. X. Liu. Understanding dropouts in
moocs. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 517–524, 2019.

[14] M. Geden, A. Emerson, J. Rowe, R. Azevedo, and J. Lester.
Predictive student modeling in educational games with
multi-task learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 654–661, 2020.

[15] C. Hansen, C. Hansen, S. Alstrup, J. G. Simonsen, and
C. Lioma. Modelling sequential music track skips using a
multi-rnn approach. In International Conference on Web
Search and Data Mining, 2019.

[16] B. A. Harman and T. Sato. Cell phone use and grade point
average among undergraduate university students. College
Student Journal, 45(3):544–550, 2011.

[17] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

[18] G. Y. Huang, J. Chen, H. Liu, W. Fu, W. Ding, J. Tang,
S. Yang, G. Li, and Z. Liu. Neural multi-task learning for
teacher question detection in online classrooms. In
International Conference on Artificial Intelligence in
Education, pages 269–281. Springer, 2020.

[19] Z. Huang, Q. Liu, C. Zhai, Y. Yin, E. Chen, W. Gao, and

G. Hu. Exploring multi-objective exercise recommendations
in online education systems. In Proceedings of the 28th ACM
International Conference on Information and Knowledge
Management, pages 1261–1270, 2019.

[20] R. Junco. Too much face and not enough books: The
relationship between multiple indices of facebook use and
academic performance. Computers in human behavior,
28(1):187–198, 2012.

[21] Y. Lee, D. Shin, H. Loh, J. Lee, P. Chae, J. Cho, S. Park,
J. Lee, J. Baek, B. Kim, et al. Deep attentive study session
dropout prediction in mobile learning environment. arXiv
preprint arXiv:2002.11624, 2020.

[22] S. A. Lim and R. Rumberger. Why students drop out of
school: A review of 25 years of research. 2008.

[23] R. V. Lindsey, M. Khajah, and M. C. Mozer. Automatic
discovery of cognitive skills to improve the prediction of
student learning. In Advances in neural information
processing systems, pages 1386–1394. Citeseer, 2014.

[24] S. Liu, J. Yang, C. Huang, and M.-H. Yang. Multi-objective
convolutional learning for face labeling. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3451–3459, 2015.

[25] X. Liu, P. He, W. Chen, and J. Gao. Multi-task deep neural
networks for natural language understanding. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4487–4496, 2019.

[26] M. Manacorda. Grade failure, drop out and subsequent
school outcomes: quasi-experimental evidence from
uruguayan administrative data. 2006.

[27] C. Márquez-Vera, A. Cano, C. Romero, A. Y. M. Noaman,
H. Mousa Fardoun, and S. Ventura. Early dropout prediction
using data mining: a case study with high school students.
Expert Systems, 33(1):107–124, 2016.

[28] S. Pandey and G. Karypis. A self-attentive model for
knowledge tracing. In Proceedings of the 12th International
Conference on Educational Data Mining, pages 384–389,
2019.

[29] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,
L. Guibas, and J. Sohl-Dickstein. Deep knowledge tracing.
In Proceedings of the 28th International Conference on
Neural Information Processing Systems, volume 01, pages
505–513, 2015.

[30] T. Saito and M. Rehmsmeier. The precision-recall plot is
more informative than the roc plot when evaluating binary
classifiers on imbalanced datasets. PloS one,
10(3):e0118432, 2015.

[31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and P. Illia. Attention is all you
need. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, pages 6000–6010,
2017.

[32] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R.
Bowman. Glue: A multi-task benchmark and analysis
platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

[33] W. Wang, H. Yu, and C. Miao. Deep model for dropout
prediction in moocs. In Proceedings of the 2nd International
Conference on Crowd Science and Engineering, pages
26–32, 2017.

[34] Z. Wang, Z. Dai, B. Póczos, and J. Carbonell. Characterizing
and avoiding negative trasfer. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 645

Recognition, 2019.
[35] J. Whitehill, K. Mohan, D. Seaton, Y. Rosen, and D. Tingley.

Mooc dropout prediction: How to measure accuracy? In
Proceedings of the Fourth ACM Conference on Learning,
pages 161–164, 2017.

[36] M. V. Yudelson, K. R. Koedinger, and G. J. Gordon.
Individualized bayesian knowledge tracing models. In
International Conference on Artificial Intelligence in
Education, pages 171–180. Springer, 2013.

[37] Y. Zhang and Q. Yang. A survey on multi-task learning.
arXiv preprint arXiv:1707.08114, 2017.

646 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

APPENDIX

Figure 3: Overall architecture of DAS. Note that s is the starting token and
N is the number of layers.

A. ARCHITECTURE OF DAS
In this section, we review the overall architecture of Deep Atten-
tive Study Session Prediction (DAS) [21], which we use for the
baseline of our model. DAS is a transformer-based model that con-
sists of an encoder and a decoder. Encoder includes N encoder
blocks where each block has a multi-head self-attention layer and
a fully connected feed-forward layer. After each layer, residual
connection and layer normalization are applied. Decoder also in-
cludes N decoder blocks with each block including a multi-head
self-attention layer, a multi-head encoder-decoder attention layer,
and a fully connected feed-forward layer. The encoder-decoder
attention layer takes the output of the encoder as keys and val-
ues, and output of self-attention layer as queries to perform the
attention mechanism. Each layer in the decoder block is also fol-
lowed by residual connection and layer normalization. The encoder
takes the sequence of question embeddings e = [e(1), . . . , e(j)]

and produces the outputs h = [h(1), . . . , h(j)] that are fed into
the decoder’s encoder-decoder attention layers. The decoder takes
the sequence of response embeddings l = [s, l(1), . . . , l(j−1)] and
encoder’s outputs h, producing the hidden vectors which are fed
through the final linear layer to output the predicted dropout prob-
abilities ŷDP = [ŷ

(1)
DP , . . . , ŷ

(j)
DP]. Note that s is the starting token

for the first position of the sequence. The overall process of DAS
can be described as:

h = Encoder(e)

ŷDP = σ
(
WDPDecoder(s, l, h) + bDP

)
where s is the start token embedding. The overall architecture of
DAS is described in Figure 3.

We will now describe the components of each block in encoder and
decoder. Each block mainly consists of a multi-head attention layer
and a fully connected feed-forward layer. Multi-head attention net-

work in each block takes queries, keys, and values of the sequence
as inputs. Queries, keys, and values of headi are computed by mul-
tiplying weight matrices WQ

i , WK
i , WV

i to the inputs as follows:

Qi = eQW
Q
i = [Q

(1)
i , . . . , Q

(j)
i]

Ki = eKW
K
i = [K

(1)
i , . . . ,K

(j)
i]

Vi = eVW
V
i = [V

(1)
i , . . . , V

(j)
i]

Then, multi-head attention with h attention heads is computed as:

Multihead(eQ, eK , eV) = Concat(head1, . . . , headh)WO

where headi = Softmax(
QiK

T
i√

dk
)Vi

dk is the dimension of Ki, which is incorporated for scaling. WO

is the matrix to combine the outputs from multiple attention heads
and to produce the final output of multi-head attention mechanism.
Note that multi-head self attention uses same inputs to compute
queries, keys and values while multi-head encoder-decoder atten-
tion uses outputs from the encoder as keys and values, which can
be expressed as Multihead(l, h, h). In order to prevent cheating
from the future time steps, subsequent masks to the attention layers
are incorporated. The fully connected feed-forward network ap-
plies linear transformation after adding non-linearity to the outputs
of the multi-head attention layer as follows:

FFN(M) = ReLU(MW1 + b1)W2 + b2

where M = Multihead(eQ, eK , eV)

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 647

Fine-Grained Versus Coarse-Grained Data for Estimating
Time-on-Task in Learning Programming

Juho Leinonen
Aalto University
Espoo, Finland

juho.2.leinonen@aalto.fi

Francisco Enrique
Vicente Castro

University of Massachusetts
Amherst

Amherst, MA, USA
fcastro@cs.umass.edu

Arto Hellas
Aalto University
Espoo, Finland

arto.hellas@aalto.fi

ABSTRACT
The time that students spend on assignments, i.e. time-on-
task, has been used frequently in prior research to under-
stand student affect, study habits, and course performance,
among others. The choice for how time-on-task is calculated,
however, is typically based on available data. This data can
be very coarse-grained, such as the timestamps from stu-
dents’ assignment submissions. Using coarse-grained data to
calculate time-on-task has limitations, such as not being able
to determine whether students take breaks when working on
an assignment. In this work, we analyze the differences be-
tween two time-on-task metrics, one based on coarse-grained
data—in this case, student submissions—and one based on
fine-grained data—in this case, students’ keystrokes during
an assignment. We compare these two metrics and exam-
ine how well they correlate to find out whether time-on-
task based on coarse-grained data can be an accurate metric
for understanding the time spent by students on an assign-
ment. Our results show that the correlation between the
two metrics that are supposed to measure the same under-
lying phenomena—time-on-task—is only weak to moderate.
This suggests that fine-grained data might be needed to ac-
curately estimate time-on-task.

Keywords
time-on-task, fine-grained data, coarse-grained data, data
granularity, keystroke data, programming process data, learn-
ing analytics, educational data mining

1. INTRODUCTION
Time-on-task—the amount of time that a student spends
actively engaged in a task—is considered as one of the most
important factors that contribute to learning and achieve-
ment [14, 30, 32]. Measuring time-on-task focuses on iden-
tifying active time that is spent on a task, instead of the
overall time that includes breaks and time spent on unre-
lated activities. Time-on-task has been measured through

various means: student self-reports [27], stopwatches [8], pe-
riodic observations [3], video recordings and eye movement
data [4], and learning management system log data [17].
While all of these can be considered as proxies for time-on-
task, accurately estimating time-on-task remains a challeng-
ing problem that deserves further attention [14,17].

In this work, we study (a) to what extent two different
types of log data—timestamped keystroke data and times-
tamped submission data from an introductory programming
course—can be used to measure students’ time-on-task and
(b) to what extent time-on-task estimates produced with
this data represent the same phenomenon. Our work is mo-
tivated by the need to distinguish between different types of
data and the time-on-task estimates that can be produced
with them. As numerous metrics have been used as proxies
for time-on-task, if these metrics are not in line with each
other, results from studies using them may not be compa-
rable. That is, differences between observed results, or even
contradictory results, could be explained to some extent by
the difference in the chosen time-on-task metric.

Some studies similar to ours include work by Kovanović
et al. [16] and Nguyen [23]. Kovanović et al. [16] built and
compared a range of time-on-task metrics for evaluating
students’ performance, highlighting methodological issues.
Nguyen [23], on the other hand, evaluated methods for iden-
tifying off-task behavior, also correlating the resulting esti-
mates with academic performance. While these studies have
used click-stream or event data from learning management
systems such as Moodle, the data in our study comes from
an introductory programming course where work on pro-
gramming assignments is logged keystroke by keystroke.

This article is structured as follows. In Section 2, we discuss
related time-on-task studies, starting with an overview of
earlier studies on time-on-task and time-on-task estimates
within learning programming, with a brief outline of studies
that have analyzed different time-on-task estimates. We de-
scribe our context, data, research questions, and metrics in
Section 3, and outline the analyses and results in Section 4.
We discuss our findings and outline future work in Section 5.

2. RELATED WORK
2.1 Measuring Time-on-Task
Early work with time-on-task often involved on-site obser-
vations (e.g. in classrooms) where coders manually recorded

Juho Leinonen, Francisco Enrique Vicente Castro and Arto Hel-
las “Fine-Grained Versus Coarse-Grained Data for Estimating Time-
on-Task in Learning Programming”. 2021. In: Proceedings
of The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 648-653.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

648 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

and/or timed behaviors based on a coding rubric of on-task
behaviors, also linking teacher’s behavior with students’ be-
havior (e.g. [2, 10, 15]). Over time, technology advancement
led to the now-prevalent practice of mining user interac-
tion logs from educational software used in classrooms or
technology-augmented learning activities. This has made
the analysis of user logs a vital component of more recent
learning and behavior studies, such as in predicting help-
seeking behavior [5] or assessing performance [9]. Time-on-
task studies have likewise turned to this direction. Some
examples (proxies for time-on-task in parentheses) include:
analyzing the relationship of gamified elements to time-on-
task (number of edits) [18] and comparing the impact of
different course interventions to time-on-task (online inter-
actions with peers and accessing course materials) [25]. Of
note, both in earlier and more recent time-on-task studies,
are the different measures or proxies used for time-on-task,
and the methods used for identifying or approximating off-
task activity and breaks. These are key factors that we
explore in our comparison of coarse- and fine-grained time-
on-task metrics.

In research focused on time-on-task in learning to program,
a conventional approach has been to log user interactions
within integrated development environments (see e.g. [13,
21,22,24,29]). For example, Jadud [12] used the BlueJ IDE
to capture code “snapshots” (copies of source code) when-
ever students compiled their programs, including compiler-
reported errors and related metadata. Rodrigo et al. used
BlueJ logs in combination with student surveys and observa-
tions to explore relationships between novice programmers’
achievement, debugging, and syntax errors [26].

Submission data has been used to estimate students’ total
elapsed time, the total time between a student’s first submis-
sion and last submission. Edwards et al. noted that the dif-
ference in total elapsed time between high- and low-scoring
students is only small [6]. Similarly, the time between com-
pilation events has been studied previously; Jadud observed
that students are likely to recompile quickly after encounter-
ing a syntax error, but spend more time working on code af-
ter a successful compilation [11]. Definitions of work sessions
also differ between studies. For example, Fenwick et al. [7]
considered a “work session” terminated when no events were
logged for 60 minutes. While the previous examples demon-
strate the use of time from snapshots for estimating time-
on-task, other studies in programming have explored using
event counts (similar to other fields) for building predictive
models of student achievement. For example, Ahadi et al. [1]
used assignment-specific log data that included the number
of “steps” that students took to solve each assignment for
predicting course outcomes.

The time-on-task metrics in these (and other studies, e.g. [20,
28, 31]), however, suffer from similar problems of failing to
capture the nuances around actual working time, as even
the “work sessions” may fail to account for when and how
students are working offline.

2.2 Analyzing Time-on-Task Estimates
Variations on time-on-task measures across studies and re-
search instruments make it difficult to interpret and com-
pare findings and bring into question whether or not the

different metrics are indeed measuring or evaluating similar
constructs. Some researchers have begun to explore this by
looking at the different ways that researchers estimate time-
on-task and analyzing how these estimation choices impact
conclusions drawn from these measures.

Kovanović et al. [16], for example, looked at different time-
on-task estimates from learning management system data
and examined the impacts of these across courses from dif-
ferent subject domains. Their findings suggest that strate-
gies for time-on-task estimation can have significant effects
on learning analytics models of student performance. Using
data collected from an introductory programming course,
Leinonen et al. [19] examined a family of time-on-task-related
metrics such as self-reported study time, log-based time spent
on assignments, and event counts correlated with each other
as well as course exam outcomes. They noted that while
similar metrics such as edit counts and event counts tended
to have higher correlations, exam scores were not strongly
correlated with any of the metrics, except for the number of
completed assignments.

While Leinonen et al. [19] did not analyze the impact of dif-
ferent break durations when estimating time spent on assign-
ments, different break durations have been studied by both
Kovanović et al. [16] and Nguyen [23]. Kovanović et al. and
Nguyen both used time-on-task estimates based on times-
tamp differences between two subsequent events in learning
management systems and highlight the importance of a good
time-on-task estimation strategy.

Our work builds on this prior work by looking into data from
an introductory programming course, where each keystroke
associated with a course assignment was recorded and times-
tamped. Using this fine-grained log data, we study the im-
pact of different thresholds for measuring off-task behav-
ior, contrasting the keystroke data with submission-based
data more commonly used in studies focusing on academic
achievement in learning programming.

3. METHODOLOGY
3.1 Context and Data
The data for our study comes from a 7-week introductory
programming course offered at a research first university in
Europe. The workload of the course is 5 ECTS, which cor-
responds to roughly 100 to 125 study hours. In the course,
students learn the basics of procedural and object-oriented
programming in Java. The course uses a many small assign-
ments approach, where many of the course assignments are
small, but combine to form larger programs. After working
on small assignments, students are given larger assignments
as well, where they practice the content and constructs that
they have learned earlier.

In total, the course had 147 programming assignments. The
programming assignments are worked on in an integrated
development environment (IDE), that logs keystroke data
for plagiarism detection and research purposes. On each
keystroke, the IDE collects the current timestamp and the
modification to the source code of the assignment that the
student is currently working on. Keystroke data is gathered
only from course assignments. Additionally, information on
when students submit their assignments is collected.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 649

Students were informed about the data gathering on the
course; our analyses included data from 137 students who
consented to the use of their data for research purposes and
who completed at least 10 assignments in the course.

3.2 Research Questions and Metrics
Our research questions are as follows:

RQ1. How do fine- and coarse-grained time-on-task metrics
differ in terms of measuring time-on-task?

RQ2. Are there differences (a) between students and (b) be-
tween assignments on how well coarse-grained time-
on-task correlates with fine-grained time-on-task?

In this study, we compare two different metrics for time-
on-task that we call coarse-grained time-on-task and fine-
grained time-on-task. The metrics are calculated for each
student for each exercise they attempted and submitted.

Coarse-grained time-on-task is calculated as the difference
between the timestamp of the first submission and the first
keystroke event for that assignment. We used the first sub-
mission instead of the last submission since some students re-
submitted assignments that they had previously completed
“just in case” right before the deadline. However, the choice
of first versus the last submission does not affect the results
considerably: in 95% of the cases, students only had a single
submission for each assignment.

Fine-grained time-on-task was calculated by computing the
differences between keystroke timestamps in the data until
the first submission of the assignment while ignoring any
differences that were greater than a break threshold that is
used to approximate off-task behavior or “outliers”. Differ-
ent values for the break threshold are explored and reported.

The key difference between the two metrics is that the fine-
grained time-on-task takes into account the breaks that stu-
dents take while working on assignments, whereas the coarse-
grained time-on-task does not. If the break threshold is ar-
bitrarily large, no breaks are removed when computing the
fine-grained time-on-task, and the two metrics are identical.

4. ANALYSES AND RESULTS
4.1 Differences Between Time-on-Task Metrics
To answer RQ1, we first analyzed different break thresh-
old values to examine how different thresholds affect the
number of distinct study sessions in the data. We define a
distinct study session as any sequence of snapshots for an
assignment between breaks in the data, where what is con-
sidered as a break depends on the break threshold. We then
examined how the choice of break threshold affects the cor-
relation between the coarse- and fine-grained time-on-task
metrics across the whole data set. The strength of the cor-
relation between the metrics can signal whether the metrics
are measuring the same phenomenon, i.e. time-on-task.

Figure 1, in Appendix, shows how having a different break
threshold for the fine-grained time-on-task affects the num-
ber of distinct study sessions for thresholds between 30 sec-
onds and 1200 seconds (i.e. 20 minutes). We see that having
a very low threshold (e.g. anything under 100 seconds) re-
sults in a very high number of study sessions compared to

having a higher break threshold (e.g. anything over 600 sec-
onds, i.e. 10 minutes). The figure only shows the number of
sessions up to a break threshold of 20 minutes since at that
point, the decrease in the number of sessions is very small.
What this essentially illustrates is that if a student takes a
short break of under 200 seconds or so, they are quite likely
to return to the task, but if the break is longer (e.g. over
10 minutes), they are not likely to return to the task soon.
Based on this, in our data, a break threshold of around 600
seconds would seem reasonable as at that point, the rate of
decrease plateaus.

Figure 2 (Appendix) shows the Pearson’s correlation coeffi-
cient between coarse- and the fine-grained time-on-task met-
rics for different break thresholds between 30 seconds and
1200 seconds (20 mins.). We first note that for all the thresh-
olds visualized in Figure 2, the correlation is weak since it
varies between 0.33 and 0.37. The figure shows that the cor-
relation increases slightly as the break threshold gets bigger,
but similar to the number of study sessions, the rate of in-
crease seems to plateau at around the 600 second (10 min.)
mark. The correlation does continue increasing beyond what
is visualized in the figure and eventually, at around 13 days,
it reaches 1, where the fine- and coarse-grained time-on-task
metrics are equal. This means that some students had a
break of around 13 days within a single assignment.

4.2 Student and Assignment-Specific Correla-
tions Between Time-on-Task Metrics

To answer RQ2a, we first calculated both time-on-task met-
rics for each student for each assignment they submitted. We
then calculated the correlation between the metrics for each
student separately, which leaves us with a single correlation
per student. We examine the distribution of these correla-
tions to understand if there are differences between students
on how much the fine- and coarse-grained time-on-task met-
rics correlate. To answer RQ2b, we calculated the correla-
tion between the coarse- and fine-grained metrics for each
assignment separately, leaving us with a single correlation
per assignment. Similar to RQ2a, we study the distribution
of these correlations to see if there are assignment-specific
differences in how well the two metrics correlate.

For analyzing student and assignment-specific differences in
how well the coarse- and fine-grained time-on-task metrics
correlate, we used a break threshold of 600 seconds (i.e. 10
minutes) for the fine-grained time-on-task metric. We chose
600 seconds as the results for RQ1 showed that in our data,
600 seconds seems like a reasonable value to consider a stu-
dent being on a break (Section 4.1).

Figure 3, in Appendix, shows the distribution of the cor-
relations between the coarse- and fine-grained time-on-task
metrics for individual students. The mean correlation is 0.47
with a standard deviation of 0.24 and the 95% confidence in-
terval is 0.43 to 0.51. We notice from the figure that there
are differences between students in how well the coarse- and
fine-grained time-on-task metrics match each other. On av-
erage, the correlation seems moderate, with most students
having a correlation between 0.2 and 0.6.

Figure 4, in Appendix, shows the distribution of the correla-
tions between the coarse- and fine-grained time-on-task met-

650 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

rics for individual assignments. The mean correlation is 0.33
with a standard deviation of 0.21 and the 95% confidence in-
terval is 0.30 to 0.36. We notice from the figure that similar
to students, there are also differences between assignments.
Compared to the between-students analysis (RQ2a), the as-
signment distribution is slightly more centered around the
mean. Similar to the between-student analysis, the correla-
tions for the assignments are also, on average, moderate.

5. DISCUSSION
5.1 Coarse- vs Fine-Grained Time-on-Task
We observed that our coarse-grained time-on-task metric
poorly approximated our fine-grained time-on-task metric.
The coarse-grained metric imitates metrics from earlier work
where time-on-task has been calculated based on, for exam-
ple, students’ first and last submissions for an assignment [6],
while the fine-grained time-on-task metric is somewhat sim-
ilar to earlier works that utilized LMS trace data [16], al-
though considerably more fine-grained.

We propose that the fine-grained metric explored in this
work is a better metric for measuring time-on-task than a
metric that relies on coarse-grained data, but removes out-
liers to keep time-on-task values meaningful. Prior work
has suggested, for example, that large values are just ig-
nored [16]. However, if we rely on removing outliers, we are
bound to include data that is not accurate that was simply
not caught by the outlier detection. For example, if two stu-
dents both have a time-on-task estimate of two hours with
a coarse-grained time-on-task metric, it is possible that one
of them worked for ten minutes, while the other worked for
a full 120 minutes. In this case, the actual time-on-task
is drastically different, but the coarse-grained time-on-task
estimate would be the same for both.

One downside of the fine-grained time-on-task metric is that
it requires a break threshold to calculate time-on-task. De-
ciding on a good break threshold is not straightforward, and
is most likely context-dependent. This work is not the first
to note this issue: for example, both Nguyen [23] and Ko-
vanović et al. [16] examined different cut-offs for outlier de-
tection, which is similar to our work in examining different
break thresholds.

5.2 Student- and Assignment-Specific Corre-
lations

We identified student- and assignment-specific differences in
how well coarse- and fine-grained time-on-task metrics cor-
relate. This makes sense since the main difference between
the metrics is that the fine-grained metric takes the breaks
students take into account; thus, if a student does not take
many breaks while working on assignments, the difference
between the two time-on-task metrics will not be significant
compared to a student who takes long breaks within single
assignments. Here, factors such as possible previous pro-
gramming experience and study fatigue may come into play
and should be analyzed in future work.

Similarly, we found that there are differences between as-
signments in how much the two metrics correlate. Since the
course has many small assignments, but also some bigger,
more complex assignments, it makes sense that, for example,

students might take more breaks during the bigger assign-
ments compared to the smaller ones, which would have an
effect on the correlation between the two metrics.

5.3 Conclusion and Future Work
In this work, we studied how two different time-on-task met-
rics built from programming log data correlate with each
other. One of the metrics utilizes fine-grained keystroke data
and takes the breaks students take during assignments into
account by not including the breaks in its time-on-task esti-
mate. The other time-on-task metric is more coarse-grained
and includes any breaks students take during assignments
in its time-on-task estimate.

Our results show that the correlation between the two met-
rics is at best moderate, which suggests that the choice of
time-on-task metric can significantly impact the results of
studies based on time-on-task analysis. This brings into
question whether previous results that have used different
metrics for measuring time-on-task are comparable with one
another. Additionally, our results show that, at least in our
context, there are also student- and assignment-specific dif-
ferences in how much the two metrics correlate.

We acknowledge that we do not have a ground truth for time
on task, i.e., both our metrics are only proxies. As part of
our future work, we are looking into augmenting keystroke
data from the programming environment with log data from
other learning environments and self-reported time-on-task
estimates. Similarly, in this work, we examined different
break thresholds over all the data when identifying a break
threshold; in future work, we will be looking at to what
extent optimal break thresholds vary between students. We
also acknowledge that we did not analyze how time-on-task
relates to course outcomes, which has often been included in
time-on-task studies (e.g. [16,19,23]). In the future, we will
also be looking into how the studied metrics and different
break thresholds relate to course performance.

6. REFERENCES
[1] A. Ahadi, R. Lister, H. Haapala, and A. Vihavainen.

Exploring machine learning methods to automatically
identify students in need of assistance. In Proceedings
of the eleventh annual international conference on
international computing education research, pages
121–130, 2015.

[2] L. W. Anderson and C. C. Scott. The Relationship
Among Teaching Methods, Student Characteristics,
and Student Involvement in Learning. Journal of
Teacher Education, 29(3):52–57, May 1978. Publisher:
SAGE Publications Inc.

[3] R. S. Baker, A. T. Corbett, K. R. Koedinger, and
A. Z. Wagner. Off-task behavior in the cognitive tutor
classroom: when students” game the system”. In
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 383–390, 2004.

[4] C. Calderwood, P. L. Ackerman, and E. M. Conklin.
What else do college students “do” while studying? an
investigation of multitasking. Computers & Education,
75:19–29, 2014.

[5] F. E. V. Castro, S. Adjei, T. Colombo, and
N. Heffernan. Building Models to Predict

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 651

Hint-or-Attempt Actions of Students. International
Educational Data Mining Society, June 2015.

[6] S. H. Edwards, J. Snyder, M. A. Pérez-Quiñones,
A. Allevato, D. Kim, and B. Tretola. Comparing
effective and ineffective behaviors of student
programmers. In Proceedings of the fifth international
workshop on Computing education research workshop,
pages 3–14, 2009.

[7] J. B. Fenwick Jr, C. Norris, F. E. Barry, J. Rountree,
C. J. Spicer, and S. D. Cheek. Another look at the
behaviors of novice programmers. ACM SIGCSE
Bulletin, 41(1):296–300, 2009.

[8] S. Getting and K. Swainey. First graders with ipads?.
Learning & leading with technology, 40(1):24–27, 2012.

[9] J. D. Gobert, M. S. Pedro, J. Raziuddin, and R. S.
Baker. From Log Files to Assessment Metrics:
Measuring Students’ Science Inquiry Skills Using
Educational Data Mining. Journal of the Learning
Sciences, 22(4):521–563, Oct. 2013.

[10] T. L. Good and T. M. Beckerman. Time on Task: A
Naturalistic Study in Sixth-Grade Classrooms. The
Elementary School Journal, 78(3):193–201, Jan. 1978.
Publisher: The University of Chicago Press.

[11] M. C. Jadud. A First Look at Novice Compilation
Behaviour Using BlueJ. Computer Science Education,
15(1):25–40, Mar. 2005.

[12] M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. In Proceedings of the second
international workshop on Computing education
research, pages 73–84, 2006.

[13] P. M. Johnson, H. Kou, J. Agustin, C. Chan,
C. Moore, J. Miglani, S. Zhen, and W. E. Doane.
Beyond the personal software process: Metrics
collection and analysis for the differently disciplined.
In 25th International Conf. on Software Engineering,
2003. Proceedings., pages 641–646. IEEE, 2003.

[14] N. Karweit. Time-on-task reconsidered: Synthesis of
research on time and learning. Educational leadership,
41(8):32–35, 1984.

[15] J. S. Kounin and P. V. Gump. Signal systems of lesson
settings and the task-related behavior of preschool
children. Journal of Educational Psychology,
66(4):554–562, 1974. Place: US Publisher: American
Psychological Association.

[16] V. Kovanović, D. Gašević, S. Dawson, S. Joksimović,
R. S. Baker, and M. Hatala. Does time-on-task
estimation matter? implications for the validity of
learning analytics findings. Journal of Learning
Analytics, 2(3):81–116, 2015.

[17] V. Kovanović, D. Gašević, S. Dawson, S. Joksimović,
R. S. Baker, and M. Hatala. Penetrating the black box
of time-on-task estimation. In Proceedings of the fifth
international conference on learning analytics and
knowledge, pages 184–193, 2015.

[18] R. N. Landers and A. K. Landers. An Empirical Test
of the Theory of Gamified Learning: The Effect of
Leaderboards on Time-on-Task and Academic
Performance. Simulation & Gaming, 45(6):769–785,
Dec. 2014. Publisher: SAGE Publications Inc.

[19] J. Leinonen, L. Leppänen, P. Ihantola, and A. Hellas.
Comparison of time metrics in programming. In
Proceedings of the 2017 ACM conf. on International

Computing Education Research, pages 200–208, 2017.

[20] L. Leppänen, J. Leinonen, and A. Hellas. Pauses and
spacing in learning to program. In Proceedings of the
16th Koli Calling International Conference on
Computing Education Research, pages 41–50, 2016.

[21] J. McKeogh and C. Exton. Eclipse plug-in to monitor
the programmer behaviour. In Proceedings of the 2004
OOPSLA workshop on eclipse technology eXchange,
pages 93–97, 2004.

[22] C. Murphy, G. Kaiser, K. Loveland, and S. Hasan.
Retina: helping students and instructors based on
observed programming activities. In Proceedings of the
40th ACM technical symposium on Computer Science
Education, pages 178–182, 2009.

[23] Q. Nguyen. Rethinking time-on-task estimation with
outlier detection accounting for individual, time, and
task differences. In Proceedings of the Tenth
International Conference on Learning Analytics &
Knowledge, pages 376–381, 2020.

[24] C. Norris, F. Barry, J. B. Fenwick Jr, K. Reid, and
J. Rountree. Clockit: collecting quantitative data on
how beginning software developers really work. In
Proceedings of the 13th annual conference on
Innovation and technology in computer science
education, pages 37–41, 2008.

[25] S. Park. Analysis of Time-on-Task, Behavior
Experiences, and Performance in Two Online Courses
with Different Authentic Learning Tasks.
International Review of Research in Open and
Distributed Learning, 18(2):213–233, 2017. Publisher:
Athabasca University Press (AU Press).

[26] M. M. T. Rodrigo, T. C. S. Andallaza, F. E. V. G.
Castro, M. L. V. Armenta, T. T. Dy, and M. C.
Jadud. An Analysis of Java Programming Behaviors,
Affect, Perceptions, and Syntax Errors among
Low-Achieving, Average, and High-Achieving Novice
Programmers. Journal of Educational Computing
Research, 49(3):293–325, Oct. 2013.

[27] M. Romero and E. Barbera. Quality of learners’ time
and learning performance beyond quantitative
time-on-task. International Review of Research in
Open and Distributed Learning, 12(5):125–137, 2011.

[28] J. Spacco, P. Denny, B. Richards, D. Babcock,
D. Hovemeyer, J. Moscola, and R. Duvall. Analyzing
student work patterns using programming exercise
data. In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education, pages
18–23, 2015.

[29] J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, J. K.
Hollingsworth, and N. Padua-Perez. Experiences with
marmoset: designing and using an advanced
submission and testing system for programming
courses. ACM Sigcse Bulletin, 38(3):13–17, 2006.

[30] J. Stallings. Allocated academic learning time
revisited, or beyond time on task. Educational
researcher, 9(11):11–16, 1980.

[31] E. S. Tabanao, M. M. T. Rodrigo, and M. C. Jadud.
Identifying at-risk novice java programmers through
the analysis of online protocols. In Philippine
Computing Science Congress, pages 1–8, 2008.

[32] H. J. Walberg. Synthesis of research on time and
learning. Educational leadership, 45(6):76–85, 1988.

652 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

APPENDIX
A. FIGURES

Figure 1: Number of distinct study sessions with differ-
ent thresholds for breaks for the fine-grained time-on-
task metric. The x-axis is the threshold for considering
the student to be on a break in seconds. The y-axis is
the number of study sessions in the data. Data is shown
for thresholds between 30 seconds and 1200 seconds (20
minutes).

Figure 2: The correlation between the coarse and the
fine-grained time-on-task metric with different thresholds
for breaks for the fine-grained time-on-task metric. The
x-axis is the threshold for considering the student to be
on a break in seconds. The y-axis is the Pearson corre-
lation coefficient between the coarse and the fine-grained
time-on-task metric. Data is shown for thresholds be-
tween 30 seconds and 1200 seconds (20 minutes).

Figure 3: The distribution of student-specific correlations
between the coarse- and fine-grained time-on-task met-
rics, where fine-grained time-on-task was calculated with
a 600 second break threshold. The x-axis is the Pearson
correlation coefficient and the y-axis is the density.

Figure 4: The distribution of assignment-specific corre-
lations between the coarse and the fine-grained time-on-
task metrics, where fine-grained time-on-task was calcu-
lated with a 600 second break threshold. The x-axis is
the Pearson correlation coefficient and the y-axis is the
density.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 653

The Impact of Learning Analytics on Student Performance
and Satisfaction in a Higher Education Course

Dimitrios Tzimas, Stavros Demetriadis

Aristotle University of Thessaloniki
{detzimas, sdemetri}@csd.auth.gr

ABSTRACT

Learning analytics (LA) is collecting, processing, and
visualization of big data to optimize learning. This article aims to
interpret the impact of analyzing learning data for tertiary
education. The article describes a semester-long mixed methods

study for 63 students enrolled in a Greek technical university
laboratory, retrieving data from the learning management system
(LMS). We applied minimal LA guidance in the experimental
group and no LA guidance in the control group. The research
questions are as follows: Can a student-facing learning analytics
approach at minimal level guidance improve students' LMS access
and learning performance levels? Are the students' LMS access,
discussion forums, and submitted assignments, critical predictors

for students' course grades? What are students' opinions about
learning analytics as a tool for data-driven decision-making
strategy? The study followed the do-analyze-change-reflect LA
model. The data collected included students' time spent on LMS,
exercises, and discussion posts, while the dependent variable was
the course grade. Results indicate that it increased the students'
LMS access and satisfaction when we applied LA but not their
final grade. Future research could apply higher effort

interventions and stronger teacher guidance to provide insights
into student performance, engagement, and satisfaction.

Keywords

Student-facing learning analytics, Performance, Satisfaction,
Teacher guidance, Post-secondary education.

1. INTRODUCTION
Learning analytics is a multidisciplinary field between computer
science and education that fosters the learning process based on
big data monitoring [10]. In [29], the authors defined LA as the
measurement, analysis and reporting of data about learners and
their contexts, for purposes of optimizing learning and the

environments in which it occurs. Furthermore, the LA tasks are a
set of handy tools to collect and analyze the data accumulated in a
smart classroom for data-based decision-making [1].
Consequently, without analytics, instructors cannot provide
guidance at appropriate times when students encounter difficulties
[11]. In parallel, institutions have embedded LA techniques to
enhance retention rates, use resources effectively, and increase
students' engagement, satisfaction, and motivation [26].

The authors conducted this mixed-methods study with the
research objective of mapping student-facing learning analytics

(LA) in real tertiary educational settings. The article is organized
as follows: (1) we conduct a short literature review, (2) we explain
how the research questions were formulated, (3) we illustrate the
design and results of the experiment, and (4) we present the
discussion and conclusions reached.

2. RELATED WORK
Student-facing LA is a subfield of LA and focuses on the
reporting phase, such as LA dashboards, educational
recommender and feedback systems [5, 6]. It is challenging to
show students a dashboard or automated emailing systems and
conduct surveys to extract usage insights [20]. According to [20],
a well-established student-facing LA system consists of four
learning design phases (do-analyze-change-reflect). To provide a

theoretical framework and extract the research questions, we
conducted a short literature review about student-facing LA. The
studies can be classified in terms of (1) improvement of
performance, (2) prediction of student course grade, (3)
improvement of LMS access, and (4) student opinions and
satisfaction of LA.

A series of studies [23, 30] have explored the idea of student-
facing LA improving levels of performance. Students' final marks

could determine the assessment of their academic achievement
[19, 33]. In contrast, academic performance and attainment are not
related to student access behavior perforce [17]. Nevertheless, we
argue that only a few studies examine under LA interventions the
correlations between LMS use, the number of submitted
assignments, and forum posts as metrics for performance.
Furthermore, we need more research to examine if the low effort
LA interventions could positively affect students' performance.
After all, explaining the students' learning performance is a

continual research question.

LA predictive modeling is a core practice of scholars focusing on
student success [22]. In [18], a data mining process constructs
variables that reflect the theoretical evidence and measure a
prediction model's accuracy. In addition, [31] presented a
prediction model for failure-prone students using neural networks
techniques. These studies emphasize that student-performance
prediction is a dominant research domain. Despite the above

studies, we argue that building a predictive model for students'
performance based on critical predictors such as LMS
participation and submitted assignments is an interesting research
question.

Engagement can substantially impact students' performance [4,
14]. In [6], the authors have explored the idea of student-facing
LA, improving levels of engagement. They have indicated that
academic engagement is a multi-dimensional construct and refers

to students' level of involvement [8, 15]. However, we argue that
not many studies examine the effect of student-facing LA
interventions on students' level of engagement.

Dimitrios Tzimas and Stavros Demetriadis “The Impact of Learning An-
alytics on Student Performance and Satisfaction in a Higher Education
Course”. 2021. In: Proceedings of The 14th International Conference on
Educational Data Mining (EDM21). International Educational Data Mining
Society, 654-660. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

654 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Targeted studies exist on students' opinions of LA [20, 28]. The
[32] study empirically explored the effects of a mobile LA tool in
student satisfaction. Nevertheless, we consider that students'
opinions before and after LA interventions need further research
and could extract valuable insights concerning students'

satisfaction and expectations. The surveys' results will confirm or
not the existing ones.

Drawing upon the findings of the above studies, our purpose is to
investigate the open issues. It would be meaningful to know
whether subjects in the feedback conditions gain learning benefits
such as performance and satisfaction. In parallel, integrating the
LA concepts into tertiary classroom practice has been slow [12].
This article replicates similar research and aims to interpret

analyzing learning data for higher education institutions (HEI).

2.1 Research Questions
Within this context, the current experimentation study poses the
following research questions:

1. Can a student-facing learning analytics approach at minimal

level guidance improve students' LMS access and learning
performance levels?

2. Are the students' LMS access, discussion forums, and submitted
assignments, critical predictors for students' course grades?

3. What are students' opinions about learning analytics as a tool
for data-driven decision-making strategy?

3. METHOD

3.1 Participants and Context
This study took place in the authentic context of a sixth-semester
13-week undergraduate department laboratory course, "digital

signal processing" (DSP), at a Greek HEI computer science
department between February 2018 and June 2018. The reason for
selecting this particular blended course was the high dropout and
failure rate in the past exams. This study focused on 31 students
as an experimental group receiving the LA intervention
("treatment") with minimal teacher guidance tested for
comparison purposes. Participants were 26% female. The control
group had 32 students who received no particular LA intervention.
The instructor had two-hour lectures and face-to-face

meetings/office hours on Mondays every week with the students.

An overview of the LA tool that students used follows: The Open
eClass platform is an open-source LMS and is developed by the
non-profit civil company called "Greek Universities Network"
(GUNET) (https://www.gunet.gr/en/). The platform's main
features follow: Management of electronic courses and
educational content; Student management; Information,
communication, collaboration, evaluation and feedback tools. The

structure of the course was as follows:

Week 1. Module 1: The nature of DSP was explored. To ensure
transparency and institution-wide adoption [34], we informed the
department principal in detail about the experiment, after which
she enthusiastically gave her consent. It was then defined what
types of data should be tracked and that the feedback (dashboard
and messages) would be intended for students.

Week 2. Module 2: Fundamental signals. The first coding exercise

was performed in addition to weekly discussion threads and office
hours. We gave a detailed description of which student-facing LA
will be used and how students will utilize them.

Week 3. Module 3: Digital signal sampling. For usability testing,
the students described their initial experience of using LA. The
students were surprised, as many claimed that it was impossible to
support concepts such as monitoring, analyzing, and feedback.

Week 4. The first quiz assignment and second coding exercise

took place. The instructor contributed to the discussion forum to
give a sense of learning community. We provided verbal
encouragement for students to access their statistics and figures
via the LA tool to reflect and meditate.

Week 5. The second quiz assignment and third coding exercise
took place—module 4: Fourier transformation principles. We
discussed the self-reflection and meditation process.

Week 6. Active intervention and feedback with personalized

messages containing the grades of the students' assignments,
recommendations, and comparisons of their performance with
aggregated data (e.g., participation in discussions and submission
of assignments). The encouraging wording of the messages was
designed to benefit pedagogically and not harm the student. For
instance, "do you need some support?" or "you could participate
more in the discussion forum." We provided personalized
feedback with visualizations for tracking students' learning

progress.

Week 8 and 9. Module 5: Digital filters. Provide in-class feedback
(figure 1), recommendations, and scheduling for personalized
scaffolding. Verbal suggestions informed students about what to
do based on analytics.

Week 10 and 11. The third quiz and an exercise took place. We
provided in-class information about absences, participation, and
homework. Students received personalized messages with

visualizations of their learning progress for mirroring, self-
reflection, and motivation.

Week 12 and 13. A revision session and a collaborative quiz were
conducted in addition to weekly monitoring and analysis. We used
a think-aloud protocol to understand how students reclaimed
feedback. A final questionnaire took place—Week 14. The final
examination was conducted.

Figure 1. Personalized feedback with visualizations for

mirroring.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 655

3.2 Research Design
A mixed quantitative and qualitative method case study was

utilized to provide an instantiation of the LA framework with a
description of the methodology for others to use a similar process.
To answer the first and second research questions, we conducted a
causal research design.

3.3 Measures and Instruments
The target of our intervention is students' LMS access,
performance, and learning satisfaction. The analysis object is
discussion forum use, the number of exercises submissions, and
LMS access, while all variables are numeric.

Performance: The performance is measured by a simple
dependent variable, the final course grade, that has convenient
properties for causal and statistical analysis. The grading system
of the final exam is as follows: Scale: 0.00 – 10.00 / Pass: 5:00

(excellent: 8.50 – 10.00 / very good: 6.5 – 8.49 / good: 5.00 –
6.49). The independent scale variables and their definitions that

we have considered were: "discussions" that counts the number of

posts per student, thus the LMS discussion forum's involvement;
"exercises" that counts the submitted assignments accumulated.
Each weekly assignment asked true/false, multiple-choice, open-
ended questions, and coding exercises; "hoursonlms" that counts,
in hours, students' LMS access.

LMS access: Student engagement is a complicated measured
construct but vital for students' success that encloses more than
participation, motivation, and self-regulation [21]. Therefore,
student LMS access in time is an indicator of student engagement.

Satisfaction: The instruments that we used to collect student
opinion data are two student opinion questionnaires. An
individual questionnaire was administered at the beginning of the
course and another at the end. The questionnaire data incorporated
participants' reflections on the activity and helped us to collect
qualitative data about their opinions as an evaluation.

3.4 Data Collection and Analysis
The level of significance was set at p = 0.05. Graphically, we
examined the same assumptions and checked for no outliers.
Some visualizations (i.e., dot plot, histogram, a boxplot for
density, skewness, and variability) were produced. Finally, for
data processing and analysis, the SPSS 25.0 statistical application
processed the data.

4. RESULTS
We first applied normality (Shapiro-Wilks) and variance (Levene)
controls on available data. The results (p > 0.05) indicated
statistical non-significance suggesting that sample data come from
normal distributions and populations with the same variance,

therefore appropriate for parametric test analysis.

4.1 Research Question 1
Hypothesis 1: The performance, as measured by the course grade
of the experimental group, is not statistically significantly
different from that of the control group.

The mean score of the experimental group (M = 6.08, SD = 2.62)
was slightly higher than that of the control group (M = 5.49, SD =
1.60). However, the independent samples t-test comparing course
grades between the groups revealed no statistically significant

differences (t = 1.077, p = 0.287) (Table 2). Overall, the null
hypothesis failed to be rejected.

Table 2. The t-test results of the experimental and control

groups for performance

Group N Mean SD t p

Experimental 31 6.08 2.62 1.077 0.287

Control 32 5.49 1.60

Hypothesis 2: The experimental group's LMS access (in hours) is
not statistically significantly different from that of the control
group.

Table 3 shows that the mean of the overall LMS access for the
experimental group was higher than that of the control group. The
independent samples t-test comparing LMS use between the
control and experimental groups revealed statistically significant

differences (t = 4.610, p = 0.000). Overall, the null hypothesis is
rejected.

Table 3: The t-test results for LMS access

Group N Mean SD t p

Experimental 31 10.03 7.79 4.610 0.000

Control 32 3.41 1.84

4.2 Research Question 2
Focusing on the experimental group, we examined the Pearson
correlations (Table 4), extracting that the submitted exercises
("exercises") are highly positively correlated with the final course
grade ("finalgrade"). Also, time spent on LMS ("hoursonlms") is
weakly positively correlated with the final course grade. However,
there is a tendency but no statistically significant correlation
between forum posts ("discussions") and the final course grade.

Afterward, a simple regression analysis was conducted for
"exercises" to estimate the final grade. The check (ANOVA) of
the hypothesis that no regression showed that this hypothesis is
rejected (F = 18.156, p = 0.000). To evaluate this regression
model, the Pearson correlation coefficient (Table 4) (R = 0.620, p
= 0.000) reflects the predictor importance; thus, we extracted a
good predictor. Then, the model accuracy (quality) is 61.1% and
the determination factor (R-squared = 0.385 < 0.5) is considered a

low effect size. Finally, the model's equation is y=1.002*x+3.954
(y: final grade, x: exercises).

Then, a simple regression analysis was conducted for
"hoursonlms" to estimate the final grade. The Pearson correlation
coefficient (Table 4) (R = 0.392, p = 0.015) reflects the predictor
importance. Thus, we extracted a weak predictor with a
determination factor (R-squared = 0.154 < 0.3) to be considered a
weak effect size. Furthermore, we observe a high correlation (R =

0.749, p = 0.000) between the above two predictors. As a result,
we decided that there is no need to conduct a multiple regression
analysis.

Table 4. Pearson correlations, in parentheses Sig. (two-tailed)*

 finalgrade hoursonlms exercises discussions

finalgrade 1.000 0.392 (0.015) 0.620 (0.000) 0.284 (0.061)

hoursonlms 1.000 0.749 (0.000) 0.525 (0.001)

exercises 1.000 0.314 (0.043)

*Significant difference at the 0.05 level

656 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

4.3 Research Question 3
We applied two questionnaires to address the third research

question (What are students' opinions about learning analytics as a
tool for data-driven decision-making strategy?). Twenty-three
students submitted the first questionnaire (appendix), and the
purpose was to determine as a baseline their prior knowledge of
the LA field. Fifteen students submitted the final questionnaire.
The purpose was to determine their thoughts about the LA
experience and their overall satisfaction and acceptance. Students
gave responses in the free comments field. Based on the mining of

students' opinions and perceptions, the LA experience increased
students' learning satisfaction. To summarize, students argue that:
LA feedback is helpful for their learning progress; they expect
that LA is applied in most courses; student-facing LA tools via
smartphone would have an added-value impact; peer-comparison
progress dashboards increase their engagement.

5. DISCUSSION AND CONCLUSIONS

5.1 Research Question 1
Table 3 shows that LMS access was significantly higher for the
treatment group who used LA. This result is consistent with that

mentioned by [3] and [25]. Students were triggered using LA to
submit more quizzes and exercises (cognitive activities). In
addition, students increased their sense of belonging to an online
community. However, the findings suggest that high LMS access
does not necessarily affect performance [36].

The experimental group had slightly higher scores than the control
group (Table 2). This result is consistent with the one mentioned
by [27], who stated that "students valued the information, but,

despite high engagement with the information, students' study
behavior and learning outcome remained rather unaffected." In
contrast, many studies [3, 13, 16, 24, 25] have stated that students
tend to perform better when the students accept LA interventions.
An explanation is that our LA approach resulted in delayed and
low effort interventions, which affected the students' overall
performance. The standard deviation (SD) values in Table 2 show
high diaspora, especially in the experimental group, so we argue
that the LA impact affected the students in an outspread way. We

conclude that there is no performance improvement without the
instructor's strong guidance and targeted interventions.

5.2 Research Question 2
Some of our findings are consistent with the results of other
related studies. Based on Table 4, we observe moderate statistical

correlations between time spent on LMS and the final grade and
between the number of assignments' submissions and the final
course grade. This result is aligned with that mentioned by [2] and
[15]. Our prediction model for academic performance confirms
the results of related studies; thus, we need models with higher
accuracy and effect size [7, 9].

5.3 Research Question 3
We conclude that the students' satisfaction was high, in agreement
with findings in [25]. Students' positive response to the usefulness
of student-facing LA is in agreement with the literature [6, 30]. In
addition, the students' responses in the reflection phase confirm
the discussion of [20] that students should analyze their behavior
using their self-regulated methods. In accordance with [35], the

above findings strengthen understanding students' opinions of LA
qualitatively rather than as technical methods. Furthermore,
interpreting students' comments, we argue that students liked this

new learning approach following personalized reports. Students
would like LA personalized interventions with a smartphone
application and comparisons of their learning progress with their
classmates. In conclusion, students' sample quotes extract
emerging themes: awareness of others in the class, motivation,

increased satisfaction and self-regulation, and technical proposals.

5.4 Limitations
We acknowledge that there are certain limitations to this small-
scale study that prevent its findings from being generalized. First,
the small sample size and the context of the dataset limit the

findings. The data covers one semester on a very domain-specific
course at one Greek university, and institutional factors influence
the results. Furthermore, the LMS captures a subset of all the
events in a learning experience, while other student characteristics
may influence student outcomes. It would be useful to search for
other factors or latent variables that might differ between the two
groups in order to improve the results. Second, engagement was
measured in terms of quantity rather than quality. More factors

that influence student engagement quality should be studied, such
as teacher participation and student effort. Third, the
questionnaire's answers indicate that students in the experimental
group are satisfied with the LA tool; however, we do not know
how LA impacts students' decision-making strategy.

5.5 Future work
It is our intention to replicate the study with another treatment
group applying a strong (high effort) teacher guidance to see the
impact in relation to the minimal (low effort) group. We will
evaluate the impact of three levels of LA interventions: mirroring,
metacognitive activities, and explicit guidance. Furthermore, we
intend to focus on replicating the experiment in other course
settings with larger populations, different profiles, and the use of a

mobile-based user-centered LA application. It would be
constructive to build and test a predictive model with higher
accuracy and stronger effect size applying sophisticated machine
learning or deep learning algorithms.

6. REFERENCES
[1] Aguilar, J., Sánchez, M., Cordero, J., Valdiviezo-Díaz, P.,

Barba-Guamán, L., & Chamba-Eras, L. (2017). Learning
analytics tasks as services in smart classrooms. Universal
Access in the Information Society, 1–17.
https://doi.org/10.1007/s10209-017-0525-0.

[2] Akhtar, S., Warburton, S., & Xu, W. (2017). The use of an
online learning and teaching system for monitoring computer
aided design student participation and predicting student
success. International Journal of Technology and Design
Education, 27(2), 251–270. https://doi.org/10.1007/s10798-
015-9346-8.

[3] Atherton, M., Shah, M., Vazquez, J., Griffiths, Z., Jackson,
B., & Burgess, C. (2017). Using learning analytics to assess
student engagement and academic outcomes in open access

enabling programmes. Open Learning: The Journal of Open,
Distance and E-Learning, 32(2), 119–136.
https://doi.org/10.1080/02680513.2017.1309646.

[4] Blasco-Arcas, L., Buil, I., Hernández-Ortega, B., & Sese, F.
J. (2013). Using clickers in class. The role of interactivity,
active collaborative learning and engagement in learning
performance. Computers and Education, 62, 102–110.
https://doi.org/10.1016/j.compedu.2012.10.019.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 657

https://doi.org/10.1007/s10209-017-0525-0
https://doi.org/10.1007/s10798-015-9346-8
https://doi.org/10.1007/s10798-015-9346-8
https://doi.org/10.1080/02680513.2017.1309646
https://doi.org/10.1016/j.compedu.2012.10.019

[5] Bodily, R., Ikahihifo, T. K., Mackley, B., & Graham, C. R.
(2018). The design, development, and implementation of
student-facing learning analytics dashboards. Journal of
Computing in Higher Education, 30(3), 572–598.
https://doi.org/10.1007/s12528-018-9186-0.

[6] Bodily, R., & Verbert, K. (2017). Trends and issues in
student-facing learning analytics reporting systems research.

ACM International Conference Proceeding Series, 309–318.
https://doi.org/10.1145/3027385.3027403.

[7] Casey, K., & Azcona, D. (2017). Utilizing student activity

patterns to predict performance. International Journal of
Educational Technology in Higher Education, 14(1).
https://doi.org/10.1186/s41239-017-0044-3.

[8] Chen, P. S. D., Lambert, A. D., & Guidry, K. R. (2010).
Engaging online learners: The impact of Web-based learning
technology on college student engagement. Computers and
Education, 54(4), 1222–1232.
https://doi.org/10.1016/j.compedu.2009.11.008.

[9] Cohen, A. (2017). Analysis of student activity in web-
supported courses as a tool for predicting dropout.
Educational Technology Research and Development, 65(5),
1285–1304. https://doi.org/10.1007/s11423-017-9524-3.

[10] Crespo García, R.M., Pardo, A., Delgado Kloos, C.,
Niemann, K., Scheffel, M., & Wolpers, M. (2012). Peeking
into the black box: visualizing learning activities.
International Journal of Technology Enhanced Learning,
Vol. 4, Nos. 1/2, pp.99–120.

http://dx.doi.org/10.1504/IJTEL.2012.048313.

[11] Er, E., Gómez-Sánchez, E., Dimitriadis, Y., Bote-Lorenzo,

M. L., Asensio-Pérez, J. I., & Álvarez-Álvarez, S. (2019).
Aligning learning design and learning analytics through
instructor involvement: a MOOC case study. Interactive
Learning Environments, 27(5–6), 685–698.
https://doi.org/10.1080/10494820.2019.1610455.

[12] Ferguson, R., Brasher, A., Clow, D., Cooper, A., Hillaire, G.,
Mittelmeier, J., ... Vuorikari, R. (2016). Research evidence
on the use of learning analytics: Implications for education
policy (Joint Research CentreScience for Policy Report, EUR
28294 EN). Luxembourg City: Publications Office of the
European Union. https://doi.org/10.2791/955210.

[13] Firat, M. (2016). Determining the effects of LMS learning
behaviors on academic achievement in a learning analytic
perspective. Journal of Information Technology Education:

Research, 15(15), 75–87. https://doi.org/10.28945/3405.

[14] Henrie, C. R., Halverson, L. R., & Graham, C. R. (2015).
Measuring student engagement in technology-mediated

learning: A review. Computers and Education, 90, 36–53.
https://doi.org/10.1016/j.compedu.2015.09.005.

[15] Joksimović, S., Gašević, D., Loughin, T. M., Kovanović, V.,

& Hatala, M. (2015). Learning at distance: Effects of
interaction traces on academic achievement. Computers and
Education, 87, 204–217.
https://doi.org/10.1016/j.compedu.2015.07.002.

[16] Khalil, M., & Ebner, M. (2017). Clustering patterns of
engagement in Massive Open Online Courses (MOOCs): the
use of learning analytics to reveal student categories. Journal
of Computing in Higher Education, 29(1), 114–132.
https://doi.org/10.1007/s12528-016-9126-9.

[17] Khan, T. M., Clear, F., & Sajadi, S. S. (2012). The
relationship between educational performance and online
access routines: Analysis of students' access to an online
discussion forum. ACM International Conference
Proceeding Series, May, 226–229.

https://doi.org/10.1145/2330601.2330655.

[18] Kim, D., Park, Y., Yoon, M., & Jo, I. H. (2016). Toward

evidence-based learning analytics: Using proxy variables to
improve asynchronous online discussion environments.
Internet and Higher Education, 30, 30–43.
https://doi.org/10.1016/j.iheduc.2016.03.002.

[19] Kim, J., Jo, I. H., & Park, Y. (2016). Effects of learning
analytics dashboard: analyzing the relations among
dashboard utilization, satisfaction, and learning achievement.
Asia Pacific Education Review, 17(1), 13–24.
https://doi.org/10.1007/s12564-015-9403-8.

[20] Kitto, K., Lupton, M., Davis, K., & Waters, Z. (2017).
Designing for student-facing learning analytics. Australasian
Journal of Educational Technology, 33(5), 152–168.
https://doi.org/10.14742/ajet.3607.

[21] Lacave, C., Velázquez-Iturbide, J. Á., Paredes-Velasco, M.,
& Molina, A. I. (2020). Analyzing the influence of a
visualization system on students' emotions: An empirical
case study. Computers and Education, 149(May 2019).

https://doi.org/10.1016/j.compedu.2020.103817.

[22] Lang, C., Siemens, G., Wise, A., & Gasevic, D. (2017).
Handbook of Learning Analytics.

https://doi.org/10.18608/hla17.

[23] Li, Q., & Baker, R. (2018). The different relationships

between engagement and outcomes across participant
subgroups in Massive Open Online Courses. Computers and
Education, 127(April 2017), 41–65.
https://doi.org/10.1016/j.compedu.2018.08.005.

[24] Lu, O. H. T., Huang, J. C. H., Huang, A. Y. Q., & Yang, S. J.
H. (2017). Applying learning analytics for improving
students engagement and learning outcomes in a MOOCs
enabled collaborative programming course. Interactive
Learning Environments, 25(2), 220–234.
https://doi.org/10.1080/10494820.2016.1278391.

[25] Nguyen, Q., Rienties, B., Toetenel, L., Ferguson, R., &
Whitelock, D. (2017). Examining the designs of computer-
based assessment and its impact on student engagement,
satisfaction, and pass rates. Computers in Human Behavior,

76, 703–714. https://doi.org/10.1016/j.chb.2017.03.028.

[26] Olmos, M., & Corrin, L. (2012). Learning analytics: A case
study of the process of design of visualizations. Journal of

Asynchronous Learning Network, 16(3), 39–49.
https://doi.org/10.24059/olj.v16i3.273.

[27] Ott, C., Robins, A., Haden, P., & Shephard, K. (2015).

Illustrating performance indicators and course characteristics
to support students' self-regulated learning in CS1. Computer
Science Education, 25(2), 174–198.
https://doi.org/10.1080/08993408.2015.1033129.

[28] Ruipérez-Valiente, J. A., Muñoz-Merino, P. J., Leony, D., &
Delgado Kloos, C. (2015). ALAS-KA: A learning analytics
extension for better understanding the learning process in the
Khan Academy platform. Computers in Human Behavior,
47, 139–148. https://doi.org/10.1016/j.chb.2014.07.002.

658 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://doi.org/10.1007/s12528-018-9186-0
https://doi.org/10.1145/3027385.3027403
https://doi.org/10.1186/s41239-017-0044-3
https://doi.org/10.1016/j.compedu.2009.11.008.
https://doi.org/10.1007/s11423-017-9524-3
http://dx.doi.org/10.1504/IJTEL.2012.048313
https://doi.org/10.1080/10494820.2019.1610455.
https://doi.org/10.2791/955210.
https://doi.org/10.28945/3405
https://doi.org/10.28945/3405
https://doi.org/10.1016/j.compedu.2015.09.005
https://doi.org/10.1016/j.compedu.2015.07.002
https://doi.org/10.1007/s12528-016-9126-9
https://doi.org/10.1007/s12528-016-9126-9
https://doi.org/10.1145/2330601.2330655
https://doi.org/10.1016/j.iheduc.2016.03.002
https://doi.org/10.1007/s12564-015-9403-8
https://doi.org/10.14742/ajet.3607
https://doi.org/10.1016/j.compedu.2020.103817
https://doi.org/10.18608/hla17
https://doi.org/10.1016/j.compedu.2018.08.005
https://doi.org/10.1080/10494820.2016.1278391
https://doi.org/10.1016/j.chb.2017.03.028
https://doi.org/10.24059/olj.v16i3.273
https://doi.org/10.1080/08993408.2015.1033129
https://doi.org/10.1016/j.chb.2014.07.002

[29] Siemens, G., & Long, P. (2011). Penetrating the fog:
Analytics in learning and education. EDUCAUSE Review,
46(5), 30–40. Retrieved from
https://er.educause.edu/articles/2011/9/penetrating-the-fog-
analytics-in -learning-and-education.

[30] Smith, P. (2019). Engaging online students through peer-
comparison progress dashboards. Journal of Applied

Research in Higher Education, 12(1), 38–56.
https://doi.org/10.1108/JARHE-11-2018-0249.

[31] Sukhbaatar, O., Usagawa, T., & Choimaa, L. (2019). An

artificial neural network based early prediction of failure-
prone students in blended learning course. International
Journal of Emerging Technologies in Learning, 14(19), 77–
92. https://doi.org/10.3991/ijet.v14i19.10366.

[32] Tabuenca, B., Kalz, M., Drachsler, H., & Specht, M. (2015).
Time will tell: The role of mobile learning analytics in self-
regulated learning. Computers and Education, 89, 53–74.
https://doi.org/10.1016/j.compedu.2015.08.004.

[33] Timmers, C. F., Walraven, A., & Veldkamp, B. P. (2015).
The effect of regulation feedback in a computer-based
formative assessment on information problem solving.
Computers and Education, 87, 1–9.
https://doi.org/10.1016/j.compedu.2015.03.012.

[34] Tzimas, D., Demetriadis, S. (2021). Ethical issues in learning
analytics: a review of the field. Education Technology

Research and Development. https://doi.org/10.1007/s11423-
021-09977-4.

[35] Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018).

The current landscape of learning analytics in higher
education. Computers in Human Behavior, 89(August), 98–
110. https://doi.org/10.1016/j.chb.2018.07.027.

[36] Zingaro, D. (2014). Peer instruction contributes to self-
efficacy in CS1. In Proceedings of the 45th ACM technical
symposium on computer science education – SIGCSE'14 (pp.
373–378). New York, NY: ACM.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 659

https://er.educause.edu/articles/2011/9/penetrating-the-fog-analytics-in%20-learning-and-education
https://er.educause.edu/articles/2011/9/penetrating-the-fog-analytics-in%20-learning-and-education
https://doi.org/10.1108/JARHE-11-2018-0249
https://doi.org/10.3991/ijet.v14i19.10366.
https://doi.org/10.1016/j.compedu.2015.08.004
https://doi.org/10.1016/j.compedu.2015.08.004
https://doi.org/10.1016/j.compedu.2015.03.012.
https://doi.org/10.1007/s11423-021-09977-4
https://doi.org/10.1007/s11423-021-09977-4
https://doi.org/10.1016/j.chb.2018.07.027.

Appendix

First questionnaire

Question Answer

 Yes No No answer

Do you know what analytics is? 10 13 -

Do you know what learning analytics is? 6 17 -

Do you believe that the collection and processing of your learning data and behavior

will be helpful to your learning experience?

22 1 -

Would you be interested in being informed about your learning progress concerning

your classmates?

13 6 4

Would it be helpful to have feedback (e.g., personalized monitoring and

individualized learning material) on your learning progress?

22 1 -

Final questionnaire

Question Answer

 Yes No No answer

Were the personalized notifications about your engagement, absences, and performance useful for the

course?

14 1 -

Would you prefer more detailed information? 4 8 3

Would you prefer to receive notifications and messages through a smartphone? 10 2 3

Is the comparison of your learning progress with that of your classmates useful? 11 2 2

Please provide free comments:

"It is the first time for me that a teacher has sent personalized messages to all students about their learning progress. I have nothing more to suggest. It

would be great to convince the other teachers to do the same".

"The whole procedure with the exercises, the open discussions, and generally the lecturers' teaching methods helped me very much to self-regulate. I

enjoyed both class time and homework".

"It was the first time that we had received such refined, analytical, and informed monitoring about our progress and performance on a course."

"I would like access to an LA android-based application."

"I liked the quizzes the most, and I would prefer to be informed via a smartphone app."

"There was sufficient and motivational guidance from the instructor about online exercises."

"Instructor's comments about the exercises on LMS were constructive, analytical, and motivational."

"I would like more teacher guidance about the exercises, the learning material, and the overall learning procedure."

660 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Text Representations of Math Tutorial Videos for
Clustering, Retrieval, and Learning Gain Prediction

Pichayut Liamthong
Worcester Polytechnic Institute

pliamthong@wpi.edu

Jacob Whitehill
Worcester Polytechnic Institute

jrwhitehill@wpi.edu

ABSTRACT
With the goal of making vast collections of open educational
resources (YouTube, Khan Academy, etc.) more useful to
learners, we explored how automatically extractable text
representations of math tutorial videos can help to cate-
gorize the videos, search through them for specific content,
and predict the individual learning gains of students who
watch them. In particular, (1) we devised novel text rep-
resentations, based on the output of an automatic speech
recognition system, that consider the frequency of different
tokens (symbols, equations, etc.) as well as their proximity
from each other in the transcript. Unsupervised learning
experiments, conducted on 208 videos that explain 18 math
problems about logarithms show that the clustering accu-
racy of our proposed methods reaches 85%, surpassing that
of standard TF-IDF features (78% using log normalization).
(2) In a video search setting, the proposed text features can
significantly reduce the number of videos (up to 88% reduc-
tion on our dataset) and amount of video time (up to 82%)
that users need to spend looking for desired content in large
video collections. Finally, (3) in an experiment on Mechani-
cal Turk with n = 541 participants who watched a randomly
assigned tutorial video between a pretest & posttest, the text
features and their multiplicative interactions with students’
prior knowledge provide a statistically significant benefit to
predicting individual learning gains.

Keywords: Open educational resources (OER), Crowdsourc-
ing, Information Retrieval

1. INTRODUCTION
Consider a large repository (Khan Academy, edX, etc.) of
open educational resources (OERs) such as tutorial videos,
and a scenario in which the ultimate goal is to help learners
to learn by recommending relevant and high-quality con-
tent that matches the students’ needs. Knowing what the
learner needs and providing the right content that suits them
is crucial. We could estimate automatically the most bene-
ficial content by analyzing their performance on prior exam-

Figure 1: Example videos in our study. Right: Google’s
Speech-to-Text extracts the text “solve for x ok our problem
is log base 3 of x minus 1 equals 4. . . ”.

inations. However, a current challenge with contemporary
OER repositories is that the content within each resource
is typically poorly annotated, with tags that are too gen-
eral, e.g., “algebra” or “linear equations” rather than “Sim-
plify log10 1000.”. Given the high labor and time involved
in manual annotation, it is desirable to devise methods of
automatically analyzing OER content and devising represen-
tations that can facilitate efficient search and categorization.

While optimal character recognition and handwriting recog-
nition are both mature fields, they are typically evaluated
in much more constrained settings than math tutorials, in
which math is mixed with natural language, and extrane-
ous lines and other graphics can exist (see Figure 1). In
full-fledged tutorial videos, this segmentation can be very
challenging. Our research focuses instead on analyzing the
speech transcript of the video (while ignoring other potential
audio characteristics such as background noise, pitch, etc.).
When a particular expression or equation is presented in a
video, there is a high chance that the speaker will also say
that expression/equation out-loud to the learners (Figure 1).
Rather than manually transcribing the text from the video,
we consider only fully automatic approaches based on auto-
matic speech recognition (ASR; we used the Google Speech-
to-Text API in our work, more detailed about the pilot test
in Appendix B). Hence, the text representations we explore
must contend with imperfect transcripts. We then assess
the utility of the proposed representations for three tasks:
(1) cluster the videos automatically into the specific math
problems that they explain; (2) search through a library
of videos for one that explains a particular math problem;
and (3) predict the individual learning gains of students who

Pichayut Liamthong and Jacob Whitehill “Text Representations of Math
Tutorial Videos for Clustering, Retrieval, and Learning Gain Prediction”.
2021. In: Proceedings of The 14th International Conference on Educational
Data Mining (EDM21). International Educational Data Mining Society,
661-666. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 661

watch the videos in a pretest/treatment/posttest paradigm.
In these ways, we hope to make available to students the
right content that is already available, but not easily find-
able, among large-scale OER repositories.

We conduct our investigation on a collection [14] of math
tutorial videos about logarithms, and another dataset from
YouTube on basic algebra. Our goal is not just to make
coarse distinctions between videos about “algebra” versus
“geometry”, but rather fine-grained distinctions about spe-
cific math problems. Mirroring our goals from the previous
paragraph, our research questions are the following: RQ1:
How accurately can the devised text features cluster videos
into fine-grained categories about the specific problem they
are solving, and which aspects of these representations are
most important? RQ2: By how much can we reduce the
search time to find a relevant video? RQ3: Are the text fea-
tures predictive of the individual learning gains of students
who watch these videos in a pretest/posttest setting?

2. RELATED WORK
Text Representations: There are several prominent text rep-
resentations used for language modeling: (1) Term frequency
and Inverse document frequency (TF-IDF) [12]: TF-IDF
features typically do not require training and are thus suit-
able for unsupervised settings. (2) Word embedding mod-
els [8, 7] based on neural networks trained using supervised
learning. (3) Sentence-level models such as BERT [8] that
capture higher semantics compared to word embeddings.

Video Categorization & Clustering: For categorizing video
content automatically, much of the prior work has focused on
other fields than math tutorial such as films, sport videos [2],
[4], [11]. Most prior methods on video categorization focus
on visual aspects such as frame transitions, object detection
and segmentation. Some as them use the audio (e.g. [2])
such as the audio frequency and amplitude statistics. We
are unaware of any previous research that clustered video
content at the low-level tags of individual math problems.

Video Retrieval in OERs: There has been increasing in-
terest in the task of video retrieval of OERs. Many works
in have pursued combined feature representations with both
textual and visual information [13, 15, 3]. Hürst [3] found
that the lecture slides are more useful than the corrected
transcriptions. In our work, while we focus solely on text
representations, the features we devise could be easily com-
bined with visual features.

Estimating the Effectiveness of OERs: For the task of es-
timating the effectiveness (e.g., associated learning gains)
of viewing tutorial videos, researchers have pursued various
approaches, including estimating their effectiveness through
correlated measures such as engagement while watching the
video [10, 6, 1]. For estimating the effectiveness of OERs
in general, one can also use a combined experimental and
reinforcement learning-based approach such as bandit algo-
rithms [9]. While Rafferty et al. [9] suggested the potential
use of context (for example, features of the OERs as well
as of the students’ prior knowledge) for predicting learning
gains, they did not actually pursue that approach.

3. TEXT REPRESENTATIONS

In this paper we explore unsupervised representations of the
transcripts of math tutorial videos. When designing the rep-
resentations, we considered the following characteristics: (1)
Similar content should involve similar tokens. A math video
whose transcript consists of just “two plus three”, for exam-
ple, is unlikely to be similar to a video whose transcript is
“four times x”. (2) The most important tokens tend to re-
cur within a video transcript. Conversely, tokens that are
uttered only once are often less important or even be tran-
scription errors. (3) The relative order of nearby tokens is
important for deciphering the math content. For example,
“four over two” and “two over four” are different fractions,
but the difference is reflected only in the relative order of
tokens, not in their frequencies. For characteristics (1) and
(2) above, we created several variations of “1D” text repre-
sentations that capture which tokens occur more frequently
in each video. With the additional characteristic (3), we
also explored “2D” text representations that can capture the
relative order within a fixed radius from token i w.r.t. token
j for each (i, j) pair. We note that extracting the precise
mathematical expression from the transcript is inherently
ambiguous. For example, the two distinct expressions 2x+2

and 2x + 2 would likely both be spoken as “two to the x
plus two”. Fortunately, our objective is not to capture the
math content perfectly, but to capture enough of it to en-
able effective clustering, search, and prediction of learning
gains. Below we describe different kinds of unsupervised
text representations that vary in terms of token type, order
dependency, and summarization method.

3.1 Token Types
3.1.1 Individual Token

As our simplest representation, we call each word (sepa-
rated by space) a token, and then we count the number of
math-related tokens, defined as: (1) numbers (digit-only),
(2) operations (e.g. +,−,×), or (3) variables (an alphabet).
For the operations, we map synonyms to the same token,
e.g., ‘plus’ to ‘+’, ‘to the [power]’ to ‘^’. Additionally, we
add the words corresponding to each digit 0 to 9 (i.e. ‘zero’,
. . . , ‘nine’) as math-related tokens. For variables, we used
a restricted alphabet consisting of {b, c, n,m,w, x, y, z} (we
omitted ’a’ since it is also a common English word).

3.1.2 Expression Token
To infer which math problem in video, it might be useful to
extract the entire expression.For example,“2 plus 3”could be
considered as one token “2+3” not ‘2’, ‘+’, and ‘3’. Specif-
ically: (1) We mark all tokens in the transcript as either
math-related or non-math-related. Tokens that are labeled
as math-related are literals (LIT) and operators (OP) such
as plus (+),

√
, etc. (2) For each contiguous sequence

of math-related tokens, we read the tokens one-by-one and
concatenate them into one expression according to the rule:
starting with LIT followed by OP, LIT, . . . (alternately).

3.2 Token Count Vector
Given the sequence of tokens in each video, we then com-
pute either a 1D vector or 2D matrix of frequency statistics
(which are finally summarized as described in Section 3.3).
In the subsections below we let T be the set of all tokens
that appear in any of the videos.

662 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

1D (No Order Dependencies): The count vector of each
video contains |T | components, each of which records the
frequency of token occurs in video.

2D (First-Order Dependencies): With the goal of encoding
the relative order of tokens, we computed a 2D matrix M ,
of size |T | × |T |, such that Mij is the number of times that
token i appears before token j in the transcript. In this
approach, we introduced a “radius” parameter k to limit the
distance of token pairs (i, j) that need to be considered. For
example, if k = 4, all token pairs (i, j) such that the distance
between i and j is ≤ 4 will be counted, otherwise, ignored.

3.3 Token Summarization Methods
Given the token count vector computed in Section 3.2, we
then summarize each count x using a summarization func-
tion f . We considered the following functions: (1) Raw Fre-
quencies: We let f(x) = x. (2) Binarized Frequencies: Bina-
rizing the counts x might be less susceptible to noise; hence,
we tried setting: f(x) = 1 if x ≥ 1 and f(x) = 0 if x = 0. (3)
Weighted Frequencies: It might be beneficial to weight down
tokens which appears once because it might be noise from
the extraction process; important tokens should be men-
tioned multiple times in video; token found only once (we
call it t=1) are either insignificant or incorrectly extracted.
Instead of removing t=1, we introduced the parameter r to
downweight t=1. In this case, instead of having the raw
frequencies, We fixed the weight of t>1 (appear more than
once) as 1; however, we downweight t=1 by r. We thus let
f(x) = 1/r if x = 1, f(x) = 0 if x = 0, and f(x) = 1 if x > 1.
Note that r = 1 is equivalent to Binarized Frequencies.

4. DATASET
We applied the text representations to two sets of tutorial
videos: (1) Logarithms and (2) Algebra, see Appendix A.

5. CLUSTERING
Given the different feature types, we test whether they serve
as an effective basis for clustering the videos. In this section,
as ground-truth cluster labels, we took the math problem
(there were K = 18 unique problems in total) that each
video explained as its label. Note, however, that we could
also cluster the videos by the category of problems that they
explain (see Section 4); we do so in Section 7.

Methods: For each of the different text representations, we
applied K-means clustering to group the videos into K = 18
clusters, followed by the Hungarian algorithm [5] to opti-
mally match the estimated cluster to the ground-truth in-
dices. Since K-means converges to different local minima
depending on the random initialization, we executed the al-
gorithm 512 times and then reported the average of accuracy
for the clustering with lowest sum of squared distance.

Results: Table 1 shows the clustering accuracy results. All
three methods yield accuracies that are much greater than
the random baseline, which achieved only 18.27% accuracy.

Weighted Frequencies: We tried multiple values of r (r = 1
is equivalent to the Binarized Token Counts). We also added
r = 0.5, 0.25; this contrasts with our intuition for when it
weights t=1 more; we added this as a sanity check that the

accuracy should be getting worse. Table 1 shows that the
weighted frequencies increase the accuracy significantly up
by 10% on average. r = 2 performs the best among r =
2, 4, 8. As r gets larger, we see a slight decrease in accuracy.

1D vs. 2D: Table 1 (right) shows clustering accuracy with the
2D approach. For the radius k = 2 on the Expression token
(and using weighted frequencies with r = 2), the accuracy
increases around 2% compared to with 1D. However, we can
see lots of variance in the accuracy over the different k, and
hence the advantage may not be statistically reliable.

Comparison to TF-IDF: Our token summarization methods
can be seen as variations of TF-IDF, where only the TF
term f(x) is used; in other words, we used a constant 1 for
the IDF term. (We experimented with several IDF func-
tions but found that they all worked worse than just 1.)
The weighted frequency scheme we tried can be seen as a
coarse (piecewise-constant) approximation to the (smooth)
log function commonly used as the TF function in TF-IDF.
Using TF-IDF (with log for TF and 1 for IDF) and Expres-
sion Tokens, the clustering achieved 78.67% for the Expres-
sion Token (down about 5% from our weighted frequency
method). For the Individual Tokens, it performed similarily
in accuracy compared to the weighted frequency methods.
(See the “log” column in Table 1.) In summary, the results
provide some evidence that our text representations may
yield a worthwhile accuracy advantage over TF-IDF.

6. SEARCHING
Here we explore whether the proposed text representations
could be used to create a simple search engine to reduce
the amount of video time they would need to watch. Us-
ing the text representations, we can build a simple search
engine as follows: (1) From each video i in a collection S,
we transcribe its speech into text (using Google ASR) and
then extract its text representation vi. Then, (2) for any
search query (e.g., “Simplify: log4 16”), we likewise extract
its text representation q using any of the methods presented
in Section 3. Finally, (3) we rank all the videos in S by the
cosine similarity between vi and q.

Experiments: Here we consider a general setting in which
multiple math problems may be explained in a single video.
A search engine that can pinpoint which segment of a video
explains the solution could save the user significant time
compared to watching the whole video. For this setting,
there is a trade-off between granularity and accuracy: the
search engine may be more accurate if the segment length
is longer, but the user can save more time if the segment
returned to them by the search engine is shorter. Hence,
we introduced a segment length parameter, L. We divided
each video into multiple segments of length L. Each segment
has its own (sub-)transcript and its own problem that it
explains. Hence, we treat each segment as its own “video”.
Our goal is to find any segment in the video that explains
the problem in the user’s query q. As a baseline, we used a
simulation (averaged over 20 runs) to estimate the sum of
the segment lengths (in seconds) that a user would have to
watch before finding a relevant segment.

Results on the Algebra dataset: We analyzed the 234 videos
of the Algebra dataset that contain multiple problems; in

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 663

1D 2D

Token Types Raw Weighted: r log Radius k (for Weighted: r = 2)

0.25 0.5 1 2 4 ∞ 1 2 4 8 16 ∞
Individual 54.33 25.48 41.35 67.31 72.11 68.75 64.90 73.56 64.90 63.46 59.13 57.69 62.02 49.04

Expression 50.48 20.67 44.71 70.19 83.65 83.17 80.29 78.67 83.65 85.58 75.96 71.64 73.56 51.44

Table 1: Clustering accuracy on the logarithm videos for 1D text representations with different token types and summarization
methods, and the clustering accuracy for 2D representations and different token types (all with weighted summarization: r = 2).

total, these videos explain 300 algebra problems. We varied
the segment length L over the set {15s, 30s, 1m, 2m, 4m}
(see Figure C.1 in Appendix). The results shows that the
best text representations were 2D Binarized Individual To-
ken (k = 8). In particular, the 2D representations showed
an advantage (compare the pairs of {blue, pink}’s solid and
dashed lines). We found that radius k = 8 for 2D Represen-
tation preforms best across each method. For the Interval
Length, the percent decrease, at L ∈ {30s, 1m}, in watch
time is highest (i.e., the most helpful, see Figure C.1 in Ap-
pendix). As L continues to grow, the results go down and
at L = 15s, the performance drops. This exemplifies the
trade-off between segment length and available information.

Results on the Logarithm dataset: In this dataset, each video
contains one log problem. For each of 18 logarithm prob-
lems, we search for any of the videos that solve that partic-
ular problem. Comparing the results with random baseline,
the results show the same trend as for the Algebra dataset:
The 2D Representation gives the best results. We found,
for instance, Binarized Individual Token yields the results
of 89.96%, and 93.19% for 1D and 2D (k = 8), respectively.
The same holds true for Weighted Expression Token (r = 2)
with the results of 91.25% and 93.20%. For the 1D approach,
the best representation was TF-IDF (with log for TF and
identity for IDF); the reduction was slightly lower (92.85%).

7. LEARNING GAIN PREDICTION
In this section, we investigate whether the text representa-
tion can be used to predict the learning gain of students
who watch the videos as an educational intervention. The
high-level idea is that the effectiveness of each tutorial video
can be estimated by the interaction of the content within
the video and the student’s prior knowledge. In contrast to
some prior work that predicted the average learning gains
of a video over many students, here we tackle the arguably
harder problem of predicting individual learning gains of
each student, measured as the difference in test scores on
the curriculum before and after watching the video.

The Logarithms dataset (Section 4) contains pretest/posttest
scores of students who received a tutorial videos as an inter-
vention. Hence, we use each participant’s pretest score and
the text representation of the video they watched as predic-
tors to estimate their learning gains (posttest minus pretest
score). Rather than use the text representation as a fea-
ture vector itself, we instead use the category label assigned
to the problem (Section 5) by the clustering algorithm as a
0-1 indicator variable with an associated model coefficient;
hence, our models can find interactions between a student’s
prior knowledge and the topic in the video they received.

7.1 Prediction Models
We considered both linear models with mixed effects, as
well as deep non-linear models based on neural networks,
but we found that the latter overfit too easily and gave
unstable results; hence, we present only the linear models.
Let pij , j = 1, 2, 3, be student i’s prior knowledge (pretest
score) within the 3 problem categories (j) on logarithms.
Let cij , j = 1, 2, 3, be 0-1 indicator variables that reflect
whether student i’s assigned video belongs to each category
j. (Note that each video is assigned to exactly one of the
three categories.) We can compute cij using either (a) Man-
ually Labeled Categories (MLC) from human annotators, or
(b) Automatically Labeled Categories (ALC) from the text
representations and clustering algorithm (Section 5).

Prediction Model: We constructed a model that consid-
ers multiplicative interactions between the student’s prior
knowledge pij in each problem category and the cluster la-
bel cij of the student’s assigned video:
yi =

∑3
j=1 (wjpij + vjcij + uj(pij × cij)) + εi. Importantly,

this model contains multiplicative interaction terms pij×cij .

Results: We found that the interaction pij × cij using MLC
has a statistically significant effect on the learning gain (F11, 582 =
5.839, p = 5.11e − 09), and so does this interaction us-
ing ALC (F11, 582 = 6.425, p = 4.125e − 10). The RMSE
is 0.464, which is slightly better (about 3.1% relative de-
crease) compared to prediction model 1. Specifically, we
found that, for example, u3 is negative and statistically sig-
nificant (p = 0.0005) in the ALC model. The negativity of
u3 means that, if pi3 × ci3 is low, then the learning gain is
high (and vice versa). In turn, pi3 × ci3 is low either be-
cause (1) pi3 is low and ci3 = 1, i.e., an individual knows
little about topic 3 and receives a tutorial about topic 3,
yielding high learning gain; or (2) pi3 is high and ci3 = 0,
i.e., an individual already understands topic 3 and receives
on another (more helpful) topic, yielding high learning gain.
Both the MLC and ALC interactions were stat. sig., suggest-
ing that the text representations can group videos in ways
that predict individual learning gains.

8. CONCLUSION AND FUTURE WORK
We have devised novel text representations to represent the
content of math tutorial videos. On a dataset of hundreds of
math videos and hundreds of students who watched them,
we showed that the representation can be used to (1) accu-
rately (around 85%) cluster the videos into the math prob-
lems they solve (RQ1); (2) search for specific video content
in a large repository of videos, thereby saving the user con-
siderable (up to 88%) search time (RQ2); and (3) predict
individual learning gains, in conjunction with features of the
students’ prior knowledge, with stat. significance (RQ3).

664 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

9. REFERENCES
[1] S. Bulathwela, M. Pérez-Ortiz, A. Lipani, E. Yilmaz,

and J. Shawe-Taylor. Predicting engagement in video
lectures. arXiv preprint arXiv:2006.00592, 2020.

[2] S. Fischer, R. Lienhart, and W. Effelsberg. Automatic
recognition of film genres. Technical reports, 95, 1995.

[3] W. Hürst, T. Kreuzer, and M. Wiesenhütter. A
qualitative study towards using large vocabulary
automatic speech recognition to index recorded
presentations for search and access over the web. In
ICWI, pages 135–143. Citeseer, 2002.

[4] V. Kobla, D. DeMenthon, and D. Doermann.
Detection of slow-motion replay sequences for
identifying sports videos. In 1999 IEEE Third
Workshop on Multimedia Signal Processing (Cat. No.
99TH8451), pages 135–140. IEEE, 1999.

[5] H. W. Kuhn. The hungarian method for the
assignment problem. Naval research logistics quarterly,
2(1-2):83–97, 1955.

[6] A. S. Lan, C. G. Brinton, T.-Y. Yang, and M. Chiang.
Behavior-based latent variable model for learner
engagement. International Educational Data Mining
Society, 2017.

[7] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

[8] J. Pennington, R. Socher, and C. D. Manning. Glove:
Global vectors for word representation. In Proceedings
of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543, 2014.

[9] A. N. Rafferty, H. Ying, and J. J. Williams. Bandit
assignment for educational experiments: Benefits to
students versus statistical power. In International
Conference on Artificial Intelligence in Education,
pages 286–290. Springer, 2018.

[10] A. Ramesh, D. Goldwasser, B. Huang, H. Daumé III,
and L. Getoor. Learning latent engagement patterns
of students in online courses. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial
Intelligence, pages 1272–1278, 2014.

[11] E. Sahouria and A. Zakhor. Content analysis of video
using principal components. IEEE transactions on
circuits and systems for video technology,
9(8):1290–1298, 1999.

[12] G. Salton and C. Buckley. Term-weighting approaches
in automatic text retrieval. Information processing &
management, 24(5):513–523, 1988.

[13] F. Wang, C.-W. Ngo, and T.-C. Pong. Structuring
low-quality videotaped lectures for cross-reference
browsing by video text analysis. Pattern Recognition,
41(10):3257–3269, 2008.

[14] J. Whitehill and M. Seltzer. A crowdsourcing
approach to collecting tutorial videos–toward
personalized learning-at-scale. In Proceedings of the
Fourth (2017) ACM Conference on Learning@ Scale,
pages 157–160, 2017.

[15] H. Yang and C. Meinel. Content based lecture video
retrieval using speech and video text information.
IEEE transactions on learning technologies,
7(2):142–154, 2014.

APPENDIX

A. DATASET
Here we described each dataset we use in the experiment in
more detail.

Logarithms: This is the dataset collected by Whitehill &
Seltzer [14], which contains both a repository of 208 math
tutorial videos about logarithms. Most videos are between
1-3 minutes long. In total the collection spans 18 logarithm
problems, with 9 to 17 videos per problem. Relevant only
to Section 7, the dataset also contains students’ pretest and
posttest scores of 541 participants from Amazon Mechan-
ical Turk who watched the videos. There are 226 males,
207 females, and 108 of undefined, with the average age of
33.71 ±9.84. Specifically, each participants were asked to
answer 19 logarithm pretest problems, which was classified
into 3 main categories: (1) the logarithmic term without
variables e.g. log9 1, (2) the logarithmic term with variables
e.g. logw

1
w

, and (3) the logarithmic equation e.g. solve for
x where x log4 16 = 3 (category 1, 2 and 3 contain 102, 61,
and 45 videos, respectively). Then, they were assigned to
one random video among 208 logarithm tutorial videos, and
were asked to complete a posttest (same level of difficulty
as the pretest but slightly different problems).

Algebra: For the search task, we collected another dataset,
containing 234 algebra math tutorials on Youtube As of 234
videos, 213 of them contains one math problem and 21 of
them contains multiple math problems (total of 87 math
equations); total of 300 expressions on entire dataset. We
manually annotated which equation (e.g. 2x2−2x−12 = 0,
x + 7 = 10) each video explains. For videos with multiple
math problems, we marked the start end time of each.

B. SPEECH-TO-TEXT TRANSCRIPTION
All the feature types we explore are based on obtaining an
approximate transcript of the video from an ASR. In par-
ticular, we use Google Speech-to-Text API. As a pilot test
of its accuracy on the OERs in our dataset, we manually
annotated 10 videos (in total of 3044 words in the ground-
truth transcripts). Google’s API achieved a word error rate
(WER) of 5%, which intuitively seemed sufficient, which in-
tuitively seemed sufficient. An example of extracted speech
is shown in Figure 1 (caption). After obtaining the tran-
script for each video in our collection, we then tokenized it
and summarized the token frequencies.

C. ADDITIONAL FIGURES

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 665

15 30 60 120 240
Interval Length (sec)

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Am
ou

nt
 o
f T

im
e
De

cr
ea

se
 (%

)

1D Binarized Individual Token (r=1)
2D Binarized Individual Token (r=1, k=8)
1D Weighted Expression Token (r=2)
2D Weighted Expression Token (r=2, k=8)
TF Log Norm on Individual Token

Figure C.1: The decrease in time needed to find specific
math content in a set of math tutorial videos. Each line
shows a different text representation over different segment
lengths.

666 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Predicting Young Students’ Self-Evaluation Deficits
Through Their Activity Traces

Thomas Sergent
Sorbonne Université, CNRS,
LIP6, F-75005 Paris, France

Lalilo, Paris, France
thomas.sergent@lip6.fr

Morgane Daniel
Lalilo, Paris, France

morgane@lalilo.com

François Bouchet,
Thibault Carron

Sorbonne Université, CNRS,
LIP6, F-75005 Paris, France

{francois.bouchet,
thibault.carron}@lip6.fr

ABSTRACT
Self-evaluation is a key self-regulatory process that can al-
ready be mastered by young children. In order to assess
self-evaluation skills of children, we introduced a random
prompt asked randomly after 1 out of 15 exercises into a
literacy web-application for primary school student, in order
to evaluate the perceived difficulty [Too easy, Good, Too dif-
ficult] of the exercise they just solved. Comparing students’
actual performance with their responses to this prompt can
provide information about their ability to self-evaluate, and
thus detect students who could improve their self-evaluation
skills. We collected more than 1,000,000 responses from
300,000 students and used these data as well as performance
data on each question of each exercise to predict a student’s
response to the next prompt, thereby estimating how likely
they are to having a self-evaluation deficit. The results show
(a) that a student’s past responses to self-evaluation state-
ments impacts the quality of future predictions (b) that the
impact of past responses - vs their current performance - is
greater when the student has low capacity for self-evaluation
(c) that including older student data (answers from several
sessions ago) helps in improving the accuracy of the predic-
tion. These results pave the way (1) for adaptive polling
by identifying when the model is unreliable, giving them
the statement then instead of randomly, (2) for adaptive
feedback, by knowing the students the most likely to show a
deficit, to provide remediation.

Keywords
Self-Regulated Learning, Primary school, Self-evaluation,
Prediction, Remediation, Adaptive polling

1. INTRODUCTION
Improving children’s self-regulated learning (SRL) skills is
a key component of their academic performance, as self-
regulated students generally know better “how to learn”,
which can have a positive impact in all disciplines [22]. A key

SRL process is self-evaluation [17], which is a skill already
developed in children as young as 5 years old [19]. It is
therefore a particularly interesting SRL aspect to target
when working with young children. The most reliable way
to assess SRL deficits is through direct questions to the
students [1], but constant prompting can lead to an overall
degraded perception of the learning environment [3] and it is
therefore critical to limit prompting to the minimum. Hence
we are interested here in trying to predict students’ answers
to assessment on perceived difficulty which are used to assess
students’ tendencies to overevaluate or underevaluate. The
second aspect we investigate is relative to the features that
are the most relevant for this prediction.

2. RELATED WORK
The EDM community has recognized early on the interest
of studying SRL through data mining [21], and previous
works have been more particularly interested in detecting
SRL behaviors from traces [5], discussion forums [9, 8] or
proxy behaviors such as gaming the system [4], explaining
such behaviors with sequence mining [20, 2], mixture mo-
dels (for procrastination, a proxy of SRL) [13] or coherence
analysis [18]. Other works have focused on analyzing the
differences in use of SRL strategies [6], providing feedback
to encourage them [7] or predicting their use [15]. However,
as far as the authors are aware, no previous work has specifi-
cally attempted to predict how a student would answer to
a question aiming to measure a SRL deficit (self-evaluation
or any other), and none of the aforementioned work focused
on young children (5-7 years old). It is worth noting that
although young children’s abilities to use SRL strategies
may be more limited than in teenagers, they seem to have
comparable monitoring skills [16]. Indeed, recent work on a
dashboard supporting SRL in a mathematics software pro-
gram for 9-10 years old (only slightly older than our targeted
students) showed a significant improvement in SRL skills for
students in the dashboard group compared to those without
the dashboard [12].

3. SELF-EVALUATION ASSESSMENT
3.1 Context
Lalilo is one of the many web applications used by teachers
in the classroom to help them implement a differentiated
pedagogy. At the beginning of 2021, it is used by 40,000
English and French speaking kindergarten and elementary
classes every week to strengthen literacy through series of
exercises adapted to the students’ level, while providing the

Thomas Sergent, Morgane Daniel, François Bouchet and Thibault
Carron “Predicting Young Students’ Self-Regulated Learning Deficits
Through Their Activity Traces”. 2021. In: Proceedings of
The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 667-671.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 667

teacher with a dashboard to evaluate the students’ activities
and progress. It is therefore a relevant testing ground for
evaluating and then trying to correct some students’ SRL
deficits. A typical session lasts 20 minutes (on average) with
the student performing around 15 short exercises with 3 to
7 questions each. Student activities (e.g. logging in, time
spent on an question/exercise, mistakes) are traced and we
will focus on students’ answers to an exercise, thus we will
call trace only the answers to this set of questions of the
same type within an exercise.

3.2 Data collection
To assess some aspects of students’ SRL skills, we introduced
a random prompt is once every fifteen exercises when a
student finishes an exercise (i.e. on average once per typical
learning session). This prompt includes a perceived difficulty
statement asking the student “How difficult was this exercise
for you?” with 3 possible answers: “Too hard”, “Just-right”,
“Too easy”). Comparing the answer to the perceived difficulty
statement with the real performance aims at measuring the
self-evaluation ability of the students, i.e. their ability to
correctly estimate the difficulty of the questions they just
answered. Before introducing the assessments, we checked
qualitatively in a classroom using Lalilo that statements were
understood by 1st grade students (details not presented here).
We collected traces from Kindergarten, 1st grade and 2nd

grade classes based in France, Canada and USA learning
in French (FR) or English (EN) between January 18 and
February 24, 2021 on the Lalilo platform. We kept only the
traces for which students had answered to a prompt and
further on we call trace the answers to the exercise with the
associated answers to the prompt.

4. METHODS
4.1 Dataset
Given the history of a student answers to the perceived diffi-
culty prompt and their performance on the current exercise,
we want to predict which answer is the most likely to be given
by the student to the next prompt (and thus extrapolate
their self-evaluation skills). If the student’s performance -
which will be defined in the Feature engineering subsection
- was “excellent” (resp. “poor”) and they answered “Too
hard” (resp “Too easy”), they were considered as having an
underevaluation (resp. overevaluation) deficit. We filtered
out students who had strictly less than 8 traces with answers
to prompts so that our model would not overfit on results
of students with very few answers, as students with very
few answers were overrepresented in our initial dataset. We
finally had 424,173 traces with an answer to the perceived
difficulty statement from 34,083 students having on average
12 traces with self-evaluation answers (SD = 5.93).

4.2 Feature engineering
We engineered several new features that could have a pre-
dicting power in our results.
Basic performance feature. In addition to the trace and
student IDs, used for filtering but not for prediction, we ex-
tracted for each trace the answer correctness list, a boolean
vector of a length of 3 to 7 (number of questions per exercise).
Enriched performance features. From the answer correctness
list, we extracted 5 additional features: the good answer
count (i.e. the number of 1s in the vector - the higher the

value, the better the student may feel they have succeeded),
the total answer count (i.e. the length of the vector), the
success rate (i.e. the ratio between the good answer count
and the total answer count) and the second half success rate
(i.e. the success rate on the last half of a trace - a student
with self-evaluation deficit may suffer from a recency bias,
influencing positively [resp. negatively] their perception of
their performance when answering correctly [resp. incor-
rectly] to the last questions of the exercise).
Exercise features. We hypothesize that self-evaluation deficits
are not uniform across one’s knowledge. In particular, a stu-
dent’s deficit may be stronger in some types of exercises
or on exercises about a given topic. To assess this impact,
we added 5 features that relate to the exercise finished just
before the two difficulty statements: exercise template (for
example a multiple choice question or a word composition
exercise), lesson index (there are around 1,000 lessons in
Lalilo - although they are not entirely linear, the higher the
value of this feature, the more advanced the content is; when
working on English (resp. French) data, the lesson index FR
(resp. EN) is empty), lesson type (lessons are organized in
a tree structure - lesson type represents the first level cate-
gory), lesson subject (lesson subject represents the second
level category in the tree), language (English or French).
Previous feedback modalities. In order to help students’ in
their performance assessment, they are randomly given an
audio feedback (such as “In the last exercise, you found 3
correct answers of 5 questions”) and/or a visual gauge of as
many green ticks and red crosses as they had good and bad
answers in the previous exercise. Even when these synthe-
sis exercise-level performance indicators are not there, the
students always have an immediate question-level true/false
feedback. We have previously shown the positive impact of
these two indicators in correcting some self-regulation issues,
and we therefore hypothesize that they need to be taken
into account when predicting how the student will assess the
difficulty. Hence we added two binary features, gauge and
audio which indicate whether these performance feedback
were given before the two difficulty statements. A feedback is
also provided after answering to the prompt, when students
display a self-evaluation deficit (as defined in 3.2), encourag-
ing them to be more confident or warning them to be more
careful; we therefore encode this as a third binary feature,
remediation, indicating whether the student received a feed-
back the last time the difficulty was assessed.
Self-evaluation deficit lag features. Self-evaluation deficits are
expected to be a recurring phenomena in students’ answers,
i.e. a student who has under/overevaluated themselves a few
times is likely to under/overevaluate themselves again in the
future. Hence we added 3 lag features for the last 3 perceived
difficulty assessments. Moreover, since it is possible that the
last 3 assessments were not allowing the student to exhibit a
deficit (e.g. a student cannot appear to be overevaluating if
their performance is at 100% on the last 3 exercises where
they were asked to assess the difficulty), we also added 3 lag
features for the last 3 perceived difficulty assessments where
the student’s performance was equal to the performance on
the current exercise. Performance is a categorical value which
is worth “poor” if the success rate is below 34%, “excellent”
if the success rate is at 100% and “medium” otherwise.
Overall previous self-evaluation deficit. If students are stable
over time in their assessment, we expect that taking into
account the whole history would have a positive impact on

668 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

the prediction. We therefore introduced 5 additional fea-
tures: self-evaluation answer rank (the number of times the
student has been asked a self-assessment), number of “Too
easy” (resp. “Too hard”) answers (the number of times the
student previously answered “Too easy” (resp. “Too hard”)
to previous assessments), and “Too easy (resp. Too hard)
answers ratio” (the ratio between the two previous features).
Additionally, similarly to what was done for the lag features,
we also considered the 5 equivalent features exclusively on
previous assessment given after an exercise with a similar
performance level.

4.3 Algorithms
We used Catboost [14] and LightGBM [10] to perform the
predictions, two gradient boosting algorithms based on Deci-
sion Trees whose main assets are: (a) their ability to natively
deal with categorical features and (b) their explainability,
allowing to study feature importance in each prediction with
SHapley Additive exPlanations (also called SHAP values)
[11]. They also have recently won Kaggle competitions on a
variety of datasets. We used MultiClass as a loss function,
set the number of iterations at 200 and kept the other hy-
perparameters at their default values. As their results were
very similar for the global prediction task (cf. Table 1), we
used CatBoost model only for the other tasks.

4.4 Analyzing features importance
We first measured the improvements allowed by feature en-
gineering to the global prediction scores using 5-fold cross
validation and stratifying by student so that no student traces
are both in training and testing folds. For all feature impor-
tance measures subsequently described, we created a training
and a testing set - also stratified by student - and measured
the feature importance in the testing set. We studied the
importance of various features in our model using the SHAP
package [11]. We also compared the importance of features
across the three classes so as to highlight the features that
have the most impact on each class specifically.
If students showed a given deficit regularly - we defined a
threshold at 50% of “underevaluation” (resp. “overevalua-
tion”) over the traces with 100% (resp. below 34%) success
rate - we tagged the student as having an “underevaluation
(resp. overevaluation) deficit”. We then trained our algo-
rithms on a dataset with students tagged as having a deficit
and on a dataset with students tagged as having no deficit.
Our hypothesis was that feature importance would vary be-
tween these two models: the predictions were expected to
depend more on past answers than current performance for
students tagged with deficits compared to the other students.
Finally, we measured the evolution of the performance of the
model depending on the self-evaluation answer rank that is
predicted. To do so, we analyze the evolution of Cohen’s
Kappa coefficient, measuring the quality of our prediction
of the perceived difficulty, on a cohort of students of the
testing set having answered a given amount of prompts. We
computed this coefficient for each self-evaluation answer rank
and expected the quality of the prediction to improve as
students would be better and better characterized by their
features.

5. RESULTS AND DISCUSSION
5.1 Global features importance analysis
Firstly, both Catboost and LightGBM allow to predict with
a reasonable overall performance the students’ perceived
difficulty (cf. right part of Table 1). Secondly we see that
all features additions improve the model except the previous
feedback ones. Specifically, adding features describing what a
student did in the past improves the predictions significantly.

Table 2 ranks the top 10 features with their mean absolute
SHAP values. Interestingly, the success rate of the student
and the success rate on the second half of the correctness
list are only the 5th and 8th ranked features. It means that
past information about the previous answers of students to
self-evaluation prompts influences more the prediction than
their current performance, although they are being asked
“How difficult was this exercise for you?”. Specifically, the
last three answers to the perceived difficulty question bear a
significant weight in our model’s predictions, as well as the
global “Too easy” and “Too hard“ ratios. As expected, the
“Too easy” ratio has a huge importance for the “Too easy”
class as has the “Too hard” ratio for the “Too hard” class
and both ratio are highly ranked for the “Just-right” class.
Indeed, we did not input the “Just-right” ratio as the model
can learn it from the combination of “Too hard” and “Too
easy” ratio. We can note that the success rate feature is
mainly important for the “Too easy” and “Too hard” class,
which is logical as an excellent (resp. poor) performance is
not likely to lead to a “Too hard” (resp. “Too easy”) answer.
We can also see on Figure 1, as the “Too hard” ratio is
equal to 0, it drives the prediction score of the “Too hard”
class downwards while it drives the prediction score of the
“Just-right” class upwards. Furthermore, the 3 last answers
to the perceived difficulty statement of this student were
“Just-right”, “Too easy”, “Too easy” and their success rate on
this trace was 100%; the predictions of the “Too easy” class
are therefore also driven upward by these features.

5.2 Features rank from self-evaluation deficits
Figure 2 shows the feature importance rankings for students
detected as having or not self-evaluation deficits. Students
with deficits consistently choose how to answer to the prompt
more based on past answers (in particular the“Too easy/hard”
ratios), as opposed to students with no deficits who rely more
on the success rate to this exercise, as one should. These
results are in line with our hypotheses.

5.3 Predicting power based on answer rank
Figure 3 shows the kappa evolution depending on the number
of past self-evaluation assessments. The kappa for the first
answer is around 0.13, then quickly climbs around 0.4 for the
next four traces; and finally slowly increases until plateauing
around 0.6. The kappa of 0.13 for the first answer is consistent
with Table 1: at the beginning, Student features are empty
and the model can only rely on Trace features. With Trace
features only, the model reached a Kappa of 0.1084 which
coincides with the kappa value of 0.13 in Figure 3. We can
then deduce that the model is more and more able to predict
answers to the perceived difficulty statement.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 669

Table 1: Prediction metrics after 200 iterations of the Catboost and LightGBM algorithms depending on the features used. We
measure mean and standard deviation (in parenthesis) on 5-fold cross validation.

Trace features Student features

Algorithm Enriched perf. Exercise Feedback Lag Overall prev. self-eval. Accuracy Kappa

CatBoost Yes 0.4662 (0.0006) 0.0866 (0.0030)
CatBoost Yes Yes 0.4737 (0.0018) 0.1084 (0.0022)
CatBoost Yes Yes Yes 0.4736 (0.0018) 0.1081 (0.0026)
CatBoost Yes Yes Yes Yes 0.6676 (0.0034) 0.4522 (0.0053)
CatBoost Yes Yes Yes Yes Yes 0.6701 (0.0028) 0.4575 (0.0042)
LightGBM Yes Yes Yes Yes Yes 0.6706 (0.0034) 0.4565 (0.0032)

Figure 1: Feature impact in the prediction of each class for a randomly chosen trace in the testing pool.
Top: “Too easy” class, middle: “Too hard” class, bottom: “Just-right” class.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

1 to last perc. answer
Too easy ratio
Too hard ratio

2 to last perc. answer
3 to last perc. answer

1 to last perc. answer P
success rate

2 to last perc. answer P
3 to last perc. answer P

nb Too hard answers

easy
hard
just-right

0.00 0.05 0.10 0.15 0.20 0.25

success rate
1 to last perc. answer

Too easy ratio
Too hard ratio

2 to last perc. answer
1 to last perc. answer P

3 to last perc. answer
2 to last perc. answer P

second half success rate
exercise type

easy
hard
just-right

Figure 2: Top 10 features impact for class prediction of
students detected as having (top) or not (bottom) a self-
evaluation deficit

Figure 3: Kappa value and total number of traces of each class
in the testing group, based on the self-evaluation answer rank

Table 2: Average feature importance rank by class, sorted by
total SHAP value (top 5 in bold)

Features Too easy Just-right Too hard

“Too easy” ratio 1 1 14
1 to last perc. answer 2 2 3

“Too hard” ratio 6 4 1
2 to last perc. answer 3 3 9

success rate 4 9 2
3 to last perc. answer 5 5 10

1 to last perc. answer P 7 6 12
second half success rate 8 19 4
3 to last perc. answer P 9 7 11

exercise type 10 15 5

6. CONCLUSION AND FUTURE WORKS
Using a large volume of trace data from primary school
students, we leveraged students’ past data to significantly
improve the prediction of the answers to future self-evaluation
prompts. The results also indicate that the more data we
have about a student, the better our predictions are. Using
feature engineering, we ranked features by the additional
predicting power they provide, and found results consistent
with SRL theories (in particular that prediction of answers
for well-regulated students depends mostly on their success
rate). This paves the way for adaptive polling (as opposed to
the current random one), prompting only students likely to
display a self-evaluation deficit, allowing us to better target
remediation. The main limit of the current work is the
specificity of the context: it would be particularly interesting
to study the main features used in another context with a
different type of students. We are also targeting one of many
existing SRL deficits, and expanding research on predicting
other deficits to encourage the training of multiple SRL skills
seems important as well. Future works also include further
feature engineering to refine what features may have more
impact than the current ones.

670 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

7. REFERENCES
[1] L. Barnard, W. Y. Lan, Y. M. To, V. O. Paton, and

S.-L. Lai. Measuring self-regulation in online and
blended learning environments. The Internet and
Higher Education, 12(1):1–6, Jan. 2009.

[2] F. Bouchet, J. M. Harley, and R. Azevedo. Impact of
Different Pedagogical Agents’ Adaptive Self-Regulated
Prompting Strategies on Learning with MetaTutor. In
Proc. of the 16th Conf. on Artificial Intelligence in
Education (AIED 2013), volume 7926 of Lecture Notes
in Computer Science, pages 815–819, Memphis, TN,
July 2013. Springer Berlin Heidelberg.

[3] F. Bouchet, J. M. Harley, and R. Azevedo. Evaluating
Adaptive Pedagogical Agents’ Prompting Strategies
Effect on Students’ Emotions. In Intelligent Tutoring
Systems: 14th Int. Conf., volume 10858 of LNCS, pages
33–43, Montreal, QC, Canada, June 2018. Springer.

[4] S. Dang and K. Koedinger. Exploring the Link between
Motivations and Gaming. In Proc. of the 12th Int.
Conf. of Educ. Data Mining, pages 276–281, 2019.

[5] N. Diana, M. Eagle, J. C. Stamper, and K. R.
Koedinger. Extracting Measures of Active Learning
and Student Self-Regulated Learning Strategies from
MOOC Data. In Proc. of the 9th Int. Conf. on Educ.
Data Mining, pages 583–584, Raleigh, NC, USA, 2016.

[6] E. Farhana, T. Rutherford, and C. F. Lynch.
Investigating Relations between Self-Regulated Reading
Behaviors and Science Question Difficulty. In Proc. of
the 13th Int. Conf. on Educ. Data Mining, pages
395–402, Ifrane, Marocco, 2020.

[7] J. Feild. Improving Student Performance Using Nudge
Analytics. In Proc. of the 8th Int. Conf. on Educ. Data
Mining, Madrid, Spain, 2015.

[8] F. Harrak, F. Bouchet, V. Luengo, and R. Bachelet.
Automatic Identification of Questions in MOOC
Forums and Association with Self-Regulated Learning.
In Proc. of the 12th Int. Conf. on Educ. Data Mining,
pages 564–567, Montréal, Canada, July 2019.

[9] E. Huang, H. Valdiviejas, and N. Bosch. I’m Sure!
Automatic Detection of Metacognition in Online
Course Discussion Forums. In Proc. of the 8th Int.
Conf. on Affective Computing and Intelligent
Interaction (ACII), pages 1–7, Sept. 2019.

[10] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma,
Q. Ye, and T.-Y. Liu. LightGBM: A Highly Efficient
Gradient Boosting Decision Tree. Advances in Neural
Information Processing Systems, 30, 2017.

[11] S. M. Lundberg and S.-I. Lee. A Unified Approach to
Interpreting Model Predictions. Advances in Neural
Information Processing Systems, 30, 2017.

[12] I. Molenaar, A. Horvers, R. Dijkstra, and R. S. Baker.
Personalized visualizations to promote young learners’
SRL: the learning path app. In Proceedings of the
Tenth International Conference on Learning Analytics
& Knowledge, pages 330–339, 2020.

[13] J. Park, R. Yu, F. Rodriguez, R. Baker, P. Smyth, and
M. Warschauer. Understanding Student
Procrastination via Mixture Models. In Proc. of the
11th Int. Conf. of Educ. Data Mining, pages 187–197,
Buffalo, NY, USA, 2018.

[14] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V.
Dorogush, and A. Gulin. CatBoost: unbiased boosting

with categorical features. Advances in Neural
Information Processing Systems, 31, 2018.

[15] J. L. Sabourin, L. R. Shores, B. W. Mott, and J. C.
Lester. Understanding and Predicting Student
Self-Regulated Learning Strategies in Game-Based
Learning Environments. Int. J. of Artificial Intelligence
in Education, 23(1):94–114, Nov. 2013.

[16] W. Schneider. The Development of Metacognitive
Knowledge in Children and Adolescents: Major Trends
and Implications for Education. Mind, Brain, and
Education, 2(3):114–121, 2008.

[17] D. H. Schunk and B. J. Zimmerman. Self-Regulation
and Learning. In Handbook of Psychology, Second
Edition. American Cancer Society, 2012.

[18] J. R. Segedy, J. S. Kinnebrew, and G. Biswas. Using
Coherence Analysis to Characterize Self-Regulated
Learning Behaviours in Open-Ended Learning
Environments. Journal of Learning Analytics,
2(1):13–48, May 2015.

[19] D. Stipek, S. Recchia, and S. McClintic. Self-evaluation
in young children. Monographs of the Society for
Research in Child Development, 57(1):1–98, 1992.

[20] M. Taub and R. Azevedo. Using Sequence Mining to
Analyze Metacognitive Monitoring and Scientific
Inquiry based on Levels of Efficiency and Emotions
during Game-Based Learning. Journal of Educ. Data
Mining, 10(3):1–26, Dec. 2018.

[21] P. H. Winne and R. S. J. d. Baker. The Potentials of
Educ. Data Mining for Researching Metacognition,
Motivation and Self-Regulated Learning. Journal of
Educ. Data Mining, 5(1):1–8, May 2013.

[22] B. J. Zimmerman. Investigating Self-Regulation and
Motivation: Historical Background, Methodological
Developments, and Future Prospects. American
Educational Research Journal, 45(1):166–183, Mar.
2008.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 671

Automatic Domain Model Creation and Improvement
Philip I. Pavlik Jr., Luke G.

Eglington, and Liang Zhang
University of Memphis

ppavlik, lgglngtn,
lzhang13@memphis.edu

ABSTRACT

We describe a data mining pipeline to convert data from

educational systems into knowledge component (KC) models. In

contrast to other approaches, our approach employs and compares

multiple model search methodologies (e.g., sparse factor analysis,
covariance clustering) within a single pipeline. In this preliminary

work, we describe our approach's results on two datasets when

using 2 model search methodologies for inferring item or KCs

relations (i.e., implied transfer). The first method uses item
covariances which are clustered to determine related KCs, and the

second method uses sparse factor analysis to derive the relationship

matrix for clustering. We evaluate these methods on data from

experimentally controlled practice of statistics items as well as data
from the Andes physics system. We explain our plans to upgrade

our pipeline to include additional methods of finding item

relationships and creating domain models. We discuss advantages

of improving the domain model that go beyond model fit, including
the fact that models with clustered item KCs result in performance

predictions transferring between KCs, enabling the learning system

to be more adaptive and better able to track student knowledge.

Keywords

Knowledge component model, domain model, learning transfer

1. INTRODUCTION
This paper describes preliminary progress to create a multimethod

pipeline to determine the knowledge model (or domain model) that

allows the most accurate prediction of performance in an adaptive

learning system using a quantitative model of practice. A broad use
of quantitative models of practice is to predict performance and

make pedagogical decisions [1; 2]. To do this effectively, models

typically assign sets of problems or items specific skill tags (often

called knowledge components, or KCs). Having such an
identification allows a system to monitor which skills have been

learned and which need more practice. The matrices representing

these item assignments to skills are called Q-matrices [4]. Because

the act of tracing student learning is so important for pedagogy, the
assignment of items to KCs is crucially important for systems to

make pedagogical decisions. Without such an assignment, a system

would conceivably need to schedule all items for practice to ensure

mastery, so the assignment or “domain model” must be accurate for
a system to perform well. Improvements in the domain model may

result in better pedagogical decisions in a system. This paper

describes a more general approach to improve these critical domain

models, a tradition that has included much prior work [3; 5; 14; 15;

19; 20; 22].

In addition to improving domain models, we highlight how these

methods may alter how many quantitative models work by enabling

models where multiple knowledge components can influence a

single practice trial. While such models are not new [13],
specifying them with experts is time consuming and error prone.

Despite this difficulty, domain models that include the potential for

multiple KCs affecting a single performance also typically capture

transfer when a shared KC is used in multiple items. In addition to
making models more accurate, this transfer has large potential

impacts on pedagogy in a complex adaptive instructional system

since transfer in an adaptive system means that a KC's performance

may bias the selection of other items that share KCs. This transfer
will occur because the shared KC will affect the item predictions,

making items sharing a KC more or less likely to be practiced.

2. ANALYSIS METHOD
We have developed an automatic domain model improvement

algorithm with a highly configurable analysis pipeline.

2.1 Step 1
First is the preprocessing stage. In this stage, some matrix-based

method will produce some featural vector of information

representing each item. There are two ways this method might

process the data from an educational system, either all at once or
sequentially in the order the student saw the items. In the first case,

this would include methods such as SPARFA-Lite, which assumes

one observation for each skill for each student [14]. Our example

in this paper uses the SPARFA-Lite model and a simpler model
based on covariance clustering [20]. For our examples, Step 1

meant averaging KCs performances for each subject to get a student

performance by KC. More advanced methods such as tensor

analysis can proceed with sequential data for each student.

However, this is future work not presented here.

2.2 Step 2 Infer Feature Matrix
In this step, the method is applied to the data to get some matrix.

Currently, the pipeline has two possibilities at this stage, but we

plan to include multiple methods in future work as we look to our
long-term goal of building a shareable tool for the EDM

community.

2.2.1 Covariance Clustering
Developed by Pavlik, Cen, Wu, and Koedinger [20], covariance

clustering is a method to describe how each item or existing KC in
a domain model is related to all other items or KCs (using a measure

of conditional log odds to represent covariance). This method

computes a vector for each item representing the conditional

Philip I. Pavlik Jr., Luke Eglington and Liang Zhang “Automatic Do-
main Model Creation and Improvement”. 2021. In: Proceedings
of The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 672-676.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

672 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

probability table for success and failure for the items/KCs relative
to all other items/KCs. The pairwise relationships between each

vector are similar to the relationships inferred in POKS (Partial

Order Knowledge Spaces, [7; 8]), a method related to Falmagne’s

work [10; 11]. An advantage of covariance clustering is that it
characterizes each pairwise relationship between items/KCs in

terms of the relationship with all other items/KCs. Pavlik et al. [20]

used clustering to establish how to group items by using this

KC/item relational vector as the set of features.

2.2.2 SPARFA-Lite
Developed at Rice University by Lan, Studer, and Baranuik [14],
SPARFA is a factor analysis method to extract factors from binary-

valued data. It provides an association matrix similar to a dAFM Q-

matrix with graded associations of concepts with items. The “Lite”

version simplifies the method by reducing the parameters and
allowing automatic inference of the optimal number of concepts.

This method works differently than dAFM, but it provides similar

results, allowing for direct comparisons. Also, the ability to infer

the optimal number of concepts may be a useful constraint when

applying other algorithms.

2.3 Step 3 Cluster Principal Components of

Features
In this step, the information matrix is clustered using some method

to group items into clusters. Our current implementation first uses

RSVD (Randomized Singular Value Decomposition) to simplify
the information matrix. We see from the pattern in the results

section how the quantity of RSVD components influences the

clustering result. We are currently using K-means clustering for

clustering, so our search is across both RSVD number of

components (N) and K for the number of K means clusters.

For this step, we have also done considerable experimentation with

the cmeans fuzzy clustering method, which provides a 0 to 1 index

of how strongly each KC is associated with each cluster. Typically,
we have used this by specifying a threshold (which can be

optimized with search) over which an item belongs to each cluster

or not. This assignment allows for membership in multiple clusters,

which means that unlike the method in Step 2.4, the item is assigned
to potentially many clusters. Typically, when we use this method,

we have weighted the effect of prior practice for the KC clusters

according to the number of KC clusters involved in a performance.

This weighting is not necessary for the simpler K-means
implementation since the added KC column only assigns each KC

to 1 KC cluster.

2.4 Step 4 Fit with New Model
We used the new model as an overlay such that we created a column

with the cluster id for each KC for each trial. This overlay

procedure means that while the KC and clusters are independent,

practicing an item may affect other items if they share a cluster. To

do this, we first describe our starting model, which was simply PFA

(Performance Factors Analysis, [17]) using the logarithms of
practice counts for successes and failure (adding 1 to each to permit

the logarithms). Where 𝜃 values are Student ability and KC

difficulty respectively, and S and F represent the count of prior

success and failures for the KC j for the student i.

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗𝑡) = 𝛽1log𝑒 𝑆𝑖𝑗 + 𝛽2log𝑒 𝐹𝑖𝑗 +

𝜃𝑖 + 𝜃𝑗

The new model was defined using cluster-id (c) as a KC in an
additive compensatory model. Prior research suggests such

compensation among KCs works well for prediction [6; 16].

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗𝑡) = 𝛽1jlog𝑒 𝑆𝑖𝑗 + 𝛽2jlog𝑒 𝐹𝑖𝑗 +

𝛽3clog𝑒 𝑆𝑖𝑐 + 𝛽4clog𝑒 𝐹𝑖𝑐 +

𝜃𝑖 + 𝜃𝑗

Two versions of this model with clusters were compared; the first

version was as described, and the second version was a control

condition where the cluster column was sampled at random from

the Q-matrix. This control condition should exhibit the same
amount of overfitting due to adding parameters but none of the

benefit of a coherent clustering solution. These models are

compared using 2 to N components and 2 to K clusters by iterating

to Step 3 to search a space of models.

In the context of our future work, we plan to allow users of our tool

to specify candidate models with different configurations and terms

using a logistic knowledge tracing R package freely available [18].

It is possible that different learner models may be implemented at
this step since the Q-matrices we are creating may be used in many

types of learner models.

2.5 Step 5 Splitting and Merging
Just as steps 3 and 4 may iterate to find optimal K and N, steps 4
and 5 may iterate to refine the model in Step 4. This step describes

our future planning for a tool to optimize Q-matrix type models of

knowledge domains.

Splitting takes the original KC model and uses the KC model from
the clustered features to determine hypotheses for how KCs might

be split. So if a KC in the original model is in 2 clusters, the model

would test whether that that was best represented by the default

model (include the effect of the cluster and the KC for each KC) or
whether the cluster was unnecessary and the fit was just as good by

splitting the KC into two different KCs and dropping the effect of

the cluster KC. Further, we could also test whether the specific

clusters proposed for each KCs even improves fit by removing
them entirely as a third hypothesis. Two of these three possibilities

correspond to Learning Factors Analysis (LFA) [5], and the third

(including the cluster instead of using a split) advances the

approach.

Merging uses the cluster model like LFA, but instead of splitting

KCs, the clusters are used to evaluate three hypotheses about

whether existing KCs can be merged into a single KC. One

hypothesis is that the KCs are best represented as separate but
influence each other through the shared cluster membership. The

second hypothesis is that the specific cluster was unnecessary, and

the two KCs should be merged into 1 KC. Finally, the third

hypothesis is that the 2 KCs are separate and that the cluster

predictor should be omitted.

Step 5 is similar to backward and forward stepwise regression

methods, and so it is clear this method would be very likely to cause

overfitting due to the way it will tailor the model term to capture
the data iteratively. To prevent this problem, the solutions produced

are robustly cross-validated. By tuning the model to maximize

cross-validation accuracy, we aim to find quantitative thresholds

for when to add or subtract terms from the model with a result that

is efficient and parsimonious.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 673

Figure 1. Changes in fit including differing numbers of additional

clusters for Cloze dataset using covariance clustering (CC) or

SPARFA-lite (SL).

3. DATASETS
The statistics cloze dataset included 58,316 observations from 478

participants who learned statistical concepts by reading sentences

and filling in missing words. Participants were adults recruited

from Amazon Mechanical Turk. There were 144 KCs in the dataset,
derived from 36 sentences, each with 1 of 4 different possible

words missing (cloze items). The number of times specific cloze

items were presented was manipulated, and the temporal spacing

between presentations (narrow, medium, or wide). The post-
practice test (filling in missing words) could be after 2 minutes, 1

day, or 3 days (manipulated between students). The stimuli type,

manipulation of spacing, repetition of KCs and items, and multiple-

day delays made this dataset appropriate for evaluating model fit to
well-known patterns in human learning data (e.g., substantial

forgetting across delays, benefits of spacing). The dataset was

downloaded from the Memphis Datashop repository.

In the Andes dataset, 66 students learned physics using the Andes
tutoring system, generating 345,536 observations. Participants

were given feedback on their responses as well as solution hints.

Additionally, participants were asked qualitative “reflective”

questions after feedback (for more details, see [12]).

Figure 2. Changes in fit including differing numbers of additional

clusters for Andes Physics data using covariance clustering (CC) or

SPARFA-lite (SL).

4. RESULTS
Figures 1 and 2 show the result for the two datasets. The proportion

of R-squared gain indicates the improvement in R-squared for the

true clustered model compared to the random comparison R-

squared model as a proportion of the random comparison R-
squared model. Because of the result's preliminary nature, we have

not been able to produce smoothed figures through cross-

validation. However, the results consistently show beneficial

effects. In general, both methods have similar accuracy.

Both methods can achieve similar improvements via different

parameters. However, it does appear that the efficacy of the

methods differs somewhat across datasets. Covariance clustering

found the best solution in the Andes dataset, with SPARFA-Lite
having the best solution in the Cloze dataset. This preliminary result

suggests that applying multiple approaches to the same dataset may

be advisable, especially when the underlying domain structure is

unknown. Different domain modeling algorithms may differ in

their ability to detect this underlying domain structure.

To understand better the results shown in Figures 1 and 2 we can

query the model for the parameters for the cluster KCs to confirm

that they are meaningful due to the structure of PFA. Normally we
would expect the cluster KC coefficients for success and failure to

be more different if the model was labeling real KCs since it is

typically the case that successes predict future success more than

failures. Indeed, test comparison shows exactly this pattern; for

674 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

example, considering the model with 10 components and 10 KCs
in for the Physics data with covariance clustering applied, we see

the success is .56 higher than failure. In contrast, for the

randomized model, the value was .12 higher for success than failure

(best explained as the overfitting we might expect for such a

mechanism).

5. DISCUSSION
In the present paper, we described our ongoing work to automate

both the process of searching for domain models and the search

method (e.g., covariance clustering vs. SPARFA-Lite). Many
approaches have been proposed to infer domain [3; 5; 14; 15; 19;

20; 22], but there has been little comparison. However, comparison

among approaches is important because their different underlying

assumptions and limitations will interact with the learning domain's
true underlying structure. For example, if the learning domain is

calculus, various prerequisite skills from other branches of

mathematics may be necessary (e.g., algebra, trigonometry). In

other domains, learning one KC before another may enhance
learning but not be required. Learning how to compute a sample's

mean may facilitate learning to compute the median due to

contrasting their different procedures. However, neither is a

prerequisite to learn the other. Domains vary in the extent that
learning one KC may transfer to another, and the researcher may

not have strong theories a priori that could help constrain the KC

model search. Thus, choosing one method with specific

assumptions and limitations across different knowledge domains

may be inadvisable and result in suboptimal KC model solutions.

5.1 Future Plans

5.1.1 Additional domain model methods
There are several methods we hope to include in the system to

analyze student data to produce the inference matrix, for example:

dAFM - Developed at Berkeley by Pardos and Dadu [15] and

shown to improve the Piech [21] deep knowledge tracing
algorithm. This method is a deep learning model that uses

backpropagation to infer a Q-matrix type representation with

graded skill assignments instead of binary assignments. The

authors show how the model is a continuous neural network

generalization of the AFM model used in the LFA method [5].

Tensor factorization – We have also been working with

implementations of tensor factorization. Tensors allow the solution

to integrate multiple sources of data, including a representation of

time in the sequence of practice.

These methods may be more accurate because they allow the

representation of sequence to capture order effects in the model that

may be due to learning. However, another view might be that it
makes it more vulnerable to the selection effects that led to

particular practice sequences. In other words, domain model search

algorithms that are sensitive to effects over time may be more likely

to incorporate artifacts due to pedagogical decision rules (e.g.,
“drop item from practice after N successes”). For instance, in

systems in which items are dropped from practice after a few

successes (e.g., Assistments), the sequential order and temporal

spacing will be different than in practice schemes in which items
are not dropped from practice (e.g., [9]). In short, domain model

extraction from datasets that were generated by an adaptive

learning system will be influenced by the decision rules inherent to

that system.

5.1.2 An ensemble approach to address individual

model search limitations

We also intend to allow multiple approaches to be allowed within
a single KC model development pipeline. For instance, approaches

like dAFM have shown promise to improve KC models but require

an initial KC model. However, this apparent limitation is only a

problem if the goal is to find a single approach that resolves the
problem of KC modeling. Instead, the goal can be reoriented

towards finding the best ensemble and ordering of approaches that

can be used in order to develop an optimal KC model. As an

example, an optimal KC model may be created by making an initial

model with SPARFA-Lite, followed by a final model using dAFM.

Requiring a starter model is only a limitation if complementary

approaches cannot be combined.

5.1.3 Integrating with learner model development
Learner models and domain models are strongly interdependent but

frequently developed and refined independently. This separation
probably limits progress on both fronts. Using relatively simple

learner models when searching for improved domain models may

lead to misleading results if the chosen learner model does not

accurately represent learning, forgetting, transfer, and other

important learning factors. Similarly, developing learner models

without considering the chosen KC model's plausibility may lead

to spurious results. Recently, we developed a framework to

facilitate learner model development named Logistic Knowledge
Tracing [18]. We aim to integrate automated KC model search and

refinement into the LKT framework.

5.1.4 Representing transfer does more than improve

model fit
Representing transfer among KCs can have significant pedagogical

consequences that will not be apparent from model fit metrics (e.g.,

reduced RMSE, increased AUC). For instance, imagine a student is

learning three items (A, B, and C). If the domain model considers
A and B to be related because they share KC, practicing item A will

influence both when and how much B is practiced. Depending on

the strength of the transfer, practicing A may result in B being

practiced being, being practiced before C, being practiced after C,
or not being practiced until much later when forgetting has occurred

(if the learner model assumes forgetting). The entire order of

practice may change.

Another issue is the efficiency effect of such transfer. Consider that
if the three items are independent, students may practice all three

as necessary for mastery. In contrast, if item A affects item B

through a shared KC, it will increase or reduce the amount of

practice needed for mastery of B, which can reduce costly
overpractice. In short, accounting for transfer among KCs may

greatly improve practice efficiency, which may not be apparent

when comparing domain models in terms of model fit metrics (e.g.,

RMSE, AUC, AIC). Ultimately, comprehensive evaluation of new
KC models requires simulations or experiments to determine their

effects on how practice is scheduled within an adaptive learning

system. This need comes from how a new KC model may interact

with pedagogical decision rules (e.g., mastery learning) and learner
models (e.g., BKT, PFA) within an adaptive learning system to

change the sequence of practice (e.g., due to quantifying transfer

among items differently). These changes to the sequence may have

significant impacts on student learning.

6. ACKNOWLEDGMENTS
This work was partially supported by the National Science

Foundation Learner Data Institute (NSF #1934745) projects and a

grant from the Institute of Education Sciences (ED

#R305A190448).

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 675

7. REFERENCES

[1] Atkinson, R.C., 1972. Ingredients for a theory of instruction.

American Psychologist 27, 10 (Oct), 921-931. DOI=

http://dx.doi.org/http://doi:10.1037/h0033572.

[2] Atkinson, R.C., 1972. Optimizing the learning of a second-
language vocabulary. Journal of Experimental Psychology

96, 1, 124-129.

[3] Barnes, T., 2005. The Q-matrix method: Mining student

response data for knowledge. In American Association for
Artificial Intelligence 2005 Educational Data Mining

Workshop, J. Beck Ed. AAAI Press, Pittsburgh, PA, USA,

39-46. DOI= http://dx.doi.org/http://doi:10.1.1.531.3631.

[4] Birenbaum, M., Kelly, Anthony E., and Tatsuoka, Kikumi
K., 1992. Diagnosing knowledge states in algebra using the

rule space model. Educational Testing Service.

[5] Cen, H., Koedinger, K.R., and Junker, B., 2006. Learning

Factors Analysis - A general method for cognitive model
evaluation and improvement. In Proceedings of the 8th

International Conference on Intelligent Tutoring Systems

Springer Berlin / Heidelberg, 164-175.

[6] Cen, H., Koedinger, K.R., and Junker, B., 2008. Comparing
two IRT models for conjunctive skills. In Proceedings of the

Proceedings of the 9th International Conference on

Intelligent Tutoring Systems (Montreal, Canada2008), 796-

798.
[7] Desmarais, M.C., Meshkinfam, P., and Gagnon, M., 2006.

Learned student models with item to item knowledge

structures. User Modeling and User-Adapted Interaction 16,

5, 403-434.
[8] Desmarais, M.C., Pu, X., and Blais, J.-G., 2007. Partial

Order Knowledge Structures for CAT Applications. In

Proceedings of the 2007 GMAC Conference on

Computerized Adaptive Testing (2007).
[9] Eglington, L.G. and Pavlik Jr, P.I., 2020. Optimizing practice

scheduling requires quantitative tracking of individual item

performance. npj Science of Learning 5, 1 (Oct. 15,), 15.

DOI= http://dx.doi.org/10.1038/s41539-020-00074-4.
[10] Falmagne, J.-C., Doignon, J.-P., Cosyn, E., and Thiery, N.,

2003. The assessment of knowledge in theory and in

practice. Institute for Mathematical Behavioral Sciences

Paper 26.
[11] Falmagne, J.-C., Koppen, M., Villano, M., Doignon, J.-P.,

and Johannesen, L., 1990. Introduction to knowledge spaces:

How to build, test, and search them. Psychological Review

97, 2 (Apr), 201-224.
[12] Katz, S., Connelly, J., and Wilson, C., 2007. Out of the lab

and into the classroom: An evaluation of reflective dialogue

in Andes. Frontiers in Artificial Intelligence and

Applications 158(Jun.), 425-432. DOI=
http://dx.doi.org/http://doi:10.5555/1563601.1563669.

[13] Koedinger, K.R., Pavlik Jr., P.I., Stamper, J., Nixon, T., and

Ritter, S., 2011. Avoiding Problem Selection Thrashing with

Conjunctive Knowledge Tracing. In Proceedings of the 4th
International Conference on Educational Data Mining, M.

Pechenizkiy, T. Calders, C. Conati, S. Ventura, C. Romero

and J. Stamper Eds., Eindhoven, the Netherlands, 91–100.

[14] Lan, A.S., Studer, C., and Baraniuk, R.G., 2014. Quantized

Matrix Completion for Personalized Learning. In

Proceedings of the 6th International Conference of

Educational Datamining.

[15] Pardos, Z. and Dadu, A., 2018. dAFM: Fusing psychometric
and connectionist modeling for Q-matrix refinement. Journal

of Educational Data Mining 10, 2 (Oct.), 1-27. DOI=

http://dx.doi.org/http://doi:10.5281/zenodo.3554689.

[16] Pardos, Z.A., Beck, J.E., Ruiz, C., and Heffernan, N.T.,
2008. The composition effect: Conjunctive or compensatory?

An analysis of multi-skill math questions in ITS. In 1st

International Conference on Educational Data Mining, R.S.

Baker, T. Barnes and J.E. Beck Eds., Montreal, Canada, 147-
156.

[17] Pavlik Jr, P.I., Cen, H., and Koedinger, K.R., 2009.

Performance factors analysis: A new alternative to

knowledge tracing. In 14th International Conference on
Artificial Intelligence in Education, V. Dimitrova, R.

Mizoguchi, B.D. Boulay and A. Graesser Eds., Brighton,

England.

[18] Pavlik Jr, P.I., Eglington, L.G., and Harrell-Williams, L.M.,
2021, preprint. Logistic Knowledge Tracing: A constrained

framework for learner modeling. arXiv.org.

[19] Pavlik Jr., P.I., Cen, H., and Koedinger, K.R., 2009. Learning

factors transfer analysis: Using learning curve analysis to
automatically generate domain models. In Proceedings of the

2nd International Conference on Educational Data Mining,

T. Barnes, M.C. Desmarais, C. Romero and S. Ventura Eds.,

Cordoba, Spain, 121–130.
[20] Pavlik Jr., P.I., Cen, H., Wu, L., and Koedinger, K.R., 2008.

Using item-type performance covariance to improve the skill

model of an existing tutor. In Proceedings of the 1st

International Conference on Educational Data Mining, R.S.
Baker and J.E. Beck Eds., Montreal, Canada, 77–86.

[21] Piech, C., Spencer, J., Huang, J., Ganguli, S., Sahami, M.,

Guibas, L., and Sohl-Dickstein, J., 2015. Deep Knowledge

Tracing. arXiv preprint arXiv:1506.05908.
[22] Sahebi, S., Lin, Y.-R., and Brusilovsky, P., 2016. Tensor

Factorization for Student Modeling and Performance

Prediction in Unstructured Domain. International

Educational Data Mining Society.

676 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

http://dx.doi.org/http:/doi:10.1037/h0033572
http://dx.doi.org/http:/doi:10.1.1.531.3631
http://dx.doi.org/10.1038/s41539-020-00074-4
http://dx.doi.org/http:/doi:10.5555/1563601.1563669
http://dx.doi.org/http:/doi:10.5281/zenodo.3554689

Automated Classification of Visual, Interactive Programs
Using Execution Traces

Wengran Wang
North Carolina State University

wwang33@ncsu.edu

Gordon Fraser
University of Passau

gordon.fraser@uni-passau.de

Tiffany Barnes
North Carolina State University

tmbarnes@ncsu.edu

Chris Martens
North Carolina State University

crmarten@ncsu.edu

Thomas Price
North Carolina State University

twprice@ncsu.edu

ABSTRACT
Offering students immediate, formative feedback when they
are programming can increase students’ learning outcomes
and self-efficacy. However, visual and interactive programs
include dynamic user input and visual outputs that change
over time, making it difficult to automatically assess stu-
dents’ code with traditional functional tests to offer this
feedback. In this work, we introduce Execution Trace Based
Feature Engineering (ETF), a feature engineering approach
that extracts sequential patterns from execution traces, which
capture the runtime behavior of students’ code. We evalu-
ated ETF on 162 students’ code snapshots from a Pong game
assignment in an introductory programming course, on a
challenging task to predict students’ success on fine-grained
rubrics. We found that ETF achieves an average F1 score
of 0.93 over 10 grading rubrics, which is 0.1–0.2 higher than
a high-performing syntax-based code classification approach
from prior work. These results show that ETF has strong
potential to be used for code classification, to enable forma-
tive feedback for students’ visual, interactive programs.

Keywords
execution traces, feature engineering, computer science ed-
ucation, code classification, formative assessment

1. INTRODUCTION
Real-time, formative feedback promotes students’ learning
gains and self-efficacy [7, 3, 12, 18]. To provide such forma-
tive feedback in real-time, CS instructors commonly write
test cases, allowing students to run their code against these
test cases when programming [9, 5, 6, 4]. However, visual,
interactive programming projects, such as creating apps and
games [16], include dynamic user interactions, and visual
outputs that change over time, making it challenging to use
test cases to assess these programs [14, 13, 20].

In contrast to test case-based approaches, data-driven meth-

Figure 1: A horizontal n(2)-Gram (in yellow) and a
vertical n(2)-Gram (in blue).
ods allow instructors to offer formative feedback by grad-
ing a smaller set of programs instead of writing test cases
[11, 21, 10, 22]. These methods start with transforming
code into input vectors using feature engineering, typi-
cally by extracting syntax elements from an abstract syntax
tree (AST), where nodes and their children correspond to
specific code elements (e.g., if statements). However, when
applying these syntax-based feature extraction techniques to
classify programs, prior work showed mixed results, which
are often not high enough to ensure the quality of student
feedback [11, 1, 2]. Some prior work has used execution
traces to classify students’ sorting programs based on their
specific strategies, and has shown that execution-trace-based
classification achieved higher accuracies than a syntax-based
classification approach [8]. However, no prior work has con-
ducted feature extraction on the execution trace of visual,
interactive programs, which include dynamic user interac-
tions and various changing outputs. In this work, we ex-
tract features from execution traces that capture the runtime
behavior of visual, interactive programs. We designed an ex-
ecution trace-based feature engineering approach (ETF) to
transform students’ source code into feature vectors, for clas-
sification algorithms to build models based on rubric-based
labels (e.g., the presence of a key-triggered movement). We
evaluated ETF by classifying 162 students in-progress and
submitted code snapshots. We found it to achieve high
prediction performance with an average of 0.93 F1 score
over 10 grading rubric items, which is 0.1–0.2 higher than a
high-performing syntax-based code classification approach.
Our work has the following contributions: 1) We designed
and implemented a novel, execution trace-based feature en-
gineering (ETF) approach to extract temporal patterns in
students’ visual, interactive programs; 2) We evaluated the
ETF approach on students’ code snapshots for a widely-
used, representative visual, interactive program assignment.

2. RELATED WORK
Syntax-based approaches extract patterns inside a code
AST, use the presence or absence of a feature, or the count
of the feature to generate input vectors. As an example,

Wengran Wang, Gordon Fraser, Tiffany Barnes, Chris Martens and Thomas
Price “Automated Classification of Visual, Interactive Programs Using Ex-
ecution Traces”. 2021. In: Proceedings of The 14th International Confer-
ence on Educational Data Mining (EDM21). International Educational Data
Mining Society, 677-681. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 677

Figure 2: Step 1: Generating Execution Traces.

we explain a recently-applied AST n-Gram feature extrac-
tion approach [17, 2] by making an analogy to Natural Lan-
guage Processing (NLP): In NLP, an n-Gram with n = 1
is a 1 -Gram feature taken from each word; and an n-Gram
feature takes a continuous sequence of n words to extract
relationship between words (e.g., orders); in an AST, 1 -
Gram features represent each node in students’ code. And
to extract structural relationships, Akram et al. [2] designed
the use of n-Grams to represent n-length sequences of code,
where a vertical n-Gram is created by a depth-first search
of leaves; a horizontal n-Gram is created by a breadth-
first search of all direct children of each AST nodes (e.g.,
in Figure 1) [2]. 1 -Gram and n-Gram-based AST feature
extraction approaches have both been applied for student
code classification tasks. Compared to 1 -Gram feature ex-
tractions, prior work has shown that n-Grams provide more
predictive features for code analysis. For example, Akram
et al. used n-Grams with n ranging from 1 to 4 to extract
features, and used a Gaussian Process model to infer scores
on 642 students’ code pieces, in a block-based programming
environment. This achieved an R-square of 0.94, higher than
the 0.88 achieved by the baseline 1 -Gram approach [2, 1].

On the other hand, recent work by Paaßen et al. used
execution-trace-based distance measures to classify pro-
grams into different strategies (e.g., bubble sort v.s. Inser-
tion sort), and found that execution- race-based classifica-
tion achieving 90% accuracy, higher than the 80% accuracy
achieved by syntax-based approaches [8]. This shows the
potential of using execution traces to classify students’ pro-
gramming code.

3. THE ETF APPROACH
ETF starts from collecting a set of students’ programming
code, along with a class label for each piece of code, (i.e., pos-
itive or negative). ETF is designed for programs that have
the following properties: 1) respond to dynamic user in-
puts (e.g., mouse, keyboard). 2) has object-specific pro-
gram states, corresponding to visual output on the screen.
3) Program behaviors can be a function of time; and can
also change over time.

An Example Assignment. As an example, consider the
Pong assignment, which consists of a paddle sprite and a
ball sprite. The ball moves around the stage [19], and a
player can use the keyboard to control the up and down
movement of the paddle to catch the running ball. If the
paddle catches the ball, the player score increases; but if
the paddle misses the ball and the ball hits the back wall,
the game ends. ETF conducts feature engineering on such
visual, interactive programs in four steps, described below.

Figure 3: Step 2&3: summarizing traces & generat-
ing features.

3.1 Step 1: Generating Execution Traces
Visual, interactive programs include program states that
can be represented as properties that change over time.
For example, in Snap!, these properties can include: 1)
Time: how much milliseconds has passed from the start
of program execution; 2) inputs: including KeysDown (which
key is pressing); MouseDown (if mouse pressing); MouseX and
MouseY (x, y positions of mouse) 3) global variables: the
names (Var.Name and values Var.Value) of global variables;
4) sprite-specific properties: properties that are related to
specific sprites, such as (x, y) (x, y coordinates); dir (di-
rections); TouchSprite (which sprites the current sprite is
touching); TouchEdge (which stage edge the sprite is touch-
ing); size (sprite size); OffStage (whether the sprite is
moved out of the stage); the names (Var.Name) and values
Var.Value local variables. The dumped execution trace ta-
bles use sprite names to label sprite-specific properties (e.g.,
to distinguish ball.x from paddle.x1).

Systems such as Snap! and Scratchmake use of step func-
tions to update the above properties based on the current
properties and the current user inputs [14, 19]. We instru-
mented the step function in Snap! with a trace logging tool,
so that with each Step, it adds a row in an execution trace
table with the properties listed above, and dumps the trace
table at the end of the execution. Figure 2 gives an example
of a part of the execution trace table, in which one row logs
one discrete Step created by the step function, with each
entry maps to a property (i.e., a concrete program state).

3.2 Step 2: Summarizing Traces
ETF algorithm scans through the execution trace table in
a sliding window of multiple steps (default as 2), apply a
Trace Abstraction Function (TAF). The TAF looks for
properties based on candidate properties, and only re-
turns properties that were found in the sliding window as a
summarized property set . A candidate property can be an
abstract property , describing the changes between steps in
the execution trace, such as movement and variable change;
A candidate property can also be an original trace prop-
erty which were already recorded in the execution trace.
In each sliding window, the TAF function returns a sum-
marized property set that includes all found properties, for
example, in the step window 120-121 of Figure 3, all candi-
date properties were found because there is a change in po-

1ETF uses these properties to summarize trace and gener-
ate features (Section 3.3). To allow comparison across stu-
dents, sprites need to have consistent labels across student
programs.

678 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

sition (Move), a change in direction (Turn), and a non-empty
TouchSprite column in Step 121. This creates a summarized
property set {Move, Turn, TouchSprite}, shown in Row 2 of
the summary trace (Figure 3). In addition, TAF’s candidate
properties also include possible types of parameters, which
describe detailed information of the property.

For Pong, ETF used 9 types of candidate properties. Ex-
cept 2 program state properties: (KeysDown and ChangeVar),
the rest 7 are sprite-specific properties and are labeled with
the sprite names (e.g., Paddle.Move). Among the 9 can-
didate properties, 4 were original trace properties, directly
returned when the corresponding property in the last step of
the sliding window is non-empty: KeysDown, TouchSprite,
TouchEdge, and OffStage, using the same parameters with
the corresponding execution trace entry at the last step of
the sliding window, explained in Section 3.1. Others are 5
abstract properties, that only checks if a property changes
between the first and last step of the sliding window (and
if has middle, omit those middle ones). 1) Move〈←,→, ↑, ↓〉.
Returned when a sprite position changes. Its parameters are
the direction toward which the sprite moves. 2) Turn. Re-
turned when a sprite changes direction. 3) ChangeSize〈+,
-〉. Returned when the Sprite changes its size to bigger
(+) or smaller (-). 4) ChangeVar〈variable names〈+, -〉〉.
Returned when a global variable’s value has been changed
to bigger (+) or smaller (-). 5) ChangeLocalVar〈variable
names 〈+, -〉〉. Returned when a local variable’s value has
been changed to bigger (+) or smaller (-).

3.3 Step 3: Generating n-Gram-based Features
ETF next transforms summary trace created by Step 2 into
a set of features using n-Gram-based approach, where an n-
Gram takes a contiguous sequence of n items in data (Fig-
ure 3). ETF extracts features of 4 types: 1) 1 -Grams,
extracting simultaneous behaviors, taken from each row
of the summary trace. 2) 2 -Grams, connecting adjacent 1 -
Grams sequentially; 3) Power Sets. We extract n-Grams
of not only the full property set in each row of the sum-
mary trace, but also of subsets of the property set, such
as the 2-set of just Move and Turn from t 1 -Gram {Move,
Turn}. When constructing power sets for 2 -Grams, we ap-
ply the power set on the types of properties that are possible
in this 2 -Gram. 4) For all the n-Grams extracted above,
we keep both non-parameterized n-Grams, where we do
not record the parameters, as well as parameterized n-
Grams, where each property would include its parameters
when they were logged in the summary trace. Next, ETF
collects distinct features from all students’ feature sets as the
full feature set, which consists of distinct features from all
students.

3.4 Step 4: Filtering Features
Merging duplicate features and removing rare fea-
tures. Based on the full feature set generated from Step
3, if features have the exact same distribution among pro-
grams, the ETF algorithm then merges these features as one
feature; and it calculates the support of each feature based
on the proportion of student programs that include this fea-
ture, and remove features that have support lower than a
certain threshold, determined by a hyperparameter tuning
process, described in Section 4.2.

Generating x vectors. After generating, merging dupli-
cates, and removing rare features, we use the resulting fea-
ture set as the independent variables, and for each student
program, we use 1 as representing the presence of a feature
in the student program (i.e. the n-Gram appeared at least
once in their abstracted execution trace), 0 as the absence
of the feature, and generate 0-1 digitized x vector for each
student’s code snapshot, which is used as vector input for a
classification model.

4. EVALUATION
We investigate our research question: How accurately
does ETF perform rubric-based code classification of
students in-progress and submitted code, and how
does this compare to syntax-based approaches?. We
first a) compare performance of ETF features and syntax-
based features across models; and next b) compare ETF
features and syntax-based features across rubrics on a
fixed model. Our analysis of a) and b) follows the same
procedure, where we started by generating ETF and syntax-
based features separately (Section 4.1). We next performed
the same feature filtering, training and evaluation procedure
on the features we created (Section 4.2).

Dataset. We evaluated ETF on 42 students’ 162 code snap-
shots for a Pong game assignment, sampling student code
snapshots at 10 minutes (42), 20 minutes (40) and 30 min-
utes (38) of work, as well as their final submissions (42), on
10 target evaluation items: key up/down, upper/lower bound,
space start, edge bounce, paddle bounce, paddle score, re-
set score, reset ball. A detailed description and the preva-
lence of the data can be found in our prior work [19].

4.1 Generating Features
Generating ETF features. We used the procedure de-
scribed in the Step 1 – 3 (Section 3.1–3.3) of the ETF ap-
proach to generate ETF features. We first automatically
run the program based on inputs. To ensure coverage, we
used the same inputs (up/down arrow key, follow/evade ball)
as our in prior work [19], defined using SnapCheck. For
each program snapshot, we re-executed the program 5 times.
Each run of student programs generated one execution table.

Generating AST n-Gram and 1 -Gram Features. We
first compare ETF it with a representative, syntax-based
feature extraction approach that has performed well in prior
evaluations by using the AST n-Gram feature extraction ap-
proach [2]. Similar to Akram et al.’s work, we extracted all
n-Grams from all ASTs, using n = 1 to 5 for vertical n-
Grams, and n = 1 to 4 for horizontal n-Grams (explained
in Section 2). Similar to many AST feature extraction ap-
proaches [10, 11, 22], we used a single label for all literals
(literal).

4.2 Feature Filtering & Evaluation
We applied the same feature filtering and evaluation to the
ETF, AST n-Gram, and AST 1 -Gram features:

Feature Filtering. For fairness of comparison, after col-
lecting features, we used the Step 4 from the ETF algo-
rithm to filter features for all ETF, AST n-Gram, and AST
1 -Gram features. For each type of the three features, we

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 679

Table 1: F1 scores of AST 1-Grams, AST n-Grams,
and ETF Features, over different models.

AST
1-Grams

AST
n-Grams

ETF
Features

Logistic Regression 0.771 0.779 0.932
AdaBoost 0.78 0.78 0.922

Random Forest 0.763 0.773 0.926
MLP 0.764 0.771 0.908

Gaussian Process 0.739 0.728 0.923
SVM 0.759 0.771 0.93

started by using ETF to automatically merge duplicate fea-
tures (Step 4.a), and remove features that have support
smaller than a certain threshold in the training set (Step
4.b). The threshold is set as a hyperparameter (tuned as
described below).

Classification Models. To ensure that our comparison
was not model-specific, we used 6 different models on the
feature set: Logistic Regression, AdaBoost, Random Forest,
Multi-layer perceptron (MLP), Gaussian Process, and SVM.
Among them, the Gaussian Process model with an RBF ker-
nel was also employed by Akram et al., and has shown to be
the best performing model in the rubric-based performance
inference task that they have applied [2].

Training & Evaluation. We employed 10-fold cross-validation
to evaluate how accurately these different features predict
the rubric-based performance. Within each round of cross-
validation, we used another 2-fold cross-validation to tune
the hyperparameters (i.e. nested cross-validation [15]). For
all models, we included a minimum feature support thresh-
old hyperparameter, T , below which we exclude the feature
(e.g. ETF feature or AST n-Gram feature) from the final
feature set, with the minimum support threshold as a hyper-
parameter, tuned based on 5 values: {0, 5%, 10%, 15%, 20%}.
Additionally, since different feature extraction approaches
may perform best with different values of model-specific
hyperparameters, we also tuned hyperparameters for each
classification models, based on the following values: Lo-
gistic regression: with penalty in {L1, L2}; Random For-
est : with n estimaters (i.e., number of trees in the forest)
in {100, 200, 300, 400, 500}; AdaBoost : with learning rate in
{0.01, 0.1, 1}; MLP : with learning rate in {0.001, 0.01, 0.1};
’ SVM : We used a linear kernel, with the regularization pa-
rameter (C) in {0.01, 0.1, 1, 10, 100}; Gaussian Process mod-
els optimize kernel hyperparameters during model fitting,
we therefore did not tune hyperparameters for the Gaus-
sian Process classifier. The values of the minimum feature
support threshold and the model-specific hyperparameters
were determined by their F1 scores in the nested 2-fold cross-
validation, based on a grid search on 5*#(model-specific hy-
perparameter values) possible types of hyperparameter com-
binations, during each round of the 10-fold cross-validation.
Since many of our target labels are imbalanced, the accu-
racy score offers less information on how well our model
performs in predicting target labels. We therefore use F1

scores to tune hyperparameters. To ensure that data from a
given student was not contained in both training and testing
sets, all cross-validation splits were done on the 42 students
(instead of on the 162 snapshots).

4.2.1 Results
Comparison Across Models. Using each of the 6 mod-
els described above, we predict students’ rubric-based per-

Figure 4: The F1 score (F1), Precision (P), Recall
(R) and Accuracy (A) of ETF, n-Gram, and 1 -Gram
features on each rubric, using an SVM model. x-axis
starts from F1 = 0.5.

formance, calculated its F1 score among the 162 students’
data using 10-fold cross validation, creating one F1 score
for each rubric. We next averaged F1 scores for each clas-
sifier across all rubrics, shown in Table 1. We saw that the
AST n-Gram approach performed similar to the 1 -Gram
approach (5 in 6 cases), and that ETF features generated
F1 scores that were consistently 0.14 to 0.2 higher than the
AST n-Gram features, showing that all classifiers benefited
from the execution-trace-based information extracted by the
ETF features, with overall F1 scores between 0.9 and 0.93.
This result shows potential for us to make use of ETF fea-
tures to correctly analyze students’ current progress, which
should enable automated, formative feedback in future work,
to help a student who is stuck in the middle of programming.

Performance Across Rubrics. We next investigate the
performance of the three feature extraction approaches across
rubrics. Since all model show similar trends, we select SVM
and present performance on all rubrics in Figure 4. We found
1) The naive AST 1 -Gram features had relatively lower F1

scores on rubrics that had less prevalence in data (e.g., re-
set score, reset ball); 2) Comparing to AST 1 -Gram, the
AST n-Gram features produced higher F1 scores for pad-
dle score, reset score, reset ball, showing that AST n-Gram
extracted more useful feature for these three rubric items.
However, the ETF features performed relatively well across
all rubrics, with its F1 scores ranging from 0.9 to 0.99, show-
ing that ETF features have strong potential to enable for-
mative feedback on a variety of fine-grained, specific rubrics.

In conclusion, we presented a novel, effective approach that
extracted useful features from execution traces (ETF), lead-
ing to high predictive accuracy. Our results show strong
potential for using ETF to monitor student progress and
offer automated, formative feedback.

5. ACKNOWLEDGEMENTS
This material is based upon work supported by the National
Science Foundation under Grant No. 1917885.

680 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

References
[1] B. Akram et al. Assessment of students’ computer sci-

ence focal knowledge, skills, and abilities in game-based
learning environments. 2019.

[2] B. Akram, W. Min, E. Wiebe, A. Navied, B. Mott,
K. E. Boyer, J. Lester, et al. Automated assessment of
computer science competencies from student programs
with gaussian process regression. In Proceedings of the
2020 Educational Data Mining Conference, 2020.

[3] A. T. Corbett and J. R. Anderson. Locus of feedback
control in computer-based tutoring: Impact on learn-
ing rate, achievement and attitudes. In Proceedings of
the SIGCHI conference on Human factors in computing
systems, pages 245–252, 2001.

[4] S. H. Edwards and K. P. Murali. Codeworkout: short
programming exercises with built-in data collection. In
Proceedings of the 2017 ACM Conference on Innovation
and Technology in Computer Science Education, pages
188–193, 2017.

[5] D. Hovemeyer and J. Spacco. Cloudcoder: a web-based
programming exercise system. Journal of Computing
Sciences in Colleges, 28(3):30–30, 2013.

[6] A. N. Kumar. Explanation of step-by-step execution as
feedback for problems on program analysis, and its gen-
eration in model-based problem-solving tutors. Tech-
nology, Instruction, Cognition and Learning (TICL)
Journal, 4(1), 2006.

[7] S. Marwan, G. Gao, S. Fisk, T. W. Price, and
T. Barnes. Adaptive immediate feedback can improve
novice programming engagement and intention to per-
sist in computer science. In Proceedings of the 2020
ACM Conference on International Computing Educa-
tion Research, pages 194–203, 2020.

[8] B. Paaßen, J. Jensen, and B. Hammer. Execution traces
as a powerful data representation for intelligent tutoring
systems for programming. International Educational
Data Mining Society, 2016.

[9] A. Patil. Automatic grading of programming assign-
ments. 2010.

[10] T. W. Price, Y. Dong, and T. Barnes. Generating
data-driven hints for open-ended programming. Inter-
national Educational Data Mining Society, 2016.

[11] Y. Shi, K. Shah, W. Wang, S. Marwan, P. Penmetsa,
and T. Price. Toward semi-automatic misconception
discovery using code embeddings. In The 11th Inter-
national Conference on Learning Analytics and Knowl-
edge (LAK 21), 2021.

[12] V. J. Shute. Focus on Formative Feedback. Review of
Educational Research, 78(1):153–189, 2008.

[13] A. Stahlbauer, C. Frädrich, and G. Fraser. Veri-
fied from scratch: Program analysis for learners’ pro-
grams. In 35th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2020, Mel-
bourne, Australia, September 21-25, 2020, pages 150–
162. IEEE, 2020.

[14] A. Stahlbauer, M. Kreis, and G. Fraser. Testing scratch
programs automatically. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Soft-
ware Engineering, pages 165–175, 2019.

[15] M. Stone. Cross-validatory choice and assessment of
statistical predictions. Journal of the Royal Statisti-
cal Society: Series B (Methodological), 36(2):111–133,
1974.

[16] W. Wang, A. Kwatra, J. Skripchuk, N. Gomes, A. Mil-
liken, C. Martens, T. Barnes, and T. Price. Novices’
learning barriers when using code examples in open-
ended programming. ITiCSE ’21. Association for Com-
puting Machinery, 2021.

[17] W. Wang, Y. Rao, Y. Shi, A. Milliken, C. Martens,
T. Barnes, and T. W. Price. Comparing feature en-
gineering approaches to predict complex programming
behaviors. 2020.

[18] W. Wang, Y. Rao, R. Zhi, S. Marwan, G. Gao, and
T. W. Price. Step tutor: Supporting students through
step-by-step example-based feedback. In Proceedings
of the 2020 ACM Conference on Innovation and Tech-
nology in Computer Science Education, pages 391–397,
2020.

[19] W. Wang, C. Zhang, A. Stahlbauer, G. Fraser, and
T. Price. Snapcheck: Automated testing for snap pro-
grams. ITiCSE ’21. Association for Computing Machin-
ery, 2021.

[20] W. Wang, R. Zhi, A. Milliken, N. Lytle, and T. W.
Price. Crescendo : Engaging Students to Self-Paced
Programming Practices. In Proceedings of the ACM
Technical Symposium on Computer Science Education,
2020.

[21] M. Wu, M. Mosse, N. Goodman, and C. Piech. Zero
shot learning for code education: Rubric sampling with
deep learning inference. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages
782–790, 2019.

[22] R. Zhi, S. Marwan, Y. Dong, N. Lytle, T. W. Price, and
T. Barnes. Toward Data-Driven Example Feedback for
Novice Programming. Proceedings of the International
Conference on Educational Data Mining, pages 218–
227, 2019.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 681

Is It Fair? Automated Open Response Grading

John A Erickson
Worcester Polytechnic Institute

jaerickson@wpi.edu

Anthony F Botelho
Worcester Polytechnic Institute

abotelho@wpi.edu

Zonglin Peng
Independent Researcher

zpeng@wpi.edu

Rui Huang
Independent Researcher
rhuang2@wpi.edu

Meghana V. Kasal
Independent Researcher

mkasalvinayakuma@wpi.edu

Neil T Heffernan
Worcester Polytechnic Institute

nth@wpi.edu

ABSTRACT
Online education technologies, such as intelligent tutoring
systems, have garnered popularity for their automation. Wh-
ether it be automated support systems for teachers (grading,
feedback, summary statistics, etc.) or support systems for
students (hints, common wrong answer messages, scaffold-
ing), these systems have built a well rounded support sys-
tem for both students and teachers alike. The automation
of these online educational technologies, such as intelligent
tutoring systems, have often been limited to questions with
well structured answers such as multiple choice or fill in the
blank. Recently, these systems have begun adopting support
for a more diverse set of question types. More specifically,
open response questions. A common tool for developing au-
tomated open response tools, such as automated grading or
automated feedback, are pre-trained word embeddings. Re-
cent studies have shown that there is an underlying bias
within the text these were trained on. This research aims
to identify what level of unfairness may lie within machine
learned algorithms which utilize pre-trained word embed-
dings. We attempt to identify if our ability to predict scores
for open response questions vary for different groups of stu-
dent answers. For instance, whether a student who uses
fractions as opposed to decimals. By performing a simu-
lated study, we are able to identify the potential unfairness
within our machine learned models with pre-trained word
embeddings.

Keywords
Natural Language Processing, Unfairness, Deep Learning,
Word Embeddings, Pre-Trained Word Embeddings, Simu-
lated Study

1. INTRODUCTION
In recent years, natural language processing (NLP) has been
at the forefront of machine learning in multiple fields. Lin-

guistics provides another source of information outside the
standard data from user logs. Instead of relying on cor-
relational assumptions from this data, inferences can be de-
duced directly from the users linguistics. While utilizing lin-
guistics in education isn’t genuine, modern machine learning
and natural language processing has helped to automate the
analysis and provides effective tools for learning.

The development of more advanced deep learning has brought
a deeper semantic understanding of words within these lin-
guistical models. The emergence of word embeddings were
an important development in machine learning and NLP, but
the publishing of publicly available pre-trained word embed-
dings, such as such as GloVe [21] or Wikipedia or Word2Vec
[19], provided researchers with a powerful tool for optimizing
algorithms with linguistics. While word embeddings were
powerful for studies within areas such as MOOCS (i.e [14]
[20]), smaller studies, with less robust linguistic data, were
unable to utilize this modern approach for semantic rela-
tionship of words.

Since research has shown that some of the semantic mean-
ings inferred from pre-trained word embeddings can elicit
undesirable biases [2], the major question then becomes,
does this underlying bias suggest the algorithm or predic-
tive model will make unfair decisions? For instance, if an
algorithm utilizes linguistics and NLP with pre-trained word
embeddings will the predictions be unfairly made from those
underlying biases. Our research attempts to explore:

1. Whether, through 3 simulated studies, the format a
student writes an answer (i.e. fractions vs. decimals)
effect the scoring model and potentially elicit unfair
scoring?

2. What effect, through 3 simulated studies, if any, do
‘distractor’ words have on the unfairness?

3. Whether or not underlying bias in pre-trained word
embeddings can lead to unfairness in open response
scoring models in middle school mathematics?

2. BACKGROUND
2.1 Intelligent Tutoring Systems
In recent years, online educational technologies have been on
the forefront of learning for students. A common online ed-
ucational technology, intelligent tutoring systems (ITS) [4],

John A. Erickson, Anthony F. Botelho, Zonglin Peng, Rui Huang, Meghana
V. Kasal and Neil Heffernan “Is It Fair? Automated Open Response Grad-
ing”. 2021. In: Proceedings of The 14th International Conference on Ed-
ucational Data Mining (EDM21). International Educational Data Mining
Society, 682-687. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

682 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

has been prevalent in education for many years. Some of
the most common ITS are ASSISTments[11], McGraw Hill’s
ALEKSTM and/or Carnegie Learning’s Cognitive TutorTM.
Through the use of both machine learning and software en-
gineering, these systems have been shown to be effective at
increasing the scores of students with end of the year stan-
dardized math exams[25] and the effects of their intelligent
tutoring closely resembles the effect face to face tutoring has
on students[31]. Other ITS, such as AutoTutor[9],have at-
tempted to resemble the face to face tutoring more directly
by developing automated conversations and dialogues be-
tween students and ITS [9]. However, most of the support
and benefits of these ITS have been limited to questions with
structured answers (i.e. multiple choice or fill in the blank
questions).

2.2 Automation of Intelligent Tutoring Systems
Automated support of ITS is a draw for many teachers; one
study noted that many utilize multiple choice questions for
the efficiency and accuracy of grading [26]. However, since
most of the automation is limited to questions with struc-
tured answers, the content which teachers provide is lim-
ited. Studies have looked to utilize NLP to automatically
evaluate work or questions which require a student’s unique
linguistics (i.e. open response questions, or essays) includ-
ing [29][28][24][1][7][30][17]. While most of this research has
been primarily focused on content outside of mathematics,
our previous research, [6], looked to help teachers diversify
the content which they provide students in middle school
mathematics by utilizing traditional and modern NLP to
develop an automated scoring model for open response mid-
dle school mathematics questions. A more diverse set of
question types can be beneficial to students and can elicit
differing levels of cognition, as studies [18][15] note.

2.3 Natural Language Processing
Towards the goal of automating open response questions,
or any linguistical/NLP prediction task, the major task is
in how to numerically represent words thus that a machine
learned algorithm can generate an accurate prediction. One
of the more simplistic approaches utilizes the frequencies of
each unique word within the corpus, whats commonly known
as a Bag of Words approach. While undoubtedly easy to in-
terpret and not computationally intensive, this approach has
been utilized in studies such as [13] and is the foundation
of more advanced approaches such as[27][10][22]. This has
evolved into utilizing deep learning to generate word embed-
dings such as GloVe[21] and Word2Vec[19].

2.4 Pre-Trained Models
Embeddings are only as powerful as the data their train
on. Not all researchers have robust corpuses, thus embed-
dings can be misleading. Pre-trained embeddings, such as
GloVe or Word2Vec, publish their own embeddings gener-
ated from Wikipedia and GoogleNews. As these pre-trained
word embeddings have grown in popularity, word embed-
dings have expanded to utilize bidirectional encoder repre-
sentations from transformers (referred to as BERT[5]) to
create pre-trained word embeddings, as well. Similarly, this
has evolved from word level embeddings to pre-trained sen-
tence and document level embeddings[23][3][16].

2.5 Fairness
When it comes to linguistics, the way someone speaks, the
way someone articulates can be unique to themselves. Sim-
ilarly, the way someone writes is personal to themselves and
specific to their topic. So when algorithms are being pre-
trained on data which isn’t the researchers own data, there
are questions to be asked. Research[2], has been able to iden-
tify some potentially harmful semantic relationships present
in common pre-trained word embeddings. For instance, [2]
was able to identify that Google’s pre-trained Word2Vec on
GoogleNews elicited some harmful stereotypes. There in lies
the important question, if we omit variables which could
cause unfairness in the automated scoring, are we continu-
ing to avoid unfairness if we utilize pre-trained word embed-
dings. To identify this, we utilized Absolute Between-ROC
Area (ABROCA) [8].

3. STUDY 1: SIMULATION STUDY
This research developed a simulated study to attempt to
identify if pre-trained word embeddings are utilized within
an automated scoring model for open response answers, do
they influence the model to make unfair predictions. An
example of this would be if a group of students state their
answer with a fraction and surrounding text, does the pre-
dictive model generate scores similarly for those students
that use decimals along with surrounding text? Through
this simulated study, we are able to gain a deeper insight
into what/if any unfair scoring occurs when utilizing the
pre-trained GloVe word embeddings trained on Wikipedia
between groups.

There are 3 studies within this simulated study to help
achieve this goal. First, we develop answers which contain
differing distributions of answers which contain fractions and
decimals and generate the ABROCA value at the differing
distributions. Second, we attempt to see if decimals and
fractions alone generate differing ABROCA values. Third,
we attempt to see if we replace decimals in the text with
unknown tokens (more reliance on distractor words), do the
ABROCA values differ at differing distributions? These
studies will help provide deeper insight into the potential
unfairness an automated scoring model can be producing
when utilizing pre-trained word embeddings

3.1 Data Generation
At the foundation of this simulated study is the generation of
the student dataset.The generation was split into two facets,
the training dataset student answers and the test set student
answers. This was performed such that the model would not
be able to have any identical answers between the training
set and the test set. Essentially, that the predictions aren’t
being made because the model has already seen that exact
series of embeddings associated with a certain score.

Towards simulating authentic student answers, the gener-
ation of the corpus was founded on the goal of utilizing
random selection. For the training set, as Table 2 shows
(see Appendix A), there are 4 different length student an-
swers in this corpus. There are answers which are 6, 5, 4
and 3 word length answers. The generation of the student
answers can be surmised into 4 steps and visualized with
Table 2 (see Appendix A). First, select whether it will be
a student answer which uses decimals or fractions. Then,

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 683

randomly select what length the answer is. Once a length
is randomly selected, another random selection is made be-
tween the two structures (i.e. ‘Structure’ within Table 2 in
Appendix A). Finally, randomly select text from Fill“1”and
Fill “2” Fractions or Fill “2” Decimal to fill the identifiers ‘1’
and ‘2’.

This is the same approach that is utilized within the test set
corpus generation as well. Table 3 (see Appendix A) shows
that however there are different structures and phrases to se-
lect from than the training. Allowing for variability between
test and training; thus, guaranteeing that a answer structure
used in training isn’t the same as in the test. From this, we
can ascertain the model’s predictions were not only based
on identical phrases it has seen.

3.2 Methodology
This study sets out to identify if an automated scoring model
for open response questions, which utilizes pre-trained word
embeddings, elicit unfair scoring. With the answers gener-
ated, we set out to sample these simulated answers such that
there is a balance of student answers which utilize fractions
and decimals. The training set is comprised of student an-
swers drawn from the pool of simulated answers containing
fractions (considered as Group A), as well as answers sam-
pled from similar student answers containing fractions and
decimals as determined by a defined proportion threshold
(considered as Group B).

A threshold was set for selecting decimals and fractions to
control the balance of answers. This lends itself to our goal
of being able to identify whether or not the format a student
writes an answer, i.e. using factions vs. decimals, effects our
ability to score student open response answers. Thus, with
ABROCA, fairness can be identified at each threshold.

For the test set, a similar approach is taken. So the training
and test set have both Group A answers which are distractor
words and fractions, and Group B answers which have dis-
tractor words and a proportion of fractions/decimals (based
on the same threshold for both training and test data).

To improve the reliability of the results, we re-sample/re-
select the test dataset 10 times and evaluate the model’s
ability to score an open response answer. This form of cross
validation allows us to see if the ability to predict the score
was only for that unique set of words, or was the performance
consistent across multiple iterations.

All of the studies will incorporate a Long Short Term Mem-
ory (LSTM) [12] model which utilizes the pre-trained word
embeddings to automatically score open response answers
and ABROCA is calculated. This is then used to run 3
studies. First, when incrementally increasing decimals be-
ing used in Group B, does the LSTM scoring model become
more unfair? Second, whether or not fractions or decimals
are the culprit of the potential unfairness in the automated
scoring model by having answers just be fractions or deci-
mals without distractor words? Third, when incrementally
increasing unrecognized words (referred to as gibberish) be-
ing used in Group B, does the LSTM scoring model become
more unfair? So does an imbalance in recognized words
cause more unfairness between groups?

3.3 Results
In the end, Figure 1a showed that with the simulated study,
when there is an increase in the proportion of decimals in
Group B, there does not appear to be unfairness in the way
Group A and Group B are evaluated. This is evident from
the scale of the y-axis of Figure 1a, the ABROCA falls be-
tweem 0.02 and around 0.04.

The second study, which there were only decimals and frac-
tions in the test set (no distractor words), stayed constant
at a ABROCA value of 0. The model was not unfair, it was
able to equally evaluate both groups even when just isolated
fractions and decimals.

The final simulation study, managed to show that increasing
the imbalance between recognized and unrecognized tokens
between groups increased the unfairness (ABROCA near
0.18). Figure 1b shows that the ABROCA score does indeed
increase with more unrecognizable words within GloVe’s pre-
trained word embeddings. It should be noted that Table 1
shows some of the phrases used in the generated student an-
swers were commonly associated with more correct answers

Table 1: Sample of Phrases and Their Associated Avg. Score

Generated Phrases Avg. Score
my answer is 0.718750

i picked 0.622222
i guess the answer is 0.600000

i think it is 0.600000
i think the answer is 0.590909

i worked out 0.585366

In the end, these simulated studies proved the largest risk
for unfairness exists when there is differential coverage of
answer-related tokens within applied methods utilizing pre-
trained NLP embedding methods. So when answers con-
sist of equally recognizable words within GloVe’s pre-trained
word embeddings, there’s unlikely to be unfairness in the
grading. There wasn’t evidence that the inherent bias built
into the pre-trained word embeddings elicited more unfair
scoring of student answers in, in terms of this simulated
study. But if there are unbalanced recognizable words and
tokens in the student answers, attention needs to be paid to
potential unfairness in the automated scoring.

4. STUDY 2: FAIRNESS IN REAL CONTEXTS
While a simulation study is powerful on its own, it is diffi-
cult to recreate authentic student data. For the final over-
all study of this research, we look to once again utilize
ABROCA to identify if our own algorithm, trained on gen-
uine student open response answers within ASSISTments, is
unfair in its grading of women and men.

4.1 Data
The data consists of 141,612 graded authentic student open
response answers across 2,042 unique problems. There were
a total of 25,069 unique students who answered and 891
teachers graded those answers. Lastly, the scoring. This
was performed on a 5 point scale, where students receiving
a 4 is a perfect score.

684 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

(a) Study 1: ABROCA Values at Incremental
Fraction/Decimal Thresholds

(b) Study 3: ABROCA Values at Incremental
Fraction/Unknown Words Thresholds

It should be noted, to be able to perform the fairness analysis
using ABROCA, gender was inferred. This performed by
cross checking names with the census data. If the name was
found only on the women or only on the men’s list, it was
labeled as such. In any names fell into multiple genders, it
was labeled as unknown and excluded from this analysis.

4.2 Methodology and Results
Towards developing our predictions, we utilized another pre-
trained algorithm, mentioned earlier, called SBERT. This is
a pre-trained sentence embedding algorithm which allowed
us to generate a single vector representation of each student
answer. We then utilize a Canberra distance to identify
which student answers are the most similar. Whichever was
the most similar, that was the score we would assign. This
approach managed to out do our previous models [6].

While utilizing, once again, ABROCA to identify potential
unfairness, we apply this to our algorithm. We were able to
show that our SBERT model with Canberra distance man-
ages to fairly score both Male and Female student open re-
sponse answers. Our model managed an ABROCA of 0.007,
which is quite small, suggesting that our algorithm is indeed
scoring fairly across these groups.

5. LIMITATIONS AND FUTURE WORK
While there were indications of unfairness in cases where
there were unbalanced identifiable tokens within the student
open response answers, this analysis is strictly middle school
mathematics. This type of analysis would need to be ap-
plied to additional datasets to get a broader understanding
of the potential unfairness in other subjects and age ranges.
In terms of our analysis of our SBERT model for scoring
student open response answers, while there wasn’t unfair-
ness identified, more work needs to be done to explore the
embeddings themselves. Pre-trained word embeddings have
been shown to have bias built in, but what bias is present
in the pre-trained sentence embeddings? This is a question
we look to explore further.

6. CONCLUSION
Overall, this study set out to run a simulated study to
help identify potential unfairness within models utilizing
pre-trained word embeddings. While there is bias present

in the embeddings themselves, our simulated study didn’t
show this bias causing unfair scoring. However, our analy-
sis did show that when developing models with pre-trained
embeddings, unfairness can begin to occur when there is an
imbalance of recognized tokens in the student answers. More
specifically, our simulated study showed that when groups
within the data use differing levels of recognized tokens, it
increases the chance for unfair scoring.

While our simulated study showed how unfairness can present
itself within a scoring model, our model on authentic student
data did not show this unfairness. We were able to conduct
an analysis of our model with ABROCA to compare our
performance scoring identified male and female students.

In the end, we were able to utilize a simulated study to help
identify potential unfairness in automated scoring models
which utilize pre-trained word embeddings. Its been widely
noted that those embeddings have bias built in, but our
simulated study couldn’t show an unfairness in the scoring of
differing groups of simulated student answers. However, this
study did suggest that there is a notable risk to fairness in
cases where there are differences in the number of words that
are unrecognized by pre-trained models across populations.

7. ACKNOWLEDGMENTS
We thank multiple NSF grants (e.g., 1917808, 1931523,
1940236, 1917713, 1903304, 1822830, 1759229, 1724889,
1636782, 1535428, 1440753, 1316736, 1252297, 1109483,
& DRL-1031398), as well as the US Department of Ed-
ucation for three different funding lines; the Institute for
Education Sciences (e.g., IES R305A170137, R305A170243,
R305A180401, R305A120125, R305A180401, &
R305C100024), the Graduate Assistance in Areas of Na-
tional Need program (e.g., P200A180088 & P200A150306
), and the EIR. We also thank the Office of Naval Research
(N00014-18-1-2768) and finally Schmidt Futures we well as
a second anonymous philanthropy.

8. REFERENCES
[1] Y. Attali and J. Burstein. Automated essay scoring

with e-rater® v. 2. The Journal of Technology,
Learning and Assessment, 4(3), 2006.

[2] T. Bolukbasi, K.-W. Chang, J. Zou, V. Saligrama, and

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 685

A. Kalai. Man is to computer programmer as woman
is to homemaker? debiasing word embeddings. arXiv
preprint arXiv:1607.06520, 2016.

[3] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco,
R. S. John, N. Constant, M. Guajardo-Cespedes,
S. Yuan, C. Tar, et al. Universal sentence encoder.
arXiv preprint arXiv:1803.11175, 2018.

[4] A. T. Corbett, K. R. Koedinger, and J. R. Anderson.
Intelligent tutoring systems. In Handbook of
human-computer interaction, pages 849–874. Elsevier,
1997.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[6] J. A. Erickson, A. F. Botelho, S. McAteer,
A. Varatharaj, and N. T. Heffernan. The automated
grading of student open responses in mathematics. In
Proceedings of the Tenth International Conference on
Learning Analytics & Knowledge, pages 615–624, 2020.

[7] P. W. Foltz, D. Laham, and T. K. Landauer.
Automated essay scoring: Applications to educational
technology. In EdMedia+ innovate learning, pages
939–944. Association for the Advancement of
Computing in Education (AACE), 1999.

[8] J. Gardner, C. Brooks, and R. Baker. Evaluating the
fairness of predictive student models through slicing
analysis. In Proceedings of the 9th International
Conference on Learning Analytics & Knowledge, pages
225–234, 2019.

[9] A. C. Graesser, K. VanLehn, C. P. Rosé, P. W.
Jordan, and D. Harter. Intelligent tutoring systems
with conversational dialogue. AI magazine,
22(4):39–39, 2001.

[10] A. C. Graesser, P. Wiemer-Hastings,
K. Wiemer-Hastings, D. Harter, T. R. G. Tutoring
Research Group, and N. Person. Using latent semantic
analysis to evaluate the contributions of students in
autotutor. Interactive learning environments,
8(2):129–147, 2000.

[11] N. T. Heffernan and C. L. Heffernan. The assistments
ecosystem: Building a platform that brings scientists
and teachers together for minimally invasive research
on human learning and teaching. International
Journal of Artificial Intelligence in Education,
24(4):470–497, 2014.

[12] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[13] T. Joachims. A probabilistic analysis of the rocchio
algorithm with tfidf for text categorization. Technical
report, Carnegie-mellon univ pittsburgh pa dept of
computer science, 1996.

[14] Z. Kastrati, A. S. Imran, and A. Kurti. Weakly
supervised framework for aspect-based sentiment
analysis on students’ reviews of moocs. IEEE Access,
8:106799–106810, 2020.

[15] K. Y. Ku. Assessing students’ critical thinking
performance: Urging for measurements using
multi-response format. Thinking skills and creativity,
4(1):70–76, 2009.

[16] Q. Le and T. Mikolov. Distributed representations of
sentences and documents. In International conference

on machine learning, pages 1188–1196, 2014.

[17] J. Liu, Y. Xu, and Y. Zhu. Automated essay scoring
based on two-stage learning. arXiv preprint
arXiv:1901.07744, 2019.

[18] M. E. Martinez. Cognition and the question of test
item format. Educational Psychologist, 34(4):207–218,
1999.

[19] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

[20] A. Onan and M. A. Toçoğlu. Weighted word
embeddings and clustering-based identification of
question topics in mooc discussion forum posts.
Computer Applications in Engineering Education,
2020.

[21] J. Pennington, R. Socher, and C. D. Manning. Glove:
Global vectors for word representation. In Proceedings
of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543, 2014.

[22] J. Ramos et al. Using tf-idf to determine word
relevance in document queries. In Proceedings of the
first instructional conference on machine learning,
volume 242, pages 29–48. Citeseer, 2003.

[23] N. Reimers and I. Gurevych. Sentence-bert: Sentence
embeddings using siamese bert-networks. arXiv
preprint arXiv:1908.10084, 2019.

[24] B. Riordan, A. Horbach, A. Cahill, T. Zesch, and
C. M. Lee. Investigating neural architectures for short
answer scoring. In Proceedings of the 12th Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 159–168, 2017.

[25] J. Roschelle, M. Feng, R. F. Murphy, and C. A.
Mason. Online mathematics homework increases
student achievement. AERA Open,
2(4):2332858416673968, 2016.

[26] M. G. Simkin and W. L. Kuechler. Multiple-choice
tests and student understanding: What is the
connection? Decision Sciences Journal of Innovative
Education, 3(1):73–98, 2005.

[27] A. Sordoni, M. Galley, M. Auli, C. Brockett, Y. Ji,
M. Mitchell, J.-Y. Nie, J. Gao, and B. Dolan. A neural
network approach to context-sensitive generation of
conversational responses. arXiv preprint
arXiv:1506.06714, 2015.

[28] J. Z. Sukkarieh and J. Blackmore. c-rater: Automatic
content scoring for short constructed responses. In
Twenty-Second International FLAIRS Conference,
2009.

[29] J. Z. Sukkarieh, S. G. Pulman, and N. Raikes.
Automarking: using computational linguistics to score
short ,free- text responses. 2003.

[30] K. Taghipour and H. T. Ng. A neural approach to
automated essay scoring. In Proceedings of the 2016
conference on empirical methods in natural language
processing, pages 1882–1891, 2016.

[31] K. VanLehn. The relative effectiveness of human
tutoring, intelligent tutoring systems, and other
tutoring systems. Educational Psychologist,
46(4):197–221, 2011.

686 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

APPENDIX
A. SIMULATED ANSWER STRUCTURES

Table 2: Training Set Corpus Generation

Table 3: Test Set Corpus Generation

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 687

Predicting Executive Functions in a Learning Game:
Accuracy and Reaction Time

Jing Zhang1, Teresa Ober2, Yang Jiang3, Jan Plass1 and Bruce Homer4

1CREATE Lab, New York University, New York, NY 10012
2LAMBS Lab, University of Notre Dame, Notre Dame, IN 46556

3Educational Testing Service, Princeton, NJ 08540
4The Graduate Center, City University of New York, New York, NY 10016

jz1220@nyu.edu, tober@nd.edu, yjiang002@ets.org, jp79@nyu.edu, BHomer@gc.cuny.edu

ABSTRACT
Executive functions (EF) are a set of psychological constructs

defined as goal-directed cognitive processes. Traditional EF tests

are reliable, but they are not able to detect EF in real-time. They

cause a test effect if implemented multiple times. In contrast,

learning games have the potential to obtain a real-time, unobtrusive

measurement of EF. In this study, we analyzed log data collected

from a game designed to train the EF sub-skill of shifting. We

engineered theory-based game-level and level-specific features

from log data. Using these features, we built prediction models with

students’ accuracy and reaction time during play to predict their

standard measure of the EF shifting skill during the post-test and

delayed post-test as well as to predict learning gains. Our model

that predicts the post score has a correlation of 0.322 and that for

the delayed post score is 0.303. The findings suggest that theory-

based feature engineering and varying levels of granularity are two

promising directions for cognitive skills prediction under the goal

of game-based assessment. Also, accuracy, reaction time, and

player progression are important features.

Keywords

Prediction, Game-Based Assessment, Learning Games, Executive

Functions, Cognitive Skills.

1. INTRODUCTION
Executive functions (EF) are defined as “cognitive processes used

for effortful, controlled, and goal-directed thinking and behavior”

[29, 3, 4]. The unity/diversity model [24] views EF as consisting of

related yet separable skills, which include updating, shifting (also

termed cognitive flexibility), and inhibition. EF plays an important

role in cognitive development and is associated with academic

success [6], metacognitive skills [7], science learning [15], and

language acquisition skills [10].

Game-based assessments allow educators to assess students’

learning while they are playing a game and thus in a manner that

can be highly efficient, fast, and entirely unobtrusive. Using games

as assessments creates a context in which learners are likely to be

highly engaged, which may optimally reflect their abilities [16, 28].

Using log data from digital games to evaluate learning is sometimes

referred to as a “stealth assessment” [20] and has been used in the

past decade to assess complex skills, such as creativity [33] and

problem-solving, [34] based on log data. Log data collected during

gameplay provides a record of student behaviors associated with

EF and can be used for the prediction of EF [25]; however, is it

possible to use log data collected from a game designed to train EF

to measure EF and to develop a framework for game-based

assessment?

Past studies of game-based assessments have focused on complex

thinking skills, such as problem-solving [34]; however, there are

constraints of game-based assessments of EF. First, it is necessary

to determine the granularity or time scale for which we can detect

students’ EF in log data. Second, we need to separate log data

related to EF training from log data related to other aspects of play

to achieve a high performance of models. Third, we need to

generate theory-based features relevant to EF skills. Accuracy and

reaction time have been identified as indicators of EF [8].

This paper aims to provide proof of the concept for game-based

assessments of the EF sub-skill of shifting. Shifting is one

dimension of EF defined as the ability to switch attention between

different “tasks, operations, or mental sets” [21]. The research

questions include:

1. How do students’ gameplay data predict their executive

functions during a post-test and a delayed post-test?

2. Which features, including accuracy or reaction time, are

important for predicting EF in games?

2. RELATED WORK

2.1 Games for EF Training and

Measurement
Sustained and active engagement is widely thought to be critical for

cognitive skills training games to be effective [2]. Incorporating

gamified design features is one well-established mechanism for

promoting meaningful engagement [9].

Digital training games can not only enhance EF [22, 27] but can

also be used as a reliable means for measuring EF and other

cognitive skills. For example, past work has examined the design

and validation of computerized tools for measuring working

memory capacity [21]. Previous research has also examined the use

of a digital game for the detection of executive functions validated

by a task for medical purposes in older adults using computational

modeling [12]. Further work is needed to validate game-based

measures of cognitive skills [35], especially those that are sensitive

enough to detect variations among neurotypical individuals and that

are appropriate for child and adolescent populations.

Jing Zhang, Teresa Ober, Yang Jiang, Jan Plass and Bruce Homer “Pre-
dicting Executive Functions in a Learning Game: Accuracy and Reaction
Time”. 2021. In: Proceedings of The 14th International Conference on Ed-
ucational Data Mining (EDM21). International Educational Data Mining
Society, 688-693. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

688 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

2

2.2 Game-Based Assessment

In previous research, the analysis of log data as a means of a

formative assessment has yielded promising findings [11] and has

been used for predicting a variety of cognitive and behavioral

constructs, including quitting [19], knowledge [1], computational

thinking [30], persistence [26], and implicit learning [31].

Evidence-Centered Design (ECD) [23] has been used effectively to

develop game-based assessments in contexts that teach specific

knowledge domains [14]. According to ECD, an assessment

framework should take these models into account:

● Task model: Which actions is the learner taking within

the system?

● Evidence model: Which features (e.g., from log data) can

be used as evidence of learner actions?

● Competency model: How are these features associated

with a set of standards or criteria that demonstrate

effective learning has taken place?

Accounting for these three ECD models is helpful for feature

engineering and predictive modeling. In game-based learning

contexts that teach knowledge and skills, connecting a task model

to an evidence model should be relatively straightforward given

that the log data provides a detailed record of the learner’s action

sequence. Unlike game-based assessments of knowledge domains,

where standards are clearly defined and may be validated by an

expert review of content, in cognitive skills training game-based

contexts, further work must be done to align an evidence model

with a competency model. Accuracy and reaction time have been

identified as two major aspects of an EF measurement [24], with

evidence suggesting they each contributes uniquely to EF

performance among children [8] and adolescents [5]. Yet, the way

to distinguish the nuanced forms of accuracy and reaction time at

varying levels of granularity and the way to combine them for

predictive modeling within a game are currently unclear.

3. DATASET

3.1 Game Design
All You Can E.T. (AYCET) [17] is a game that trains the EF sub-

skill of shifting. Its early prototype, The Alien Game, has been

shown to improve EF after 1.5 hours of play for high school

students [16] and two hours for college students [27]. In the current

study, we used the “hot” version of AYCET, a version that

maximizes the playfulness of the game. As Figure 1 shows, a player

is asked to feed aliens with the appropriate food based on a certain

rule. The rule changes multiple times at each level, thereby

requiring the player to shift. As the player progresses in the game,

the rule becomes more complicated.

Figure 1. Feeding aliens and instructions for a rule.

3.2 Participants
Participants were recruited from three middle schools and two high

schools in urban school districts in the Northeastern United States.

They completed the study during non-instructional time at their

schools. Among the 448 students who consented, 137 students were

strategically randomly assigned to one of the three conditions to

play AYCET throughout the study. Of those, 56 were removed

because they demonstrated off-task behaviors, and thus the log data

could not reflect their true ability. This resulted in an analytic

sample of 81. Details of participant removal are discussed in the

Data Cleaning subsection.

The 81 participants (Mage = 13.9 years, SDage = 1.6, 46.1% female)

included 39 in grade 7, 18 in grade 8, and 21 in grade 9. They

reported a culturally and linguistically diverse background. Among

them, 51.3% reported speaking Spanish at home, while 47.4%

reported English and 1.3% Mandarin. As for ethnicity, 78.2% were

Hispanic/Latino, 1.3% were Asian, 17.8% reported two or more

ethnicities, 1.3% reported another ethnicity but did not specify, and

1.3% did not know. A few participants did not report their

demographic information.

3.3 Study Procedure and Data Collection
The four-week intervention was conducted at the participating

schools. Before gameplay, students completed a pretest. Then, they

played the game for four sessions, each of which took about 30-40

minutes. The cumulative amount of time of play was 2-3 hours.

After play, students completed a post-test, and an additional 4-8

weeks later, they completed a delayed post-test. The EF sub-skill

of shifting was measured by the Dimensional Change Card Sorting

(DCCS) task [36] in the pretest, post-test, and delayed post-test.

The log data consisted of 144,187 data points or actions, recording

whether students fed each target (“alien”) correctly or not and the

reaction time for each target. This means that each alien required

one action from the student. In this study, students played levels 1-

30. There are 30-80 aliens per level.

In this study, each session began a few levels back from the last

level played. After a few sessions, students were mandatorily

pushed to level 11 to ensure they had enough time to play more

difficult levels. This affected 72% of the students who were at level

9 or lower at the moment. On average, they were pushed by 4.3

levels.

3.4 DCCS Test and Score
The DCCS task [36] was used to measure the EF sub-skill of

shifting in the pretest, post-test, and delayed post-test. Scoring was

based on the National Institute for Health (NIH) scoring procedure

[37]. This is a combination of the accuracy score and the reaction

time score. The score ranges from 0 to 10. Floor or ceiling effects

were not observed with our participants, as the top 25% of pretest

scores ranged between 7.78 and 9.36.

4. METHOD

4.1 Data Cleaning
Based on the researchers’ observations, we removed 33 participants

for the following reasons: (1) did not complete one of the DCCS

tests, (2) were off-task during the DCCS test, or (3) experienced

technical difficulties that would affect their performance in the

DCCS test. Furthermore, 23 participants were removed due to off-

task behaviors (e.g., sleeping, non-stop talking, etc.) or an absence

for at least one intervention session.

Eighty-one students remained in the analytic sample. The retention

rate was 59.1%, which is acceptable for two reasons. First, data

collected in the classroom setting are usually messier than that in

the lab setting. During the study, a few participants went to the

bathroom for a long time, which would be less likely to happen in

a lab setting. Second, the game’s focus on training EF required a

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 689

3

degree of attention that some students were not willing to invest.

Some students found it difficult to remain attentive for an extended

period of time.

4.2 Labels
Table 1 lists the labels for prediction. The post score and delayed

post score were directly measured by the DCCS test. We next

calculated the post-learning gain and delayed post-learning gain.

Table 1. Labels

Name Description

post score The EF score for the post-test.

post-learning

gain

Relative gain of the EF score for the post-test

compared with the pretest. Based on Hake’s

formula of learning gain [13], it is calculated

as (post score - pre score)/(10 - pre score)

because the EF score ranges from 0 to 10.

delayed post

score

The EF score for the delayed post-test.

delayed post-

learning gain

Relative gain of the EF score in the delayed

post-test compared with the pretest.

4.3 Feature Engineering
We generated 20 game-level features and five level-specific

features for each level that indicated student performance and

progress. They capture information related to accuracy and reaction

time in various mathematical formats and granularities.

Level-specific features were features for a single level. They

included the average reaction time, the standard deviation of

reaction time, accuracy, the number of correct hits (i.e., an action

of feeding an alien with the correct food), and the number of wrong

hits (i.e., an action of feeding an alien with the wrong food) across

all aliens in a single level. Accuracy was calculated as the number

of correct hits divided by the total number of aliens in a level.

Game-level features were aggregated features across all levels.

They included: (1) the average, maximum, minimum, range, and

standard deviation of a student’s accuracy across all levels after

calculating the accuracy for a single level across all aliens in that

level; (2) the average, maximum, minimum, range, and standard

deviation of a student’s reaction time across all levels after taking

the average reaction time for a single level across all aliens in that

level; (3) the total number of correct hits (82% of all aliens among

all students), wrong hits (16%), and missed hits (i.e., an action that

the student did not feed an alien) (1%); (4) the highest number of

stars a student received across all levels and the total number of

stars a student received in the game; (5) the number of levels a

student skipped by choice (which only happened before level 10)

and due to the mandatory push; and (6) the highest level and the

total number of levels a student played (as a student may skip a few

levels).

4.4 Model Training
We used the linear regression for predictive modelling in

RapidMiner 9.3. We evaluated the model’s performance using ten-

fold cross-validation at the student level to ensure the model would

be generalizable to a new student population. During this process,

students were randomly split into 10 groups. For each possible

combination, we used forward selection to select features and then

built the model based on the training data. Forward selection was

an iterative process. First, a single-feature model that would

achieve the highest Pearson correlation was chosen. Next, the

remaining features were subsequently added one-by-one to the

model if they could appreciably improve the model goodness of fit.

In addition, to avoid collinearity, we set the minimum tolerance for

eliminating collinear features as 0.05 and set “eliminate collinear

features” as true in the linear regression operator.

In addition, we explored different combinations of features for

feature selection. Missing values existed for many level-specific

features. Thus, we began with the first feature set containing all

game-level features and level-specific features of the level with the

smallest missing value rate. After that, in each round, we added

level-specific features of another level based on the ranking of the

missing value rate. We stopped doing so at a level that contained

missing data for 16% of students. The last model contained 65

features. In this way, we controlled for over-fitting and ensured the

models were trained on representative levels.

5. RESULTS

5.1 Intervention Effect
The paired samples t-test show that the post score (mean = 6.98,

SD = 1.56) is significantly higher than the pretest score (mean =

6.31, SD = 2.12) (t(80) = 3.01, p < 0.01, Cohen’s d = 0.34). Also,

the delayed post score (mean = 7.16, SD = 1.33) is significantly

higher than the pretest score (t(80) = 3.90, p < 0.001, Cohen’s d =

0.43). The boxplot of three EF scores is shown in Figure 2.

Figure 2. Boxplot of three EF shifting scores.

5.2 Correlation between Features and Labels
Among the 65 features for modeling training, five features had an

absolute value of correlation with the post score between 0.3 to 0.42.

Eight features had an absolute value of correlation with the delayed

post score between 0.3 to 0.45. Features were weakly correlated

with two learning gain labels as the absolute values of all

correlation coefficients are below 0.25. Missing values for each

feature were replaced with the average value of that feature.

5.3 Findings from Predictive Models
Cross-validated metrics for the best models of each label and their

features are summarized in Table 2.

Table 2. Summary of the predictive models

 Post Score Post-Learning Gain
RMSE 1.586 0.682
Correlation 0.322 0.294
Selected

Features

- 2.087 *

numLevelsSkippedByChoice

- 0.008 * numWrongLevel11

- 0.028 * numWrongLevel12

0.414 * avgLevelAvgRT

+ 0.065 *

numLevelsSkippedByPush

- 0.001 * numCorrectLevel3

+ 0.004 * numCorrectLevel4

+ 0.493 *

avgReactionTimeLevel2

- 0.428 *

avgReactionTimeLevel13

690 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

4

Table 2 (continued). Summary of the predictive models

 Delayed Post Score Delayed Post-

Learning Gain

RMSE 1.540 0.470

Correlation 0.303 0.260

Selected

Features

2.189 * avgLevelAvgRT

- 0.268 *

numLevelsSkippedByPush

- 0.012 * numWrongLevel3

+ 0.006 * numCorrectLevel12

- 2.154 *

avgReactionTimeLevel3

+ 1.693 *

stdReactionTimeLevel3

- 2.306 *

stdReactionTimeLevel12

- 0.528 *

avgReactionTimeLevel12

0.841 * avgLevelAvgRT

- 0.262 * highestLevelAvgRT

+ 0.001 * totalWrongHits

+ 1.434 * avgCorrectLevel1

- 0.003 * numWrongLevel3

+ 0.007 * numCorrectLevel12

- 0.009 * numWrongLevel12

- 0.611 *

stdReactionTimeLevel12

The models that only used game-level features had a low

performance. Excluding level-specific features only did not

greatly affect model goodness when predicting the post score,

with a correlation of 0.308 and RMSE of 1.589. Features included

numLevelsSkippedByChoice, totalWrongHits, and

numLevelsPlayed.

6. DISCUSSION AND CONCLUSIONS
Playing AYCET significantly improved students’ EF. The effect

sizes of EF gains were medium, and that for the delayed post-test

4-6 weeks later was larger than that for the post-test. This difference

in effect sizes may be attributed to either the long-term intervention

effect by the EF game or students’ natural development of EF.

Though more evidence is needed, long-term effects of cognitive

skills training have been found [18, 32].

We explored the possibility of a game-based assessment of EF

using a game originally designed to train EF. We present four linear

regression models that use the log data to predict students’ EF score

of shifting in the post-test, delayed post-test, and the relevant

learning gain scores. With correlations around 0.3, these models

achieved good performance for preliminary work. This corresponds

to the second challenge of this study, which is to separate log data

related to EF training from log data related to play in the game

context. Good performance of predictive models indicates that a

learning game is a promising tool to measure EF.

We generated an extensive list of game-level and level-specific

features consisting of accuracy and reaction time indicators. Both

accuracy and reaction time features are important in predicting EF

but are two potentially distinct dimensions of EF. Generally, at the

game level, a moderately higher reaction time and a more consistent

reaction time (while controlling for other factors) are positively

associated with EF. In addition, a lower reaction time and perhaps

a more consistent reaction time are positively associated with EF.

As for accuracy features, both correct hits and wrong hits are

important for predicting EF.

In addition to accuracy and reaction time features, the number of

levels skipped, particularly by the player, was indicative of EF. This

means that player progression and player performance are both

important for predicting EF.

Most selected features are from level 3 and level 12. This may

suggest the key time window, which is the moment after students

become familiar with the game mechanics and the moment after a

drastic change in difficulty (recall the mandatory push; see section

3.3) may best demonstrate their ability to perform shifting. Varying

the difficulty of levels or allowing for some time for students to

achieve level 12 may contribute to a better game-based assessment

of EF.

Responding to the first challenge, namely, the granularity and time

scale for prediction, we found that level-specific features provide

more promising results than game-level features only. It is worth

further exploring variables at the action-level.

7. IMPLICATIONS AND FUTURE WORK
We explored the techniques of feature engineering and model

training to investigate the game-based assessment of EF. The model

performance is promising among studies that relate log data with a

post-test measure in learning games [33, 34]. Another implication

of this work is it sets the foundation for the real-time detection of

EF and may provide the basis for dynamic interventions.

Limitations in the current work inspire us to explore more

possibilities of game-based assessments for EF. First, a level may

be played multiple times by a student. In the current study, all

attempts of the same level were aggregated. In the future, we will

distinguish multiple attempts of the same level by generating

features such as the number of attempts and performance change

over attempts. Second, we found that students’ performance one or

two levels after a challenging level is important. This game

mechanic of difficulty change may not apply to other games. We

have tried to interpret the model in the context of the specific game

design. Third, students experienced a mandatory push in this study

(see section 3.3). This is perhaps why features for level 12 were

selected. To examine the generalizability of our findings, we will

compare the prediction models built under two conditions, one of

which replicates the push, while one does not; however, for

practical reasons, it is also of interest to determine whether features

that only cover earlier levels can predict the post-test and delayed

post-test scores as this would require less game play for the

assessment. Fourth, we filled the missing data with the average

value of a feature. We did so by assuming data were missing at

random. More robust methods, such as multiple imputations, could

be used moving forward.

In the future, we are interested in generating theory-based features

at the action-level (i.e., alien-level) per student, hoping to allow for

the real-time detection of EF and for an even better model. An

action-level feature may be a student’s change in accuracy and

reaction time within the first three aliens when the rule changes

within a level. Another action-level feature may be the performance

curve under different rules within a level. Both features align with

the definition of the EF sub-skill of shifting and are not tied to

specific levels, so they may produce more generalizable results.

Methodologically, we are also interested in comparing the linear

regression with other models, such as Support Vector Machines or

the Random Forest. Substantively, it may be worth considering

accuracy and reaction time as separate outcomes given research

suggesting each contribute uniquely to performance on EF tasks in

young children [9]. Further work may also apply methods of

student modeling to other EF sub-skills, such as inhibition and

updating in games that target these skills.

8. ACKNOWLEDGMENTS
Special thanks to Dr. Ryan Baker and Dr. Luc Paquette for their

constructive suggestions for the data analysis. This work was

supported in part by a research grant from the Institute of

Educational Sciences, US Department of Education (Grant

#R305A150417). The opinions expressed are those of the authors

and do not represent views of the Institute or the U.S. Department

of Education. We would like to thank the students and teachers who

participated in this research.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 691

5

9. REFERENCES
[1] Alonso‐Fernández, C., Martínez‐Ortiz, I., Caballero, R.,

Freire, M., and Fernández‐Manjón, B. 2020. Predicting

students' knowledge after playing a serious game based on

learning analytics data: A case study. Journal of Computer

Assisted Learning. 36, 3, 350-358.

[2] Anguera, J. A. and Gazzaley, A. 2015. Video games,

cognitive exercises, and the enhancement of cognitive

abilities. Current Opinion in Behavioral Sciences. 4, 160-

165.

[3] Banich, M. T. 2009. Executive function: The search for an

integrated account. Current Directions in Psychological

Science. 18, 2, 89-94.

[4] Best, J. R. 2012. Exergaming immediately enhances

children's executive function. Developmental Psychology. 28,

5, 1501-1510.

[5] Best, J. R. and Miller, P. H. 2010. A developmental

perspective on executive function. Child Development. 81, 6,

1641-1660.

[6] Best, J. R., Nagamatsu, L. S., and Liu-Ambrose, T. 2014.

Improvements to executive function during exercise training

predict maintenance of physical activity over the following

year. Frontiers in Human Neuroscience. 8, 353.

[7] Bryce, D., Whitebread, D., and Szűcs, D. 2015. The

relationships among executive functions, metacognitive skills

and educational achievement in 5 and 7 year-old children.

Metacognition and Learning. 10, 2, 181-198.

[8] Camerota, M., Willoughby, M. T., Magnus, B. E., and Blair,

C. B. 2020. Leveraging item accuracy and reaction time to

improve measurement of child executive function ability.

Psychological Assessment. 32, 12, 1118-1132.

[9] Cardoso-Leite, P., Joessel, A., and Bavelier, D. 2020. 18

Games for enhancing cognitive abilities. In Plass, J. L.,

Mayer, R. E., and Homer, B. D. ed. Handbook of Game-

Based Learning. MIT Press, 437-468.

[10] Fuhs, M. W., Nesbitt, K. T., Farran, D. C., and Dong, N.

2014. Longitudinal associations between executive

functioning and academic skills across content areas.

Developmental Psychology. 50, 6, 1698-1709.

[11] Greiff, S., Wüstenberg, S., and Avvisati, F. 2015. Computer-

generated log-file analyses as a window into students' minds?

A showcase study based on the PISA 2012 assessment of

problem solving. Computers and Education. 91, 92-105.

[12] Hagler, S., Jimison, H. B., and Pavel, M. 2014. Assessing

executive function using a computer game: Computational

modeling of cognitive processes. IEEE Journal of

Biomedical and Health Informatics. 18, 4, 1442-1452.

[13] Hake, R. R. 1998. Interactive-engagement versus traditional

methods: A six-thousand-student survey of mechanics test

data for introductory physics courses. American Journal of

Physics. 66, 1, 64-74.

[14] Henderson, N., Kumaran, V., Min, W., Mott, B., Wu, Z.,

Boulden, D., ... and Lester, J. 2020. Enhancing student

competency models for game-based learning with a hybrid

stealth assessment framework. In Proceedings of the 13th

International Conference on Educational Data Mining.

International Educational Data Mining Society, 92-103.

[15] Homer, B. D. and Plass, J. L. 2014. Level of interactivity and

executive functions as predictors of learning in computer-

based chemistry simulations. Computers in Human Behavior.

36, 365-375.

[16] Homer, B. D., Plass, J. L., Rafaele, C., Ober, T. M., and Ali,

A. 2018. Improving high school students' executive functions

through digital game play. Computers and Education. 117,

50-58.

[17] Homer, B. D., Plass, J. L., Rose, M. C., MacNamara, A. P.,

Pawar, S., and Ober, T. M. 2019. Activating adolescents’

“hot” executive functions in a digital game to train cognitive

skills: The effects of age and prior abilities. Cognitive

Development. 49, 20–32.

[18] Jaeggi, S. M., Buschkuehl, M., Jonides, J., and Shah, P.

2011. Short-and long-term benefits of cognitive training.

Proceedings of the National Academy of Sciences. 108(25),

10081-10086.

[19] Karumbaiah, S., Baker, R. S., & Shute, V. 2018. Predicting

quitting in students playing a learning game. In Proceedings

of the 11th International Conference on Educational Data

Mining. International Educational Data Mining Society, 167-

176.

[20] Ke, F. and Shute, V. 2015. Design of game-based stealth

assessment and learning support. Serious Games Analytics.

(2015), 301-318.

[21] Khenissi, M. A., Essalmi, F., Jemni, M., Chang, T. W., and

Chen, N. S. 2016. Unobtrusive monitoring of learners’

interactions with educational games for measuring their

working memory capacity. British Journal of Educational

Technology. 48, 2, 224-245.

[22] Mayer, R. E., Parong, J., and Bainbridge, K. 2019. Young

adults learning executive function skills by playing focused

video games. Cognitive Development. 49, 43-50.

[23] Mislevy, R. J., Steinberg, L. S., and Almond, R. G. 2003.

focus article: on the structure of educational assessments.

Measurement: Interdisciplinary Research and Perspectives.

1, 1, 3-62.

[24] Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H.,

Howerter, A., and Wager, T. D. 2000. The unity and

diversity of executive functions and their contributions to

complex “frontal lobe” tasks: A latent variable analysis.

Cognitive Psychology. 41, 1, 49-100.

[25] Ober, T. M., Brenner, C. J., Olsen, A., Homer, B. D., and

Plass, J. L. 2021. Detecting patterns of engagement in a

digital cognitive skills training game. Computers and

Education. 165, 104144.

[26] Owen, V. E., Roy, M. H., Thai, K. P., Burnett, V., Jacobs,

D., Keylor, E., and Baker, R. S. 2019. Detecting wheel-

spinning and productive persistence in educational games. In

Proceedings of the 12th International Conference on

Educational Data Mining. International Educational Data

Mining Society, 378-383.

[27] Parong, J., Mayer, R. E., Fiorella, L., MacNamara, A.,

Homer, B. D., and Plass, J. L. 2017. Learning executive

function skills by playing focused video games.

Contemporary Educational Psychology. 51, 141-151.

[28] Plass, J. L., Homer, B. D., and Kinzer, C. K. 2015.

Foundations of game-based learning. Educational

Psychologist. 50, 4, 258-283.

[29] Plass, J. L., Homer, B. D., Pawar, S., Brenner, C., and

MacNamara, A. P. 2019. The effect of adaptive difficulty

adjustment on the effectiveness of a game to develop

executive function skills for learners of different ages.

Cognitive Development. 49, 56-67.

692 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

6

[30] Rowe, E., Almeda, M. V., Asbell-Clarke, J., Scruggs, R.,

Baker, R., Bardar, E., and Gasca, S. 2021. Assessing implicit

computational thinking in zoombinis puzzle gameplay.

Computers in Human Behavior. 120, 106707.

[31] Rowe, E., Asbell-Clarke, J., Baker, R. S., Eagle, M., Hicks,

A. G., Barnes, T. M., ... and Edwards, T. 2017. Assessing

implicit science learning in digital games. Computers in

Human Behavior. 76, 617-630.

[32] Schwaighofer, M., Fischer, F., and Bühner, M. 2015. Does

working memory training transfer? A meta-analysis

including training conditions as moderators. Educational

Psychologist. 50, 2, 138–166.

[33] Shute, V. J. and Rahimi, S. 2021. Stealth assessment of

creativity in a physics video game. Computers in Human

Behavior. 116, 106647.

[34] Shute, V. J., Wang, L., Greiff, S., Zhao, W., and Moore, G.

2016. Measuring problem solving skills via stealth

assessment in an engaging video game. Computers in Human

Behavior. 63, 106-117.

[35] Valladares-Rodríguez, S., Pérez-Rodríguez, R., Anido-Rifón,

L., and Fernández-Iglesias, M. 2016. Trends on the

application of serious games to neuropsychological

evaluation: A scoping review. Journal of Biomedical

Informatics. 64, 296-319.

[36] Zelazo, P. D. 2006. The dimensional change card sort

(DCCS): A method of assessing executive function in

children. Nature Protocols. 1, 1, 297-301.

[37] Zelazo, P. D., and Bauer, P. J. 2013. ed. National Institutes of

Health Toolbox Cognition Battery (NIH Toolbox CB):

Validation for Children Between 3 and 15 Years. Wiley,

Hoboken, NJ.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 693

Leveraging Survey and Motion Sensors Data to Promote
Gender Inclusion in Makerspaces

Edwin Chng, Stephanie Yang, Gahyun Sung, Tyler Yoo, Bertrand Schneider

chng_weimingedwin@g.harvard.edu, szhang@g.harvard.edu,

gsung@g.harvard.edu, tyler_yoo@g.harvard.edu, bertrand_schneider@g.harvard.edu

Harvard University

ABSTRACT

Over the last decade makerspaces have become more popular and

prevalent in formal and informal learning environments. A

finding, however, is that makerspaces are often male-dominated,

and females can feel a sense of intimidation in the space.

Furthermore, maker-centered learning typically adopts an open-

ended structure which makes it difficult to identify students who

are struggling. In this paper, we explore the use of quantitative

data from survey and motion sensors to potentially assist

instructors in uncovering gender differences and promoting

gender inclusion. Results suggest that there are different pathways

for male and female students to thrive in makerspaces. Based on

survey results, male students tend to have higher self-efficacy,

resulting in more self-confidence in their abilities and more

positive feelings. Findings from applying network analysis on the

motion sensor data show that female students persevere more

consistently and use empathy to form closer ties with peers for

mutual support. These findings suggest that quantitative data

could help raise instructors’ awareness of gender differences and

use that information to cater to the unique learning needs of each

group of students. Overall, this work represents preliminary steps

in instrumenting makerspaces to promote gender inclusion and

support maker-centered learning.

Keywords

Interaction Analysis, Learning Analytics / Educational Data

Mining, Social Network Analysis, Broadening Participation,

Gender, Making and Makerspaces, Technology-enhanced learning

1. INTRODUCTION
While many authors have espoused the learning benefits of

makerspaces [5], other researchers have recognized the inherent

difficulties of supporting student learning in makerspaces’ open-

ended environment [13]. First, students are expected to solve

problems independently in open-ended learning environments.

Such independent work may lead to feelings of isolation, and

instructors may not be aware that students are struggling. Second,

the iterative nature of work in the makerspaces makes it difficult

for instructors to continuously monitor students’ progress.

Without a clear feedback system, it is challenging for instructors

to differentiate when students need instructional support.

However, new sensing technology (such as motion tracking)

offers an opportunity to address some of these challenges. The

key benefit of using motion sensors is that they can be deployed to

monitor students’ learning in a continuous and unobtrusive

manner. Therefore, we aim to examine how the use of quantitative

data can help instructors overcome inherent challenges of

assisting students in makerspaces.

For our scope, we examine how students from different genders

interact in makerspaces [2;8;11], and we hope to promote gender

inclusion in makerspaces. Eventually, we hope that the use of

quantitative data can assist instructors in identifying the right form

of support for each diverse group of students.

2. LITERATURE REVIEW
Makerspaces draw learners from a diversity of disciplines and

provide multiple entry points to participation leading to

“innovative combinations, juxtapositions, and uses of disciplinary

knowledge and skill” [12]. However, makerspaces situated in

formal learning environments are often male dominated [7].

Hence, it is an increasing priority for makerspaces to include

women who are underrepresented in these communities. Central

to this goal is understanding how women interact within

makerspace courses. While some studies have not found gender to

be a salient factor [2], other studies have shown that women often

report feeling intimidated and excluded [8;11]. Most studies

conducted in this area have also been qualitatively based profiles.

Yet, for instructors to better support women in these spaces, more

research must be conducted on gender differences in the

cognitive, non-cognitive and affective domains and understand

how these differences contribute to the outcomes of empowerment

and community-building in maker-centered learning [5].

In this regard, the use of quantitative data from motion sensors

could help provide alternative insights into gender differences.

Researchers in the field of multimodal learning analytics have

long explored the use of sensors to gather information on student

learning because data can be collected in a sufficiently high

frequency to draw rich inferences [3]. Since social interactions are

an important part of makerspace projects, we focus this paper on

capturing them using motion sensors. The successful utilization of

motion sensors in capturing student interactions have been

suggested by a couple of researchers [4;9]. One common thread in

these previous works is the use of physical proximity as a

rudimentary proxy for interaction. While being in close proximity

is a necessary condition for interaction to occur, it is arguably not

a sufficient condition. Therefore, in addition to the use of physical

proximity as an indication for interactions, this study will layer on

two other criteria (see Section 5.3). In essence, we hope that the

use of quantitative data from motion sensors can paint a broader

picture of women's experiences in makerspaces to improve

instructor support and inclusivity.

Edwin Chng, Stephanie Yang, Gahyun Sung, Tyler Yoo and Bertrand
Schneider “Leveraging Survey and Motion Sensors Data to Pro-
mote Gender Inclusion in Makerspaces”. 2021. In: Proceedings
of The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 694-698.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

694 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

mailto:chng_weimingedwin@g.harvard.edu
mailto:szhang@g.harvard.edu
mailto:gsung@g.harvard.edu
mailto:tyler_yoo@g.harvard.edu
mailto:bertrand_schneider@g.harvard.edu

3. CONTEXT OF STUDY
Quantitative data was collected from 14 female and 8 male

students enrolled in a 15-week makerspace course (no students

identified as non-binary). Kinect sensors were deployed 24/7 to

gather skeletal joint data from students and survey tools were used

weekly to assess students’ learning experiences.

3.1 Course overview
The graduate-level makerspace course took place at a school of

education in the northeastern part of the United States. With a

focus on digital fabrication, the course aims to equip students with

the necessary skills and knowledge to handle modern tools such as

laser cutters. Each week, students are expected to work on a

course assignment that typically involves the creation of a digital

fabrication product for educational purposes. Depending on the

requirements of the assignment, students could either work

individually or collaborate. In addition to these weekly

assignments, students also pair up to complete mid-term and final

projects. While instructional support is available in the form of

office hours and individual consultations, students largely work

independently with minimal intervention from instructors.

Because of the open-ended nature of makerspaces, the course is

designed with several scaffolds. Every week, the same cycle of

design-prototype-create is adopted for each course assignment. In

this manner, students continually receive opportunities to refine

their skills. The presence of these weekly cycles also provides the

research team with a natural unit of analysis and all quantitative

data collected is aggregated at the week level.

3.2 Kinect Setup
Six Kinect v2 sensors were deployed in the makerspace to collect

skeletal joint data. The sensors were positioned to achieve

maximum coverage of the space (see Figure 1). When an

individual’s presence is detected in the Kinect’s field of vision,

the Kinect starts to record the x,y,z coordinates of the individual’s

head joint, left and right shoulder joints, left and right elbow

joints, and left and right-hand joints. When there are multiple

individuals present in the space, each Kinect sensor has the

capability of recording up to 6 individuals at 30 Hz (i.e., 30

observations per second).

4. RESEARCH QUESTIONS
RQ1: What gender differences can be extracted from quantitative

data collected from a makerspace?

RQ2: Which quantitative factors can account for students’

development of a sense of empowerment and community spirit?

We examined students’ sense of empowerment and community

spirit in the second research question because these are key

attributes of a maker mindset [5].

5. METHODS
In order to investigate how different genders work and interact in

the makerspace, we constructed social networks from Kinect

observations and derived network measures for each student

(described in section 5.2 and 5.3). Additionally, we conducted

weekly surveys of students to better understand their learning

experiences (section 5.1). These surveys not only served as a

triangulation measure for the Kinect observations, but also

complemented the data by providing a more holistic description.

Figure 1. Layout of makerspace with positions and fields of vision

of the Kinect sensors (top). Picture of the makerspace (bottom)

5.1 Survey Data
Surveys were administered to students after class each week.

These surveys were crafted based on a literature review of surveys

and to validate the questions, we conducted a validation study

with students from a previous iteration of the course.

Table 1. Details of the surveys administered

Dimensions Survey item Scale Source

Cognitive
- Tool Use

- Time Committed

Likert 1-7

Numerical

General

questions

Non-

cognitive

- Perceived

Competence

- Self-Regulation

- Motivation

Likert 1-5 [10; 15]

Affective

- Frustrated

- Nervous

- Interested

- Inspired

Likert 1-5 [14]

Maker’s

attribute

- Sense of

empowerment

- Community spirit

Likert 1-5 [5]

Maker’s

mindset

- Can-do attitude

- Empathy

- Curiosity

- Perseverance

- Resourceful

- Collaborative

Likert 1-7 [5]

Referencing Table 1, students’ learning experiences were captured

based on three dimensions: cognitive, non-cognitive, and

affective. The two dimensions of maker’s attribute and maker’s

mindset act as proxies for student outcomes. To determine gender

differences, we conducted t-tests on these survey scores.

5.2 Kinect Data
Kinect observations were used for this study to infer the social

interactions amongst students. Examining student interactions is

key because communities represent an indispensable resource for

students working in an open-ended environment. The following

steps were taken to clean and process the Kinect data.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 695

1) Student identification: Even though the Kinect sensors have no

ability in establishing the identities of students, they capture video

images from their fields of vision. These images were fed into

OpenFace [1] to identify students.

2) Data homography: The coordinate system that the sensors

operate in is relative to the actual positions of the sensors in the

space. Hence, there is a need to convert the data into a coordinate

system that better represents the 3D positions of the skeletal

joints. Data homography was used to achieve this. A research

team member stood in front of each sensor at nine different

locations, forming a grid. Using the marked-out grid locations on

the floorplan of the space and the measured positions of the

skeletal joints, the coordinate system of sensors was translated

into a coordinate system that is based on the floor plan (Figure 1).

3) Deduplication of skeletal joints: Finally, data from all six

sensors were combined into a single coordinate system. However,

because the sensors had overlapping fields of view, there was a

possibility that multiple sets of skeletal joints were recorded for

the same individual. In this case, deduplication was carried out to

remove the additional skeletal joints for the same person.

5.3 Social Network Analysis
Once the Kinect data was processed, social networks were

constructed. The social networks are built based on the episodes

of student interaction. A student is said to have interacted with

another if both students are one meter apart, have significant

amounts of hand movement, and are either both sitting or both

standing. The first criterion is based on the theory of proxemics

[6], which states that humans maintain a comfortable distance of

one meter during interactions. Admittedly, a proximity of one

meter is a necessary but not sufficient criterion for establishing

social interactions. Therefore, two other criteria were added to

increase the probability of capturing true episodes of student

interaction. The second criterion is based on the hands-on nature

of the makerspace course. For two students who are in close

proximity, having significant amounts of hand movement is likely

an indication of collaboration. The third criterion is based on the

observation that students tend to share the same eye level when

working with each other. It is rare to observe two students

working together with one individual standing and another sitting.

While these three criteria are not perfect indicators of social

interactions, observations of students working in the makerspace

and crosschecks conducted by looking at screenshots from the

sensors validated their use as a proxy for social interactions.

After we identified episodes of student interactions, social

networks were generated based on the amount of time each

student spent interacting with others. In essence, the nodes of the

social network represent the individual students while the edges

between nodes are weighted according to the amount of

interaction time spent between students. From the weekly social

networks, network measures were computed to obtain weekly

network scores for each student.

Table 2. Details of network measures used

Network

measures
Definition Scale

Degree

Centrality

This represents the fraction

of nodes that a node is

connected to.

0 to 1

Average

edge

weight

This is the mean of all the

weights of all the edges

connected to a node.

0 to inf

EI

homophily

index

This index is calculated by

taking the difference

between out-group and in-

group connections and

dividing by the total number

of connections. For instance,

in EI gender, a node for a

female student would have

male connections as out-

group connections and

female connections as in-

group connections.

-1: Complete

homophily (only

in-group

connections)

1: Complete

heterophily (only

out-group

connections)

0: Equal number

of in-group and

out-group

connections.

T-tests of the network measures were then conducted to extract

gender differences, which addresses the first research question.

For the second research question, the identified gender differences

were used to build regression models for students’ sense of

empowerment and community spirit.

6. RESULTS
RQ1: What gender differences exist in a makerspace (from the

quantitative measures)?

Table 3. Results of t-tests for gender differences

Measures Statistical differences (t-test)

Survey:

Perceived

Competence

Males students (mean=5.2) reported having a

higher level of perceived competence than

female students (mean=4.8), t(20)=2.25,

p=0.03.

Survey:

Interested

Males students (mean=4.0) reported feeling

more interested in the course than female

students (mean=3.7), t(20)=2.21, p=0.03.

Survey:

Inspired

Males students (mean=3.7) reported feeling

more inspired in the course than female

students (mean=3.4), t(20)=2.22, p=0.03.

Survey:

Empowerment

Males students (mean=3.9) reported having a

greater sense of empowerment than female

students (mean=3.5), t(20)=3.11, p=0.002.

Survey:

Empathy

Females students (mean=6.0) reported having

more empathy than male students (mean=5.5),

t(20)=2.14, p=0.04.

Survey:

Perseverance

Females students (mean=5.9) reported having

more perseverance than male students

(mean=5.3), t(20)=2.71, p=0.008.

Network

measure: EI

gender

Males students (mean=0.02) have more

diverse gender interactions than female

students (mean=-0.16), t(20)=4.19, p<0.001.

Several items were different for males and females. First, males

reported having higher perceived competence, which suggests that

males are more confident individuals when it comes to assessing

their abilities. Second, males recounted feeling more interested

and inspired in the course. This shows that males possess more

positive feelings towards the course. The lack of statistical

significance for the negative affective states indicates that males

and females might be struggling equally in the course. Third,

males described developing a stronger sense of empowerment.

This implies that males feel they have benefitted from the course

and can move on to accomplish more challenging tasks.

Although males reported doing better in the course than females,

the t-test results also indicate that females may possess some

696 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

alternate mechanisms for thriving in the course. Females score

higher on empathy, which suggests females relate better to others

in the community. Additionally, females score higher on

perseverance, which hints at positive struggles from females.

Lastly, for the network measures, females score more negatively

in the EI index for gender, which implies that females interact

more with other females, possibly for more community and

emotional support.

RQ2: Which quantitative factors can account for students’

development of a sense of empowerment and community spirit?

Findings from the survey data suggest that male and female

students in this study differ in their perceived competence,

positive feelings, empathy, perseverance and diversity in gender

interactions. A linear regression model was built based on these to

predict the students’ sense of empowerment and community spirit.

Table 4. Regression models for sense of empowerment and

community spirit (*p<0.05, **p<0.01, ***p<0.001)

Outcomes (→)

Predictors (↓)

Sense of

empowerment**

Community

spirit***

F (4,17) = 6.85

p-value = 0.0018

R2 = 0.6172

RMSE = 0.7915

F (1,20) = 16.72

p-value = 0.0006

R2 = 0.4554

RMSE = 1.0513

const coef. = -1.034

S.E. = 1.582

p-value = 0.522

coef. = -2.672

S.E. = 1.614

p-value = 0.113

Empathy coef. = 1.123**

S.E. = 0.275

p-value = 0.001

Perceived

competence

coef. = 0.770

S.E. = 0.369

p-value = 0.052

Positive

feelings

coef. = 0.232*

S.E. = 0.109

p-value = 0.048

Perseverance coef. = 0.954**

S.E. = 0.242

p-value = 0.001

EI gender coef. = -0.441**

S.E. = 0.111

p-value = 0.001

Based on the regression analysis, students’ positive feelings,

perseverance, and diversity in gender interactions are significant

predictors for their sense of empowerment. Even though

perceived competence is not statistically significant, its low p-

value of 0.052 hints that it might be a contributing factor to

students’ sense of empowerment (which corroborates with RQ1’s

findings). Similarly, the presence of positive feelings in the model

echoes previous findings of males having more positive feelings

and a greater sense of empowerment. However, it is unclear if

students developed a greater sense of empowerment due to their

positive feelings or if students felt more positive because they

experienced empowerment. Lastly, the inclusion of perseverance

and diversity in gender interactions as significant predictors

demonstrates that initial learning difficulties in makerspaces can

be overcome if one perseveres and that reaching out to fellow

members for peer support can aid in the process of learning. Since

females have expressed higher levels of perseverance and more

in-group preferences previously, this finding reveals a potential

pathway for female students to develop a sense of empowerment.

The regression analysis of community spirit shows that empathy

is the sole significant predictor. Furthermore, the regression model

with only empathy included has an R2 value of 0.4554, which

means that empathy as a factor alone can explain close to half of

the variability in community spirit. This is not an unexpected

finding as empathy remains a much-needed ingredient for the

fostering of good relationships. This result also hints at possible

contributions from females in building makerspace communities

since they possess higher levels of empathy.

7. DISCUSSION
The findings of this paper indicate that males in this study are

more confident in their technical ability and have more positive

feelings associated with the makerspace. These findings run

parallel to qualitative results in the literature which show that

males tend to display more initial interest in makerspaces and

technically oriented making activities [8]. While males self-

reported more confidence in their abilities, females in this study

were more persistent. Additionally, females reported higher

measures of empathy and tended to interact more with other

females when in the makerspace. These results are in line with

qualitative findings from [11] indicating that females tend to

appreciate having other females in the space.

In terms of promoting gender inclusion, the methods used in this

study can help reveal to instructors the salient differences between

genders operating in their own makerspaces. When awareness of

gender differences is promoted, instructors can be naturally

prompted to take more active steps to cater to distinct learning

needs. Additionally, these findings serve as a reminder for

instructors to avoid taking on a deficit view of any gender. On the

surface, it might appear that males are thriving better than females

in makerspaces, but the lack of statistical significance for the

negative affective states signals that males and females struggle

equally. Instead, our results suggest that males and females thrive

in their unique ways in makerspaces, with males using their

higher individual self-efficacy, and females using their greater

group empathy skills. Neither males nor females should be viewed

in a deficit perspective, and the removal of any gender bias would

certainly go a long way in promoting gender inclusion.

Limitations of the current study include the relatively small

sample size and the fact that the survey results were based on self-

reported measures. These factors call into question the

generalizability of our findings, and future work should seek to

corroborate these results. Additionally, any reader of these

findings must be careful to not fall into gender stereotypes. These

results are reported on an aggregated basis, which may or may not

be applicable to any individual student. Moreover, these findings

are a result of our observations conducted in this particular study.

Nonetheless, the findings demonstrate the feasibility of an

approach that can be used by instructors to uncover gender

differences in their own makerspaces.

8. CONCLUSION
The current paper examined gender differences in makerspaces

and the factors that contributed to students’ development of a

sense of empowerment and community spirit. T-test results

indicate that there are different pathways for male and female

students to thrive in makerspaces and regression analyses

highlight the quantitative factors that can account for students’

development of a sense of empowerment and community spirit.

This work presents preliminary steps in designing an automated

system for instructional use to support gender inclusion.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 697

9. REFERENCES
[1] Amos, B., Ludwiczuk, B., & Satyanarayanan, M. (2016).

Openface: A general-purpose face recognition library with

mobile applications. CMU School of Computer Science, 6(2).

[2] Bean, V., Farmer, N. M., & Kerr, B. A. (2015). An

exploration of women’s engagement in Makerspaces. Gifted

and Talented International, 30(1–2), 61–67.

[3] Berland, M., Baker, R. S. & Blikstein, P. (2014). Educational

data mining and learning analytics: Applications to

constructionist research. Technology, Knowledge and

Learning, 19(1-2), 205-220.

[4] Chng, E., Seyam, M. R., Yao, W., & Schneider, B. (2020,

July). Using Motion Sensors to Understand Collaborative

Interactions in Digital Fabrication Labs. In International

Conference on Artificial Intelligence in Education (pp. 118-

128). Springer, Cham.

[5] Clapp, E. P., Ross, J., Ryan, J. O., Tishman, S. (2016).

Maker-centered learning: Empowering young people to

shape their worlds. Jossey-Bass, San Francisco.

[6] Hall, E. T. (1966). The Hidden Dimension. Anchor Books.

[7] Hynes, M. M., & Hynes, W. J. (2018). If you build it, will

they come? Student preferences for Makerspace

environments in higher education. International Journal of

Technology and Design Education, 28(3), 867-883.

[8] Lewis, J. (2015). Barriers to women’s involvement in

hackspaces and makerspaces.

[9] Martinez-Maldonado, R., Yacef, K., Dos Santos, A. D. P.,

Shum, S. B., Echeverria, V., Santos, O. C., & Pechenizkiy,

M. (2017). Towards proximity tracking and sensemaking for

supporting teamwork and learning. In 2017 IEEE 17th

International Conference on Advanced Learning

Technologies (ICALT) (pp. 89-91). IEEE.

[10] Pintrich, R. R., DeGroot, E. V. (1990). Motivational and self-

regulated learning components of classroom academic

performance. Journal of Educational Psychology, 82, 33-40.

[11] Roldan, W., Hui, J. S., & Gerber, E. M. (2018). University

makerspaces: Opportunities to support equitable participation

for women in engineering. International Journal of

Engineering Education, 34, 751-768.

[12] Sheridan, K., Halverson, E. R., Litts, B., Brahms, L., Jacobs-

Priebe, L., & Owens, T. (2014). Learning in the Making: A

Comparative Case Study of Three Makerspaces. Harvard

Educational Review, 84(4), 505–531.

[13] Tan, M. (2019). When makerspaces meet school: Negotiating

tensions between instruction and construction. Journal of

Science Education and Technology, 28(2), 75-89.

[14] Watson, D., Clark, L. A., Tellegan, A. (1988). Development

and validation of brief measures of positive and negative

affect: The PANAS scales. Journal of Personality and Social

Psychology, 54(6), 1063-1070.

[15] Williams, G. C., Deci, E. L. (1996). Internalization of

biopsychosocial values by medical students: A test of self-

determination theory. Journal of Personality and Social

Psychology, 70, 767-779.

698 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Early Detection of At-risk Students based on
Knowledge Distillation RNN Models

Ryusuke Murata
Department of Advanced
Information Technology

Kyushu University, Japan
murata@limu.ait.kyushu-

u.ac.jp

Atsushi Shimada
Department of Advanced
Information Technology

Kyushu University, Japan
atsushi@limu.ait.kyushu-

u.ac.jp

Tsubasa Minematsu
Department of Advanced
Information Technology

Kyushu University, Japan
minematsu@limu.ait.kyushu-

u.ac.jp

ABSTRACT
Recurrent neural network (RNN) achieves state-of-the-art in
several researches of the performance prediction. However,
accuracy in early time steps is lower than that in late time
steps, even though the early detection of at-risk students is
important for timely interventions. To improve the accu-
racy in early time steps, we propose a knowledge distillation
method for RNN. Our method distills the time-series infor-
mation in the RNN model of late time steps into the RNN
model of early time steps. This distillation makes the predic-
tion of early time steps closer to that of late time steps. The
experimental result showed that our method improved the
detection rate of at-risk students compared with traditional
RNNs, especially in early time steps.

Keywords
Student performance prediction, Early detection of at-risk
students, Recurrent neural network, Knowledge distillation

1. INTRODUCTION
The detection of at-risk students is an essential task to en-
sure intervention as early as possible. At-risk students are
those who may drop out of lecture courses and have low
scores (e.g., grade point averages and quiz scores). When
potential at-risk students are automatically detected in the
early stage of courses, teachers can have sufficient time to
encourage them to continue learning.

In recent years, prediction models based on recurrent neu-
ral networks (RNNs) have reached high performance [1, 3,
6, 7, 10, 11, 14, 19]. RNNs can handle time-series informa-
tion such as weekly learning behavior and predict students’
performance in each time step. Therefore, RNNs can detect
at-risk students in each time step such as after each lecture.
However, prediction accuracy in early time steps is lower
than that in late time steps because it is difficult for RNNs
to extract representative features from only the time-series

A
cc

u
ra

cy

Week

𝒙𝑇

𝒚′𝑇

𝒙1

𝒚′1

𝒙1

𝒙𝑡

𝒚′𝑡

𝒙𝑡
Knowledge
Distillation

Ours

RNN

Input

Prediction

Input

Prediction

Ours

RNN

Earlier Prediction

・・・

・・・

・・・

・・・

𝒚1 𝒚𝑡

・・・

・・・

Figure 1: KD for the earlier detection of at-risk students.

information in early time steps.

To solve this problem, we propose a novel training strat-
egy for improving the prediction in early time steps. Figure
1 shows an overview of our proposed method. Traditional
RNNs can extract more representative features in later time
steps, and prediction accuracy can also increase because
RNNs can use longer time-series information. If RNNs can
obtain more representative features from the inputs of ear-
lier time steps, they can detect at-risk students earlier and
maintain detection accuracy.

To transfer extracted features, we use knowledge distillation
(KD) [4]. KD is a compression method for deep neural net-
works (DNNs), and many methods have been proposed in
several fields such as visual recognition [2, 8] and natural lan-
guage processing [5, 13, 15]. In KD, the model is compressed
by training a small DNN model (student model) from a large
DNN model (teacher model); that is, the knowledge in the
teacher model is distilled to the student model. Further, KD
does not require new annotations. In our method, KD is ap-
plied to transfer the representative features extracted from

Ryusuke Murata, Tsubasa Minematsu and Atsushi Shimada “Early Detec-
tion of At-risk Students based on Knowledge Distillation RNN Models”.
2021. In: Proceedings of The 14th International Conference on Educa-
tional Data Mining (EDM21). International Educational Data Mining Soci-
ety, 699-703. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 699

longer time-series information. As shown in Figure 1, this
distillation makes the prediction of early time steps closer to
that of late time steps, allowing us to detect at-risk students
earlier.

The contributions of this study are summarized as follows.

• We introduce KD to predict students’ performance.
To the best of our knowledge, this is the first study to
apply KD to performance prediction.

• We propose the RNN-FitNets model to improve early
performance prediction. This model performs as if the
learning behaviors in all the time steps are inputted,
even though the model only receives the learning be-
havior in early time steps.

• We evaluate the effectiveness of our model for detect-
ing at-risk students based on the learning logs collected
from a higher education course.

2. KNOWLEDGE DISTILLATION
RNN MODEL

In this study, we propose RNN-FitNets, which is an inte-
gration of RNNs and FitNets [12]. RNN-FitNets distils the
well extracted features in the later time step into the RNNs
in the earlier time steps by using the architecture of Fit-
Nets. Therefore, RNN-FitNets can improve the prediction
accuracy in the earlier time steps. For example, as shown in
Figure 1, RNN-FitNets can extract representative features
in time step 3, whereas traditional RNNs obtain the same
feature in time step T .

Figure 2 shows the architecture. The teacher model is pre-
trained using all the time steps (1, 2, ..., T), and the student
model is trained until time step t (1 ≤ t ≤ T). During the
pre-training of the teacher model and training of the student
model, the same ground truth holds (e.g., the final grade
is passed to all the time steps). The teacher and student
models have the same structure; only the time steps differ
between them. Therefore, unlike FitNets, no regressor that
transforms the size of the hidden layer of the student model
exists.

The student model is trained using two steps in each train-
ing epoch as with FitNets. First, it updates its parameter,
except for the output layer. Given the t-th time step feature
vector of the student model as ht and T -th time step feature
vector of the teacher model as h ′

T , the parameter is updated
by minimizing the following hint loss function LHT :

LHT =
1

2
‖h ′

T − ht‖2 (1)

After updating the parameter, the entire student model, in-
cluding the output layer, is updated by minimizing the dis-
tillation loss. Given the output of the student model as
y1, y2, ..., yt, T -th output of the teacher model as y′T , and
ground truth as ytrue, the distillation loss LKD is calculated
as follows:

LKD =
1

t

t∑
i=1

(H(ytrue, yi)) + λH(y′T , yt). (2)

Figure 2: RNN-FitNets.

Table 1: Grade point average distribution.
GPA A B C D F

Number of students 25 50 16 12 5

where H refers to the cross-entropy and λ is a hyperparam-
eter that balances both cross-entropies.

3. EXPERIMENT
3.1 Dataset
We used the same dataset as [10]. The data were collected
from the Information Science course at Kyushu University.
This course started in April 2016 and 15 lectures were held
weekly. Table 1 shows the grade point average of the 108
students that took this course. More than two-thirds of stu-
dents received an“A”or“B.”On this course, the teacher and
students used a learning support system called M2B [9]. The
M2B system consists of three subsystems: the learning man-
agement system, Moodle; the e-portfolio system, Mahara;
and the e-book system, BookLooper. Moodle recorded stu-
dents’ attendance, submission of reports, and access to the
course. Mahara recorded students’ logbook in each lecture
on the course. BookLooper recorded students’ reading be-
havior such as turning pages, drawing highlights, and taking
notes.

We also applied the feature engineering method used by [10].
The collected data were converted into active learner points,
as shown in Table 2. As shown in the table, the learning be-
havior of each lecture was evaluated on a five-point scale
(0–5). Attendance and report submission were evaluated
based on whether the activities were on time, late, or not
completed. The quiz was evaluated based on the ratio of
collected answers. The other behaviors were evaluated by
comparing the students in each lecture. Before inputting
these features into the prediction model, the evaluated val-
ues were divided by 5 (i.e., they were normalized with in the
range of 0 to 1).

700 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 2: Criteria for active learner points.
Activities 5 4 3 2 1 0

Attendance
Atten
dance

Being
late

Absence

Quiz
Above
80%

Above
60%

Above
40%

Above
20%

Above
10%

Other
wise

Report
Submi
ssion

Late None

Course
accesses

Upper
10%

Upper
20%

Upper
30%

Upper
40%

Upper
50%

Other
wise

Word count
in Mahara

Upper
10%

Upper
20%

Upper
30%

Upper
40%

Upper
50%

Other
wise

Reading time
in BookLooper

Upper
10%

Upper
20%

Upper
30%

Upper
40%

Upper
50%

Other
wise

Highlights
in BookLooper

Upper
10%

Upper
20%

Upper
30%

Upper
40%

Upper
50%

Other
wise

Notes
in BookLooper

Upper
10%

Upper
20%

Upper
30%

Upper
40%

Upper
50%

Other
wise

Total Actions
in BookLooper

Upper
10%

Upper
20%

Upper
30%

Upper
40%

Upper
50%

Other
wise

3.2 Evaluation Criteria
We applied 5-fold cross-validation to the 108 students in the
dataset. The folds were made by preserving the percentage
of samples for each student’s grade of “A,” “B,” “C,” “D,”
and “F.” After the separation, we grouped grades “A” and
“B” into the “no-risk” class and grades “C,”“D,” and “F” into
the “at-risk” class because more than two-thirds of students
received“A”or “B” (see Table 1). Therefore, we conducted a
binary classification between “no risk” (“A” or “B”) and “at-
risk” (“C,”“D,”or“F”). For the evaluation, we calculated the
recall, precision, and F-measure values for detecting at-risk
students.

3.3 Comparison Models
To investigate the effectiveness of our model, we compared
the evaluation values for predicting the final grades between
the following three types of models:

• RNN baseline model

Training the RNN-based prediction model using the
learning behavior in all lecture weeks.

• Week-by-week model

Training the RNN-based prediction model using the
learning behavior in each lecture week. Therefore,
there were 15 independent models (trained by only
first-week behavior, trained until the second week of
behavior, and so on).

• RNN-FitNets

Training the student model from the RNN baseline
model as the teacher model in each lecture week. As
with the week-by-week model, there were 15 student
models.

The three types of comparison models had the same archi-
tecture. We set the batch size to one. The length of time
steps took an integer from 1 to 15 when the three types of
comparison models predicted students at-risk. When the
models were trained, the RNN baseline model used 15 time
steps and the other models used the same time steps as the
prediction. The input features of the model were the active
learner points shown in Table 2; therefore, the number of

features was nine. For the hidden layer, we used GRU with
32 units and the activation function was tanh. The output
layer had two units and the activation function was softmax.
We used RMSprop optimizer [16] for the hint loss and dis-
tillation loss. In both the optimizations, we set the learning
rate to 0.001. In addition, we applied L2 regularization with
a parameter of 0.004 for the optimization of the weights and
biases in the hidden and output layers of the RNN baseline
and the week-by-week model. λ in the distillation loss (Eq.
(2)) was equal to the time step; for example, when RNN-
FitNets was trained using the learning behavior until the
second week, we set λ to 2. All models were trained for 50
epochs.

3.4 Experimental Result
Figure 3 illustrates the evaluation of the three types of mod-
els. We summarize the results as follows:

• In most time steps, the recall values of the RNN-FitNets
were higher than the values of the RNN baseline and
week-by-week models. In other words, RNN-FitNets
detected more at-risk students than other models.

• However, the precision values of the RNN-FitNets were
lower than the value of the RNN baseline model, i.e.,
RNN-FitNets misdetected more no-risk students as at-
risk.

• As shown by the F-measure values, the RNN-FitNets’
values were higher than that of the RNN baseline and
week-by-week models in most time steps. This dif-
ference was marked in early time steps. Therefore,
the increase in the detection of at-risk students out-
weighed the increase in the misdetection, especially in
early time steps.

• Comparing the evaluation values of the RNN baseline
model with those of the week-by-week model, the for-
mer was superior in early time steps, although the val-
ues of the week-by-week model were close to or outper-
formed those of the RNN baseline model in late time
steps.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 701

(a) Recall (b) Precision (c) F-measure

Figure 3: Evaluation of three types of models.

Figure 4: Visualization of the extracted feature vectors in the
three types of models by t-SNE.

3.5 Discussion
The experimental result showed that the proposed models
improved the detection rate of at-risk students, especially
in early time steps. This improvement resulted from the
distillation of time-series information. The evaluation values
of the RNN baseline model were higher than those of the
week-by-week model in early time steps. This result implies
that the time-series information obtained by training in all
the time steps is effective for early detection. In the RNN-
FitNets, the time-series information was expressly passed
through KD and that improved the model’s performance.

To investigate whether the time-series information was dis-
tilled into the models in early time steps, we visualized the
extracted feature of the three types of models. Figure 4
shows the visualization results of the feature vectors. Be-
cause the models have a 32-dimensional hidden state, we
used t-SNE [17] and reduced the 32 dimensions to two di-
mensions for the visualization. Each point represents each
feature vector for the students in the dataset. The red point
is at-risk students and the blue point is no-risk students,
as defined in Section 3.2. By observing the feature vectors
of the RNN baseline and week-by-week models, the more
time steps are used, the closer the red points are to each
other and the more the shape of the mass of points becomes
elongated. This means that the detection of at-risk students
becomes easier in the feature vectors of late time steps. In
the RNN-FitNets models, the tendency to gather red points
and elongate appears in early time steps. This result shows

that our KD method properly distills the time-series infor-
mation extracted in the late time step.

4. CONCLUSION
In this study, we proposed RNN-FitNets, which extends Fit-
Nets, a KD method, for application to RNN architecture.
RNN-FitNets transfers the time-series information extracted
by the later time-step RNN into an earlier time-step RNN.
Hence, the earlier time-step RNN learns the method of ex-
tracting the representative features in late time steps from
short time-series data.

In the experiment, we applied RNN-FitNets to detect at-
risk students in higher education. The results show that the
proposed distillation model improves the detection rate of
at-risk students from the base RNN models. The analysis of
feature vectors indicated that our proposed model in earlier
time steps extracted similar feature vectors to those of the
base model in late time steps. This confirmed that our distil-
lation strategy properly distilled the time-series information
in later time steps into the model in earlier time steps.

In future work, we plan to investigate the availability of
RNN-FitNets for other datasets. Moreover, we aim to for-
mulate a new distillation method for time-series information
for other models such as the Transformer model [18].

5. ACKNOWLEDGMENTS
This work was supported by JST AIP Grant Number JP-
MJCR19U1, and JSPS KAKENHI Grand Number JP18H04125,
Japan

6. REFERENCES
[1] N. R. Aljohani, A. Fayoumi, and S.-U. Hassan.

Predicting at-risk students using clickstream data in
the virtual learning environment. Sustainability,
11(24):7238, 2019.

[2] W. Chen, C.-C. Chang, C.-Y. Lu, and C.-R. Lee.
Knowledge distillation with feature maps for image
classification. In ACCV, 2018.

[3] Y. He, R. Chen, X. Li, C. Hao, S. Liu, G. Zhang, and
B. Jiang. Online at-risk student identification using
rnn-gru joint neural networks. Information,
11(10):474, 2020.

702 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

[4] G. Hinton, O. Vinyals, and J. Dean. Distilling the
knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[5] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li,
F. Wang, and Q. Liu. Tinybert: Distilling bert for
natural language understanding. arXiv preprint
arXiv:1909.10351, 2019.

[6] B.-H. Kim, E. Vizitei, and V. Ganapathi. Gritnet 2:
Real-time student performance prediction with
domain adaptation. arXiv preprint arXiv:1809.06686,
pages 1–8, 2018.

[7] B.-H. Kim, E. Vizitei, and V. Ganapathi. Gritnet:
Student performance prediction with deep learning.
arXiv preprint arXiv:1804.07405, 2018.

[8] Q. Li, S. Jin, and J. Yan. Mimicking very efficient
network for object detection. In 2017 IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7341–7349, 2017.

[9] H. Ogata, Y. Taniguchi, D. Suehiro, A. Shimada,
M. Oi, F. Okubo, M. Yamada, and K. Kojima. M2b
system: A digital learning platform for traditional
classrooms in university. Practitioner Track
Proceedings, pages 155–162, 2017.

[10] F. Okubo, A. Shimada, T. Yamashita, and H. Ogata.
A neural network approach for students’ performance
prediction. In LAK 2017 Conference Proceedings - 7th
International Learning Analytics and Knowledge
Conference, ACM International Conference
Proceeding Series, pages 598–599. Association for
Computing Machinery, Mar. 2017. 7th International
Conference on Learning Analytics and Knowledge,
LAK 2017 ; Conference date: 13-03-2017 Through
17-03-2017.

[11] F. Okubo, T. Yamashita, A. Shimada, Y. Taniguchi,
and K. Shin’ichi. On the prediction of students’ quiz
score by recurrent neural network. CEUR Workshop
Proceedings, 2163, Jan. 2018. 2nd Multimodal
Learning Analytics Across (Physical and Digital)
Spaces, CrossMMLA 2018 ; Conference date:
06-03-2018.

[12] A. Romero, N. Ballas, S. E. Kahou, A. Chassang,
C. Gatta, and Y. Bengio. Fitnets: Hints for thin deep
nets. arXiv preprint arXiv:1412.6550, 2014.

[13] V. Sanh, L. Debut, J. Chaumond, and T. Wolf.
Distilbert, a distilled version of bert: smaller, faster,
cheaper and lighter. arXiv preprint arXiv:1910.01108,
2019.

[14] D. Sun, Y. Mao, J. Du, P. Xu, Q. Zheng, and H. Sun.
Deep learning for dropout prediction in moocs. In
2019 Eighth International Conference on Educational
Innovation through Technology (EITT), pages 87–90,
2019.

[15] R. Tang, Y. Lu, L. Liu, L. Mou, O. Vechtomova, and
J. Lin. Distilling task-specific knowledge from bert
into simple neural networks. arXiv preprint
arXiv:1903.12136, 2019.

[16] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural networks for
machine learning, 4(2):26–31, 2012.

[17] L. Van der Maaten and G. Hinton. Visualizing data
using t-sne. Journal of machine learning research,

9(11), 2008.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[19] F. Xiong, K. Zou, Z. Liu, and H. Wang. Predicting
learning status in moocs using lstm. In Proceedings of
the ACM Turing Celebration Conference-China, pages
1–5, 2019.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 703

Mining sequential patterns with high usage variation

Yingbin Zhang
University of Illinois at Urbana-Champaign

yingbin2@illinois.edu

Luc Paquette

University of Illinois at Urbana-Champaign

lpaq@illinois.edu

ABSTRACT

Sequential pattern mining is a useful tool in understanding learning

processes, but identifying the most relevant patterns can be a

challenge. Typical sequential pattern mining algorithms and

interestingness metrics mainly focus on finding behavior patterns

common across all students. However, educational researchers also

care about individual differences. This study proposes a method for

finding sequential patterns which usage have high variation across

students. This method borrows techniques from the field of lag

sequential analyses and meta-analyses. It uses the log odd ratio to

model the individuals' usage of a sequential pattern and the

heterogeneity test to examine the usage variation. We applied this

method to analyzing student action logs in a virtual experimental

environment and present preliminary results illustrating how the

identification of sequential patterns with high usage variation

provides interesting information about students' learning behavior.

The proposed approach adds a way for understanding individual

differences in learning processes.

Keywords

Sequential pattern mining, learning behavior differences, log odds

ratio, lag sequential analysis, heterogeneity test

1. INTRODUCTION
Sequential pattern mining (SPM) aims to find the temporal

associations between events [1]. For example, whether students

read relevant material after answering a question incorrectly. Such

sequential behaviors are named sequential patterns. SPM has

shown its potentials in helping researchers understand learning

behavior [2, 3].

However, there are challenges when applying SPM in education.

One important challenge is that SPM algorithms may generate

excessive sequential patterns, most of which are uninteresting or

irrelevant to the research purpose [2]. This increases the difficulty

of making meaningful interpretations and producing actionable

pedagogical insights. To address this challenge, researchers select

sequential patterns using interestingness metrics, such as the

support value e.g., [4, 5]. The support value of a sequential pattern

is the proportion of students that shown this pattern. As such,

patterns with high support values will reflect similarities in the

learners' behavior.

Educational researchers also care about differences among students

[6]. The understanding of individual differences in learning is

essential for providing learners with adaptive scaffolding. To

address this need, this study proposes a method borrowing from lag

sequential analyses and meta-analyses that uses log odd ratio and

the heterogeneity test to select sequential patterns based on their

variation in usage across learners.

2. Methodology
Let 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑝} be a set of p unique events that may occur

within a specific learning environment, such as answering a

question and asking for a hint. Let 𝑆𝑚 = {𝑖1, 𝑖2, … , 𝑖𝑛} be a

sequence of N temporally ordered items with each 𝑖𝑗 being a subset

of E. A sequence is a student’s learning process data, such as action

logs in an intelligent tutoring system. Each 𝑖𝑗 usually contains one

event because students rarely initiate two different actions

simultaneously. Let 𝑒𝑥 → 𝑒𝑦 be a sequential pattern where 𝑒𝑦

occurs after 𝑒𝑥 (𝑒𝑥 and 𝑒𝑦 may be the same event). Let 𝑒𝑥 denote

an event other than 𝑒𝑥. If there are 𝑖𝑘 = 𝑒𝑥 , 𝑖𝑙 = 𝑒𝑦, and k < l in 𝑆𝑚,

𝑆𝑚 contains 𝑒𝑥 → 𝑒𝑦 [8].

2.1 Using log odds ratio to model sequential

pattern usage
If we fix the gap between 𝑒𝑥 → 𝑒𝑦 to a constant c, we may use

methods from the field of lag-sequential analyses to quantify

students’ usage on 𝑒𝑥 → 𝑒𝑦 [8]. Fixing the gap to c means that we

only consider 𝑖𝑘 = 𝑒𝑥, 𝑖𝑙 = 𝑒𝑦, and 𝑙 − 𝑘 = 𝑐 as an occurrence of

𝑒𝑥 → 𝑒𝑦 . For example, 𝑐 = 1 means that we only count the case

where 𝑒𝑦 directly follows 𝑒𝑥 . Lag-sequential analysis utilizes

statistics from contingency table analyses to quantify the usage of

𝑒𝑥 → 𝑒𝑦, such as the odds ratio and the log odds ratio [8].

Let the frequency of pairs of consecutive events where the first

event is 𝑒𝑥 and the second event is 𝑒𝑦 𝑛(𝑒𝑥 → 𝑒𝑦) = 𝑎𝑚, Let the

frequency of pairs of consecutive events where the first event is 𝑒𝑥

but the second event is not 𝑒𝑦 𝑛(𝑒𝑥 → 𝑒𝑦) = 𝑏𝑚. Let the frequency

of pairs of consecutive events where the first event is not 𝑒𝑥 but the

second event is 𝑒𝑦 𝑛(𝑒𝑥 → 𝑒𝑦) = 𝑐𝑚. Let the frequency of pairs of

consecutive events where the first event is not 𝑒𝑥 and the second

event is not 𝑒𝑦 𝑛(𝑒𝑥 → 𝑒𝑦) = 𝑑𝑚. The odds ratio of 𝑒𝑥 → 𝑒𝑦 in 𝑆𝑚

can be calculated as
𝑎𝑚𝑑𝑚

𝑏𝑚𝑐𝑚
, while the log odds ratio is 𝑙𝑜𝑔

𝑎𝑚𝑑𝑚

𝑏𝑚𝑐𝑚
.

However, there is measurable bias in this expression when the

sample is small. A slightly modified version is often used to reduce

bias [9]:

𝑌𝑚(𝑒𝑥 → 𝑒𝑦) = 𝑙𝑜𝑔
(𝑎𝑚 +

1
2

)(𝑑𝑚 +
1
2

)

(𝑏𝑚 +
1
2

)(𝑐𝑚 +
1
2

)
. (2)

The log odds ratio of 𝑒𝑥 → 𝑒𝑦 represents the relative likelihood that

𝑒𝑦 occurs after 𝑒𝑥 during a student’s learning, considering the

Yingbin Zhang and Luc Paquette “Mining sequential patterns with high us-
age variation”. 2021. In: Proceedings of The 14th International Confer-
ence on Educational Data Mining (EDM21). International Educational Data
Mining Society, 704-707. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

704 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

mailto:yingbin2@illinois.edu
mailto:lpaq@illinois.edu

probability that 𝑒𝑦 occurs after an event other than 𝑒𝑥 . If a

sequential pattern contains more than two events, researchers may

segment a sequential pattern into two sub-patterns and represent the

sequential pattern as one sub-patterns follows another. For

example, 𝑒𝑥 → 𝑒𝑦 → 𝑒𝑧 → 𝑒𝑤 may be represented as 𝑒𝑥→𝑦 →

𝑒𝑧→𝑤 . This preprocessing has been used in computing the

confidence value of sequential patterns longer than two events [10].

Then, the above procedure can be used to calculate the log odds

ratio.

The variance of 𝑌𝑚(𝑒𝑥 → 𝑒𝑦) is:

𝑉𝑚(𝑒𝑥 → 𝑒𝑦) =
1

𝑎𝑚 +
1
2

+
1

𝑏𝑚 +
1
2

+
1

𝑐𝑚 +
1
2

+
1

𝑑𝑚 +
1
2

. (3)

𝑉𝑚(𝑒𝑥 → 𝑒𝑦) characterizes the imprecision of the log odds ratio

and decreases as the length of 𝑆𝑚 increases. The log odds ratio

based on a long sequence is more precise than that based on a

short sequence [9].

2.2 Ranking sequential patterns by variation

across users
We can examine whether the log odds ratio varies across

participants via the heterogeneity test used in meta-analyses [11].

One commonly used heterogeneity test is the Q test [12]. In meta-

analyses, Q is the weighted sum of the squared deviations of each

study’s effect estimate from the weighted mean of all studies’ effect

estimates. The weighting for each study is the inverse of the

variance of the study’s effect estimate. Thus, in terms of the

variation of the log odds ratio of 𝑒𝑥 → 𝑒𝑦, Q can be calculated using

the formula:

𝑄(𝑒𝑥 → 𝑒𝑦) = ∑
(𝑌𝑚 − 𝑌)

2

𝑉𝑚
, (4)

where 𝑌 is the weighted mean of log odds ratios, i.e.,

𝑌 =
∑

𝑌𝑚
𝑉𝑚

∑
1

𝑉𝑚

. (5)

Q follows a chi-square distribution with k – 1 degrees of freedom,

where k is the number of sequences or participants. Thus, if

𝑄(𝑒𝑥 → 𝑒𝑦) is higher than the critical value for a given significance

level (e.g., 0.05), we may conclude that the usage of 𝑒𝑥 → 𝑒𝑦 has

statistically significant variation across participants. Moreover, for

the same dataset, the number of participants is constant, and thus,

the Qs of all sequential patterns follow the same chi-square

distribution and are comparable. However, it is difficult to interpret

Q because its magnitude is influenced by the number of

participants. The 𝐼2 index overcomes this issue [13].

𝐼2 = {

𝑄 − (𝑘 − 1)

𝑄
∗ 100%, 𝑖𝑓 𝑄 > (𝑘 − 1)

0, 𝑒𝑙𝑠𝑒

. (6)

𝐼2(𝑒𝑥 → 𝑒𝑦) can be interpreted as the proportion of variation in the

log odds ratio of 𝑒𝑥 → 𝑒𝑦 due to true between-participants

variance. Ranking sequential patterns by Q and 𝐼2 produces the

same results because k is fixed for the same dataset.

3. Example
This section applied the proposed method to a dataset of student

action logs collected from a virtual experiment environment called

LabBuddy [14].

3.1 Data

3.1.1 Participants
The data were collected from a graduate-level enzymology course

at a university in the Netherlands. Participants were 76 graduate

students in this course. The average age was 22.91 years old

(SD = 1.80). Around 64.47% of the students were female.

3.1.2 LabBuddy
The course helped students prepare for the laboratory classes using

LabBuddy. LabBuddy in this course contained a self-directed

learning task, which included six research questions offered by a

virtual tutor, Professor Kabel. Students start with proposing

hypotheses for each question and make an experimental design via

a flow chart to test the hypotheses (Figure 1). Each block in the

flow chart represents a chemical method and contains details about

the method. Each block also contains some closed questions that

students must answer correctly before implementing the method

and getting the raw data. Students do some calculations based on

the raw data to get the results. The details, raw data, and

calculations of a method are located in different subblocks of a

block. If students are struggling with a closed question, they may

request hints or the correct answer. Once students obtain the results,

they may consult Professor Kabel to interpret them and either

accept or reject their hypotheses. Students used LabBuddy for an

average of 7.5 h distributed over three days. Their action logs were

used for analysis.

3.2 Analyses
We preprocessed the action logs by removing redundant successive

repeated actions (e.g., multiple selections of the same block) and

contextualizing some actions (e.g., is the submitted answer to a

closed question correct?). The preprocessing resulted in 19 unique

events. The average number of events in a student’s action log was

995 (SD = 363). Then, we implement our methods via the following

procedure:

1. Apply the cSPADE algorithm to find frequent sequential

patterns with support no less than 0.5. We used this

algorithm because it allows us to fix the gap between

events in a sequential pattern, a prerequisite for

calculating the log odds ratios. The gap was fixed to 1 in

the analysis. For simplicity, we only focused on

sequential patterns containing two events. This step

generated 81 frequent sequential patterns.

2. For each student, compute the log odds ratio, variance,

and the number of occurrences of each frequent

sequential pattern.

3. For each frequent sequential pattern, conduct the Q test

and calculate the 𝐼2 index, the average log odds ratio, and

the average occurrence. As the Q test was run 81 times,

we used the Benjamini-Yekutieli correction to control the

false discovery rate [15].

Note we only apply our method to frequent sequential patterns

because the variation of a sequential pattern across participants

would be low if few participants used a pattern (i.e., it was

infrequent).

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 705

3.3 Preliminary results
Figure 2 visualizes the relationships among the 𝐼2 indexes, average

log odds ratios, and average occurrences of the 81 sequential

patterns. There were moderate positive relationships between the

𝐼2 index and the average log odds ratio (r = 0.57, p < 0.001) as well

as the average occurrences (r = 0.36, p = 0.001). Nevertheless,

ranking sequential patterns by their variation between students

results in a different set of selected patterns than ranking them by

their similarities (average log odds ratios and occurrences) between

students. Some sequential patterns had few average occurrences

(e.g., less than 5) or negative average log odds ratios while still

being used differentially by students (the adjusted p of the Q test

< 0.05). Some sequential patterns had relatively high average

occurrences (e.g., larger than 10) or average log odds ratios (e.g.,

larger than 1) but were used consistently across students (the

adjusted p of the Q test > 0.05).

We investigated how 𝐼2 might help us detect behavioral differences

by looking more closely at two sequential patterns with distinct 𝐼2:

Submitting an intermedia answer → Submitting an intermedia

answer and Requesting a hint → Requesting a hint. Both patterns

had high values in average occurrences and log odds ratios (see

Table 1). Submitting an intermedia answer → Submitting an

Figure 1. The LabBuddy learning environment.

Figure 2. The 𝑰𝟐 indexes, average log odds ratios, and average occurrences of sequential patterns.

706 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

intermedia answer had a 𝐼2 of 0.75 (p < 0.001), indicating that

students had high variations in the usage on this pattern. Further

analysis showed that, in 9.54% of all pairs of students (309/3,240),

the log odd ratio was significantly different between the two

students. This means that among 10 randomly sampled pairs, on

average, there was one pair where the two students had significantly

different probability of submitting two intermedia answers

consecutively. In contrast, the usage on Requesting a hint →

Requesting a hint was relatively consistent across students (𝐼2 =

0.24, p = 0.52). Analyses showed that, in only 1.6% of pairs, the

log odd ratio was significantly different between two students.

Table 1. The metrics of two sequential patterns

Pattern 𝐼2
p for the

Q test

Log odds

ratio
Occurrences

RH.RH 0.24 0.52 3.76 21.51

SI.SI 0.75 0.00 4.81 19.32

Note. RH.RH: Requesting a hint → Requesting a hint. SS.WA:

Submitting an intermedia answer → Submitting an intermedia

answer.

4. Discussion
This study proposed a method for mining sequential patterns which

usage has high variation across students. We applied the method to

a dataset of student action logs in a virtual experimental

environment. The preliminary results suggest that ranking

sequential patterns by their variation across students results in a

different selection of patterns than by their similarities across

students. Moreover, the results demonstrated how the proposed

method could capture individual differences in sequential behavior

patterns. The approach adds a way for understanding individual

differences in learning, which is critical in education.

The next step is to examine whether the sequential patterns with

high variation are related to students’ learning gains. Such

investigation would contribute to our understanding of how

differences in which sequential patterns may lead to differences in

learning outcomes. The insights, in turn, would provide

information about how the learning environment might scaffold the

learners’ interaction with the learning environment by prompting

sequential behavior patterns beneficial to learning and discouraging

patterns harmful to learning.

Our approach requires fixing the gap between events of a sequential

patterns. This requirement limits flexibility. For example,

researchers may regard Submitting an intermedia answer →

Requesting a hint → Submitting an intermedia answer as an

instance of Submitting an intermedia answer → Submitting an

intermedia answer, but fixing the gap to 1 excludes this possibility.

On the other hand, if fixing the gap to 2, Submitting an intermedia

answer directly after Submitting an intermedia answer would not

be regarded as an instance of Submitting an intermedia answer →

Submitting an intermedia answer. The limitation is the same as the

issue that the lag between the antecedent and consequent events

must be fixed in a lag sequential analysis [8]. Addressing this issue

is challenging but worthy of effort.

5. ACKNOWLEDGMENTS
We would like to thank the Laboratory of Food Chemistry,

Wageningen University & Research for allowing us to use the

dataset and access to LabBuddy.

6. REFERENCES
[1] Baker, R. 2010. Data mining for education. In B. McGaw, P.

Peterson & E. Baker (Eds), International Encyclopedia of

Education (pp. 112-118). Oxford, UK: Elsevier Ltd.
[2] Zhou, M., Xu, Y., Nesbit, J. C. & Winne, P. H. 2010. Sequential

pattern analysis of learning logs: Methodology and

applications. In Handbook of Educational Data Mining (pp.

107-121). Boca Raton: CRC Press.
[3] Moon, J. & Liu, Z. 2019. Rich representations for analyzing

learning trajectories: Systematic review on sequential data

analytics in game-based learning research. In A. Tlili & M.

Chang (Eds), Data analytics approaches in educational games

and gamification systems (pp. 27-53). Singapore: Springer.
[4] Jiang, Y., Paquette, L., Baker, R. S. & Clarke-Midura, J. 2015.

Comparing novice and experienced students within virtual

performance assessments. In Proceedings of the 8th

International Conference on Educational Data Mining

(Madrid, Spain, Jun. 2015). International Educational Data

Mining Society, 136-143.
[5] Kang, J., Liu, M. & Qu, W. 2017. Using gameplay data to

examine learning behavior patterns in a serious game.

Comput. Hum. Behav., 72, (2017), 757-770.

http://doi.org/10.1016/j.chb.2016.09.062
[6] Malmberg, L., Lim, W. H., Tolvanen, A. & Nurmi, J. 2016.

Within-students variability in learning experiences, and

teachers' perceptions of students' task-focus. Frontline

Learning Research, 4, 5 (2016), 62-82.

http://doi.org/10.14786/flr.v4i5.227
[7] Agrawal, R. & Srikant, R. 1995. Mining sequential patterns. In

Proceedings of the eleventh international conference on data

engineering (Taipei, Taiwan, 1995). IEEE, 3-14.
[8] Bakeman, R. & Quera, V. Sequential analysis and

observational methods for the behavioral sciences.

Cambridge University Press, New York, NY, US, 2011.
[9] Dagne, G. A., Howe, G. W., Brown, C. H. & Muthén, B. O.

2002. Hierarchical modeling of sequential behavioral data: An

empirical Bayesian approach. Psychol. Methods, 7, 2 (Jun.

2002), 262-280. http://doi.org/10.1037/1082-989X.7.2.262
[10] Fournier-Viger, P., Faghihi, U., Nkambou, R. & Nguifo, E. M.

2012. CMRules: Mining sequential rules common to several

sequences. Know.-Based Syst., 25, 1 (2012), 63-76.

http://doi.org/10.1016/j.knosys.2011.07.005
[11] Huedo-Medina, T. B., Sánchez-Meca, J., Marín-Martínez, F.

& Botella, J. 2006. Assessing heterogeneity in meta-analysis:

Q statistic or I² index? Psychol. Methods, 11, 2 (2006), 193-

206. http://doi.org/10.1037/1082-989X.11.2.193
[12] Cochran, W. G. 1954. The Combination of Estimates from

Different Experiments. Biometrics, 10, 1 (1954), 101-129.

http://doi.org/10.2307/3001666
[13] Higgins, J. P. T. & Thompson, S. G. 2002. Quantifying

heterogeneity in a meta-analysis. Stat. Med., 21, (2002), 1539-

1558. http://doi.org/10.1002/sim.1186
[14] Van Der Kolk, K., Beldman, G., Hartog, R. & Gruppen, H.

2012. Students Using a Novel Web-Based Laboratory Class

Support System: A Case Study in Food Chemistry Education.

J. Chem. Educ., 89, 1 (Jan. 2012), 103-108.

http://doi.org/10.1021/ed1005294
[15] Benjamini, Y. & Yekutieli, D. 2001. The Control of the False

Discovery Rate in Multiple Testing under Dependency. The

Annals of Statistics, 29, 4 (Jan. 2001), 1165-1188.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 707

Demonstrating REACT: a Real-time Educational
AI-powered Classroom Tool∗

Ajay Kulkarni
George Mason University
akulkar8@gmu.edu

Olga Gkountouna
George Mason University
ogkounto@gmu.edu

ABSTRACT
We present a demonstration of REACT, a new Real-time
Educational AI-powered Classroom Tool that employs EDM
techniques for supporting the decision-making process of ed-
ucators. REACT is a data-driven tool with a user-friendly
graphical interface. It analyzes students’ performance data
and provides context-based alerts as well as recommenda-
tions to educators for course planning. Furthermore, it in-
corporates model-agnostic explanations for bringing explain-
ability and interpretability in the process of decision making.
This paper demonstrates a use case scenario of our proposed
tool using a real-world data set, and presents the design of
its architecture and user-interface. This demonstration fo-
cuses on the agglomerative clustering of students based on
their performance (i.e., incorrect responses and hints used)
during an in-class activity. This formation of clusters of
students with similar strengths and weaknesses may help
educators to improve their course planning by identifying
at-risk students, forming study groups, or encouraging tu-
toring between students of different strengths.

Keywords
Clustering, Decision-support, Educational tool, Explainabil-
ity, Human-centered computing

1. INTRODUCTION
Instructors play a crucial role in educational institutions,
where one of their main responsibilities is effective high-
quality teaching. To do so they must stay updated with
students’ responses, efforts, and outcomes, in order to pro-
vide timely feedback to promote students’ improvement [9,
29]. One of the ways this can be achieved is by clustering
students into groups based on various characteristics such
as their learning style preferences, academic performance,
behavioral interaction, etc., which can be utilized to explore

∗(Does NOT produce the permission block, copyright
information nor page numbering). For use with
ACM PROC ARTICLE-SP.CLS. Supported by ACM.

collaborative learning opportunities and identify at-risk stu-
dents at an early stage [3]. Thus, this creates a need for tools
that will empower instructors to achieve these objectives in
the classroom. To this end, the fields of Educational Data
Mining (EDM) and Learning Analytics (LA) have emerged
with the goal to understand how educational data can ben-
efit the science of learning [7]. One of the ways to promote
this understanding is to use AI-powered real-time visualiza-
tions. These visual displays summarize large amounts of
data in a meaningful way. This is important for humans’
sense-making and decision-making [35] as it helps human
cognition [12]. An example of these visual displays are dash-
boards which may contain various data indicators [20].

Furthermore, applications of Artificial Intelligence (AI) in
the domain of education for predicting student performance,
detecting undesirable student behavior, or providing feed-
back for supporting instructors and students, are becoming
more common [8]. This creates a need for incorporating
interpretability, explainability, and, ultimately, trustworthi-
ness in AI for supporting human teaching and learning [39].
The simplest way to include explainability in AI is by us-
ing model-agnostic explanations that consist of textual and
visual explanations [4]. Interpretability can be achieved by
including humans in the process of decision making (HitAI)
i.e., decision power is given to the specialized professionals
who utilize machines/tools as advisors [41].

This paper presents a demonstration of REACT, a Real-
time Educational AI-powered Classroom Tool, which utilizes
the principles of HitAI and model-agnostic explanations to
support educators in their decision-making. REACT clus-
ters students based on their responses during in-class activi-
ties, and provides context-based recommendations for course
planning. It also provides personalized feedback about indi-
vidual students. REACT is a real-time data-driven decision-
support tool that incorporates explainability, interpretabil-
ity, and portability. It presents different indicators of stu-
dents, their learning processes, learning contexts, and rec-
ommendations for increasing efficiency in course manage-
ment. Based on the Learning Analytics Process model [38],
REACT may directly help educators in awareness, reflec-
tion, and sense-making while it can indirectly create impact
and motivate to take actions. This functionality can support
educators in making decisions concerning their course plan-
ning and instructional goals setting, by consistently moni-
toring students’ activities (tests, quizzes, and exercises) to
inspect the their learning process.

Ajay Kulkarni and Olga Gkountouna “Demonstrating REACT: a Real-
time Educational AI-powered Classroom Tool”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 708-712.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

708 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

The remainder of this paper is structured as follows. Sec-
tion 2 presents the background of EDM and how clustering
can be useful in this context. Section 3 describes the archi-
tecture of our tool and explains how clustering is utilized
in REACT. Section 4 presents the details on the design of
the user interface and details of the demonstration. Finally,
Section 5 concludes the paper discussing directions of future
research.

2. BACKGROUND
EDM enhances the decision-making of teachers, students,
and educational institutes by utilizing data mining tech-
niques in an educational context [31]. A variety of methods,
including cluster analysis, outlier detection, text mining, rec-
ommendation systems, and visualizations can be applied in
the EDM domain [32]. Cluster analysis or clustering is the
most well known unsupervised machine learning task [24].
In the context of EDM, identifying meaningful clusters of
students can be useful in understanding their learning be-
havior [14, 13, 10, 5, 26, 22]. Clustering consists of four
steps [40]: (1.) Feature extraction and selection – Relevant
features are selected from the data and transformed into an
appropriate format. (2.) Algorithm design – A suitable clus-
tering algorithm and (dis)similarity measure are selected.
(3.) Evaluation – Different clustering results can be evalu-
ated using different metrics such as external, internal and/or
relative indices. (4.) Explanation - The main purpose of clus-
tering is to generate knowledge, useful for decision-making.
This is conveyed to the user in different ways such as visu-
alizations, textual feedback, or statistical metrics.

Hierarchical clustering organizes the data points in a tax-
onomy tree of clusters and sub-clusters [37]. Thus, it is
suitable for detecting clusters of arbitrary shape, type and
hierarchical relationships [40]. Hierarchical clustering has
been shown to provide good results for small datasets [1],
which is useful for typical class sizes. Furthermore, the en-
tire clustering process can be visualized by plotting a den-
drogram, which shows the cluster-subcluster relationships,
similarity between clusters, and the order in which they are
merged [37]. This results in an informative visualization
of the data clustering structures [40], fulfilling the goal of
explainability. There are two basic approaches to Hierar-
chical clustering – agglomerative and divisive [25]. The ag-
glomerative hierarchical clustering is a bottom-up approach
that starts with each points being an individual cluster, and
merges the closest pair of clusters at each step. The divisive
method is top-down approach that starts with points being
in one large cluster and progressively divides them. This is
computationally expensive [15] and not commonly used [40].
Thus, agglomerative hierarchical clustering makes a suitable
choice for implementing cluster analysis on REACT.

3. REACT ARCHITECTURE
REACT is developed using the R Shiny framework which
incorporates the principles of reactive programming [6] that
are suitable for interactive applications. REACT is portable
in a sense that it can be connected to any Learning Manage-
ment System (LMS), like Moodle or Blackboard, as well as
different database management systems, including MySQL,
Oracle, Salesforce, etc. This can be achieved by using dif-

Figure 1: Architecture of REACT

ferent packages such as DBI1 (for databases), bRush2 and
rcanvas3 (for the Canvas LMS) which are available in R. Ad-
ditionally, many other LMSs offer REST APIs which can be
connected with REACT using httr4 and jsonlite5 packages.

The architecture of REACT is motivated from RAED [23]
and it is shown in Figure 1. It consists of five main compo-
nents: the Dashboard Engine, the Machine Learning (ML)
Component, the Context Engine, the Contextualized Rec-
ommendation & Alert Engine, and the Visualization Com-
ponent. Due to space limitations, we focus on the compo-
nent that implements clustering as an EDM technique, i.e.,
the ML component.

The ML component receives input from a reactive data frame
that contains the input features of each student and initiates
the clustering process by first calculating all the pairwise dis-
tances (i.e., dissimilarities) of students. We use the Gower
distance [18] as the dissimilarity metric for the clustering, as
it can be applied to mixed data (i.e., a mix of numerical and
categorical variables) in general [33]. However, for the pur-
poses of this demonstration, we use as input features of each
student the numbers of incorrect responses and the number
of hints used per learning concept. For these numerical fea-
tures, Gower uses Manhattan distance to calculate dissim-
ilarity. The Dissimilarity Matrix sub-component calculates
the pairwise distances between all n observations (i.e., stu-
dents) in the data set organized in an n×n matrix, using the
daisy() R function. This dissimilarity matrix then becomes
the input of the Hierarchical Clustering sub-component.

The Hierarchical Clustering sub-component trains four dif-
ferent hierarchical clustering models using the same dissim-

1https://dbi.r-dbi.org
2https://github.com/erikpal/bRush
3https://github.com/daranzolin/rcanvas
4https://github.com/r-lib/httr
5https://github.com/jeroen/jsonlite

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 709

https://dbi.r-dbi.org
https://github.com/erikpal/bRush
https://github.com/daranzolin/rcanvas
https://github.com/r-lib/httr
https://github.com/jeroen/jsonlite

Figure 2: The AI tab provides real-time insights of clustering to instructors with visual explanation (dendrogram - top left) and
textual template-based recommendations (top right)

ilarity matrix. These models are based on four different
linkage methods: Single linkage, Average linkage, Complete
linkage, and Ward’s method. The R function agnes() is used
for building these models and computing their agglomerative
coefficients.

The Model Selection sub-component ensures robustness and
acts as an internal index for evaluations. It compares the
four clustering results based on their agglomerative coeffi-
cients. Their values lie between 0 to 1, and describe the
strength of the corresponding clustering structure [21]. This
sub-component selects the model with the highest agglom-
erative coefficient.

The Dendrogram sub-component creates a visualization of
the hierarchy of clusters and sub-clusters that are the result
of the selected model. This visualized hierarchy is called
a dendrogram. The dendrogram provides a diagrammatic
representation of the hierarchical cluster analysis. It can
help to understand the clustering process which may help to
incorporate explainability. An example of a dendrogram is
shown in Figure 2 and discussed in the next section.

4. DESIGN AND DEMO
A dashboard can be defined as “an easy to read, often single
page, real-time user interface, showing a graphical presen-
tation of the current status (snapshot) and historical trends
of an organization’s key performance indicators (KPIs) to
enable instantaneous and informed decisions to be made at
a glance” [11]. It is also common for decision-makers to use
KPIs for understanding the performance or the deviation
from the set target at a glance [28]. Thus, the user-interface
of REACT is designed as an interactive dashboard, display-
ing KPIs to help teachers monitor and understand their stu-

dent’s learning performance. These KPIs include the min-
imum, maximum, median and mean scores of the class, as
well as the number of students who have completed all the
questions of the in-class activity thus far.

4.1 Design Elements
A dashboard’s visual attraction significantly affects its per-
ceived usefulness and its potential to bring change in users’
behavior [27]. The design choices of REACT were made
with this consideration in mind. The selection of visualiza-
tions is based on the chart suggestions provided by Abela [2]
and a review provided by Schwendimann et al. [34]. Fur-
ther, its color palettes were selected so that it is colorblind-
friendly [17]. REACT contains interactive visualizations and
tables. Interactive applications need to ensure that they are
easy to learn, and effective as well as enjoyable to use [30].
To ensure this, we aimed to follow the ‘golden rules’ of in-
terface design proposed by Shneiderman et al. [36] – strive
for consistency, permit easy reversal of actions, keep users
in control, and reduce their short-term memory load.

The user interface of REACT currently has five tabs:
Overview – presents the KPIs, an interactive plot for mon-
itoring students’ performance, and textual alerts & recom-
mendations for the instructors.

Quick Analysis – presents an interactive plot that monitors
the progress of students in real time, and bar charts that
count the incorrect responses, and hints used for each KC.

Scorecard – displays a histogram of the score distribution,
and a dynamic table with students’ information and scores,
both updated in real-time.

710 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 3: Creating a real-time demo of REACT

AI – provides insights of the cluster analysis and textual
template-based recommendations. Figure 2 shows a screen-
shot of this tab. An instructor may use this tab to see on
the dendrogram (top left) how different groups (i.e., clus-
ters) of students are formed, based on their performance in
in-class activities. Textual explanations about each of these
groups are provided on the top right. Finally, to enhance
interpretability, each of the different clusters is also visually
explored at the bottom of the tab. The counts of incor-
rect answers and the counts of hints used are displayed per
Knowledge Component (KC) for each group of students.

Public Health – provides context based on the COVID-19
outbreak. It displays infection rates in the surrounding
counties and counts of students who may live in high risk ar-
eas, to inform educators, who may opt to transition online.

4.2 Demo
Holstein et al. [19] note the importance of using real-world
datasets to understand the behavior of LA tools. We use
the 2009-2010 Skill-builder ASSISTments data set [16]. The
raw data consists of more than 100,000 rows representing
details of 4217 students and 111 Knowledge Components
(KCs). To achieve the objective of this demonstration, we
randomly selected a sample of 20 students. Due to privacy,
this data set includes only pseudo-ids. In real-word uses of
REACT, authenticated instructors will be able to see stu-
dents’ names, as memorising their ids would be troublesome.
Our approach to create a demonstration of REACT is shown
in Figure 3 and can be summarized in the following steps:

• Step 1 (Filter): We selected 20 students and two ques-
tions from five KCs from the topic of statistics (Mean,
Circle Graph, Venn Diagram, Box and Whisker Plot,
and Scatter Plot). This filtered data set is first stored
in a spreadsheet on a local hard disk.

• Step 2 (Stream): The filtered data from Step 1 are then
streamed on a Google sheet that acts as a database for
this demonstration. It is connected to REACT using
the googlesheets46 package.

• Step 3 (Use): REACT receives live updates from the
streaming data. These concern hints that each student
uses during the simulated in-class activity, as well as if
they provided a correct or incorrect response to each
question, as time progresses. These data are processed
on the fly and used to update the visualisations, alerts,
and recommendations displayed on the user interface.

A live version of REACT7 is deployed using the Shiny Server

and it can be accessed using a web browser on any desktop,
laptop, tablet, or smartphone.
6https://googlesheets4.tidyverse.org
7https://tinyurl.com/y7cbbbej

5. CONCLUSIONS AND FUTURE WORK
We presented REACT, a data-driven, visual, decision-support
tool that incorporates model-agnostic explanations. This
paper provides details on demonstrating a use-case scenario
by utilizing the ASSISTments dataset. Our next step is
to evaluate our proposed tool with the help of domain ex-
perts, using a combined approach of think-aloud testing and
questionnaires. This approach will help us to understand
the usability and user experience while interacting with RE-
ACT. The results from this combined approach can help us
to identify directions of improvement in the interface de-
sign and to propose the addition of new features. In the
future, we aim to answer how the integration of AI and visu-
alizations in real-time can impact the instructors’ decision-
making process, and to what extent they do trust it. The
answers to these questions will play a crucial role in mak-
ing REACT a deployable tool that can enhance data-driven
decision-making in education.

6. REFERENCES
[1] O. A. Abbas. Comparisons between data clustering

algorithms. International Arab Journal of Information
Technology (IAJIT), 5(3), 2008.

[2] A. Abela. Chart suggestions-a thought starter.
Revisado el, 20, 2006.

[3] H. Aldowah, H. Al-Samarraie, and W. M. Fauzy.
Educational data mining and learning analytics for
21st century higher education: A review and
synthesis. Telematics and Informatics, 37:13–49, 2019.

[4] A. B. Arrieta, N. Dı́az-Rodŕıguez, J. Del Ser,
A. Bennetot, S. Tabik, A. Barbado, S. Garćıa,
S. Gil-López, D. Molina, R. Benjamins, et al.
Explainable artificial intelligence (xai): Concepts,
taxonomies, opportunities and challenges toward
responsible ai. Information Fusion, 58:82–115, 2020.

[5] E. Ayers, R. Nugent, and N. Dean. Skill set profile
clustering based on weighted student responses. In
EDM, pages 210–217, 2008.

[6] E. Bainomugisha, A. L. Carreton, T. v. Cutsem,
S. Mostinckx, and W. d. Meuter. A survey on reactive
programming. ACM Computing Surveys (CSUR),
45(4):1–34, 2013.

[7] R. S. Baker and P. S. Inventado. Educational data
mining and learning analytics. In Learning analytics,
pages 61–75. Springer, 2014.

[8] R. S. Baker and K. Yacef. The state of educational
data mining in 2009: A review and future visions.
Journal of Educational Data Mining (JEDM),
1(1):3–17, 2009.

[9] P. Black and D. Wiliam. Assessment and classroom
learning. Assessment in Education: principles, policy
& practice, 5(1):7–74, 1998.

[10] F. Bouchet, J. M. Harley, G. J. Trevors, and
R. Azevedo. Clustering and profiling students
according to their interactions with an intelligent
tutoring system fostering self-regulated learning.
Journal of Educational Data Mining (JEDM),
5(1):104–146, 2013.

[11] F. Brouns, M. E. Zorrilla Pantaleón, E. E.

Álvarez Saiz, P. Solana-González, Á. Cobo Ortega,
E. R. Rocha Blanco, M. Collantes Viaña,
C. Rodŕıguez Hoyos, M. De Lima Silva,

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 711

https://googlesheets4.tidyverse.org
https://tinyurl.com/y7cbbbej

C. Marta-Lazo, et al. Eco d2.5 learning analytics
requirements and metrics report. 2015.

[12] M. Card. Readings in information visualization: using
vision to think. Morgan Kaufmann, 1999.

[13] A. Dutt, S. Aghabozrgi, M. A. B. Ismail, and
H. Mahroeian. Clustering algorithms applied in
educational data mining. International Journal of
Information and Electronics Engineering, 5(2):112,
2015.

[14] A. Dutt, M. A. Ismail, and T. Herawan. A systematic
review on educational data mining. IEEE Access,
5:15991–16005, 2017.

[15] B. S. Everitt, S. Landau, and M. Leese. Cluster
analysis arnold. A member of the Hodder Headline
Group, London, pages 429–438, 2001.

[16] M. Feng, N. Heffernan, and K. Koedinger. Addressing
the assessment challenge with an online system that
tutors as it assesses. User Modeling and User-Adapted
Interaction, 19(3):243–266, 2009.

[17] S. Few. Information dashboard design: The effective
visual communication of data. O’Reilly Media, Inc.,
2006.

[18] J. C. Gower. A general coefficient of similarity and
some of its properties. Biometrics, pages 857–871,
1971.

[19] K. Holstein, B. M. McLaren, and V. Aleven.
Co-designing a real-time classroom orchestration tool
to support teacher–ai complementarity. Journal of
Learning Analytics, 6(2):27–52, 2019.

[20] M. Ji, C. Michel, E. Lavoué, and S. George. Ddart, a
dynamic dashboard for collection, analysis and
visualization of activity and reporting traces. In
European Conference on Technology Enhanced
Learning, pages 440–445. Springer, 2014.

[21] L. Kaufman and P. J. Rousseeuw. Partitioning around
medoids (program pam). Finding groups in data: an
introduction to cluster analysis, 344:68–125, 1990.

[22] N. A. Khayi and V. Rus. Clustering students based on
their prior knowledge. International Educational Data
Mining Society, 2019.

[23] A. Kulkarni and M. Eagle. Towards understanding the
impact of real-time ai-powered educational dashboards
(raed) on providing guidance to instructors.

[24] T. S. Madhulatha. An overview on clustering
methods. arXiv preprint arXiv:1205.1117, 2012.

[25] A. Nagpal, A. Jatain, and D. Gaur. Review based on
data clustering algorithms. In 2013 IEEE Conference
on Information & Communication Technologies, pages
298–303. IEEE, 2013.

[26] R. Nugent, E. Ayers, and N. Dean. Conditional
subspace clustering of skill mastery: Identifying skills
that separate students. International Working Group
on Educational Data Mining, 2009.

[27] Y. Park and I.-H. Jo. Factors that affect the success of
learning analytics dashboards. Educational Technology
Research and Development, 67(6):1547–1571, 2019.

[28] V. Podgorelec and S. Kuhar. Taking advantage of
education data: Advanced data analysis and reporting
in virtual learning environments. Elektronika ir
Elektrotechnika, 114(8):111–116, 2011.

[29] A. Poulos and M. J. Mahony. Effectiveness of

feedback: The students’ perspective. Assessment &
Evaluation in Higher Education, 33(2):143–154, 2008.

[30] J. Preece, H. Sharp, and Y. Rogers. Interaction
design: beyond human-computer interaction. John
Wiley & Sons, 2015.

[31] C. Romero and S. Ventura. Educational data mining:
a review of the state of the art. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 40(6):601–618, 2010.

[32] C. Romero and S. Ventura. Educational data mining
and learning analytics: An updated survey. Wiley
Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 10(3):e1355, 2020.

[33] P. J. Rousseeuw and L. Kaufman. Finding groups in
data. Hoboken: Wiley Online Library, 1, 1990.

[34] B. A. Schwendimann, M. J. Rodriguez-Triana,
A. Vozniuk, L. P. Prieto, M. S. Boroujeni, A. Holzer,
D. Gillet, and P. Dillenbourg. Perceiving learning at a
glance: A systematic literature review of learning
dashboard research. IEEE Transactions on Learning
Technologies, 10(1):30–41, 2016.

[35] S. Shemwell. Futuristic decision-making. Executive
Briefing Business Value from, 2005.

[36] B. Shneiderman and C. Plaisant. Designing the user
interface: strategies for effective human-computer
interaction. Pearson Education India, 2010.

[37] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction
to data mining. Pearson Education India, 2016.

[38] K. Verbert, E. Duval, J. Klerkx, S. Govaerts, and J. L.
Santos. Learning analytics dashboard applications.
American Behavioral Scientist, 57(10):1500–1509,
2013.

[39] A. Weller. Challenges for transparency. arXiv preprint
arXiv:1708.01870, 2017.

[40] R. Xu and D. Wunsch. Survey of clustering
algorithms. IEEE Transactions on neural networks,
16(3):645–678, 2005.

[41] F. M. Zanzotto. Human-in-the-loop artificial
intelligence. Journal of Artificial Intelligence Research,
64:243–252, 2019.

712 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Building Interpretable Descriptors for Student
Posture Analysis in a Physical Classroom

Lujie Karen Chen
University of Maryland Baltimore County

Baltimore, MD
lujiec@umbc.edu

David Gerritsen
Carnegie Mellon University

Pittsburgh, PA
dgerrits@andrew.cmu.edu

ABSTRACT
This research presents a process for simplifying video la-
beling and feature generation when building classification
systems from real classrooms. Using video from a single,
wide-angle recording of a live classroom, we create a low-
level feature set of posture primitives built on keypoints from
OpenPose. We use that feature set to build a posture recog-
nition model of“natural labels”built from a scripted posture
video using the same classroom. This model provides auto-
matic labels for the real classroom data. We then derive a set
of interpretable descriptors to characterize student-specific
posture pattern dynamics. We show that those descriptors
are able to discriminate between subtle differences in learn-
ing activities in a real college classroom.

Keywords
classroom analytics, posture analysis, student activity recog-
nition

1. INTRODUCTION
The field of research into classroom sensing technologies and
data mining is growing. One goal of this work is to provide
automated feedback to instructors about anything from la-
tent states of the students to overt actions by the teacher
[15]. The motivation for this work is usually to empower
teachers and scaffold instructional development without al-
ways relying on human consultants [13].

The promise of this field is high, but so are the costs. Tech-
nical staff and software development are all expensive. Addi-
tionally, labeling video data in order to derive insights about
student interactions is particularly time-consuming and dif-
ficult. This study describes an attempt to reduce that cost.
We used a freely available posture analysis tool (OpenPose)
to produce keypoint data for human postures which we then
used to build a generic set of labels for a class of students.
Our goal was to simplify both the application and inter-
pretability of data labels.

2. RELATED WORK
Emerging technologies for sensing pedagogical events in live
classrooms include the detection of overt student behaviors
(e.g., hand raising and gaze direction [1]), latent states (at-
tention and engagement [16, 12]), and instructor actions
(e.g., questions, activity sequences, gestures, and physical
location in the room [3, 7, 11, 14]). Each approach has its
own trade-offs in terms of reliability and effort required, but
the models all require a dictionary of human-labeled body
postures. Data annotation is time-consuming work requir-
ing special expertise. For example, one must choose between
coding in real-time [9, 10] or post-hoc [12, 16], and whether
or not to use assisted label production [17].

Feature generation is a related but different concern. Ed-
ucation researchers may want to build models on compre-
hensible features, such as the words used during teachers’
questions [3, 14], or the gestures students and teachers ex-
hibit during interactions [5, 4, 7, 12, 16]. While it is possible
to use a “kitchen sink” approach to quickly assess the suc-
cess of an algorithm and its inputs, education researchers
may prefer to use features that can be observed and under-
stood by the end-user. This way the instructors using their
systems might be able to make changes based on the model
output, e.g., [2].

3. MOTIVATION
High-quality video cameras are ubiquitous. Researchers in
education and machine learning can quickly generate large
volumes of dynamic, rich data from the classroom. When
turning video into data, education researchers traditionally
code classroom videos using any number of methodologies
[8]. Each approach for annotating and interpreting video
data takes a significant amount of training and time.

To this end we present the following case study in which we
demonstrate a pipeline that requires only minimal resource
investment on the part of the experimenter, including the
time it would normally take to define, identify, and verify
student gestures. We propose that this savings is possi-
ble without sacrificing the interpretability of a human-coded
feature set. To test the pipeline, we designed an easy and
accessible feature generation strategy which we then tested
against the most difficult in-class dataset we could imagine.

Figure 1 illustrates our workflow, broken into the following
stages: (1) We collect a video recording (scripted posture
data, section 4.2) with synchronized, scripted posture pat-

Lujie Karen Chen and David Gerritsen “Building Interpretable Descriptors
for Student Posture Analysis in a Physical Classroom”. 2021. In: Pro-
ceedings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 713-717.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 713

Scripted
Posture
Video

Real Classroom
Videos

OpenPose

 Keypoints

Posture
Labels

 Feature Set
Posture

Recognition
ML Model

Automated
Posture
Labels

Classs
Conditions

ML Classifier

Descriptors

Training Data

ML Model
Inputs

ML Model
Output

Legend

Figure 1: Workflow

terns commonly observed in classrooms; (2) We fit super-
vised machine learning models to automatically recognize
the scripted posture patterns (section 5.1); (3) Using video
from a real classroom (section 4.1), we demonstrate the util-
ity of those auto-estimated posture patterns by applying the
posture detection models to the real classroom dataset to
discriminate between class conditions (section 5.2).

4. DATA SOURCES & AUTO-LABELING
Here we describe our data collection and analysis. We con-
ducted the study at Carnegie Mellon University in the Spring
semester of 2019. We generated model data from a group
of volunteers, and target data from a class of real students.
All students signed IRB-approved consent forms.

4.1 Real Classroom Data
In selecting a use-case for our approach we chose a class
that embodied a traditional lecture-based class. We worked
with a semester-long graduate level course on “Applied Data
Science” (ADS) in Spring 2019. There were 22 enrolled stu-
dents, all of whom could fit in a single frame of a wide-angle
camera (Marshall CV505). The camera faced the rows of
students, and the instructor was not in frame. We recorded
throughout the entire semester of bi-weekly, 75-minute ses-
sion. We collected 22 sessions for a total of about 30 hours
of class time.

The format of the class was almost completely dominated
by professor lecture. Halfway through the semester the stu-
dents were put into groups for their final projects. During
that second half of the semester, student groups took turns
giving short presentations throughout the second session of
each week. We used this naturally occurring difference in
class format to inspire our classification problem. We thus
generated two main class conditions: those led by the pro-
fessor (i.e. Professor-Lead), and those led by groups of stu-
dents giving project presentations (i.e. Peer-Lead). In the
Professor-Lead condition (16 sessions), students listened to
the professor lecture and were permitted but never required
to ask questions. In the Peer-Lead condition (6 sessions),
students listened to groups of peers take turns giving a short
presentation describing their progress on an ongoing class
project. After each presentation, all students were allowed
to ask questions, and a random selection of students were
required to ask questions for participation points.

Our goal was to model generic student posture patterns
as descriptors to discriminate between Professor-Lead and
Peer-Lead. From a naive perspective, the postures of the stu-
dents in each condition were virtually indistinguishable. We
chose this objectively difficult classification problem in order

Figure 2: A snapshot of scripted posture video in which volun-
teers were performing one of the scripted action of Checking
Phone

to stress-test our approach. Our proposition was that stu-
dents in either condition might have different internal states
related to their expectation of learning useful information
(Professor-Lead) vs. their potential requirement to ask a
question (Peer-Lead), but that we would not have predic-
tions about which gestures might reveal those latent states.
This is a “good enough” test of our goal of building a prac-
tical process that could eventually be of some potential use
to researchers who are likely to test less fuzzy classification
problems.

4.2 Generic Student Posture Descriptors
To address our goal of helping researchers create descrip-
tors without deep, costly annotation, we designed an ap-
proach that would create a catalogue of possible postures
students exhibit in a typical class. We began by creating a
7-minute video of 11 volunteers arranged in the same seats
as the students from the ADS class. Using the same equip-
ment as would be used in the real class, we led the volun-
teers through a series of scripted movements. The “Scripted
Posture Video” section of our workflow (Figures 1 and 2)
comprises these data. The volunteers did not know what
the prompts would be in advance, and their behaviors ap-
peared natural. We guided them through 13 generic posture
patterns: Checking Phone, Looking at Computer, Looking
Down, Looking Up, Looking at front-left, Looking at front-
right, Looking Left, Looking Right, Performing Q&A, Talk-
ing to neighbor, Raising hand (left and right) and Writing.
We chose this list as a comprehensive representation of ob-
servable posture patterns in real classrooms when students
listen to lectures. There are additional gestures we could
have included, such as sleeping, eating, or drinking. How-
ever, this seemed outside of the scope of training on only the
most frequent and probable behaviors rather than trying to
include every conceivable movement that might exist.

Our next step was to produce an underlying set of low-level
features for defining these generic posture patterns. Table 1
is a partial list of the 24 frame-by-frame features we created
from OpenPose keypoints [6]. OpenPose1 is a freely available
toolkit for identifying physical landmarks, or “keypoints,”
on human figures in a picture, as shown in Figure 3 (left).
Each keypoint is part of a 2-D array of real-valued numbers
(Figure 3, right plot). In this analysis we only use upper
body keypoints, including head, neck, and arms.

1https://github.com/CMU-Perceptual-Computing-
Lab/openpose

714 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Feature Name Description
neck nose neck nose distance
Lshoulder nose left shoulder nose distance
Rshoulder nose right shoulder nose distance
rHand nose right hand nose distance
lHand nose left hand nose distance
nose neck h nose neck horizontal displacement
nose neck v nose neck vertical displacement
nose shoulder angle nose neck angle w.r.t shoulder
rElbow angle right elbow angle
lElbow angle left elbow angle

Table 1: A partial list of low-level features used in the posture
recognition machine learning model

Figure 3: An example of OpenPose toolkit keypoints for a
given frame of real classroom data (left); and the upper body
keypoints used in our analysis (right)

We designed the features from Table 1 based on our pro-
fessional experience performing student observation and an
analysis of how groups of keypoints move together to pro-
duce gross postures. For example, the features rHand nose
and lHand nose each measure the vertical distances between
the nose and the hand. These distances can indicate verti-
cal hand movements, e.g., as seen in hand-raising. “Nose-
neck” related features (e.g. nose neck h or nose neck v) can
indicate left/right head movements. With these low-level
features in hand we then applied them to the scripted pos-
ture data and train a random forest classifier for recognizing
posture patterns. We compiled a training set with each data
point representing a person-frame pair and labeled each data
point with labels naturally available from scripted posture
data. We then fit several independent binary classifiers, each
predicting the binary label of whether a given posture pat-
tern occurred.

Our hope was that by having 11 different people perform the
scripted movements in their own unique fashion, the model
would be exposed to a sufficient amount of variability—such
as one would expect to see in a the real world. We worked
from the assumption that this would at least reduce the need
for building and applying a precise annotation manual. This
allowed us to quickly compile a posture-recognition model.

5. RESULTS
In this section, we present the frame-by-frame posture recog-
nition model (section 5.1) using our generic behavior labels
from the scripted posture dataset (4.2). We then applied
that model to the ADS dataset (4.1), automatically labeling
the posture patterns frame-by-frame. We derive descriptors
from each 5-min segment of classroom video based on those
machine labels, and built a classifier to discriminate between

the two class conditions. The Peer-Lead segments of video
did not include periods of question-asking after student pre-
sentations. This was meant to maximize surface similarity
between the two conditions and provide a challenging test.

5.1 Posture Patterns Recognition
Table 2 summarizes the Area Under Curves scores (AUCs)
for binary classifiers predicting whether a given posture pat-
tern occurred in the appropriate position. An AUC rating of
0.50 is equivalent to chance, which means that check-phone,
for example, does not have a reliable posture pattern as a
composition of its keypoint structures. However, the model
is able to identify head movement in left, right and up direc-
tions somewhat more reliably than other types of subtle head
movements, such as look-down, look-front-left or look-front-
right. Hand-raising postures and writing are also found to be
relatively easier to identify. Similar to check-phone, actions
without clear movement patterns exhibit low performance,
i.e., look-at-computer, Q&A, and talking-to-partner.

Posture AUC Posture AUC
Patterns Scores Patterns Scores

check-phone 0.51 look-up 0.80
look-at-computer 0.63 look-left 0.84
look-down 0.53 look-right 0.88
look-front-left 0.67 writing 0.81
look-front-right 0.75 raise-left-hand 0.81
Q and A 0.63 raise-right-hand 0.84
talk-to-partner 0.60

Table 2: Area Under Curve (AUC) scores from binary classi-
fiers each predicting whether or not a given posture pattern
has occurred, from leave-one-person out cross-validation ex-
periment.

5.2 Discriminating Class Conditions
In this section we report the results from testing the hy-
pothesis that there are discernible differences in students’
posture patterns between the Professor-Lead and Peer-Lead
class conditions. To answer this question, we formulated a
machine learning classification task in which we used the
descriptors derived from videos of the ADS class as input
(right part of Figure 1). For output labels we used the class
conditions. In creating the training dataset, we extracted a
series of non-overlapping 5-minute segments from the real
classroom videos and computed a list of statistics based
on predicted student-by-student, frame-by-frame probabil-
ities of posture patterns from the generic behavior model
described in section 4.2. For each 5-minute video segment
we derived five statistical values (mean, standard deviation,
min,max, and median) summarizing the predicted probabil-
ities of each of the 13 posture patterns. As a result, we have
a training dataset with 65 features (13 posture patterns by
5 statistics) with each row representing a student-segment
pair. We use random forest to fit the model. For compari-
son, we also derived an independent set of low-level features
using only the keypoint structures described in Table 1.

We conducted two types of cross-validation experiments:
random split and leave-one-session-out. In random split
mode, the training and test datasets were constructed by
random selection from the pool of 5-minute video segments,

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 715

irrespective of the class sessions to which they belonged.
This design can yield relatively optimistic performance be-
cause of the likelihood that the segments from the same ses-
sion can appear both in training and testing. In the second
experiment, the split is based on class session, which results
in a more conservative measurement of discrimination.

Table 3 shows the AUCs for model discrimination between
Professor Lead vs Peer Lead using two different sets of input
variables and under two different experimental conditions.
The AUCs for each experimental design is beyond a random
chance of 0.5. Specifically, we note that AUC decreases when
using model-based descriptors compared to using a low-level,
less interpretable feature set derived directly from the key
points. The drop of AUC from random split to leave-one-
session-out cross-validation suggests that certain predictive
features are session specific and therefore make it difficult
to predict labels for an unseen session. Future work will
be of interest to identify those session specific features and
investigate their roles in predicting class conditions.

Input Variables Random Leave-One
Split Session Out

Posture-Model-based descriptors 0.72 0.64
Keypoint-based features 0.82 0.68

Table 3: Area Under Curve (AUC) scores for experiments
to discriminate between Professor-Lead and Peer-Lead
class conditions, comparing random split and leave-one-
session-out cross-validation designs.

In order to understand the features that contribute to dis-
criminating between the class conditions, we reviewed the
feature importance from the random forest model that used
interpretable posture-model-based descriptors as well as the
low-level keypoint features. Figure 4 shows a selection of
important and unimportant features from each approach.
As noted in the upper portion of Figure 4, the most impor-
tant input variables in the posture-based model are those
describing the variation of left and right head movements.
Other posture patterns, such as looking to the front, rais-
ing hands, and looking down did not play an important role
in the model. The bottom portion of the figure shows that
some of the important features were the distances between
students’ eyes and the angles between their nose and shoul-
ders. Some of the less important keypoint structures in-
cluded the relative angles of the left shoulder and elbow, as
well as the distance between the left shoulder and the nose.

6. DISCUSSION
In this project we explored methods for extracting posture-
related descriptors from videos of students in a real class-
room. We derived the posture labeling model from a video
of volunteers following scripted prompts. We extracted key-
point data from the videos using OpenPose, a freely avail-
able general purpose posture keypoints detection tool. We
then showed that this method of automatic labeling could
distinguish between two highly similar class conditions.

Large body movements such as hand raising and left/right
head shifting were the easiest for the model to detect, and
the most important descriptors in the posture model. In
terms of using labels that are easy to interpret, these types

Figure 4: A selection of posture-based descriptors (white) and
low-level features (gray) and their importance in a Random
Forest model for discriminating between class conditions.

of movements seem like a promising start. Without trying to
interpret those movements at this time, they were at least
important to the posture model. It maybe the case that
simply informing an instructor about these movements could
be a productive starting point for reflection.

Given that there were a number of features that did not
contribute to the models, and that the raw keypoint model
performed better than the derived model, we note that there
is a trade off between the accuracy of this approach on the
one hand, and its interpretability and transferability on the
other. When we look at the variance in Figure 4, we see indi-
cations that the importance of some features (and the lack of
importance of others) is more interpretable than the power
of different keypoint angles and vectors. These higher level
features say something about what students do differently
in different scenarios. Our point here is not to deduce what
those meanings are, but to show some of the student behav-
iors that are worth noticing. In terms of transferability, the
fact that we built these labels from a 7-minute session of
non-student volunteers shows that this approach may have
some potential as a one-to-many label generation method,
at least when the volunteers use the same classroom as the
target students.

Finally, we propose that the pipeline we explored in this
project, from feature generation to auto-labeling and from
data prepossessing to feature extraction, can all be gener-
alized to other teaching and learning scenarios in physical
classrooms. For researchers in this space, i.e., developing
classroom-based technologies for sensing behavior and pro-
viding automated feedback, our study may help simplify and
accelerate their work by simplifying annotation and antici-
pating features that the end-user can understand.

7. ACKNOWLEDGMENTS
The research reported here was supported, in whole or in
part, by the Institute of Education Sciences, U.S. Depart-
ment of Education, through grant R305B150008 to Carnegie
Mellon University. The opinions expressed are those of the
authors and do not represent the views of the Institute or
the U.S. Department of Education.

716 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

8. REFERENCES
[1] K. Ahuja, Y. Agarwal, D. Kim, F. Xhakaj, V. Varga,

A. Xie, S. Zhang, J. E. Townsend, C. Harrison, and
A. Ogan. EduSense: Practical Classroom Sensing at
Scale. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 3(3):1–26,
2019.

[2] R. S. Baker and K. Yacef. The state of educational
data mining in 2009: A review and future visions.
JEDM| Journal of Educational Data Mining,
1(1):3–17, 2009.

[3] N. Blanchard, P. Donnelly, A. M. Olney, S. Borhan,
B. Ward, X. Sun, S. Kelly, M. Nystrand, and S. K.
D’Mello. Identifying Teacher Questions Using
Automatic Speech Recognition in Classrooms. In
Proceedings of the 17th Annual Meeting of the Special
Interest Group on Discourse and Dialogue, pages
191–201, 2016.

[4] P. Blikstein and M. Worsley. Multimodal Learning
Analytics and Education Data Mining: Using
Computational Technologies to Measure Complex
Learning Tasks. Journal of Learning Analytics,
3(2):220–238, 2016.

[5] N. Bosch, S. K. D’Mello, J. Ocumpaugh, R. S. Baker,
and V. Shute. Using Video to Automatically Detect
Learner Affect in Computer-Enabled Classrooms.
ACM Transactions on Interactive Intelligent Systems,
6(2):17, 2016.

[6] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and
Y. A. Sheikh. Openpose: Realtime multi-person 2d
pose estimation using part affinity fields. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 2019.

[7] J. H. Correa, D. Farsani, and R. Araya. An
application of machine learning and image processing
to automatically detect teachers’ gestures. In
International Conference on Computational Collective
Intelligence, pages 516–528. Springer, 2020.

[8] J. T. DeCuir-Gunby, P. L. Marshall, and A. W.
McCulloch. Using mixed methods to analyze video
data: A mathematics teacher professional
development example. Journal of mixed methods
research, 6(3):199–216, 2012.

[9] J. M. Girard. Carma: Software for continuous affect
rating and media annotation. Journal of Open
Research Software, 2(1), 2014.

[10] P. Goldberg, Ö. Sümer, K. Stürmer, W. Wagner,
R. Göllner, P. Gerjets, E. Kasneci, and U. Trautwein.
Attentive or not? toward a machine learning approach
to assessing students’ visible engagement in classroom
instruction. Educational Psychology Review, pages
1–23, 2019.

[11] R. Martinez-Maldonado. ”I Spent More Time with
that Team”. In Proceedings of the 9th International
Conference on Learning Analytics & Knowledge, pages
21–25, Tempe, AZ, mar 2019. ACM.

[12] B. Ngoc Anh, N. Tung Son, P. Truong Lam,
P. Le Chi, N. Huu Tuan, N. Cong Dat, N. Huu Trung,
M. Umar Aftab, T. Van Dinh, et al. A computer-vision
based application for student behavior monitoring in
classroom. Applied Sciences, 9(22):4729, 2019.

[13] A. Ogan. Reframing classroom sensing: Promise and

peril. Interactions, 26(6):26–32, 2019.

[14] L. P. Prieto, K. Sharma, Kidzinski, M. J.
Rodŕıguez-Triana, and P. Dillenbourg. Multimodal
teaching analytics: Automated extraction of
orchestration graphs from wearable sensor data.
Journal of Computer Assisted Learning,
34(2):193–203, 2018.

[15] M. K. Saini and N. Goel. How smart are smart
classrooms? A review of smart classroom technologies.
ACM Computing Surveys, 52(6), 2019.

[16] J. Zaletelj. Estimation of students’ attention in the
classroom from kinect features. In Proceedings of the
10th International Symposium on Image and Signal
Processing and Analysis, pages 220–224. IEEE, 2017.

[17] T. Zhang, C. Xu, G. Zhu, S. Liu, and H. Lu. A generic
framework for video annotation via semi-supervised
learning. IEEE Transactions on Multimedia, 14(4
PART 2):1206–1219, 2012.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 717

Using Data Quality to compare the Prediction Accuracy
based on diverse annotated Tutor Scorings

Sylvio Rüdian
Humboldt-Universität zu Berlin,

Weizenbaum Institute
Berlin, Germany

ruediasy@informatik.hu-berlin.de

Niels Pinkwart
Humboldt-Universität zu Berlin,

Weizenbaum Institute
Berlin, Germany

niels.pinkwart@hu-berlin.de

ABSTRACT

Cross-validation is a wide-spread approach to understand how well

a prediction model performs with unseen data. While this is the

state of the art, machine learning is often used for educational

purposes in educational data mining. Whether a system is

applicable and generalizable in practical settings is based on the

cross-validation accuracy. One major problem is that the quality of

annotated data is often worse due to different raters that score equal

tasks differently, even if they were trained before. In this paper, we

did an experiment where 1.200 texts of three difficulty levels in an

open writing task for language learning were scored by two tutors

independently to get the inter-rater reliability score for measuring

the similarity across their grades. We used the existing scorings of

other tutors of the system to train a random forest regressor for

predicting scorings based on the texts. We found out that the

accuracy has a strong relationship to the inter-rater reliability score

and propose a new measurement that combines both metrics for

scenarios where data was annotated by tutors, that could principally

be diverse.

Keywords

Tutoring systems, scorings, data labeling, inter-rater reliability,

cross-validation

1. INTRODUCTION
As long as tutor scorings are used as a basis to train machine

learning systems, there is a bias of subjectivity. Research has shown

that the agreement among scores given by tutors often varies [1].

Depending on the task and scale, tutors reach different inter-rater

reliability scores. Practical settings have shown that even when

teachers were trained for grading, there is a gap. Thus, formal

exams are often graded twice and in case that there is a huge gap, a

third grader needs to be taken into account. For the field of machine

learning, we need thousands of scored tasks, e.g. for automated

essay grading. From the practical point, it is understandable that

scorings cannot be done by the same tutor all the time. Tutors’ time

is a limited resource and thus there is the need to score tasks by

different experts. If we consider machine learning approaches,

there are many examples of prediction tasks, where researchers try

to imitate teacher scorings, based on different features. As the

reduction of a text or task to features removes information that

could be important for a good evaluation, automatic scorings

cannot be perfect. Using data gathered by tutors where even

scorings for the same texts or tasks are not always equal we think,

that it is not fair to compare the prediction accuracy in education in

general if we use tutors’ labeled datasets.

In machine learning, the proper way to decide whether a system

generalizes well is to do cross-validation [2]. Therefore, the data is

split into several pieces. The model will be trained on all the data,

except from one piece. This piece is used to evaluate the model as

we know features and the concrete label. Based on the features, the

system creates a prediction using the trained model. The predicted

label can be compared with the known one. With every piece, the

leave-one-out method (or alternative ones) can be applied to get an

averaged accuracy. The main advantage of this method is to create

a prediction on previously unseen data. Thus the evaluation shows

whether a model generalizes well. Observing this value in detail,

we often notice that the accuracies are between 0.6 and 0.8, e.g. 0.6

for 8 classes and 0.78 for 4 classes in [3] or 0.7 in for 4 classes in

[4]. From the perspective of machine learning, these are bad values

as it means that 3-4 of 10 predictions are wrong.

To have a good and fair measurement for comparison it is necessary

to take the inter-rater reliability of human raters into account as in

general, the prediction cannot be better than the ratings among

raters that have been used for training the machine. The inter-rater

reliability is a score of consistency among raters. According to

McGraw & Wong [5], the minimum value should be 0.6 as the cut-

off for acceptability. Wang & Michelle [6] did a comparative study

to compare human essay scoring and reached an inter-rater

reliability score (IR score) of 0.62, using the Intraclass Correlation

Coefficient. Williamson proposes that an IR score lower than 0.7 is

not applicable [7].

The accuracy of predictions is often measured as the comparison of

the prediction of the machine and the rater annotations. But the

machine itself was trained based on the raters scores, which could

differ among raters [8] [1]. It is not surprising that the predicted

scorings by machines correlate with the human rater scorings as

they are the training base [6]. In contrast, Williamson has shown

statistically significant differences between human and machine

rating scores [7]. The question remains: comparing all the systems,

what is the best and most applicable one? Using the accuracy only

fails as the major problem is the quality of the training data – and

not the resulting accuracy in cross-validation.

In this paper, we propose an extension of the cross-validation to

have a fair measurement for comparing educational predictions,

where training data was gathered from tutors. We focus on

language learning and examine two research questions:

Sylvio Rüdian and Niels Pinkwart “Using Data Quality to compare the
Prediction Accuracy based on diverse annotated Tutor Scorings”. 2021.
In: Proceedings of The 14th International Conference on Educational Data
Mining (EDM21). International Educational Data Mining Society, 718-
720. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

718 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

RQ1: What is the correlation of the inter-rater reliability score in

essay scoring for language learning, compared to the prediction

accuracy?

RQ2: Combining the cross-validation with the inter-rater reliability

score, what is a fair interpretable measurement taking both metrics

into account?

2. METHODOLOGY
To address RQ1, two tutors had the task to score open text

submissions of three tasks. All tasks had a different difficulty level,

easy (1), medium (2), and difficult (3). For every task, we had 400

user submissions, in sum 1.200. Both tutors got access to the tasks

and they got 10 typical scorings for a pre-training. Then, all

submissions were scored by both instructors independently of each

other, using scores of 1 (very good) to 4 (bad/not acceptable). The

scoring procedure lasts 1 week for every tutor.

Then we prepared a random forest regressor [9] as a classifier to

train a prediction model for essay scoring based on at least 1.200

scorings for each task, that are already existing in the learning

system, independently of the scorings from the previous step. These

scorings are created by different tutors, where each text was scored

only once. So we did not use the data of the previous step for a

comparison to avoid training with the new labeled dataset. From

practical settings we know that intermediate grades are quite

subjective, thus we concentrate on grades 2 and 3 only, which

represent “good” and “satisfactory” that are used as labels for the

classification problem. The accuracy for prediction in cross-

validation (CV) was gathered for each task separately.

Within the next step, we compared the similarity among both tutors

of the first step with the accuracy of the second step to examine a

possible relation. Finally, we propose a combination of both

metrics that allow a fair comparison of the prediction accuracy with

the IR Scores to address RQ2.

3. RESULTS
Figure 1 shows all IR scores and the prediction accuracy in a 10-

fold CV. We can see that there is a good correlation between these

metrics (correlation 0.88). We used the same approach for all tasks,

but the IR-scores vary from 0.45 to 0.74, and the accuracies in 10-

fold CV range from 0.47 to 0.64. The results show that the

accuracy, as well as the IR-score, vary depending on the task. But,

there is a strong positive relationship between the maximal

achieved prediction accuracy and the IR score.

4. NEW MEASUREMENT
The main idea is to combine the classical cross-validation with the

inter-rater reliability score. The CV addresses the accuracy of a

trained prediction model. As there are multiple versions of the CV,

e.g. leave-one-out or leave-p-out (where p is a range of the dataset),

we use CV as a general concept and do not limit our approach to a

specific version.

The similarity of tutor scorings can be measured by using a

correlation coefficient. We chose the Pearson correlation

coefficient (PCC) for applying to a sample [10]. It is not outlier

resistant [11], but in the area of learning, large gaps can principally

occur in ratings, e.g. the score from one rater is “very good / 1” and

from another, it is “very bad / 4”. This will impact the resulting

correlation coefficient. For our new measurement, this is important

as this gap influences the training data as well and thus, it influences

the prediction accuracy negatively due to a large bias.

We propose a combination of both metrics, namely 𝐶𝑉𝑃𝐶𝐶, defined

by the following formula:

𝐶𝑉𝑃𝐶𝐶 = 1 − |𝐶𝑉 − 𝑃𝐶𝐶+|

under the constraint 0 ≤ 𝐶𝑉, 𝑃𝐶𝐶+ ≤ 1. The CV accuracy is

defined as a number between 0 and 1 [2] and 𝑃𝐶𝐶+ = |𝑃𝐶𝐶| as we

only consider the similarities, not whether the PCC is positive or

negative. The 𝐶𝑉𝑃𝐶𝐶 is a new value where
𝐶𝑉𝑃𝐶𝐶 ∈ [0,1], similar to the CV. In the following paragraph, we

show that 𝐶𝑉𝑃𝐶𝐶 cannot be smaller than 0 and never more than 1.

Let 𝐶𝑉 and 𝑃𝐶𝐶+ be defined as above. Then we examine whether

∃𝐶𝑉, 𝑃𝐶𝐶+: 1 − |𝐶𝑉 − 𝑃𝐶𝐶+| < 0 or 1 − |𝐶𝑉 − 𝑃𝐶𝐶+| > 1.

1 − |𝐶𝑉 − 𝑃𝐶𝐶+| < 0 ⟺ 1 < |𝐶𝑉 − 𝑃𝐶𝐶+|
With 𝑃𝐶𝐶+ ≥ 0 we set 𝑃𝐶𝐶+ = 0 to maximize the value for
|𝐶𝑉 − 𝑃𝐶𝐶+|. As 0 ≤ 𝐶𝑉 ≤ 1, the maximum value for CV is 1.

This follows: 1 < |1 − 0| ⟺ 1 < 1, which is a contradiction.

1 − |𝐶𝑉 − 𝑃𝐶𝐶+| > 1
⟺ 1 > 1 + |𝐶𝑉 − 𝑃𝐶𝐶+|

⟺ 0 > |𝐶𝑉 − 𝑃𝐶𝐶+|

The absolute value 𝑥 is defined as ∀𝑥 ∈ ℝ: |𝑥| ≥ 0 [12]. Thus, with

𝑥 = 𝐶𝑉 − 𝑃𝐶𝐶+: 0 > |𝑥| ⟺ |𝑥| < 0. According to the definition

of the absolute value, this is not existing in ℝ. Finally, we showed

the second contradiction and can conclude that 𝐶𝑉𝑃𝐶𝐶 ∈ [0,1]. □

In Figure 1 we can see that the CV accuracy, as well as the IR

scores, range from 0.44 to 0.74. If we just compare the CV

accuracy, we can conclude that there is a high fluctuation. Using

the new 𝐶𝑉𝑃𝐶𝐶, the scores range from 0.89 to 0.96. Here, the

fluctuation is much lower and we now can compare this value with

other tools and different datasets.

5. DISCUSSION
In general, we know that having a low inter-rater reliability score is

an indicator of a bad quality of training data. Although we used the

same amount of data to train the classifier for each task we can

observe that it is not fair to compare the achieved accuracy in

prediction only. As there is a strong positive relationship between

the accuracy and the inter-rater reliability score we propose to

combine both metrics when comparing the result with other

datasets. Otherwise, that is what our results show, the accuracy

differs across tasks, and results are based on the task selection.

In an optimal setting, where all scorings are the same for equal texts

across different raters (𝑃𝐶𝐶+ = 1), follows 𝐶𝑉𝑃𝐶𝐶 = CV.

Observing the other “extreme” side, where the 𝑃𝐶𝐶+ and the CV

values are very low, we can still achieve a high 𝐶𝑉𝑃𝐶𝐶, as the

Figure 1. Inter-rater reliability score of two tutors for

three tasks, separated by increasing difficulty level and

prediction accuracies in cross-validation.

.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 719

accuracy will be low if labels are diverse for equal feature values.

The higher the range between 𝑃𝐶𝐶+ and 𝐶𝑉 is, the lower 𝐶𝑉𝑃𝐶𝐶

will be, which means that the relation between both metrics is low.

With that information we address RQ2. Thus, this is an indicator of

whether the model needs improvement or whether the accuracy

cannot become better as the training base has a low quality due to

diverse labeling based on different quality expectations of tutors.

This interpretation of the value can be helpful to optimize the

model. As we use cross-validation as a general metric, our approach

is not limited to specific classification methods. We used the

random forest regressor, but we can use other classification-based

methods like neural networks, support vector machines, or others

as long as we get access to the CV score.

We need to emphasize that our method requires a further labeling

step to get the inter-rater reliability score across at least two tutors,

where each text needs to be labeled twice. This increases the

labeling costs. To reduce the amount of work, we could principally

use a subset of already labeled texts that has to be labeled by a new

tutor to understand the data quality. If a low value will be detected,

we know that the resulting accuracy will differ from experiments

with other datasets due to the low agreements. We can argue that

knowing the problem of diverse scorings is a good fundament to

optimize further scorings by a better pre-training of raters. But in

praxis, often thousands of labels are existing based on the data that

was collected over the last years. Thus, only for future data

collection, there can be optimization. If we want to use existing

datasets, we propose to use the 𝐶𝑉𝑃𝐶𝐶 for a fair comparison in

relation to other datasets.

In our experiments, we used two separate datasets, one that contains

the scorings of the two tutors and one much larger set, where more

texts were scored by other tutors. The first was used to get the

𝑃𝐶𝐶+ score and the other to train the classifier based on the

maximum achievable 𝐶𝑉 score. To benefit from the extra labeling,

we could enhance the training dataset by the data where the two

tutors had equal scorings for the same texts.

Our proposed metric is limited to datasets that were annotated

manually. If we have labels that are automatically processed (e.g.

the achieved scores in interactive tasks in an online course or

whether a student drops out), normally we do not have a diverse

annotated dataset. Thus we recommend using the 𝐶𝑉𝑃𝐶𝐶 in all

scenarios where tutors are involved and where diverse annotations

(e.g. in scorings) play a role. This is early-stage research, limited to

three difficulty levels of specific open-writing tasks. To generalize

our findings, the next step is to compare more tasks and the

resulting 𝐶𝑉𝑃𝐶𝐶. Besides, further studies in other learning domains

are required to verify the found relations of the metrics. Our first

findings are promising.

6. CONCLUSION
In this study, we examined the relation of the inter-rater reliability

of tutor scorings and the accuracy that can be achieved to predict

two concrete ratings. In our setting of language learning, we

focused on three open writing tasks of different difficulty levels,

those accuracies in prediction differ. Based on our results, we

observe that there is a strong relationship between both scores, even

though both metrics were derived using datasets from multiple

raters. Thus we can see that datasets, labeled by tutors, can differ.

This infers the data quality and the maximum achievable accuracy

in prediction. To use possibly diverse annotated data by tutors and

for comparing the prediction results, we propose a new method of

combining both metrics to allow fair comparison across different

datasets. This new metric can help scientists in educational data

mining to compare results of different tutor-based labeled datasets

and it helps to understand whether a model or the dataset needs

improvement.

7. ACKNOWLEDGMENTS
This work was supported by the German Federal Ministry of

Education and Research (BMBF), grant number 16DII127

(Weizenbaum-Institute). The responsibility for the content of this

publication remains with the authors.

8. REFERENCES
[1] S. Elliot, "A study of expert scoring, standard human scoring

and IntelliMetric scoring accuracy for statewide eighth grade

writing responses (RB-726)" Newtown, PA, Vantage

Learning, 2002.

[2] J. Sha, "Linear Model Selection by Cross-Validation" in

Journal of the American Statistical Association, Taylor &

Francis, Ltd, 1993, pp. 486-494.

[3] S. R. Bowman, G. Angeli, C. Potts and C. D. Manning, "A

large annotated corpus for learning natural language

inference" in arXiv 1508.05326, 2015.

[4] S. Rüdian, J. Quandt, K. Hahn and N. Pinkwart, "Automatic

Feedback for Open Writing Tasks: Is this text appropriate for

this lecture?" in DELFI 2020 - Die 18. Fachtagung

Bildungstechnologien der Gesellschaft für Informatik e.V.,

2020, pp. 265-276.

[5] K. McGraw and S. Wong, "Forming inferences about some

intraclass correlation coefficients" in Psychological

Methods, 1(1), 1996, p. 30–46.

[6] J. Wang and M. S. Brown, "Automated Essay Scoring versus

Human Scoring: A Comparative Study" in The Journal of

Technology, Learning, and Assessment, 2007.

[7] D. Williamson, "A framework for implementing automated

scoring" in Annual Meeting of the American Educational

Research Association and the National Council on

Measurement in Education, SanDiego, 2009.

[8] P. D. Nichols, "Evidence for the interpretation and use of

scores from an Automated Essay Scorer" in American

Educational Research Association (AERA), San Diego, CA,

2004.

[9] L. Breimann, "Random Forests" in Machine Learning 45,

2001, p. 5–32.

[10] R. Hunt, "Percent Agreement, Pearson's Correlation, and

Kappa as Measures of Inter-examiner Reliability" in Journal

of Dental Research, 1986.

[11] Y. Kim, T.-H. Kim and T. Ergün, "The instability of the

Pearson correlation coefficient in the presence of

coincidental outliers" in Finance Research Letters, Volume

13, Elsevier, 2015, pp. 243-257.

[12] E. H. Moore and H. L. Smith, "A General Theory of Limits"

in American Journal of Mathematics Vol. 44, No. 2, The

Johns Hopkins University Press, 1922, pp. 102-121.

720 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Towards Difficulty Controllable Selection of Next-Sentence
Prediction Questions

Jingrong Feng
Language Technologies Institute

Carnegie Mellon University
jingronf@cs.cmu.edu

Jack Mostow
Robotics Institute

Carnegie Mellon University
mostow@cs.cmu.edu

ABSTRACT
Automatic Question Generation seeks to generate questions
about a given text for educational purposes such as testing
students’ comprehension processes while reading. This pa-
per focuses on the task of predicting the next sentence as a
way to exercise and assess a crucial skill that comprehension
questions often fail to test, namely relating sentences to the
context preceding them. We train a BERT-based model of
text coherence to estimate the probability that a given sen-
tence will come next in a story. It achieves 68.4% AUC on
a held-out test set, significantly above chance. We define an
easiness score as the difference between the estimated prob-
abilities of the next sentence and (the likelier of) two dis-
tractors, namely the two subsequent sentences. We evaluate
our model on data from Project LISTEN’s Reading Tutor
by correlating the easiness scores of 1,023 questions against
the percentage answered correctly by 274 children. A strong
correlation would make it possible to filter such questions by
difficulty for children at a specified reading level. Unfortu-
nately, the easiness scores of the questions did not correlate
with the correctness of children’s answers to them.

Keywords
Automatic question generation, difficulty prediction, next-
sentence prediction, reading comprehension assessment, nat-
ural language processing, BERT

1. INTRODUCTION
A crucial skill in reading comprehension is inter-sentential
processing – integrating meaning across sentences. It in-
volves analysis of cohesive relationships such as coreference,
indirect reference, and ellipsis [3]. Inter-sentential processing
is hard for young readers partly because it requires assim-
ilation from short-term memory to mid-term memory [12].
Unfortunately, reading comprehension questions often fail to
assess inter-sentential information integration [1, 13, 14].

Next-sentence prediction questions are a natural way to test

Which sentence comes next?

－She was curious about everything.

＋One day a baby elephant was born.

－She had a question for every animal.

Context: Everyone knows that the elephant has a very long nose. But a long time
ago, the elephant's nose was short and fat. Like a shoe in the middle of its face.

Does this sentence come next?

－She had a question for every animal.

Figure 1: Two forms of next-sentence prediction questions.
Answers in green are correct and answers in red are incorrect.

inter-sentential processing and are easy to generate. They
are also easy to score, because by definition the correct an-
swer is the next sentence. One form of such questions is
true/false, i.e., “Does this sentence come next?” Another
form is multiple choice, i.e., “Which sentence comes next?”
This form has a higher cognitive load because it requires con-
sidering multiple sentences, but may be easier than judging
a single candidate sentence by itself. Figure 1 shows both.

Although easy to generate and score, next-sentence predic-
tion questions can be hard to answer correctly. For exam-
ple, one study [2] randomly inserted “Which sentence comes
next?” questions in children’s stories, with the next three
sentences of the story in random order as the choices. Chil-
dren answered only 41% of these questions correctly, barely
above chance and frustratingly low.

Good questions should be challenging but not frustratingly
hard. Therefore, difficulty control is important in automatic
question generation. However, despite the rapid develop-
ment of question generation, little work has analyzed the
difficulty of automatically generated questions [9], especially
for reading comprehension [6, 7, 16], and none of it addresses
next-sentence prediction questions.

This paper addresses the difficulty of such questions, and is
organized as follows. Section 2 describes how we trained a
coherence model to estimate the probability that a sentence
comes next given the preceding context, and how we used
it to score question easiness. Section 3 evaluates this model
on a corpus of children’s stories. Section 4 correlates the
easiness scores of the questions against the percentage of
children who answered the questions correctly. Section 5
concludes.

2. COHERENCE ESTIMATION
To estimate the coherence between a given context and sen-
tence, we fine-tuned a BERT-based binary classification model.

Jingrong Feng and Jack Mostow “Towards Difficulty Controllable Se-
lection of Next-Sentence Prediction Questions”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 721-725.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 721

[CLS] Tok N...Tok 1 Tok 2

E EE E N21
...

C TT T N21
...

Context + [SEP] + Candidate Sentence

[CLS]

BERT

FFNN + Sigmoid

...

0.95
95%

5%

IsNext

NotNext
Coherence Score

Figure 2: Architecture of the BERT-based model for coher-
ence estimation.

BERT [5], a widely used Transformer-based language model,
has achieved state-of-the-art performance on a large suite of
natural language processing tasks. The blue box in Figure 2
shows the architecture of the pre-trained BERT model. To
do classification, it appends a 2-layer feed-forward neural
network (FFNN) to the BERT model, followed by a sigmoid
function to scale the FFNN’s output between 0 and 1.

BERT was pre-trained on BooksCorpus (800M words) [17]
and English Wikipedia (2,500M words) with two objectives.
First, randomly masking various words in a text and pre-
dicting the masked words from the surrounding text forced
BERT to embed each word based on the surrounding words.
Second, predicting whether one sentence follows another sen-
tence in the original text forced BERT to learn inter-sentential
coherence. Thus these two objectives prompted BERT to
learn both intra- and inter-sentential semantic structure.

The effect of the next-sentence prediction task in pre-training
has recently been questioned [4, 8, 15]. Some researchers be-
lieve that BERT actually learns inter-sentential topic simi-
larity rather than coherence, because its negative instances
are sentences sampled randomly from the entire text corpus,
which are likely to be topically unrelated to the context.

We now describe how we adapted the BERT-based model
to estimate inter-sentential coherence in children’s stories.

Input: We fine-tuned the pre-trained BERT-based model on
input token sequences of the following form:

• a special token [CLS] used for classification tasks

• three sentences of context, which we assume suffice to
capture the semantically relevant content. Any more
might include irrelevant information or exceed BERT’s
input length limit of 512 word pieces (i.e., roots and
morphemes).

• a special separator token [SEP]

• a candidate next sentence; for positive instances, the
sentence immediately following the context.

Selection of negative instances: We wanted the task to test
children’s judgment of inter-sentential coherence, not merely
topical relevance. Therefore, rather than sample negative in-
stances randomly from the entire corpus, we selected them
from the same story, specifically the 2 sentences immedi-
ately following the correct sentence, which are likelier to be
topically relevant to the local context than sentences from
later in the story. Using the 3 sentences following the con-
text as the multiple choice candidates also matched the task
performed by the children in our evaluation dataset, to be
described in Section 4.

Human experts could presumably pick contexts and distrac-
tors more judiciously to test children’s judgements of inter-
sentential coherence. However, such manual selection is nei-
ther economical nor scalable. One goal of this work was to
identify requirements for choosing better contexts and dis-
tractors so as to improve automated selection.

Positive-negative ratio of training instances: BERT was pre-
trained on equal numbers of positive and negative instances.
In contrast, the 3 candidate sentences after the 3-sentence
context included one positive instance and two negative in-
stances.

Training labels: To fine-tune BERT and train the FFNN,
we set the output of the combined model to 1 for positive
instances and 0 for negative instances.

Easiness scores: To measure each candidate sentence’s coher-
ence with the given context, we used the probability output
by the sigmoid function. Given this measure of coherence,
we used a simple heuristic to rate the easiness e of answering
a 3-choice question:

e = cpos −max(cneg1 , cneg2) (1)

Here cpos is the coherence of the correct answer, and cnegi

is the coherence of distractor negi. This formula assumes
that the difficulty of the question depends on whichever dis-
tractor is more coherent with the context. (As a reviewer
suggested, we also tried the log ratio of the two coherence
scores instead of their difference, but it performed the same
in the evaluation reported in Section 4.)

Figures 4 and 5 show example questions with easiness scores
of 0.244 and -0.262, respectively (see Appendix). A negative
easiness score occurs when a distractor has greater coherence
than the correct answer.

3. EVALUATION OF COHERENCE MODEL
We now evaluate how accurately our coherence model classi-
fied the 3 sentences following a 3-sentence context as IsNext
or NotNext.

3.1 Text Dataset
We constructed a dataset for fine-tuning and evaluating our
coherence model from a corpus of English-language chil-
dren’s stories from two sources:

722 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 1: Examples of Cases Removed by Data Cleaning
Type Context Correct Answer Choices

two identical choices ...Did the frog slip? Yes. <Yes.> <Yes.>
<The frog swam fast.>

one choice appearing ...Yes. Yes. <Yes.> <The frog swam fast.>
in the context <It went past Pat.>

very short context Pop can twist and bend. Pop sits. <Pop sits.> <Pat slaps Pop’s hand.>
Pop slips! Pop stops. <Pop must rub his feet!>

unfinished sentence in the real meat peak What sound do the letters <What sound do the letters e a make
context/content about e a make in the words in the words real, meat, and peak?>

phonics instruction real, meat, and peak? <near> <leap>

• 337 stories from Project LISTEN’s Reading Tutor [2],
totalling 39K words with a vocabulary of 8K distinct
words, at grade levels K-7.

• 354 stories from www.africanstorybook.org totalling
91K words with a vocabulary size of 11K, with page
lengths ranging from one word to multiple paragraphs.

For fine-tuning and evaluation, we split the 337 LISTEN
stories into three subsets, with 60% for training, 20% for
hyper-parameter tuning, and 20% for testing, so as to ensure
that stories in the test set were not seen during training. We
used the African Storybook stories to augment the training
set.

For every story in the corpus, we used a 6-sentence slid-
ing window to generate next-sentence prediction items of
the form ([3-sentence context; IsNext sentence; Not-

Next sentence; NotNext sentence]), with the correct (Is-
Next) sentence and two (NotNext) distractors to be pre-
sented in random order.

To clean the data, we filtered out several cases (illustrated
in Table 1):

• Cases with two identical choices or a choice appearing
in the context: typically caused by repeated sentences
in a conversation.

• Cases with context or a candidate sentence exceeding
125 words: might cause the input sequence to exceed
BERT’s input length limit of 512 word pieces.

• Cases with very short context: typically caused by
short sentences in a conversation that provide too little
information to predict which sentence belongs next.

• Cases with an unfinished sentence in the context: for
some poems or phonics instructions, sentences were
not segmented according to sentence separators.

• Cases about pronunciation or spelling: are not relevant
to semantic coherence.

• Cases with the same context followed by different sen-
tences: may confuse the model during training.

As a result, we got a dataset consisting of 10,761 instances
for training, a development set of 1,716 instances for hyper-
parameter tuning, and a test set of 2,340 instances for eval-
uation.

3.2 Training
To fine-tune our coherence model, we used BERTbase [5] as
the backbone, and the AdamW optimizer [10] with a ini-
tial learning rate of 1e-3 and a ReduceLROnPlateau sched-
uler1. We used a ReLU [11] activation in the hidden layer
of the FFNN, and set the dropout probability of this hidden
layer to 0.5. We trained the model with a standard binary
cross-entropy loss function weighted by the positive-negative
sample ratio of 1:2.

In contrast to pre-training BERT’s hundreds of millions of
parameters from scratch, fine-tuning the BERT-based coher-
ence model was inexpensive. It took only about 5 minutes
on a single Tesla-V100 GPU to optimize the parameters on
the training set.

3.3 Evaluation Results
Table 2 evaluates the coherence model on the development
and test sets using various metrics: accuracy, weighted-
average precision, recall and F1-score, and area under the
ROC curve (AUC). To evaluate metrics other than AUC,
we set the classification threshold to 0.5 and compared the
predicted label with the ground truth label. In other words,
we classified an instance as IsNext if the output probabil-
ity (coherence score) exceeded this threshold, otherwise as
NotNext. AUC measures the entire area beneath the ROC
curve, which plots true positive rate vs. false positive rate at
different classification thresholds. AUC evaluates the overall
performance of a classification model by aggregating across
all possible classification thresholds.

Table 2: Evaluation of the Coherence Model
Dataset Accuracy Precision Recall F1-score AUC

Dev 0.608 0.663 0.608 0.620 0.662
Test 0.609 0.679 0.609 0.619 0.684

4. EVALUATION ON CHILDREN’S DATA
We evaluated our easiness scores by correlating them against
274 children’s performance on next-sentence prediction ques-
tions. These questions were inserted randomly by the spring
2003 version of Project LISTEN’s Reading Tutor into 179
English-language stories ranging from grades 3-7. None of
these stories were in the dataset used to train the coher-
ence measure used to score easiness. The questions asked
“Which will come next?” and presented the next three story

1https://pytorch.org/docs/stable/optim.htmltorch.optim.lr
scheduler.ReduceLROnPlateau

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 723

www.africanstorybook.org
https://pytorch.org/docs/stable/optim.html##torch.optim.lr_scheduler.ReduceLROnPlateau
https://pytorch.org/docs/stable/optim.html##torch.optim.lr_scheduler.ReduceLROnPlateau

-0.384

-0.192

-0.092

-0.029

0.015

0.066

0.128

0.197

0.290

0.490

0% 15% 30% 45% 60%

Figure 3: Percentage correct binned by easiness score.

sentences in random order. After data cleaning, we got 1,023
distinct questions with 1,626 responses, of which 45.7% were
correct.

344 of these questions had choices with differences in capital-
ization, as illustrated in Figure 6 (see Appendix). Children
might conceivably have used these differences as a clue to
eliminate incorrect choices. However, their 622 responses to
choices capitalized differently had virtually the same (in fact
slightly lower) percentage correct (45.5%) as their 1004 re-
sponses to choices capitalized the same (45.9%). Evidently
children did not make use of this clue. Accordingly, we did
not exclude these 622 responses from our dataset.

The questions averaged only 1.59 responses each, far too
few to reliably estimate the percentage correct for individ-
ual questions. Instead, we split questions by easiness scores
into N bins with equal numbers of questions. For N=10, %
correct ranged from 41.2% to 52.5%. Figure 3 shows a bar
chart with a bar for each of the 10 bins, its average easiness
score to its left, and its % correct as its width. The % cor-
rect was similar across all 10 bins and unrelated to easiness
score. We tried various values of N, ranging from 3 to 128
questions. For each value of N, we correlated the average
easiness score of the questions in each bin against their per-
centage of correct responses. The correlations got weaker as
N increased, and were not statistically significant.

To explore why, we regressed response correctness against
several features of questions, namely the length and contex-
tual coherence of the correct answer and the two distractors,
the length (in characters) of the context, the position of the
question in the story (the number of sentences preceding it),
and the grade level of the story. We normalized the value of
each feature x as (x − x min)/(x max − x min). We per-
formed logistic regression with the normalized feature values
for each question as numerical inputs and the correctness of
the child’s response as binary output. None of the regression
coefficients differed significantly from zero. However, their
general pattern makes qualitative sense. The contextual co-
herence of the correct answer was the strongest positive pre-
dictor, which makes sense because it measures how well the
answer fit the context. The coherence of the harder dis-
tractor was the strongest negative predictor, which makes
sense because it measures how well that distractor fit the
context. The length of the correct answer and the number
of preceding sentences in the story were positive predictors,
which makes sense because they measure the amount of in-

formation provided for selecting the correct answer. Context
length and the grade level of the story were negative predic-
tors, which makes sense because reading longer sentences
and higher level stories was harder (though better readers
read harder stories).

5. CONCLUSIONS
This paper addresses two hypotheses regarding the use of
next-sentence prediction questions in assessing children’s inter-
sentential processing during reading comprehension.

Hypothesis 1: An automated measure of text coherence can
predict which of the next 3 sentences will come first. To test
hypothesis 1, we trained a BERT-based model of a sentence’s
coherence with the preceding context to predict whether it
comes next. It achieved 61% accuracy on a held-out test set.

Hypothesis 2: An easiness metric based on this measure can
predict children’s accuracy in selecting the next sentence. To
test hypothesis 2, we scored the easiness of the 3-way choice
as the coherence of the correct next sentence minus the co-
herence of the strongest competitor. We then related this
score to children’s performance on 1,023 such questions pre-
sented by Project LISTEN’s Reading Tutor to the children
while they were using it. There was virtually no correla-
tion. Children answered approximately 45% of the questions
correctly regardless of their easiness scores or whether the
BERT-based model answered them correctly.

5.1 Limitations and Future Work
If hypothesis 2 were true, we could use a BERT-based co-
herence model to estimate the difficulty of deciding whether
a given sentence will come next in a story context. We could
then control question difficulty by using this estimate to help
decide which sentence prediction questions to ask. Unfortu-
nately, our results did not support hypothesis 2, which raises
the issue of why they did not. The predictor coefficients in
our regression analysis to explore this issue made qualitative
sense but were not statistically significant.

Perhaps children’s performance was affected by the added
memory load of considering three sentences as choices. Fu-
ture work could kid-test the simpler question “Is this next?”.

Another possibility is that our coherence model was too im-
poverished to reflect children’s inter-sentential processing.
A richer model could capture other aspects such as causal
relations, world knowledge, and inference important in story
understanding. Or perhaps our BERT model merely needed
better adaptation to the domain of children’s stories.

An IRT model predicts probability of correctness based on
student proficiency minus question difficulty. We did not
take direct account of children’s differing proficiency, but
the Reading Tutor gave children stories at their own read-
ing level, accounting for their proficiency indirectly. Future
analyses may need to account for proficiency explicitly.

6. ACKNOWLEDGMENTS
We thank the reviewers for their insightful comments, the
children who used Project LISTEN’s Reading Tutor, and
the team that implemented it and collected our dataset.

724 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

7. REFERENCES
[1] J. C. Alderson. Native and nonnative speaker

performance on cloze tests. Language Learning,
30(1):59–76, 1980.

[2] J. E. Beck, J. Mostow, and J. Bey. Can automated
questions scaffold children’s reading comprehension?
In International Conference on Intelligent Tutoring
Systems, pages 478–490. Springer, 2004.

[3] N. A. Bond et al. Studies of verbal problem solving:
Ii. prediction of performance from sentence-processing
scores. technical report no. 87. 1978.

[4] A. Conneau and G. Lample. Cross-lingual language
model pretraining. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates,
Inc., 2019.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
Bert: Pre-training of deep bidirectional transformers
for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186, 2019.

[6] Y. Gao, L. Bing, W. Chen, M. Lyu, and I. King.
Difficulty controllable generation of reading
comprehension questions. In Proceedings of the
Twenty-Eighth International Joint Conference on
Artificial Intelligence, pages 4968–4974, 2019.

[7] B. S. Hensler and J. Beck. Better student assessing by
finding difficulty factors in a fully automated
comprehension measure. In International Conference
on Intelligent Tutoring Systems, pages 21–30.
Springer, 2006.

[8] M. Joshi, D. Chen, Y. Liu, D. S. Weld,
L. Zettlemoyer, and O. Levy. Spanbert: Improving
pre-training by representing and predicting spans.
Transactions of the Association for Computational
Linguistics, 8:64–77, 2020.

[9] G. Kurdi, J. Leo, B. Parsia, U. Sattler, and
S. Al-Emari. A systematic review of automatic
question generation for educational purposes.
International Journal of Artificial Intelligence in
Education, 30(1):121–204, 2020.

[10] I. Loshchilov and F. Hutter. Decoupled weight decay
regularization. In 7th International Conference on
Learning Representations, 2019.

[11] V. Nair and G. E. Hinton. Rectified linear units
improve restricted boltzmann machines. In
Proceedings of the 27th International Conference on
Machine Learning, pages 807–814. Omnipress, 2010.

[12] H. Nomura. Meaning understanding in machine
translation. In Proc. of Second International
Conference on Theoretical and Methodological Issues
in Machine Translation of Natural Languages, 1988.

[13] D. Porter. The effect of quantity of context on the
ability to make linguistic predictions: A flaw in a
measure of general proficiency. Current developments
in language testing, 5(4):63–74, 1983.

[14] T. Shanahan, M. L. Kamil, and A. W. Tobin. Cloze as
a measure of intersentential comprehension. Reading
Research Quarterly, pages 229–255, 1982.

[15] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R.
Salakhutdinov, and Q. V. Le. Xlnet: Generalized

autoregressive pretraining for language understanding.
In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[16] C. Y. Yeung, J. S. Lee, and B. K. Tsou.
Difficulty-aware distractor generation for gap-fill
items. In Proceedings of the The 17th Annual
Workshop of the Australasian Language Technology
Association, pages 159–164, 2019.

[17] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov,
R. Urtasun, A. Torralba, and S. Fidler. Aligning
books and movies: Towards story-like visual
explanations by watching movies and reading books.
In Proceedings of the IEEE international conference
on computer vision, pages 19–27, 2015.

APPENDIX
Context: George's favorite subject was math. George learned to
be a surveyor of land when he grew up. He joined the army and
was a leader during the American Revolution.

Choices Coherence Easiness

Correct Answer: He later became the
first President of the United States.

0.714

0.244
Distractor 1: George Washington is
called the "Father of our Country."

0.470

Distractor 2: We celebrate his birthday
on President's Day in February.

0.310

Figure 4: A question with easiness score of 0.244.

Context: Both Brad and Sally pointed their flashlights into the
dark. All they saw were some spider webs and a dead end. The
cave was empty.

Choices Coherence Easiness

Correct Answer: Brad felt sad. 0.337

-0.262
Distractor 1: He had hoped they would
find a big pirate ship or something neat.

0.101

Distractor 2: Sally looked around the
walls of the cave.

0.599

Figure 5: A question with easiness score of -0.262.

Context: When all the straw was spun away, and all the bobbins
were full of gold. As soon as the sun rose the King came and
when he perceived the gold he was astonished and delighted.

Choices Coherence Easiness

Correct Answer: But his heart only lusted
more than ever after the precious metal.

0.695

0.447
Distractor 1: He had the miller's daughter
put into another room full of straw,

0.248

Distractor 2: much bigger than the first,
and bade her, if she valued her life,

0.094

Figure 6: A question with choices capitalized differently.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 725

Sex-Related Behavioral Differences in Online Math
Classes: An Epistemic Network Analysis

Yufei Gu
New York University Abu Dhabi

yg1262@nyu.edu

Kun Xu
Spark EdTech

xukun04@huohua.cn

ABSTRACT
The aim of the present study was to examine the rarely studied
existence of sex-related behavior difference in online mathematics
classes in China. Epistemic Network Analysis (ENA) was utilized
in this study to explore the connection of students’ classroom
behaviors, and the differences in connection patterns for boys and
girls. The class monitoring videos of a sample of 64 students (32
male, 32 female) was coded for microscopic categories of in-class
behaviors, and all the codes were organized in the format of
adjacent matrix. ENA model showed significant results that girls
were more likely to engage in social activities in class, while boys
exhibited more disruptive behaviors. There was also a relatively
stronger connection between disruptive behaviors and call-out
behaviors, and a slightly stronger connection between off-task
behaviors and disruptive behaviors, and between disruptive
behaviors and direct-no volunteer interactions for boys, compared
with girls. This study provided an insight into the connection of
different categories of classroom behaviors varied by gender,
implying a future direction to examine the relationship between
different behavioral connection patterns and students’ math
achievement in online math classes.

Keywords

sex-related behavioral difference, math achievement, teacher-
student interaction, Epistemic Network Analysis (ENA), online
math class

1. INTRODUCTION
1.1 Background
Previous studies examining sex-related differences in mathematics
performance have reached inconsistent conclusions: while some
reported a male advantage in math achievement, other studies
only found sex-related differences in certain age groups and
certain areas of mathematics ability, or even a female advantage
in math exams [5][9][25][15][33].

On the other hand, although various research has been conducted
to identify the specific contexts and factors that correlated with
the difference in mathematics achievement of female and male
students [7][11][14][21], the specific classroom behaviors and

level of engagement, which have been linked by previous research
to varying levels of mathematics achievement, have rarely been
studied [10][26][17][22]. In a study conducted by Hart [13], boys
were found to be more involved in public interactions in class
with their teachers than girls, and the study indicated significant
main effects of gender of students on two sub-categories of public
teacher-student interaction: open volunteer interactions, and call-
out interactions

1.2 Online Math Classes in China
During the past few years, China has witnessed an explosion of
different online education platforms, which provides students with
easy access to high-quality learning materials regardless of their
geographical location. The bloom of online education also
provides researchers with opportunities to conduct observational
studies on teacher-student interactions without having to set up a
camera or be physically present in the classroom. In this case,
online learning platform provides a great opportunity for
researchers to examine the behaviors of students of different sex
in the online classes without influencing or interrupting how
teachers and students behave and interact in class. Thus, the
present study utilized the classroom monitoring videos from Spark
EdTech, a Chinese K-12 online education platform that aims to
cultivate mathematics thinking among mandarin-speaking
children, to examine whether sex-related behavioral differences
exist in online settings adopting the coding rules used in Hart’s
framework [13][19][8].

1.3 Epistemic Network Analysis
Epistemic Network Analysis (ENA) is a quantitative ethnographic
technique designed to address questions in learning analytics and
model the structure of connections in the dataset. Major
assumption of ENA includes: 1) a set of meaningful features,
which is defined as codes, can be identified systematically in the
data; 2) the data has local structures, which are referred to as
conversations; and 3) the way in which codes are connected to
each other within the conversations is an important feature of the
data [27][28][29].

ENA models the connections between codes by quantifying the
co-occurrence of codes within conversations, generating a
weighted network of co-occurrences and visualizations for each
unit of analysis in the data accordingly. Since all the networks of
units are analyzed simultaneously, ENA could ideally produce a
set of networks that can be compared visually and statistically
alike. Such a method has been used to not only analyze learning
data, but also in other context where structure of connections in
the data is meaningful, such as communications among health
care team and gaze coordination during collaborative work [31][1].
Having recognized the unique power of ENA in analyzing

Yufei Gu and Kun Xu “Sex-Related Behavioral Differences in Online
Math Classes: An Epistemic Network Analysis”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 726-730.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

726 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

connections within the data, this study adopted ENA for exploring
the connections of students’ behaviors in mathematics classes, and
the differences between connection patterns for students of
different sex.

1.4 Goals
The present study aims to: 1) examine the existence of sex-related
behavioral differences in online math classes in China; 2) explore
the connections of students’ in-class behaviors and engagement in
classroom activities; 3) compare both visually and statistically the
structure of connections of mathematics classroom behaviors for
students of different sex.

2. METHODS
2.1 Participants
In order to control for the influence of class content and teaching
style on students’ classroom behavior and engagement, 12 math
classes taught by 2 teachers (1 male, 1 female) of the same topic
were randomly drawn from all Level 6 mathematical thinking
classes of Spark EdTech. Each class consisted of 5 or 6 students
of different sex, making up a sample of 64 students (32 male, 32
female). Teachers from both sexes were selected in order to
control for the potential interaction effect of students’ sex and
teacher’s sex on students’ behavior. The average class duration for
Teacher 1 was 49.13 (SD = 2.49) minutes, and the average class
duration for Teacher 2 was 45.43 (SD = 0.84) minutes. Since
students went through placement exams that determined their
math ability before being assigned to different levels of classes, it
can be assumed that students of the same level have similar level
of mathematics ability. Level 6 class was primarily designed for
third-grade students around eight years old. In this sample,
students have the average age of 7.46 (SD = 1.63) years old.

2.2 Procedure
Class monitoring videos were viewed and coded by an
experienced coder based on the definition of different types of
classroom behaviors proposed in Hart’s study (1989). Each
students’ classroom behavior and interactions with teacher was
viewed and coded individually, following an event sampling or
episodic approach, which has been widely used in the field of
developmental psychology [16][18]. Microscopic categories of
behaviors were coded in order to demonstrate the initiations and
responses of the students and the teacher. When a behavior lasted
for more than 20 seconds, such a behavior was coded again in
order to indicate the continuity of that behavior. All the codes
were organized in the format of adjacent matrix (see Table. 1 for
an example) required by Epistemic Network Analysis (ENA), a
sample of which can be found below. Then ENA will be applied
to the data using the ENA Web Tool (Version 1.7.0) [20].

 Table 1. Illustration of Coding Sheet

2.3 Measures
Several subcategories of students’ public interaction with teachers
were identified in Hart’s study [13]. Two sub-categories of public
teacher-student interaction which were found to be significantly
correlated with students’ sex were: open volunteer interaction,
and call-out interaction. Meanwhile, since another category of
public teacher-child interaction, direct-no volunteer interaction, is
pretty common in online classes, we decided to also include it as a
type of behavior to be examined in our study.

An open volunteer interaction was coded when the student
indicated in some way other than by calling out a desire to
respond to a teacher question or to initiate a public interaction
with the teacher. A call-out interaction was coded when a target
student called out the answer to a teacher question before the
teacher gave permission for that student to respond. A direct-no
volunteer interaction was coded when the teacher asked a question
and requested that a target student answer who had not indicated
in some way a desire to answer the question. The students usually
indicated a desire to respond by raising a hand or calling out.

In addition, we combined two types of behaviors that indicated a
lack of engagement in mathematics activities in class which were
found to be differently correlated with mathematics achievements
for boys and girls in a study conducted by Peterson and Fennema
[24]. Off-task behaviors were defined in this study as behaviors
that are irrelevant to class activities. Social activities were defined
in this study as the engagement in an activity in which the content
of the activity involved a social topic, socializing or discussion of
personal information or problems. Another category of behaviors
– disruptive behaviors, which boys and girls differ drastically in
the classroom settings was also included in our measure [4][6].
Disruptive behaviors were coded in this study when a student was
engaged in behaviors that were likely to substantially or
repeatedly interfere with the conduct and discipline of the class.

3. DATA ANALYSIS AND RESULTS
3.1 Definition of ENA Elements
In the present study, the units of Analysis were defined as all lines
of data relative to a single value of student’ sex subsetted by
student ID. For instance, one unit included all the lines that
represented the occurrence of each category of behaviors for one
single student.

In our ENA model, the following codes, which corresponded to
the aforementioned five categories of classroom behaviors, were
included: social_activity, direct_no_volunteer, off_task_behavior,
open_volunteer and disruptive_behavior.

Conversations were defined as all lines of data related to a single
value of Teacher Name. For instance, one conversation consisted
of all the lines associated with one of the two teachers.

3.2 Procedure of ENA
The ENA algorithm adopts a moving stanza window to generate a
network model for each line in the data, showing how Codes in
the current line are connected to codes that appear within the
recent temporal context [30], defined as 4 lines (each line plus the
3 previous lines) within a given conversation. The corresponding
networks are aggregated for all lines for each unit of analysis in
the model. In this model, we aggregated the resulting networks
using a binary summation where the networks for a given line
reflect the presence or absence of the co-occurrence of each pair
of codes.

Student
ID Sex Teacher

ID
social

activity
call
out

open
volunteer

off
task

disruptive
behavior

001 1 teacher 0 0 1 0 0 0

001 1 teacher 0 0 0 0 1 1

002 0 teacher 1 1 0 0 0 0

002 0 teacher 1 0 0 1 0 0

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 727

The networks for all units of analysis in the present model were
normalized before being subjected to a dimensional reduction, in
order to account for the different amounts of coded lines of
different units of analysis in the data. In terms of dimensional
reduction, a singular value decomposition was utilized, which
produces orthogonal dimensions that maximize the variance
explained by each dimension [2][28][31].

3.3 ENA Model
Networks were visualized using network graphs where nodes
correspond to the codes, and edges reflect the relative frequency
of co-occurrence, or strength of connection, between two codes.
The result is two coordinated representations for each unit of
analysis: 1) a plotted point graph, which represents the location of
that unit’s network in the low-dimensional projected space, and 2)
a weighted network graph. The positions of the nodes in the
network graph are fixed and determined by an optimization
routine minimizing the difference between the plotted points and
their corresponding network centroids. Because of this co-
registration of network graphs and projected space, the positions
of the network graph nodes—and the connections they define—
can be used to interpret the dimensions of the projected space and
explain the positions of plotted points in the space. Our model had
co-registration correlations of 0.92 (Pearson) and 0.92 (Spearman)
for the first dimension and co-registration correlations of 0.97
(Pearson) and 0.97 (Spearman) for the second. These measures
indicate that there is a strong goodness of fit between the
visualization and the original model according to the rule-of-
thumb by Shaffer, Collier & Ruis [28].

Mean networks for boys’ and girls’ behaviors in online math
classes were constructed by averaging the connection weights
across individual networks, and were compared using network
difference graphs. These graphs are calculated by subtracting the
weight of each connection in one network from the corresponding
connections in another (See Figure 3 for a comparison ENA
Model for student behaviors in online math classes by sex).

According to Figure 3, the network centroids for boys and for
girls differ along the x-axis. There is a relatively stronger
connection between disruptive behavior and call out behaviors in
online math classes for boys compared with girls. In addition,
there is a slightly stronger connection between off-task behaviors
and disruptive behaviors, and between disruptive behaviors and
direct-no volunteer interactions for boys, compared with girls.

4. CONCLUSIONS AND IMPLICATIONS
The present study examined the differences in the structure of
connections of classroom behaviors for boys and girls in online
mathematics classes in China using Epistemic Network Analysis
(ENA). The results indicated a significant difference along the x-
axis of the model, suggesting that in our sample, girls were more
engaged in social activities and open volunteer interactions with
the teacher, while boys exhibited more disruptive behaviors
during the class. The difference in off task behavior and call out
interaction for boys and girls were not significant. Such a finding
is largely consistent with the study conducted by Hart [13], except
for we did not find a significant effect of sex on call out
interactions. Such an inconsistency might be due to the unique
characteristics of online classroom settings, where girls tend to
experience higher influence of social presence on their
satisfactory level in class, and thus are equally, or even more
active in online discussion than boys [32][23].

Figure 3. Comparison ENA Model for Student Behavior in

Online Math Classes by Sex
*Note: Blue represent boys, red represents girls

Thus, in order to elevate their level of satisfaction in online math
classes, girls might be more motivated to engage in interactions
with their teachers by calling out their answers to teachers’
questions than they would normally do in traditional classrooms.
Another possible explanation to this phenomenon is the reward
system designed by Spark EdTech, a leading online education
technology company in China, for its online mathematical
thinking classes, where students could receive “little stars” from
their teachers by answering questions and participating in classes.
Such a reward system could encourage students to participate in
classes, and to become the first to respond to the questions by
calling out the answers.

Another conclusion we could reach according to the comparison
graph is that there is a relatively stronger connection between
disruptive behavior and call-out behavior for boys compared with
girls. Such a connection indicates that while boys call out their
answers to teachers’ questions more often, they are more likely to
also become disruptive in class by interrupting teacher’s lecture or
interaction between other students and teacher. It could be implied
that boys are more expressive and active in classes, yet such
behaviors could become disruptive if they could not regulate their
level of activeness in class or if they disregard class disciplines.

In addition, there is a slightly stronger connection between off-
task behavior and disruptive behaviors, and between disruptive
behaviors and direct-no volunteer interactions. Such connections
indicate that boys are more likely to violate discipline in class and
be disengaged in class activities at the same time, and teachers are
more likely to call on disruptive boys to answer questions,
compared with girls. Such findings were consistent with the
findings of research conducted in face-to-face classroom settings,
that teacher tended to attend more to boys because they were more
likely to exhibit disruptive behaviors in class [8][6]. All the
findings mentioned above implied the necessity to recognize the

728 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

difference in boys’ and girls’ behavioral patterns in online math
classes, and to call for the development of a more gender-sensitive
guidance for online teaching, which had been pointed out recently
by several researchers [3].

One major limitation of this study is the relatively small sample
size. However, since each student’s behaviors during a full-length
class were coded, we still obtained statistically significant results.
At the meantime, due to the time constraint, all the videos were
coded by only one coder, which might lead to biased data. The
fact that the coder had more than 1000 hours experience of video
coding and maintaining an inter-rater reliability of more than 0.9
might, to some extent be able to account for such a limitation.
Another limitation of the study arises from the nature of class
monitoring videos, which might not always be able to fully
capture students’ behaviors in class. Scarcely, when students
wrote on a notebook or scratch paper, coder was unable to
distinguish whether they were taking notes or engaging in off-task
behaviors such as sketching. These ambiguous behaviors were not
coded, and thus might lead to a slight underrepresentation of
students’ off-task behaviors.
Overall, the present study is mostly consistent with existing
research on sex difference in students’ behaviors in traditional in-
person classrooms. The novel findings of an insignificant sex-
related differences in call-out behaviors could be attributed to the
uniqueness of online class settings and the reward system adopted
by Spark EdTech. To our knowledge, this study is the first of its
kind to employ Epistemic Network Analysis (ENA) to examine
the structure of connections of students’ classroom behaviors in
online math classes in China and conduct a comparison of such
connection patterns between boys and girls. Thus, the findings of
this study could serve as the first step to examine the relationship
between different behavioral patterns in online math classes and
math achievement, and to develop a gender-sensitive guidance for
online teaching.

5. ACKNOWLEDGMENTS
Our sincere thanks to Spark EdTech for their generous help on
providing data for this study.

6. REFERENCES
[1] Andrist, S., Collier, W., Gleicher, M., Mutlu, B., & Shaffer,

D. (2015). Look together: Analyzing gaze coordination with
epistemic network analysis. Frontiers in Psychology, 6(1016).

[2] Arastoopour, G., Swiecki, Z., Chesler, N. C., & Shaffer, D.
W. (2015). Epistemic Network Analysis as a tool for
engineering design assessment. Presented at the American
Society for Engineering Education, Seattle, WA.

[3] Asterhan, C. S., Schwarz, B. B., & Gil, J. (2012). Small-
group, computer- mediated argumentation in middle-
school classrooms: The effects of gender and different types
of online teacher guidance. British Journal of Educational
Psychology, 82(3), 375-397.

[4] Beaman, R., Wheldall, K., & Kemp, C. (2006). Differential
teacher attention to boys and girls in the classroom.
Educational review, 58(3), 339-366.

[5] Benbow, C. P., & Stanley, J. C. (1980). Sex differences in
mathematical ability: Fact or artifact?. Science, 210(4475),
1262-1264.

[6] Brophy, J. & Good, T. (1974) Teacher–student relationships:
causes and consequences (New York, Holt, Rinehart &
Winston).

[7] Chipman, S. F., Brush, L. R., & Wilson, D. M. (Eds.). (2014).
Women and mathematics: Balancing the equation.
Psychology Press.

[8] Chiu, M. S., & Whitebread, D. (2011). Taiwanese teachers’
implementation of a new ‘constructivist mathematics
curriculum’: How cognitive and affective issues are
addressed. International Journal of Educational
Development, 31(2), 196-206.

[9] Downey, D. B., & Vogt Yuan, A. S. (2005). Sex differences
in school performance during high school: Puzzling patterns
and possible explanations. Sociological quarterly, 46(2),
299-321.

[10] Evertson, C. M., Anderson, C. W., Anderson, L. M., &
Brophy, J. E. (1980). Relationships between classroom
behaviors and student outcomes in junior high mathematics
and English classes. American educational research journal,
17(1), 43-60.

[11] Fennema, E. (1984). Girls, women, and mathematics. In E.
Fennema & M. J. Ayer (Eds.), Women and education: Equity
or equality? (pp. 137-164). Berkeley, CA: McCutchan

[12] Grieb, H., & Easley, J. (1984). In Steincamp, M. and ML
Maehr (Eds.) Women in Science; Volume 2: Advances in
Motivation and Achievement," A primary school impediment
to mathematical equity; can studies in role-dependent
socialization." Greenwich, CT.

[13] Hart, L. E. (1989). Classroom processes, sex of student, and
confidence in learning mathematics. Journal for Research in
Mathematics Education, 20(3), 242-260.

[14] Hargreaves, M., Homer, M., & Swinnerton, B. (2008). A
comparison of performance and attitudes in mathematics
amongst the ‘gifted’. Are boys better at mathematics or do
they just think they are?. Assessment in Education:
Principles, Policy & Practice, 15(1), 19-38.

[15] Hyde, J. S., Fennema, E., & Lamon, S. J. (1990). Gender
differences in mathematics performance: a meta-analysis.
Psychological bulletin, 107(2), 139.

[16] Kuczynski, L., & Kochanska, G. (1990). Development of
children's noncompliance strategies from toddlerhood to age
5. Developmental Psychology, 26(3), 398.

[17] Li-Grining, Christine P., Carolina Maldonado-Carreno,
Elizabeth Votruba-Drzal, and Kelly Haas. 2010. “Children’s
Early Approaches to Learning and Academic Trajectories
through Fifth Grade.” Developmental Psychology 46 (5):
1062–77.

[18] Liu, M., Chen, X., Rubin, K. H., Zheng, S., Cui, L., Li, D., ...
& Wang, L. (2005). Autonomy-vs. connectedness-oriented
parenting behaviours in Chinese and Canadian
mothers. International Journal of Behavioral
Development, 29(6), 489-495.

[19] Ma, X. (1999). Gender differences in growth in mathematical
skills during secondary grades: A growth model analysis.
Alberta journal of educational research, 45(4).

[20] Marquart, C. L., Hinojosa, C., Swiecki, Z., Eagan, B., &
Shaffer, D. W. (2018). Epistemic Network Analysis (Version

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 729

1.7.0) [Software]. Available from
http://app.epistemicnetwork.org

[21] Neuville, E., & Croizet, J. C. (2007). Can salience of gender
identity impair math performance among 7–8 years old girls?
The moderating role of task difficulty. European Journal of
Psychology of Education, 22(3), 307-316.

[22] Park, S. Y. (2005). Student engagement and classroom
variables in improving mathematics achievement. Asia
Pacific Education Review, 6(1), 87-97.

[23] Park, C., & Kim, D. G. (2020). Exploring the Roles of Social
Presence and Gender Difference in Online
Learning. Decision Sciences Journal of Innovative
Education, 18(2), 291-312.

[24] Peterson, P. L., & Fennema, E. (1985). Effective teaching,
student engagement in classroom activities, and sex-related
differences in learning mathematics. American Educational
Research Journal, 22(3), 309-335.

[25] Reis, S. M., & Park, S. (2001). Gender differences in high-
achieving students in math and science. Journal for the
Education of the Gifted, 25(1), 52-73.

[26] Robinson, K., & Mueller, A. S. (2014). Behavioral
engagement in learning and math achievement over
kindergarten: A contextual analysis. American Journal of
Education, 120(3), 325-349.

[27] Shaffer, D. W. (2017). Quantitative ethnography. Madison,
WI: Cathcart Press.

[28] Shaffer, D. W., Collier, W., & Ruis, A. R. (2016). A tutorial
on epistemic network analysis: Analyzing the structure of

connections in cognitive, social, and interaction data. Journal
of Learning Analytics, 3(3), 9–45.

[29] Shaffer, D. W., & Ruis, A. R. (2017). Epistemic network
analysis: A worked example of theory-based learning
analytics. In C. Lang, G. Siemens, A. F. Wise, & D. Gasevic
(Eds.), Handbook of learning analytics (pp. 175–187).
Society for Learning Analytics Research.

[30] Siebert-Evenstone, A., Arastoopour Irgens, G., Collier, W.,
Swiecki, Z., Ruis, A. R., & Williamson Shaffer, D. (2017). In
Search of Conversational Grain Size: Modelling Semantic
Structure Using Moving Stanza Windows. Journal of
Learning Analytics, 4(3), 123–139.
https://doi.org/10.18608/jla.2017.43.7

[31] Sullivan, S., Warner-Hillard, C., Eagan, B., Thompson, R. J.,
Ruis, A. R., Haines, K., ... & Jung, H. S. (2018). Using
epistemic network analysis to identify targets for educational
interventions in trauma team communication. Surgery,
163(4), 938-943.

[32] Tsai, M. J., Liang, J. C., Hou, H. T., & Tsai, C. C. (2015).
Males are not as active as females in online discussion:
Gender differences in face-to-face and online discussion
strategies. Australasian Journal of Educational
Technology, 31(3).

[33] You, Z. (2010). Gender differences in mathematics learning.
School Science and Mathematics, 110(3), 115-118.

730 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Read & Improve: A Novel Reading Tutoring System

Rebecca Watson
iLexIR Ltd
Cambridge

United Kingdom
bec@ilexir.co.uk

Ekaterina Kochmar
Dept of Computer Science

University of Bath
United Kingdom

ek762@bath.ac.uk

ABSTRACT
We introduce a new readability tutoring system, Read &
Improve, a freely available online resource aimed at sup-
porting learners of English and English Language Teaching
(ELT) professionals by improving English learners’ reading
proficiency. Using a combination of machine learning ap-
proaches and natural language processing techniques, Read
& Improve detects learning needs of every student and makes
sure no learner is left behind by identifying reading content
at an appropriate level of readability and helping learners
acquire new words through accessible dictionary definitions
and content exploration functionality.1

Keywords
Distance Learning, Student Assessment, Natural Language
Processing

1. INTRODUCTION
Reading is one of the fundamental language skills. Develop-
ing this skill is an essential part of language acquisition, both
for native speakers and second language learners [9, 13]. At
the same time, developing reading ability takes a consider-
able amount of time, and, as any learning process, it gets
interrupted if readers lose motivation [8, 15]. Such factors as
not having a range of engaging reading content offered and
being presented with reading material at the wrong level of
readability are some of the major contributors to the de-
creased motivation in readers [11]. In addition to language
learners themselves, English Language Teaching (ELT) pro-
fessionals face similar problems, as finding engaging reading
content at the right level of readability is a challenging and
a time-consuming task. In this paper, we present Read and
Improve (R&I), a freely available, open-access educational

1This work has been done while the second author was a
Senior Research Associate at the University of Cambridge.
We thank Cambridge English for supporting this research
via the ALTA Institute. We are also grateful to the anony-
mous reviewers for their valuable feedback.

system that is aimed at both language learners and teach-
ers.2

To ensure that the reading content provided to a learner is at
an appropriate level of readability, R&I uses machine learn-
ing methods described in [18] to automatically label texts
with readability levels corresponding to the Common Eu-
ropean Framework of Reference for Languages (CEFR) [6].
The CEFR is an international standard that describes lan-
guage ability on a six-point scale from A1 for beginners level
up to C2 for advanced level of language proficiency.

To ensure that the reading content presented to a learner is
engaging, R&I employs news articles that are sourced from
news websites in real time. To source news content, R&I
monitors both RSS Feeds from news websites and the pub-
licly available Common Crawl News (CC-NEWS) Dataset.3 A
fully automated Indexing Pipeline (RIIP, herein) processes
news articles and automatically labels the readability of each
article’s text. News articles are generally available for learn-
ers on R&I within 10 minutes of publishing on an RSS
news feed and in 3-6 hours of the article’s publishing time if
sourced from CC-NEWS. As compared to other domains, news
articles have the additional benefit of being generally free of
grammatical and spelling errors, which allows us to achieve
more reliable linguistic analysis and to provide learners with
high quality reading content. R&I ’s user interface (UI) en-
ables learners to not only read the latest news articles but
also to perform keyword search to find articles on topics that
they are interested in at their desired CEFR level(s).

A number of applications for various groups of readers, in-
cluding native and non-native speakers, readers with cogni-
tive impairments, and children, to name just a few, have
been developed in recent years. In contrast to the pre-
vious work [13, 16, 17], our platform is aimed specifically
at developing reading ability in non-native speakers of En-
glish. Our approach bears similarities to the Read-X [14] and
REAP [10] systems, while also being actively developed and
supported as an open-access educational platform available
online. R&I is markedly different from other available appli-
cations, as in addition to providing text search functionality
(as in [5]) and vocabulary acquisition help (as in [4]), it sup-
ports comprehension testing and personalisation.

2https://readandimprove.englishlanguageitutoring.
com/
3http://commoncrawl.org/2016/10/
news-dataset-available/

Rebecca Watson and Ekaterina Kochmar “Read & Improve: A
Novel Reading Tutoring System”. 2021. In: Proceedings of
The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 731-735.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 731

https://readandimprove.englishlanguageitutoring.com/
https://readandimprove.englishlanguageitutoring.com/
http://commoncrawl.org/2016/10/news-dataset-available/
http://commoncrawl.org/2016/10/news-dataset-available/

The rest of this paper is structured as follows: Section 2
provides an overview of the system’s architecture, Section 3
describes the current UI functionality, and finally Section 4
concludes the paper and describes future work.

2. SYSTEM ARCHITECTURE
Figure 1 illustrates the system architecture of R&I. We do
not describe the full details of system components here,as
this is outside the scope of the paper. Instead, we provide a
general overview of the components and their use of natural
language processing (NLP).

2.1 API
The API connects to an information retrieval index (‘IR En-
gine’), a database (‘DB Engine’), and several APIs to pro-
vide the data and search functionality required by the UI.
The IR Engine employs Elasticsearch4 (ES) and includes
several distinct indices that facilitate search over news arti-
cles and other data.

2.2 RIIP
RIIP is responsible for processing articles into the ES article
index. In order to prevent duplicate processing, the pipeline
modules first check whether the output file(s) already exist
in the ‘Data Lake’, a single store of all data processed. The
API monitors the set of URLs listed in RSS feed(s) and the
set of CC-NEWS files for new items, and if found, these are
sent to RIIP for processing. Therefore, ingestion of new
articles through the system requires no manual effort, and
up-to-date news content is continuously processed and made
available to learners via the UI.

RIIP modules include: the Extractor, that extracts text and
other information from news articles (i.e. HTML); RASP,
that parses the text to provide linguistic information [2];5

the LevelMarker module, that labels the text for readability
(on the CEFR scale); and finally the ES module that indexes
text and other linguistic information.

2.3 LevelMarker Module
For RIIP’s LevelMarker module we follow Briscoe et al. [3],
and define the task of learning readability levels as a discrim-
inative preference ranking task. We employ their machine
learning (ML) software and use linguistic features outlined
by Xia et al. [18] that represent a text’s readability.

2.3.1 Data
We have crawled three publicly available news websites to
create datasets: Breaking News English (BNE)6 (2771 ar-
ticles), News in Levels (NIL)7 (6373 articles) and Tween
Tribune (TT)8 (7768 articles). These websites have news
articles labelled in terms of their readability however each
website’s readability levels are based on different scales as
shown in Table 1.9 Each of these datasets are considered to

4https://www.elastic.co/products/elasticsearch
5https://ilexir.co.uk/rasp/index.html
6https://breakingnewsenglish.com/
7https://www.newsinlevels.com/
8https://www.tweentribune.com/
9BNE to CEFR level map provided by the website: https:
//breakingnewsenglish.com/news_levels.html

Table 1: Dataset levels and distributions.

(a) BNE (b) NIL
BNE level CEFR level Count

0 A2 386
1 A2 386
2 A2 386
3 A2-B1 418
4 B1-B2 392
5 B2 392
6 C1-C2 412

NIL level Count
1 2126
2 2124
3 2123

(c) CER (d) TT
Exam CEFR level Count
KET A2 64
PET B1 60
FCE B2 71
CAE C1 67
CPE C2 69

TT level Count
Grade K-4 (0) 1965
Grade 5-6 (1) 2029
Grade 7-8 (2) 1771
Grade 9-12 (3) 2003

Table 2: 5-fold cross-validation tests for each dataset.

Source Pearson’s Spearman’s Kendall’s
BNE 0.8338 0.8368 0.6873
NIL 0.9217 0.9164 0.7880
TT 0.9055 0.9250 0.8071
CER 0.9155 0.9185 0.8015

be parallel as they contain multiple versions of the same ar-
ticles simplified across different levels. While the BNE and
NIL datasets are designed for L2 English learners, the TT is
designed to help L1 learners (early and school-aged readers).

2.3.2 Evaluation
RIIP employs a model trained on the full BNE dataset as
this dataset can be reliably mapped to the CEFR scale (Ta-
ble 1). Based on this mapping we determined the ranges of
ML scores that corresponded to each CEFR level (using ob-
served score range from training data). We tested our model
on the Cambridge English Readability (CER) dataset,10 a
publicly available dataset of 331 texts spanning CEFR lev-
els A2 to C2 [18]. On this test set, our model achieves
0.83 Pearson’s, 0.85 Spearman’s and 0.71 Kendal’s correla-
tion coefficient. We also ran 5-fold cross-validation for each
dataset11 and present the results in Table 2.

2.4 ES index
In addition to article index, we create ‘WordInfo’ and ‘CALD’
indexes. The CALD indexing system processes definitions
from the Cambridge Advanced Learner’s Dictionary (CALD)
to populate the CALD index. The LexDoop system em-
ploys Hadoop12 to process the Data Lake files (currently
around 1 million articles) to produce raw frequency counts of
linguistic properties for every word lemma.13Following this
step, these lemma statistics are collated and added to the
‘WordInfo’ index.

10https://ilexir.co.uk/datasets/index.html
11We split the data randomly into training and test sets,
ensuring an even distribution of class labels.

12Apache Hadoop: https://hadoop.apache.org/
13LexDoop is also used to process CC-NEWS files in parallel.

732 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://www.elastic.co/products/elasticsearch
https://ilexir.co.uk/rasp/index.html
https://breakingnewsenglish.com/
https://www.newsinlevels.com/
https://www.tweentribune.com/
https://breakingnewsenglish.com/news_levels.html
https://breakingnewsenglish.com/news_levels.html
https://ilexir.co.uk/datasets/index.html
https://hadoop.apache.org/

Figure 1: Overview of R&I architecture. R&I is hosted within, and relies upon, cloud computing services from Amazon Web
Services (AWS). Components that use cloud AWS services are shown with grey backgrounds.

2.5 Sanitisation
To make sure the content provided on the platform is accept-
able for a wide range of readers across various ages and cul-
tures, we apply content “sanitisation” strategy, whereupon
we automatically filter out news articles that contain words
pertaining to the topics that might be considered offensive
in some cultures or inappropriate for younger readers. The
list of around 1600 such taboo words was curated using the
lists of taboo words from social media. Sanitisation is run
within RIIP and the API and, in case the sanitisation sys-
tem makes an error, the UI enables admin users to mark
articles as ‘unsafe’ (or vice versa).

3. READING ON THE PLATFORM
We define the R&I functionality in terms of four major as-
pects, which cover the tutoring system’s ability to provide
learners and teachers with engaging reading content at the
appropriate level of readability (§3.1); help learners develop
their vocabulary in English (§3.2); run comprehension tests
(§3.3); and allow learners to revisit texts they read, words
they clicked on and tests they submitted (§3.4).

3.1 Finding engaging reading material at an
appropriate level

The first step for learners accessing R&I is to define their
language proficiency level. Learners can log in to R&I using
their account credentials from Write & Improve,14 a freely
available system linked to the reading platform, that is able
to assess and provide feedback on a learner’s writing profi-
ciency. Once logged in, R&I defaults reading proficiency to
current writing proficiency, but a learner can change their
CEFR reading level.

Figure 2 contains a screenshot of the search page’s results
showing the latest news articles at the learner’s CEFR level
(currently B1). The search page provides learners with snip-

14https://writeandimprove.com/
R&I employs Write & Improve APIs developed by ELiT:
https://englishlanguageitutoring.com/

pet(s) of the article text, and they can click on any of the
titles listed on this page in order to load the article view page
where they can read the article itself. In addition, search by
keywords is enabled on R&I to allow learners to find articles
not only at their level of readability, but also on the topics
of their interest.

Figure 2: Screenshot: search results.

3.2 Developing one’s vocabulary
Vocabulary is very important in language learning to the
point that language learning itself would sometimes be equated
with knowing language vocabulary [12]. To help learners

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 733

https://writeandimprove.com/
https://englishlanguageitutoring.com/

(a) Part of speech (PoS) statistics (b) Word cloud (c) CALD word sense ‘INTRODUCE’

Figure 3: Screenshots of the sections of the ‘Word Information’ and ‘English Dictionary’ panels on the UI. Here, the user
clicked on the word presents, used as a verb. The pie chart in (a) illustrates the relative frequency of all PoS categories for the
lemma present across all articles. The word clouds in (b) contain the 50 lemmas most frequently co-occurring with present as
a verb in grammatical relations (where font size reflects relative frequency), and (c) shows the dictionary definition.

Figure 4: Screenshot: Comprehension Test panel. Learners
are able to click on the graph to view previous summaries,
which they can refine and re-submit.

with vocabulary acquisition and development, R&I allows
them to select any words they do not recognise or wish
to learn more about within the article view page. When
a learner clicks on an unknown word, R&I ’s UI launches
two side panels for Word Information and English Dictio-
nary (shown in Figure 3) to display information available
for the word in the ‘WordInfo’ and ‘CALD’ index, respec-
tively(§2.4).

Several searches can be performed by clicking on links within
the Word Information panel and words within the co-occurrence
word cloud. These links to search results shown in R&I ’s
search page enable learners to perform advanced, linguisti-
cally motivated searches intuitively and learn how vocabu-
lary is used in context.

3.3 Running comprehension tests
R&I allows users to submit a summary of the article as a
comprehension test in the Comprehension Test panel on the
article view page (Figure 4). R&I automatically scores these
summaries and returns a writing score, determined by a ma-
ture feature-based automated essay scoring (AES) model [1,
3, 20], graded on the CEFR scale via the Write & Improve
API, and a relevance score based on the maximum sentence-
level cosine similarity value, which is then converted to a
score in the range 0–5 using the lexical overlap between the
article and the summary [7] that shows whether the learner
captured the main salient topics in the article.

3.4 Accessing reading history
All history of learner interaction with the R&I platform,
including texts, vocabulary items and submitted summaries
is available to the learners on the personal My Reading pages.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we presented Read & Improve, a freely avail-
able, open-access reading tutoring system that is aimed at
language learners and teachers. Currently, it is a prototype
system, and thence most of its components will benefit from
further research on the platform. For instance, we are plan-
ning to improve our Indexing Pipeline using quality human
annotated training data and user analytics that we are col-
lecting via the R&I platform.

R&I records learners’ actions on the UI, which in turn, will
provide valuable data for use in further research and devel-
opment. For example, [19] employed the comprehension test
data collected by the platform to develop a new automated
comprehension test (summary assessment) marking system
suitable for use in R&I. Further, each learner’s data may be
useful in directly improving their learning experiences. For
example, analysis of an individual learner’s history could be
used to tailor custom content and testing.This symbiotic re-
lationship, developed in an ecosystem of freely available ed-
ucational system benefiting from cutting-edge research, will
ultimately produce a state-of-the-art ELT resource.

734 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

5. REFERENCES
[1] Ø. E. Andersen, H. Yannakoudakis, F. Barker, and

T. Parish. Developing and testing a self-assessment
and tutoring system. In Proceedings of the Eighth
Workshop on Innovative Use of NLP for Building
Educational Applications, pages 32–41, Atlanta,
Georgia, June 2013. Association for Computational
Linguistics.

[2] T. Briscoe, J. Carroll, and R. Watson. The second
release of the RASP system. In Proceedings of the
COLING/ACL 2006 Interactive Presentation
Sessions, pages 77–80, Sydney, Australia, July 2006.
Association for Computational Linguistics.

[3] T. Briscoe, B. Medlock, and Ø. Andersen. Automated
assessment of ESOL free text examinations. Technical
Report UCAM-CL-TR-790, University of Cambridge,
Computer Laboratory, Nov. 2010.

[4] J.-J. Chen, C.-Y. Yang, P.-C. Ho, M. C. Tsai, C.-F.
Ho, K.-W. Tuan, C.-T. Tsai, W.-B. Han, and J. S.
Chang. Learning to Link Grammar and Encyclopedic
Information to Assist ESL Learners. In Proceedings of
the 57th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pages 213–218. Association for Computational
Linguistics, 2019.

[5] M. Chinkina, M. Kannan, and D. Meurers. Online
Information Retrieval for Language Learning. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics—System
Demonstrations, pages 7–12. Association for
Computational Linguistics, 2016.

[6] Council of Europe. Common European Framework of
Reference for Languages: Learning, Teaching,
Assessment, 2011.

[7] R. Cummins, H. Yannakoudakis, and T. Briscoe.
Unsupervised Modeling of Topical Relevance in L2
Learner Text. In BEA@NAACL-HLT, 2016.

[8] Z. Dörnyei. Motivation in second and foreign language
learning. Language teaching, 31(3):117–135, 1998.

[9] W. H. DuBay. The principles of readability. Online
Submission, 2004.

[10] M. Heilman, L. Zhao, J. Pino, and M. Eskenazi.
Retrieval of Reading Materials for Vocabulary and
Reading Practice. In Proceedings of the Third ACL
Workshop on Innovative Use of NLP for Building
Educational Applications, pages 80–88. Association for
Computational Linguistics, 2008.

[11] D. Hirsh and P. Nation. What vocabulary size is
needed to read unsimplified texts for pleasure?
Reading in a foreign language, 8(2):689–689, 1992.

[12] C. James. Errors in language learning and use:
Exploring error analysis. Routledge, 2013.

[13] N. Madnani, B. B. Klebanov, A. Loukina, B. Gyawali,
P. L. Lange, J. Sabatini, and M. Flor. My turn to
read: An interleaved e-book reading tool for
developing and struggling readers. In Proceedings of
the 57th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pages 141–146, 2019.

[14] E. Miltsakaki and A. Troutt. Read-X: Automatic
Evaluation of Reading Difficulty of Web Text. In
E-Learn: World Conference on E-Learning in

Corporate, Government, Healthcare, and Higher
Education, pages 7280–7286. Association for the
Advancement of Computing in Education (AACE),
2007.

[15] N. Oroujlou and M. Vahedi. Motivation, attitude, and
language learning. Procedia-Social and Behavioral
Sciences, 29:994–1000, 2011.

[16] L. Rello, R. Baeza-Yates, S. Horacio, S. Bott,
R. Carlini, C. Bayarri, A. Gòrriz, S. Gupta,
G. Kanvinde, and V. Topac. Dyswebxia 2.0!:
Accessible text for people with dyslexia (demo). In
Proceedings W4A 2013, The Paciello Group Web
Accessibility Challenge, Rio de Janeiro, Brazil, 2013.

[17] Z. Weiss, S. Dittrich, and D. Meurers. A
linguistically-informed search engine to identify
reading material for functional illiteracy classes. In
Proceedings of the 7th Workshop on NLP for
Computer Assisted Language Learning at SLTC 2018
(NLP4CALL 2018), pages 79–90. Linköping
Electronic Conference Proceedings 152, 2018.

[18] M. Xia, E. Kochmar, and T. Briscoe. Text readability
assessment for second language learners. In
Proceedings of the 11th Workshop on Innovative Use
of NLP for Building Educational Applications (BEA
2016), pages 12–22, San Diego, California, June 2016.
Association for Computational Linguistics.

[19] M. Xia, E. Kochmar, and T. Briscoe. Automatic
learner summary assessment for reading
comprehension. In Proceedings of NAACL-HLT 2019,
pages 2532–2542, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics.

[20] H. Yannakoudakis, T. Briscoe, and B. Medlock. A new
dataset and method for automatically grading ESOL
texts. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics:
Human Language Technologies, pages 180–189,
Portland, Oregon, USA, June 2011. Association for
Computational Linguistics.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 735

Generate: A NLG system for educational content creation
Saad M. Khan
FineTune Learning

saad@finetunelearning.com

Jesse Hamer
FineTune Learning

jesse@finetunelearning.com

Tiago Almeida
FineTune Learning

tiago@finetunelearning.com

ABSTRACT
We present Generate, a AI-human hybrid system to help education
content creators interactively generate assessment content in an
efficient and scalable manner. Our system integrates advanced
natural language generation (NLG) approaches with subject
matter expertise of assessment developers to efficiently generate a
large number of highly customized and valid assessment items.
We utilize the powerful Transformer architecture which is capable
of leveraging substantive pretraining on several generic text
corpora in order to produce sophisticated, context-dependent text
as the basis for item creation. We present early results from
experimental studies demonstrating the efficiency of our
approach.

Keywords
NLP, Transformer Networks, Domain Knowledge Modeling

1. INTRODUCTION

The COVID-19 pandemic has accelerated the push towards
remote delivery of formative and summative assessments and with
it have arisen heightened security concerns of item pool exposure.
Moreover, there is growing adoption of highly personalized and
adaptive learning and assessment experiences [25] that require
regularly replenished assessment item pools. These twin factors
among others are placing ever growing demands on traditional
processes of creating assessment content that are based in large
part on manual labor, highly dependent on subject matter
expertise and challenging to scale up. Furthermore, the manual
generation of content and assessment items heightens the risk of
incomplete, duplicate and/or redundant content. We believe
advances in AI, particularly natural language generation (NLG)
can help mitigate this bottleneck and open new possibilities for
personalized learning experiences.
Classical natural language processing (NLP) work in this area
dates back to John Wolfe’s seminal work [17] that demonstrated
the feasibility of automatically generating natural language
questions. In recent years there has been a revival in interest,
spurred in part by advances in dialogue systems such as Amazon
Alexa. While traditional approaches to NLP-based assessment
item generation involve a pipeline of modules such as content
selection, template design and item realization [18], these have
been criticized for being rigid and too reliant on arbitrary heuristic
rules and having limited novelty and psychometric variability
[19]. There is growing interest in developing end-to-end deep

neural network based approaches that do not require customized,
hand crafted rules and are better equipped to generalize across
content areas [20]. A key element of such approaches is
leveraging large text content databases and well annotated
datasets such as BookCorpus [21], SQuAD [22] and Wikipedia.
For further details on related work, readers are directed to the
survey of state of the art by Kurdi et al. [26].
In this paper we present Generate, a NLG system that efficiently
and in real-time creates lexically and semantically appropriate
item content, dramatically speeding up assessment item authoring,
freeing item writers and subject matter experts (SMEs) from
unnecessary work, and can enable personalized learning and
assessment experiences. At the core of Generate’s content
generation capabilities is the Transformer architecture [4] that
leverages substantive pretraining on several generic text corpora
to produce sophisticated, context-dependent text as the basis for
item creation. From a small number of representative items as
training samples to learn lexical and semantic structure, Generate
is able to produce a wide variety of draft item content. Users
utilize an intuitive graphical interface that allows selection of item
stems, keys (correct answers) and distractors from a number of
generated options.
In the following sections we provide technical details of our
system starting with a brief review of Transformers, system
implementation and architecture. Following that we present
analysis from experimental studies and share thoughts on future
directions.

2. TECHNICAL APPROACH AND
SYSTEM DETAILS
2.1 Transformers and NLG

In order to capture the subtlety and breadth of lexical patterns
necessary to faithfully generate novel assessment content, we
opted to base our NLG engine on the Transformer architecture,
which is capable of leveraging substantive pretraining on several
generic text corpora in order to produce highly sophisticated,
context-dependent token embeddings for a variety of NLP tasks.
First proposed in 2017 by Vaswani et al. [4], the Transformer
architecture has since revolutionized NLP research, with
state-of-the-art performance on benchmarks like the broad GLUE
suite of NLP tasks [5] being set by Transformer-based models
such as Google’s BERT [6] and OpenAI’s GPT series [7, 8, 9].

The central idea of the Transformer architecture is to do away
with sequential processing of text altogether, as was done
traditionally with deep-learning architectures like LSTMs [10]
and GRUs [11], and instead process the tokens (words, subwords,
and punctuation) of text simultaneously using an operation called
attention. The variant of attention used in the original formulation
of the Transformer architecture, scaled dot-product attention, is
defined as follows:

Attention(Q, K, V) = softmax() V𝑄𝐾𝑇

𝑑

Saad Khan, Jesse Hamer and Tiago Almeida “Generate: A NLG
system for educational content creation”. 2021. In: Proceedings
of The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 736-740.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

736 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

The matrices Q and K are called the queries and keys,
respectively, and each have column-dimension d, while the matrix
V, called the values, has column-dimension d’. We consider the
case when Q, K, and V are all the same matrix X, and the resulting
operation is known as self-attention. Each row of X corresponds to
a context-independent dense embedding of a single token with a
small positional encoding vector added so that the model can take
into account the position of the token in the input text. Thus,
self-attention recomputes every token as a linear combination of
every other token, where the weights in the linear combination

depend on a scaled dot-product similarity (the term). In𝑄𝐾𝑇

𝑑
order to allow the Transformer to learn several different patterns
of lexical interaction, several matrices of weights are used to
compute multi-head self-attention:

MultiHead(X, X, X) = Concat(head1, head2, …, headh)WO,

where

headi = Attention(XWi
Q, XWi

K, XWi
V),

and all of the W matrices consist of learnable weights. After
multihead attention is computed, the results are aggregated and
resized using a simple single-hidden-layer feedforward neural
network, which has its own learnable weights. This combination
of multihead attention followed by a feedforward neural network
constitutes the fundamental building block of the Transformer
architecture: the Transformer block. A Transformer model, then,
is built by chaining together several Transformer blocks, each
potentially with its own set of weights.

For its NLG engine Generate utilizes a Transformer model
pre-trained for the task of next-token prediction. The Transformer
architecture processes the conditioning input text in order to
produce a probability distribution over all tokens in the
vocabulary. We sample from the vocabulary according to this
distribution, and then proceed auto-regressively: we process the
newly sampled token and use it to produce a new probability
distribution and sample a new token. We continue in this way
until a maximum token limit is met, or until a stop sequence is
produced (such as a newline character ‘\n’).

2.2 How Generate Works

As illustrated in figure 1 Generate has five main system
architectural components. The first is a React Javascript-based
graphical user interface. Through the interface, users can select
pre-uploaded AI models, generate an item, visualize and edit the
item and visualize the metrics generated by the AI, allowing the
user to create a complete item generation flow, from creation to
validation. The user interface is linked to the second component
which is the Auth0 authentication platform, a third party service
specialized in secure authentication and authorization workflows.
Once the user is authenticated, the GUI will connect with the third
component, Hasura [2]. Hasura serves mainly as a GraphQL API
to connect the GUI with the database and the serverless services.
The fourth component is the item generation services (SQS Queue
and Lambda Worker), which are responsible for interfacing with
the NLG engine API with all the advantages of a serverless
architecture [3]. The NLG engine API forms the last core
component and is responsible for generating content based on the
model provided.

Users begin their interaction with Generate by providing
specifications of desired content including: a content map of item
types and topics to be generated; user-specific writing guidelines

Figure 1: Generate system architecture is designed to be
modular with distributed services hosted on AWS.

Figure 2: Generate item authoring interface. Users can select
from a number of item generation models and create items
on-the-fly with the click of a button.

so that domain semantics and formatting can be tailored to best
practices; and specification of admissible lexical metric ranges,
such as type-token ratio, Flesch Reading Ease, and the
Coleman-Liau Index. These specifications constitute what is
called a project. Along with these specifications, users must also
supply a set of representative items. The number of such items is
usually between 100-200 items total, although it will depend on
the complexity of the content map specified in the project and the
number of different types of items to be generated. At a baseline,
all that is needed is the raw item, though users may supply their
own item metadata to help improve the performance of our AI
engine. Features such as item topic categorization, key and
distractor labels, item cognitive type (recall, application, etc.), and
difficulty metrics like p-value and point biserial [12] may all be
used to further hone our AI models’ performance.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 737

After supplying content specifications and representative items,
the k-means clustering algorithm [13] is applied to produce
several groups of 8-10 representative items each. The clustering
algorithm is predicated on a combination of user-supplied
metadata, as well as numeric item features produced by the
Transformer-based Universal Sentence Encoder (USE) model
[14]. The goal of this clustering procedure is to produce groups of
items which are semantically and stylistically homogeneous,
which in turn improves the reliability of our AI engine to produce
items which are coherent, semantically and factually relevant to
the content domain, and stylistically appropriate according to the
user’s writing guidelines. Each group of representative items
corresponds to a different string of conditioning input text for our
AI engine, which we refer to as a model. Each model produces a
different “flavor” of content. By building several models, we
ensure that a user’s content specification demands are met, and a
wide diversity of items is produced while doing so.

Given a model, raw content is generated by our NLG engine and
then undergoes several automated quality checks before being
presented to the user. First, the raw content must pass a parse
check to ensure that desired item formatting has been captured.
Next, we perform an overlap check to ensure that no part of the
generated content overlaps too heavily with the representative
items, or with any other part of the generated content (e.g. to
prevent duplicate options in a multiple choice item). For multiple
choice content, users are able to specify a range of options to
generate and so we also check that a sufficient number of unique
options are produced. Finally, previously specified lexical metrics
are computed, and we check that the generated item lies in the
user-specified admissible ranges for these metrics.

As shown in figure 2, Generate offers a graphical user interface
where item writers interact with our NLG engine directly to
produce content. With this interface, item writers can select one of
several item generation models and generate items on-the-fly with
the click of a button. The item writer can then refine and annotate
generated items before saving a finalized version. Generate’s
content generation interface allows item writers the ability to save
an intermediate version of a promising item and regenerate
unwanted parts. For example, with multiple choice content, one
can select a key and one distractor from the list of available
options, and then regenerate the remaining options to produce a
fresh list to choose from. In this way, item writers can use
Generate to help them rapidly ideate additional options, leading to
significant speedups to the item-writing process.

Users can review generated content at any time using Generate’s
content dashboard. This dashboard allows users to review
project-level information such as lexical metric distributions, as
well as review individual items and their SME annotations. Once
a selection of items has been made, users can download their
content either as raw text or in QTI format.

2.3 SME Usability Experiment Results

For the content domain of nursing professional licensure, we
performed two experiments with a subject matter expert
(SME)/item writer in the domain. In the first experiment, the SME
was asked to perform a quality review of a set of 40 items purely
created by Generate NLG spanning four topic areas including
biotechnology, medical assisting, nursing assisting, and practical
nursing (see figure 3 for an item from this set). For a baseline of
comparison, we mixed in a “calibration set” of 40 representative
items produced by a separate human item writer spanning these
same four topic areas. The SME was not told which items were

Figure 3: Sample item created by Generate. A user/SME is
able to select the key/correct answer and make any edits
required.

from the calibration set, and which were created by Generate. To
perform the quality review, the SME was asked to check factual
accuracy and topic relevance, make any necessary edits, estimate
the difficulty of the item on a subjective easy/medium/hard scale,
give any general comments and feedback, and assign a subjective
overall quality rating on a 1-7 Likert scale (with 1 being poor and
7 being excellent). The median quality rating for Generate items
was 5.5, compared to a median quality of 6 on the calibration set,
with 70% of Generate items rated 5 or higher. There was also
considerable overlap in the difficulty distributions, as shown in
table 1. It took the SME an average of 3.75 minutes/item to
perform this quality review. Compared to the SME’s estimated
20-30 minutes/item to write an item manually, Generate
demonstrates clear improvements to SME item writing
throughput.

In the second experiment, the same SME was asked to interact
directly with the Generate content generation interface to produce
50 more items in the domain of nursing professional licensure. We
gave the SME five models ranging over a single nursing topic and
requested that they produce ten items for each model. We captured
data on generation time as well as item survival rate. For each
item, the SME used Generate’s content generation interface to
first generate a multiple choice item with eight possible options.
The SME was then asked to select the best combination of key
and three distractors from these available eight options, and then
perform necessary fact checking and editing. Using the Generate
system, it took the SME an average of 2.7 minutes/item, including
latency necessary for the system to generate the raw item.
According to SME testimony, a similar exercise with a
conventional item writing approach would have taken roughly 30
minutes/item, not including slowdowns due to SME fatigue and
burnout. We are currently working on a number of follow-on
experiments with item writers in a variety of domains including
K-12 education, higher-ed and professional licensure.

Table 1: Comparison of difficulty distributions

Easy Medium Hard

Generate 42.5% 40% 17.5%

Calibration 37.5% 45% 17.5%

3. DISCUSSION AND FUTURE
DIRECTIONS
Our early investigations with item writers indicate a significant
increase in assessment authoring throughput, which if borne out in

738 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

future and ongoing studies would mitigate bottlenecks in
producing easily accessible high quality assessment items. We
believe this would help enable innovations in formative
assessment, personalized learning, and building customized and
efficacious classroom activities.
In addition to assessment content generation, we plan to
implement the following functionality to Generate over time.

3.1 Item Difficulty Estimation

Content creators must ensure that assessments adhere to a desired
difficulty distribution, where we take difficulty to be measured by
p-value (the proportion of examinees that answered a question
correctly). Current methods for estimating p-values involve
manual field-testing of provisional items, which is both
time-intensive and risks item exposure, reducing the lifespan of
the item. While previous work in automated difficulty estimation
has employed techniques of first-order-logic [15] as well as a
machine learning-based word embedding approach [16], we are
exploring a blended approach which leverages structured item
metadata with Transformer-based processing of unstructured item
text. In this way, users can quickly recycle items which do not
adhere to required difficulty specifications, thereby increasing the
survival rate of items produced by Generate.

3.2 Automated Content Tagging

Tagging educational content with the most relevant learning and
assessment standards such as CCSS [23], NGSS [24], etc. is one
of the most critical elements in creating highly efficacious
content. This enables the tracking of student skill gaps,
recommendation of remediative learning resources and mastery of
discipline topics, skills and cross cutting capabilities. We are
currently developing a text content classification approach that
can be used to delineate skills, learning objectives and core
disciplinary ideas in the generated assessment items.

4. CONCLUSION
In this paper we have introduced Generate, a system that utilizes
an NLG approach to significantly increase productivity of
assessment content creators. Generate is built on a language
modeling architecture that understands the deep semantic and
lexical structure of assessment content that allow us to handle a
variety of assessment domains and item types. Our system’s
content dashboard integrates elegantly with existing item writer
workflows for item review, editing and approval. To the best of
our knowledge Generate is the first NLG content authoring
system designed for use in education and we believe can enable
innovations in personalized learning, formative assessment and
efficacious classroom activities.

5. REFERENCES
[1] Bowman, M., Debray, S. K., and Peterson, L. L. 1993.

Reasoning about naming systems. ACM Trans. Program.
Lang. Syst. 15, 5 (Nov. 1993), 795-825. DOI=
http://doi.acm.org/10.1145/161468.16147.

[2] Hasura’s open-source engine gives you instant GraphQL &
REST APIs that unify your data and power modern
applications - https://hasura.io/.

[3] Servereless architecture advantages -
https://blog.newrelic.com/engineering/what-is-serverless-arc
hitecture/

[4] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, Ł. and Polosukhin, I. 2017. Attention
is all you need. Advances in Neural Information Processing
Systems, 5998-6008.

[5] Wang, A., Singh, A., Michael, J., Hill, F., Levy, O. and
Bowman, S. 2018a. GLUE: A multi-task benchmark and
analysis platform for natural language understanding.
Proceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
353-355.

[6] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. 2019.
BERT: Pre-training of deep bidirectional transformers for
language understanding. NAACL-HLT (1), 4171-4186.
DOI=10.18653/v1/N19-1423.

[7] Radford, A., Narasimhan, K., Salimans, T. and Sutskever, I.
2018. Improving language understanding by generative
pre-training. Technical report.
https://cdn.openai.com/research-covers/language-unsupervis
ed/language_understanding_paper.pdf.

[8] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. and
Sutskever, I. 2019. Language models are unsupervised
multitask learners. Technical report
https://openai.com/blog/better-language-models/.

[9] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell,
A., et al. 2020. Language models are few-shot learners.
Advances in Neural Information Processing Systems.

[10] Hochreiter, S. and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation 9, 8, 1735-1780.

[11] Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H. and Bengio, Y. 2014. Learning
phrase representations using RNN encoder-decoder for
statistical machine translation. Proceedings of the 2014
Conference on EMNLP (Oct. 2014), 1724-1734.
DOI=10.3115/v1/D14-1179.

[12] Glass, G. and Hopkins, K. 1995. Statistical Methods in
Education and Psychology (3rd ed.). Allyn & Bacon. ISBN
0-205-14212-5.

[13] Lloyd, S. 1982. Least squares quantization in PCM. IEEE
Transactions on Information Theory 28, 2, 129-137.
DOI=10.1109/TIT.1982.1056489.

[14] Cer, D., Yang, Y., Kong, S., Hua, N., Limtiaco, N., St. John,
R., Constant, N., Guajardo-Céspedes, M., Yuan, S., Tar, C. et
al. 2018. Universal sentence encoder. Proceedings of the
2018 Conference on EMNLP: Demonstrations, (Nov. 2018),
169-174, DOI=10.18653/v1/D18-2029.

[15] Perikos, I., Grivokostopoulou, F., Kovas, K. and
Hatzilygeroudis, I. 2016. Automatic estimation of exercises’
difficulty levels in a tutoring system for teaching the
conversion of natural language into first-order logic. Expert
Systems 33, 6 (Dec. 2016), 569-580.
DOI=https://doi.org/10.1111/exsy.12182.

[16] Hsu, F.-Y., Lee, H.-M., Chang, T.-H. and Sung, Y.-T. 2018.
Automated estimation of item difficulty for multiple-choice
tests: An application of embedding techniques. Information

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 739

http://doi.acm.org/10.1145/161468.16147
https://hasura.io/
https://blog.newrelic.com/engineering/what-is-serverless-architecture/
https://blog.newrelic.com/engineering/what-is-serverless-architecture/
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.3115/v1/D14-1179
https://doi.org/10.1109%2FTIT.1982.1056489
http://dx.doi.org/10.18653/v1/D18-2029
https://doi.org/10.1111/exsy.12182

Processing & Management 54, 6 (Nov. 2018), 969-984.
DOI=https://doi.org/10.1016/j.ipm.2018.06.007.

[17] Wolfe, J., 1977. Reading retention as a function of method
for generating interspersed questions. Technical report, DTIC
Document

[18] Gierl, M., Lai, H., Turner, S., 2012. Using automatic item
generation to create multiple-choice test items. Medical
Education 46, 8 (July 2012), 757-65.
DOI=10.1111/j.1365-2923.2012.04289.x.

[19] Heilman, M. 2011. Automatic factual question generation
from text, Ph.D. thesis, Carnegie Mellon University.

[20] Cervone, A., Khatri, C., Goel, R., Hedayatnia, B., Venkatesh,
A., Hakkani-Tur, D. and Gabriel, R. 2019. Natural language
generation at scale. arXiv preprint arXiv:1903.08097.

[21] Zhu. Y., Kiros, R., Zemel, R., Salakhutdinov, R., Torralba, A.
and Fidler, S. 2015. Aligning books and movies. In
Proceedings of the IEEE ICCV, 19-27.

[22] Rajpurkar, P., Zhang, J., Lopyrev, K. and Liang, P. 2016.
SQuAD: 100,000+ questions for machine comprehension of
text. arXiv preprint arXiv:1606.05250.

[23] National Governors Association Center for Best Practices,
Council of Chief State School Officers 2010. Common Core
State Standards. National Governors Association Center for
Best Practices, Council of Chief State School.

[24] NGSS Lead States. 2013. Next Generation Science
Standards: For states, by states. Washington, DC: The
National Academic Press.

[25] Pane, J. F., Steiner, E. D., Baird, M. D., & Hamilton, L. S.
(2015). Continued Progress: Promising Evidence on
Personalized Learning. Rand Corporation.

[26] Kurdi, G., Leo, J., Parsia, B., Sattler, U., & Al-Emari, S.
(2020). A systematic review of automatic question
generation for educational purposes. International Journal of
Artificial Intelligence in Education, 30(1), 121-204.

740 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://doi.org/10.1016/j.ipm.2018.06.007
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1111%2Fj.1365-2923.2012.04289.x?_sg%5B0%5D=gbKiAVm08lKPwzD85chuICBZZ5bXos0xAjjxs_lsoex3cUp5I6lZZ18y5vGwvC9egsxLsMiu0MG8Z3hZB6P2b9hpkg.3G2uGLyuDuV2P-eCcj54NCY1Z-dtyB2VrcKyuKkfwOPaPFB3v9aKxNmTlDd2CsFeIwe-Zy0K8RZjxXc4vaXrHA

Catalog: An educational content tagging system
Saad M. Khan
FineTune Learning

saad@finetunelearning.com

Joshua Rosaler
FineTune Learning

josh@finetunelearning.com

Jesse Hamer
FineTune Learning

jesse@finetunelearning.com

Tiago Almeida
FineTune Learning

tiago@finetunelearning.com

ABSTRACT
We present Catalog, an educational content classification and
alignment system that tags learning and assessment content in a
semantically meaningful and accurate manner. Unlike other
approaches that rely on keywords or search terms and crosswalks
between knowledge taxonomies, Catalog utilizes powerful NLP,
specifically language models based on the Transformer
architecture, to encode content in a context attentive fashion. This
allows us to capture deep conceptual and contextual relations in
content to classify it against a wide variety of educational
standards and taxonomies. We present results from empirical
studies demonstrating efficacy of our approach in classifying
learning content to the Next Generation Science Standards
(NGSS).

Keywords
Content tagging/classification, NLP, Transformer Networks

1. INTRODUCTION

Tagging educational content with the most relevant learning and
assessment standards and education search terms is one of the
most critical elements in creating highly efficacious content. This
enables the tracking of student skill gaps, recommendation of
remediative learning content and mastery of discipline topics,
skills and cross cutting capabilities. With the ever growing
volume of digital learning content and educational standards [12]
the demands on tagging content are not being met by current
solutions.

Current processes to tag content typically starts with raw untagged
content that has to be manually reviewed, understood and
analyzed by subject matter experts (SMEs) and then classified
against a particular education standard e.g. the NGSS [10]
resulting in the first set of foundational standards tags. Typically,
these standards are hierarchical and utilize a taxonomic
knowledge representation to capture the knowledge structure
including core disciplinary knowledge, skills and/or cross cutting
capabilities. Given the foundational tags one can transfer onto any
number of desired taxonomies, for instance the Common Core
State Standards [11], using taxonomy crosswalks [13]. Crosswalks
are essentially mappings from one standard’s taxonomy to another
that have for the most part been developed by SMEs and are many
times proprietary limiting their applicability.

While in theory this process seems to offer a relatively scalable
solution to the content tagging problem, in practice it is inefficient
and has significant limitations. Firstly, the initial step of creating
the foundational tags is manually executed and highly subjective,
making it expensive and error prone. But even when that is done
well the taxonomy crosswalks do not offer a perfect solution,
because these crosswalks are not one-to-one mappings between
the tags of one taxonomy and the other. Due to the hierarchical
nature of the standards taxonomies and how they are designed and
crafted by SMEs, oftentimes there are vast differences in the
levels of knowledge abstraction, resulting in many-to-many
mappings for the crosswalks connecting them. The end result is
that for a given unit of content even when there is a foundational
tag available and using an associated crosswalk, SMEs still have
to make the final adjudication of the most appropriate tag in the
target standard’s taxonomy.

To address these challenges we have developed Catalog, an
automated content classification system that leverages recent
advances in NLP, specifically the Transformer architecture. This
allows us to analyze educational content with richer context-aware
text embeddings and pre-trained language models. We have
evaluated the accuracy of our approach with promising results on
an OpenStax Biology textbook [14] with ground truth NGSS tags
(human experts labeled). We believe Catalog can significantly
help streamline and accelerate manual workflows around content
tagging and curation. These are applicable for both existing or
new content, enriching existing content tags for more targeted
search, discovery and recommendation as well as maintaining
content alignments as educational standards evolve.

2. TECHNICAL APPROACH AND
SYSTEM DETAILS
2.1 Transformers and Text Embeddings
At the core of Catalog’s content classification tagging system is
the Transformer architecture, first proposed by Vaswani et al in
2017 [2]. Catalog utilizes a series of pre-trained Transformer
models [5, 6] to encode text-based content in vectorized features
which are then further used to analyze the probability that the
content is related to a textual description of the target taxonomy.
Further details of this approach are presented in the following
subsections. Here we present a brief overview of the Transformer
architecture.

By eschewing the sequentially-processed nature of previous
deep-learning NLP architectures (like LSTMs [3] and GRUs [4])
in favor of multi-head attention, the Transformer architecture is
highly parallelizable and scalable, allowing for richer
context-aware text embeddings and a substantial pre-training
capacity which allows for a transfer learning approach to NLP
tasks. Since its inception, research into the Transformer
architecture has exploded, with variants such as Google’s BERT

Saad Khan, Joshua Rosaler, Jesse Hamer and Tiago Almeida “Cata-
log: An educational content tagging system”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 741-744.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 741

[5] and OpenAI’s GPT series [6, 7, 8] topping several NLP
benchmarks, such as the multitask GLUE suite [9].

As indicated above, Transformers are a deep-learning architecture
based on the attention mechanism. The original formulation of the
Transformer architecture used a variant known as scaled
dot-product attention, defined as

Attention(Q, K, V) = softmax() V,𝑄𝐾𝑇

𝑑

where the matrices Q and K are called the queries and keys,
respectively, and each have column-dimension d, while the matrix
V is called the values and has column-dimension d’. When the
queries, keys, and values are all equal to some matrix X, the
resulting operation is called self-attention. The rows of this matrix
X correspond to context-independent feature vectors of the tokens
of the input text, each with a small positional encoding vector
added so that the model is aware of each token’s position within
the input sequence. Self-attention can be thought of as an
operation which recomputes each token as a linear combination of
the other tokens, where the weights of the linear combination

correspond a scaled dot-product similarity score (the term).𝑄𝐾𝑇

𝑑

In this way, (potentially long-range) interactions between tokens
are captured. To allow the Transformer to learn different patterns
of interaction, several matrices of learnable weights are used to
compute multi-head self-attention:

MultiHead(X, X, X) = Concat(head1, head2, …, headh)WO,

where

headi = Attention(XWi
Q, XWi

K, XWi
V),

and all of the W matrices consist of learnable weights. After
multi-head self-attention is computed, the resulting feature vector
is fed to a single-hidden-layer feedforward neural network for
aggregation and resizing. These two consecutive operations,
multi-head self-attention followed by the feedforward neural
network, constitute the core of a Transformer block. A
Transformer model, then, is built by chaining several Transformer
blocks together, each potentially with their own set of weight
matrices.

2.2 How Catalog Works
Catalog’s AI-powered content tagging system utilizes a
Transformer-based semantic matching engine to rank taxonomic
categories by their semantic similarity to given educational
content. The semantic matching algorithm works as follows. We
are given a collection of textual descriptions of taxonomic
categories (e.g. NGSS [10]), which we refer to as “documents,”
and the raw text of educational content, referred to as the “query”
that needs to be classified. For each document, we produce a
string of input text by combining it with the query along with a
small amount of connective text. Using a Transformer model
pre-trained for next token prediction, we then process the input
string to convert the query tokens into feature vectors. These
feature vectors are then further processed to produce probabilities
for each query token, conditioned on the document text.
Additionally, we process the query text by itself in order to
determine unconditioned probabilities for the query tokens.
Finally, a match score is produced for each document by
comparing the conditioned vs. unconditioned query token
probabilities and then aggregating these into a single real-valued

score. Documents are then ranked according to these scores, with
a higher score indicating a higher match similarity.

Figure 1: Catalog system architecture is designed to be modular with
disturbed services hosted on AWS.

Figure 2: Sample page from the OpenStax Biology 2e textbook used in
our experiments.

System architecture and implementation wise, Catalog has two
core architectural components as shown in figure 1. The first is a
Lambda API Endpoint that leverages the serverless architecture
and serves mainly as an interface between the user and the
Transformer-based semantic query process, the “AI Engine”. It
authenticates users’ requests, manages requests and accesses the
system database. The second major component, “AI Engine”

742 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

manages content processing and returns the match scores from
classification.

Figure 3: Sample from NGSS High School Life Science Biology
performance expectation (PE) standards. Image shows 4 of the 24
unique PE standards used in our experiment.

2.3 Experimental Results
We tested the accuracy and performance of our approach on a
learning content dataset extracted from the OpenStax Biology 2e
high school textbook [14]. The dataset consists of approximately
500 pages of content spanning 98 chapter/subchapter sections that
ranged from 410 to 545 words each. Each of the book’s 98
sections is annotated with NGSS High School Life Sciences
(HS-LS) performance expectation (PE) tags [10], also provided by
OpenStax [14] and served as the ground truth labels in our
experiment. There are a total of 24 unique Biology NGSS PE
standards applicable to our dataset, essentially rendering this a 24
class classification problem. Figure 2 shows a sample from the
OpenStax textbook and in figure 3 we include sample PEs from
the 24 NGSS standards used in our experiment. We note that
these ground truth labels are not necessarily unique: each section
is associated with one to three NGSS tags.

Topic documents for the 24 PE standards were assembled from
the Topic Arrangements of the NGSS that includes descriptions of
PEs, Science and Engineering Practices, Disciplinary Core Ideas,
Crosscutting Concepts. Because our model predicts NGSS tags
for a given OpenStax section by ranking them, we assess
performance by computing the top-n overall accuracy, that is, the
proportion of predictions which have at least one ground truth
label in their top-n ranked predictions (note that for n = 1, this is
just the traditional overall accuracy measure). For comparison, we
had an SME perform this classification exercise manually i.e.
provide up to three suggested NGSS PE tags for each of the 98
book sections in our dataset. This SME is a high-school science
teacher in a New York city school district and is highly
experienced with the NGSS standards.
Before examining the results of this experiment, we note that one
NGSS standard, HS-LS1-2, was severely overrepresented in our
dataset, accounting for nearly 42% of all ground truth tags, more
than 5 times the next-most-represented tag. To account for this in
our accuracy computations, we decided to take 1000 random
subsamples of this class, and then average the top-n accuracy over
these subsamples. Figure 4 shows the resulting NGSS tag
distribution of such a subsample.
Figure 5 shows the top-n accuracy averaged over the 1000
subsamples as a function of n. When compared to ground truth,
the semantic query model achieved 51%, 73%, and 77% top-1,

top-2, and top-3 overall accuracy, respectively, among the 24
NGSS PE standards. In contrast, the SME achieved 48%, 68%,

Figure 4: Distribution of NGSS tags across subsample of data. In all,
55 OpenStax sections are associated with tag HS-LS1-2, whereas each
subsample randomly selects only 11 of these to be commensurate with
the next most represented tag, HS-LS2-5.

Figure 5: Top-n Accuracy vs. n for 98 items of section text from the
OpenStax Biology 2e textbook, tagged against the NGSS High School
Life Sciences performance expectation standards (as above, n is the
number of top predictions within which at least one ground truth
label must fall for the prediction to be counted as correct).

and 70% top-1, top-2, and top-3 overall accuracy, respectively. It
should also be noted that it took the SME 520 minutes to complete
the manual classification of the dataset, whereas our system
completed processing in only approximately 2 minutes.

3. CONCLUSION
In this paper we have introduced Catalog, a NLP based content
classification system that utilizes recent advances in transfer
learning approaches to deeply and accurately tag educational
content against popularly used learning standards. Unlike other
approaches that rely on keywords or search terms and crosswalks
between knowledge taxonomies, Catalog is built on a language
modeling architecture that understands the deep semantic
structure and relationship between concepts, topics, learning
objectives and other attributes of content. We have presented early
results from empirical studies demonstrating efficacy of our

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 743

approach in classifying learning content to the Next Generation
Science Standards (NGSS).

4. ACKNOWLEDGEMENTS
We would like to thank Sara Vispoel for reviewing our results and
insightful discussions and comments on the NGSS standards and
taxonomic representations used in K-12 life science education and
high school biology in particular.

5. REFERENCES
[1] Bowman, M., Debray, S. K., and Peterson, L. L. 1993.

Reasoning about naming systems. ACM Trans. Program.
Lang. Syst. 15, 5 (Nov. 1993), 795-825. DOI=
http://doi.acm.org/10.1145/161468.16147.

[2] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, Ł. and Polosukhin, I. 2017. Attention
is all you need. Advances in Neural Information Processing
Systems, 5998-6008.

[3] Hochreiter, S. and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation 9, 8, 1735-1780.

[4] Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H. and Bengio, Y. 2014. Learning
phrase representations using RNN encoder-decoder for
statistical machine translation. Proceedings of the 2014
Conference on EMNLP (Oct. 2014), 1724-1734.
DOI=10.3115/v1/D14-1179.

[5] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. 2019.
BERT: Pre-training of deep bidirectional transformers for
language understanding. NAACL-HLT (1), 4171-4186.
DOI=10.18653/v1/N19-1423.

[6] Radford, A., Narasimhan, K., Salimans, T. and Sutskever, I.
2018. Improving language understanding by generative
pre-training. Technical report.
https://cdn.openai.com/research-covers/language-unsupervis
ed/language_understanding_paper.pdf.

[7] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. and
Sutskever, I. 2019. Language models are unsupervised
multitask learners. Technical report
https://openai.com/blog/better-language-models/.

[8] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell,
A., et al. 2020. Language models are few-shot learners.
Advances in Neural Information Processing Systems.

[9] Wang, A., Singh, A., Michael, J., Hill, F., Levy, O. and
Bowman, S. 2018a. GLUE: A multi-task benchmark and
analysis platform for natural language understanding.
Proceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
353-355.

[10] NGSS Lead States. 2013. Next Generation Science
Standards: For states, by states. Washington, DC: The
National Academic Press.

[11] National Governors Association Center for Best Practices,
Council of Chief State School Officers 2010. Common Core
State Standards. National Governors Association Center for
Best Practices, Council of Chief State School.

[12] Scott-Little, C., Lesko, J., Martella, J., & Milburn, P. (2007).
Early Learning Standards: Results from a National Survey to

Document Trends in State-Level Policies and Practices.
Early Childhood Research & Practice, 9(1), n1.

[13] Conley, D. T. (2011). Crosswalk Analysis of Deeper
Learning Skills to Common Core State Standards.
Educational Policy Improvement Center (NJ1).

[14] https://openstax.org/details/books/biology-2e

744 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

http://doi.acm.org/10.1145/161468.16147
http://dx.doi.org/10.3115/v1/D14-1179
http://dx.doi.org/10.18653/v1/N19-1423
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://openai.com/blog/better-language-models/
https://openstax.org/details/books/biology-2e

Are Violations of Student Privacy “Quick and Easy”? Implications of K-12 Educational
Institutions’ Posts on Facebook

Macy A. Burchfield1, mburchf3@vols.utk.edu
Joshua M. Rosenberg1, jmrosenberg@utk.edu

Conrad Borchers2, conrad.borchers@student.uni-tuebingen.de
Tayla Thomas1 , hqm263@vols.utk.edu

Benjamin Gibbons3 , ben.gibbons@emory.edu
Christian Fischer2, christian.fischer@uni-tuebingen.de

1 University of Tennessee, Knoxville
2 University of Tübingen

3 Emory University

ABSTRACT
As the use of social media increases in daily life, it has also
increased for institutions in the field of education. While there
may be benefits for schools to use this media outlet, the privacy of
students within those schools may be at risk when their names and
photos are shared on such a publicly accessible domain. In this
study, we analyzed the extent to which students’ privacy is
protected by qualitatively coding a random sample of 100
Facebook posts made by U.S. school districts from a population of
over 9.3 million photo posts that we collected. Using inferential
techniques, we found that students are somewhat protected
compared to teachers and community members, with only 2.67%
of students’ detected faces able to be identified by name. The
same measure for staff and community members were 4.6% and
16%, respectively. These numbers at first appear small, but if
applied to the entire population, this could potentially leave
between 153,218 and 1,l53,844 students identifiable to anyone on
the internet. We discuss the severity and scale of these privacy
threats and make recommendations for research on student
privacy in social media and other informal education-related
contexts.

Keywords
Privacy, Social Media, Facebook, Educational Institutions, Facial
Recognition

1. INTRODUCTION & PRIOR RESEARCH
As the number of people using social media has increased, the
risks to the privacy of social media users have also increased [23],
and this is particularly true since social media use expands into
areas of our lives that it did not previously occupy. Education is
one such domain in which social media use is now widespread [2,
10, 11, 13, 21, 22]—and is one domain for which the privacy risks
from social media use, in general, may be compounded because of
the centrality of a particularly vulnerable population, minors at
school.

For students in any given school district, the use of their name or
face for social media may present notable privacy concerns. As
many social media posts are made publicly available, they may be
accessed by unexpected sets of individuals, even by those without
an account on the corresponding social networking site. Such use
may pose a legitimate threat which may be unknown to (or
under-acknowledged by) teachers, administrators, and parents.

There is past research on the intersection of privacy and social
media. For example, Fiesler and Proferes [6] examined what
participants in social media studies thought of their data being
used by others—particularly, by academic researchers. Only
around one-quarter of participants in their survey study reported
being comfortable with their data being used without being
informed of such use.

Related lines of research explored the intersection of privacy and
social media data for students. For instance, Ifenthaler and
Schumacher [9] surveyed students about what they thought of
their data being used in learning analytics systems. They found
that while students expressed comfort with sharing some types of
data (i.e., data on their course enrollments, for which less than
20% of students reported reluctance with sharing such data), for
others, students were much less comfortable. Notably,
highly-personal data, such as medical records, data on one’s
personal income, and externally-produced data, including social
media, were among those that students were the least willing to
share. Less than 10% of students reported being willing for
externally-produced data to be used within learning analytics
systems. Other scholars have shown that pre-service teachers are
highly-uncomfortable with how social media companies use
students’ social media data, with more than two-thirds of teachers
expressing discomfort with such uses [16].

While past research has explored the willingness of social media
participants and students to share their data for research, a
different—institutional rather than personal—context for social
media use presents potentially notable privacy risks. Namely, past
research has shown that both post-secondary [13] and K-12
educational institutions use social media extensively; particularly,
Twitter and Facebook [10, 11]. However, to this point, no research
has yet investigated privacy in the context of social media use by
K-12 educational institutions.

This topic—K-12 institutions’ use of social media from a privacy
perspective—is relevant and timely for a number of reasons.
Recent research has shown that institutions are very active on both
Twitter and Facebook, being associated with more than 300,000
posts/month from the accounts of K-12 districts and schools [11].
As a consequence, there could be hundreds of thousands of
students with their identities being posted in a highly-public,
searchable, persistent record, and in a way that could be misused
in the future. In addition, these posts may contain information that
would typically be thought of as information which should not be
shared publicly and widely, but which may be shared because of
limited understanding of how widely such posts (on public pages)
can be viewed. The audiences of institutions are likely much

Macy Burchfield, Joshua Rosenberg, Conrad Borchers, Tayla Thomas, Ben-
jamin Gibbons and Christian Fischer “Are Violations of Student Privacy
“Quick and Easy”? Implications of K-12 Educational Institutions’ Posts on
Facebook”. 2021. In: Proceedings of The 14th International Conference on
Educational Data Mining (EDM21). International Educational Data Mining
Society, 745-749. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 745

greater than that of individual educators, meaning any potential
privacy concerns may be much larger than that of independent
users’ accounts. Raising awareness of this issue may prompt some
reflection on the part of those sharing this information.

This study involves an initial investigation into the extent to
which students’ privacy is protected through analysis of Facebook
posts made by public schools and school districts. In doing so, we
ask a question about the nature of Facebook. Facebook claims that
its site is “quick and easy,” [5] but the expediency and facility
with which K-12 administrators and educators may use the
platform may mean that it is also easy for school districts and
schools to violate the privacy of students—with potentially
difficult-to-anticipate negative ramifications at present and in the
future. In particular, we aim to explore the degree to which the
privacy of students might be compromised through public
Facebook posts guided by the following research questions:

1. To what extent can students be identified by name and
photo on public Facebook pages of schools and school
districts?

2. How does the identifiability of students compare to that
of staff and community members?

2. METHOD
2.1 Sample
We used a public data mining methodology, one that draws from
educational data mining techniques [1, 7], but which is
distinguished by the use of (largely unstructured) publicly
available data, such as data from websites and social media
platforms [12]. Specifically, to obtain our sample of 100 schools’
and school districts’ Facebook posts, we used CrowdTangle,
Facebook’s platform for providing academics and journalists
access to data about public content on Facebook, including the
content of posts and links to associated media as well as their
timestamps and number of comments and likes (and other
interactions) [4]. This content includes historical data from public
Facebook pages with more than 50,000 likes and verified profiles.
In addition, individuals with access to CrowdTangle can access
public pages—but not individual users’ pages.

We accessed all of the posts from K-12 institutions’ public
Facebook pages in the United States, having obtained the URLs to
15,728 educational institutions’ Facebook pages. We did so by
using the statistical software R [20] to programmatically access
(or, to webscrape) their homepages using data provided by the
Common Core of Data [19], and recording all links to Facebook
pages from their home pages. When schools linked to the same
page as the district, we considered the page as a district page. The
total study population included roughly 18 million posts shared
from 2005-2020, with about 9.3 million of these posts including at
least one photo.

Carrying out a privacy-focused study ourselves, we took steps to
protect the privacy of the individuals represented in our data.
First, while we accessed and structured the data in a PostgreSQL
database, we did not save the images themselves, instead using the
Facebook posts and links therein to access the images through our
web browser. More broadly, we determined early in our process
that we were not prepared to analyze the photos
algorithmically/automatically in a safe and ethical manner (e.g.,
using machine learning methods); we were concerned about
uploading the images to a server, where they might be scanned
and indexed. While we did not store the images in our database,
we nevertheless took steps to protect this data, including

permitting access only to authenticated members of the research
team.

From the population of approximately 18 million posts, we
randomly sampled 100 posts with photos for this analysis. Our
random sample of posts and related coding data were stored in a
private Google Sheets file stored within a University Google
Account (in part because Google is less likely—based upon past
legislation, lawsuits and company policies—to programmatically
search the contents of educational accounts) to which only project
contributors had access; this ensured that any data that could
potentially be used to identify individuals was protected.

2.2 Measures
We analyzed the data qualitatively using a combination of two
commonly-used qualitative analysis techniques [8], the use of
priori codes that we developed based upon prior research and our
research questions as well as an exploratory process that allowed
us to elaborate on and to substantiate those codes and to train as
coders on the use of the coding frame. In particular, we analyzed
the data in two ways, as we describe next.

First, to determine whose privacy was at risk using our sample of
100 posts, we accessed the images from each post through
photo-specific URLs that are included along with information for
each post in the data. Each image was accessed and analyzed
individually. When there were more than ten images included in a
post, we analyzed the first ten, reasoning that these first 10 were
the most likely to be seen by viewers of the post. Each post of our
sample was analyzed by two trained coders to evaluate the levels
of identification for all names and faces included. Upon analysis
of 15 posts, we drew three categories from similar research to
distinguish individuals included in posts based on their role in the
school or school district community [18]:

● Students: Any minor assumed to be enrolled in a school
and/or participating in a school hosted event or activity.

● Staff: Any known employee of the school or school
district; including but not limited to teachers,
administrators, paraprofessionals, and communications
directors.

● Community Members: Any member of the school
community who is not a verifiable student or staff
member, including but not limited to parents, school
board members, local business owners, and volunteers.

Second, to determine how individuals’ privacy may be threatened,
we developed a coding frame that we used to assess whether
individuals’ names and/or photos of individuals were shared in
posts, and whether it was possible to readily connect individuals’
names and photos of them. We will next describe our qualitative
coding process for applying this coding frame.

2.3 Qualitative Coding
Coding proceeded by first determining the classification (student,
staff, or community) of each individual detected by name or photo
in a post, and then identifying the number of different first and
last names included in the text of the post, as well as the number
of individual faces shown in the posts’ images. In particular, the
following four elements were recorded for each category of
individuals:

● Number of First and Last Names in Post

746 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

First and last names were recorded separately within each
category due to the fact that staff and community members are
often mentioned using their professional prefix (Mr., Mrs., Dr. ,
etc.) and only their last name.

● Number of Faces in Images
For identifying the presence of individuals’ faces, a detectable
face was considered to be one for which three out of four of the
following features were visible without enlarging the image: 1)
eyes, 2) nose, 3) ears, and 4) mouth. Any faces appearing in more
than one photo within the entire post were only counted once.

● How many Names and Faces Connected
We looked in posts for specific indicators of an individual’s
location in an image, including the order in which individuals
appear in an image or labels on images. In general, identifiability
criteria appeared as any text that explicitly stated which name
matched with which face in which image.

 Our coding included an interrater reliability check for
15 posts. Two coders coded these 15 posts individually using the
coding process outlined above. Agreement percentages for
detecting names, detecting faces, and identifying faces were
100%, 77.77%, and 93.33% respectively. Total agreement
between coders across all codes was 92.34%.

2.4 Illustration of the Coding Process
Image 1. Example Posts

To illustrate the coding process, we provide two example posts
and how we coded them above (Image 1). In the image for the
first example, two student names, both first and last, are included
in the text of the post, and multiple student faces are included in
the three images of the post. The “third and fourth graders playing
soccer” are not named individually and cannot be distinguished
from each other. The two listed student names, which have been
covered along with their faces for their protection, are identified
by their locations in the images, thus making their faces
identifiable by name as well. In the second image, the post
included the name of a staff member, as well as detectable faces
of two staff members. Without clarification, neither of these faces
could be identified with the name mentioned.

2.5 Inferential Analysis
To analyze data to answer our first question, on how students can
be identified by name and photo on public posts by K-12
educational institutions, we evaluated the percentages of student
faces that were able to be identified by name; for example, if,
across the 100 posts, we detected 50 student faces in images, and
one was identifiable by name, then the percentage of identifiable

students would be 1% (rather than 2%, because we were
interested in making inferences on the basis of the number of
identifiable students per post). We refer to this value in our results
as the percentage of identifiable faces per post. Then, based on the
observed frequencies (from which we calculated these
percentages), we calculated binomial 95% confidence intervals for
the ratio of identifiable faces and categories of faces. We did this
to present an initial set of estimates for how many faces in our
population of 9.3 million photo posts may be identifiable.

To answer our second research question on relative differences in
identifiability of individuals from different groups, we carried out
the same analysis as above (for students) for teachers and
community members. Then, to compare the percentages of photos
with identifiable individuals across categories, we calculated a
different percentage than for RQ #1, one based not upon the
number of posts (i.e., one identifiable face across 100 posts; 1%),
but, rather, one based upon the total number of faces detected for
people in each category. For instance, if there were 50 faces of
students detected, and one was identifiable, then the percentage
would be 2%; we refer to this in our results as the percentage of
identifiable faces per category sum. This number—and comparing
the confidence intervals between groups—would allow us to
speak to whether individuals were differentially identifiable when
photos of them were detected, even if there were, for example, far
more photos of students than community members detected.

3. RESULTS
Our coding resulted in the detection (but not identification) of 299
faces in the images from the 100 posts in our sample. Of these 299
faces, only 13 (4.35% of all detected faces [2.33%, 7.32%]) were
able to be identified with the individuals’ name from the text of
the post.

RQ #1. These 13 identifiable faces were identified within 12
individual posts from schools or districts. Student faces comprised
5 of those 12 and thus, for every 100 posts, we estimated that
there were 5 identifiable student faces, representing the rate of a
single identifiable student face for every twenty posts. Put another
way, we estimated that 5% ([1.64%, 11.28%]) of these posts
contained identifiable student faces. While this rate is relatively
low, if used to make an inference about the population of photo
posts we collected, this would suggest that between 153,218 and
1,053,844 students could potentially be identified via their
inclusion in school or school districts’ posts.

RQ #2. For students, 187 faces were detected in photos and only 5
of those 187 faces were able to be identified by their names,
meaning that 2.67% ([0.87%, 6.13%]) of student faces were
identifiable by name. Similar percentages are given below for
each of the other categories. These numbers indicate that students
and staff had a much smaller percentage of identifiable faces than
that of community members. The rest of our results are shown in
the table below (Table 1).

Table 1. Identifiability Percentages by Category
Category Total

of
Faces

of
ID

Faces

Percentage of
Identifiable

Faces per Post
(RQ #1)

Percentage of
Identifiable
Faces Per

Category Sum
(RQ #2)

Student 187 5 5%
[1.64%, 11.28%]

2.67%
[0.87%, 6.13%]

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 747

Staff 87 4 4%
[1.10%, 9.92%]

4.6%
[1.27%, 11.36%]

Community 25 4 4%
[1.10%, 9.92%]

16%
[4.54%, 36.08%]

4. DISCUSSION
4.1 Key Findings
Upon the completion of coding our sample and numerical analysis
for each category, we are able to make a few important claims
about the protection of student privacy. First, students comprised a
majority of the faces detected in images; however, compared to
the large number of student faces, less than 3% of those faces
were able to be identified by their names. While this low
proportion may seem to indicate that students’ privacy is
well-protected, the massive scope of this data (more than nine
million public posts by schools or school districts) nevertheless
means that many students are at-risk to be identified by both face
and name by anyone with internet access if expanded to the entire
data set. In short, K-12 institutions’ uses of social media could
introduce very widespread threats to students’ privacy.

How serious are these privacy threats? An identifiable photo
presents a relatively low risk compared to, for example, one’s
address or grade-related information being shared. However, the
risk of doing so is not zero: These posts could be used to identify
information about individuals, and when accessed, could
potentially be used to predict their personal characteristics, even
those that require making strong inferences, such as those about
individuals’ political identities [14]—and, potentially, other
identities. Adding to the problem, we note that each of these posts
not only associates a name with a photo, but also an identifiable
photo to a particular location (a school or district) at a specific
time. In summation, what seems like a low-risk form of
identification, can reveal quite a bit of information on students,
leaving their privacy vulnerable.

In addition to the number of photos of students that were able to
be identified, the level of protection attached to the privacy of
students was intriguing when compared to that of students and
staff. More specifically, while students had the highest number of
faces detected in images, their isolated level of identifiability was
the lowest of all three categories. We can also note that students
and staff members together have drastically lower isolated levels
of identifiability compared to that of community members:
Community members were generally easier to distinguish
between than our other categories.

Taken together, these findings speak to concerns about privacy on
social media, revealing that not only individuals’ actions and posts
(e.g. [6, 9, 23]), but also those of educational institutions may
pose risks for the privacy of a vulnerable societal group: minors at
school. They suggest that the wide use of Facebook and ease of
accessing posts coupled with identifiable posts of students may
make this particular use of social media a key avenue through
which students’ privacy is compromised. In this way, these
findings add to prior research pointing out that young people may
view privacy differently [17]. In addition, this research suggests to
the educational data mining community that privacy risks to
students may appear in unexpected contexts—and in contexts for
which schools may, technically, not be violating the United States’
Family Educational Rights and Privacy Act (FERPA), but which
may be deserve greater scrutiny.

4.2 Limitations and Recommendations
This study represents an initial exploration of a topic that has been
investigated extensively using other data sources and populations
[6, 9]—and which could be investigated much further to better
understand the nature of how students’ privacy may be threatened
due to the increasingly widespread use of social media by K-12
educational institutions. Due to the small size of our sample
(compared to that of the population of photo posts), while we
made some inferences from our sample to the population, these
were associated with very wide ranges of plausible values: for
example, we estimated that the number of identifiable students
ranges from between 150,000 and more than one million, a range
that makes it difficult to inform other researchers as well as
administrators, educators, parents, and students about the scale of
the threat to students’ privacy. In addition, there are certain
statistical inferences that we are unable to make at this time: For
instance, with a small number of posts from varying years, we
must code a larger sample to be able to model change in privacy
risk over time.

It is important to consider the issue of parent consent in the
context of student photos via public pages of schools and districts.
While our sample data does not include specific information on
each educational instituation’s privacy policies, there has been
past research performed regarding actions such as consent forms
[3]. Students’ parents or legal guardians typically act as their
agents of consent, which may appear to legitimize the publicizing
of student faces. However, those making these crucial decisions
may not have all of the necessary information to make these
choices on behalf of their students.

Future research may expand on the findings presented in this
study by not only coding a greater number of posts, but also
coding for different features of them. For instance, we noted that
because many images in the latter part of 2020 included students
wearing masks, there may surprisingly be a decrease in the
number of identifiable faces during the COVID-19 pandemic.
Future research that aims to mitigate risks may also note some of
the features of posts which protect the privacy of students, and
posts by schools or districts that achieve some of the benefits of
educational institutions’ social media use. How accessible the
posts we accessed via both the CrowdTangle [4] platform and
other (authorized or unauthorized--e.g., through web-scraping)
means is another topic future scholarship can explore in greater
depth, as the extent to which others can reproduce our analysis has
a bearing on how extensive the threats to students’ privacy are.
Limiting risks to students’ privacy may serve as a model to inform
or prompt reflection on the part of the administrators and
educators using their school’s or school districts’ Facebook
account. Finally, future research might investigate what key
stakeholders--students, parents, and teachers--think of the
potential privacy risks around social media use. While past
research has reported that teachers are uncomfortable with how
social media platforms use student data [16], our results suggest
that key individuals in schools may not draw connections between
this lack of comfort and how their school or district uses social
media, and survey research methods may compliment our public
data mining approach.

5. REFERENCES
[1] Baker, R.S., & Inventado, P.S. (2014). Educational data

mining and learning analytics. In R.S. Baker & P.S.
Inventatdo (Eds.), Learning analytics (pp. 61-75). New York:
Springer

748 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

[2] Carpenter, J., Tani, T., Morrison, S., & Keane, J. (2020).
Exploring the landscape of educator professional activity on
Twitter: an analysis of 16 education-related Twitter hashtags.
Professional Development in Education, 1–22.
https://doi.org/10.1080/19415257.2020.1752287.

[3] Cino, D., & Vandini, C. D. (2020). "Why Does a Teacher
Feel the Need to Post My Kid?": Parents and Teachers
Constructing Morally Acceptable Boundaries of Children's
Social Media Presence. International journal of
communication [Online], 1153-1172.
https://link.gale.com/apps/doc/A632440221/AONE?u=tel_a_
utl&sid=AONE&xid=d42623382.

[4] CrowdTangle Team (2021). CrowdTangle. Facebook, Menlo
Park, California, United States. List ID: [all-k12-institutions].
Retrieved January 15, 2021.

[5] Facebook. (n.d.). Retrieved March 12, 2021, from
https://www.facebook.com

[6] Fiesler, C., & Proferes, N. (2018). “Participant” perceptions
of Twitter research ethics. Social Media+Society, 4(1),
2056305118763366.

[7] Fischer, C., Pardos, Z. A., Baker, R. S., Williams, J. J.,
Smyth, P., Yu, R., ... & Warschauer, M. (2020). Mining big
data in education: Affordances and challenges. Review of
Research in Education, 44(1), 130-160.

[8] Hatch, J. A. (2002). Doing qualitative research in education
settings. Suny Press.

[9] Ifenthaler, D., & Schumacher, C. (2016). Student perceptions
of privacy principles for learning analytics. Educational
Technology Research and Development, 64(5), 923-938.

[10] Kimmons, R., Carpenter, J. P., Veletsianos, G., & Krutka, D.
G. (2018). Mining social media divides: an analysis of K-12
US School uses of Twitter. Learning, media and technology,
43(3), 307-325.

[11] Kimmons, R., Rosenberg, J.M., & Allman, B. (2021). Trends
in educational technology: What Facebook, Twitter, and
Scopus can tell us about current research and practice.
TechTrends, 1-12.
https://link.springer.com/article/10.1007/s11528-021-00589-
6

[12] Kimmons, R., & Veletsianos, G. (2018). Public internet data
mining methods in instructional design, educational
technology, and online learning research. TechTrends, 62(5),
492-500.

[13] Kimmons, R., Veletsianos, G., & Woodward, S. (2017).
Institutional uses of Twitter in US higher education.
Innovative Higher Education, 42(2), 97-111.

[14] Kosinski, M. (2021). Facial recognition technology can
expose political orientation from naturalistic facial images.
Scientific Reports, 11(1), 1-7.

[15] Madden, M., Lenhart, A., Cortesi, S., Gasser, U., Duggan,
M., Smith, A., & Beaton, M. (2013). Teens, social media,
and privacy. Pew Research Center, 21(1055), 2-86.

[16] Marín, V. I., Carpenter, J. P., & Tur, G. (2021). Pre‐service
teachers’ perceptions of social media data privacy policies.
British Journal of Educational Technology, 52(2), 519-535.

[17] Marwick, A. E., & Boyd, D. (2014). Networked privacy:
How teenagers negotiate context in social media. New Media
& Society, 16(7), 1051-1067.

[18] Michela, E., Rosenberg, J. M., Sultana, O., Burchfield, M.A.,
Thomas, T., & Kimmons, R. (2021, April). “Life will
eventually get back to normal”: School districts’ Twitter use
in response to COVID-19. Presentation at the American
Educational Research Association Annual Meeting, Orlando,
FL.

[19] National Center for Education Statistics. (2021). Common
core of data. https://nces.ed.gov/ccd/

[20] R Core Team (2021). R: A language and environment for
statistical computing. https://www.r-project.org/s

[21] Romero-Hall, E., Kimmons, R., & Veletsianos, G. (2018).
Social media use by instructional design departments.
Australasian Journal of Educational Technology, 34(5).

[22] Rosenberg, J. M., Greenhalgh, S. P., Koehler, M. J.,
Hamilton, E. R., & Akcaoglu, M. (2016). An investigation of
state educational Twitter hashtags (SETHs) as affinity
spaces. E-learning and Digital Media, 13(1-2), 24-44.

[23] Smith, M., Szongott, C., Henne, B., & Von Voigt, G. (2012,
June). Big data privacy issues in public social media. In 2012
6th IEEE international conference on digital ecosystems and
technologies (DEST) (pp. 1-6). IEEE.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 749

Towards Explainable Student Group Collaboration
Assessment Models Using Temporal Representations of

Individual Student Roles

Anirudh Som
Center for Vision Technologies

SRI International
anirudh.som@sri.com

Sujeong Kim
Center for Vision Technologies

SRI International
sujeong.kim@sri.com

Bladimir Lopez-Prado
Center for Education

Research and Innovation
SRI International
bladimir.lopez-
prado@sri.com

Svati Dhamija
Center for Vision Technologies

SRI International
svati.dhamija@sri.com

Nonye Alozie
Center for Education

Research and Innovation
SRI International

maggie.alozie@sri.com

Amir Tamrakar
Center for Vision Technologies

SRI International
amir.tamrakar@sri.com

ABSTRACT
Collaboration is identified as a required and necessary skill
for students to be successful in the fields of Science, Technol-
ogy, Engineering and Mathematics (STEM). However, due
to growing student population and limited teaching staff it is
difficult for teachers to provide constructive feedback and in-
still collaborative skills using instructional methods. Devel-
opment of simple and easily explainable machine-learning-
based automated systems can help address this problem.
Improving upon our previous work, in this paper we propose
using simple temporal-CNN deep-learning models to assess
student group collaboration that take in temporal represen-
tations of individual student roles as input. We check the ap-
plicability of dynamically changing feature representations
for student group collaboration assessment and how they
impact the overall performance. We also use Grad-CAM
visualizations to better understand and interpret the impor-
tant temporal indices that led to the deep-learning model’s
decision.

Keywords
K-12, Education, Collaboration Assessment, Explainable,
Deep-Learning, CNN, Grad-CAM, Cross-modal Analysis.

1. INTRODUCTION
Collaboration is considered a crucial skill, that needs to be
inculcated in students early on for them to excel in STEM
fields [24, 6]. Traditional instruction-based methods [14, 7]
can often make it difficult for teachers to observe several stu-
dent groups and identify specific behavioral cues that con-

tribute or detract from the collaboration effort [20, 15, 25].
This has resulted in a surge in interest to develop machine-
learning-based automated systems to assess student group
collaboration [17, 11, 12, 8, 1, 9, 26, 23, 21, 4, 27, 22].

In our earlier work we developed a multi-level, multi-modal
conceptual model that serves as an assessment tool for indi-
vidual student behavior and group-level collaboration qual-
ity [2, 3]. Using the conceptual model as a reference, in a dif-
ferent paper we developed simple MLP deep-learning mod-
els that predict student group collaboration quality from
histogram representations of individual student roles [22].
Please refer to the following papers for more information
and for the illustration of the conceptual model [2, 3, 22].
Despite their simplicity and effectiveness, the MLP mod-
els and histogram representations lack explainability and in-
sight into the important student dynamics. To address this,
in this paper we focus on using simple temporal-CNN deep
learning models to check the scope of dynamically chang-
ing temporal representations for student group collaboration
assessment. We also use Grad-CAM visualizations to help
identify important temporal instances of the task performed
and how they contribute towards the model’s decision.

Paper Outline: Section 2 provides necessary background on
the different loss functions used, dataset description and the
temporal features extracted. Section 3 describes the exper-
iments and results. Section 4 concludes the paper.

2. BACKGROUND

2.1 Cross-Entropy Loss Functions
The categorical-cross-entropy loss is the most commonly used
loss function to train deep-learning models. For a classifica-
tion problem with C classes, let us denote the input variables
as x, ground-truth label vector as y and the predicted prob-
ability distribution as p. Given a training sample (x,y), the
categorical-cross-entropy (CE) loss is defined as

Anirudh Som, Sujeong Kim, Bladimir Lopez-Prado, Svati Dhamija, Nonye
Alozie and Amir Tamrakar “Towards Explainable Student Group Collab-
oration Assessment Models Using Temporal Representations of Individual
Student Roles”. 2021. In: Proceedings of The 14th International Confer-
ence on Educational Data Mining (EDM21). International Educational Data
Mining Society, 750-754. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

750 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 1: Coding rubric for Level A and Level B2.
Level A Level B2

Group guide/Coordinator [GG]
Effective [E] Contributor (Active) [C]

Satisfactory [S] Follower [F]
Progressing [P] Conflict Resolver [CR]

Needs Improvement [NI] Conflict Instigator/Disagreeable [CI]
Working Independently [WI] Off-task/Disinterested [OT]

Lone Solver [LS]

Table 2: Inter-rater reliability (IRR) measurements.
Level Average Agreement Cohen’s Kappa

A 0.7046 0.4908
B2 0.6741 0.5459

CEx(p,y) = −
C∑

i=1

yi log(pi) (1)

Here, pi denotes the predicted probability of the i-th class.
Note, both y and p are of length C, with

∑
i yi =

∑
i pi = 1.

From Equation 1, it’s clear that for imbalanced datasets the
learnt weights of the model will be biased towards classes
with the most number of samples in the training set. Ad-
ditionally, if the label space exhibits an ordered structure,
the categorical-cross-entropy loss will only focus on the pre-
dicted probability of the ground-truth class while ignoring
how far off the incorrectly predicted sample actually is. These
limitations can be addressed to some extent by using the
ordinal-cross-entropy (OCE) loss function [22], defined in
Equation 2.

OCEx(p,y) = − (1 + w)

C∑
i=1

yi log(pi)

w = |argmax(y)− argmax(p)|

(2)

Here, (1 + w) represents the weighting variable, argmax re-
turns the index of the maximum valued element and |.| re-
turns the absolute value. When training the model, w = 0
for correctly classified training samples, with the ordinal-
cross-entropy loss behaving exactly like the categorical-cross-
entropy loss. However, for misclassified samples the ordinal-
cross-entropy loss will return a higher loss value. The in-
crease in loss is proportional to how far away a sample is
misclassified from its ground-truth class label.

2.2 Dataset Description
We collected audio and video recordings from 15 student
groups, across five middle schools. Out of the 15 groups,
13 groups had 4 students, 1 group had 3 students, and 1
group had 5 students. The student volunteers completed
a brief survey that collected their demographic information
and other details, e.g., languages spoken, ethnicity and com-
fort levels with science concepts. Each group was tasked
with completing 12 open-ended life science and physical sci-
ence tasks, which required them to construct models of dif-
ferent science phenomena as a team. They were given one

Student-1

Student-2

Student-3

Student-4

Student-5

Minute 1 Minute 2 Minute 3 Minute 4 Minute 5 Minute 24

Maximum Task Duration

Level B2 Temporal Representation

Figure 1: Level B2 temporal representation for a group hav-
ing only 4 students and finishing the assigned task in 4 min-
utes. Colored cells illustrate the different Level B2 codes as
described in Table 1, and the gray cells represent empty or
unassigned codes.

hour to complete as many tasks possible, which resulted in
15 hours of audio and video recordings. They were provided
logistic and organization instructions but received no help
in group dynamics, group organization, or task completion.

Next, the data recordings were manually annotated by edu-
cation researchers at SRI International. For the rest of the
paper we will refer to them as coders/annotators. In our
hierarchical conceptual model [2, 3], we refer to the collabo-
ration quality annotations as Level A and individual student
role annotations as Level B2. The coding rubric for these
two levels is described in Table 1. Both levels were coded by
three annotators. They had access to both audio and video
recordings and used ELAN (an open-source annotation soft-
ware) to annotate. A total of 117 tasks were coded by each
annotator, with the duration of each task ranging from 5 to
24 minutes. Moderate-agreement was observed across the
coders as seen from the inter-rater reliability measurements
in Table 2.

Level A codes represent the target label categories for our
classification problem. To determine the ground-truth Level
A code, the majority vote (code) across the three annotators
was used as the ground-truth. For cases where a majority
was not possible, we used the Level A code ordering depicted
in Table 1 to determine the median as ground-truth of the
three codes. For example, if the three coders assigned Satis-
factory, Progressing, Needs Improvement for the same task
then Progressing would be used as the ground-truth label.
Note, we did not observe a majority Level A code for only
2 tasks. To train the machine learning models we only had
351 data samples (117 tasks × 3 coders).

2.3 Temporal Representation
In our dataset, the longest task was little less than 24 min-
utes, due to which the length for all tasks was also set to
24 minutes. Level B2 was coded using fixed-length 1 minute
segments, as illustrated in Figure 1. Due to its fixed-length
nature, we assigned an integer value to each B2 code, i.e.,
the seven B2 codes were assigned values from 1 to 7. The
value 0 was used to represent segments that were not as-
signed a code. For example, in Figure 1 we see a group of 4
students completing a task in just 4 minutes, represented by
the colored cells. The remaining 20 minutes and the 5th stu-
dent is assigned a value zero, represented by the gray cells.
Thus for each task, Level B2 temporal features will have a
shape 24× 5, with 24 representing number of minutes and 5

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 751

representing number of students in the group.

Baseline Histogram Representation: We compare the perfor-
mance of the temporal representations against simple his-
togram representations [22]. The histogram representations
were created by pooling over all the codes observed over the
duration of the task and across all the students. Note, only
one histogram was generated per task, per group. Once the
histogram is generated we normalize it by dividing by the
total number of codes in the histogram. Normalizing the
histogram removes the temporal aspect of the task. For ex-
ample, if group-1 took 10 minutes to solve a task and group-
2 took 30 minutes to solve the same task, but both groups
were assigned the same Level A code despite group-1 fin-
ishing the task sooner. The raw histogram representations
of both these groups would look different due to the dif-
ference in number of segments coded. However, normalized
histograms would make them more comparable. Despite the
normalized histogram representation being simple and effec-
tive, it fails to offer any insight or explainability.

3. EXPERIMENTS
Network Architecture: For the temporal-CNN deep learning
model we used the temporal ResNet architecture described
in [28]. The ResNet architecture uses skip connections be-
tween each residual block to help avoid the vanishing gra-
dient problem. It has shown state-of-the-art performance
in several computer vision applications [10]. Following [28],
our ResNet model consists of three residual blocks stacked
over one another, followed by a global-average-pooling layer
and a softmax layer. The number of filters for each residual
block was set to 64, 128, 128 respectively. The number of
learnable parameters for the B2 temporal representations is
506949. We compare the performance of the ResNet model
to the MLP models described in our previous work. Inter-
ested readers should refer to [22] for more information about
the baseline MLP model that was used with the histogram
representation.

Training and Evaluation Protocol: All models were devel-
oped using Keras with TensorFlow backend [5]. We used the
Adam optimizer [13] and trained all models for 500 epochs.
The batch-size was set to one-tenth of the number of train-
ing samples during any given training-test split. We opti-
mized over the Patience and Minimum-Learning-Rate hy-
perparameters, that were set during the training process.
We focused on these as they significantly influenced the
model’s classification performance. The learning-rate was
reduced by a factor of 0.5 if the loss did not change after a
certain number of epochs, indicated by the Patience hyper-
parameter. We saved the best model that gave us the lowest
test-loss for each training-test split. We used a round-robin
leave-one-group-out cross validation protocol. This means
that for our dataset consisting of g student groups, for each
training-test split we used data from g − 1 groups for train-
ing and the left-out group was used as the test set. This
was repeated for all g groups and the average result was re-
ported. For our experiments g = 14 though we have tempo-
ral representations from 15 student groups. This is because
all samples corresponding to the Effective class were found
only in one group. Due to this reason and because of our
cross-validation protocol we do not see any test samples for
the Effective class.

Table 3: Weighted precision, weighted recall and weighted
F1-score Mean±Std for the best MLP and ResNet models
under different settings.

Feature Classifier
Weighted
Precision

Weighted
Recall

Weighted
F1-Score

B2
Histogram

SVM 84.45±13.43 73.19±16.65 76.92±15.39
MLP - Cross-Entropy Loss 83.72±16.50 86.42±10.44 84.40±13.85
MLP - Cross-Entropy Loss

+ Class-Balancing
83.93±17.89 85.29±14.37 84.16±16.23

MLP - Ordinal-Cross-Entropy Loss 86.96±14.56 88.78±10.36 87.03±13.16
MLP - Ordinal-Cross-Entropy Loss

+ Class-Balancing
86.73±14.43 88.20±9.66 86.60±12.54

B2
Temporal

ResNet - Cross-Entropy Loss 84.75±13.21 83.10±11.92 82.72±12.74
ResNet - Cross-Entropy Loss

+ Class-Balancing
84.03±15.13 83.28±11.42 82.97±12.84

ResNet - Ordinal-Cross-Entropy Loss 85.24±15.68 87.23±10.52 85.56±13.38
ResNet - Ordinal-Cross-Entropy Loss

+ Class-Balancing
84.34±15.75 87.88±11.22 85.68±13.58

3.1 Temporal vs Histogram Representations
Here, we compare the performance of the ResNet and MLP
models. Using the weighted F1-score performance, Table 3
summarizes the best performing ResNet and MLP models
for the different feature-classifier variations. The table also
provides the weighted precision and recall metrics. Bold val-
ues in the table represent the best classifier across the differ-
ent feature-classifier settings. The ordinal-cross-entropy loss
with or without class-balancing shows the highest weighted
F1-score performance for both feature types. Here, class-
balancing refers to weighting each data sample by a weight
that is inversely proportional to the number of data samples
corresponding to that sample’s ground-truth label.

At first glance, the ResNet models perform slightly less than
the MLP models. This could easily lead us to believe that
simple histogram representations are enough to achieve a
higher classification performance than the corresponding tem-
poral representations. However, despite the performance dif-
ferences, the temporal features and ResNet models help bet-
ter explain and pin-point regions in the input feature space
that contribute the most towards the model’s decision. This
is important if one wants to understand which student roles
are most influential in the model’s prediction. We will go
over this aspect in more detail in the next section.

3.2 Grad-CAM Visualization
Grad-CAM uses class-specific gradient information, flowing
into the final convolutional layer to produce a coarse local-
ization map that highlights the important regions in the
input feature space [19]. It is primarily used as a post
hoc analysis tool and is not used in any way to train the
model. Figure 2 illustrates how Grad-CAM can be used for
our classification problem. We show two different samples
from the Satisfactory, Progressing and Needs Improvement
classes respectively. Each sample shows a group consist-
ing of 4 students that completed the task in 5 to 8 minutes.
Technically one can obtain C Grad-CAM maps for a C-class
classification problem. Here, the samples shown correspond
to the class predicted by the ResNet model, which is also
the ground-truth class. It’s clear how the Grad-CAM high-
lights regions in the input feature space that contributed
towards the correct prediction. For instance, in the Needs
Improvement examples, the Grad-CAM map shows the high-
est weight on the fourth minute. At that time for the first
example, the codes for three of the students become Off-
task/Disinterested. Similarly, for the second example we
notice three of the students become Lone Solvers and the

752 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

1 32 4 5 76 8 9 1110 12 13 1514 16 17 1918 20 21 2322 241 32 4 5 76 8 9 1110 12 13 1514 16 17 1918 20 21 2322 24

Needs Improvement Samples

Off-task / Disinterested

Lone Solver Conflict Instigator / Disagreeable

Conflict Resolver

Follower

Contributor

Group guide / Coordinator

Empty

Student-1

Student-2

Student-3

Student-4

Student-5

Minutes

Student-1

Student-2

Student-3

Student-4

Student-5

Minutes

1 32 4 5 76 8 9 1110 12 13 1514 16 17 1918 20 21 2322 24

Student-1

Student-2

Student-3

Student-4

Student-5

Grad-CAM

Minutes
1 32 4 5 76 8 9 1110 12 13 1514 16 17 1918 20 21 2322 24

Satisfactory Samples

Student-1

Student-2

Student-3

Student-4

Student-5

Minutes

0.00
0.25
0.50
0.75
1.00

Grad-CAM

0.00
0.25
0.50
0.75
1.00

1 32 4 5 76 8 9 1110 12 13 1514 16 17 1918 20 21 2322 24 1 32 4 5 76 8 9 1110 12 13 1514 16 17 1918 20 21 2322 24

Progressing Samples

Student-1

Student-2

Student-3

Student-4

Student-5

Minutes

Student-1

Student-2

Student-3

Student-4

Student-5

Minutes

Grad-CAM

0.00
0.25
0.50
0.75
1.00

Grad-CAM

0.00
0.25
0.50
0.75
1.00

Grad-CAM

0.00
0.25
0.50
0.75
1.00

Grad-CAM

0.00
0.25
0.50
0.75
1.00

Figure 2: Grad-CAM visualization for two different temporal samples from different Level-A classes.

fourth student becomes a Follower. This is in stark contrast
to the minute before when two of the students were Follow-
ers and the other two were Contributors. We also notice less
importance being given to the Empty codes. These changes
in roles and the Grad-CAM weights across the task make
sense and help promote explainability in our deep learning
models.

4. CONCLUSION
In this paper we proposed using simple temporal represen-
tations of individual student roles together with temporal
ResNet deep-learning architectures for student group col-
laboration assessment. Our objective was to develop more
explainable systems that allow one to understand which in-
stances in the input feature space led to the deep-learning
model’s decision. We suggested use of Grad-CAM visualiza-
tion along the temporal dimension to assist in locating im-
portant time instances in the task performed. We compared
the performance of the proposed temporal representations
against simpler histogram representations from our previ-
ous work [22]. While histogram representations can help
achieve high classification performance, they do not offer
the same key insights that one can get using the temporal
representations.

Limitations and Future Work: The visualization tools and
findings discussed in this paper can help guide and shape
future work in this area. Having said that our approach

can be further extended and improved in several ways. For
example, we only discuss Grad-CAM maps along the tem-
poral dimensions. This only allows us to identify impor-
tant temporal instances of the task but does not focus on
the important student interactions. The current setup does
not tell us which subset of students are interacting and how
that could affect the overall group dynamic and collabora-
tion quality. To address this we intend on exploring other
custom deep-learning architectures and feature representa-
tion spaces. We also plan on using other tools like LIME [18]
and SHAP [16]. These packages compute the importance of
the different input features and help towards better model
explainability and interpretability. Also we only focused on
mapping deep learning models from individual student roles
to overall group collaboration. In the future we intend on ex-
ploring other branches in the conceptual model, described in
[2, 3]. We also plan on developing recommendation systems
that can assist and guide students to improve themselves
by suggesting what they need to take on. The same sys-
tem could also be tweaked specifically for teachers to give
them insight on how different student interactions could be
improved to facilitate better group collaboration.

5. ACKNOWLEDGEMENT
This work was supported in part by NSF grant number
2016849.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 753

6. REFERENCES
[1] G. Alexandron, J. A. Ruipérez-Valiente, and D. E.

Pritchard. Towards a general purpose anomaly
detection method to identify cheaters in massive open
online courses. 2020.

[2] N. Alozie, S. Dhamija, E. McBride, and A. Tamrakar.
Automated collaboration assessment using behavioral
analytics. 2020.

[3] N. Alozie, E. McBride, and S. Dhamija. Collaboration
conceptual model to inform the development of
machine learning models using behavioral analytics.
2020.

[4] A. R. Anaya and J. G. Boticario. Application of
machine learning techniques to analyse student
interactions and improve the collaboration process.
Expert Systems with Applications, 38(2):1171–1181,
2011.

[5] F. Chollet et al. Keras. https://keras.io, 2015.

[6] W. R. Daggett and D. S. GendroO. Common core
state standards initiative. International center, 2010.

[7] N. Davidson and C. H. Major. Boundary crossings:
Cooperative learning, collaborative learning, and
problem-based learning. Journal on excellence in
college teaching, 25, 2014.

[8] C. Genolini and B. Falissard. Kml: A package to
cluster longitudinal data. Computer methods and
programs in biomedicine, 104(3):e112–e121, 2011.

[9] Z. Guo and R. Barmaki. Collaboration analysis using
object detection. In EDM, 2019.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[11] K. Huang, T. Bryant, and B. Schneider. Identifying
collaborative learning states using unsupervised
machine learning on eye-tracking, physiological and
motion sensor data. International Educational Data
Mining Society, 2019.

[12] J. Kang, D. An, L. Yan, and M. Liu. Collaborative
problem-solving process in a science serious game:
Exploring group action similarity trajectory.
International Educational Data Mining Society, 2019.

[13] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[14] J. S. Krajcik and P. C. Blumenfeld. Project-based
learning. na, 2006.

[15] M. L. Loughry, M. W. Ohland, and
D. DeWayne Moore. Development of a theory-based
assessment of team member effectiveness. Educational
and psychological measurement, 67(3):505–524, 2007.

[16] S. Lundberg and S.-I. Lee. A unified approach to
interpreting model predictions. arXiv preprint
arXiv:1705.07874, 2017.

[17] J. M. Reilly and B. Schneider. Predicting the quality
of collaborative problem solving through linguistic
analysis of discourse. International Educational Data
Mining Society, 2019.

[18] M. T. Ribeiro, S. Singh, and C. Guestrin. ” why
should i trust you?” explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD

international conference on knowledge discovery and
data mining, pages 1135–1144, 2016.

[19] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam,
D. Parikh, and D. Batra. Grad-cam: Visual
explanations from deep networks via gradient-based
localization. In Proceedings of the IEEE international
conference on computer vision, pages 618–626, 2017.

[20] K. A. Smith-Jentsch, J. A. Cannon-Bowers, S. I.
Tannenbaum, and E. Salas. Guided team
self-correction: Impacts on team mental models,
processes, and effectiveness. Small Group Research,
39(3):303–327, 2008.

[21] A. Soller, J. Wiebe, and A. Lesgold. A machine
learning approach to assessing knowledge sharing
during collaborative learning activities. 2002.

[22] A. Som, S. Kim, B. Lopez-Prado, S. Dhamija,
N. Alozie, and A. Tamrakar. A machine learning
approach to assess student group collaboration using
individual level behavioral cues. In European
Conference on Computer Vision Workshops, pages
79–94. Springer, 2020.

[23] D. Spikol, E. Ruffaldi, and M. Cukurova. Using
multimodal learning analytics to identify aspects of
collaboration in project-based learning. Philadelphia,
PA: International Society of the Learning Sciences.,
2017.

[24] N. L. States. Next generation science standards: For
states, by states. The National Academies Press, 2013.

[25] S. Taggar and T. C. Brown. Problem-solving team
behaviors: Development and validation of bos and a
hierarchical factor structure. Small Group Research,
32(6):698–726, 2001.

[26] L. Talavera and E. Gaudioso. Mining student data to
characterize similar behavior groups in unstructured
collaboration spaces. In Workshop on artificial
intelligence in CSCL. 16th European conference on
artificial intelligence, pages 17–23. Citeseer, 2004.

[27] H. Vrzakova, M. J. Amon, A. Stewart, N. D. Duran,
and S. K. D’Mello. Focused or stuck together:
Multimodal patterns reveal triads’ performance in
collaborative problem solving. In Proceedings of the
Tenth International Conference on Learning Analytics
& Knowledge, pages 295–304, 2020.

[28] Z. Wang, W. Yan, and T. Oates. Time series
classification from scratch with deep neural networks:
A strong baseline. In 2017 International joint
conference on neural networks (IJCNN), pages
1578–1585. IEEE, 2017.

754 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

The CommonLit Ease of Readability (CLEAR) Corpus
Scott Crossley

Georgia State University
Atlanta, GA 30303
scrossley@gsu.edu

Jordan Bachelor

Georgia State University
Atlanta, GA 30303
jbatchelor@gsu.edu

Aron Heintz
CommonLit

Washington, DC 20003
aron.heintz@commonlit.org

Mehrnoush Karimi

Georgia State University
Atlanta, GA 30303

mkarimi3@student.gsu.edu

Joon Choi
Georgia State University

Atlanta, GA 30303
jchoi92@gsu.edu

Agnes Malatinszky

CommonLit
Washington, DC 20003

agnes.malatinszky@commonlit.org

ABSTRACT
In this paper, we introduce the Commonlit Ease of Readability
(CLEAR) corpus. The corpus provides researchers within the
educational data mining community with a resource from which
to develop and test readability metrics and to model text
readability. The CLEAR corpus improves on previous readability
corpora include size (N = ~5,000 reading excerpts), the breadth of
the excerpts available, which cover over 250 years of writing in
two different genres, and the readability criterion used (teachers’
ratings of text difficulty for their students). This paper discusses
the development of the corpus and presents reliability metrics as
well as initial analyses of readability.

Keywords

Text readability, corpus linguistics, pairwise comparisons

1. INTRODUCTION
Reading is an essential skill for academic success. One important
way to support and scaffold literacy challenges faced by students
is to match text difficulty to their reading abilities. Providing
students with texts that are accessible and well matched to their
abilities helps to ensure that students better understand the text
and, over time, can help readers improve their reading skills.
Readability formulas, which provide an overview of text
difficulty, have shown promise in more accurately benchmarking
students with their text difficulty level, allowing students to read
texts at target readability levels.

Most educational texts are matched to readers using traditional
readability formulas like Flesch-Kincaid Grade Level (FKGL)
[19] or commercially available formulas such as Lexile [30] or the
Advantage-TASA Open Standard (ATOS) [29]. However, both
types of readability formulas are problematic. Traditional
readability formulas lack construct and theoretical validity
because they are based on weak proxies of word decoding (i.e.,
characters or syllables per word) and syntactic complexity (i.e.,
number or words per sentence) and ignore many text features that

are important components of reading models including text
cohesion and semantics. Additionally, many traditional readability
formulas were normed using readers from specific age groups on
small corpora of texts taken from specific domains. Commercially
available readability formulas are not publicly available, may not
have rigorous reliability tests, and may be cost-prohibitive for
many schools and districts let alone teachers.

In this paper, we introduce the open-source the CommonLit Ease
of Readability (CLEAR) corpus. The corpus is a collaboration
between CommonLit, a non-profit education technology
organization focused on improving reading, writing,
communication, and problem-solving skills, and Georgia State
University (GSU) with the end goal of promoting the
development of more advanced and open-source readability
formulas that government, state, and local agencies can use in
testing, materials selection, material creation, and other
applications commonly reserved for readability formulas. The
formulas that will be derived from the CLEAR corpus will be
open-source and ostensibly based on more advanced natural
language processing (NLP) features that better reflect the reading
process. The accessibility of these formulas and their reliability
should lead to immediate uptake by students, teachers, parents,
researchers, and others, increasing opportunities for meaningful
and deliberate reading experiences. We outline the importance of
text readability along with concerns about previous readability
formulas below. As well, we present the methods used to develop
the CLEAR corpus. We then examine how well traditional and
newer readability formulas correlate with the reading criteria
reported in the CLEAR corpus and discuss next steps.

2. TEXT READABILITY

Text readability can be defined as the ease with which a text can
be read (i.e., processed) and understood in terms of the linguistic
features found in that text [9][27]. However, in practice, many
readability formulas are more focused on measuring text
understanding (e.g., [18]) than text processing.

Text comprehension is generally associated with word
sophistication, syntactic complexity, and discourse structures
[17][31], three features whose textual elements relate to text
complexity. For example, many studies have revealed that word
sophistication features such as sound and spelling relationships
between words [16][25], word familiarity and frequency [15], and
word imageability and concreteness [28] can result in faster word
processing and more accurate word decoding. The meaning of

 Scott Crossley, Aron Heintz, Joon Choi, Jordan Batchelor,
Mehrnoush Karimi and Agnes Malatinszky “The CommonLit Ease
of Readability (CLEAR) Corpus”. 2021. In: Proceedings of
The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 755-760.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 755

words, or semanticity, also plays an important role in text
readability, in that readers must be able to recognize words and
know their meaning [26]. Therefore, word semanticity and larger
text segments can facilitate the linking of common themes and
easier processing based on background knowledge and text
familiarity [1][23].

Effective readers should also be able to parse syntactic structures
within a text to help organize main ideas and assign thematic roles
where necessary [13][26]. Two features that allow for quicker
syntactic parsing are words or morphemes per t-unit [8] and
sentence length [21]. Parsing information in the text helps readers
develop larger discourse structures that result in a discourse thread
[14]. These structures, which relate to text cohesion, can be
partially constructed using linguistic features that link words and
concepts within and across syntactic structures [12]. Sensitivity to
these cohesion structures allows readers to build relationships
between words, sentences, and paragraphs, aiding in the
construction of knowledge representations [4][20][23]. Moreover,
such sensitivity can help readers understand larger discourse
segments in texts [11][26].

Traditional readability formulas tend use only proxy estimates for
measuring lexical and syntactic features. Moreover, they disregard
the semantic features and discourse structures of texts. For
instance, these formulas ignore text features including text
cohesion [4][20][23][24] and style, vocabulary, and grammar,
which play important roles in text readability [1]. Additionally,
the reading criteria used to develop traditional formulas are often
based on multiple-choice questions and cloze tests, two methods
that may not measure text comprehension accurately [22]. Finally,
traditional readability formulas are suspect because they have
been normed using readers from specific age groups and using
small corpora of texts from specific domains.
Newer formulas, both commercial and academic, generally
outperform traditional readability formulas. These formulas rely
on more advanced NLP features, although this may not be the
case with commercial formulas for which text features within the
formulas are proprietary and, thus, not publicly available. Newer
formulas come with their own issues though. For instance,
commercially available formulas, such as the Lexile framework
[30] and the Advantage-TASA Open Standard for Readability
(ATOS) formula [29], often lack suitable validation studies. In
addition, accessing commercially available formulas may come at
a financial cost that is unaffordable for some schools and
education technology organizations. Academic formulas such as
the Crowdsourced Algorithm of Reading Comprehension
(CAREC) [7] have been validated through rigorous empirical
studies, are transparent in their underlying features, and are free to
the public. However, the datasets on which they have been
developed, while much larger than traditional readability
formulas, can still be considered as relatively small and specific.
The populations the formulas are trained on (i.e., adults) may also
not generalize well to other target populations like young students.

3. CURRENT STUDY
We hope to spur innovation to address many of the concerns
noted above in reference to both traditional and newer readability
formulas by publicly releasing the CommonLit Ease of
Readability (CLEAR) corpus as well as hosting an open-source
competition to develop readability formulas based on the CLEAR
corpus. We hope that these formulas outperform existing
readability formulas and can be used to better match 3rd-12th grade

students to texts, thus improving learning outcomes in primary
and secondary classrooms.

4. THE CLEAR CORPUS
4.1 Corpus Collection
We collected text excerpts from the CommonLit organization’s
database, Project Gutenberg, Wikipedia, and dozens of other open
digital libraries. Excerpts were selected from the beginning,
middle, and end of texts and only one sample was selected per
text. Text excerpts were selected to be between 140-200 words,
with all excerpts beginning and ending at an idea unit (i.e., we did
not cut excerpts in the middle of sentences or ideas). The text
excerpts were written between 1791 and 2020, with the majority
of excerpts selected between 1875 and 1922 (when copyrights
expired) and between 2000 and 2020 (when non-copyright texts
were available on the internet). Visualizations of these trends are
available in Figure 1.

Figure 1

Excerpts were selected from two genres: informational and
literature texts. We started with an initial sample of ~7,600 texts.
Each excerpt was read by at least two raters and judged on
acceptability. The two major criteria for acceptability were the
likelihood of being used in a 3rd-12th grade classroom and
whether or not the topic was appropriate. We used Motion Picture
Association of America (MPAA) ratings (e.g., G, PG, PG-13) to
flag texts by appropriateness. Texts that were flagged as
potentially inappropriate were then read by an expert rater and
either included or excluded from the corpus. We also conducted
automated searches for traumatic terms (e.g., terms related to
racism, genocide, or sexual assault). Any excerpt flagged for
traumatic terms was also reviewed by an expert rater. Lastly, we
limited author representation such that each author had no more
than 12 excerpts within the corpus. After removing excerpts based
on these criteria, we were left with 4793 excerpts. These excerpts
were copy-edited to ensure texts did not contain grammatical,
syntactic, and spelling errors. Punctuation was also standardized
in the texts, as were line-breaks. Lastly, selected archaic spellings
(e.g., to-day, Servia) were replaced with modern spellings (e.g.,
today, Serbia) and identified British English spellings were
converted to American spellings.

4.2 Human Ratings of Readability
We recruited ~1,800 teachers from the CommonLit teacher pool
through an e-mail marketing campaign. Teachers were asked to
participate in an online collection experiment. They were

756 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

expected to read 100 pairs of excerpts and make a judgment for
each pair as to which excerpt was easier to understand. Teachers
were paid $50 in an Amazon gift card for their participation.

4.3 Data Collection Site
We developed an online data collection website. The basic format
of the site was to show two excerpts side by side and ask
participants to judge which of the two texts would be easier for a
student to understand using a checkbox format. There were two
additional buttons on the website. The first moved the participant
to the next comparison and the second allowed participants to
pause the experiment. The website also included a progress tally
to show participants how many comparisons they had made (see
Figure 2 for screenshot of pairwise comparison task).

Figure 2

The website first provided participants with informed consent and
an overview of the expectations. The website then collected
simple demographic information and survey information about
reading/writing and television habits. Participants were then given
a practice excerpt comparison to familiarize them with the design.
After the practice comparison, participants moved forward with
the data collection. Excerpts were paired randomly, and excerpts
were shown on either the right or left-side panel randomly. The
licensing information and the uniform resource locator (URL) for
each text were displayed on the bottom side of each panel.
Participants were redirected to a break screen after completing
every 20 comparisons. The break screen showed how much time
(in total and per comparison) the participant had spent on the task.
A button allowing the participant to continue to the next
comparison appeared after spending one minute on the break
screen, meaning that the participants were required to take at least
a one-minute break per 20 comparisons. After completing 100
comparisons, the participants were given a completion code that
they could redeem for the gift card. The website was written in
Python, JavaScript, CSS, and HTML. The website was housed on
a cloud server.

4.4 Participant Reliability
Of the ~1,800 participants that initially logged into the
experiment, 1,198 completed the entire experiment. However, not
all participant data was kept. We removed participants who did
not complete the entire experiment. We also removed participants
to increase the reliability of the pairwise scores based on deviant
patterns and time spent on judgments. In terms of deviant patterns,
we removed all participants who selected excerpts in either the
right or left panel more than 70% of the time. We also removed
participants who had binary patterns of selecting left/right or
right/left panels more than 20 times in a row. In terms of time

spent on judgments, we removed participants who spent less than
10 seconds on average per comparison and/or spent a median time
under 5 seconds. After removing participants based on patterns
and time, we were left with data from 1,116 participants. Those
participants made 111,347 overall comparison judgments (M =
99.773 judgments per participant). On average, each excerpt was
read 46.47 times and participants spent an average of 101.36
seconds per judgment. However, we did not remove participants
for taking too long on judgments, especially since pauses were
allowed. Thus, our data for time was right skewed.

4.5 Pairwise Rankings for Readability
To calculate pairwise comparison scores for the human judgments
of text ease, we used a Bradley-Terry model [3]. A Bradley-Terry
model describes the probabilities of the possible outcomes when
items are judged against one another in pairs (see Equation 1).
The Bradley-Terry model ranks documents by difficulty based on
each excerpt's probability to be easier than other excerpts. The
model creates a maximum likelihood estimate which iteratively
converges towards a unique maximum that defines the ranking of
the excerpts (i.e., the easiest texts have the highest probability).

Equation 1: Bradley-Terry Model

P(〖text〗_i more difficult than 〖text〗_j)=γ_i/(γ_i+γ_j)

After computation, the Bradley-Terry model provides a
coefficient for each text along with a standard error. We examined
both coefficients and standard errors for outliers. We found 52
texts that had a coefficient with a standard deviation greater than
2.5 and additional 17 excerpts with a standard error greater than
0.65. These were removed from the final dataset leaving us with a
sample size of 4,724. We conducted two additional analyses of the
final data set in terms of differences in Bradley-Terry coefficients
between informational and literature texts and trends in the
coefficients as a function of time of publication for the texts.

As expected, we found significant differences between
informational and literature texts such that informational texts
were rated significantly more difficult (t(4723) = -20.95, p <
.001), with a moderate effect size (d = -0.61). See Figure 2 for a
box plot depicting this difference in text categories. In addition,
we used a Pearson’s correlation test to test whether Bradley-Terry
coefficients were correlated with the texts’ year of publication,
finding a weak correlation, r(4722) = .20, p < .001). Thus, more
recent passages were often rated as simpler than older passages
(see Figure 1).

Figure 3

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 757

4.6 Pairwise Scoring Validation Checks
To examine convergent validity for the pairwise scores, we
examined correlations between the scores and classic and newer
readability formulas. The formulas we included were Flesch
Reading Ease, Flesch Kincaid Grade Level, the New Dale-Chall,
and the Crowdsourced Algorithm of Reading Comprehension [7].
All formulas were calculated using the Automatic Readability
Tool for English (ARTE) [6]. ARTE provides free and easy
access to a wide range of readability formulas and is available at
linguisticanalysistools.org. ARTE automatically calculates
different readability formulas for batches of texts (i.e., thousands
of texts can be run at a time) and produces readability scores for
individual texts in an accessible spreadsheet output. ARTE was
developed to help educators and researchers easily process texts
and derive different readability metrics allowing them to compare
that output and choose formulas that best fit their purpose. The
tool is written in Python and is packaged in a user-friendly GUI
that is available for use in Windows and Mac operating systems.
Correlations for this analysis are reported in Table 1.

Table 1: Correlations between readability formulas and text ease
FRE FKGL NDC CAREC

Text ease 0.547 -0.517 -0.557 -0.582
FRE -0.913 -0.829 -0.726
FKGL 0.676 0.579
NDC 0.739
*FRE = Flesch Reading Ease, FKGL = Flesch Kincaide Grade
Level, NDC = New Dale Chale, CAREC = Crowdsourced
Algorithm of Reading Comprehension
The results indicate strong overlap between the four selected
readability formulas and the text ease scores reported by the
Bradley-Terry model. The strongest correlations were reported for
CAREC while the weakest correlations were reported for FKGL.
While strong, the correlations indicate that the readability
formulas only predict around 27%-34% of the variance in the
reading ease scores. Thus, there are opportunities for
improvement in future readability formulas.

5. DISCUSSION
In this paper, we introduced the CommonLit Ease of Readability
(CLEAR) corpus. The corpus provides researchers within the
educational data mining community with a resource from which
to develop and test readability metrics and to model text
readability. The CLEAR corpus has a number of improvements
over previous readability corpora, which are discussed below.

First, the CLEAR corpus is much larger than any available
corpora that provide readability criterion based on human
judgments. While there are large corpora that provide leveled
texts (e.g., The Newsela corpus), these corpora only provide
indications of reading ability based on levels of simplification
(i.e., beginning texts as compared to intermediate texts). The
corpora do not provide readability criterion for individual texts.
Individual reading criteria, like that reported in the CLEAR
corpus, allows for the development of linear models of text
readability. While there are other corpora that have reading
criteria for individual texts, the corpora are much smaller (N =
~20 - 600 texts), and they do not contain the breadth of texts
found in the CLEAR corpus. The size of the CLEAR corpus
ensures wide sampling and variance such that readability formulas
derived from the corpus should be strongly generalizable to new
excerpts.

The breadth of excerpts found in the CLEAR corpus is an
additional strength. The corpus was curated from the excerpts
available on the CommonLit website, all of which have been
specially leveled for a particular grade level. The CommonLit
texts were supplemented by hand selected excerpts taken from
Project Gutenberg, Wikipedia, and dozens of other open digital
libraries. The text excerpts were published over a wide range of
years (1791-2020) and are representative of two genres commonly
found in the K-12 classroom: informational and literary genres.
The texts were read by experts to ensure they matched excerpts
used in the K-12 classroom and checked for appropriateness using
MPAA ratings. All texts were hand edited, so that grammatical,
syntactic, and spelling errors were limited, while punctuation was
minimally standardized to honor the authors’ expression and style.

A final strength is the reading criteria developed for the CLEAR
Corpus. Previous studies have developed reading criteria based on
cloze tests or multiple-choice tests, both of which may not
measure text comprehension accurately [22]. Additionally, while
many readability formulas are marketed for K-12 students, their
readability criteria are based on a different population of readers.
The best example of this is Flesch-Kincaid Grade Level, which
was developed using reading tests administered to adult sailors.
We bypass these concerns, to a degree, by collecting judgments
from schoolteachers about how difficult the excerpts would be for
their students to read. This provides greater face validity for our
readability criteria, which should translate into greater predictive
power for readability formulas developed on the CLEAR corpus.

Lastly, while the purpose of the CLEAR corpus is for the
development of readability formulas, the corpus includes meta-
data that will allow for interesting and important sub-analyses.
These analyses would include investigations into readability
differences based on year of publication, genre, author, and
standard errors, among many others. The sub-analyses afforded by
the CLEAR corpus will allow greater understandings of how
variables beyond just the language features in the excerpts
influence text readability.

6. FUTURE DIRECTIONS
The next step for the CLEAR corpus is an online data science
competition to promote the development of new open-science
readability formulas. The competition will be hosted within an
online community of data scientists and machine learning
engineers who will enter a competition to develop readability
formulas using only the reading excerpts and the reported
standard errors to predict the Bradley-Terry ease of reading co-
efficient scores. Prize money will be offered to increase the
likelihood of participation. Once winners from the competition are
announced, the winning readability formulas will be included in
ARTE so that access to the formulas is readily available to
teachers, students, administrators, and researchers. ARTE will
also be expanded to include an online interface and a functional
API. The online interface will allow end-users to easily upload
texts to analyze for readability to better match texts to readers.
The API will allow other educational technologies to include text
readability formulas in their systems to help select texts for online
students.

7. ACKNOWLEDGMENTS
We want to thank Kumar Garg and Schmidt Futures for their
advice and support for making this work possible. We also thank
other researchers who helped develop the CLEAR corpus and to

758 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

the nearly two thousand teacher participants who provided
judgments of text readability.

8. REFERENCES
[1] Bailin, A. & Grafstein, A. (2001). The linguistic assumptions

underlying readability formulae: A critique. Language &
Communication, 21(3), 285-301. DOI =
https://doi.org/10.1016/S0271-5309(01)00005-2.

[2] Benjamin, R. G. (2012). Reconstructing readability: Recent
developments and recommendations in the analysis of text
difficulty. Educational Psychology Review, 24(1), 63-88.
DOI = https://doi.org/10.1007/s10648-011-9181-8.

[3] Bradley, R.A. & Terry, M.E. (1952). Rank analysis of
incomplete block designs. I. The method of paired
comparisons. Biometrika, 39, 324-345. DOI =
https://doi.org/10.2307/2334029.

[4] Britton, B.K. & Gülgöz, S. (1991). Using Kintsch's
computational model to improve instructional text: Effects of
repairing inference calls on recall and cognitive structures.
Journal of Educational Psychology, 83, 329-345.

[5] Chall, J. S., & Dale, E. (1995). Readability revisited: The
new Dale-Chall readability formula. Brookline Books.

[6] Choi, J.S., & Crossley, S.A. (2020) Machine Readability
Applications in Education. Paper presented at Advances and
Opportunities: Machine Learning for Education (NeurIPS
2020).

[7] Crossley, S. A., Skalicky, S., & Dascalu, M. (2019). Moving
beyond classic readability formulas: New methods and new
models. Journal of Research in Reading, 42(3-4), 541-561.
DOI = https://doi.org/10.1111/1467-9817.12283.

[8] Cunningham, J.W., Spadorcia, S.A., Erickson, K.A.,
Koppenhaver, D.A., Sturm, J.M., & Yoder, D.E. (2005).
Investigating the instructional supportiveness of leveled
texts. Reading Research Quarterly, 40(4), 410-427. DOI =
https://doi.org/10.1598/RRQ.40.4.2.

[9] Dale, E., & Chall, J. S. (1948). A formula for predicting
readability: Instructions. Educational research bulletin, 37-
54.

[10] Flesch, R. (1948). A new readability yardstick. Journal of
Applied Psychology, 32(3), 221-233. DOI =
https://doi.org/10.1037/h0057532.

[11] Gernsbacher, M.A. (1990). Language comprehension as
structure building. Hillsdale, NJ: Erlbaum.

[12] Givón, T. (1995). Functionalism and grammar. Philadelphia:
John Benjamins.

[13] Graesser, A.C., Swamer, S.S., Baggett, W.B. & Sell, M.A.
(1996). New models of deep comprehension. In B.K. Britton
& A.C. Graesser (Eds.), Models of understanding text, (pp.
1-32). Mahwah, NJ: Erlbaum.

[14] Grimes, J.E. (1975). The thread of discourse. The Hague,
Netherlands: Mouton

[15] Howes, D.H. & Solomon, R.L. (1951). Visual duration
thresholds as a function of word probability. Journal of
Experimental Psychology, 41(6), 401-410. DOI =
https://doi.org/10.1037/h0056020.

[16] Juel, C. & Solso, R.L. (1981). The role of orthographic
redundancy, versatility and spelling-sound correspondences
in word identification. (1981). In M.L. Kamil (Ed.),

Directions in reading: Research and instruction, (pp. 74-82).
Rochester, NY: National Reading Conference.

[17] Just, M. A., & Carpenter, P. A. (1980). A theory of reading:
From eye fixations to comprehension. Psychological Review,
87, 329-354. DOI = https://doi.org/10.1037/0033-
295x.87.4.329.

[18] Kate, R.J., Luo, X., Patwardhan, S., Franz, M., Florian, R.,
Mooney, R.J. et al. (2010, August). Learning to predict
readability using diverse linguistic features. In Proceedings
of the 23rd International Conference on Computational
Linguistics, (pp. 546-554). USA: Association for
Computational Linguistics

[19] Kincaid JP, Fishburne RP Jr, Rogers RL, Chissom BS.
Derivation of new readability formulas (Automated
Readability Index, Fog Count and Flesch Reading Ease
Formula) for Navy enlisted personnel. Research Branch
Report. Millington, TN: Naval Technical Training
Command, 1975: 8-75. DOI =
https://doi.org/10.21236/ada006655.

[20] Kintsch, W. (1988). The role of knowledge in discourse
comprehension: A construction-integration model.
Psychological Review, 95, 163-182. DOI =
https://doi.org/10.1037/0033-295X.95.2.163.

[21] Klare, G.R. (1984). Readability. In P.D. Pearson, R. Barr,
M.L. Kamil, & P. Mosenthal (Eds.), Handbook of reading
research (Vol. 1, pp. 681-744). New York: Longman.

[22] Magliano, J.P., Millis, K., Ozuru, Y. & McNamara, D.S.
(2007). A multidimensional framework to evaluate reading
assessment tools. In D.S. McNamara (Ed.), Reading
comprehension strategies: Theories, interventions, and
technologies, (pp. 107-136). Mahwah, NJ: Lawrence
Erlbaum Associates Publishers.

[23] McNamara, D.S. & Kintsch, W. (1996). Learning from texts:
Effects of prior knowledge and text coherence. Discourse
Processes, 22, 247-288. DOI =
https://doi.org/10.1080/01638539609544975.

[24] McNamara, D. S., Kintsch, E., Butler-Songer, N., & Kintsch,
W. (1996). Are good texts always better? Interactions of text
coherence, background knowledge, and levels of
understanding in learning from text. Cognition and
Instruction, 14, 1-43. DOI =
https://doi.org/10.1207/s1532690xci1401_1.

[25] Mesmer, H.A. (2005). Decodable text and the first grade
reader. Reading & Writing Quarterly, 21(1), 61-86. DOI=
https://doi.org/10.1080/10573560590523667.

[26] Mesmer, H.A., Cunningham, J.W., & Hiebert, E.H. (2012).
Toward a theoretical model of text complexity for the early
grades: Learning from the past, anticipating the future.
Reading Research Quarterly, 47(3), 235-258. DOI =
https://doi.org/10.1002/rrq.019

[27] Richards, J. C., Platt, J., & Platt, H. (1992). Longman
Dictionary of Language Teaching and Applied Linguistics.
London: Longman.

[28] Richardson, J.T.E. (1975). The effect of word imageability in
acquired dyslexia. Neuropsychologia, 13(3), 281-288. DOI =
https://doi.org/10.1016/0028-3932(75)90004-4.

[29] School Renaissance Inst., Inc. (2000). The ATOS[TM]
readability formula for books and how it compares to other
formulas. Madison, WI: School Renaissance Inst., Inc.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 759

[30] Smith, D., Stenner, A.J., Horabin, I., Smith, M. (1989). The
Lexile scale in theory and practice: Final report. Washington,
DC: MetaMetrics.

[31] Snow, C. (Ed.) (2002). Reading for understanding: Toward
an R & D program in reading comprehension. Santa Monica,
CA: Rand.

760 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Predictive Sequential Pattern Mining via Interpretable
Convolutional Neural Networks

Lan Jiang
University of Illinois Urbana–Champaign

Champaign, IL, USA
lanj3@illinois.edu

Nigel Bosch
University of Illinois Urbana–Champaign

Champaign, IL, USA
pnb@illinois.edu

ABSTRACT
We present an algorithm using interpretable convolutional
neural networks for mining sequential patterns from event
log data. The key to our approach is utilizing structured reg-
ularization to achieve sparse parameter values that closely
resemble the results of typical pattern mining algorithms,
and allows the learned convolution filters to be interpreted
easily. Our method can handle both sequences of individual,
unique elements and concurrent multiple-element sequences,
which represents most situations where sequences may occur
in logs of student actions. We applied our structured reg-
ularization method to a self-supervised problem predicting
future actions from past actions in two different educational
datasets as example applications. Furthermore, we gener-
ated features from the learned patterns to evaluate the util-
ity of patterns and trained a supervised model with these
features to predict academic outcomes via transfer learning.
Our algorithm improves the correlation of sequences with
outcomes by an average of r = .131 on one dataset and r =
.101 on the other dataset versus a traditional sequential pat-
tern mining algorithm. Finally, we visualize the extracted
patterns and demonstrate that they can be interpreted as a
sequence of actions.

Keywords
Interpretability, pattern mining, convolutional neural net-
works, sequential data

1. INTRODUCTION
Convolutional neural networks (CNNs) have been success-
fully applied to various applications in educational data min-
ing [2, 9, 15, 16, 22, 24]. However, CNNs have a major
shortcoming in terms of transparency, because they typi-
cally form “end to end” models that make high-level infer-
ences from low-level inputs through a series of opaque layers.
Thus, resulting models are often hard to understand and in-
terpret. As a consequence, both instructors and students
do not know what kinds of student behaviors actually im-

pact predictions, which is important for understanding and
supporting students’ learning behaviors and instructors’ reg-
ulation of student learning. Our work addresses this inter-
pretability issue with CNNs to provide useful features for
student modeling applications that utilize CNNs.

One particular application that requires understanding the
patterns learned by a model (or any method) is sequential
pattern mining. The typical approaches for sequential pat-
tern mining is to identify a set of elements that frequently
co-occur; in sequence data, that corresponds to finding a set
of events, items, locations, etc. that often happen sequen-
tially in the data [1, 3, 5, 6, 7, 8, 13, 14, 23, 25]. However,
those methods of pattern discovery suffer from problems like
pattern explosion [21], which occurs when the number of fre-
quent patterns is myriad and the importance (or usefulness)
of patterns is uncertain. Consequently, the large number of
patterns and prioritization of common patterns can be es-
pecially problematic in educational data where low-support
patterns may be of interest (e.g., when examining uncom-
mon patterns specific to students from underrepresented de-
mographic groups [20]). In addition, existing methods do
not consider the context of a pattern. We aim to train convo-
lutional neural networks that have inherently interpretable
features (i.e., discrete absence/presence of a specific student
event, like watching a video or posting to a discussion forum)
and enforce learning of patterns that predict context. We
can thus interpret and utilize these patterns in downstream
tasks in the same way that patterns mined via sequence
mining methods are.

This paper aims to train a CNN with self-supervised learn-
ing to produce a model that can predict future actions based
on sequences of events, thereby encouraging the model to
learn predictive sequences (rather than frequent, unique, or
other criteria). The features learned by self-supervised neu-
ral networks can be shared by various downstream tasks, as
has been demonstrated in previous research. In this paper,
we report results from a CNN trained to predict future stu-
dent activities from past activities, and which thus captures
event dependencies.

To show the effectiveness of the proposed method, we ap-
plied it two large datasets of student actions logged in learn-
ing environments, and utilized transfer learning to predict
student outcomes with features derived from the discovered
patterns. Specifically, after learning the patterns from stu-
dent data, we generated feature representations from each

Lan Jiang and Nigel Bosch “Predictive Sequential Pattern Mining via
Interpretable Convolutional Neural Networks”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 761-766.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 761

pattern and trained a supervised model to predict students’
grade outcomes. We demonstrate that in several cases our
results outperformed and were more stable than a typical
sequential pattern mining method.

In summary, our contributions include two parts:

1. We trained interpretable CNN filters to explicitly learn
patterns consisting of either mutually-exclusive (unique) or
concurrent (co-occurring) elements (i.e., actions).

2. We evaluated the quality of patterns learned with our
method in a transfer learning task involving prediction of
students’ outcomes in two datasets.

2. APPROACH
Our goal is to find frequent, predictive patterns with fixed
length given sequences of actions done by students (or events,
or items). Each step can contain either a single unique action
or multiple concurrent actions (depending on the dataset),
which can be regarded as sequential actions, events, activ-
ities, or other categorical values. In this section, we first
explain the framework of the unique event pattern detector,
which is the simplest case and perhaps the most widely-
applicable. We then describe the solution for the multiple
concurrent events pattern detector, as an illustration of how
the unique-element approach can be generalized to other
variations of the problem. We also describe a “warm-up”
strategy, which is necessary to effectively train the pattern
mining models. During the evaluation phase, we then de-
rive features from the extracted patterns and apply them to
a supervised student outcome prediction task as a measure
of the quality of the patterns.

2.1 Unique Element Patterns Detector
We begin with the representation for each action and pro-
pose our pattern detection model for unique element se-
quence mining At the first stage, we use one-hot encoding
to represent each action that was taken by students. After
that, we use a one-dimensional CNN (i.e., convolving only
over time), without bias weights, to extract patterns of ac-
tion subsequences. We constrain the parameters of CNN
filters to directly impose an interpretable, discrete structure
on the weights. To predict future actions, we append a fully-
connected layer and sigmoid function.

The crux of our approach to discovering interpretable pat-
terns of specific actions is to force each row (corresponding
to one step in a sequence) in the CNN filters to have only
one parameter that is close to 1, while all others are close
to 0. To achieve the desired weight structure, we applied
regularization to CNN filter parameters as part of training.

In our method, the primary training objective is to minimize
the binary cross-entropy loss for predicting future actions.
To enforce discrete structure of the filters of CNN, we utilize
regularization to force the sum of each row of the parameters
of each CNN filter to 1, while most parameters are 0, thereby
leaving only a single 1 corresponding to a single action. We
split the approach into two steps. The first step is to ensure
the sum of the parameters in each row is close to 1, by adding
the loss:

Lr sum =

M∑
p=1

k∑
n=1

(
1−

d∑
j=1

W 3
pnj

)2
(1)

where W refers to weight of convolutional neural network,
d is the number possible actions (i.e., the size of each one-
hot encoded vector), k is the number of sequence steps in
each CNN kernel (i.e., the length of pattern to learn), and
M is the number of filters in the CNN (i.e., the number of
patterns to learn).

The second step is to encourage parameters to go toward 0
via row-wise L1 loss, leaving only one parameter close to 1
to minimize the Lr sum row sum loss.

Lr l1 =

M∑
p=1

k∑
n=1

d∑
j=1

|Wpnj | (2)

Finally, we optimize the following joint objective function
during training:

L = Lprediction + αLr sum + βLr l1 (3)

where Lr is the whole structured regularization loss, and α
and β are coefficients for each regularization part, included
to balance the contrasting minimization objectives of Lr sum

and Lr l1.

2.2 Multiple Concurrent Elements Pattern De-
tector

The limitation of the unique action detector is that it can
only handle situations where each step in the sequence con-
tains exactly one action. In some circumstances, each step
contains many actions or events, such as when a student does
several activities logged with the same timestamp. We ex-
tended our approach to handle this condition, following the
model proposed in the previous section with different con-
straints. Specially, we force each CNN kernel weight to be
either close to 0 or close to 1, ignoring the sum of all weights
and thus allowing multiple actions per step. To achieve this
goal, the regularization loss for each parameter is minimized
when the parameter is either 0 or 1.

We operationalized this regularization goal via the following
quadratic equation:

Lr m =

M∑
p=1

k∑
n=1

d∑
j=1

∣∣W 2
pnj −Wpnj

∣∣ (4)

Overall, the objective function is:

L = Lprediction + γLr m (5)

In Lr m, γ serves as a weight we tuned to ensure that the
structured regularization loss Lr m has the desired effect on
the CNN weights without over-emphasizing regularization
relative to the prediction loss.

The prediction loss for our multiple concurrent elements ex-
ample is to minimize binary cross-entropy with logits loss,
though other loss functions could be applied.

2.3 Warm-up Period

762 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 1: Performance comparison (Pearson’s r correlation coefficient between predicted and actual student grades) of our
method versus CM-SPAM on two datasets. The EPM dataset has grades for five learning sessions (labeled 2–6), while OULAD
has grades for seven courses (labeled A–G). Results without warm-up and structured regularization are provided as points of
comparison, though the CNN filters without structured regularization are not interpretable.

EPM OULAD

Course 2 3 4 5 6 Course A B C D E F G

CM-SPAM [5] -.050 .603 .139 .134 .333 .318 .341 .341 .440 .381 .381 .510

Without warm-up -.032 .729 .425 .055 .430 .324 .414 .514 .433 .456 .394 .544

Our approach -.092 .792 .432 .227 .450 .330 .461 .532 .500 .498 .433 .563

Traditional CNN -.199 .672 .518 .209 .375 .365 .416 .547 .511 .506 .422 .550

Frequently, models learned a local optimum where regular-
ization losses were immediately optimized. To avoid get-
ting stuck at local optima of the objective, we introduced a
“warm-up” period to stabilize training [17]. In our experi-
ment, we trained the model without regularization loss for
five epochs. Subsequently, we linearly increased the coeffi-
cient of the regularization loss over the course of ten epochs.

2.4 Features for Transfer Learning
After learning the set of predictive patterns, we evaluated
the utility of learned patterns for a subsequent prediction
task (i.e., transfer learning with the learned patterns). We
froze the weights of the CNN, then applied the network to
generate pattern features for each student’s sequence of ac-
tions. Note that each sequence is typically much longer than
the number of steps in each CNN kernel. Thus, we aggre-
gated filter activations for each pattern by applying basic
statistical calculations, including sum, standard deviation,
max, min, skew, kurtosis, and different quantiles (10%, 30%,
50%, 70%, 90%).

We then concatenated all of these aggregated values of all
extracted patterns to create feature vectors. As a means
to judge the quality of the pattern features, we predicted
students’ learning outcomes with a random forest regression
model [4].

3. EXPERIMENTS
In this section, we first introduce the details of two datasets
and a baseline pattern discovery algorithm, against which
we compare our proposed method (Table 1). We use vi-
sualization to examine the learned patterns, and compare
transfer learning predictions of student outcomes via Pear-
son correlations. Finally, we discuss the convergence of our
method.

3.1 Datasets
We work on two public datasets that contain learning behav-
iors of students represented by actions from different courses.

Educational Process Mining (EPM). The EPM dataset [19]
contains sequential records of 100 students’ activities dur-
ing 6 laboratory sessions (5 of which have outcome labels)
of the digital design course at the University of Genoa. Ac-
tions were logged in sequential order, such that each row
represented a unique action taken by a student. We de-
scribe activities included in EPM dataset, including their
frequency, in the Appendix.

Open University Learning Analytics Dataset (OULAD). The
OULAD dataset [12] contains data about courses, students,
actions of students, and their interactions with a virtual
learning environment (VLE; specifically, Moodle) for seven
courses, which started from either February or October. We
merged multiple semesters of the same course because the
patterns in the same courses should be relatively (if not ex-
actly) consistent. The detail of interaction events included in
the dataset shown in the Appendix (we merged some infre-
quent interactions into other category because the frequency
of occurrence of these interactions was rare).

3.2 Baseline Comparison Method
Typical sequential pattern mining algorithms include those
like CM-SPAM, GSP [18], PrefixSpan [8], and SPADE [25].
We use CM-SPAM as a baseline method here because it can
easily find patterns of a specific length, which allows fair
comparison to our proposed method.

CM-SPAM [5] is a sequential pattern mining algorithm based
on Sequential PAttern Mining (SPAM; [3]). SPAM is a
depth-first sequential frequent pattern search algorithm. CM-
SPAM prunes the SPAM search space to improve computa-
tional complexity. We focused on mining patterns with the
highest support and matched the length of patterns in our
method, selecting 25 of the highest-support patterns to com-
pare against the 25 patterns learned by our method.

3.3 Experimental Setup
We optimized CNN models with Adam [10] for 50 epochs.
We tuned hyperparameters including learning rate, loss co-
efficients, and warm-up duration, based only on results in
OULAD course A, to avoid over-fitting hyperparameters to
the other six OULAD courses or the EPM dataset. Hyper-
parameters related to the structure of input and the model
architecture we left fixed. Specifically, we convolved CNN fil-
ters of length 3 over subsequences of current events of length
5, with stride length 1, and predicted the next 1 event.
Models had 25 convolution filters (patterns to learn). We
concatenated convolution filter outputs and used a fully-
connected layer with sigmoid activation for predicting the
next action. We found that the model worked best with the
learning rate set to .001, after testing .01, .0075, .005, .0025,
and .001.

Components of the structured regularization loss have no-
tably different magnitudes for the unique action case, since
the L1 loss component (Lr l1) is several times larger than

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 763

the filter row sum component (Lr l1). We thus applied a
relatively large weight for Lr l1 and small weight for Lr l1 to
balance regularization terms and achieve the desired weight
structure. We tried different ratios of α/β, including 1, 10,
20, 30, 40, 50, 60, 70, 100, and 200. With α = 0.075 and β
= 0.0075, loss converged well. For the warm-up procedure,
after testing 1 epochs, 5 epoch, and 10 epochs, we found the
model converged best with ntotal = 5 epochs.

For evaluating pattern utility via transfer learning with ran-
dom forest regression, a higher correlation score (Pearson’s r
ranging from -1 to 1) represents patterns with higher utility
for the downstream task.

3.4 Performance Analysis
Outcome prediction is a natural way to evaluate the utility of
patterns [11]. We did so using the transfer learning approach
described above, and split each course from each dataset into
a train/test set at the student level with a ratio of 2:1 for
evaluation.

3.4.1 Quantitative Results
The results of our method are shown in Table 1. Because
students’ learning actions contain meaningful sequential de-
pendencies with each other, which patterns that happen fre-
quently do not naturally capture. Consequently, CM-SPAM
patterns were slightly less useful for inferring high level in-
formation (predicting student outcomes), as shown in Ta-
ble 1. Additionally, instructors may be able to interpret the
patterns extracted by our methods to intervene in future
courses, given that the extracted patterns are few enough
in number (25) to manually review and are related to out-
comes. Generally, our approach outperformed traditional
sequential pattern mining for almost all courses across the
two datasets. Our approach improved the correlation of se-
quences with outcomes by an average of r = .131 on the
EPM dataset, and was as good or better than CM-SPAM
(r improved by .101) on the OULAD dataset. The result
confirmed the usefulness of our predictive patterns derived
via self-supervised learning.

3.4.2 Pattern Visualization and Analysis
We visualize the patterns extracted by our approach, demon-
strate that they have the desired structure, and compare
them with the traditional CNN filters.

To compare our method and typical CNN patterns, typical
densely-distributed CNN weights lend little insight into the
specific sequences of actions that activate filters (shown in
Figure 1). These CNN patterns conflate selection of relevant
input actions with weighting those patterns, which prevents
their use as a sequence mining method. In addition, typical
CNNs only extract patterns that correlate with student out-
comes (in fully supervised applications). As a result, they
do not necessarily learn dependencies among students ac-
tions; it remains to be seen whether our method applied
in a fully-supervised model would produce notably different
sequences of behaviors. Regardless, the patterns learned by
our method are interpretable relative to typical CNN fil-
ter weights, which makes them straightforward to utilize for
other downstream tasks even though they come from a self-
supervised model. However, patterns with multiple concur-
rent actions are still less easily interpreted than patterns for

Figure 1: The bottom two rows are randomly-chosen example
patterns extracted by our approach based on EPM course 2.
The top two rows are traditional CNN filters.

unique actions given the possibility of many different con-
current actions. They are, however, still straightforward to
transfer to downstream tasks.

4. CONCLUSION
In this paper, we presented a general self-supervised se-
quence mining algorithm that works for both sequences of in-
dividual actions and multiple concurrent actions. We mined
sequential patterns by convolutional neural networks, and
applied transfer learning to judge the quality of the ex-
tracted patterns for predicting student outcomes as an ex-
ample downstream prediction task. Our results showed that
the extracted patterns were indeed useful, as measured by
the correlation between predictions and student outcomes.

We empirically demonstrated that the patterns extracted by
our method have similar or higher utility for two prediction
tasks than those extracted via a traditional frequent pattern
mining algorithm, while the extracted patterns can still be
easily interpreted. Furthermore, our approach deals with
common pattern mining problems like pattern explosion by
training a fixed number of convolutional filters, where filters
are selected from the space of all possible filters via stochas-
tic gradient descent.

In summary, our approach is a novel and interpretable way
to extract predictive patterns of actions from sequential data.

5. REFERENCES
[1] R. Agrawal, R. Srikant, et al. Fast algorithms for

mining association rules. In Proceedings 20th
International conference Very Large Data Bases,

764 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

VLDB, volume 1215, pages 487–499, 1994.

[2] Ş. Aydoğdu. A new student modeling technique with
convolutional neural networks: Learnerprints. Journal
of Educational Computing Research, page
0735633120969216, 2020.

[3] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu.
Sequential pattern mining using a bitmap
representation. In Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 429–435, 2002.

[4] L. Breiman. Random forests. Machine Learning,
45(1):5–32, 2001.

[5] P. Fournier-Viger, A. Gomariz, M. Campos, and
R. Thomas. Fast vertical mining of sequential patterns
using co-occurrence information. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining,
pages 40–52. Springer, 2014.

[6] M. N. Garofalakis, R. Rastogi, and K. Shim. Spirit:
Sequential pattern mining with regular expression
constraints. In VLDB, volume 99, pages 7–10, 1999.

[7] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal,
and M.-C. Hsu. Freespan: frequent pattern-projected
sequential pattern mining. In Proceedings of the sixth
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
355–359, 2000.

[8] J. Han, J. Pei, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M. Hsu. Prefixspan: Mining sequential
patterns efficiently by prefix-projected pattern growth.
In Proceedings of the 17th International Conference on
Data Engineering, pages 215–224. Citeseer, 2001.

[9] T. Hu, G. Sun, and Z. Xu. Assessing student
contributions in wiki-based collaborative writing
system. In Proceedings of The 13th International
Conference on Educational Data Mining (EDM 2020),
pages 615–619, 2020.

[10] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[11] S. Klingler, R. Wampfler, T. Käser, B. Solenthaler,
and M. Gross. Efficient feature embeddings for
student classification with variational auto-encoders.
International Educational Data Mining Society, 2017.

[12] J. Kuzilek, M. Hlosta, and Z. Zdrahal. Open
university learning analytics dataset. Scientific Data,
4:170171, 2017.

[13] M.-Y. Lin and S.-Y. Lee. Fast discovery of sequential
patterns by memory indexing. In International
Conference on Data Warehousing and Knowledge
Discovery, pages 150–160. Springer, 2002.

[14] H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, and
U. Dayal. Multi-dimensional sequential pattern
mining. In Proceedings of the Tenth International
Conference on Information and Knowledge
Management, pages 81–88, 2001.

[15] S. Shen, Q. Liu, E. Chen, H. Wu, Z. Huang, W. Zhao,
Y. Su, H. Ma, and S. Wang. Convolutional knowledge
tracing: Modeling individualization in student learning
process. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 1857–1860, 2020.

[16] X. Shen, B. Yi, Z. Zhang, J. Shu, and H. Liu.

Automatic recommendation technology for learning
resources with convolutional neural network. In 2016
International Symposium on Educational Technology
(ISET), pages 30–34. IEEE, 2016.

[17] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby,
and O. Winther. Ladder variational autoencoders. In
Advances in Neural Information Processing Systems,
pages 3738–3746, 2016.

[18] R. Srikant and R. Agrawal. Mining quantitative
association rules in large relational tables. In
Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, pages 1–12, 1996.

[19] M. Vahdat, L. Oneto, D. Anguita, M. Funk, and
M. Rauterberg. A learning analytics approach to
correlate the academic achievements of students with
interaction data from an educational simulator. In
Design for Teaching and Learning in a Networked
World, pages 352–366. Springer, 2015.

[20] H. Valdiviejas and N. Bosch. Using association rule
mining to uncover rarely occurring relationships in
two university online stem courses: A comparative
analysis. In Proceedings of The 13th International
Conference on Educational Data Mining (EDM 2020),
pages 686–690, 2020.

[21] M. Van Leeuwen. Interactive data exploration using
pattern mining. In Interactive knowledge discovery and
data mining in biomedical informatics, pages 169–182.
Springer, 2014.

[22] R. Wampfler, A. Emch, B. Solenthaler, and M. Gross.
Image reconstruction of tablet front camera recordings
in educational settings. International Educational
Data Mining Society, 2020.

[23] J. Wang and J. Han. Bide: Efficient mining of
frequent closed sequences. In Proceedings 20th
International Conference on Data Engineering, pages
79–90. IEEE, 2004.

[24] Y. Xiao, G. Zingle, Q. Jia, H. R. Shah, Y. Zhang,
T. Li, M. Karovaliya, W. Zhao, Y. Song, J. Ji, et al.
Detecting problem statements in peer assessments.
arXiv preprint arXiv:2006.04532, 2020.

[25] M. J. Zaki. Spade: An efficient algorithm for mining
frequent sequences. Machine Learning, 42(1-2):31–60,
2001.

6. APPENDIX: DATASET DETAILS

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 765

Table 2: Description of actions in the OULAD dataset. Infrequent actions were grouped together into an other category, with
the exception of transfer given that it is one of the most semantically important, along with register and unregister.

Action Description Frequency

homepage Visit the main course page 1,735,226

gap One or more consecutive days with no action 860,356

oucontent View course content page 829,476

forumng Discussion forum usage 822,895

subpage Manage/view course activities on a page other than the homepage 804,577

resource Download a document from the course 399,961

url Click a link to an external site 314,240

quiz Take a quiz 211,497

exam Take an assessment 160,498

ouwiki Access the course wiki 89,406

register Register for the course 32,548

unregister Drop the course 10,072

transfer Transfer grade from previous session (semester) 526

Infrequent activities grouped together as “other”

page Non-interactive information page 47,549

oucollaborate Audio/video conferencing 47,334

externalquiz Externally-hosted quiz 41,642

glossary View course glossary 17,258

questionnaire Access survey form 15,109

ouelluminate Audio-only conferencing 11,384

dualpane Side-by-side view of instructions and related content 9,256

dataplus Interact with a toy SQLite database 6,818

htmlactivity Interactive HTML page 6,016

folder View folder containing related activities 4,678

sharedsubpage View page shared from another course 148

repeatactivity Activities repeated from earlier in the course 3

Table 3: Description of activities in the EPM dataset. Internal activity names from the EPM dataset are provided to enable
unambiguous matching to the original data.

Action Description Frequency

texteditor Use a text editor 42,431

deeds Other DEEDS (Digital Electronics Education and Design Suite) activities 38,372

other Not viewing any pages described above (mostly off-task activities) 33,602

blank Title of visited page is not recorded 24,303

study View exercises or materials related to courses 22,261

diagram Use a “simulation timing diagram” to test a solution 20,815

fsm Use a finite state machine (FSM) simulator 20,596

properties Set parameters of a simulation or design 19,677

aulaweb Visit learning management system 8,261

766 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Restructuring Curricular Patterns Using Bayesian
Networks

Ahmad Slim
Lebanese American University

1102, Beirut, Lebanon
ahmad.slim@lau.edu.lb

Gregory L. Heileman
The University of Arizona
Tucson, AZ 85721, U.S.

heileman@arizona.edu

Chaouki T. Abdallah
Georgia Tech

Atlanta, GA 30332, U.S.
ctabdallah@gatech.edu

Ameer Slim
The University of New Mexico
Albuquerque, NM 87131, U.S.

ahs1993@unm.edu

Najem Sirhan
The University of New Mexico
Albuquerque, NM 87131, U.S.

najem83@unm.edu

ABSTRACT
Recent studies proved the existence of a relationship between the
complexity of university curricula and graduation rates. As a result,
extensive efforts have been done in an attempt to restructure curric-
ula in order to improve graduation rates. In this paper, we propose a
new model for evaluating and quantifying the impact of restructuring
curricula on graduation rates using a Bayesian network framework.
We validate our model by analyzing a common curricular pattern
found in most of the engineering programs. We demonstrate its
usefulness using actual data for students at the University of New
Mexico. We also extend this model to include a helpful tool that
can be used to predict student performance. The advantage of our
work is characterized by its data-driven nature which makes it more
reliable than other proposed models.

Keywords
Curricular analytics, Bayesian networks, education, curriculum com-
plexity, student success, graduation rate

1. INTRODUCTION
Recently a significant amount of work has been done on curricular
analytics to show its impact on student success [16, 15, 12, 13, 2,
14]. The work done mainly spots the light on the importance of
curricula structure on student performance characterized primarily
by graduation and retention rates. These studies argue that the com-
plexity of prerequisite dependencies between the requirements of a
curriculum can increase the risk of students stopping out and even-
tually dropping the school. A lot of work has been done recently
identifying factors that help students retain their school and hence
graduate at faster rates [6]. This includes new learning pedagogy
styles, dorms, flipped classrooms, learning centers, etc. However,
such factors solely might fail to significantly contribute to student
success if other institutional factors are overlooked; essentially cur-
ricula structure [11]. As mentioned earlier, it is already proved that
the structure of a curriculum has a direct impact in student success [2,

3]. In this regard, Klingbeil and Bourne considered a case study
and analyzed the structure of a common curricular pattern found in
most of the engineering programs (Figure 1) [5]. They noticed that,
in the sophomore year, most of the engineering programs require
Differential Equations as a prerequisite to a domain specific course
(in electrical engineering programs, Circuits I is domain specific;
in mechanical engineering, Mechanics (statics and dynamics) is do-
main specific; etc.). They also noticed that all the learning outcomes
in Differential Equations, except for solving linear differential equa-
tions, are not necessarily required to pass the domain specific course.
Thus they suggested to create a new course in the freshman year
to teach how to solve linear differential equations along with the
Precalculus materials. They called this new course Engineering 101.
As a result of this observation, they pointed out that Differential
Equations is not required anymore as a prerequisite for the domain
central course; only Engineering 101 does. This resulted in a re-
vised curricular pattern shown in Figure 2. Klingbeil and Bourne
claim that this new curricular pattern will help students graduate in
a timely fashion. This is driven by the fact that the students are not
required anymore to follow the long chain of prerequisites before
they are allowed to take a domain specific course-as it is the case
in the original curricular pattern. This new pattern is now pursued
by a number of universities [5]. And to validate the legitimacy of
such changes to curricular patterns, a number of researchers came
up with different mathematical models that prove the significance
of these changes on student success outcomes. Slim et al. came
up with a metric that quantifies the complexity of any curricular
pattern [16]. Their metric showed that the revised engineering pat-
tern shown in Figure 2 is less complex than that of the original one
shown in Figure 1[2]. Thus, according to their metric, students are
expected to finish their degrees at a faster pace. Furthermore, Hicke-
man showed that the revised engineering pattern can significantly
improve graduation rates [3]. He proved that by implementing a
Monte Carlo simulation through which virtual students are allowed
to flow through a curricular pattern. For more details on different
models see [2]. Although these models put a mathematical founda-
tion to prove the advantage of restructuring curricula, they still have
a major limitation. None of these models include actual student data
in their implementations. In other words, these models only show
the advantage of restructuring curricular patterns in its abstract state
without using any data-driven approaches. This makes the models
less reliable in proving the need to revise any curricular pattern. In
this paper we propose a data-driven model that uses actual student
data to achieve this. Particularly we use a Bayesian Network (BN)
model to statistically prove the validity of any effort to restructure

Ahmad Slim, Gregory Heileman, Chaouki Abdallah, Ameer Slim and Na-
jem Sirhan “Restructuring Curricular Patterns Using Bayesian Networks”.
2021. In: Proceedings of The 14th International Conference on Educational
Data Mining (EDM21). International Educational Data Mining Society,
767-770. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 767

a curricular pattern. This is mainly characterized by adding and
removing courses/prerequisites within a curricular pattern which
can be neatly captured using a BN. The main motivation behind
our proposed model is the ability to use the notion of hidden/latent
variables in building a BN. These hidden nodes represent new added
courses in the revised curricular pattern. Thus they can be used to
check the validity of the changes made to the original curricular
pattern and accordingly decide whether to apply these changes or
not. It is important to note that our model can be generalized to find
the optimal structure of a revised curricular pattern using different
methods of structural learning for a BN [1]. However we will not
cover this part in our paper. We will leave it for a future work. The
remainder of this paper is structured as follows. In Section II we
present the details of our proposed framework and provide a case
study. In Section III we present a number of applications for our
proposed model and show some simulation results. Finally, Section
IV presents some concluding remarks.

Figure 1: The original curricular pattern found in most en-
gineering programs. The nodes represent the courses and the
directed edges represent the prerequisite dependencies.

Figure 2: The revised curricular pattern.

2. BAYESIAN NETWORKS AND HIDDEN
VARIABLES

A BN is a directed acyclic graph (DAG) representing correlations
between a number of random variables [4]. The graph-like structure
reflects a confined representation of the joint probability distribution
underlying these variables. The presence of an edge between two
nodes indicates the existence of a relationship between two variables
and the direction of the edge indicates the direction of the causal
relationship. That is a directed edge from node A to node B indicates
that A causes B. In BNs, these types of relationships are quantified
by conditional probability tables (CPTs). The main feature of a
BN is its compact representation of the conditional dependencies of
the random variables. However, in some applications the BN gets
complicated and thus in this case adding hidden nodes would be
essential for two main reasons [8]:

1. Knowledge discovery: reveals interesting relationships among
the variables of the data

2. Lower complexity: attains lower structure complexity of the
network

For example, consider the case where we observe a bunch of vari-
ables representing different patient’s symptoms. The joint probabil-
ity distribution for these symptoms might be highly connected. In
this case, the BN representation of these symptoms would be highly

Figure 3: Two DAGs (one with a hidden node and the
other without) representing the relationship between symp-
toms, causes and mediating factors. Symptoms, such as chest
pain, are represented by the leaves. Causes, such as smoking
and diet, are represented by the roots. Mediating factors, such
as heart disease, are represented by the hidden nodes. This fig-
ure shows how hidden nodes can reveal a better understanding
of the relationship between variables by attaining a lower struc-
ture complexity of the network.

complicated. However if we introduce a “cause" node representing
the underlying disease for these symptoms then we can get a no-
ticeably simpler network. We call this cause node a hidden node.
Figure 3 (inspired from [7]) illustrates this example in more details.
In a similar scenario in an educational context, a curricular pattern
can be modeled as a BN. A node maybe a course, and the states
of the node would be the possible letter grades (i.e., A,B+,B,C+,
etc.). A directed edge from course A to course B indicates that
the performance in A influences that in B. In this context adding
a hidden node to the BN is equivalent to adding a new course to a
curricular pattern. This hidden node might represent the underlying
prerequisite course that needs to be taken prior taking other courses.
This notion constitutes the bulk of our proposed work and the subse-
quent sections elaborate more about this idea. Following this notion,
restructuring the BN of any curricular pattern would include these
steps:

• Removing an existing course(s) (i.e., removing a node)
• Adding a new course(s) (i.e., adding a hidden node)
• Removing an existing prerequisite(s) (i.e., removing a di-

rected edge)
• Adding a new prerequisite(s) (i.e., adding a directed edge)

We denote the restructured BN by R, characterizing the revised
curricular pattern. Once R is constructed, we fit the CPTs using
actual student data, denoted by D, and then compute the likelihood
of R, p(D/R). Similarly, we denote by O the BN of the original
curricular pattern. Once it is constructed, we compute its likelihood,
p(D/O). If p(D/R) is greater than p(D/O), then the revised version
of the curricular pattern fits the student data better than that of the
original one. In this case, the proposed revised curricular pattern
can be a good candidate to replace the original one. To elaborate
more about this, we present a case study in the following section.

2.1 Engineering Curricular Pattern: A Case
Study

In this section, we consider, as a case study, the engineering curricu-
lar patterns shown in Figure 1 and Figure 2. Recall that the graph
in Figure 1 represents the original pattern whereas that in Figure 2
represents the revised one. For these two graphs, we construct two
BNs denoted by O and R respectively. These two BNs are shown in

768 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Course Number Course Name
MATH 150 Precalculus
MATH 162 Calculus I
MATH 163 Calculus II
MATH 264 Calculus III
MATH 316 Differential Equations
PHYC 160 General Physics I
PHYC 161 General Physics II
ECE 203 Circuits I
ENG 101 New Course Proposed

Table 1: Engineering courses taught at freshman and sopho-
more level at UNM.

Figure 4 and Figure 5. The variables used to construct O and R are
shown in Table 1. These variables represent actual courses taught at
the University of New Mexico (UNM). The states of each of these
variables are the letter grades: A, B, C and D/F where D and F are
assumed to represent one state. The CPTs for both O and R are com-
puted using a dataset, denoted by D, for 1,000 UNM student. Each
row in this dataset contains the letter grades achieved in the courses
shown in Table 1. Some grades for some students were not available.
Thus, the dataset included missing values. In addition, ENG 101
in Figure 5 is considered a hidden variable because it is supposed
to represent the new proposed course and thus we do not have the
letter grade values. Therefore, to compensate for hidden and miss-
ing values in our dataset, we used the expectation-maximization
(EM) method to compute the CPTs for O and R [9]. Using EM, we
computed the ratio of the likelihood, p(D/R)

p(D/O)
, to be 2.89. This means

that R fits the student data better than O. This result suggests that the
proposed revised curricular pattern is a good candidate to replace
the original one. Not only does it have a less complex structure
but also the revised curricular pattern has the potential to improve
student performance when compared to the original pattern. We
concluded this using actual student data which is an advantage over
other proposed models in literature [2]. In the following sections we
present more applications of BNs in the context of course network.

Figure 4: The original curricular pattern found in the electri-
cal engineering curriculum.

Figure 5: The revised version of the curricular pattern in the
electrical engineering curriculum.

3. INFLUENCE OF STUDENT CHARACTER-
ISTICS ON ACADEMIC PERFORMANCE

As mentioned earlier, many institutions are dedicating lot of efforts
on student success. Colleges and universities are applying ever

more sophisticated analytical tools to track their student progress
in an attempt to improve their performance characterized mainly
by graduation and retention rates. Intuitively, early indicators of
student performance in this context is crucial to provide suitable
interventions when needed. Thus predicting the performance of
students in future courses is essential to achieve it. In this regard,
historical information about previous academic achievement of a
student could be used to project future performance. For example,
a student who receives a ‘B’ in Calculus I is expected to receive a
better grade in Calculus II compared to those who receive a ‘D’. A
BN in the context of course network can capture the correlation in
performance between such courses. Further, it can be used to pre-
dict the letter grades of a student in subsequent classes based on the
grades of previous classes. The accuracy of prediction can further
be improved by adding other factors related to student characteris-
tics. Factors such as age, gender, high school GPA, socioeconomic
status, etc. proved to influence student performance [11]. For this
reason, it would be rational to add such factors as additional vari-
ables to the BN of a course network. The advantage of using a BN
model to capture all these variables together is two-folded: it can
be used as a knowledge discovery model that can neatly display
the correlation between the variables and also it can be used as an
inference tool to predict student performance. In this section, we
construct a BN for eight engineering courses along with five other
variables representing student characteristics. The eight courses
are: MATH 150, MATH 162, MATH 163, MATH 264, MATH 316,
PHYC 160, PHYC 161 and ECE 203 (Table 1). These courses are
considered to be the most crucial classes at the freshman level. As
for student characteristics, we considered Gender, ACT score, and
high school GPA. As mentioned earlier the student characteristics
are proved to influence student performance. Thus it would be inter-
esting to discover and visualize how all these variables are related
to each other. In the following section we show the constructed BN
along with some applications. However, it is important to mention
here that a similar work has been done in [10]. The authors of this
work used a domain expert to construct the BN for these variables.
This means that the process of constructing the BN is not automated
and doesn’t guarantee a good fit to the student data. In this paper,
however, we automated the process of learning the structure of the
BN using a score-based learning algorithm [1]. Particularly, we
used the hill climbing (hc) greedy search that explores the space of
the DAGs by single-arc addition, removal and reversals.

3.1 A BN for Engineering Courses
To construct and validate our framework, we collected a dataset of
3,000 undergraduate student in the college of engineering at UNM.
The dataset represented different demographical and academical
variables of the students. The states for each of these variables are
show in Table 2. It is important to note that MATH 162 is the prereq-
uisite for MATH 163, MATH 163 is the prerequisite for MATH 316
and MATH 264, and MATH 316 is the prerequisite for ECE 203.
The constructed BN is presented in the graph shown in Figure 6. It
is tempting to interpret this graph in terms of causality. In particular,
it seems that ACT score, high school GPA and gender, in contrast
to ethnicity, causally influence the performance of students in these
engineering courses. Also, this graph shows that the performance
in PHYC 160 influences that in MATH 264 and ECE 203. This
is an interesting observation because, according to the department
policy, PHYC 160 is not a required prerequisite for neither of these
courses. Though it has an impact on both these courses. Another
interesting observation is the absence of any correlation in perfor-
mance between MATH 316 and ECE 203 even though MATH 316
is a prerequisite to ECE 203. This observation confirms the fact that

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 769

Variable States
Gender Female, Male

Ethnicity 7 different ethnicities
ACT score Integer between 10 and 36

High school GPA Real value between 1 and 4
MATH 150,162,163,264,316 A,B,C, D/F

PHYC 160,161 A,B,C, D/F
ECE 203 A,B,C, D/F

Table 2: The courses and the student characteristics used to
build the BN.

Figure 6: The constructed BN using UNM student data.

only a small portion of the learning outcomes in MATH 316, namely
the ability to solve linear differential equations, are actually used in
ECE 203 and the absence of a link between these two courses proves
it. This is another evidence that supports the claim that it is needed
to restructure the original curricular pattern shown in Figure 1.

4. CONCLUSION
In this paper we presented a framework that models a curriculum
as a Bayesian Network (BN). We showed that this model, in the
context of a course network, can be used to quantify any effort to
restructure curricular patterns. In particular, we used the notion of
hidden variables to achieve this. We validated our proposed model
using a common curricular pattern found in most of the engineering
programs. For that, we used actual data for students at the University
of New Mexico. The results showed that the likelihood of the revised
version of the engineering curricular pattern is higher than that of the
original one. This suggests that the revised version can help students
perform better in their courses as well as graduate at a faster pace.
The advantage of our model over other proposed models in literature
is its data-driven nature which makes it more reliable. Furthermore,
we extended our model to use it as a knowledge discovery and
inference tool. Particularly we added variables related to student
characteristics (e.g. gender, ACT score, high school GPA, etc.)
and showed how they can influence student performance. We also
showed how to exploit the constructed BN to predict the grades
of a student in following semesters based on grades of previous
semesters.

5. REFERENCES
[1] D. Heckerman. Learning in graphical models. chapter A

Tutorial on Learning with Bayesian Networks, pages 301–354.

MIT Press, Cambridge, MA, USA, 1999.
[2] G. L. Heileman, C. T. Abdallah, A. Slim, and M. Hickman.

Curricular analytics: A framework for quantifying the impact
of curricular reforms and pedagogical innovations. CoRR,
abs/1811.09676, 2018.

[3] M. Hickman. Development of a Curriculum Analysis and
Simulation Library with Applications in Curricular Analytics.
Master’s thesis, The University of New Mexico, 2017.

[4] M. Horny. Bayesian networks. Technical report, Boston
University School of Public Health, 2014.

[5] N. W. Klingbeil and A. Bourne. The wright state model for
engineering mathematics education: Longitudinal impact on
initially underprepared students. In 2015 ASEE Annual
Conference & Exposition, Seattle, Washington, June 2015.
ASEE Conferences.

[6] L. K. Lau. Institutional factors affecting student retention.
2003.

[7] K. P. Murphy. Machine Learning: A Probabilistic Perspective.
MIT Press, 2012.

[8] T. L. Perez and L. Kaelbling. Techniques in artificial
intelligence (sma 5504). Massachusetts Institute of
Technology, MIT OpenCourseWare, Fall 2002.

[9] D. Prescher. A tutorial on the expectation maximization
algorithm including maximum likelihood estimation and em
training of probabilistic context free grammars. ArXiv, 2004.

[10] A. Sharabiani, F. Karim, A. Sharabiani, M. Atanasov, and
H. Darabi. An enhanced bayesian network model for
prediction of students’ academic performance in engineering
programs. 2014 IEEE Global Engineering Education
Conference (EDUCON), pages 832–837, 2014.

[11] A. Slim. Curricular Analytics in Higher Education. PhD
thesis, The University of New Mexico, 2016.

[12] A. Slim, G. L. Heileman, W. Al-Doroubi, and C. T. Abdallah.
The impact of course enrollment sequences on student success.
In 2016 IEEE 30th International Conference on Advanced
Information Networking and Applications (AINA), pages
59–65, March 2016.

[13] A. Slim, G. L. Heileman, M. Hickman, and C. T. Abdallah. A
geometric distributed probabilistic model to predict
graduation rates. In 2017 IEEE Cloud Big Data Computing
(CBDCom), pages 1–8, Aug 2017.

[14] A. Slim, D. Hush, T. Ojha, , C. T. Abdallah, G. L. Heileman,
and G. El-Howayek. An automated framework to recommend
a suitable academic program, course and instructor. In
Proceedings of the Fifth International Conference on Big
Data Computing Service and Applications (BigDataService),
San Francisco, CA, USA, 2019. IEEE.

[15] A. Slim, J. Kozlick, G. L. Heileman, and C. T. Abdallah. The
complexity of university curricula according to course
cruciality. In Proceedings of the 8th International Conference
on Complex, Intelligent, and Software Intensive Systems,
Birmingham City University, Birmingham, UK, 2014. IEEE.

[16] A. Slim, J. Kozlick, G. L. Heileman, J. Wigdahl, and C. T.
Abdallah. Network analysis of university courses. In
Proceedings of the 6th Annual Workshop on Simplifying
Complex Networks for Practitioners, Seoul, Korea, 2014.
ACM.

770 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Towards automated content analysis of feedback: A
multi-language study

Ikenna Osakwe1, Guanliang Chen1, Alex Whitelock-Wainwright1, Dragan Gašević1, Anderson Pinheiro Cavalcanti2, and

Rafael Ferreira Mello2

{richard.osakwe, guanliang.chen, alex.wainwright, dragan.gasevic}@monash.edu

apc@cin.ufpe.br, rafael.mello@ufrpe.br

1Monash University, 2Universidade Federal Rural de Pernambuco

ABSTRACT
Feedback is a crucial element of a student’s learning pro-
cess. It enables students to identify weaknesses and improve
self-regulation. However, studies show this to be an area of
great dissatisfaction in higher education. With ever-growing
course participation numbers, delivering effective feedback is
becoming an increasingly challenging task. Hence, this pa-
per explores the use of automated content analysis to exam-
ine feedback provided by instructors for good feedback prac-
tices measured on self, task, process, and self-regulation lev-
els. For this purpose, four binary XGBoost classifiers were
trained and evaluated, one for each level of feedback. The
results indicate effective classification performance on self,
task, and process levels with accuracy values of 0.87, 0.82,
and 0.69, respectively. Additionally, inter-language transfer-
ability of feedback features is measured using cross-language
classification performance and feature importance analysis.
Findings indicate a low generalizability of features between
English and Portuguese feedback spaces.

1. INTRODUCTION
Despite widespread recognition of feedback’s importance to
learning [23, 29, 10], much of the current literature indicates
a pervasiveness of low quality feedback in higher education
[13]. Feedback quality is consistently rated one of the great-
est causes of dissatisfaction for higher education students
[9]. LA researchers are actively exploring automated feed-
back solutions that can enable instructors to efficiently iden-
tify and employ good feedback practices, and improve the
speed of feedback delivery to students [15]. In that vein,
several studies [17, 19, 28, 30] have examined the use of
data mining methods to generate automated textual feed-
back. These analyses are often limited to domain specific
areas such as computer programming or writing, or lack of
grounding in educational theory. Much less work has gone
into the exploration of automated domain-agnostic analy-

sis to identify good feedback practices [4, 24]. Progress in
such areas can enhance the instructor’s ability to provide ef-
fective feedback comments and analyze features associated
with good feedback practices for generalizable feedback gen-
erators. Therefore, this study aims to answer the following
Research Questions (RQs):

1. To what extent can the automated analysis of feedback
messages be used to identify good feedback practices?

(a) How accurate are the predictions that are made
about these feedback practices?

(b) What are specific features of text that can be used
to predict the use of good feedback practices?

2. How transferable are the identified feedback features
to text written in different languages?

2. METHOD
2.1 Data
The dataset used in the current study consisted of feedback
comments provided by instructors in Learning Analytics,
Software Engineering, and Environmental Studies courses.
A total of 2,092 observations were taken; 1,000 Portuguese
records and 1,092 English records.

2.2 Coding Scheme
This study utilized Hattie and Timperley’s [14] four levels
of feedback due to its suitability for textual analysis due to
its focus learning tasks, learning process, and self-regulation
Cavalcanti et al. [4]. Hence, feedback examples were coded
using Hattie and Timperley’s [14] proposed four levels of
feedback (see Table 1).

Feedback examples were coded by experts using instructions
of Hattie and Timperley’s [14] study. Each feedback record
was examined by two expert coders separately. After this
step, the differences between each pair of experts were com-
pared. For the Portuguese feedback examples, the inter-
rater agreement reached 72.2% with a Cohen’s kappa (inter-
rater ability considering chance [7]) of 0.44. The English
feedback comments had inter-rater agreement of 63.8% and
Cohen’s kappa of 0.38. These measures met expectations for
content analysis experimentation [20].

Ikenna Osakwe, Alexander Whitelock-Wainwright, Guanliang Chen,
Rafael Ferreira Mello, Anderson Pinheiro Cavalcanti and Dragan Gaše-
vić “Towards automated content analysis of feedback: A multi-language
study”. 2021. In: Proceedings of The 14th International Conference on Ed-
ucational Data Mining (EDM21). International Educational Data Mining
Society, 771-776. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 771

Table 1: Four levels of feedback identified by Hattie and Timperley [14]. Each level specifies different elements that the
feedback is targeting and can be regarded as hierarchical, ranging from general comments made about the student themselves
up to directives on how to improve self-regulation.

Level Description Example

Feedback about the self (FS) Personal evaluations about the learner “You are a bright student”

Feedback about the task (FT) How well tasks are understood or performed “You need to include more about the Treaty of Versailles.”

Feedback about the process (FP)
Processes needed to understand or
perform tasks

“You need to edit this piece of writing by attending to the
descriptors you have used so the reader is able to understand
the nuances of your meaning.”

Feedback about self-regulation (FR) How to improve self-regulation
“You already know the key features of the opening of an
argument. Check to see whether you have incorporated
them in your first paragraph.”

Table 2: Number of instances for each class in the training
and test datasets for each level of feedback.

Class 0 Class 1 Total

FS
Train 1149 (82.19%) 249 (17.81%) 1398 (70%)
Test 567 (82.17%) 123 (17.83%) 690 (30%)

FT
Train 602 (43.06%) 796 (56.94%) 1398 (70%)
Test 297 (43.04%) 393 (56.96%) 690 (30%)

FR
Train 1290 (92.27%) 108 (7.73%) 1398 (70%)
Test 637 (92.32%) 53 (7.68%) 690 (30%)

FP
Train 808 (57.80%) 590 (42.20%) 1398 (70%)
Test 399 (57.83%) 291 (42.17%) 690 (30%)

The annotation process led to a dataset with four sets of
binary classes: class 0 if a feedback message did not belong
to a particular level; class 1 if the feedback message belonged
to the feedback level.

2.3 Feature Engineering
Feature extraction was informed by relevant studies [4, 24,
16]. The studies promote the use of linguistic features such
as those developed in LIWC (Linguistic Inquiry and Word
Count) [27] and Coh-Metrix [11] over traditional textual fea-
tures such as lexical N-grams or Part-Of-Speech. According
to Kovanović et al. [16], these features encourage overfitting
by inflating the feature space. Additionally, these tradi-
tional features are data dependent and thus make it diffi-
cult to define the feature space beforehand [16]. Hence, we
used feature sets that incorporated 86 LIWC [27] features,
78 Coh-Metrix [11] features, and two additional features,
which are relevant to this content area — number of named
entities and language of delivered feedback.

2.4 Analysis
2.4.1 Data Analysis and Pre-processing

For the general classifier, feedback examples from both the
English and Portuguese datasets were combined and split
into 70% training and 30% test sets (Table 2). The training
data suffered from class imbalances; particularly at the FS
and FR levels.

2.4.2 Handling Class Imbalance
Studies have shown class imbalances can have a negative
impact on model prediction performance [26]. To alleviate

the class imbalance problem, sampling algorithms are often
employed to adjust the ratio of represented classes. SMOTE
is a popular oversampling method that analyzes the data
records in a two-dimensional vector space of given classes
and generates data points as a linear combination of existing
data points [5].

2.5 Model Selection and Evaluation — RQ1a
Decision tree ensembles are widely regarded classification
algorithms that are well suited to feedback analysis [4, 24].
This is due to their white-box properties, easy interpretabil-
ity, high accuracy and ability to identify important features
in a dataset [4, 24, 6, 8].

This study employed a decision tree implementation called
XGBoost [6]. XGBoost has been shown to outperform Ran-
dom Forest on numerous classification tasks [22, 31]. The
algorithm utilizes gradient boosting, which involves sequen-
tially combining models (in this case, decision trees) that
predict the residuals or errors of previous models at each
iteration to improve overall accuracy [6]. XGBoost is ideal
due to their superior accuracy and their implicit analysis
of feature importance [6]. Four binary XGBoost classifiers
were trained; one for each level of feedback.

2.5.1 Feature Analysis —- RQ1b
The outputs of decision tree models can be analyzed with
tools such as SHAP (SHapley Additive exPlanations) [18].Given
an input of a machine learning model and data records,
SHAP leverages the concept of Shapley values by measuring
the average marginal contribution of a feature over all pos-
sible permutations. SHAP can diagnose the most impactful
features using their SHAP value, which is the mean absolute
contribution of each feature [18]. A higher SHAP value for
a feature implies a greater importance compared to another
feature.

2.5.2 Feature Transferability — RQ2
To measure the transferability of features across languages,
the dataset was split by language, creating Portuguese and
English feedback datasets. Each of these datasets was split
into training and test splits (70% training and 30% test set),
and binary classifiers were trained and tuned, resulting in
English feedback trained classifiers, and Portuguese feed-
back trained classifiers for each level of feedback, with the
exception of the FR level. For the Portuguese feedback ex-
amples, the FR level had just eight positive instances out

772 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 3: Performance of the classifiers trained to address
research question RQ1 on the combined dataset involving
both the English and Portuguese datasets. Legend: ACC –
Accuracy; K – Cohen’s kappa; F1 - F1 Score.

FS FT FR FP

Class Balancing ACC K F1 ACC K F1 ACC K F1 ACC K F1

None 0.88 0.52 0.58 0.82 0.64 0.83 0.92 0.00 0.00 0.68 0.33 0.57
SMOTE 0.87 0.51 0.58 0.82 0.65 0.83 0.91 0.04 0.07 0.69 0.35 0.59

of 1,000 records, which was not enough to train a machine
learning algorithm [12]; hence, this level of feedback was
excluded from all transferability analysis.

Once the English and Portuguese trained classifiers were
developed, feature transferability was measured by i) the
inter-language prediction performance: the prediction per-
formance (measured by accuracy, F1 score and Cohen’s κ)
of the English trained classifier on the English test set was
compared to the predictor performance on the Portuguese
test set for the FS, FT, and FP levels of feedback. The same
process was repeated for the Portuguese trained classifier; ii)
A comparison of significant features: The most important
features for the English and Portuguese trained classifiers
are compared at the FS, FT and FP levels of feedback.

3. RESULTS AND DISCUSSION
The goal of this study was to examine how accurately one
can model the feature space of good feedback practices, and
how this feature space varies across languages. In that vein,
four research questions were answered using novel statisti-
cal learning methodologies, with a view of promoting good
feedback practices at scale.

3.1 Model Performance —- RQ1a
Research question RQ1 focused on investigating the extent
to which the automated analysis of feedback messages can be
used to identify good feedback practices. Four binary classi-
fiers were developed using a variety of features (see 2.3) The
best performing models were effective in identifying FS, FT
and FP. While not a direct comparison due to the addition
of the English feedback examples, the models achieved bet-
ter results over those reported by Cavalcanti et al. [4]. The
classifiers were able to improve accuracy by 0.07 and 0.05
for FT and FP, respectively and increase kappa values by
0.11, 0.35, and 0.06 for FS, FT, and, FP, respectively.

Similar to previous works [4], the FR classifier was not as ef-
fective in identifying instances. The model obtained a poor
kappa of 0.06, which was likely caused by the model’s poor
ability of detecting positive cases of FR. Poor performance
on this level was due to the significantly lower cases of pos-
itive instances as compared to the other levels of feedback.

3.2 Feature Analysis —- RQ1b
The focus of research question RQ1b was analyzing the most
important textual features associated with the four levels of
feedback. Hattie and Timperley [14] state that FS involves
evaluations of the person, which are often a form of praise.
The current findings add weight to this claim, as those fea-
tures found to be most important in predicting the FS level
were affective processes (particularly, positive emotions) and
social processes, which align with the concept of praise. FS

is often thought to be the least effective level of feedback
[3, 14] and relatedly, the FS classifier had a negative as-
sociation with discrepancy words; this might indicate FS
comments have little actionable information or insight.

FT is sometimes referred to as corrective feedback and pro-
vides information on details related to task accomplishment
such as correctness or behavior. Accordingly, this study
found the predictors most associated with FT were those
that related to the amount of information provided. Specif-
ically, higher values of word counts, frequency of content
words and minimum frequency of content —- all of which can
be linked to greater information —- were positively corre-
lated with observance of FT. Hattie and Timperley [14] sug-
gest instructors not to rely solely on FT, but rather to view
it as a process that moves the student to FP and FR. This
theory is backed by the finding of strong negative associa-
tion of causation words and FT; hence, FT comments were
less likely to illustrate the causes of the student’s failings,
which is essential for the learner’s self-regulation [14, 3, 21].

Compared to FT, FP is believed to promote a deeper un-
derstanding of learning as it enables the identification of re-
lationships between resources and output, and the develop-
ment of stronger cognitive processes. To achieve this, Balzer
et al. [1] state FP should concern information about actual
relations in the learning environment, relations which have
been recognized by the learner, and relations between the
learning environment and the learner’s perceptions. There-
fore, the value of FP comes from providing useful informa-
tion on relationships. The findings of this study corroborate
the theoretical views of FP. Amongst the most important
features for FP were frequency of content words, adverbs,
negative connectives and discrepancy words. These imply
that FP comments were tied to providing new and corrective
information. Other significant features can be tied back to
relationships; including frequency of semicolons (semicolons
are often used to link together ideas) and features associated
with space and relativity.

According to Butler [3], one of the goals of FR should be
to improve the student’s ability to monitor current progress
and use that information to form effective learning strate-
gies. Accordingly, some of the most important predictors of
FR were greater present and future focused processes.

3.3 Feature Transferability -— RQ2
To address research question RQ2, we studied inter-language
classifier performance, and compared the most significant
features for classifiers trained on different language feed-
back. Barbosa et al. [2] used similar linguistic features to
those used in this project, such as LIWC and Coh-Metrix,
to study cross-language classification of cognitive presence
in online discussions, and found features to be independent
of language; hence, we expected to find a moderate level of
generalizability of feedback features across languages. How-
ever, our findings indicate a low transferability of feedback
features. As seen on Table 5, the average accuracy differ-
ential on inter-language performance amounted to -0.06, -
0.59, and -0.26; while the average kappa differential was
approximately -0.50, -0.27, and -0.33 for FS, FT, and FP,
respectively. Likewise, the Portuguese and English trained
classifiers showed minimal overlap in their most important

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 773

Table 4: Top 10 important features are measured using SHAP and displayed from most to least important for FS, FT, FR
and FP classifiers.

FS FT

Variable Description SHAP Variable Description SHAP

liwc.Exclam Freq. of exclamation marks 1.02 cm.WRDFRQa Freq. of all words 0.46
liwc.posemo Freq. of words with positive emotion 0.73 cm.WRDFRQc Freq. of content words 0.39
liwc.you Freq. of the word ”you” 0.24 cm.WRDFRQmc Minimum freq. of content words 0.34
liwc.affect Freq. of affective words 0.20 cm.DRNP Noun phrase density 0.10
cm.SYNMEDlem Minimal edit distance of lemmas 0.20 cm.DRAP Adverbial phrase density 0.10
cm.WRDFRQc Freq. of content words 0.15 liwc.SemiC Freq. of semicolons 0.08
liwc.tentat Freq. of tentative words 0.15 cm.DESWLsy Mean word length 0.07
liwc.reward Freq. of words associated with reward 0.14 liwc.adverb Freq. of adverbs 0.07
liwc.informal Freq. of informal words 0.14 liwc.social Freq. of words related to social processes 0.07
cm.WRDPRP2 Freq. of second person pronouns 0.14 liwc.article Freq. of articles 0.07

FS FT

Variable Description SHAP Variable Description SHAP

cm.CRFNO1 Noun overlap between adjunct sentences 0.56 liwc.SemiC Freq. of semicolons 0.39

cm.WRDPRP3s Freq. of third person pronouns 0.50 cm.LSASS1 LSA measure of semantic coherence 0.19
cm.CRFSO1 Word stem overlap between adjunct sentences 0.43 cm.CNCNeg Freq. of negative connectives 0.12
cm.DRAP Adverbial phrase density 0.35 liwc.adverb Freq. of adverbs 0.11
cm.CRFCWOa Content word overlap of all sentences 0.25 cm.DESWLltd Standard deviation of average no. of letters/word 0.09
liwc.risk Freq. of risk related words 0.23 liwc.space Freq. of words related to space 0.09
liwc.differ Freq. of words related to differentiation 0.21 liwc.verb Freq. of verbs 0.08
liwc.focusfuture Freq. of future focus words 0.21 liwc.shehe Freq. of third person singular pronouns 0.07
liwc.focuspresent Freq. of present focus words 0.20 cm.SYNLE Mean no. of words before the main verb 0.06
liwc.affiliation Freq. of affiliation words 0.16 liwc.discrep Freq. of words associated with discrepancy 0.06

Table 5: For RQ2 classifiers are exclusively trained on En-
glish (EN) and Portuguese (PT) feedback examples. Per-
formance of each classifier is measured against EN and PT
feedback examples. Legend: ACC – Accuracy; K – Cohen’s
kappa; F1 - F1 Score.

FS FT FP

ACC K F1 ACC K F1 ACC K F1

EN Classifier
EN 0.83 0.42 0.52 0.69 0.13 0.31 0.66 0.23 0.49
PT 0.85 0.03 0.04 0.11 0.00 0.00 0.49 -0.02 0.30

PT Classifier
EN 0.79 0.06 0.12 0.28 0.00 0.43 0.35 0.00 0.52
PT 0.94 0.74 0.77 0.91 0.49 0.95 0.78 0.56 0.79

features across all levels of feedback.

One possible explanation for this finding might be the differ-
ence in courses represented in the English and Portuguese
datasets. English feedback examples were primarily from
STEM related courses, including Environmental Studies and
Software Engineering, while Portuguese feedback examples
had more of a mix, hailing from Biology and Literature
courses. Hence, the different nature of represented courses
might have influenced the transferability analysis.

Another explanation for the low transferability of features
might be the cultural differences in communication. For
instance, at the FS level of feedback, we observed greater
association of friendship and social processes for the English
feedback; i.e. English instructors might have displayed a
greater level of familiarity with students. As an instructor
can be viewed as an authority figure, this difference might
be related to whether a culture is “horizontal”, and therefore
emphasizes equality, or “vertical”, and emphasizes hierarchy
[25]. The implications of this finding would indicate instruc-
tors will need to consider the cultural backgrounds of the
learner while delivering feedback for improved efficacy.

4. CONCLUSION AND FUTURE RESEARCH
This study proposed four main contributions. First, this
study explored how accurately a trained model can identify
the presence of different feedback practices. The constructed
classifiers, using primarily linguistic and psychological fea-
tures, were effective in identifying the presence of FT, FP
and FS levels of feedback and showed better performance
than similar works in this content area; however, the FR
classifier was marred by a lack of adequate data. The im-
plications of these results provide a proof of concept for a
tool that can automatically analyze and potentially diagnose
the contents of an instructor’s feedback. This promotes the
understanding and utilization of good feedback practices to
improve their efficacy on learner adoption.

Another goal of this paper was to identify the prominent
textual features of good feedback practices. Identified fea-
tures were able to corroborate the findings of educational
research on feedback theory. The presented findings can be
further used to inspire the design of future automated feed-
back generators, e.g., intentionally including the prominent
terms specific to different feedback practices when generat-
ing feedback.

Finally, this study conducted an analysis of the transferabil-
ity of feedback features across languages. Feedback tools
should be generalizable enough to cater to a variety of lan-
guages. By analyzing the transferability of feedback fea-
tures across languages, this study aimed to enhance the
global adaptability of current and future feedback tools. The
findings indicate feedback features have low transferability
between feedback examples delivered in English and Por-
tuguese. However, a more expansive study is suggested,
with a greater size and variety of feedback from different
languages.

774 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

References
[1] W. K. Balzer, M. E. Doherty, and R. O’Connor. Effects

of cognitive feedback on performance. Psychol. Bull.,
106(3):410–433, 1989. ISSN 1939-1455, 0033-2909.

[2] G. Barbosa, R. Camelo, A. P. Cavalcanti, P. Miranda,
R. F. Mello, V. Kovanović, and D. Gašević. To-
wards automatic cross-language classification of cogni-
tive presence in online discussions. In Proceedings of the
Tenth International Conference on Learning Analytics
& Knowledge, LAK ’20, pages 605–614, Frankfurt, Ger-
many, Mar. 2020. ACM.

[3] D. L. Butler and P. H. Winne. Feedback and Self-
Regulated Learning: A Theoretical Synthesis. Review
of Educational Research, 65(3):245–281, Sept. 1995.
ISSN 0034-6543, 1935-1046.

[4] A. P. Cavalcanti, A. Diego, R. F. Mello, K. Mangaroska,
A. Nascimento, F. Freitas, and D. Gašević. How good is
my feedback?: a content analysis of written feedback.
In Proceedings of the Tenth International Conference
on Learning Analytics & Knowledge, pages 428–437,
Frankfurt Germany, Mar. 2020. ACM.

[5] N. V. Chawla, K. W. Bowyer, L. O. Hall, and
W. P. Kegelmeyer. SMOTE: Synthetic Minority Over-
sampling Technique. JAIR, 16:321–357, June 2002.
ISSN 1076-9757.

[6] T. Chen and C. Guestrin. XGBoost: A Scalable Tree
Boosting System. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’16, pages 785–794, San
Francisco, California, USA, Aug. 2016. ACM.

[7] J. Cohen. A Coefficient of Agreement for Nominal
Scales. Educational and Psychological Measurement, 20
(1):37–46, Apr. 1960. ISSN 0013-1644, 1552-3888.

[8] D. Denisko and M. M. Hoffman. Classification and
interaction in random forests. Proceedings of the Na-
tional Academy of Sciences, 115(8):1690–1692, Feb.
2018. ISSN 0027-8424, 1091-6490.

[9] P. Ferguson. Student perceptions of quality feedback in
teacher education. Assess Eval High Educ, 36(1):51–62,
Jan. 2011. ISSN 0260-2938.

[10] C. Glover and E. Brown. Written Feedback for Stu-
dents: too much, too detailed or too incomprehensible
to be effective? Bioscience Education, 7(1):1–16, May
2006. ISSN null.

[11] A. C. Graesser, D. S. McNamara, M. M. Louwerse, and
Z. Cai. Coh-Metrix: Analysis of text on cohesion and
language. Behav Res Methods Instrum Comput., 36(2):
193–202, May 2004. ISSN 0743-3808, 1532-5970.

[12] T. Hastie, R. Tibshirani, and J. H. Friedman. The el-
ements of statistical learning: data mining, inference,
and prediction. Springer series in statistics. Springer,
New York, NY, 2nd ed edition, 2009.

[13] J. Hattie and M. Gan. Instruction based on feedback.
Handbook of research on learning and instruction, pages
249–271, 2011.

[14] J. Hattie and H. Timperley. The Power of Feedback. Re-
view of Educational Research, 77(1):81–112, Mar. 2007.
ISSN 0034-6543.

[15] H. Keuning, J. Jeuring, and B. Heeren. A systematic
literature review of automated feedback generation for
programming exercises. ACM Transactions on Com-
puting Education (TOCE), 19(1):1–43, 2018.

[16] V. Kovanović, S. Joksimović, Z. Waters, D. Gašević,
K. Kitto, M. Hatala, and G. Siemens. Towards auto-
mated content analysis of discussion transcripts: a cog-
nitive presence case. In Proceedings of the Sixth Interna-
tional Conference on Learning Analytics & Knowledge,
LAK ’16, pages 15–24, Edinburgh, United Kingdom,
Apr. 2016. ACM.

[17] M. Liu, Y. Li, W. Xu, and L. Liu. Automated Essay
Feedback Generation and Its Impact on Revision. IEEE
Trans. Learn. Technol., 10(4):502–513, Oct. 2017. ISSN
1939-1382.

[18] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M.
Prutkin, B. Nair, R. Katz, J. Himmelfarb, N. Bansal,
and S.-I. Lee. Explainable AI for Trees: From Local
Explanations to Global Understanding. May 2019.

[19] X. Ma, S. Wijewickrema, S. Zhou, Y. Zhou,
Z. Mhammedi, S. O’Leary, and J. Bailey. Adversar-
ial Generation of Real-time Feedback with Neural Net-
works for Simulation-based Training. In Proceedings of
the Twenty-Sixth International Joint Conference on Ar-
tificial Intelligence, pages 3763–3769, Melbourne, Aus-
tralia, Aug. 2017. International Joint Conferences on
Artificial Intelligence Organization.

[20] K. A. Neuendorf. The content analysis guidebook.
SAGE, Los Angeles, second edition edition, 2017.

[21] D. J. Nicol and D. Macfarlane-Dick. Formative assess-
ment and self-regulated learning: a model and seven
principles of good feedback practice. Studies in Higher
Education, 31(2):199–218, Apr. 2006. ISSN 0307-5079,
1470-174X.

[22] B. Pan. Application of XGBoost algorithm in hourly
PM2.5 concentration prediction. IOP Conference Se-
ries: Earth and Environmental Science, 113:012127,
Feb. 2018. ISSN 1755-1315. Publisher: IOP Publishing.

[23] A. Parikh, K. McReelis, and B. Hodges. Student feed-
back in problem based learning: a survey of 103 final
year students across five Ontario medical schools. Med.
Educ., 35(7):632–636, 2001. ISSN 1365-2923.

[24] A. Pinheiro Cavalcanti, R. Ferreira Leite de Mello,
V. Rolim, M. Andre, F. Freitas, and D. Gasevic. An
Analysis of the use of Good Feedback Practices in On-
line Learning Courses. In 2019 IEEE 19th Interna-
tional Conference on Advanced Learning Technologies
(ICALT), pages 153–157, Maceió, Brazil, July 2019.
IEEE.

[25] S. Shavitt, A. K. Lalwani, J. Zhang, and C. J. Torelli.
The Horizontal/Vertical Distinction in Cross-Cultural
Consumer Research. Journal of Consumer Psychol-
ogy, 16(4):325–342, 2006. ISSN 1532-7663. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15327663jcp1604 3.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 775

[26] P.-N. Tan and others. Introduction to data mining.
Pearson Education India, 2007.

[27] Y. R. Tausczik and J. W. Pennebaker. The Psycholog-
ical Meaning of Words: LIWC and Computerized Text
Analysis Methods. JLS, 29(1):24–54, Mar. 2010. ISSN
0261-927X, 1552-6526.

[28] J. Villalón, P. Kearney, R. A. Calvo, and P. Reimann.
Glosser: Enhanced Feedback for Student Writing
Tasks. In 2008 Eighth IEEE International Confer-
ence on Advanced Learning Technologies, pages 454–
458, Santander, Cantabria, Spain, 2008. IEEE.

[29] M. R. Weaver. Do students value feedback? Student
perceptions of tutors’ written responses. Assess Eval
High Educ, 31(3):379–394, June 2006. ISSN 0260-2938.

[30] S. Wijewickrema, X. Ma, P. Piromchai, R. Briggs,
J. Bailey, G. Kennedy, and S. O’Leary. Providing
Automated Real-Time Technical Feedback for Virtual
Reality Based Surgical Training: Is the Simpler the
Better? In Artificial Intelligence in Education, Lec-
ture Notes in Computer Science, pages 584–598, Cham,
2018. Springer.

[31] Z. Xiao, Y. Wang, K. Fu, and F. Wu. Identifying Differ-
ent Transportation Modes from Trajectory Data Using
Tree-Based Ensemble Classifiers. ISPRS International
Journal of Geo-Information, 6(2):57, Feb. 2017. Num-
ber: 2 Publisher: Multidisciplinary Digital Publishing
Institute.

776 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Academic Integrity during the COVID-19 Pandemic:
a Social Media Mining Study

Mohammad S. Parsa
University of Waterloo

mohammad.parsa@uwaterloo.ca

Lukasz Golab
University of Waterloo

lgolab@uwaterloo.ca

ABSTRACT
Academic integrity has been a frequently reported challenge in on-
line education. Given the widespread transition to online program
delivery during the COVID-19 pandemic, we ask the following
question: How do college students feel about online cheating? Our
analysis is based on academic discussions on the Reddit social cu-
ration platform in Fall 2020 and, for comparison, Fall 2019. We
found more discussions related to cheating in 2020 than in 2019,
and the topics have expanded from plagiarism in programming as-
signments to online assessments in general. Topic modelling of the
Fall 2020 discussions revealed three concerns raised by students:
that cheating inflates grades and forces instructors to increase the
difficulty of assessments; that witnessing cheating go unpunished
is demotivating; and that academic integrity policies are not always
communicated clearly.

Keywords
academic integrity, online education, social media, text mining

1. INTRODUCTION
Recent studies have reported that online academic misconduct has
increased during the COVID-19 pandemic [12, 6, 2, 4, 3, 18]. We
therefore ask the following question in this paper: How do college
students feel about online cheating? To answer this question, we
turn the Reddit social curation platform (reddit.com). Reddit hosts
over 100,000 user-created discussion communities refereed to as
subreddits. Within a subreddit, users create posts that other users
comment on. Subreddit names begin with “r/” and correspond to
the subreddit topic, e.g., r/politics or r/relationship_advice.

Descriptive subreddit names make it easy to locate discussions
about specific topics or discussions initiated by various kinds of
users. Of interest to our study are over 80 subreddits corresponding
to Canadian and U.S. universities, which we call academic subred-
dits. We collected all posts and comments on academic subreddits
created during the Fall 2019 and Fall 2020 semesters (September
through December inclusive) that match at least one keyword re-
lated to cheating, such as ‘cheat’ or ‘misconduct’.

Our analysis consists of two steps. First, collecting data from the
same time period in 2019 and 2020 allows us to compare cheating-
oriented discussions from before the pandemic, when classes were
held in person, and during the pandemic, with most courses deliv-
ered online. To do so, we train a logistic regression classifier to
distinguish between Fall 2019 and Fall 2020 content based on the
words used. Next, we analyze Fall 2020 discussions in detail. We
apply the Non-negative Matrix Factorization algorithm [20], which
clusters posts and comments based on the words used and allows
us to identify common discussion topics.

Related Work: Social media have become a go-to source of public
opinion on a variety of topics. In particular, academic subreddits
have been analyzed in recent work on students’ mental health [1,
16], but academic integrity was not discussed. The closest works
to ours are those in [4] and [5], which interviewed a small set of
undergraduate students and educators. The participants identified
some positive aspects of online education, but expressed concerns
about cheating and the level of difficulty of online assessments. Our
social media analysis explores these and other concerns in detail.

2. DATA AND METHODS
Previous work on students’ mental health [1, 16] identified 83 aca-
demic subreddits corresponding to major U.S. and Canadian uni-
versities. We analyze the same subreddits in this paper, listed in
the first column of Table 1 (U.S.) and Table 2 (Canadian). We col-
lected all posts and comments on these subreddits from the Fall
2019 semester, when classes and examinations were held in per-
son, and the Fall 2020 semester, when most campuses moved to
online delivery (September-December inclusive). We downloaded
the data using a publicly-accessible Reddit interface at pushshift.io.

Next, we retain only those posts and comments that contain at least
one of the following keywords: ’cheat’, ’plagiari’, and ’miscon-
duct’. We perform substring matching, meaning that ‘plagari’ also
matches ’plagiarize’ and ’plagiarism’. Tables 1 and 2 report the
number of posts (“P”) and comments (“C”) on each U.S. and Cana-
dian academic subreddit, respectively, in Fall 2019 and Fall 2020.
The “Before” numbers correspond to all posts and comments. The
“After” numbers correspond to posts and comments that matched at
least one cheating-related keyword; note that there are three times
as many such posts and comments in 2020 than in 2019 (7,809 vs.
2,524) even though the total number of posts and comments on aca-
demic subreddits has not changed much from 2019 to 2020 (see the
total “Before” numbers in the last row of Tables 1 and 2).

We then perform standard text pre-processing. Following previ-
ous work on Reddit topic modelling [10, 16], we remove posts and

Mohammad Parsa and Lukasz Golab “Academic Integrity during the
COVID-19 Pandemic: a Social Media Mining Study”. 2021. In: Pro-
ceedings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 777-781.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 777

Table 1: Number of posts and comments on U.S. academic subreddits in 2019 and 2020 before and after filtering to find cheating-
related discussions (C: Comments, P: Posts).

Subreddits 2020 2019
Before After Before After

C P C P C P C P
UIUC 39974 6991 160 21 40556 6431 104 10
berkeley 37355 6343 365 69 28537 4637 114 17
Cornell 36235 8139 165 27 22562 3900 45 8
Purdue 34376 6317 148 15 33322 5273 42 11
UCSD 30589 5798 175 34 28214 5364 106 15
rutgers 29861 6622 269 69 44114 8902 122 16
UMD 21937 4225 206 28 25794 4631 97 6
SBU 20521 4301 163 20 28328 5373 63 13
uofm 19954 3174 79 14 13553 2213 44 5
udub 17867 3487 82 17 18187 3187 59 6
UWMadison 14870 2447 103 18 14236 2039 33 3
UTAustin 13620 3112 53 7 13866 2811 90 6
utdallas 12763 2235 74 7 20731 3109 25 5
PennStateUniversity 12345 1944 64 5 9620 1610 42 2
msu 12052 2104 86 10 15066 2329 23 6
NCSU 11653 1794 72 5 18943 2524 32 1
UVA 11627 2424 79 9 5071 1084 19 5
rit 11603 1577 48 2 10768 1643 6 1
nyu 11034 2952 37 7 5731 1438 10 2
UNCCharlotte 10132 1709 93 12 10700 1508 18 1
USC 9551 1958 82 15 6800 1419 17 4
Baruch 9370 2226 94 16 4851 1144 36 12
UPenn 8886 2083 55 10 4212 997 11 1
UNC 8347 1644 30 8 3800 790 6 2
byu 6951 707 39 2 3165 407 25 3
UGA 6637 1520 20 3 6852 1349 2 0
columbia 6496 1573 55 5 4699 708 22 3
RPI 5652 1220 70 0 7622 1343 5 0
uichicago 4880 894 46 4 6606 1009 84 1
SJSU 4661 1068 27 5 5108 1136 18 3
stanford 3944 1223 13 2 3782 882 10 0
bostoncollege 3493 1006 0 0 753 188 0 0
cmu 3388 657 27 2 2764 517 3 0
washu 3159 572 4 0 1134 259 0 0
Vanderbilt 2581 555 9 1 1447 311 0 0
Harvard 2219 634 1 1 2294 517 1 0
UMBC 2036 457 21 3 2479 464 4 0
duke 2020 469 2 1 1397 317 7 2
mit 1758 532 3 0 1651 373 4 0
BrownU 1363 438 2 1 1315 276 0 0
IndianaUniversity 1225 588 1 1 1797 543 9 1
Caltech 494 130 0 0 220 59 0 0
Total 509479 99849 3122 476 482647 85014 1358 171

comments with fewer than 40 or more than 4000 characters: short
ones are unlikely to be meaningful (and may correspond to URLs),
while long ones may mention more than one topic. We also remove
stopwords and lemmatize the remaining words using the Python
NLTK parser.

To distinguish between cheating-related discussions before and
during the pandemic, we train a logistic regression classifier to pre-
dict whether a post or comment was written in Fall 2020 or Fall
2019. We use term frequency–inverse document frequency (TF-
IDF) word scores as features in the model. We chose logistic re-
gression due to its interpretable nature: words with positive coef-
ficients represent Fall 2020 content and words with negative coef-
ficients represent Fall 2019. Our model obtained a 10-fold cross-
validation accuracy score of 73%, a precision of 76%, a recall of
96% and an F1-score of 86%.

(We also tested logistic regression models with additional features,
including word bigrams, the sentiment of the post or comment

(computed using the Valence Aware Dictionary and Sentiment Rea-
soner (VADER) [8]) and linguistic features computed using Lin-
guistic Inquiry and Word Count (LIWC) [17]. After adding these
features, accuracy improved by two percent to 75%. However, none
of these additional features were assigned large coefficients and
therefore are not considered further in the remainder of the paper.)

Finally, we apply the Non-negative Matrix Factorization (NMF)
topic modelling algorithm [20], which was used in prior work on
Reddit mining [14, 7, 11], on the Fall 2020 posts and comments
that match at least one cheating-related keyword. We again repre-
sent each post and comment using the TF-IDF scores of the words
occurring in it. NMF clusters documents into topics and assigns a
list of representative terms called topic descriptors to each topic.
NMF also calculates the “representativeness” score of each topic
descriptor, and we report the top-10 highest-scoring descriptors for
each topic. Moreover, we report top-10 frequent word n-grams (for
n up to three, i.e., sequences of up to three consecutive words) for
each topic.

778 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 2: Number of posts and comments on Canadian academic subreddits in 2019 and 2020 before and after filtering to find
cheating-related discussions (C: Comments, P: Posts).

Subreddits 2020 2019
Before After Before After

C P C P C P C P
uwaterloo 72244 8372 381 58 88996 9888 130 17
UofT 54343 8460 701 86 67649 9375 171 23
UBC 40058 5281 766 42 39416 5039 109 11
uAlberta 33265 7164 341 58 49494 8270 137 23
McMaster 24556 5188 219 45 14932 2638 27 3
mcgill 21380 3376 167 15 20852 3067 58 6
yorku 15671 4065 228 46 22078 3862 47 6
CarletonU 15455 2531 207 11 16874 2706 43 2
Concordia 10065 2394 192 27 10292 2185 27 7
uwo 9717 1856 122 10 11758 1764 35 2
wlu 8097 1788 97 16 5499 1203 13 4
uvic 7291 1178 85 3 4756 828 11 3
ryerson 6503 2282 87 6 14922 2927 37 8
queensuniversity 5234 1107 18 1 4758 824 6 2
umanitoba 4408 861 66 7 3183 717 3 1
uoguelph 3381 794 51 8 3691 693 5 2
Dalhousie 1807 401 21 4 2019 407 6 2
usask 1177 290 0 0 666 178 0 0
brocku 1007 366 2 0 1442 329 4 2
memorialuniversity 785 183 6 1 637 147 2 0
UdeM 422 90 1 0 174 48 0 0
lakeheadu 119 59 2 1 51 21 0 0
uleth 112 35 0 0 82 33 0 0
University_Of_Regina 96 30 1 0 8 11 0 0
AcadiaU 69 29 1 0 60 15 0 0
UQAM 67 22 0 0 48 17 0 0
uwinnipeg 65 24 2 1 15 10 0 0
unb 62 35 0 1 8 12 0 0
laurentian 33 16 0 0 9 4 0 0
stfx 32 12 0 0 0 1 0 0
SMUHalifax 24 17 0 0 21 9 0 0
nipissingu 13 8 0 0 3 4 0 0
UPEI 12 10 0 0 1 3 0 0
stthomas 6 4 0 0 0 3 0 0
BishopUniversity 5 2 0 0 0 4 0 0
UNBC 3 5 0 0 15 10 0 0
mta 1 0 0 0 6 6 0 0
cbu 0 2 0 0 3 1 0 0
MSVU 0 0 0 0 0 1 0 0
uottawa 0 0 0 0 83 43 0 0
usherbrooke 0 0 0 0 0 2 0 0
Total 337585 58337 3764 447 384501 57305 871 124

Additionally, NMF assigns a closeness score for each document-
topic pair, indicating how close the document is to a topic. To ob-
tain more information about the topics produced by NMF, for each
topic, we manually inspect 5% of the posts and comments with the
highest closeness scores.

NMF requires the number of topics as input. Following previous
work [15], we run NMF to produce between 5 and 50 topics and
compute the coherence score for each. Coherence measures the
extent to which the top representative terms representing each topic
are semantically related (higher is better). We obtained the highest
scores for 5 and 20 topics. A preliminary analysis of the NMF
output at five topics revealed that most topics consisted of several
discussion themes. This observation suggested that a larger number
of topics may be more appropriate, and thus we selected 20 topics.

3. RESULTS
We begin with the results of our logistic regression analysis, shown
in Table 4 in the Appendix. The most positive coefficients, pre-

dicting Fall 2020 posts and comments, include ‘chegg’ (an online
platform for answering college and high school questions), as well
as words related to online proctoring such as ’proctor’, ’procto-
rio’, ’zoom’, ’camera’, ’webcam’ and ’privacy’. The most negative
coefficients, predicting Fall 2019 posts and comments, suggest in-
person examinations (‘cheat sheet’, ’bring’, ‘sit’) and programming
assignments and projects (‘code’, ’program’, ’project’).

Next, we move to topic modelling. Table 3 shows the NMF topic
descriptors, the frequent n-grams, and the percentage of posts and
comments assigned to each topic. We group the topics into the
following three categories based on the information in Table 3 and
manual inspection of a sample of posts and comments.

First, about 40% of the posts and comments include concerns about
cheating leading to grade inflation, which in turn leads to assess-
ments becoming more difficult. Students have observed grade in-
flation (Topic 13) and expressed concerns that Fall 2020 examina-
tions will be more difficult to reduce the class average (Topics 1 and
20). Moreover, students commented on various methods used by

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 779

Table 3: Fall 2020 topic modelling results
Topic descriptors Frequent N-grams %
1 work, really, time, way, learn, try, hard, help,

school, good
’feel like’, ’work hard’, ’first year’, ’high school’, ’office hour’, ’mental health’, ’learn mate-
rial’, ’get catch’, ’make sure’, ’in person’

10.4

2 say, academic, email, integrity, case, code,
worry, report, flag, mean

’academic integrity’, ’academic dishonesty’, ’integrity violation’, ’academic integrity viola-
tion’, ’get flag’, ’student conduct’, ’academic offense’, ’would say’, ’get catch’, ’even though’

10.3

3 think, probably, pretty, fine, worry, fair, sure,
reason, away, good

’think would’, ’think people’, ’think get’, ’like think’, ’get away’, ’make sure’, ’really think’,
’feel like’, ’think go’, ’think make’

6.4

4 student, university, honest, case, punish, inter-
national, chinese, issue, school, conduct

’international student’, ’student get’, ’many student’, ’chinese student’, ’honest student’, ’aca-
demic integrity’, ’student would’, ’mental health’, ’academic dishonesty’, ’first year’

5.7

5 know, want, let, wrong, happen, person, tell,
need, mean, consequence

’let know’, ’want know’, ’know people’, ’get catch’, ’know would’, ’lot people’, ’feel like’,
’know know’, ’know go’, ’student know’

5.5

6 prof, email, mark, ta, ask, tell, send, chance,
midterm, try

’prof make’, ’first year’, ’email prof’, ’open book’, ’feel like’, ’prof say’, ’prof ta’, ’prof would’,
’make sure’, ’ask prof’

5.4

7 question, answer, time, ask, quiz, look, minute,
similar, wrong, google

’answer question’, ’go back’, ’multiple choice’, ’short answer’, ’exam question’, ’one ques-
tion’, ’look answer’, ’question answer’, ’question exam’, ’choice question’

5.1

8 test, open, book, note, close, online, tab, inter-
net, easy, search

’open book’, ’open note’, ’make test’, ’take test’, ’test open’, ’close book’, ’book exam’, ’open
book exam’, ’exam open’, ’book test’

4.9

9 people, lot, stop, say, agree, mean, proctor,
probably, maybe, care

’people get’, ’lot people’, ’many people’, ’people would’, ’get catch’, ’people like’, ’mental
health’, ’people go’, ’know people’, ’feel like’

4.8

10 like, feel, sound, look, yeah, lol, bad, thing, lot,
shit

’feel like’, ’seem like’, ’look like’, ’sound like’, ’something like’, ’even though’, ’would like’,
’make feel’, ’online school’, ’like people’

4.8

11 exam, proctor, final, online, open, book, sheet,
time, hour, note

’take exam’, ’final exam’, ’open book’, ’online exam’, ’make exam’, ’proctor exam’, ’write
exam’, ’take home’, ’home exam’, ’person exam’

4.7

12 use, software, proctor, proctorio, computer,
browser, note, flag, lockdown, webcam

’lockdown browser’, ’secondary device’, ’make sure’, ’proctor software’, ’take exam’, ’get
flag’, ’student use’, ’use respondus’, ’virtual machine’, ’use note’

4.5

13 course, year, average, math, midterm, final, as-
signment, fail, term, quiz

’first year’, ’take course’, ’last year’, ’math course’, ’feel like’, ’midterm final’, ’year course’,
’course average’, ’final exam’, ’class average’

4.5

14 class, curve, online, semester, average, fail,
homework, lot, easy, problem

’take class’, ’class average’, ’online class’, ’class get’, ’one class’, ’feel like’, ’math class’,
’class take’, ’in person’, ’make sure’

4.4

15 grade, curve, average, semester, high, final, let-
ter, higher, better, good

’good grade’, ’letter grade’, ’final grade’, ’get good’, ’get good grade’, ’grade get’, ’get grade’,
’grade inflation’, ’grade curve’, ’better grade’

4.2

16 professor, happen, try, evidence, accuse, report,
tell, prove, probably, email

’professor make’, ’take exam’, ’make exam’, ’professor would’, ’professor might’, ’make sure’,
’student professor’, ’professor try’, ’in person’, ’tell professor’

4

17 catch, happen, wonder, lol, hear, dumb, expel,
time, lmao, guy

’get catch’, ’people get’, ’people get catch’, ’first time’, ’catch people’, ’catch get’, ’use chegg’,
’get away’, ’without get’, ’without get catch’

3.7

18 chegg, post, account, use, ip, information, ad-
dress, answer, view, solution

’use chegg’, ’ip address’, ’chegg account’, ’get catch’, ’post chegg’, ’question chegg’, ’post
question’, ’chegg exam’, ’chegg answer’, ’answer chegg

2.8

19 group, chat, leave, join, share, report, quiz,
snitch, post, want

’group chat’, ’share answer’, ’get trouble’, ’group member’, ’join group’, ’class group’, ’leave
group’, ’academic integrity’, ’group project’, ’study group’

2.5

20 make, harder, sure, sense, hard, easier, difficult,
mistake, thing, pretty

’make sure’, ’make harder’, ’make exam’, ’make sense’, ’harder make’, ’want make’, ’make
mistake’, ’make difficult’, ’make feel’, ’want make sure

1.4

instructors to combat cheating and reduce grades, such as grading
on a curve (Topics 14 and 15) and using anti-cheating and online
proctoring software (Topics 9 and 11).

Next, students reported feeling demotivated when they know that
cheating happens in examinations (Topics 4 and 5) and often goes
unpunished (Topics 3, 10 and 17). Students discussed examples of
cheating that instructors failed to identify, such as seeking answers
on Google and question-answering websites such as Chegg (Topics
7, 8 and 18), and discussing solutions in online chat groups (Topic
19).

Finally, students reported concerns about new methods used to pre-
vent cheating in online examinations. They worried that some legit-
imate actions may be misconstrued as cheating: looking away from
the computer screen, accidentally pressing a button, or disconnect-
ing from a video meeting due to internet connectivity issues (Topics
6 and 12). Furthermore, some students reported being accused of
cheating during online examinations, but did not realize they did
anything wrong (Topics 2 and 16).

4. CONCLUSIONS

Logistic regression analysis suggests that cheating-related discus-
sions on academic subreddits have expanded from plagiarism in
computer programming (representative of Fall 2019) to online as-
sessments in general. The word ‘chegg’ was associated with Fall
2020 content, suggesting an increase in the use of Chegg and re-
lated websites, which is consistent with prior work [6, 3]. Further-
more, words indicating online proctoring were predictive of Fall
2020 content, e.g., ‘camera’, ’webcam’ and ’record’. Inspection of
the posts and comments containing these terms revealed students’
concerns about their privacy during online examinations. Similar
concerns were raised in recent work [4, 9].

Topic modelling analysis identified three discussion themes in Fall
2020. First, students believe that cheating causes grade inflation,
which motivates instructors to make assessments harder and intro-
duce strict anti-cheating protocols such as not being able to scroll
back to a previous question on an online examination. Some of
these concerns have been highlighted in previous work [18, 19, 2,
4, 13, 3], and our analysis reflects students’ opinions on this topic.
Second, unpunished cheating lowers students’ morale and motiva-
tion. Students report feeling demotivated when classmates cheat
and obtain high grades. Third, students report not knowing exactly
what constitutes cheating and what is allowed, underscoring the im-

780 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

portance of clear academic integrity policies. These concerns were
often reported in the context of online examinations, with students
unsure of how their actions are being monitored.

5. REFERENCES
[1] S. Bagroy, P. Kumaraguru, and M. D. Choudhury. A social

media based index of mental well-being in college campuses.
In CHI, pages 1634–1646, 2017.

[2] E. Bilen and A. Matros. Online cheating amid COVID-19.
Journal of Economic Behavior & Organization,
182:196–211, Feb. 2021.

[3] T. M. Clark, C. S. Callam, N. M. Paul, M. W. Stoltzfus, and
D. Turner. Testing in the time of COVID-19: A sudden
transition to unproctored online exams. Journal of Chemical
Education, 97(9):3413–3417, July 2020.

[4] J. R. Deters, M. C. Paretti, and J. M. Case. How implicit
assumptions about engineering impacted teaching and
learning during COVID-19. Advances in Engineering
Education, 8(4):1–5, 2020.

[5] B. Dorić, M. Blagojević, M. Papic, and N. Stanković.
Students’ attitudes regarding online learning during
COVID-19 pandemic. In Information Technology and
Education Development, pages 157–160, 2020.

[6] K. A. Gamage, E. K. de Silva, and N. Gunawardhana. Online
delivery and assessment during COVID-19: Safeguarding
academic integrity. Education Sciences, 10(11):301, Oct.
2020.

[7] N. Gozzi, M. Tizzani, M. Starnini, F. Ciulla, D. Paolotti,
A. Panisson, and N. Perra. Collective response to media
coverage of the COVID-19 pandemic on reddit and
wikipedia: Mixed-methods analysis. Journal of Medical
Internet Research, 22(10):e21597, Oct. 2020.

[8] C. Hutto and E. Gilbert. Vader: A parsimonious rule-based
model for sentiment analysis of social media text. In
ICWSM, pages 216–225, 2015.

[9] M. V. Jamieson. Keeping a learning community and
academic integrity intact after a mid-term shift to online
learning in chemical engineering design during the
COVID-19 pandemic. Journal of Chemical Education,
97(9):2768–2772, Aug. 2020.

[10] A. Khan and L. Golab. Reddit mining to understand gendered
movements. In Proc. EDBT Workshop on Data Analytics
Solutions for Real-Life Applications, pages 3:1–3:8, 2020.

[11] H. Liu, Q. Li, R. Yao, and D. D. Zeng. Analyzing topics of
JUUL discussions on social media using a semantics-assisted
NMF model. In ISI, pages 212–214, 2019.

[12] D. M. Low, L. Rumker, T. Talkar, J. Torous, G. Cecchi, and
S. S. Ghosh. Natural language processing reveals vulnerable
mental health support groups and heightened health anxiety
on reddit during COVID-19: Observational study. Journal of
Medical Internet Research, 22(10):e22635, Oct. 2020.

[13] C. K. C. Ng. Evaluation of academic integrity of online open
book assessments implemented in an undergraduate medical
radiation science course during COVID-19 pandemic.
Journal of Medical Imaging and Radiation Sciences,
51(4):610–616, Dec. 2020.

[14] A. Nobles, C. Dreisbach, J. Keim-Malpass, and L. Barnes. Is
this an STD? please help!: Online information seeking for
sexually transmitted diseases on reddit. ICWSM, pages
660–663, 2018.

[15] D. O’callaghan, D. Greene, J. Carthy, and P. Cunningham.
An analysis of the coherence of descriptors in topic

modeling. Expert Systems with Applications,
42(13):5645–5657, 2015.

[16] M. Parsa and L. Golab. Social media mining to understand
the impact of co-operative education on mental health. In
EDM, pages 653–657, 2020.

[17] J. W. Pennebaker, R. L. Boyd, K. Jordan, and K. Blackburn.
The development and psychometric properties of LIWC
2015. Technical report, 2015.

[18] D. M. Telles-Langdon. Transitioning university courses
online in response to COVID-19. Journal of Teaching and
Learning, 14(1):108–119, May 2020.

[19] N. A. A. Tuah. Is online assessment in higher education
institutions during COVID-19 pandemic reliable? Siriraj
Medical Journal, 73(1):61–68, Dec. 2020.

[20] W. Xu, X. Liu, and Y. Gong. Document clustering based on
non-negative matrix factorization. In SIGIR, pages 267–273,
2003.

APPENDIX
Table 4: Words with the most positive and most negative logis-
tic regression coefficients

Term coefficient Term coefficient
chegg 2.19 sheet -3
online 1.79 cheat sheet -2.95
proctor 1.79 code -1.87
open 1.62 project -1.68
covid 1.55 plagiarism -1.51
zoom 1.45 phone -1.47
prof 1.37 plagiarize -1.32
pandemic 1.25 relationship -1.31
proctorio 1.11 sit -1.1
flag 1.09 talk -1.02
cheat 1.08 sexual -0.98
chat 1.06 notice -0.94
camera 1.03 bring -0.93
internet 1 textbook -0.93
privacy 1 international -0.92
book 1 misconduct -0.78
cheater 0.98 appeal -0.78
webcam 0.95 program -0.79
100 0.93 go -0.79
format 0.92 front -0.81
screen 0.9 report -0.81
open book 0.89 try cheat -0.81
sem 0.88 ask -0.81
record 0.88 homework -0.82
math 0.88 dean -0.82
term 0.87 practice -0.83
average 0.86 allow -0.88
respondus 0.85 partner -0.88
email 0.83 final -0.89
semester 0.83 english -0.9

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 781

Analyzing Ranking Strategies to Characterize Competition
for Co-Operative Work Placements

Shivangi Chopra
University of Waterloo

Waterloo, Ontario, Canada N2L 3G1
s9chopra@uwaterloo.ca

Lukasz Golab
University of Waterloo

Waterloo, Ontario, Canada N2L 3G1
lgolab@uwaterloo.ca

ABSTRACT
Co-operative education is a form of work-integrated learning that
includes academic study and paid work experience. This provides
new learning opportunities for students and a talent pipeline for
employers, but also requires participation in a competitive job mar-
ket. We study competition through a unique dataset from a large
North American co-operative program, in which students and em-
ployers rank each other after a round of interviews, then a match-
ing algorithm assigns students to jobs based on the ranks, and fi-
nally students and employers evaluate each other at the end of the
workterm. Our results reveal insights about competition and its
impact on decision-making and satisfaction. An analysis of com-
mon ranking patterns suggests that small employers appear to be
more strongly affected by competition and consider more options
in their rankings, whereas large employers often do not provide
any backup options and only identify their top choice. Addition-
ally, competition appears to affect satisfaction since employers give
higher workterm evaluations when matched with their top choice.

Keywords
co-operative education, work-integrated learning, ranking

1. INTRODUCTION
Co-operative (co-op) education is a form of work-integrated learn-
ing that includes both academic study terms and paid work expe-
rience, referred to as co-op work placements, workterms or intern-
ships. Prior work has examined the benefits of co-op, such as new
learning opportunities for students and a talent pipeline for employ-
ers [13]. However, recent work has also reported that the compe-
tition related to interviewing for and securing co-op placements is
a source of stress for students [10]. Motivated by these findings,
in this paper we take a closer look at competition in co-operative
education.

Our study is based on a unique dataset from a large North Ameri-
can undergraduate co-operative program. In this program, the co-
op employment process proceeds as follows. Employers post job
advertisements, students submit applications, and employers select

students they wish to interview. After a round of interviews, stu-
dents and employers rank each other. A matching algorithm then
assigns students to jobs based on the ranks, with the goal of min-
imizing the sum of the student and employer ranks. For example,
if the employer offering job A ranks student B one and vice versa,
then the algorithm is guaranteed to assign job A to student B. In
some cases, however, students and employers may be matched with
their second or third choices, or not be matched at all. Finally stu-
dents and employers evaluate each other at the end of the workterm.

One way to characterize competition in such a process is to iden-
tify job postings that receive the most applications. However, even
entry-level or less desirable job postings may receive many applica-
tions, mainly from junior students. Instead, we turn to the ranking
step of the process as a novel way to characterize competition. We
investigate the following questions:

1. Do employers use different ranking strategies that reflect the
level of competition they face? For example, an employer
who is confident in their ability to attract top students may
rank their preferred student one and not rank any other stu-
dents as backup options. On the other hand, a less confident
employer may rank multiple students.

2. Does competition appear to affect satisfaction? Are em-
ployers happier if they are matched with their top-ranked
choices?

To answer these questions, we analyze ranking and workterm eval-
uation data from over 4,500 employers participating in the job
matching process in three semesters, from September 2015 to Au-
gust 2016. We answer the first question by mining frequent ranking
patterns and identifying representative attributes of employers that
use these patterns. To answer the second question, we compare the
average employer evaluation scores when matched with their first
choice versus a backup choice.

Related Work: Labour market competition has been studied from
several angles, including improving talent recruitment by recom-
mending resumes to job postings [11, 16], and reducing turnover
by assessing personnel fit when making hiring decisions [2, 6, 3].
Further, it was found that job seekers’ perceptions of hiring success,
informed by their past job search success and prior knowledge of
the company, motivate their decision to apply for a job and affect
their decision to accept a job offer [1, 12]. In co-operative edu-
cation, there has been work on student and employer satistfaction
[8, 5, 4], as well as on clustering job opportunities, suggesting that
junior students compete with each other for entry-level jobs and

Shivangi Chopra and Lukasz Golab “Analyzing Ranking Strategies to Char-
acterize Competition for Co-Operative Work Placements”. 2021. In: Pro-
ceedings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 782-786.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

782 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

senior students compete with each other for more advanced posi-
tions [7, 14]. To the best of our knowledge, this is the first work
to characterize competition based on employer rankings in a co-op
process. Access to this unique data allows us to draw new insights
into competition in co-operative education that can help manage
students’ and employers’ expectations and improve their satisfac-
tion.

2. DATA AND METHODS
2.1 Co-operative Process Overview
We begin with an overview of the co-op process at the institution
studied in this paper. Initially, participating employers submit job
descriptions, and any student (enrolled in a co-op program) may
apply to any job. Next, employers interview selected candidates
and rank them. A rank of zero, referred to as a “No Rank", means
that the employer is not willing to hire the student. A rank of one,
referred to as an “Offer", indicates that the employer wishes to hire
the student. Ranks two to nine, referred to as “Ranks", represent
the employer’s backup or shortlist options, in order of preference.
In other words, the employer would consider hiring these students
if the top-ranked student declines the offer. In the remainder of
this paper, we use the terms “shortlisted” and “received a Rank”
interchangeably. Ranks do not need to be distinct, e.g., an employer
may put five students on the backup list and give all of them a rank
of two. After employers have submitted their rankings, students
rank employers that made them offers or shortlisted them, between
one and nine, indicating their order of preference.

The co-op matching system then removes student-employer rank
pairs that add to zero (i.e., No Ranks) and applies a matching al-
gorithm to assign students to jobs. The objective of the algorithm
is to minimize the sum of the ranks of the resulting student-job as-
signment. Note that the lowest sum of ranks is two, and occurs
when an employer offers a job to a student and the student gives a
rank of one to this job. In this case, the student is guaranteed to be
matched with this job1. In other cases, students or employers may
be matched with their second, third, or lower choice, or may not
be matched at all. Finally, at the end of a workterm, students and
employers who were matched with each other evaluate each other.

2.2 Data
We analyzed one year of data, from September 2015 to August
2016, corresponding to 4,851 co-op job postings for students en-
rolled in co-op engineering programs:

• Job Postings, containing a job ID, job title, and employer
name.

• Employer Rankings, containing a job ID and the distribu-
tion of ranks. Figure 1 shows an example with five em-
ployers, one per row. The first row indicates that employer
(whose job ID is) E1 gave two ranks of zero (#R0) and no
other ranks, i.e., E1 interviewed two students and was not
willing to hire either of them. The second row indicates that
E2 interviewed two students, rejected one (#R0), and put one
on the shortlist with a rank of two (#R2), and so on.

• Employer Evaluations, containing a job ID, the rank the
employer gave to the student who was hired, and the em-
ployer’s evaluation of the student (on a 7-point scale: unsat-

1If a student were to give a rank of one to multiple Offers, the
algorithm would randomly select one of these Offers.

Figure 1: Sample of employer ranking data

Figure 2: Summary of methods

isfactory, marginal, satisfactory, good, very good, excellent,
outstanding).

2.3 Methods
Given that the matching algorithm is designed to minimize the sum
of the ranks of the student-job assignments, employers may use dif-
ferent ranking strategies depending on the perceived level of com-
petition. For example, employers may extend one or more offers
but not shortlist any students if they are confident that their offer(s)
will be accepted (i.e., that those students will reciprocate with a stu-
dent rank of one). On the other hand, less confident employers may
shortlist multiple students, and, to maximize their chances of hir-
ing someone, they may give a rank of two to all shortlisted students
instead of ranking them in order of preference.

The goal of this paper is to identify these kinds of ranking strategies
and use them to describe the level of competition faced by different
groups of employers. Our methodology, consisting of three steps,
is summarized in Figure 2 and explained below.

1. Identify frequent ranking patterns: For employers, we
identify commonly used sets of ranks. For example, an em-
ployer set of ranks of {0, 1} corresponds to employers who
give only No Ranks (0) and Offers (1), and do not shortlist
any students (ranks 2-9).

2. Group similar ranking patterns: Informed by the previous
step and by the nature of the matching process, we group
together similar sets of ranks. We refer to these as ranking
strategies. For example, we may group employer rank sets
of {0,1,2}, {0,1,2,3} and so on and label these as employ-
ers who make a shortlist (in addition to making some offers
and rejecting some students). This step partitions employers
according to their ranking strategies.

3. Inspect groups: We compare groups of employers with dif-
ferent ranking strategies based on their a) characteristics and,
b) consequences on matching and evaluation. To identify dif-
ferences among employers who use different ranking strate-
gies, we inspect employer names and job titles. To under-
stand the consequences of ranking strategies on matching

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 783

Figure 3: Distribution of employer ranks

Table 1: Most frequent sets of ranks given by employers

Set of Ranks %

{0, 1, 2} 24
{0, 1} 19

{0, 1, 2, 3} 14
{1} 8
{0} 5

{1, 2, 3} 4
{1, 2} 4

{0, 1, 2, 3, 4} 4
{0, 2} 2

{1, 2, 3, 4} 2

and evaluation, for each group of employers who use a given
ranking strategy, we calculate, a) the percentage who were
not matched (represented as %NoMatch), b) the percentage
who were matched with their first choice (represented as
%MatchR1), and c) the percentage who were matched with
their >1 choice (represented as %MatchR>1). Finally, we re-
port the average evaluation scores that the employers gave to
the students they matched with at the end of the workterm.

3. RESULTS
Section 3.1 analyzes the rankings given by 4,851 employers to
identify frequent ranking patterns (Step 1 of Figure 2), group them
into ranking strategies (Step 2 of Figure 2), and distinguish between
employers with different ranking strategies (Step 3 of Figure 2).
Section 3.2 analyzes the effects of ranking strategies on matching
and satisfaction (Step 3 of Figure 2).

3.1 Employer Ranking Strategies
Figure 3 shows the distribution of ranks given by employers to stu-
dents they have interviewed. Recall that rank 0 or “No Rank” in-
dicates that the student was interviewed but not considered for the
job, rank 1 represents an offer, and ranks 2-9 represent employers’
shortlists in order of preference. As seen in Figure 3, nearly half
the ranks are zero, a quarter are offers, and ranks lower than three
are rare.

Next, Table 1 shows the most frequent sets of ranks given by em-
ployers. Many employers reject at least one student (rank 0), make
at least one offer (rank 1), and shortlist at least one student, usually
with ranks of 2 and/or 3. 19% of employers make offers without
shortlisting anyone (second row: {0,1}).

Using Figure 3 and Table 1, we group employers with similar rank-

ing patterns (Step 2 of Figure 2). Table 2 summarizes the groups.
The first column, Label, describes each group. For example, the
first group corresponds to employers that do not make any offers
and do not shortlist (Rank) any students – that is, they only give
zero ranks, meaning that they are not willing to hire any students
they interviewed. The second and third columns indicate whether
the employers in the given group gave any Offers and Ranks, re-
spectively (we define Top Ranks to be ranks of two or three). The
next column shows the percentage of employers assigned to each
group (e.g., the first row indicates that 5% of employers did not
give any Ranks or Offers). The next column reports the percent-
age of employers that were not matched with any students by the
algorithm, labelled “%NoMatch”; clearly, employers who did not
give any ranks or offers have no-match rate of 100%. The next col-
umn, “%MatchR1”, shows the percentage of employers that were
matched with their first choice and the average evaluation score the
employers gave to these students (higher is better). Finally, the last
column, “%MatchR>1”, shows the percentage of employers that
were matched with a student who was not their first choice and the
average evaluation score the employers gave to those students. We
will discuss the percentages further in Section 3.2.

Note that the sum of the percentages reported in the last three
columns – “%NoMatch” plus “%MatchR1” plus “%MatchR>1” –
is 100 for each row. In other words, there are three possible options
for employers: does not match with any student, matches with their
first choice, or matches with their not-first choice.

To characterize employers with different ranking strategies, we in-
spected their names and job titles (Step 3 of Figure 2). We found
that employers who gave:

• “No Offer/s or Rank/s" (first row of Table 2) consisted of
companies of all sizes and industries, mainly offering “ana-
lyst" and “assistant" positions.

• “Only Rank/s" (second row) were mainly business units of
the institution, and mostly offered “analyst", “support", and
“intern" positions.

• “Only Offer/s" (third row) consisted of large well-known
technology and manufacturing companies, offering “soft-
ware developer” and “design” positions.

• “Offer/s and Top Rank/s" (fourth row) consisted of (a)
medium-sized companies offering positions in “software de-
velopment" and “data science", (b) large companies with po-
sitions such as “application development", “UI designer",
“quality assurance", and “process improvement", and (c)
companies with specialized jobs in the fields of electrical en-
gineering, hardware, medical engineering, banking, etc.

• “Offer/s and Other Rank/s" (fifth row) consisted of small
to medium-sized companies with job titles including “qual-
ity assurance", “software testing", “support technician", and
“systems administrator".

3.2 Consequences of Employer Ranking
Strategies

This section analyzes how ranking strategies used by employers
affect their chances of finding a match and whether employers with
different ranking strategies evaluate their matches differently at the
end of the workterm. To provide context, we start by reporting the

784 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 2: Employer ranking strategies

Label Offer/s Rank/s % %NoMatch %MatchR1 %MatchR>1
(Avg(Eval)) (Avg(Eval))

No Offer/s or Rank/s No No 5 100 - -
Only Rank/s No Yes 9 81 - 19 (5.9)
Only Offer/s Yes No 27 48 52 (6.1) -
Offer/s & Top Rank/s Yes Yes (all r≤3) 48 31 46 (6.1) 24 (5.9)
Offer/s & Other Rank/s Yes Yes (some r>3) 11 20 48 (6.2) 32 (5.9)

matching percentage and evaluation scores averaged across all the
employers who participate in the ranking process (i.e., those who
give at least one non-zero rank).

Overall, 39% of employers who participate in the ranking process
do not find a matching student. Out of the 61% who find a match,
75% match with their first choice (i.e., with a student to whom they
gave an Offer), and 25% match with their >1 choice. On average,
employers who match with their first choice evaluate their students
slightly higher (6.1) than those who match with their >1 choice
(5.9). This difference is statistically significant at a p-value of 0.05.

Next, we analyze the consequences of employer ranking strategies
on matching and evaluation. Recall that Table 2 shows the percent-
age of employers with different ranking strategies who do not find
a match, match with their first choice (i.e., with a student to whom
they gave an Offer), and match with their >1 choice. For each rank-
ing strategy, we also show the average evaluation scores given by
employers to their students. Among employers who make offers,
those who provide more backup options (Offers and Ranks) have a
higher matching rate, with a greater proportion matching with their
backup choice. Additionally, one-fifth of the employers who “Only
Rank" (i.e., do not make any offers and only use ranks of two and
above) find a match.

On average, regardless of the ranking strategy used, employers who
match with their first choice evaluate their students similarly and
so do employers who match with their >1 choice. In addition, ir-
respective of the ranking strategy used, employers who match with
their first choice evaluate their students slightly higher than those
who matched with their >1 choice. Therefore, while employer
ranking strategy affects their chances of finding a match, employ-
ers with different ranking strategies do not evaluate their students
differently.

4. DISCUSSION AND CONCLUSIONS
In this paper, we proposed a new way of characterizing competition
in a co-operative job market by studying how employers rank stu-
dents after a round of interviews. Based on a dataset from a large
co-operative education program, we identified ranking strategies,
studied the characteristics of employers who use different strate-
gies, and analyzed the effects of ranking strategies on matching
and workterm evaluation. Our main findings are as follows.

Ranking strategies characterize competition: Ranking strategies
may be used to characterize the extent of competition in the co-
op job market; employers appear to be aware of the competition
they face and rank accordingly.

Large employers are less likely to provide backup options. Thus,
it appears that these employers are confident in their ability to hire
their top choices, and if their top choices decline the offers, these

employers are willing to risk not hiring any students from this uni-
versity. Small to medium companies, especially those offering
entry-level positions, are more likely to provide backup options,
perhaps as a consequence of perceived competition for their top
choices. Therefore, an employer’s popularity and quality of job
they offer appear to be correlated with the ranking strategy they
use. Similar observations were made in many competitive environ-
ments, including supply chains and legal contracting, where parties
with more bargaining power leverage their reputation when negoti-
ating with others [9, 15].

Rank of match affects satisfaction: Regardless of the ranking strat-
egy, employers who match with their first choice evaluate their co-
op students slightly higher on average than those who match with
their backup choices. In other words, satisfaction only seems to de-
pend on the rank of the match and not on the strategy used to obtain
the match.

These results should be interpreted carefully since they are based
on data from a single institution. However, the methodology we
presented in this paper may be used by others to reflect the extent
of competition in their institutions through ranking patterns. In ad-
dition, this study is limited to identifying frequent patterns in the
data, but not cause-and-effect relationships. This provides a start-
ing point for further study: interviewing students and employers
about the competition they face in the co-op market is an interest-
ing direction for future work. Nevertheless, we believe that our
findings will be of interest to students, employers and the institu-
tion. We provide several examples of actionable insights below.

1. Our results can help students understand how co-op employ-
ers rank their options in various situations. This may inform
students’ strategies and decision-making during applications
and ranking, in turn, increasing their chances of finding a
suitable co-op job.

2. Our results can inform new employers about the extent of
competition in the co-op market, which in turn can help them
decide how to rank their options given the competition they
are likely to face.

3. Our findings indicate that some employers are confident in
their ability to hire their top choices, indicating that such jobs
are highly sought after by students. The institution may con-
sider recruiting more such employers. On the other hand,
the institution may recommend smaller employers to less-
experienced students to increase their chances of finding a
match.

4. Our findings suggest that employers who match with a
backup choice are less satisfied with their co-op students.
This suggests a need for methods to help manage the expec-
tations of employers and students in this situation.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 785

5. REFERENCES
[1] A. E. Barber and M. V. Roehling. Job postings and the

decision to interview: A verbal protocol analysis. Journal of
applied psychology, 78(5):845, 1993.

[2] J. M. Barron, J. Bishop, and W. C. Dunkelberg. Employer
search: The interviewing and hiring of new employees. The
Review of Economics and Statistics, pages 43–52, 1985.

[3] C.-F. Chien and L.-F. Chen. Data mining to improve
personnel selection and enhance human capital: A case study
in high-technology industry. Expert Systems with
applications, 34(1):280–290, 2008.

[4] S. Chopra, A. Khan, M. Mirsafian, and L. Golab. Gender
differences in work-integrated learning assessments. In
Proceedings of the International Conference on Educational
Data Mining (EDM), pages 524–527, 2019.

[5] S. Chopra, A. Khan, M. Mirsafian, and L. Golab. Gender
differences in work-integrated learning experiences of stem
students: From applications to evaluations. International
Journal of Work-Integrated Learning, 21(3):253–274, 2020.

[6] A. Cuevas. Linkedin: Global recruiting trends 2016.
https:
//business.linkedin.com/content/dam/
business/talent-solutions/global/en_us/
c/pdfs/GRT16_GlobalRecruiting_100815.pdf.
Accessed: 19th Feb, 2021.

[7] Y. Jiang and L. Golab. On competition for undergraduate
co-op placements: A graph mining approach. In Proceedings
of the International Conference on Educational Data Mining
(EDM), pages 394–399, 2016.

[8] Y. H. Jiang, S. W. Y. Lee, and L. Golab. Analyzing student
and employer satisfaction with cooperative education
through multiple data sources. Asia-Pacific Journal of
Cooperative Education, 16(4):225–240, 2015.

[9] D. Kennedy. Distributive and paternalist motives in contract
and tort law, with special reference to compulsory terms and
unequal bargaining power. Md. L. Rev., 41:563, 1981.

[10] M. S. Parsa and L. Golab. Social media mining to understand
the impact of co-operative education on mental health. In
Proceedings of the International Conference on Educational
Data Mining (EDM), pages 653–657, 2020.

[11] C. Qin, H. Zhu, T. Xu, C. Zhu, L. Jiang, E. Chen, and
H. Xiong. Enhancing person-job fit for talent recruitment:
An ability-aware neural network approach. In Proceedings of
the 41st International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 25–34,
2018.

[12] S. L. Rynes, R. D. Bretz Jr, and B. Gerhart. The importance
of recruitment in job choice: A different way of looking.
Personnel psychology, 44(3):487–521, 1991.

[13] G. R. Thiel and N. T. Hartley. Cooperative education: A
natural synergy between business and academia. SAM
Advanced Management Journal, 62(3):19–25, 1997.

[14] A. Toulis and L. Golab. Graph mining to characterize
competition for employment. In Proceedings of the 2nd
International Workshop on Network Data Analytics, pages
1–7, 2017.

[15] J. Webster. Networks of collaboration or conflict? electronic
data interchange and power in the supply chain. The Journal
of Strategic Information Systems, 4(1):31–42, 1995.

[16] C. Zhu, H. Zhu, H. Xiong, C. Ma, F. Xie, P. Ding, and P. Li.
Person-job fit: Adapting the right talent for the right job with
joint representation learning. ACM Transactions on

Management Information Systems (TMIS), 9(3):1–17, 2018.

786 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://business.linkedin.com/content/dam/business/talent-solutions/global/en_us/c/pdfs/GRT16_GlobalRecruiting_100815.pdf
https://business.linkedin.com/content/dam/business/talent-solutions/global/en_us/c/pdfs/GRT16_GlobalRecruiting_100815.pdf
https://business.linkedin.com/content/dam/business/talent-solutions/global/en_us/c/pdfs/GRT16_GlobalRecruiting_100815.pdf
https://business.linkedin.com/content/dam/business/talent-solutions/global/en_us/c/pdfs/GRT16_GlobalRecruiting_100815.pdf

AQuAA: Analytics for Quality Assurance in Assessment

Manqian Liao, Yigal Attali, Alina A. von Davier
Duolingo, Inc.

mancy@duolingo.com, yigal@duolingo.com, avondavier@duolingo.com

ABSTRACT
High-stakes digital-first assessments are assessments that
can be taken anytime and anywhere in the world and their
scores impact test takers’ lives. Computational psychomet-
rics, a blend of theory-driven psychometrics and data-driven
algorithms, provides the theoretical underpinnings for these
data-rich assessments. The unprecedented flexibility, com-
plexity, and high-stakes nature of these digital-first assess-
ments poses enormous quality assurance challenges. In or-
der to ensure these assessments meet both “the contest and
the measurement” requirements of high-stakes tests [5], it
is necessary to conduct continuous pattern monitoring and
be able to promptly react when needed. In this paper, we
illustrate the development of a quality assurance system,
Analytics for Quality Assurance in Assessment (AQuAA),
for a high-stakes and digital-first assessment. To build the
system, educational data from continuous administrations
of the assessments are mined, modeled and monitored via
an interactive dashboard.

Keywords
high-stakes assessment, digital-first assessment, quality as-
surance

1. INTRODUCTION
Digital-first assessments are based on artificial intelligence
(AI) tools that direct and optimize test-takers’ experience.
These digital tools include automatic systems for test de-
velopment, scoring, and test delivery. In contrast to tradi-
tional large-scale assessments that are based on in-person
administration to large groups of test takers in fixed loca-
tions, digital-first assessments are administered continuously
to individual test takers, thus allowing for unprecedented
flexibility. The advantages of the digital-first assessments
have manifested themselves during the pandemic when tra-
ditional group assessments in brick-and-mortar test centers
became impractical.

When digital-first assessments are used for high-stakes pur-
poses (for example, for admissions or employment purposes),
they, as any traditional high-stakes assessments, have a sig-
nificant potential impact on test takers’ lives. Thus, the
digital-first high-stakes assessment also need to meet both
“the contest and the measurement” requirements of high-
stakes tests [5], where the ”contest” here refers to the expec-
tation that the test gives everyone a fair chance; the ”mea-
surement” refers to the requirement that the test is accurate
and valid.

Quality assurance refers to a systematic process to maintain
the high quality of the test and assessment scores and to pre-
vent errors from all stages of the test, including test design,
item design and development, test scoring, test analysis and
score reporting [7]. Its complement, quality control, refers
to a set of methods and statistics to evaluate the quality
of the test. Many of the statistics and methods employed
for quality assurance and quality control are similar, with
quality control being part of the quality assurance overarch-
ing system. The International Test Commission Guidelines
have articulated step-by-step procedures for quality control
of general educational assessments but many of the steps are
more applicable to traditional assessments, that is, ”large-
scale testing operations where multiple forms of tests are
created for use on set dates.”[7]

Since digital-first assessments differ from traditional assess-
ments in many respects (e.g., administration frequency, item
bank size), it is necessary to develop quality assurance pro-
cedures that are tailored for digital-first assessments. Devel-
oping such systems also requires research into the appropri-
ate methodology to identify the most relevant statistics to
be monitored for such new type of assessment, which is the
focus of this paper.

In order to conduct quality assurance for digital-first high-
stakes assessments, we developed a monitoring system named
Analytics for Quality Assurance in Assessment (AQuAA),
which is a blend of psychometrics and educational data min-
ing packed into a dynamic and interactive dashboard-based
system. AQuAA was designed to accommodate at least
two unique characteristics of the digital-first assessments.
On one hand, many key aspects of digital-first assessments,
such as item generation and scoring, are automatically ac-
complished by machine. Therefore, compared to traditional
assessments, the quality assurance of the digital-first as-
sessments requires more extensive data mining techniques.

Manqian Liao, Yigal Attali and Alina A. von Davier “AQuAA: An-
alytics for Quality Assurance in Assessment”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 787-792.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 787

Computational psychometrics [18, 17] is leveraged to mine
and model educational data in order to develop the statis-
tics included in AQuAA. On the other hand, as a conse-
quence of the continuous nature of administration, the qual-
ity assurance activities for digital-first assessments need to
be conducted more frequently with a flexible timeline. In
addition, tools that facilitate swift and efficient communica-
tion are indispensable so that prompt actions can be taken
when issues are detected. In AQuAA, a variety of statis-
tics are updated regularly and are integrated into an in-
teractive dashboard for continuous pattern monitoring and
timely communication purposes. AQuAA is also symbiotic
with other activities (such as item development) given the
fact that conclusions drawn from AQuAA could be used to
direct the maintenance and improvement of the assessment.

This paper elaborates the development of AQuAA and aims
to address three research questions: 1) What statistics should
be used as indicators of test quality and score validity of
digital-first assessments? 2) How to identify patterns and
irregularities relevant to test quality of digital-first assess-
ments? and 3) How to communicate the findings from the
quality assurance process to stakeholders? This paper is fo-
cused on the the quality assurance of the test administration
activities.

2. RELATED WORK
Quality assurance plays an important role in maintaining
test score validity. [1] indicated that mistakes that jeopar-
dize the assessment score validity could occur at all stages
of assessment development and administration and that the
mistakes could accumulate since many stages are contingent
on previous stages. Therefore, quality control guidelines
and step-by-step procedures [1, 2, 7] have been developed
to help test developers identify possible mistakes as well as
the causes of these mistakes, thereby helping them to iden-
tify solutions to fix the mistakes and prevent the mistakes
from happening again.

Quality control procedures were mostly designed for tradi-
tional large-scale assessments that are administered in only
a few test dates and have large test volumes in each adminis-
tration [7, 1], with [2] being an exception. [2] recommended
a quality control procedure for continuous mode tests (i.e.,
tests that are administered to small groups of test takers on
many test dates) which share some similarities with digital-
first assessments. Moreover, [2] have demonstrated an auto-
mated quality control system for continuous mode tests and
the system consists of both an automatic part and a human
review part. These two parts also apply to the quality as-
surance of digital-first assessments. In the automatic part, a
number of steps that need to be conducted recurrently and
can be implemented programmatically are packed into an
automatic procedure with the use of digital tools. Steps in
such an automatic procedure may include fetching the data
from the database, conducting a variety of quality control
analyses (see [9] for a review of quality control methods) and
generating statistical reports. In the human review part,
human experts are trained to review the statistical reports
generated from the automatic procedure in order to identify
potential irregularities or outliers, and determine whether or
what actions need to be taken to handle these irregularities.

The foundation of an automated quality assurance proce-
dure consists of a wide range of data mining and data visu-
alization techniques. In the realm of quality assurance, the
data mining and data visualization techniques serve two ma-
jor purposes: First, to describe the trends and seasonal pat-
terns of the assessment statistics; Second, to detect abrupt
changes in the relevant assessment statistics. [9] have sum-
marized a number of statistical methods and data visualiza-
tion techniques for score quality assurance purposes. Vari-
ous time series techniques can be chosen to describe trends
or seasonal patterns, which include linear ANOVA models
[4], regression with autoregressive moving-average [10], har-
monic regressions [8] and dynamic linear models [19]. The
Shewhart chart is a useful data visualization tool for contin-
uous of the test score characteristics [9, 12, 14]. In terms of
detecting abrupt changes in the assessment statistics, some
model-based approaches have been applied to mine the data
and identify abrupt changes in score time series, such as
change-point models and hidden Markov model [9]. A data
visualization techniques for detecting abrupt changes is cu-
mulative sum (CUSUM) charts [13].

The products of the automated quality assurance proce-
dure may include summary tables of the statistics, graphs
and statistical testing results [2]. These statistical products
could be organized into different formats, such as reports [2]
and dashboards [11]. Since the products of the automated
quality assurance procedure will serve as the starting point
of the human review process [2], the choice of organizing
format should be determined by the ease of communication
to the targeted stakeholders.

3. MAJOR COMPONENTS OF AQUAA
This section illustrates how several key components of AQuAA
address the research questions mentioned above. AQuAA
has been launched as a minimum viable product (MVP)
and additional features and statistics are being added to
the system. This paper demonstrates the application of
AQuAA the Duolingo English Test, a digital-first assess-
ment. In order to help readers understand the context from
which the AQuAA is developed, this section will start with
a brief overview of the Duolingo English Test. However, the
methodologies for designing AQuAA and the statistics con-
sidered for evaluation are intended to be adaptable to other
digital-first assessments.

3.1 Overview of the Assessment
The Duolingo English Test is a high-stakes computerized
adaptive test that is designed to be accessible anywhere and
anytime [15]. Thus, it also falls under the category of con-
tinuous mode assessments [2]. The Duolingo English Test
is an adaptive test, with a very large item bank that has
been designed by subject matter experts (SMEs) and pro-
duced automatically by the machine. The items are reviewed
by panels of SMEs to ensure quality and cultural fit. The
items are scored automatically and the scoring methods are
reviewed periodically by SMEs. Each individual test is proc-
tored remotely using a complex and innovative asynchronous
system that involves both AI-based tools and human proc-
tors. Discrepancies or unusual situations are adjudicated
by SMEs. Test results are reviewed through the quality as-
surance process in AQuAA. As part of this process, a wide
range of process information related to test takers’ behavior

788 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 1: AQuAA updating procedure

(e.g., time per item response, length of responses, etc.) is
analyzed and monitored for quality assurance. The amount
of data and the multiple sources and types of data are sig-
nificantly more demanding of sophisticated analytics than is
the case in more traditional assessments.

3.2 Overview of AQuAA
An overview of the procedure of developing and updating
AQuAA is shown in Figure 1. Except for the first step (i.e.,
importing the data) that is relatively straightforward, the
design of each step requires deliberation and, thus, is elab-
orated in the following sections. The steps in Figure 1 are
scheduled to be automatically implemented on a daily basis
(and in some cases more frequently). R [16] is the major
programming tool used to develop AQuAA and automate
the AQuAA updating process.

3.3 Checking and Cleaning Data
In general, the assessment data used for AQuAA can be sep-
arated into two types: Person-level data and item-response-
level data. Person-level data contain variables that describe
the overall person/session information, such as test takers’
overall test score, sub-scores, test dates, and background
characteristics. Item-response-level data contains variables
that delineate information about each item the test taker
responded to, such as item IDs, item difficulty levels, item
responses and item scores, and other process information
such as time duration test takers spent on each item.

After the data are imported, the integrity of the data is
inspected to ensure that the data used for subsequent anal-
yses are accurate and of high quality. For example, data are
inspected for irregular values (e.g., negative values in time
duration variables), and the causes of any such values are
further investigated to identify any potential threats to the
integrity of the data collection process.

3.4 Tracking Metrics and Statistics
The first research question is to determine what metrics and
statistics are most relevant to monitor over time in order to
evaluate the health of a continuous assessment. In order
to support a statistical quality assurance system, AQuAA
monitors results in the following five categories across time,
adjusting for seasonality effects.

1. Scores. Test scores are directly used by test users (e.g.,
test takers, institutions), thus important indices at the
level of test scores, including overall scores, sub-scores,
and item type scores, are tracked in AQuAA. Score-
related statistics include the location and spread of
scores, inter-correlations between scores, bivariate or
multivariate outliers, person fit, internal consistency
reliability measures and standard error of measure-
ment (SEM), and validity coefficients (e.g., correlation
with self-reported external measures).

2. Test taker profile. The composition of the test taker
population is tracked over time, as it could be used to
explain the variability in test scores to some extent.
Specifically, the (percentage) volume of test takers in
the important population categories, such as country,
native language, gender, age, intent in taking the test,
and other background variables, are tracked. In ad-
dition, many of the score statistics are tracked across
major test taker groups.

3. Repeaters. Repeaters are defined as those who take the
test more than once within a 30-day1 window. The
prevalence, composition, and performance of the re-
peaters are tracked. The composition of the repeater
population is defined with respect to the same test
taker profile categories discussed above. The perfor-
mance of the repeater population is tracked with many
of the same test score statistics identified above, with
additional statistics that are specific to repeaters: lo-
cation and spread of both the first and second tests, as
well as their difference, and test-retest reliability (and
SEM).

4. Item analysis. As tests consist of items, ensuring that
items are of high quality and that the item quality is
stable over time are the prerequisites of maintaining
the validity of the test scores. In AQuAA, item qual-
ity is quantified with four categories of item perfor-
mance statistics: Item difficulty, item discrimination,
item slowness (response time), and differential item
functioning (DIF). Tracking these statistics would help
test developers to develop expectations about the item
bank with respect to item performance, flag items with
extreme and/or inadequate performance, and detect
drift in measures of performance across time.

5. Item exposure. The item exposure statistics concern
how frequent each item (or each group of items) are
used. An item being used either too frequently (over-
exposure) or too infrequently (under-exposure) are un-
desirable for maintaining the item quality. An impor-
tant statistic in this category is the item exposure rate,
which is calculated as the the number of test adminis-
trations containing a certain item divided by the total
number of test administrations. Tracking the item ex-
posure rates can help flag under- or over-exposure of
items.

3.5 Identifying Patterns and Irregularities
The second research question concerns the identification of
patterns and irregularities in the data, which involves the
development of the alarming mechanism of AQuAA. De-
veloping the alarming mechanism in AQuAA is challenging
partly due to the fact that the population of test takers is
evolving and changing constantly, and, thus, many of the
tracked metrics cannot be assumed to be stationary over
time. Instead, the tracked metrics are often prone to sys-
tematic variation over and beyond predictable changes due
to seasonality effects, thereby making it complicated to set
an appropriate alarming criteria for the alarming mecha-
nism.

1The day threshold of determining repeaters could be ad-
justed based on the test taking policy and the research pur-
pose

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 789

The alarming mechanism in AQuAA is intended to detect
persistent but smaller trends as well as alert large and abrupt
changes that may be due to a problem in the assessment. To
achieve these goals, we combined model-based psychomet-
ric analyses method with the time series and control charts
techniques, both of which are useful for distinguishing sys-
tematic changes from chance variation in outcome processes.

The psychometric model-based methods allow us to track
metrics after adjusting for certain factors (e.g., test tak-
ers’ background characteristics), thus increasing the metrics’
comparability over time. Specifically, in AQuAA, the item
statistics and metrics are adjusted for test taker ability and
background variables, and test taker statistics and metrics
are adjusted for item characteristics.

3.6 Communicating Results
Our third research question involves how to communicate
the information to the operational analysts as well as to
the business unit. To visualize the trends and patterns of
the statistics and facilitate the communication in the hu-
man review process, statistics are plotted using the ggplot2
R package [20]. Line plots are one of the most basic tools to
visualize the time-series data. For example, Figure 2 demon-
strates the stable trend of the mean of the overall test score
during the Fall of 2020. Each dot in these figure represent a
statistic calculated using a day worth of data; the lines are
smoothed lines created by the locally weighted scatterplot
smoothing (LOWESS) [3] method in order to represent the
trends of the statistics.

Plots are also used to visualize the alerts raised by the
AQuAA alarming mechanism introduced in Section 3.5. In
AQuAA, the alerts are classified into three severity cate-
gories which are represented by different color codes. Specif-
ically, yellow, orange and red represent low, medium and
high levels of severity, respectively. For example, Figure 3
displays a monitoring plot for the daily median response
time a few alerts in low severity. Once an alert is raised by
AQuAA, messages are automatically sent to inform all the
relevant stakeholders via email and the organization com-
munication tool.

Various statistics and figures are integrated into an interac-
tive dashboard using the flexdashboard [6] package. Figure
A.1 demonstrates the layout of the dashboard. At the top
of the dashboard (i.e., Section 1), there are five tabs cor-
responding to the five categories of statistics articulated in
Section 3.4. Within each tab, the relevant statistics are ar-
ranged into storyboards: The statistics could be further clas-
sified into subcategories and allocated into different pages
(i.e., Section 2); figures are displayed at the major section
of the dashboard (i.e., Section 3); text description and some
numerical results are displayed in the commentary section
(i.e., Section 4).

4. THE APPLICATION OF AQUAA
As the quality assurance of digital-first assessments is a
combination of automatic processes and human review pro-
cesses, the AQuAA system is used as the starting point for
the human review process, and the human review process,
in turn, helps AQuAA to evolve into a more powerful tool to
detect assessment validity issues. Figure B.1 demonstrates

Figure 2: Trend of daily mean overall scores

Figure 3: Trend of daily median response time with alerts.

an example human review process following every week’s up-
dates of AQuAA: SMEs meet to review the alerts raised by
AQuAA alarming mechanism and review for any anomalies
that are suggested by the AQuAA figures but have not been
caught by the AQuAA alarming mechanism. The SMEs re-
view each individual alert and determine whether it is an
actual sign of a validity issue or it is a false alarm. If the
alarm is believed to be caused by a validity issue, follow-up
actions are taken to determine the severity and urgency, fix
and document the issue. If the issue had not been caught by
the AQuAA alarming mechanism, improvements would be
made to the AQuAA functionality such that AQuAA would
be more sensitive in detecting the issue.

5. DISCUSSION
This paper demonstrates the development of a quality assur-
ance system that is tailored for digital-first assessments that
are continuously administered. Several research questions
motivated many of these approaches, as very few of the tra-
ditional methods apply to the digital-first assessments. The
steps and considerations for building the quality assurance
system have been elaborated, so that test developers could
adapt the methodologies in this paper to their own assess-
ments. It should be noted that the list of quality assurance
statistics presented here is not exhaustive. Instead, due to
the data-rich nature of the digital-first assessment, the list
of monitoring statistics is expected to be lengthened and
improved as the research in statistical techniques advances.
The list of monitoring statistics should also be customized to
the purposes and characteristics of the assessment. Hence,
the infrastructure of AQuAA is designed to be so flexible as
to incorporate and monitor additional statistics.

790 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

6. REFERENCES
[1] A. Allalouf. Quality control procedures in the scoring,

equating, and reporting of test scores. Educational
Measurement: Issues and Practice, 26(1):36–46, 2007.
Publisher: Wiley Online Library.

[2] A. Allalouf, T. Gutentag, and M. Baumer. Quality
Control for Scoring Tests Administered in Continuous
Mode: An NCME Instructional Module. Educational
Measurement: Issues and Practice, 36(1):58–68, 2017.
eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1111/emip.12140.

[3] W. S. Cleveland. Robust locally weighted regression
and smoothing scatterplots. Journal of the American
statistical association, 74(368):829–836, 1979.
Publisher: Taylor & Francis.

[4] S. J. Haberman, H. Guo, J. Liu, and N. J. Dorans.
Consistency of SAT® I: Reasoning test score
conversions. ETS Research Report Series,
2008(2):i–20, 2008. Publisher: Wiley Online Library.

[5] P. W. Holland. Measurements or contests? Comments
on Zwick, bond and Allen/Donoghue. In Proceedings of
the social statistics section of the American Statistical
Association, volume 1994, pages 27–29. American
Statistical Association Alexandria, VA, 1994.

[6] R. Iannone, J. J. Allaire, B. Borges, RStudio, K. I. D.
CSS), A. A. D. CSS),
J. Mosbech (StickyTableHeaders),
N. Bossart (Featherlight), L. Verou (Prism),
D. Baranovskiy (Raphael.js), S. Labs (Raphael.js),
B. Djuricic (JustGage), T. Sardyha (Sly),
B. Lewis (Examples), C. Sievert (Examples),
J. Kunst (Examples), R. Hafen (Examples),
B. Rudis (Examples), and J. Cheng (Examples).
flexdashboard: R Markdown Format for Flexible
Dashboards, June 2020.

[7] International Test Commission (ITC). ITC Guidelines
on Quality Control in Scoring, Test Analysis, and
Reporting of Test Scores. International Journal of
Testing, 14(3):195–217, July 2014. Publisher: Taylor
& Francis Ltd.

[8] Y.-H. Lee and S. J. Haberman. Harmonic regression
and scale stability. Psychometrika, 78(4):815–829,
2013. Publisher: Springer.

[9] Y.-H. Lee and A. A. von Davier. Monitoring scale
scores over time via quality control charts,
model-based approaches, and time series techniques.
Psychometrika, 78(3):557–75, 2013.

[10] D. Li, S. Li, and A. A. von Davier. Applying
time-series analysis to detect scale drift. In Statistical
models for test equating, scaling, and linking, pages
327–346. Springer, 2009.

[11] L. Mohadjer and B. Edwards. Paradata and
dashboards in PIAAC. Quality assurance in education,
2018. Publisher: Emerald Publishing Limited.

[12] M. H. Omar. Statistical process control charts for
measuring and monitoring temporal consistency of
ratings. Journal of Educational Measurement,
47(1):18–35, 2010. Publisher: Wiley Online Library.

[13] E. S. Page. Continuous inspection schemes.
Biometrika, 41(1/2):100–115, 1954. Publisher:
JSTOR.

[14] W. D. Schafer, B. J. Coverdale, H. Luxenberg, and

J. Ying. Quality control charts in large-scale
assessment programs. Practical Assessment, Research,
and Evaluation, 16(1):15, 2011.

[15] B. Settles, G. T. LaFlair, and M. Hagiwara. Machine
Learning–Driven Language Assessment. Transactions
of the Association for Computational Linguistics,
8:247–263, 2020.

[16] R. D. C. Team. R: A language and environment for
statistical computing. 2013.

[17] A. A. von Davier. Virtual and collaborative
assessments: Examples, implications, and challenges
for educational measurement. In Invited Talk at the
Workshop on Machine Learning for Education,
International Conference of Machine Learning 2015,
2015.

[18] A. A. von Davier. Computational psychometrics in
support of collaborative educational assessments.
Journal of Educational Measurement, 54(1):3–11,
2017.

[19] R. G. Wanjohi, P. W. van Rijn, and A. A. von Davier.
A state space approach to modeling irt and population
parameters from a long series of test administrations.
In New developments in quantitative psychology, pages
115–132. Springer, 2013.

[20] H. Wickham. ggplot2. Wiley Interdisciplinary
Reviews: Computational Statistics, 3(2):180–185, 2011.
Publisher: Wiley Online Library.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 791

APPENDIX
A. DEMO OF AQUAA

Figure A.1: Demo of AQuAA with annotations. Section 1 is
the navigation bar containing five tabs corresponding to the
five categories of statistics monitored in AQuAA. Within each
tab, the relevant statistics are grouped into subcategories and
are arranged into storyboards. Section 2 display the pages
that correspond to the subcategories of statistics. Section
3 is the major section of the dashboard where figures are
displayed. Section 4 is the commentary section that display
the text description and numerical results.

B. SUBJECT MATTER EXPERT REVIEW
PROCESS

Figure B.1: Subject Matter Expert (SME) review process.

792 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

LMS Log Data Analysis from Fully-Online Flipped
Classrooms: An Exploratory Case Study via Regularization

Jin Eun Yoo
Korea National University of Education

jeyoo@knue.ac.kr

Minjeong Rho
Korea National University of Education

minjeong019@gmail.com

ABSTRACT
This study illustrated an exploratory study of LMS log data
from undergraduate fully-online flipped classrooms. A total
of 237 students’ instructional video watching behaviors were
extracted from LMS, and were analyzed with background
variables to predict students’ final performance. Regular-
ization was proposed a suitable machine learning technique,
as it produces interpretable prediction models. Specifically,
Enet (elastic net) and Mnet were employed to handle pos-
sible multicollinearity in LMS log data, and the prediction
models of Enet and Mnet identified 19 and 21 important
predictors of final performance out of 157, respectively. In
particular, both regularization models were able to screen
lower-performing students as early as the first week of the
course. Mere attempts to watch difficult videos after class
increased the final scores.

Keywords
LMS log data, machine learning, regularization, flipped class-
room, performance modeling

1. INTRODUCTION
The COVID-19 pandemic has changed the education system
worldwide. Online learning is no longer an option, and an
increasing number of online classes incorporate components
of flipped classrooms (FC) in an effort to improve the quality
of learning and instruction. Despite varying results regard-
ing the effectiveness of flipped learning in higher education
[1, 2, 3, 4], FC has grown rapidly as an innovative peda-
gogical approach in recent decades. In FCs, students’ active
involvement in pre-class activities is greatly emphasized as a
necessary condition to enhance in-class learning and instruc-
tion [5]. However, there has been little empirical research on
whether students completed the assigned pre-class activities
and whether pre-class activities lead to desired outcomes.

This may relate to analytical limitations of the previous re-
search in terms of data and methods. First of all, learning

management system (LMS) log data are a crucial source
of information in order to capture students’ learning activ-
ities. However, not all the studies on FC collected data
from LMS, particularly when pre-class assignments do not
involve activities in LMS. For instance, the assignment of
reading materials cannot be properly recorded outside of
LMS. Researchers can ask students ex post facto in a self-
report survey. However, self-report questionnaires rely on
memories and reflections, and thus are prone to social de-
sirability bias. On the other hand, LMS log data unobtru-
sively collect near-real-time information; students’ activities
in LMS are automatically stored in the log files without the
students’ cognizance [6, 7, 8, 9]. Particularly in the COVID-
19 situation, fully-online FCs has emerged. In fully-online
FCs both pre-class and in-class activities take place online
using platforms such as LMS, and therefore collecting trace
data has become much easier than in the original FCs.

Next, there is room for improvement in terms of analysis
methods. Despite the aforementioned advantages that log
data bring to data analyses, the intractability of log data
has been a practical hindrance. Log data are unstructured,
which can lead to high-dimensional data (i.e., more variables
than observations), depending on data pre-processing and
cleaning. Previous research on LMS log data to model stu-
dents’ achievement have analyzed students’ behavioral data
(e.g., instructional video watching behaviors) [6, 10, 11, 7,
12] as well as background (e.g., gender) [10, 13] and exam
data [11, 13]. In particular, behavioral data were used as a
tool to measure students’ self-regulated learning [6, 10, 11,
7, 13, 12, 14, 15, 16], but aggregate variables such as total
login frequencies or average login hours were analyzed with
traditional methods [13, 15] or early ML (machine learn-
ing) techniques [14, 16]. As traditional methods are likely
to result in nonconvergence problems with high-dimensional
data, previous research may have used aggregate variables.

However, study time relevant to a specific instructional unit
can be traced from log data, which will serve as a better
indicator than the sum of study time, a crude measure of
time investment in studying [15]. Such detailed information
in turn will be conducive to understanding learning and in-
struction and giving specific, targeted, and timely feedback
to students. This relates back to the issue of the previous
LMS log data research: lack of empirical research on the re-
lationship between pre-class assignments and students’ per-
formance at an instructional unit level. Particularly when
behavioral variables at an instructional level are to be ana-

Jin Eun Yoo and Minjeong Rho “LMS Log Data Analysis from Fully-
Online Flipped Classrooms: An Exploratory Case Study via Regulariza-
tion”. 2021. In: Proceedings of The 14th International Conference on Ed-
ucational Data Mining (EDM21). International Educational Data Mining
Society, 793-798. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 793

lyzed, ML is a necessary technique to analyze LMS log data
from fully-online FCs.

Since completing pre-class assignments and preparing for
interactive in-class activities is critical in FC, a high level
of self-regulated learning (SRL) is necessary for students
to succeed. SRL strategies related to students’ academic
success such as effective time management, metacognition,
effort regulation, and critical thinking have been shown to
have a significantly positive effect on students’ academic suc-
cess [17]. The question is which behaviors indicate SRL. Stu-
dents carrying out SRL would naturally include more time
on attending lectures and self-study which have a positive
effect on academic achievement [18]. Previous studies have
used variables such as login frequencies, LMS menu usage,
material download, content pages viewed, and posted mes-
sages [6, 10, 11, 13, 14, 15, 16]. However, aggregate mea-
sures of these data display inconsistent effects on student
achievement. For instance, login frequencies [13, 16] and
LMS menu usage [13, 14, 15] were statistically significant or
important indicators to students’ academic achievement in
online learning. In contrast, in MOOC (massive open on-
line course) environments, forum variables such as numbers
of messages posted, or comments received were found to be
not directly related to students’ learning [11].

Constant effort put into preparing for FCs may be difficult
to capture with aggregate data. That is, instructional unit
based log data would be a better predictor for academic
success. A study predicting online student performance [19]
demonstrates that the study habits of students with high lev-
els of academic success can even be observed even in the first
few weeks of a course. The implication is that instructional
unit based analysis could yield richer information about the
study patterns of students which eventually leads to timely
intervention by the instructor.

Among ML, this study proposes regularization. Although
’prediction’ is the operative word in ML, learning analytics
is one of the fields which needs to be augmented with expla-
nation. Regularization or penalized regression is known to
produce explainable prediction models. Based on linear re-
gression, the regression coefficients of regularization can be
interpreted in the similar way as those in traditional, non-
penalized regression. This is a great advantage in LMS data
analysis, as prediction models need to be interpreted under
certain educational settings, for instance to plan more effec-
tive intervention strategies for at-risk students. There has
been little study employing regularization methods in LMS
log data analysis. Specifically, this study chose Enet [20, 21]
and Mnet [22] among regularization as they handle multi-
collinearity, a likely challenge in LMS data analysis. The
two main research questions were as follows:

1. What are the students’ instructional video watching be-
haviors like at an instructional unit level? Do students
complete pre-class assignments in fully-online undergradu-
ate flipped classrooms?

2. Among students’ behavioral and background variables,
which variables are important to predict students’ academic
achievement?

2. MACHINE LEARNING
For a Gaussian family, Enet and Mnet are expressed as equa-
tions 1 and 2, respectively. The second term on the right-
hand side of equation 1 is the penalty function of Enet, con-
sisting of two tuning parameters: λ and α. Enet is a com-
bination of LASSO and ridge. The parameter λ regularizes
shrinkage of the coefficients, and the parameter α controls
the amount of ridge. When α is 1, equation 1 reverts to the
LASSO equation, and when α is 0, it reverts to the ridge
equation. Aforementioned, by adding the ridge component
to the equation, Enet can handle multicollinearity.

β̂Enet =

argminβ

[
1
2n

∥∥∥y −∑K
k=1Xkβk

∥∥∥2 + λ
∑K
k=1 (α ‖βk‖+ (1−

α) ‖βk‖2
)]
.

(1)

β̂Mnet = argminβ

 1

2n

∥∥∥∥∥y −
K∑
k=1

Xkβk

∥∥∥∥∥
2

+

K∑
k=1

J (‖βk‖ |λ1, γ) + λ2

K∑
k=1

‖βk‖2
]
,

where J (x|λ1, γ) =

{
− 1

2γ
x2 + λ1|x|, |x| ≤ γλ1
1
2
γλ2

1, |x| > γλ1

}
.

(2)

Enet uses convex penalties, which increase linearly regard-
less of the coefficient size. By contrast, Mnet uses a concave
penalty, which tapers off for coefficients in larger absolute
values, yielding nearly consistent coefficient estimates[22].
Mnet has three tuning parameters (equation 2). The pa-
rameter λ1 has the same regularization function as the λ
penalty in Enet (equation 1). The γ parameter of Mnet
controls the concavity of the convex penalty. When the con-
cavity penalty goes to infinity, the MCP penalty reverts back
to the LASSO penalty. Mnet also deals with multicollinear
data; the penalty associated with λ2 adds the ridge compo-
nent to the equation.

To consider the bias resulting from data-splitting in model
validation, this study executed subsampling techniques for
variable selection [23, 24]. The following three steps were
repeated 100 times with random data-splitting. First, the
whole data were randomly divided with the ratio of 7:3 to
get the training and test data, respectively. Second, for a
value of the penalty parameter, the training data were split
with the ratio of 4:1 to execute 5-fold CV. For a value of
λ, the prediction error is calculated, which was referred to
as the CV error of the λ [20]. Third, the second step was
repeated for every λ in range, and the λ of the lowest CV
error served as the penalty value of the regularization. That
λ value was appplied to the test data in step 1, which yielded
prediction measure.

The selection or non-selection of each variable from step 2
was counted in the 100 iterations, which served as the selec-
tion counts of the study. Particularly, this study presented

794 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

variables selected 1, 25, 50, 75 times or more, and all 100
times [25, 26]. All the programs were written in R 3.6.2.
Specifically, the grpreg library [27] was used for regulariza-
tion.

3. MATERIALS
In the Fall semester of 2020, 242 undergraduate students in
pre-service teacher program enrolled in 8 fully-online under-
graduate classes titled Measurement and Evaluation. The
classes of the Fall semester were mandatory for sophomores
majoring in Liberal Arts and Social Sciences. Three instruc-
tors (A, B, C) including a head-instructor (A) taught the 8
classes. All the 8 classes scheduled a simultaneous final at
the end of the course, and shared the same class materials
including instructional videos, textbooks, and syllabus. The
instructional videos were pre-recorded PowerPoint presenta-
tions with the head-instructor talking, with content based
on a book also written by the head-instructor. There were
a total of 34 video clips covering 11 instructional topics in
the corresponding 11 instructional weeks (refer to the videos
01 1 to 11 4 in Appendix A).

On the orientation day of the first week, the importance of
the weekly assignments of instructional video watching be-
fore class were emphasized, particularly because students
were asked to create and complete class projects within
groups based on the contents of the assigned videos. During
class, interactions in small groups of 4 to 6 students were
greatly encouraged. The groups were engaged in discus-
sions on team projects and SPSS exercises in Zoom break-
out rooms. A non-mandatory quiz of 4-5 short questions was
presented for each week in LMS. Students were told that the
quizzes would serve as formative assessments and the quiz
scores did not count toward grades.

In total, 21,589 rows of video watching activities as well
as 5,107 rows on board-posts readings were recorded in the
log file. As many of the students indicated that they used
the double-speed option of the LMS in video watching, this
study used 50 % of the video length as a criterion. If a
student watched a video 50 % of the length or more, the
student is counted to have completed watching the video,
and vice versa.

As the first research question was to investigate students’
video watching behaviors at an instructional unit level, this
study counted the frequencies of each video, separating be-
fore/ after and attempted but incomplete/ completed video
watching. Specifically, 4 variables were created for each
video: BI (incomplete attempt before class), BC (complete
watching before class), AI (incomplete attempt after class),
and AC (complete watching after class). Six Aggregate vari-
ables were also obtained for comparison purposes to previous
research: BI, BC, and B (before-combined (I+C)) for before
class counts; and AI, AC, and A (after-combined (I+C)) for
after class counts.

The response variable of this study was final. The final
test consisted of 35 multiple-choice items, and was given
simultaneously to all the 242 students at the last week of
the course. There were 5 students who missed the final, and
those students’ data were excluded from further analysis.
The background and response variable were merged to the

variables from LMS data, which resulted in the final dataset
of 157 predictors of 237 students.

4. RESULTS
4.1 Students’ Video Watching Behaviors
Table 1 summarizes the descriptive statistics of students’ in-
structional video watching behaviors. The 6 groups of cells
present the summary results of the aggregate variables. Stu-
dents watched the videos more often after class than before
class. Throughout the course students on average attempted
to watch and completed watching each video about 1.03 and
1.08 times after class, respectively, while the values dropped
to 0.20 and 0.23 before class (Table 1). The mean values
smaller than 1 indicate that the students on average did not
watch all the videos. Attempts and completions combined
(I+C), students on average clicked about half of the videos
before class (0.42), but they clicked each of the videos more
than twice after class (2.11).

The range of students’ video watching frequencies was quite
wide. Some students clicked none of the videos after class
(AI min= 0.00), while others after class clicked and finished
watching each video as many as 4.20 (AI max= 4.20) and
2.47 times (AC max= 2.47), respectively. The maximum
frequencies of before class watching were also less than those
of after class, 1.38 and 1.00 for incomplete and complete
watching, respectively.

4.2 Machine Learning Results
4.2.1 RMSE and Selection Counts

RMSE (root mean square error) was the prediction measure
of the response variable of this study. The RMSE averages
of Enet and Mnet were 5.58 and 5.69 with SDs of 0.50 and
0.46, respectively.

Consistent with literature [28, 22], Mnet always selected
fewer variables than Enet. Of note, 103 and 94 predictors
were selected out of 157 at least once with Enet and Mnet,
respectively. This signifies the importance of running mul-
tiple iterations and employing selection counts, particularly
when the research purpose is variable selection via regular-
ization [25, 26]. In other words, employing selection counts
considers the bias resulting from random data-splitting in
model building.

Applying 25 or more selection counts resulted in 33 and 21
predictors for Enet and Mnet, respectively. A total of 19 and
3 predictors were selected at least 1 out of 2 runs of Enet
and Mnet, respectively. Four predictors were selected with
3 out of 4 runs of Enet, but there was no such predictor with
Mnet and no predictor was selected in all the 100 iterations.

4.2.2 Selected Variables
This study on log data analysis presents the summary of
predictors selected 50 or more for Enet and 25 or more for
Mnet in Table 2. Due to space limit, part of the results are
discussed. Student gender and grade were selected impor-
tant. When the other variables were held constant, male
students had lower final score than female students. In-
terestingly, on-grade students, sophomores, tended to have
lower scores. Students’ attitudes toward measurement and
evaluation (attitudes) also resulted in higher scores.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 795

Table 1: Students’ Before and After Watching Frequencies per Video

I (incomplete) C (complete) I+C (combined)
M SD min max M SD min max M SD min max

B (before class) 0.20 0.18 0.00 1.38 0.23 0.08 0.06 1.00 0.42 0.21 0.08 1.62
A (after class) 1.03 0.78 0.00 4.20 1.08 0.38 0.00 2.47 2.11 1.00 0.06 6.24

Among variables extracted from log data, the total num-
ber of clicks on SPSS material postings (spss.sum) and the
numbers of quiz-taking (test.M and test.P) were important
predictors to final. More clicks on SPSS postings lead to
higher scores on final. Specifically, one more click on the
SPSS material increased students’ final scores by 0.11 and
0.16 for Enet and Mnet, respectively. Similarly, although
students knew that the scores on quizzes did not count to-
ward the final grade, simply taking the quizzes increased the
final scores regardless of the device (mobile or PC). Students
who watched the instructional videos mobile (lecture.M) also
tended to have higher scores in final.

Among the 142 variables on video watching, 12 to 13 vari-
ables were selected as important depending on the regular-
ization method (Table 2). Findings from the 13 selected vari-
ables are as follows. First, the very first video turned out to
convey crucial information in predicting students’ achieve-
ment, although it covered the easiest contents on forma-
tive assessment. The more the students completed watching
the first video before class (BC01 1), the higher their final
scores were. Specifically, one more completed watching of
the first video before class increased students’ final score by
0.57 in Enet and by 0.68 in Mnet. By contrast, the more
the students completed watching the first video after class
(AC01 1), the lower the final scores were. One more com-
pleted watching of the first video after class decreased final
scores by 0.45 and 0.53 in Enet and Mnet, respectively. This
(AC01 1) was the only AC variable of negative relation to
the final.

Second, with the exception of AC01 1, the other AC vari-
ables (e.g., AC03 1, AC03 2, AC04 3, AC09 3, AC10 2, AC11 4)
had positive relations with the final. The selected AC vari-
ables covered either the earlier technical contents or the
most difficult concepts at the end. Particularly, the earlier
technical contents included the first SPSS practice (AC03 1,
AC03 2) and Ebel and Angoff standard setting (AC04 3).
Cronbach’s alpha (AC09 3), reliability with SPSS (AC10 2),
and the relationship between reliability and validity (AC11 4)
covered the most difficult concepts in the last weeks of the
course. Students who completed watching these videos mul-
tiple times after class were more likely to obtain higher final
scores.

Third, the relationship of AI variables to the final seems to
depend on the class progress. Students who attempted but
failed to complete watching the video on Ebel and Angoff
standard setting covered in the fourth instructional week
had lower scores on final (AI04 3). By contrast, incomplete
watching of some videos on the last topic (covered in the
last instructional week) were positively related to the final
(AI11 2 and AI11 4). Of note, both AC and AI variables
on video 11 4, the last video, had positive correlation coef-
ficients.

Table 2: Coefficients of Selected Predictors by Reg-
ularization

variable
Enet Mnet

mean SD # mean SD #
1 gender -0.54 0.35 65 -0.8 0.48 36
2 on-grade -0.61 0.22 75 -0.75 0.31 56
3 test.M 0.34 0.12 62 0.48 0.15 38
4 test.P 0.23 0.10 75 0.31 0.15 49
5 lecture.M 0.01 0.01 51 0.02 0.02 30
6 attitudes 1.31 0.49 80 1.65 0.58 61
7 spss.sum 0.11 0.05 57 0.16 0.08 37
8 BC01 1 0.57 0.26 77 0.68 0.35 50
9 AC01 1 -0.45 0.17 68 -0.53 0.30 38
10 AC03 1 0.26 0.16 52 0.39 0.28 25
11 AC03 2 0.34 0.22 59 0.46 0.29 31
12 AI04 2 -0.19 0.08 67 -0.23 0.13 40
13 AC04 3 0.40 0.26 52 0.55 0.34 28
14 BI06 2 -0.46 0.18 54 -0.59 0.23 34
15 AC09 3 0.29 0.19 68 0.39 0.29 44
16 AC10 2 0.44 0.24 66 0.61 0.32 44
17 AI11 2 0.38 0.18 52 0.61 0.29 27
18 AC11 4 0.29 0.21 58 0.42 0.29 35
19 AI11 4 0.33 0.16 65 0.40 0.21 37
20 on-semester 1.39 1.09 25
21 AI04 3 -0.21 0.13 27
Note. # indicates the number of selection in 100 iterations.

5. DISCUSSION
This study predicted students’ final scores with as few as 19
to 21 predictors out of 157 with regularization techniques.
Of note, the prediction models of this study are explain-
able, as we employed regularization, which is based on lin-
ear regression. Specifically, Enet and Mnet were employed
to handle multicollinear data. Surprisingly, the prediction
models differentiated lower-performing students as early as
the first instructional week, right after the orientation week.
Instructors now can invest their efforts in intervention with-
out waiting until a quiz or an exam. Completing difficult
videos multiple times after class also lead to higher scores
in the final. Moreover, mere attempts to watch them after
class also increased the scores.

Despite its importance in FC, it has been a foggy area whether
students completed the pre-class activities or not and whether
the pre-class activities lead to desired outcomes. This study
also contributed to partly uncover what was going on be-
hind the curtain of FC. The students on average completed
at most 1/5 of the videos before class. Stronger links need
to be established between pre-class assignments and in-class
team projects.

796 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

6. REFERENCES
[1] F. Chen, A. M. Lui, and S. M. Martinelli, “A

systematic review of the effectiveness of flipped
classrooms in medical education,” Medical Education,
vol. 51, no. 6, pp. 585–597, 2017.

[2] J. McGivney-Burelle and F. Xue, “Flipping calculus,”
Primus, vol. 23, no. 5, pp. 477–486, 2017.

[3] Y. Shi, Y. Ma, J. MacLeod, and H. H. Yang, “College
students’ cognitive learning outcomes in flipped
classroom instruction: a meta-analysis of the empirical
literature,” Journal of Computers in Education, vol. 7,
pp. 79–103, 2020.

[4] K. F. Hew and C. K. Lo, “Flipped classroom improves
student learning in health professions education: A
meta-analysis,” BMC Medical Education, vol. 18,
no. 38, 2018.

[5] J. Bergmann and A. Sams, Flip Your Classroom:
Reach Every Student in Every Class Every Day.
Washington, DC: International Society for Technology
in Education, 2012.

[6] E. Popescu and F. Leon, “Predicting academic
performance based on learner traces in a social
learning environment,” IEEE Access, vol. 6,
pp. 72774–72785, 2018.

[7] E. Fincham, D. Gašević, J. Jovanović, and A. Pardo,
“From study tactics to learning strategies: An
analytical method for extracting interpretable
representations,” IEEE Transactions on Learning
Technologies, vol. 12, no. 1, pp. 59–72, 2019.

[8] M. Manso-Vázquez, M. Caeiro-Rodŕıguez, and
M. Llamas-Nistal, “An xAPI application profile to
monitor self-regulated learning strategies,” IEEE
Access, vol. 6, pp. 42467–42481, 2018.

[9] A. A. ElSayed, M. Caeiro-Rodriguez, F. A.
Mikic-Fonte, and M. Llamas-Nistal, “Research in
learning analytics and educational data mining to
measure self-regulated learning: A systematic review,”
in The 18th World Conference on Mobile and
Contextual Learning, pp. 46–53, September 2019.

[10] R. Al-Shabandar, A. J. Hussain, P. Liatsis, and
R. Keight, “Analyzing learners behavior in MOOCs:
An examination of performance and motivation using
a data-driven approach,” IEEE Access, vol. 6,
pp. 73669–73685, 2018.

[11] P. M. Moreno-Marcos, T. Pong, P. J. Muñoz-Merino,
and C. Delgado Kloos, “Analysis of the factors
influencing learners’ performance prediction with
learning analytics,” IEEE Access, vol. 8,
pp. 5264–5282, 2020.

[12] A. Montgomery, A. Mousavi, M. Carbonaro, D. V.
Hayward, and W. Dunn, “Using learning analytics to
explore self-regulated learning in flipped blended
learning music teacher education,” British Journal of
Educational Technology, vol. 50, no. 1, pp. 114–127,
2019.

[13] J. W. You, “Identifying significant indicators using
LMS data to predict course achievement in online
learning,” Internet and Higher Education, vol. 29,
no. 1, pp. 23–30, 2016.

[14] M. Cho and J. S. Yoo, “exploring online students’
self-regulated learning with self-reported surveys and
log files: A data mining approach,” Interactive

Learning Environment, vol. 25, no. 5, pp. 51–65, 2017.

[15] L. Macfadyen and S. P. Dawson, “Numbers are not
enough: Why e-learning analytics failed to inform an
institutional strategic plan,” Educational Technology &
Society, vol. 15, no. 3, pp. 149–163, 2012.

[16] V. C. Smith, A. Lange, and D. R. Huston, “Predictive
modeling to forecast student outcomes and drive
effective interventions in online community college
courses,” Journal of Asynchronous Learning Networks,
vol. 16, no. 3, pp. 51–61, 2012.

[17] J. Broadbent and W. L. Poon, “Self-regulated learning
strategies & academic achievement in online higher
education learning environments: A systematic
review,” The Internet and Higher Education, vol. 27,
pp. 1–13, 2015.

[18] B. S. Grave, “The effect of student time allocation on
academic achievement,” Education Economics, vol. 19,
no. 3, pp. 291–310, 2011.

[19] C. F. L. T. B. S. H. A. Sheshadri, N. Gitinabard,
“Predicting student performance based on online
study habits: A study of blended courses.,” arXiv
preprint, 2019.

[20] T. Hastie, R. Tibshirani, and J. Freedman, The
elements of statistical earning: Data mining, inference,
and prediction. New York: Springer, second ed., 2009.

[21] H. Zou and T. Hastie, “Regularization and variable
selection via the elastic net,” Journal of Royal
Statistical Society Series B, vol. 67, no. 2,
pp. 301–320, 2005.

[22] J. Huang, P. Breheny, S. Lee, S. Ma, and C. Zhang,
“The mnet method for variable selection,” Statistica
Sinica, vol. 26, no. 3, pp. 903–923, 2016.

[23] S. K. Shevade and S. S. Keerthi, “A simple and
efficient algorithm for gene selection using sparse
logistic regression,” Bioinformatics, vol. 19, no. 17,
pp. 2246–2253, 2003.

[24] N. Meinshausen and P. Bühlmann, “Stability
selection,” Journal of the Royal Statistical Society:
Series B, vol. 72, no. 4, pp. 417–473, 2010.

[25] J. E. Yoo and M. Rho, “Exploration of predictors for
korean teacher job satisfaction via a machine learning
technique, group mnet,” Frontiers in Psychology,
vol. 11, no. 441, 2020.

[26] J. E. Yoo and M. Rho, “Large-scale survey data
analysis with penalized regression: A Monte carlo
simulation on missing categorical predictors,”
Multivariate Behavioral Research, 2021.

[27] P. Breheny and Y. Zeng, Package ‘grpreg’, February
2019. https://cran.r-project.org/web/packages/
grpreg/grpreg.pdf.

[28] J. Huang, S. Ma, and C. H. Zhang, “Adaptive lasso for
sparse high-dimensional regression models,” Statistica
Sinica, vol. 18, no. 1, pp. 1603–1618, 2008.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 797

APPENDIX
A. VIDEO IDS AND LABELS

video ID label
1 1 1 formative assessment
2 2 1 variables and scales
3 2 2 sampling
4 3 1 descriptive statistics
5 3 2 descriptive statistics (SPSS)
6 4 1 norm-referenced evaluation
7 4 2 criterion-referenced evaluation
8 4 3 Ebel and Angoff standard setting
9 5 1 measuring affective domains
10 5 2 observation
11 5 3 interviews
12 5 4 survey
13 6 1 performance assessment: definition
14 6 2 performance assessment: scoring
15 7 1 test construction steps
16 7 2 multiple-choice items
17 7 3 constructed-response items
18 7 4 scoring caveats
19 8 1 item difficulty and discrimination I
20 8 2 covariance and correlation
21 8 3 item difficulty and discrimination II
22 8 4 item difficulty and discrimination (SPSS)
23 9 1 introduction to reliability
24 9 2 types of reliability
25 9 3 Cronbach’s alpha
26 9 4 standard error of measurement
27 9 5 factors influencing reliability
28 10 1 objectivity and reliability
29 10 2 reliability (SPSS)
30 10 3 objectivity (SPSS)
31 11 1 content validity
32 11 2 criterion-related validity
33 11 3 construct validity
34 11 4 reliability and validity

798 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Measuring the Academic Impact of Course Sequencing
using Student Grade Data

Tess Gutenbrunner, Daniel D. Leeds, Spencer Ross, Michael Riad-Zaky, and Gary M. Weiss
Computer and Information Science Department

Fordham University, New York, NY

{tgutenbrunner, dleeds, sross34, mriadzaky, gaweiss}@fordham.edu}

ABSTRACT

Undergraduate college students have substantial flexibility in
choosing the order in which they take courses, since most courses
either have no prerequisites or only a single prerequisite. However,
the specific order that courses are taken can have an impact on

student performance. This paper describes a general methodology
for assessing the impact of course sequencing on student
performance, as measured by course grades, and applies this
methodology to eight years of undergraduate academic data from
Fordham University. The results demonstrate that certain course
orderings are associated with improved student grade performance.
This study introduces a methodology, new metrics, and a publicly
available data-processing tool that can be applied to any student

course-grade data set to measure course sequencing effects. The
results can be used to inform student decisions, modify course
recommendations, and even modify course prerequisites.

Keywords

Data mining, education, course sequencing, student performance

1. INTRODUCTION
Undergraduate university students have substantial flexibility in
choosing what courses they take and when they take them. Course
sequencing is usually enforced only by a modest set of course
prerequisites. This study examines the impact of different course
sequences on student learning outcomes, as measured by course

grades. The data used in this study includes eight years of
undergraduate student grade data from Fordham University. Prior
studies on course sequencing have generally been quite limited.
Similar research has focused more on course selection, the optimal
set of courses for a student to take to maximize performance or time
to graduation [4, 5], than on course sequencing. Studies that
focused on course sequencing were limited to a single discipline,
such as communications [7] and psychology [2]. Our study

considers all undergraduate courses within the university, including
sequences that span disciplines. Prior studies also only considered
how early courses predict performance in later courses, whereas our
study does not have this restriction and focuses instead on
maximizing overall student performance.

Our study considers the impact of sequencing on pairs of courses.
This simplifies the analysis and reduces the risk of finding spurious
correlations. The grade performance of students taking each pair of

courses in the two possible sequential orderings is measured, with
the goal of identifying the ordering that yields the best overall
performance (concurrent registrations are excluded from the
analysis). Comparing the grade performance for the two sequences
required the development of new metrics, which we consider to be
one of the contributions of this research. The methodology
described in this study, along with the metrics that are introduced,
are embodied in a publicly available software analysis tool [6].

Every possible course-pair sequence is considered as long as there
are a sufficient number of students to provide reliable results.
However, our analysis focuses primarily on course sequences
within certain departments and groups of departments. This focus
is due to our affiliation with a Computer Science department and
the current focus on STEM (Science, Technology, Engineering,
and Mathematics) education that is driven by national interests and
the needs of industry. We also examine course pairs that include

both humanities and STEM courses, because we are interested in
the role that a liberal arts education has on STEM education.

There are many factors that can impact instructor performance [8],
such as class size, course workload, and time of day of a class [1].
These factors also will impact student performance and hence can
interfere with our ability to draw clear conclusions about course
sequencing effects. In the present study, we normalize the grade
data at the course section level to account for different instructor
grading schemes, but do not address the other confounding factors.

Our expectation is that the large number of course sections
associated with most courses will limit the impact of these factors.

There are several uses for the course sequencing analysis described
in this paper. The most obvious is that this information can be used
to improve recommendations provided to students concerning
beneficial course orderings. When these benefits are substantial
enough, official course prerequisites can be modified. Beyond these
direct applications of the work, the sequencing results can provide

insight into the relationships between courses, and this can be used
to inform academic policies. For example, if Course A is not
generally considered relevant to Course B, but nonetheless leads to
improved student performance in Course B, then one might want to
recommend Course A to students who must take Course B.

2. METHODOLOGY
This section describes the data set used, the data preprocessing and
transformation that is necessary to convert the data into a form
suitable for analysis, and the evaluation metrics that measure the
impact of course sequencing.

2.1 Initial Student Course-Grade Data Set
The initial data set describes the grade performance of each
undergraduate student in all course sections with at least five
students. Each of the 473,527 data set records, which collectively
cover 24,969 distinct students, identify a student, a course

 Tess Gutenbrunner, Daniel Leeds, Spencer Ross, Michael Riad-Zaky
and Gary Weiss “Measuring the Academic Impact of Course Se-
quencing using Student Grade Data”. 2021. In: Proceedings
of The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 799-803.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 799

(including the course section and semester), the instructor, and the
student’s grade in the course. Although we aggregate the
information to course level, section information is used to
normalize student grades. Unfortunately, the initial data set cannot
be made publicly available due to strict student privacy laws.

2.2 Data Preprocessing and Transformation
The analysis conducted in this study is based on pairs of courses.
From the initial student course-grade data set, we compute and

maintain information for each course sequence A→B and B→A,
where A and B represent arbitrary courses. For each of these
sequences, we maintain a list of all students taking the two courses

in the corresponding order, and the grades they receive in each
course. The particular section each student enrolls in is also tracked,
so that grades can subsequently be normalized at the section level.
The transformation of the data from the student course-grade level
to the course-pair sequence level, and the generation of our
evaluation metrics, are accomplished using our publicly available
Python-based tool [6].

In this study, a course pair is analyzed if it meets two conditions.
The first condition ensures that the percentage of students taking
the sequence in each direction exceeds MinCSP, the Minimum

Course Sequence Percentage. For this study, MinCSP is set to 30%,
which ensures that both orderings are taken at least 30% of the time.
This excludes abnormal situations where a particular course
sequence is rarely taken, such as when a student takes an
introductory class in their senior year or retakes a failed course
outside of the normal order. The second condition ensures that at
least a minimum number of students, MinCount, aggregated over
all course sections, takes the courses in each order. MinCount is

utilized to ensure that the sample size is sufficient to generate
reliable results. For this study MinCount is set to 50 students.

Table 1 specifies how many course pairs remain after these
conditions are applied. The conditions are applied sequentially,
with MinCSP applied before MinCount. The values in the rightmost
column reflect the number of course pairs actually analyzed.
Table 1 displays the number of course pairs for the entire data set,
as well as for the five course subsets that are of particular interest
to us. Our university has no engineering school, so the STEM
courses are offered by the Biology, Chemistry, Computer Science,

Mathematics, Natural Sciences, Physics, and Psychology
departments. The Humanities courses include all courses from the
African and African American Studies, Anthropology, Art History,
English, Philosophy, Theology, and Visual Arts departments.

Table 1. Number of course pairs for different course subsets

Data Set
Threshold

None MinCSP=30% MinCount=50

Full Data Set 81,327 21,461 1,939

Computer Science 850 253 14

Mathematics 392 92 23

Mathematics and CS 1,724 490 51

STEM 12,055 3,000 291

STEM & Humanities 27,303 6,646 684

2.3 Evaluation Metrics
Several metrics are used to analyze the impact of course sequencing
on student performance. These metrics are based on lower-level
metrics, which are introduced first. Ultimately, we want to see how
the mean grades for each course in a course pair are impacted by
course order in order to determine the optimal ordering and net

benefit in grade performance.

The first step computes the mean grades for each course in a course
pair for each of the two orderings. Because instructors vary widely
in their leniency when assigning grades, all grades are normalized
at the course section level using z-score normalization, as described
by Equation 1. In this equation xi represents the grade of student i

in the course section, represents the mean section grade over xi,

and represents the standard deviation of the section grades.

Zi = (xi -) / (1)

For every course pair <A, B> we determine the average normalized
grade for each course based on each ordering. Specifically, we

compute 𝜇𝐴(𝐵 → 𝐴), 𝜇𝐴(𝐴 → 𝐵), 𝜇𝐵(𝐴 → 𝐵), and 𝜇𝐵(𝐵 → 𝐴),
where the subscript of µ denotes the course for which the

normalized mean is computed and A → B indicates that course A

is taken before course B (and vice versa for B → A). As an example,

for the course pair <Math I, English I>, µMath I (English I→Math I)

represents the mean normalized grade in Math I for students who
took Math I after English I.

These normalized means are used to compute the difference in
mean normalized grades (DNG). Two DNG values are computed
for each course pair <A, B> since the difference in normalized mean
grades is computed for each course. Equations 2 and 3 define these

values, where 𝐷𝑁𝐺𝐴:𝐵 is the difference in mean normalized grade
for Course A when Course A is taken after course B rather than

before course B, and 𝐷𝑁𝐺𝐵:𝐴 is the difference in mean normalized
grades for Course B when Course B is taken after course A rather
than before course A. We compute the difference using the order
noted in the equations, because we generally expect a course to
perform better when it is taken second and anticipate that most

DNG values will be positive.

𝐷𝑁𝐺𝐴:𝐵 = 𝜇𝐴(𝐵 → 𝐴) − 𝜇𝐴(𝐴 → 𝐵) (2)

𝐷𝑁𝐺𝐵:𝐴 = 𝜇𝐵(𝐴 → 𝐵) − 𝜇𝐵(𝐵 → 𝐴) (3)

The DNG equations measure the benefit of taking two courses in a
particular order, but do not reflect the net benefit of one ordering
over the other (if both DNG values are positive then the difference
between the orderings will be reduced). We therefore compute the

order benefit, OB, which is the net difference in DNG values of one
ordering over the other. The OB is defined relative to a specific
course ordering, as indicated in Equation 4. The OB value will be
calculated for both possible orderings, but we will only list the one
that is positive, which indicates the optimal course ordering.

𝑂𝐵𝐴→𝐵 = 𝐷𝑁𝐺𝐵:𝐴 − 𝐷𝑁𝐺𝐴:𝐵 (4)

We work through an example using <Math I, English I>, assuming
the following statistics:

𝜇𝑀𝑎𝑡ℎ 𝐼(𝐸𝑛𝑔𝑙𝑖𝑠ℎ 𝐼 → 𝑀𝑎𝑡ℎ 𝐼) = 0.40

𝜇𝑀𝑎𝑡ℎ 𝐼(𝑀𝑎𝑡ℎ 𝐼 → 𝐸𝑛𝑔𝑙𝑖𝑠ℎ 𝐼) = -0.05

𝜇𝐸𝑛𝑔𝑙𝑖𝑠ℎ 𝐼(𝑀𝑎𝑡ℎ 𝐼 → 𝐸𝑛𝑔𝑙𝑖𝑠ℎ 𝐼) = 0.40

𝜇𝐸𝑛𝑔𝑙𝑖𝑠ℎ 𝐼(𝐸𝑛𝑔𝑙𝑖𝑠ℎ 𝐼 → 𝑀𝑎𝑡ℎ 𝐼) = -0.10

Assuming Math I takes on the role of Course A and English I

Course B, using Equation 2, 𝐷𝑁𝐺𝐴:𝐵 = 0.40 – (-0.05) = 0.45, and

using Equation 3, 𝐷𝑁𝐺𝐵:𝐴 = 0.40 – (-0.10) = 0.50. Applying

Equation 4, we get 𝑂𝐵𝐴→𝐵 = 0.50 – 0.45 = 0.05. These results are
summarized in the first row of Table 2. The assignment of the two
courses to A and B is arbitrary, so we can reverse them, which

corresponds to the course ordering in the second row of Table 2.

Then, using Equation 2 and Equation 3, we get 𝐷𝑁𝐺𝐴:𝐵 = 0.50 and

𝐷𝑁𝐺𝐵:𝐴= 0.45, which yields an OB value of 0.45 – 50 = -0.05. The

values of 𝐷𝑁𝐺𝐴:𝐵 and 𝐷𝑁𝐺𝐵:𝐴 in Table 2 are flipped when we

800 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

reverse the roles of A and B (compare rows 1 and 2). This is
logically and mathematically required given the definition of the
DNG metric, so the OB value of one ordering must equal the
negative of the other. The results in Table 2 show that taking Math I
and then English I yields an overall improvement in normalized

grades of 0.05, whereas taking the courses in the reverse order
yields a net deterioration of 0.05.

Table 2. Example of a course pairing

Course A Course B 𝐃𝐍𝐆𝐀:𝐁 𝐃𝐍𝐆𝐁:𝐀 OBA→B

Math I English I 0.45 0.50 0.05

English I Math I 0.50 0.45 -0.05

3. RESULTS
This section provides selected results from our analysis, with a

focus on the difference in normalized grades for different course
sequences. Order benefit is our primary metric, as it summarizes
the net benefit of a particular course sequence over the alternative,
but DNG is also informative since it specifies the amount of benefit
in taking one course before the other. For example, it is possible for
two competing sequences to have identical positive DNGs, leading
to a zero order benefit. Top order benefit results are presented for
course sequences restricted to: Computer Science, Math, Math and

Computer Science, STEM, STEM and Humanities, and “All
Courses” across all disciplines. We posit explanations for some of
the results based on our knowledge of the domain.

The top three order benefit values for computer science courses are
displayed in Table 3. Note that while the sequence Computer

Algorithms → Data Mining has the highest OB value, based on the

𝐷𝑁𝐺𝐵:𝐴 values, taking Data Communications and Networks after
Data Mining yields a slightly greater improvement than taking
Data Mining after Computer Algorithms. The key difference is that
taking each of those pairs of courses in the opposite order (i.e.,

𝐷𝑁𝐺𝐴:𝐵) yields very different results. The two negative 𝐷𝑁𝐺𝐴:𝐵
values in Table 3 indicate that the corresponding courses yield
worse results when they are taken second. Specifically, students in
Computer Algorithms perform worse when they take it second. We

generally would not expect this to occur. This result may stem from
weaker students who delay taking Computer Algorithms.

Table 3. Computer Science courses with largest order benefit

Course A Course B 𝐃𝐍𝐆𝐀:𝐁 𝐃𝐍𝐆𝐁:𝐀 OB

Computer Alg. Data Mining -0.110 0.233 0.343

Data Structures Computer Organization -0.073 0.103 0.176

Data Mining Data Comm. & Netwks. 0.101 0.235 0.134

A plausible explanation for the first entry in Table 3 is that Data
Mining utilizes some knowledge of Computer Algorithms and
hence taking Data Mining second is beneficial. While the same
reasoning could be applied to the reverse ordering, the negative
DNG indicates no benefit for that ordering, possibly because Data
Mining does not teach the basics of computer algorithms. With
respect to the entry in the second row of Table 3, the benefit of
foundational mathematics and algorithmic knowledge provided by
Data Structures is apparent in the somewhat more application-

oriented Computer Organization course.

Table 3 shows negative 𝐷𝑁𝐺𝐴:𝐵 values are smaller in magnitude

than positive 𝐷𝑁𝐺𝐵:𝐴 values — a finding replicated in subsequent

tables. The presence of negative 𝐷𝑁𝐺𝐴:𝐵 values may be an artifact
of our focus on course pairs with the highest overall order benefit,

because order benefit is maximized when 𝐷𝑁𝐺𝐴:𝐵 is negative.

Table 4 shows the results for three sequences of mathematics
courses. The third entry is the easiest to explain. Business Finite
Math and Finite Math cover similar material, but the former covers
more basic material. Students are not generally expected to take
both courses, but if they do, they most likely will take the more

basic one first. Discrete Math provides a background in formal
proofs, which appears to benefit from advanced mathematical
experience (Multivariable Calculus I) and to provide benefit to
advanced study of calculus (Multivariable Calculus II).

Table 4. Mathematics courses with largest order benefit

Course A Course B 𝐃𝐍𝐆𝐀:𝐁 𝐃𝐍𝐆𝐁:𝐀 OB

Discrete Math Multivar. Calc II -0.056 0.252 0.308

Multivar. Calc. I Discrete Math -0.041 0.249 0.290

Business Finite Math Finite Math -0.024 0.145 0.169

Most computer science programs require several mathematics
courses, but the specific impact of the math courses on computer
science courses is not well understood. Table 5 explores the relation
between the two departments, restricting the sequences to include
one math course and computer science course. One of the more
notable results is the entry in the first row. Both courses teach finite
mathematics, but Structures of Computer Science is offered by the
Computer Science department and is intended for non-majors,

while Finite Math is offered by the Mathematics department.
Structures of Computer Science also devotes several weeks to cover
simple programming assignments, thereby further reducing the
time spent on the mathematics content. For these reasons, it is
reasonable to conclude that the sequence with the high OB value
corresponds to taking the more basic course first. It is also
noteworthy that Calculus I has a very positive impact on taking
programming courses (Computer Science I and its lab) and

Structures of Computer Science. Thus it appears that increased
mathematical sophistication does have a positive impact on
computer science and computer programming. This is especially
interesting because the mathematical material in Calculus I has
only a tangential relationship with computer science. Most
computer science programs require calculus, and our empirical data
justifies this requirement.

Table 5. Math and CS courses with largest order benefit

Course A Course B 𝐃𝐍𝐆𝐀:𝐁 𝐃𝐍𝐆𝐁:𝐀 OB

Structures of CS Finite Math -0.002 0.429 0.431

Calculus I CS I -0.035 0.338 0.373

Calculus I CS I Lab -0.012 0.252 0.264

Calculus I Structures of CS -0.010 0.213 0.223

Table 6 displays the remaining results for the three groupings of
sequences: STEM courses, mixed STEM and humanities courses,
and all courses without any restrictions. The first entry under the
STEM category shows a benefit in taking Applied Calculus I after
General Chemistry I. This ordering is typical for students on the

Pre-Health track who wish to go to medical school, which may
explain the high order benefit, since these students are generally
motivated to achieve high grades. Furthermore, under the STEM
category we find a benefit for Learning (Psychology) followed by
Multicultural Psychology. The first psychology course in this
sequence is a 2000 level course while the second is a 3000 level
course, indicating yet again that there is a benefit from taking a
more advanced course in the same discipline second.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 801

Looking at the STEM & Humanities courses, students who took

Organic Chemistry I→ Intro. to Cultural Anthropology did
significantly better in both classes, as demonstrated by the

magnitudes of the DNG values (the negative 𝐷𝑁𝐺𝐴:𝐵 indicates
Organic Chemistry I does worse when taken second and hence
performs better when taken first). The same pattern is replicated
with an even higher OB when considering the Organic

Chemistry Lab. Pre-Health students tend to take Organic
Chemistry very early in their college career and may dominate that
particular course ordering.

The first row under the “All Courses” category displays the

sequence Spanish Language & Literature → Christian Hymns with
a very high order benefit. Students performed best in each of the
two courses when taking them in the specified sequence. This may
be due to the fact that Spanish literature is heavily influenced by
Christianity, and therefore provides important background for
students who plan to take Christian Hymns. Explanations for the

other entries may require consultation with faculty from the
associated departments.

Table 6. STEM, STEM/Humanities, All courses with large OB

Course A Course B 𝐃𝐍𝐆𝐀:𝐁 𝐃𝐍𝐆𝐁:𝐀 OB

STEM Courses

General Chem. I Applied Calculus I -0.17 0.400 0.570

Intro. Astronomy Abnormal Psych. -0.187 0.309 0.496

Learning (Psych.) Multicultural Psych. -0.021 0.419 0.440

Intro. Bio. I Structures of CS -0.152 0.283 0.435

Structures of CS Finite Math -0.002 0.429 0.431

Gen. Chem. Lab I Structures of CS -0.102 0.325 0.427

Calculus I CS I -0.035 0.338 0.373

Intro. Bio Lab I Structures of CS -0.069 0.297 0.366

Physics II Lab Human Physiol. Lab -0.019 0.287 0.306

STEM & Humanities Courses

Org. Chem. Lab I Intro. Cultural Anthr. -0.520 0.606 1.126

Organic Chem. I Intro. Cultural Anthr. -0.330 0.554 0.884

Forensic Science Philosophical Ethics -0.310 0.474 0.784

Texts & Contexts Discrete Math -0.234 0.372 0.606

All Courses

Spanish Lang. & Lit. Christian Hymns -0.436 0.714 1.150

Medieval History Intro. Media Industry -0.178 0.550 0.728

Composition II Intro. Archaeology -0.218 0.494 0.712

Sociology Focus Faith & Crit. Reason -0.134 0.565 0.699

Calculus II Intro Sociology -0.111 0.488 0.599

American History Personality (Psych) -0.095 0.487 0.582

4. CONCLUSION
The research described in this study introduced a methodology and
set of metrics for assessing the impact of course sequencing on

student performance. The analysis of our results focuses on several
disciplines, such as Computer Science and Mathematics, as well as
higher level groupings, such as STEM courses. Many of the results
demonstrate that there is a substantial benefit with a particular
sequencing of courses, such as taking Finite Math after Structures
of Computer Science or taking Computer Science I after Calculus I.
Our methodology and metrics are implemented in our Python-
based software tool [6], which can be used by other researchers.

The course sequencing results in this paper can be used to assist
with course recommendations and can be used to inform, and even
modify, course prerequisites. For example, our results show a larger

than expected benefit of taking calculus before a programming
course; additional analysis and data will be needed to see if this
extends to a broader set of mathematics courses, but if it does, then
new prerequisites perhaps should be added. The results in this study
also provide insight into the inter-relationships between courses

and disciplines.

Many of our observed results can be explained based on our
knowledge about college education and domain knowledge of
specific disciplines. However, in some cases explanations are not
readily available. Our search for explanations of why one sequence
may outperform another can also benefit from additional domain
knowledge, as our knowledge is mainly limited to computer
science. Course syllabi could also prove to be useful. It would also

be very interesting to apply our methodology to data from different
universities, and we hope to do this in the future. It would be
informative to see if the course sequencing patterns present in our
university hold elsewhere. Although our university is relatively
large, in many cases the number of students taking some pairs of
courses was relatively small, and this informed our relatively low
MinCount threshold of 50. With more data, we could increase this
threshold, which would diminish the impact of factors like

instructor effectiveness.

Our methodology normalizes for some external factors, such as
different instructor grading schemes, but does not account for all
factors that can impact student performance. In particular, we
suspect that some course sequencing results are due to certain
populations of students (e.g., Pre-Health students) taking courses in
one particular order over another. In future work we do plan to
consider some of these factors and modify our evaluation to isolate

their impact. In cases where that is not feasible, we will at least
provide summary statistics to assess the influence of these factors.
For example, since we suspect that academically stronger students
sometimes take courses in a different sequence than weaker or less
motivated students, we can compare the overall GPAs of students
taking the courses in each course ordering and note when they
exhibit a statistically significant difference. Alternatively, we can
normalize for overall student GPA, something that we are currently
doing in a study on instructor effectiveness.

One final area that we plan to pursue is better evaluation of our
results. One way to do this is to utilize statistical significance
testing. Given the number of potential patterns we can find with the
large number of pairs of courses, we may need to set our p-value
quite low. We may be able to improve this situation by limiting our
course interactions to courses within a single department or
between related fields (e.g., Biology and Chemistry). We can also
validate our results by partitioning the data into a training and test

set and subsequently verifying if the patterns found in the training
data hold for the test data. In this regard, the differences in student
performance can be viewed as predictions, so the standard training
and test set evaluation methodology applies.

The data utilized in this study is itself a valuable resource. Our
research group has analyzed this data in a variety of ways to provide
additional insights. Two studies have used this data to group/cluster
courses and analyze the interrelationships between courses. One of

these studies uses course co-enrollments to form the clusters and to
identify hub courses [9], while the other uses the correlation
between students grades as a similarity metric to cluster the
courses [3]. Both of these studies used their respective notions of
similarity to form networks of courses, and then analyzed these
with existing network analysis techniques.

802 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

5. REFERENCES
[1] Anderson, C. J., Poulsen, S., and West, M. 2020. The

relationship between course scheduling and student
performance. In Proceedings of the 4th Educational Data
Mining in Computer Science Education Workshop
(collocated with EDM2020), July 10, 2020.

[2] Betancur, L., Rottman, B. M., Votruba-Drzal, E., and
Schunn, C. 2019. Analytical assessment of course
sequencing: The case of methodological courses in
psychology. Journal of Educational Psychology, 111(1), 91.

[3] Leeds, D. D., Zhang, T., and Weiss, G. M. 2021. Mining
course groupings using academic performance. In
Proceedings of the 14th International Conference on

Educational Data Mining.

[4] Morsy. S., and Karypis, G. 2019. Will this course increase

or decrease your GPA? Towards grade-aware course
recommendation. Journal of Educational Data Mining,
11(2):20–46, 2019.

[5] Parks, M. R., Faw, M., & Goldsmith, D. 2011.
Undergraduate instruction in empirical research methods in
communication: Assessment and recommendations.
Communication Education, 60, 406-421. DOI=
10.1080/03634523.2011.562909

[6] Riad-Zaky, M., Weiss, G.M., and Leeds, D.D. Course Grade
Analytics with Networks (CGAN) [computer software],

Available: http://www.cis.fordham.edu/edmlab/software

[7] Richards, A. S. 2012. Course sequencing in the
communication curriculum: A case study. Communication
Education, 61(4), 395-427. DOI=
10.1080/03634523.2012.713500

[8] Wachtel, H. K. 1998. Student Evaluation of College
Teaching Effectiveness: a brief review, Assessment &
Evaluation in Higher Education, 23:2, 191-212, DOI=
10.1080/0260293980230207

[9] Weiss, G.M., Nguyen, N., Dominguez, K., and Leeds, D.D.
2021. Identifying hubs in undergraduate course networks
based on scaled co-enrollments. In Proceedings of the 14th
International Conference on Educational Data Mining.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 803

Mining Course Groupings using Academic Performance

Daniel D. Leeds, Tianyi Zhang, Gary M. Weiss
Department of Computer and Information Science

Fordham University, New York, NY
{dleeds, tzhang130, gaweiss}@fordham.edu

ABSTRACT
This study computes the correlation of student grades be-
tween pairs of courses in a large university. Course net-
work graphs are then generated, where courses are repre-
sented as nodes and courses are connected if they have a
high degree of grade correlation. Graph mining and net-
work analysis tools visualize the course networks, identify
course clusters and course cliques, and compute informative
network statistics. Results are analyzed for pairs of courses
and courses grouped by academic department or program
of study. Strong course similarity groupings are observed
within scientific disciplines, between pre-health courses, and
within subfields of computer science. No prior study using
this notion of course similarity has been conducted.

Keywords
Educational, Clustering, Correlation, Network graphs

1. INTRODUCTION
This paper describes a method for grouping and analyzing
courses based on similar student performance, where simi-
larity is measured between pairs of courses using the Pearson
correlation of the grades assigned to students who take both
courses. A graph is then formed that represents courses as
nodes, and has edges between course-pairs when the stu-
dent grade correlation is above a specified threshold. The
resulting graph is then analyzed using a variety of graph
analysis techniques, to provide insights into the relationship
between individual courses and course groupings. Data pre-
processing steps are described to handle confounding factors,
such as differing instructor grading schemes. The method-
ology is encapsulated in a software tool that was developed
for this study and is publicly available [5]. This study uti-
lizes eight years of undergraduate student course grade data
from Fordham University. The results show that there are
strong connections between pre-health courses and courses
within subdisciplines of computer science, and that courses
that teach specific skills are much more highly connected to
other courses than introductory survey courses.

The knowledge gleaned from this research can be used to
influence curriculum design and academic policies. For ex-
ample, if a student performs poorly in the first course within
a set of highly correlated courses, then they are likely to en-
counter future difficulty; therefore, they could be asked to
repeat the course or be offered academic assistance. Re-
sults from this study have many possible applications, but
as is the case with descriptive data mining tasks, it may
take some time to discover some of them. However, we feel
that the course correlation networks that we generate and
the various metrics that we introduce are themselves key
contributions, which will lead to further research in educa-
tional data mining. This study is unique in that no other
analysis of university courses is based on a notion of simi-
larity that relies exclusively on student performance. One
study, which is superficially similar, measures course similar-
ity based on student course co-enrollments [7]. That study,
also conducted by our research group and based on the same
data set, uses this much more traditional notion of similarity
to perform similar analyses; namely course network graphs
are generated and then analyzes using existing network anal-
ysis methods and metrics.

2. DATASET DESCRIPTION
Eight years of student-course records were obtained from
three of Fordham university’s undergraduate colleges, where
each record describes the performance of a student in a
course section. This study restricts the data and analysis
to: pre-health courses required for medical school admission,
popular university core curriculum courses, and Computer
Science and Psychology courses (a detailed analysis would
not be possible if courses from all 83 majors were included).
Computer Science and Psychology courses were included due
to our affiliations with those departments, while core cur-
riculum courses were chosen because of their prominence in
our university and their diversity (students complete more
than twenty core courses covering philosophy, history, for-
eign languages, performing arts, mathematics, and science).
Pre-health courses are included because they cover many key
introductory STEM courses. This study will be expanded
to other disciplines in the future.

Table 1 summarizes the data and its distribution across the
course categories. The core courses contribute more than
half of the total course sections and are largely responsible
for the data covering 20, 797 students. Each record corre-
sponds to one student in one course section and includes the
following features: student ID, final grade, department name,
course number, course title, semester, and section number.

Daniel Leeds, Tianyi Zhang and Gary Weiss “Mining Course Group-
ings using on Academic Performance”. 2021. In: Proceedings
of The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 804-808.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

804 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 1: Distribution across Course Categories

Course Category Records Sections Courses

Computer Science 14,137(13%) 705(15%) 53(39%)

Psychology 18,017(17%) 966(20%) 67(50%)

Core 62,005(58%) 2,706(56%) 8(6%)

Pre-Health 13,087(12%) 434(9%) 7(5%)

Total 107,246 4,811 135

The final grade uses a 4 point scale and most courses will
have many sections. Student privacy concerns prohibit us
from sharing the raw data, even though the student identifier
values have been anonymized; however, the course correla-
tion matrix central to our analysis is available [6].

3. DATA PROCESSING
An overview of the process for measuring similarity between
courses is provided in Section 3.1, and the individual steps
are described in successive subsections. The code that im-
plements these steps is publicly available [5].

3.1 Overview
The initial data set contains records that describe the per-
formance of each student in a each course section. A variety
of preprocessing steps are executed, as summarized in Fig. 1.
A course correlation matrix that measures the similarity of
each pair of courses using the Pearson correlation of student
grades is generated in Step 7. The course network graphs,
modularity clusters, and course cliques are then generated
from this correlation matrix, as described in Section 4.

Figure 1: Overview of data processing steps

3.2 Initial Data Cleaning (Steps 1 and 2)
The first step removes records that do not have numeri-
cal grades, such as courses taken pass/fail. Some instruc-
tors sometimes assign students very similar grades, which
makes it difficult to assess the similarity of courses based
on grades. For this reason, Step 2 removes course sections
where the standard deviation (σ) of student grades is below
a specified threshold. This requires aggregation of the stu-
dent course records to the section level, which yields 4, 811
sections. Fig. 2 provides the distribution of standard devia-
tion values across these sections, and also provides a curve
that shows the number of records and percentages of sec-
tions that are kept for each standard deviation threshold
value (for each value we discard the sections with a lower
threshold). Based on Fig. 2 we consider the values of 0.20,

0.30, and 0.40 to be reasonable candidates that maintain the
majority of course sections. We ultimately selected a thresh-
old of 0.30, which drops 6% of the sections and eliminates 6
courses (which are not left with any sections).

Figure 2: Distribution of grade standard deviation

3.3 Grade Normalization (Step 3)
Instructors may be easy or hard graders, and these differ-
ences will cause problems with grade correlation when a
course is taught by multiple instructors. This issue is reme-
died by applying z-score normalization to the grades in each
course section, which substracts the mean section grade from
each grade and then divides it by the standard deviation of
the section grades.

3.4 Generate Course-Pair Grades (Step 4-6)
Step 4 aggregates the data from the section level to the
course level, which may combine dozens of course sections,
spanning many years. Step 5 then forms pairs of courses,
keeping on the grade data from students common to both
courses. Course pairs are formed from every course that
remains after application of the σ = 0.3 threshold in step 2.
Step 6 then filters the course pairs that do not have at least
20 students in common, to ensure that the grade correlation
is meaningful. This results in the removal of 4, 585 (25%) of
the remaining course pairs.

3.5 Compute Paired Correlations (Step 7)
The final preprocessing step computes the Pearson correla-
tion [2] between the remaining course pairs, which gener-
ates the correlation matrix that is central to our analysis.
A small sample of the correlation matrix is provided in Ta-
ble 2. The complete correlation matrix is publicly available
[6]. Entries in the correlation matrix are not impacted by
order, so values above the diagonal are omitted. Null val-
ues occur when a course pair does not have enough common
students. In Table 2 we see that, as expected, there is a
high correlation (0.94) between Discrete Structures and the
associated lab. There is also a strong correlation (0.81) be-
tween Computational Neuroscience and General Physics I,
which may be due to the heavy use of mathematical model-
ing of physical systems in both classes. Bioinformatics and
General Physics I exhibit a low correlation (0.19), perhaps
reflecting a heavier practical programming focus in the bioin-
formatics course. It is surprising that Discrete Structures
and Computer Algorithms have a relatively low correlation
(0.37), since they both require similar mathematical reason-
ing skills. This suggests that the Discrete Structures may
not be preparing students sufficiently for future coursework.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 805

Table 2: Representative Course-Pair Correlations

Disc
Struct

Disc
Lab

Web
Prog

Comp

Neuro

Comp

Alg Bioinf
Gen

Phys-I

Disc Struct 1
Disc Lab 0.94 1
Web Prog – – 1
Comp Neuro – – – 1
Comp Algs 0.37 0.33 0.41 – 1
Bioinfor – – 0.79 0.47 0.24 1
Gen Phys I – – – 0.81 – 0.19 1

4. RESULTS
This section describes the results derived from the course-
pair correlation matrix. Section 4.1 covers the correlation
results between individual course pairs, Section 4.2 covers
the cliques within the course correlation graph, and Sec-
tion 4.3 analyzes the course correlation network graphs.

4.1 Analysis of Course-Correlation Pairs
The distribution of Pearson course-pair correlations is dis-
played in Fig. 3. The leftmost bar is due to correlations be-
tween a course and itself. The top 25% of course-pair have a
correlation greater than 0.5. The course network correlation
graphs in Section 4.3 are generated using a threshold of 0.5.

Figure 3: Distribution of course-pair correlations

Table 3 lists course pairs with correlations > 0.75. The
top three entries cover matching lecture and lab courses,
which is unsurprising since they cover complementary ma-
terial. More than 80% of the entries are contained within an
academic department, although there are interesting inter-
departmental entries. The link between General Physics I
and Computational Neuroscience was previously discussed
and involves mathematical modeling. The link between Gen-
eral Chemistry Lab II and Computer Algorithms is not ob-
vious, but both involve designing and applying a precise se-
quence of instructions. Philosophy of Human Nature shows
an interesting connection with Infant and Child Develop-
ment, potentially establishing a link between Philosophy and
Psychology. The Philosophy class’s link to Scientific Com-
puting is more difficult to explain, although it may be related
to the interdisciplinary nature of Scientific Computing.

4.2 Clique Results
A k-clique is a set of k nodes that are each directly connected
to each other by an edge. Table 4 shows the number of
cliques of each size in the course correlation network graph
for correlation thresholds (ρ) of 0.55, 0.55 and 0.6. The table

Table 3: High Correlation (ρ) Course-Pairs

Course 1 Course 2 ρ
Discrete Struct II Discrete Struct II Lab 0.96
Comp Sci II Comp Sci II Lab 0.95
Comp Sci I Comp Sci I Lab 0.93
Gen Phys I Comp Neuro 0.81
Intro Bio I Intro Bio Lab I 0.79
Web Program Bioinformatics 0.79
Learning Health Psychology 0.78
Perception Lab Law and Psychology 0.78
Gen Chem Lab II Comp Algorithms 0.78
Phil of Human Nature Infant & Child Devel 0.78
Phil of Human Nature Scientific Computing 0.77
Psych & Human Vals Research Methds Lab 0.77
Law and Psych Clinical Child Psych 0.77
Biopsych Sens & Percep Lab 0.76
Intro Robotics DataComm & Networks 0.76

shows that increasing the correlation threshold even slightly
dramatically reduces the number of cliques, and hence we
use 0.5 to retain a clear picture of course network structure.
Each clique has many sub-cliques (e.g., each 7-clique has
7 6-cliques and 21 5-cliques), which we view as redundant,
and hence the table excludes all sub-cliques. Cliques may
span different course categories or fall entirely within one
category. Table 5 shows how the cliques from Table 4 are
distributed across the five course categories using ρ = 0.5.
Cliques that do not fall within one category are included in
the “Span” field.

Table 4: Number of Cliques as ρ Threshold Varies

Clique Size ρ ≥ 0.5 ρ ≥ 0.55 ρ ≥ 0.6
3-cliques 172 66 29
4-cliques 51 50 4
5-cliques 56 2 0
6-cliques 15 0 0
7-cliques 4 0 0
8-cliques 1 0 0

Table 5: Number of Cliques in Each Category

Clique Size CS Psych Core Pre-H Span
3-cliques 46 9 0 0 117
4-cliques 11 32 0 0 8
5-cliques 14 39 0 0 3
6-cliques 0 15 0 0 0
7-cliques 0 3 0 1 0
8-cliques 0 1 0 0 0

Psychology courses form most of the large cliques with size 6
and greater. Psychology courses are more grouped together
than Computer Science courses, which have many smaller-
sized cliques. The 7 pre-health courses form a single clique,
which suggests that performance in these courses is based
on similar abilities or knowledge. Core courses lack even
smaller 3 cliques. Despite their shared mission of core lib-
eral arts training, it appears the differences in subject matter
prevents similarity in course performance. No large cliques
span course categories, but when k = 3, spanning cliques
outnumber the other ones, which suggests that cliques only
become meaningful at larger sizes. The largest cliques as-
sociated with the Computer Science, Psychology, and Pre-
health courses are described in Table 6 of the appendix.
Most of those cliques cover related courses (e.g., a 5-clique
in Computer Science covers programming courses).

806 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 4: Network graph (all categories).

4.3 Course Correlation Network Graphs
The course correlation graphs generated with ρ = 0.5 were
supplied to the Gephi social network analysis software [1].
Gephi partitions highly connnected nodes into modularity
classes and assigns each a different color [3]. The size of
each node is determined by ranking the node’s “betweenness
centrality,” which is based on how often a node appears on
shortest paths between all nodes in the network [4].

Fig. 4 shows the Gephi network that includes all courses.
Nodes are labeled with a department abbreviation (“Eng”for
English and “CS” for Computer Science), and 4-digit course
number. Course numbers are not informative so our anal-
ysis refers to courses by title as needed. The figure shows
a clear partitioning of courses between Computer Science
(green, right) and Psychology (purple, left), with Pre-health
courses (dark grey and below Computer Science) clustered
together and forming a partial bridge between Computer
Science and Psychology. While individual edges are dif-
ficult to distinguish, the figure shows that courses within
a category are much better connected to each other than
to courses in other categories. First-year core curriculum
courses English 1102, Theology 1000, and Philosophy 1000
are very large, indicating their large betweenness-centrality.
These courses therefore often occur in the shortest paths
between other courses and act as bridges between parts of
the network. While these core courses do not have many
connections, they connect to a diverse set of courses. Phi-
losophy 1000 is connected to well-connected courses from
Economics, Psychology, and Computer Science, while. The-
ology 1000 is connected to classes in Psychology, Pre-health
(Biology), and Philosophy 1000. These core classes appear
to be an indirect indicator of performance for classes across
the university. Both classes introduce and carefully study
selected core concepts in their respective fields.

Network graphs focusing on Computer Science courses and
Psychology courses are provided in the appendix in Fig. 5
and Fig. 6, respectively. The modularity classes in Fig. 5
correspond to meaningful subdisciplines of Computer Sci-
ence: the light-blue modularity class covers Information Sci-

ence courses like Data Mining (4631); the magenta modu-
larity class covers programming courses such as CS1 and
Lab (1600, 1610), CS2 and Lab (2000, 2010), UNIX pro-
gramming (3130), and Scientific Computing (4750); and the
orange modularity class covers advanced courses like Algo-
rithms (4080), Theory of Computation (4090), and Oper-
ating Systems (3595). The modularity class groupings dif-
fer from the cliques in Table 6 of the appendix, although
both group the same programming courses together. Fur-
thermore, the five largest nodes in the Fig. 5 based on be-
tweeness centrality (4631 Data Mining, 4615 Data Commu-
nications, 3593 Computer Organization, 2200 Data Struc-
tures, and 3300 Web Programming) are well represented in
the Computer Science cliques in Table 6. For Computer
Science, high betweenness centrality reflects an abundance
of both one-step and few-step connections to other courses.
Within the department, it is known that a student with a
poor grade in one of these classes will often struggle in the
major. Most of these classes are designed to hone special-
ized skills within Computer Science. The key observation
from the Gephi graph of Psychology courses in Fig. 6 is
that the Research Methods Lab course is strongly connected
with other psychology courses, while the introductory survey
course is very poorly connected. This suggest that classes
focused on specialized skills are more predictive of perfor-
mance in advanced classes than a general survey class.

5. CONCLUSION
This descriptive data mining study defined an innovative
notion of course similarity based on student performance,
and then used this similarity metric to form course network
graphs. These network graphs were then used to analyze the
relationship between courses and course groupings. This
methodology was applied to eight years of undergraduate
student data at a large university.

The study established that there are many course pairs for
which student performance is highly correlated. When re-
quiring at least 20 common students, 25% of course pairs ex-
ceed the 0.5 correlation threshold used in this study, and 5%
of pairs exceed 0.7 correlation. Courses with the highest cor-
relations are often offered by the same department. In addi-
tion, multi-course clusters naturally occur, especially within
subdisciplines of an academic department, such as the pro-
gramming courses within Computer Science. Course clus-
ters were identified as cliques and modularity classes within
the course correlation networks. As an extreme example,
all pre-health courses formed a single clique. A small num-
ber of courses with high betweeness centrality were shown
to link a diverse set of topics—within one discipline or be-
tween disciplines, and those courses connecting discplines
were much more likely to introduce specific skills than to
provide a broad survey of an area.

This paper also introduced a methodology for generating
a course grade correlation matrix from student data, and
included several steps to address confounding factors such
as differing instructor grading policies. This methodology
is available to other education researchers through our soft-
ware and associated documentation [5]. Our work presented
a new way of looking at course relationships by a novel way
of measuring similarity. We plan to continue to investigate
this notion of course similarity and to apply it to a larger
set of courses.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 807

6. REFERENCES
[1] M. Bastian, S. Heymann, and M. Jacomy. Gephi: an

open source software for exploring and manipulating
networks. In Proceedings of the International AAAI
Conference on Web and Social Media, volume 3, 2009.

[2] J. Benesty, J. Chen, Y. Huang, and I. Cohen. Pearson
correlation coefficient. In Noise reduction in speech
processing, pages 1–4. Springer, 2009.

[3] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks. Journal of statistical mechanics: theory and
experiment, 2008(10):P10008, 2008.

[4] U. Brandes. A faster algorithm for betweenness
centrality. Journal of mathematical sociology,
25(2):163–177, 2001.

[5] M. Riad-Zaky, G. M. Weiss, and D. D. Leeds. Course
Grade Analytics with Networks (CGAN) [computer
software], April 2021.
https://www.cis.fordham.edu/edmlab/software.

[6] G. M. Weiss and D. D. Leeds. Fordham University
Course Correlation Matrix [data file], January 2021.
https://www.cis.fordham.edu/edmlab/datasets.

[7] G. M. Weiss, N. Nguyen, K. Dominguez, and D. D.
Leeds. Identifying hubs in undergraduate course
networks based on scaled co-enrollments. In Proceedings
of the 14th International Conference on Educational
Data Mining (EDM 2021), 2021.

APPENDIX
Table 6 lists the large cliques associated with Computer
Science, Psychology, and Pre-health courses. Many of the
cliques have a common theme. Computer Science’s second
5-clique includes three internet-focused courses: Web Pro-
gramming, Client Server Computing, and Data Communica-
tions, while the third clique is dominated by programming
courses (Operating Systems is an exception but includes pro-
gramming projects). Psychology’s 7-clique links classes cov-
ering complementary and overlapping elements of cognition;
however, the 8-clique appears to span diverse topics. As
mentioned earlier, the pre-health clique covers core science
courses required by medical schools.

Table 6: Large Cliques in Different Categories

COMPUTER SCIENCE
5-Clique 5-Clique 5-Clique
Data Mining Data Mining Comp Sci II
Web Programming Web Programming Comp Sci II Lab
Data Struct. Data Comm. Data Struct.
Client-server Comp Client-server Comp Operating Systems
Comp. Org. Comp. Org. Scientific Comput.

PSYCHOLOGY
8-Clique

Child Develop. Biopsy. Research Methods
Learning Social Psych Lab Human Sexuality
Aging and Society Law and Psych

7-Clique
Child Develop. Personality Abnormal Psych
Intro Clin. Psych Found. of Psych Social Psych
Cognitive Psych

PRE-HEALTH
7-Clique

Intro Bio I Intro Bio II Intro Bio Lab I
Gen Chem I Gen Chem II Gen Chem Lab I
Gen Chem Lab II

The Gephi course correlation network graph for the Com-
puter Science is displayed in Fig. 5. The contents of Fig. 5
were describe in detail in Section 4.3 and highlighted how the
different modularity classes correspond to different subdis-
ciplines within computer science. The Gephi course corre-
lation network graph for Psychology, which was only briefly
described in Section 4.3, is displayed in Fig. 6. Meaningful
subcategories are much harder to identify, but it is notable
that Research Methods Lab (2010) is most strongly con-
nected with other psychology courses, indicating a valuable
skill shared across the category. This contrasts with the
required introductory survey class, Psychology 1200, which
has a much lower betweenness centrality. This indicates that
a class focused on specialized skills is more predictive of per-
formance in more advanced classes than a general overview
class. The psychology courses with largest betweenness cen-
trality are all represented in the cliques in Table 6. The
top four courses based on betweenness centrality are: 2010
Research Methods, 2900 Abnormal Psychology, 2800 Person-
ality, and 2700 Child Development – all courses with special-
ized foci. As in Computer Science, high betweenness cen-
trality in Psychology reflects an abundance of both one-step
and few-step connections to other courses.

Figure 5: Computer Science network graph.

Figure 6: Psychology network graph.

808 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Identifying Hubs in Undergraduate Course Networks
Based on Scaled Co-Enrollments

Gary M. Weiss, Nam Nguyen, Karla Dominguez and Daniel D. Leeds
Department of Computer and Information Science

Fordham University, New York, NY

{gaweiss, nnguyen56, kdominguezmelo, dleeds}@fordham.edu

ABSTRACT

This study uses eight years of undergraduate course enrollment
data from a major university to form networks of courses based on
student co-enrollments. The networks are analyzed to identify
"hub" courses often taken with many other courses. Two notions
of hubs are considered: one based on raw popularity and another
on proportional likelihoods of co-enrollment with other courses.

Network metrics are calculated to describe the course networks.
Academic departments and high-level academic categories (e.g.,
humanities), are studied for their influence over course groupings.
The identification of hub courses has practical applications, since
it can help better predict the impact of changes in course offerings
and in course popularity, and in the case of interdisciplinary hub
courses, can be used to increase or decrease interest and enroll-
ments in specific academic departments and areas.

Keywords

Graph mining, network analysis, educational data mining.

1. INTRODUCTION
Universities typically offer thousands of different courses across

dozens of departments. The interrelationships between courses
that are taken together, especially those in different departments,
is often not well understood. This paper addresses this deficiency
by forming course networks, connecting courses often taken by
the same students. Each course is represented as a node in the
graph. Several network analyses are pursued. This work also stud-
ies “hub” courses, defined as network nodes that are connected to
many other nodes, resulting in a high degree count [2]. This study

utilizes three popular centrality metrics to identify course hubs
and compares the results when using each metric.

Network analyses utilized in this paper have been proven useful to
other domains. Analysis of social networks like Facebook identify
hubs corresponding to influencers with an outsized impact on
other users’ purchasing behaviors [3]. Network analysis metrics
pursued in the present work have been applied to the World Wide
Web, particularly for web searches [5, 8, 9].

Identifying and analyzing hub courses can provide concrete bene-
fits. Courses heavily associated with other courses can be used for

better resource planning, particularly when changes are made in
the frequency or capacity of such courses. Furthermore, hub
courses may be adjusted to drive (or diminish) student interest in

an area or academic discipline. For example, there is a current
need for more STEM (Science, Technology, Engineering, and

Math) professionals. If a hub course is well connected to STEM
courses, promoting this course may lead to increased STEM en-
rollments—even if the hub course is not a STEM course.

The course network analyzed in this study is based on eight years
of undergraduate student course enrollment data from Fordham
University. An edge connects two courses if the number of stu-
dents taking both courses is above a threshold. Two types of
thresholding mechanisms are considered: (1) a static threshold
that is the same for all pairs of courses and (2) a dynamic thresh-
old set to link together only courses taken together relatively

frequently (i.e., relative to their popularity). We find the dynamic
threshold shifts hub courses from humanities to STEM disci-
plines. Also, tighter course groupings are found within STEM and
looser groupings within the humanities and social sciences. An
extended version of this paper is available [12].

2. DATASET DESCRIPTION
Our study uses course enrollment data to generate a course-pair
dataset, which is then used to form the course networks analyzed
in this paper. This course enrollment data contains eight years of
undergraduate data from Fordham University, where each record

corresponds to one student in one course section. Student grades
are also available and used in two of our other studies, one of
which analyzes the impact of course sequencing on student
grades [4], and the other that forms course networks based on the
correlation of grades between courses, and then analyzes the net-
works [6]. This later study performs a somewhat similar analysis
to the one provided in this paper, but with a very different notion
of course similarity/linkage.

The course-pair dataset aggregates the course enrollment data to
the course level and then extracts information about each course
pair. Each course-pair record includes identifying information

about two courses and the number of students that took each
course and both courses (not necessarily at the same time). The
department associated with each course is mapped to one of the
six major course categories. The course-pair dataset contains
78,173 records, which are formed from 1,763 distinct courses.
The dataset does not contain all possible pairings because pairs
with fewer than 20 common students are excluded. The course-
pair dataset, and the network metrics provided later, are generated
from the course enrollment data using a publicly available Py-

thon-based software tool developed by our research group [10].

3. NETWORK ANALYSIS METRICS
The course-pair dataset is used to form course networks by view-
ing each course as a node and connecting nodes that have a suffi-
cient number of common students. Table 1 provides the network

analysis metrics used in this paper. The first three, density, diam-
eter, and average clustering coefficient (ACC) [1], are computed

 Gary Weiss, Nam Nguyen, Karla Dominguez and Daniel Leeds “Iden-
tifying Hubs in Undergraduate Course Networks Based on Scaled Co-
Enrollments”. 2021. In: Proceedings of The 14th International Confer-
ence on Educational Data Mining (EDM21). International Educational Data
Mining Society, 809-813. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 809

using an entire network or subnetwork. Our data shows subnet-
works of courses within single departments have a higher density,
smaller diameter, and higher average clustering coefficient than
the network based on all undergraduate courses, because courses
within a discipline are more tightly connected (see Table 2). The

last three metrics are defined for each node in the network and can
be used to help identify hubs. These metrics consist of three cen-
trality measures: degree centrality, eigenvector centrality [11], and
betweenness centrality [7]. Each measure can be used to identify a
different type of hub course.

Table 1. Summary of network analysis metrics

Metric Summary Description Range

Density Fraction of possible edges present. 0 - 1

Diameter
Maximum distance between any pair
of nodes in network.

Z+

Ave. Clustering
Coefficient

Fraction of pairs of neighbor nodes
that are connected to each other.

0 - 1

Degree Centrality Number of edges to node (degree). Z+

Eigenvector cen-
trality

Based on centrality of node’s neigh-
bors.

≥ 0

Betweenness
centrality

Measure all shortest paths passing
through node.

≥ 0

4. EDGE INCLUSION METHODOLOGY
To form a course network, each course is represented by a node,
and an edge is added between two nodes if the courses, across all
sections, have enough common students. Static and dynamic
thresholds specify a minimum number of common students.

The static threshold is based on the number of common students

between two courses, independent of how many students take
each course. The distribution of common students by course pair
is provided in Figure 1 in the appendix. Most course-pairs have
very few common students, since few students take upper-level
courses in disparate disciplines. A threshold of 20 students
maintains 11% of all course-pairs with at least one student in
common, and this is the static threshold utilized in this study. The
static threshold is heavily biased towards popular courses, taken

very frequently, even if only a few students in the popular course
take specific other courses.

We also define a dynamic threshold relying primarily on the co-
occurrence rate of courses. The dynamic threshold is determined
by multiplying the co-occurrence threshold rate k by the number
of students in the larger course within each course-pair. To ensure
a minimum number of common students, a static threshold of 20
students is used as the floor for the dynamic threshold. The dy-
namic threshold, d-thresh, associated with two courses, C1 and C2,

is provided in Equation 1, where Cx.students represents the num-
ber of students who have taken class Cx.

d-thresh(C1, C2) = max(20, k max(C1.students, C2.students)) [1]

The dynamic threshold is heavily dependent on the co-occurrence
rate k, defined as the number of common students divided by the
number of students in the larger course. The co-occurrence rate
distribution is displayed in Figure 2 of the appendix, which shows
that a co-occurrence rate threshold k = 0.017 discards 39% of the
edges that satisfy the static threshold. This threshold is used be-
cause it leads to the most stable centrality measures while exclud-
ing the fewest number of edges. Table 5 in the appendix shows
how this dynamic threshold impacts an Art History course.

5. RESULTS
This section analyzes course networks using the metrics presented

in Table 1 and through the identification of hub courses. Static
and dynamic thresholds are considered. Hub results are analyzed
within academic departments and broader course categories. This
study utilizes six course categories: Arts, Communication and
Media Studies, Humanities, Modern Languages, Social Sciences,
and STEM. The mapping from academic department to course
category is partially provided in Table 2.

5.1 Network Metric Results
Table 2 presents the values of the previously defined network
metrics for the course network and subnetworks at the department
and category levels. Course categories are denoted in bold, with a
subset of two selected associated departments listed below it
(see [12] for the full table). The category level value reflects the

median values across the member departments. The first row of
data provides the values over all courses in the course network.
The color of the cells reflects the magnitude of the cell value, with
red (green) used for the highest (lowest) values. The colors for the
departments and categories are determined independently.

The network covering all courses has a high diameter and low
density compared to the subnetworks, since it includes many di-
verse courses that are loosely connected. Courses associated with
a specific department are typically associated with a major; stu-
dents within the major will take many of these courses. The dy-

namic threshold decreases the density, average clustering coeffi-
cient, and number of edges, while increasing the diameter.

Study of departmental subnetworks shows dynamic thresholding
most dramatically decreases edges for Philosophy (52% decrease),
English (44% decrease), and Theology (35% decrease), which are
fields of study that include many core curriculum courses. This
drop is mirrored by ACC. Conversely, the diameter maintains
similar values for most departments, regardless of threshold.

Overall, dynamic thresholding has a substantial impact on density
and ACC of Humanities and Social Science courses, and only
minimal impact on other categories, likely reflecting the core
curriculum’s emphasis on humanities and social science courses.

The STEM courses have much higher density and form much
more dense clusters (based on ACC) than humanities courses, for
both thresholds. This indicates that humanities students are less
likely to take the same group of courses in their discipline. In our
university, humanities majors have fewer required courses than

STEM majors. Humanities departments have the highest number
of nodes (distinct courses taken), closely followed by Social Sci-
ence, suggesting that those disciplines allow more flexibility in
course choices. The Modern Languages category also has a rela-
tively high density and ACC. Language courses, like science
courses, typically rely on prerequisite course requirements for
proper student preparation.

5.2 Hub Analysis
Hubs play a special role in network structures and play an im-
portant role in understanding and utilizing the information in
course co-enrollment networks. Table 3 identifies the top-17 hubs
using the median of the ranks of the three centrality metrics,
“Combined Rank”. The top half of the table provides the top-7
hubs when using the static threshold, while the bottom half pro-

vides the top-7 for the dynamic threshold. Note that the best com-
bined rank when using the dynamic threshold is 3—no course
consistently ranks above third on all the centrality metrics. While
only the combined rank for the static (dynamic) threshold is used

810 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 2. Summary course network statistics based on category and selected departments

Category/ Department Nodes Static Threshold Dynamic Threshold
 Edges Density Diam. ACC Edges Density Diam. ACC

ALL 1763 39968 0.03 4 0.74 24323 0.02 6 0.40

Arts 41.5 239 0.32 3 0.56 231 0.29 2.5 0.56

Dance 54 1236 0.86 3 0.95 1236 0.86 3 0.95

Music 24 87 0.32 3 0.51 73 0.26 2 0.52

Comm and Media Studies 24 25 0.20 2 0.16 25 0.19 2 0.16

Comm and Media Studies 94 862 0.20 3 0.72 828 0.19 4 0.58

New Media & Digital Design 6 8 0.53 2 0.00 8 0.53 2 0.00

Humanities 81 179 0.06 3 0.21 104 0.04 3 0.08

African & African Amer Studies 28 34 0.09 2 0.11 34 0.09 2 0.11

English 167 462 0.03 3 0.59 258 0.02 3 0.12

Modern Languages 9 19 0.53 2 0.49 19 0.53 2 0.38

Greek 4 6 1.00 2 0.00 6 1.00 2 0.00

Spanish 40 118 0.15 3 0.49 98 0.13 2 0.33

STEM 34 295 0.47 3 0.76 288 0.45 3 0.75

Biological Sciences 30 274 0.63 2 0.77 274 0.63 2 0.77

Physics 38 286 0.41 4 0.73 277 0.39 3 0.74

Social Science 74 329 0.18 2.5 0.51 285 0.16 2.5 0.44

Economics 45 325 0.33 2 0.64 270 0.27 2 0.59

Sociology 90 236 0.06 3 0.37 206 0.05 3 0.30

to select the entries in the top (bottom) half of the table, both
combined ranks are provided to help compare differences between
the thresholding mechanisms. Courses exhibit very different ranks
for the two thresholds.

The first few entries for the static threshold in Table 3 vary only
slightly depending on which of the three centrality metrics is used.
The first four entries cover core curriculum requirements that can
only be satisfied by a single course. Most of the remaining top

hub courses also satisfy a core requirement, but can be satisfied by
several courses. The very few STEM courses listed are introducto-
ry and satisfy a core requirement (e.g., Finite Mathematics). Thus,
we see that hubs identified using the static threshold are based on
raw popularity. Most courses identified using the dynamic thresh-
old also satisfy a core requirement, but often many courses can
satisfy the requirement. There are no courses that appear in the
top-7 lists for both thresholds. For static threshold hubs, most

connections to other courses may be incidental, due to so many
students taking the popular course.

Table 3. Top-7 static and dynamic course hubs

Courses
Combined Rank Centrality Rank

Static Dyn. Deg. Btw. Eig.

Static Threshold: Top Hubs

Philosophical Ethics 1 45 1 1 2

Faith & Critical Reason 2 76 2 2 1

Philos. of Human Nature 3 75 3 3 3

Composition II 4 78 4 5 4

Banned Books 5 49 5 4 5

Finite Mathematics 7 56 6 7 7

Spanish Lang and Lit 7 29 7 6 8

Dynamic Threshold: Top Hubs

Biopsychology 31 3 3 20 3

Phys. Sci.: Today's World 30 4 4 2 63

Latin American History 44 5 2 6 5

Intro World Art History 22 5 5 26 2

Intro Phys. Anthropol. 41 6 1 9 6

Intro Cultural Anthropol. 18 6 6 33 1

Films of Moral Struggle 55 8 8 7 54

Table 3 allows further comparisons among the centrality metrics.
When using the static threshold, course ranks are quite consistent
across all the centrality metrics. This ensures that the combined
rank is also highly correlated with each of the individual metrics,
and that the degree centrality is usually equal to the combined
rank. This correlation is weaker when examining the dynamic
threshold; degree centrality sometimes differs substantially from

the combined dynamic rank; Calculus II has degree 7 and com-
bined rank 19. Nonetheless, degree centrality is still generally
close to combined rank and is identical in 5 of the first 7 cases.

We focus on degree centrality as our metric for identifying hubs
under both thresholds. This is attractive since degree centrality is
the simplest and most common metric for identifying hubs. We
utilize a degree count threshold of 200 to identify hub courses.
This retains all entries in Table 3, which have degree count of at
least 245 [12]; the underlying data ensures that a degree count of

200 will retain the top fifty courses associated with each metric).

Table 4 shows the distribution of hub edges between the six

course categories using a degree centrality threshold of 200, help-
ing to consider connections across categories. The table displays
the percentage of total hub edges from one category (row) to both
hub and non-hub courses in another category (column), for each
threshold. The percentage of total edges, as well as the actual
number of edges, associated with each category (row), are also
provided. A color scale is applied to the rows to highlight where
the hub connections are directed (red is high percentage and green

low percentage). For example, the first row indicates that, using a
static threshold, 5% of all Arts hub courses are connected to other
Arts courses and 14% are connected to Communication courses.
Furthermore, Arts courses have 1,520 edges, comprising 5% of all
edges in the course network.

Table 4 shows that for both thresholds, Humanities, STEM, and
Social Sciences have the most hub edges, while Arts, Communi-
cations, and Modern Language have many fewer. Notably, the
static threshold associates more edges with humanities courses

than STEM courses (35% to 27%), whereas the dynamic threshold

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 811

Table 4. Percent distribution of hub edge linkage by course category (hubs with degree ≥200) with edge info

Category
Static threshold Dynamic threshold

Arts Comm Hum Lang STEM SocSci #Edges %Edges Arts Comm Hum Lang STEM SocSci #Edges %Edges

Arts 5 14 27 7 26 22 1520 5 5 9 21 10 36 20 650 5

Comm 11 24 22 7 20 15 1426 5 8 27 19 9 21 15 954 7

Hum 10 12 31 6 21 20 10892 35 6 11 20 10 33 21 2758 19

Lang 10 16 28 5 18 23 3219 10 9 17 23 5 22 24 1773 12

STEM 5 8 27 7 32 20 8479 27 5 6 24 8 36 21 5543 39

SocSci. 7 10 25 8 25 25 5543 18 3 6 23 10 29 29 2717 19

reverses this trend (19% humanities to 39% STEM). Most core
curriculum requirements are associated with humanities and the
dynamic threshold has an outsized impact removing courses that
are hubs simply due to their popularity.

It is especially notable that more edges link humanities to STEM
courses than to other humanities courses. Examining the under-
lying data, we find that the humanities courses Introduction to

Cultural Anthropology, Introduction to Physical Anthropology,
and Introduction to Art History all connect to STEM hub cours-
es. Similarly, most connections for courses in the Anthropology
and Art History departments go towards the Biological Sciences
and Natural Science departments. While Introduction to Physi-
cal Anthropology is part of the Natural Science major require-
ment, it also satisfies a science core curriculum requirement for
non-Science majors. It is interesting to observe this course’s
popularity with Science students. The course is a general survey

of the biological focus of Anthropology.

Also notable is that Communications and Social Sciences have

more links to themselves than to any other category, for both
static and dynamic thresholds, even though these categories do
not have as many total links as other categories. The Languages
category have mostly internal links, and an intermediate number
of edges overall for both thresholds.

Social Science hubs in Table 4 have a significant number of
connections to STEM courses, commensurate with connections
back towards Social Science. Most of the connections to STEM
refer to courses in Biological Sciences, particularly from the
Psychology course Foundations of Psychology. This course is a
requirement for the Psychology major but is not part of the core

curriculum. This course also has a significant number of connec-
tions with the Natural Science department. Overall, the number
of connections from non-STEM to STEM courses when using
the dynamic threshold is a bit of a surprise. Conversely, STEM
hubs made many connections to the Social Science category in
Table 4; these connections are largely directed towards the Eco-
nomics department, which requires a strong mathematical base.

6. CONCLUSIONS
This study analyzed course network graphs using eight years of
undergraduate course-grade data from Fordham University.
General network statistics and course hub statistics were gener-
ated using a publicly available Python-based tool created by our
research group [10]. Network structure and hub identity are
strongly influenced by the definition of edges between courses,
and whether static or dynamic threshold were applied to course
co-enrollments. We gain important insights on relations among
courses, departments, and categories, and on metrics naturally

applied to characterize these relations.

All three common network centrality metrics (degree centrality,
betweenness centrality, and eigenvector centrality) identify a

similar set of hub courses using static thresholding to define
edges. However, the metrics behave much less similarly when
dynamic thresholding is used, requiring careful consideration in
future analyses. Nonetheless, degree centrality yields a reasona-
ble approximation of the other two metrics for both thresholds,

favoring its future use to study course co-enrollment networks.

The static and dynamic thresholds yield very different course
networks and hubs. Static thresholds place more emphasis on
course popularity, highlighting courses that uniquely satisfy a
core requirement. The dynamic threshold reduces, but does not
eliminate, popularity bias. Due to the many mandatory humani-
ties core courses, and the variety of core options in STEM, the
dynamic threshold substantially shifted apparent hub focus from
Humanities to STEM. Future analyses of course relations and

discipline relations must continue to carefully weigh the influ-
ence of popularity or the mandatory nature of courses. For both
thresholds, STEM courses have the highest density and form
tightly connected clusters, while humanities courses have the
opposite behavior; this is likely due to the more extensive use of
prerequisites in STEM disciplines in our university.

Our analysis also identified large numbers of edges between the
different course categories. Edge distributions shifted between
thresholds, favoring humanities for the static threshold and
STEM for the dynamic threshold. Study of courses forming

individual edges provided additional insights. The strong con-
nection between humanities and STEM courses was driven by
humanities courses like Introduction to Physical Anthropology,
which has a strong STEM component; the connection between
social sciences and STEM was driven by courses like Founda-
tions of Psychology which is linked to STEM courses in Biology
(Psychology students must take several biology courses).

This study provides a better understanding of course co-
enrollment patterns, suggesting directions for valuable practical
applications. Strong models of co-enrollment patterns can help

with course planning and ensuring enough of course sections are
offered. Our course networks reveal valuable details and quanti-
tative relationships among courses. This work is a foundational
step in better understanding course co-enrollments.

There are many ways in which this work can be extended and
improved. The dynamic threshold could incorporate underlying
probabilities of each course being taken, so courses are linked
only where their co-occurrence is much more likely than chance.
We also can consider additional methods for clustering courses.

Future analyses may extend to course ordering information. It
may be useful to reduce the influence of popular departments in
repeated analysis of category-level network patterns. More fun-
damentally, our present results may be validated by partitioning
the underlying student enrollment records into distinct subsets,
to create training and testing data for our network models.

812 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

7. REFERENCES
[1] Arif, T. 2015. Mining and Analyzing Academic Social

Networks, International Journal of Computer Applications
Technology and Research, 4, 878-883.
10.7753/IJCATR0412.1001.

[2] Barabási, A. 2016. Network Science, Cambridge University
Press.

[3] Catanese, S. A., De Meo, P., Ferrara, E., Fiumara, G., and
Provetti, A. 2011. Crawling Facebook for social network
analysis purposes, Proceedings of the International Con-
ference on Web Intelligence, Mining and Semantics, 1-8.

[4] Gutenbrunner, T., Leeds, D.D., Ross, S., Riad-Zaky, M.,
and Weiss, G.M. 2021. Measuring the academic impact of
course sequencing using student grade data. In Proc. of the
14th International Conference on Educational Data Mining.

[5] Kleinberg, J. M. 1999. Authoritative sources in a hyper-
linked environment. Journal of the ACM (JACM), 46.5
(1999): 604-632.

[6] Leeds, D. D., Zhang, T., and Weiss, G. M. 2021. Mining
course groupings using academic performance. In Proceed-
ings of the 14th International Conference on Educational
Data Mining.

[7] Marsden, P. V. 2005. Encyclopedia of Social Measurement.

[8] Page, L., Brin, S., Motwani, R., and Winograd, T. 1999.
The PageRank citation ranking: Bringing order to the web.
Stanford InfoLab.

[9] Park, H. W., and Thelwall, M. 2003. Hyperlink analyses of
the World Wide Web: A review. Journal of Computer-
Mediated Communication, 8(4).

[10] Riad-Zaky, M., Weiss, G.M., and Leeds, D.D. Course
Grade Analytics with Networks (CGAN) [computer soft-
ware], April 2021.

[11] Ruhnau, B. 2000. Eigenvector-centrality a node-centrality?
Social networks, 22, 357–365.

[12] G. M. Weiss, N. Nguyen, K. Dominguez, and D. D. Leeds.
Identifying hubs in undergraduate course networks based
on scaled co-enrollments, arXiv:2104.14500 [cs.SI]

APPENDIX
Figure 1 shows the distribution of common students by course
pair (each bin covers a range of common students). The orange
curve is a cumulative curve that corresponds to the y-axis values
listed to the right (varying between 0% and 80%) and represents
the percentage of course-pairs that are maintained for each
common student threshold value (e.g., a threshold of 20 main-
tains 11% of all course-pairs with at least one student).

Figure 1. Distribution of common students by course-pair

The dynamic threshold is heavily dependent on the co-
occurrence rate k. To help set this value appropriately, Figure 2
shows the distribution of course-pairs for each co-occurrence
rate, for the course pairs that satisfy the static threshold of 20.
The co-occurrence rate is the number of common students di-

vided by the number of students in the course with more stu-
dents. The co-occurrence rate distribution is heavily skewed to
the smaller values, just as the number of common students was
skewed to the smaller values in Figure 1. The bar at the far right
at x=1.0 is associated with course pairs with the same course in
both positions and should be ignored. After some experimenta-
tion we decided on a co-occurrence rate threshold k = 0.017,
which is the value that leads to the most stable centrality

measures while excluding the fewest number of edges. The or-
ange curve, which shows the fraction of edges discarded, indi-
cates that this value of k discards 39% of the edges that satisfy
the static threshold.

Figure 2. Co-Occurrence Rate Distribution

To illustrate the dynamic threshold, we apply it to the course Art
History Seminar, which has 123 students. There are 22 courses

that share at least 20 students in common with this course, satis-
fying the static threshold. However, 9 courses have fewer com-
mon students than the computed dynamic threshold, and hence
are pruned. Half of these 22 courses are displayed in Table 5,
and five of these, denoted in bold, are pruned since the number
of common students is less than the dynamic threshold. As an-
ticipated, the courses affected by the dynamic threshold have a
large number of students (third column). In this example, every

course that satisfies the static threshold, but is pruned by the
dynamic threshold, fulfills a core curriculum requirement.

Table 5. Dynamic threshold for Art History seminar course

Course2
Common

Students

Students

Course2

Dynamic

Threshold

Intro Cultural Anthro. 23 2514 43

Ancient American Art 21 34 20

17th Century Art 22 47 20

20th Century Art 43 130 20

Age of Cathedrals 20 39 20

Aztec Art 22 61 20

Composition II 58 12446 211

Intermediate French II 20 1329 23

Finite Math 42 4976 85

Philosophical Ethics 58 11218 191

Faith & Critical Reason 56 13317 226

: % Maintained Course Pairs

Co-Occurrence Rate

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 813

Linguistic Features of Discourse within an Algebra Online
Discussion Board

Michelle P. Banawan
Arizona State University

Tempe, AZ
mbanawan@asu.edu

Walter L. Leite

University of Florida
Gainesville, FL

Walter.Leite@coe.ufl.edu

Renu Balyan
SUNY, Old Westbury

New York
balyanr@oldwestbury.edu

Jinnie Shin
University of Florida

Gainesville, FL
Jinnie.Shin@coe.ufl.edu

Danielle S. McNamara
Arizona State University

Tempe, AZ
dsmcnama@asu.edu

ABSTRACT
This study leverages natural language processing to assess
dimensions of language and discourse in students’ discussion board
posts and comments within an online learning platform, Math
Nation. This study focusses on 1,035 students whose aggregated
posts included more than 100 words. Students’ wall post discourse
was assessed using two linguistic tools, Coh-Metrix and SEANCE,
which report linguistic indices related to language sophistication,
cohesion, and sentiment. A linear model including prior math
scores (i.e., Mathematics Florida Standards Assessments), grade
level, semantic overlap (i.e., LSA givenness), incidence of
pronouns, and noun hypernymy accounted for 64.48% of the
variance for the Algebra I end of course scores (RMSE=13.73).
Students with stronger course outcomes used more sophisticated
language, across a wider range of topics, and with less personalized
language. Overall, this study confirms the contributions of
language and communication skills over and above prior math
abilities to performance in mathematics courses such as Algebra.

Keywords
Student performance, performance prediction, discussion posts,
linguistic features

1. INTRODUCTION
Discussion boards have emerged to be among the most beneficial
features of online learning platforms. Some of the positive
outcomes obtained include greater student involvement and
improved academic performance [1-5]. Discussion boards have
been implemented to achieve a number of educational goals,
namely, to supplement course resources, evoke creativity and
motivation, facilitate interaction between teachers and learners, and
for class management or administrative purposes [6-9]. Student
engagement and collaboration within discussion boards are critical
towards their success. Indeed, students’ language used within these
discussion boards has been linked to positive learning outcomes
[10-12]. This creates a pressing need to further understand the

language used by students when collaborating with each other or
engaging with their teachers within informal online academic
settings.

1.1 Language and Math Success
While empirical evidence shows mixed results in the correlations
between language proficiency and academic success (i.e., some
found significant correlations and some none), proponents have
articulated that language proficiency, and more importantly -
communicative competence significantly influence success in math
[13]. The dimensions of language that have been found to
specifically influence math achievement include linguistic
complexity, language control, and vocabulary usage [14].

A number of studies have demonstrated links between language
and performance in math [10, 11, 15]. There are strong links
between language skills and the ability to engage with math
concepts and problems. For instance, success in math is partially
based on the development of language that affords children the
ability to participate in math instruction in the classroom as well as
“engage quantitatively with the world outside the classroom” [16].
Similarly, strong math skills are presumed to interact with language
ability to understand numbers and symbols [17]. Linguistic skills
may be one of the key factors that relate to math ability. For
instance, Cummins identified language difficulties in second
language speakers as a key obstacle in solving math problems [18].
Articulating and representing cognitive processes in math domains
is especially challenging for students with lower literacy skills.
Successfully solving verbal analogies and mathematical word
problems, in particular, demand certain levels of linguistic fluency
and reading comprehension skills, which can be barriers to success.

More specific to discourse in online discussion boards, substantial
work has been done to characterize the language used within online
discussion forums [19-24]. This research indicates that linguistic
features distinguish subject matter experts from nonexperts and are
predictive of student learning outcomes. In social questioning and
answering sites (e.g., Quora), linguistic features such as word
usage, average number of words, subjectivity of words, and word
complexity have been found to be markers of expertise [19].
Discourse analyses conducted on online discussion boards show
that linguistic characteristics are predictive of student learning
performance [20]. To name a few, the complexity of syntactic
structures, cohesion, emotion words, modal verbs, and words that
provide additional information or make claims when elaborating
are significant predictors of students’ performance [20-24].

Michelle Banawan, Renu Balyan, Jinnie Shin, Walter Leite and
Danielle McNamara “Linguistic Features of Discourse within an
Algebra Online Discussion Board”. 2021. In: Proceedings
of The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 814-819.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

814 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

1.2 Current Study
This study examines students’ discussion wall posts for an entire
academic year within an online Algebra tutoring platform, Math
Nation, developed by the University of Florida Lastinger Center for
Learning [25-29]. Math Nation is an interactive and comprehensive
math teaching and learning platform that provides video tutorials
and online resources aligned to the Mathematics Florida Standards
(MAFS). Most relevant to the current study, Math Nation also
features an online discussion forum called Algebra Wall where
students can collaborate with other students, teachers, and study
experts. Wall posts (see Figure 1 for a sample discussion thread)
from 3,277 students, Math Nation study experts, and Algebra
teachers were collected for the period August 1, 2018 to July 31,
2019, including comments within more than 14,000 threads.

Our objective in this study was to further examine the extent to
which the linguistic features of these posts were predictive of End
of-Course (EOC) Algebra performance, over and above their scores
Math scores from the previous year. Providing information
concerning students’ potential EOC performance is important
because it has the potential to augment stealth assessment of
students’ abilities such that the instructor or the tutoring system can
intervene and provide scaffolding when necessary.

Figure 1. Sample Discussion Thread

2. METHODS
2.1 Participants
The participants included 3,277 Algebra students from the different
Florida school districts in grade levels 7, 8. and 9 who participated
in the Math Nation discussion board for the academic year August
1, 2018 to July 31, 2019. The majority of these students were white
(n = 2,464, 75%). This study focusses on 1,035 students in this
larger sample whose aggregated posts that included more than 100
words because NLP indices are not reliable with small language
samples, and many of our indices (e.g., lexical diversity) require a
minimum of 100 words [32]. Those who included more words in
their posts had significantly higher FSA scores, t(3275) = 5.79,
p<.001 (M≤100 words,= 354.08, SD = 16.83; M>100 words,= 357.75, SD
= 16.89); and EoC scores, t(3275) = 8.12, p<.001 (M≤100 words,=
522.66, SD = 22.99; M>100 words,= 529.67, SD = 22.93). As such,
number of words in posts are strong indicators of future and current
math performance; the purpose of this study is to examine language
beyond number of words.

2.1.1 Prior Math and Algebra I EoC Scores
Students’ mathematics performance was measured using Algebra I
End-of-Course (EoC) assessment (M=524.88; SD=23.20; Range =
425-575), which is a high-stakes exam required by the Florida
Department of Education [30] for high school graduation.
Mathematics Florida Standards Assessments (FSA) scores
(M=355.24; SD=16.93; Range = 269-393), from the previous year
were included as proxy baseline scores indicative of Math
preparedness [31]. The FSA math scores are often used as a

baseline measure of Algebra skills or preparedness because they are
strongly related to the students’ Algebra I EoC scores. Indeed, the
relation between these two tests was strong in the current study
(r=0.76, p<0.01). Controlling for gender, grade level and district
did not result in significant variations in the correlation between the
Math FSA score and the Algebra I score (i.e., r = .73 - .76). Table
1 shows the mean scores for both the FSA Math and Algebra I
exams as a function of grade level and gender.

Table 1. Algebra performance

Math (FSA) Score
from Previous

Year
(Mean / SD)

Algebra I
Score

(Mean / SD)

Grade 7 (n =440) 362.89 (15.74) 539.31 (19.02)

Grade 8 (n = 520) 355.39 (16.04) 525.58 (20.75)

Grade 9 (n = 75) 343.92 (17.95) 501.49 (26.49)

Male (n = 429) 359.92 (16.79) 531.55 (23.25)

Female (n = 606) 356.21 (16.80) 528.33 (22.62)

2.2 Natural Language Processing Tools
We assessed students’ Math Nation Wall discourse using two
linguistic tools, namely Coh-Metrix [32] and SEANCE [33], which
report linguistic indices related to language sophistication,
cohesion, and sentiment. Use of these two tools was motivated by
prior work relating academic performance in mathematics to these
features of language in online forums and discussion boards [20-
24].

2.2.1 Coh-Metrix
Coh-Metrix provides multiple levels of linguistic analysis that
include indices at word level and sentence level, indices related to
connections between the sentences, and discourse relationships
between the texts and their mental representations. Coh-Metrix has
been used to analyze different forms of text in the English language
that are written to communicate messages to readers, including
those within tutoring sessions, chat rooms, email exchanges and
other forms of informal conversation [34, 35]. In the current study
the Coh-Metrix indices that estimate psycholinguistic measures,
word information, syntactic patterns, syntactic complexity,
situation model, lexical diversity and other descriptive indices were
used to specifically investigate the linguistic profiles of discourse
in the Math Nation Wall posts.

2.2.2 SEANCE
The Sentiment Analysis and Cognition Engine (SEANCE)
calculates sentiment indices for a text using pre-developed word
vectors that measure sentiment and pre-existing sentiment, social
positioning and cognition dictionaries. One particular advantage of
SEANCE is that accounts for the presence of negations in the texts
(e.g., not sad, would not be assessed as negative). Yoo and Kim
found positive emotions reported by SEANCE to be strong
predictors of success [35]. SEANCE has also been previously used
to model math identity and math success [12]. In another study,
Crossley et al. demonstrated using SEANCE that math
performance was related to the use of fewer words related to respect
[11]. Similarly, we used SEANCE in the current study to assess the
extent to which sentiment expressed within the discussion posts
was related to math performance.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 815

2.3 Data Preprocessing and Feature Selection
The dataset was checked for multicollinearity as it reduces the
precision of the estimate coefficients and makes it difficult to assess
the relative importance of the independent variables in explaining
the variation caused by the dependent variable. Highly correlated
features (r >= 0.90) were removed from the analysis. In case two or
more attributes were found to be highly correlated, the attributes
with the greater number of pairwise correlations were removed.
The dataset was further filtered such that features with more than
20% values were missing and those with zero and nearly zero
variance were also removed.

The analysis initially included 124 variables (92 Coh-Metrix
features, 20 SEANCE Component Scores, and 12 variables related
to student factors). After preprocessing and feature selection, 12
linguistic indices, and 4 student variables were included in
subsequent analyses. The 12 features represent cohesion and
sentiment measures, whereas the 4 non-linguistic indices represent
demographics and performance data.

3. RESULTS
The purpose of this study was to assess the degree to which
linguistic features of students’ language within the Math Nation
Wall posts predicted EOC performance compared to other more
traditional measures such as demographics and prior math
performance. To this end, three linear models were examined using
different combinations of candidate predictors of math
performance (i.e., non-linguistic features, linguistic features, and
the combination of both the non-linguistic and the linguistic
features). The necessary assumptions for testing the regression
models were met by examining model residuals for all three
models. Figure 2 provides the sample diagnostic plots for the
residual analysis of the full model. The residuals versus fitted graph
reveal no pattern, show a constant variation, and depict linearity.
The normal Q-Q plot also shows normal distribution of the
residuals. The remaining 2 plots do not depict any non-linear
behavior nor any influence of homoscedasticity. These models
were also validated using 10-fold cross-validation which rendered
the best fit models in terms of RMSE performance.

3.1 Non-linguistic Predictive Model
The non-linguistic features included in this regression model were
the students’ gender, grade level, and FSA math scores of the
previous year (see Table 2). Using only the FSA math scores as a
candidate predictor the resulting model accounted for 58.64% of
the variance. Using the FSA math score, gender, and grade level,
grade level also emerged as a significant predictor but gender did
not. The model with the FSA and grade level as predictors
accounted for 63.12% of the variance of the EoC scores. No
significant interactions between grade and gender emerged.

These results suggest that the Math FSA score depicting prior
performance in mathematics and the grade level significantly
contributes to Algebra EoC performance, providing adequate
proxies for students’ baseline performance prior to the course.

3.2 Linguistic Predictive Model
The primary purpose of this study is to examine the degree to which
features of the language used by students in the wall posts are
predictive of students’ Algebra EoC scores over and above baseline
proxies provided by FSA performance and demographic variables.

We conducted a multiple linear regression analysis predicting
Algebra I scores using the 12 linguistic indices discussed in Section
2.3.

Figure 2 - Diagnostic Plots for linear regressions

Table 2. Linear model including Non-linguistic Features

 Estimate S.E. t
Using Math FSA only as candidate predictor

Math FSA
Score 1.040 0.027 38.30

Intercept 157.778 9.721 16.23
Using Math FSA, grade and gender as candidate

predictors
Math FSA
Score 0.949 0.027 35.052

Grade -8.395 0.745 -11.262
Gender * 1.000 0.884 1.131
Intercept 253.855 12.691 20.003

Notes: Gender is not significant (p = 0.258); All other p< 0.001. Random-
effects were estimated with school district (level 1) in a nested mixed-effects
model, resulting in a negligible amount of variance account by the school
district (3.67%). Hence, the final models were constructed without district.

Table 3. Linear model including Linguistic Features

 Estimate S.E. t
Semantic overlap

(givenness) of each
sentence

-75.698 15.150 -4.997

Incidence of Pronouns -0.159 0.024 -6.732
Hypernymy for nouns 5.617 0.976 5.758

Intercept 527.486 7.343 71.838
 Note: p-value at < 0.001

After the 10-fold cross validation, the best-tuned model accounted
for 10.64% of the EOC variance with an RMSE = 21.73. Table 3
reports the coefficients of the significant linguistic. Students whose
posts include higher noun specificity (hypernymy) also tended to
have higher Algebra I EoC performance. Moreover, lower degrees
of sentence givenness and pronoun incidence also emerged as
indicators of Algebra I EoC performance. These results imply that
the posts by better performing students were structured in such a
way that they used more specific terms for concepts or topics
(higher noun hypernymy), less personal (lower pronoun incidence),
and included queries or responses with greater amount of
elaboration on topics that varied across posts (lower sentence
givenness/newness).

816 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

3.3 Combined Model
The combined model included the significantly predictive features
from both the non-linguistic and linguistic models (i.e., FSA score,
grade level, LSA givenness, incidence of pronouns, and hypernymy
of nouns). This model accounted for 64.48% of the variance for
the Algebra I EoC scores with an RMSE of 13.73. The results are
summarized in Table 4.

The findings revealed that the full model with the combined
linguistic and non-linguistic features performed only slightly better
than the baseline model in predicting Algebra I scores (i.e., 63.1%
vs. 64.5% of the variance). An ANOVA was conducted to compare
the fitness of both regression models, comparing the non-linguistic
model to the model with the linguistic predictors. The results
indicated that the more complex model with the additional
linguistic predictors better captured the variance of the Algebra I
EoC scores than the baseline model, F = 20.879, p < 0.001. We also
used Akaike information criterion (AIC) model selection to select
the best fit model between the non-linguistic model and the model
with the linguistic predictors. The model with the linguistic
predictors emerged as the best-fit model carrying 100% of the
model weight (AICc weight = 1) and having lower AICc (AICc full
model = 8,357.60; AICc baseline model = 8394.72) in predicting
Algebra I EOC performance.

These results replicate prior studies [10,15] suggesting students’
language fluency and use within Math discussion boards provide
valuable information regarding students’ potential performance at
the end of the year. Importantly, these features can be captured
dynamically as the course progresses, and in the absence of other
information, such as prior course scores and demographics.

Table 4. Linear model for Combined Features

 Estimate S.E. t
Math FSA score 0.902 0.027 32.889

Grade -8.432 0.731 -11.533
Hypernymy for nouns 2.919 0.617 4.730

Semantic overlap
(givenness) of each

sentence
-27.529 9.594 -2.869

Incidence of Pronouns -0.044 0.015 -2.929
Intercept 264.302 13.502 19.575

Note: all p < 0.001

4. CONCLUSION
In summary, the results reported in this study confirm prior studies
that have suggested that the students’ math course scores, and in
this case Algebra 1 EoC scores, can be significantly predicted by
language, in particular hypernymy, pronoun incidence, and lower
semantic overlap between sentences. Students with stronger course
outcomes used more sophisticated language, across a wider range
of topics, and with less personalized language.

Students’ math scores from the previous year served as a proxy for
baseline math performance, or prior math skills. As expected, prior
math skills provided the strongest predictors of the EoC Algebra I
scores. Students’ grade level also emerged as a significant
(negative) predictor of the Algebra I EoC performance. The
students self-select as to when they would take the Algebra I
course. As such, higher ability students tend to take Algebra I in

middle school whereas lower ability students tend to take the exam
later in high school, and thus grade was negatively related to scores.

Hypernymy (specificity) of nouns, an indicator of language
fluency, contributed to the prediction of EoC performance such that
a higher degree of hypernymy or specificity the words used in the
discourse was related to higher EoC scores. Further, the discourse
of higher performing students can be characterized as less personal
as depicted by lower pronoun incidence. In addition, higher
performing students’ posts had lower overlap between posts, and
more new information as depicted by the lower givenness/new LSA
index.

We assume that students’ engagement in online discussions reveals
some aspects of their mental representations or understanding of
the academic content. In turn, the linguistic features of their
language can serve as proxies for underlying literacy and math
skills. The linguistic features that pertain to language fluency
suggest that students’ posts were reflective of their ability to
communicate more effectively and use terms more specific to the
academic content.

Notably, linguistic features depicting sentiment did not emerge as
significant predictors of Algebra I EoC performance. This could be
attributed to the academic nature of the discussion such that
students’ discourse tends to be more domain-related and less
personal in nature. Yet, there is a strong tendency in the NLP
literature to focus on sentiment in language. This study indicates
that when other features related to language sophistication are
considered, sentiment may not emerge as a significant predictor of
performance.

There are multiple implications from this work. The first is
relatively obvious: literacy and language skills contribute to
students’ math performance. Language skills aide in student’
comprehension of math and their ability to communicate regarding
math. In turn, they are more likely to succeed. As such, providing
literacy instruction is important: to enhance students’ performance
in language courses (ELA), but also for performance in content
courses (science, history) and mathematics courses. Second, these
results suggest that it behooves educators to consider literacy and
communication skills, and provide instructions as concretely and
coherently as possible [36-38].

Third, within the context of online platforms, these results further
confirm the potential of leveraging linguistic and semantic features
of students’ posts as indicators of potential course performance. It
might be assumed that language is not an important indicator of
math; and yet, multiple studies have demonstrated that the
linguistic features are powerful proxies for students’ underlying
skills and knowledge across a variety of contexts. Our future studies
will consider other features of language (e.g., rhetorical features,
lexical features) as well as examining students’ language use across
various times during the course. Whereas this study solely
examined aggregated posts at the end of the course, our future work
will examine the number of posts necessary to significantly predict
performance. Dynamic, online predictions are necessary in order to
intervene, provide appropriate scaffolding to the students, and
usable information for the mathematics instructors. Linguistic
dimensions of the production of online discourse and their
association with academic performance is a promising field of
research. As such, linguistic profiles of discourse have strong
potential to inform instructional and pedagogical design of
collaborative learning environments such as Math Nation.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 817

ACKNOWLEDGMENTS
The research reported here was supported by the Institute of
Education Sciences (IES Grant: R305C160004). Opinions,
conclusions, or recommendations do not necessarily reflect the
views of the IES. We also acknowledge and thank the developers
of Math Nation as well as the many team members on the VLL
project.

5. REFERENCES
[1] Ringler, I., Schubert, C., Deem, J., Flores, J., Friestad-Tate,

J., & Lockwood, R. (2015). Improving the asynchronous
online learning environment using discussion boards.

[2] Delaney, D., Kummer, T. F., & Singh, K. (2019). Evaluating
the impact of online discussion boards on student
engagement with group work. British Journal of Educational
Technology, 50(2), 902-920.

[3] Cole, J. E., & Kritzer, J. B. (2009). Strategies for success:
Teaching an online course. Rural Special Education
Quarterly, 28(4), 36-40.

[4] Nieuwoudt, J. E. (2020). Investigating synchronous and
asynchronous class attendance as predictors of academic
success in online education. Australasian Journal of
Educational Technology, 36(3), 15-25.

[5] Kauffman, H. (2015). A review of predictive factors of
student success in and satisfaction with online
learning. Research in Learning Technology, 23.

[6] Covelli, B. J. (2017). Online discussion boards: The practice
of building community for adult learners. The Journal of
Continuing Higher Education, 65(2), 139-145.

[7] Wright, S., & Street, J. (2007). Democracy, deliberation and
design: the case of online discussion forums. New media &
society, 9(5), 849-869.

[8] Brush, A. J., Bargeron, D., Grudin, J., Borning, A., & Gupta,
A. (2002). Supporting interaction outside of class: Anchored
discussions vs. discussion boards.

[9] Farmer, J. (2004, December). Communication dynamics:
Discussion boards, weblogs and the development of
communities of inquiry in online learning environments.
In Beyond the comfort zone: Proceedings of the 21st
ASCILITE Conference (pp. 274-283).

[10] Crossley, S., Barnes, T., Lynch, C., & McNamara, D. S.
(2017). Linking Language to Math Success in an On-Line
Course. International Educational Data Mining Society.

[11] Crossley, S., Liu, R., & McNamara, D. (2017). Predicting
math performance using natural language processing tools.
In Proceedings of the Seventh International Learning
Analytics & Knowledge Conference (pp. 339-347).

[12] Crossley, S., Ocumpaugh, J., Labrum, M., Bradfield, F.,
Dascalu, M., & Baker, R. S. (2018). Modeling Math Identity
and Math Success through Sentiment Analysis and Linguistic
Features. International Educational Data Mining Society.

[13] Graham, J. G. (1987). English language proficiency and the
prediction of academic success. TESOL quarterly, 21(3),
505-521.

[14] Grant, R., Cook, H. G., & Phakiti, A. (2011). Relationships
between language proficiency and mathematics
achievement. Madison, WI: WIDA Consortium.

[15] Crossley, S. A., Karumbaiah, S., Ocumpaugh, J., Labrum, M.
J., & Baker, R. S. (2020). Predicting math identity through
language and click-stream patterns in a blended learning
mathematics program for elementary students. Journal of
Learning Analytics, 7(1), 19-37.

[16] Vukovic, R. K., & Lesaux, N. K. (2013). The language of
mathematics: Investigating the ways language counts for
children’s mathematical development. Journal of
Experimental Child Psychology, 115(2), 227-244.

[17] Adams, T. L. (2003). Reading mathematics: More than
words can say. The Reading Teacher, 56(8), 786-795.

[18] Cummins, J. (1979). Linguistic interdependence and the
educational development of bilingual children. Review of
educational research, 49(2), 222-251.

[19] Patil, S., & Lee, K. (2016). Detecting experts on Quora: by
their activity, quality of answers, linguistic characteristics
and temporal behaviors. Social network analysis and
mining, 6(1), 5.

[20] Yoo, J., & Kim, J. (2014). Can online discussion
participation predict group project performance?
Investigating the roles of linguistic features and participation
patterns. International Journal of Artificial Intelligence in
Education, 24(1), 8-32.

[21] Vercellone-Smith, P., Jablokow, K., & Friedel, C. (2012).
Characterizing communication networks in a web-based
classroom: Cognitive styles and linguistic behavior of self
organizing groups in online discussions. Computers &
Education, 59(2), 222-235.

[22] Guiller, J., & Durndell, A. (2007). Students’ linguistic
behaviour in online discussion groups: Does gender
matter?. Computers in Human Behavior, 23(5), 2240-2255.

[23] Montero, B., Watts, F., & García-Carbonell, A. (2007).
Discussion forum interactions: Text and
context. System, 35(4), 566-582.

[24] Zhu, M., Herring, S. C., & Bonk, C. J. (2019). Exploring
presence in online learning through three forms of computer-
mediated discourse analysis. Distance Education, 40(2), 205-
225.

[25] Shin, J., Balyan, R., Banawan, M., Leite, W., & McNamara,
D. (Accepted). Pedagogical Communication Language in
Video Lectures: Empirical Findings from Algebra Nation.
International Society of Learning Sciences (ISLS).

[26] Shin, J., Balyan, R., Banawan, M., Walter, L. & McNamara,
D.S. (Accepted). Discovering Pedagogical Communication
Strategies with Algebra Tutoring videos with a Theory-based
NLP Approach. To be presented at American Educational
Research Association (AERA: April 2021).

[27] Leite, W. L., Cetin‐Berber, D. D., Huggins‐Manley, A. C.,
Collier, Z. K., & Beal, C. R. (2019). The relationship
between Algebra Nation usage and high‐stakes test
performance for struggling students. Journal of Computer
Assisted Learning, 35(5), 569-581.

[28] Niaki, S. A., George, C. P., Michailidis, G., & Beal, C. R.
(2019, March). Investigating the Usage Patterns of Algebra
Nation Tutoring Platform. In Proceedings of the 9th
International Conference on Learning Analytics &
Knowledge (pp. 481-490).

818 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

[29] Algebra Nation. (n.d.). Retrieved January 22, 2021, from
https://lastinger.center.ufl.edu/mathematics/algebra-nation/

[30] Florida Department of Education. (2018). Statewide
assessment program information guide 2018-2019. Florida
Department of Education.

[31] Nelson, J., Perfetti, C., Liben, D., & Liben, M. (2012).
Measures of text difficulty: Testing their predictive value for
grade levels and student performance. Council of Chief State
School Officers, Washington, DC.

[32] McNamara, D. S., Graesser, A. C., McCarthy, P. M., & Cai,
Z. (2014). Automated evaluation of text and discourse with
Coh-Metrix. Cambridge University Press.

[33] Crossley, S. A., Kyle, K., & McNamara, D. S.
(2017). Sentiment analysis and social cognition engine
(SEANCE): An automatic tool for sentiment, social
cognition, and social order analysis. Behavior Research
Methods 49(3), pp. 803-821. doi:10.3758/s13428-016-0743-
z.

[34] Cade, W., Dowell, N., Graesser, A., Tausczik, Y., &
Pennebaker, J. (2014). Modeling student socioaffective

responses to group interactions in a collaborative online chat
environment. In Educational Data Mining 2014.

[35] Yoo, J., & Kim, J. (2014). Can online discussion
participation predict group project performance?
Investigating the roles of linguistic features and participation
patterns. International Journal of Artificial Intelligence in
Education, 24(1), 8-32.

[36] MacGregor, M., & Price, E. (1999). An exploration of
aspects of language proficiency and algebra learning. Journal
for Research in Mathematics Education, 30(4), 449-467.

[37] Wang, J., & Goldschmidt, P. (1999). Opportunity to learn,
language proficiency, and immigrant status effects on
mathematics achievement. The Journal of Educational
Research, 93(2), 101-111.

[38] Lager, C. A. (2006). Types of mathematics-language reading
interactions that unnecessarily hinder algebra learning and
assessment. Reading Psychology, 27(2-3), 165-204.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 819

Feedback and Self-Regulated Learning in Science Reading
Effat Farhana1, Andrew Potter2, Teomara Rutherford2, Collin F. Lynch1

1North Carolina State University, 2University of Delaware
efarhan@ncsu.edu, ahpotter@udel.edu, teomara@udel.edu, cflynch@ncsu.edu

ABSTRACT
How do students respond to feedback in a reading platform? In
this study we examined students’ (n = 670) reading and SRL
behaviors after receiving feedback from their teachers. First, we
examined the extent in which students revised their responses
after receiving feedback. Second, we examined the association of
reading and SRL behaviors with student scores after feedback.
Third, we examined relationships between the type of feedback
received (i.e. teacher comments) and subsequent student
behaviors. We found that students who revised their answers more
had greater score improvements. Teacher feedback in writing
conventions was shown to produce fewer reading and SRL
behaviors when compared to other types of feedback. The number
of reading events was correlated with improved scores, although
the effect size was small. These findings suggest that teacher
feedback can help students employ reading and SRL behaviors
and improve their reading comprehension under the right
conditions. We discuss recommendations and possible design
implications for online reading platforms.

Keywords
Self-Regulated Learning, Feedback, Sequence mining, Reading
comprehension, Natural Language Processing

1. INTRODUCTION
Feedback can improve students’ performance [38] and
Self-Regulated Learning (SRL) behaviors [10]. However, students
must understand feedback in order to apply it [48]. Feedback gaps
occur when students receive but do not act upon feedback [24],
and may be caused by lack of clarity [9], students’
misunderstanding of feedback application [55], and the feedback
paradox [61] (i.e., students do not address feedback despite
understanding its importance). Researchers have recently
emphasized the actionability of feedback as one factor to change
students’ actions and behaviors [12]. This concept remains largely
underexplored [34].

To address the feedback actionability gap, researchers have
analyzed how students act upon receiving feedback by examining
students’ perceptions [37, 50] and analyzing student behavior,
including timely response to feedback [34], the effect of different
types of feedback on the same question [27], and students’
learning strategies usage [43].

We examine students’ feedback response behavior in science
reading. Science reading skills are of critical importance, but
challenging for students to master [63]. Science reading can be
enhanced through the application of SRL skill [15, 47]. To
investigate SRL and science reading, we conducted our analysis
on middle school science readings and questions from an online
learning platform, Actively Learn (AL). We answered three
research questions:

RQ1. How do students’ scores vary after receiving feedback?
RQ1.1. To what extent do students change their answers
after receiving feedback?

RQ2. How does students’ reading and SRL usage vary upon
receiving feedback?
RQ3. Is feedback type associated with subsequent reading and
SRL behaviors?

2. RELATED WORK
2.1 SRL and Reading
SRL refers to four regulatory processes during learning: goal
setting, self-monitoring, self-evaluating, and applying strategies
[65]. Self-regulated learners use self-monitoring skills to monitor
their tasks [69] and can judge their learning outcomes in light of
their goals [68]. Self-regulation is associated with academic
performance [49, 66]. SRL researchers have proposed theories
and models (e.g., Pintrich’s SRL framework [49], Zimmerman’s
Cyclic model [66]) to explain learners’ SRL behaviors. In this
study, we adopt Winne and Hadwin’s model [56, 58] to measure
students SRLs from students’ log trace data within AL, as it has
proven a useful framework for similar research [4].

SRL-based reading interventions have been effective in improving
middle school reading in experimental studies [54].
Computer-based learning environments (CBLEs) can integrate
SRL instruction via features to help students foster SRL skills.
Examples of CBLEs that are rooted in models of SRL and have
been shown to support reading comprehension and SRL behaviors
for reading include iSTART [44-45], nSTUDY [4], and
ReaderBench [18-19]. In this study, we examine the web-based
platform Actively Learn (AL), which uses platform features that
promote SRL (Section 3.1).

2.2 Sequence Mining
Sequence mining techniques can identify students’ learning
behaviors [2, 29]. For example, n-gram sequencing techniques
have been applied to a game-based learning platform to identify
students’ problem-solving behavior [2] and to study associations
between students’ academic performance and transition behavior
among multiple platforms [29].
In this study, we are focused on what SRL activities students
engage in on the AL platform after they receive feedback on a
prior submission. In this analysis we applied an approach used by
Sheshadri et al. [52] to examine sequence behaviors across
platforms. In this approach we aggregated distinct SRL and
question submission actions within AL and then examined the
frequency and sequence of the activities prior to a resubmission.

Effat Farhana, Andrew Potter, Teomara Rutherford and Collin F. Lynch
“Feedback and Self-Regulated Learning in Science Reading”. 2021. In:
Proceedings of The 14th International Conference on Educational Data
Mining (EDM21). International Educational Data Mining Society, 820-
826. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

820 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

2.3 Feedback
Providing feedback and opportunities for students to respond to
feedback is one way teachers can assist their students in reading to
learn tasks in STEM domains [42]. However, feedback quality can
influence students' responses [53]. Hattie and Timperley [31]
characterized feedback at four levels: the task (i.e., how well the
student accomplished a task), processing (i.e., the processes
required to complete the task), self-regulation (i.e., how students
choose and implement self-regulatory strategies to accomplish a
task); and the self-level (i.e., personal evaluations). Feedback
effectiveness is also moderated by the amount of information
provided; different types of feedback should be considered as
separate constructs [60]. Prior studies have also shown that timely
engagement with personalized feedback was associated with
academic success for undergraduate students [34] and may also
prompt more engaged learning activities when compared to
general feedback [43].
Corrective and self-regulatory feedback given to students after
answering comprehension questions in response to texts in a
digital environment can enhance SRL behaviors and performance
[39, 40]. In an experimental study, students who received
self-regulatory feedback made more text searches and included
more textual info in their responses when compared to students
who received less informative or no feedback [39]. A follow-up
study replicated these findings and also demonstrated that
requiring students to select relevant text information before
re-submitting answers led to improved SRL behaviors [40]. Taken
together, these studies suggest that corrective and self-regulatory
feedback can improve SRL behaviors and reading performance
when students are tasked with re-submitting answers to
comprehension questions with digital texts.
However, it can be challenging for teachers to provide timely and
informative feedback at scale [31, 53]. A prior study on feedback
comments of science assignments [8] indicated that feedback that
did not provide a correct answer was only helpful if students knew
where to find the correct answer; more informative feedback was
required when students lacked background knowledge Prior
research also suggests that timely engagement with feedback,
particularly personalized feedback, was associated with academic
success for undergraduate students [34]. Written comments can
provide an effective means for providing feedback on science
content [8] and in digital reading comprehension tasks [39, 40]. In
this study we examined how teacher feedback comments within
the context of a digital science reading comprehension related to
students' SRL behaviors.

3. Actively Learn (AL) Platform
AL is an online K-12 reading platform for multiple disciplinary
subjects. AL catalogs curriculum-integrated readings that teachers
can assign as in-class or homework assignments. Teachers can
also add their own content as assignments. AL assignments
contain text-embedded questions that can be multiple choice
(MCQ) and short-answer (SA), including open ended questions
and fill-in-the blanks. Teachers can give feedback on students’
answers to questions by scoring questions on a scale from 0-4 and
writing comments.

We adopted Winne and Hadwin’s SRL model in our study. Winne
and Hadwin’s model has four phases: task defining (Phase 1),
goal setting (Phase 2), enacting tactics and strategies (Phase 3),
and metacognitively adopting strategies (Phase 4). We primarily
focus on students’ usage of SRL tactics/strategies within AL

(Phase 3) and adapting reading and SRL (Phase 4) upon
receiving feedback. Our study is grounded in the Winne and
Hadwin model, as its focus on the events underlying SRL [57] fits
the retrospective analysis of student interaction data within our
study. Furthermore, we focus on three types of SRL events that
are consistent with prior literature situated in Winne and Hadwin’s
model: annotating [3, 41], highlighting [59], and vocabulary
lookups [5].

3.1 Dataset Preparation
The present study was conducted with middle school physical
science data collected from AL in 2018. The initial dataset
contained 17,886 student records from 1,033 classes. First, after
data cleaning, we included classes containing 10-60 students (n =
14,925 students). Second, we identified student submissions on
which they received feedback. This reduced dataset included
1,819 unique students, 3,867 questions, and 5,373 submissions.
Third, we applied the following filtering criteria: 1) a student
submitted a question multiple times, 2) received at least one
instance of feedback, and 3) re-submitted after receiving
feedback. The trimmed dataset, which included student empty
submissions, contained 670 unique students in 113 classes, 58
teachers, 156 assignments, 1,072 questions, and 2,502
submissions. All questions in our dataset are SA questions.

4. METHODOLOGY
We describe our methodology for each RQ in this section.

4.1 RQ1 Methodology
To answer RQ1 we measured students’ score differences by
calculating the difference between the first and last submission
scores when students made multiple attempts after receiving
feedback. We observed three categories of submissions: score
increased in the last submission, score decreased in the last
submission, and score was unchanged in the last submission.

To assess whether students were addressing teachers’ feedback,
we calculated similarity between subsequent answer submissions
of a question. We hypothesized that changes in submitted answers
would result in a greater score difference in a question. Thus, we
measured the cosine similarity between subsequent submissions
of a question. Specifically, we calculated cosine similarities
between ith and (i-1) th submissions, for i => 2 attempts and took
the average. We took all submissions because we wanted to assess
how students’ changed their answers upon receiving feedback,
and how those changes impacted their final scores.

To encode students' responses into vector representations, we used
the Universal Sentence Encoder (USE) [15]. The USE can take a
word, a sentence, or a paragraph as inputs and encodes into a
fixed length vector of 512 values. We then used a Deep
Averaging Network (DAN) model with USE to encode
questions and question-dependent texts into vectors [15]. DAN
averages unigrams and bi-grams of word embedding to construct
sentence embedding. Moreover, to evaluate how the answer
modifications were connected to score differences, we calculated
Spearman correlation between mean cosine similarities and score
difference.

4.2 RQ2 Methodology
To answer RQ2, we coded student actions within the AL system
as either an answer submission, reading event (R), or SRL event,
such as annotating (A), highlighting (H), or vocabulary-lookup
(V). The AL system does not define explicit student sessions.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 821

Therefore, we adopted a data-driven approach from prior research
to define session [36, 52]. First, we aggregated students’
assignment actions and timestamps into a unified transaction log.
We then plotted histograms of two consecutive action sequences
to estimate the intervals between consecutive actions within an
assignment. Based on our exploratory analysis we selected 30
minutes as a “session” cutoff. Any student actions exceeding 30
minutes were defined as a new session. After defining session
cutoffs, we split all student actions within an assignment by
session. Next, we counted SRL events before a student’s
resubmission of the question received feedback.

We then applied a four-level hierarchical linear model (HLM) to
predict the last score of a question. HLM is commonly used in
educational research [24, 50] to account for nested data [62]. Our
HLM model included questions at level-one, assignment ID at
level-two, student ID at level-three, and teacher ID at level-four.
Fixed effect variables included students’ first score on questions
and features of SRL usage during attempting questions. All
grouping variables were modelled as random intercepts.

4.3 RQ3 Methodology
To answer RQ3, we categorized teacher feedback comments using
deductive analysis, which is a method for analyzing content using
a predefined model based on prior research [23]. Our deductive
analysis categories were adapted from Hattie and Timperley’s [31]
feedback categories, which have been used in prior research [1,
30]. Our model was also influenced by Shute’s [53] review of
formative feedback, and Bruno and Santos’ [8] combined
inductive and deductive coding scheme of teacher written
comments in a science classroom context for task and
processing-level feedback. We established five a-priori feedback
categories using these models. The feedback categories included
feedback on the task and processing [31] that (i) asked a student
to either provide a correction to a response or to (ii) provide an
explanation of a response [8], (iii) self-level feedback, (iv) and
SRL behaviors. We also created a category for feedback that only
addressed (v) conventions (e.g., spelling, grammar).
The SRL behavior category included teacher comments that
referred to the SRL reading behaviors described in the previous
section. SRL feedback has been defined as high-information
feedback about task performance and suggestions for employing
self-regulation strategies to monitor cognitive processes,
self-evaluate performance, and strategy development to improve
performance [31, 60]. We defined SRL feedback more broadly to
include teacher comments that provided feedback on referring to
the text to make revisions to an answer, annotating or highlighting
the text, or to look up a vocabulary term. This definition is more
appropriate within the context of AL, in which teachers leave
brief comments on comprehension questions. Prior research has
also defined SRL feedback in this context as feedback that
includes knowledge about when to refer to the text [39] and which
text information is relevant for completing the task [40].
Two members of the research team trained on coding comments
using a sample. All differences in training were resolved by
discussion. One researcher then coded all teacher feedback
comments (n = 1,441). A second researcher independently coded
23% of this sample. Inter-rater reliability (IRR) was calculated
using Cohen’s kappa and was found to be acceptable (κ = 0.74, p
< 0.001). We then applied a nonparametric Kruskal-Wallis test to
identify if reading and SRL behaviors varied significantly among
feedback categories.

5. RESULTS
In the following subsections we discuss our results for each RQ.

5.1 RQ1 Results
We calculated the average cosine similarities between subsequent
submissions (sim_score) and score difference (d) with and without
empty student submissions. A higher sim_score indicates that the
submitted answers are more similar to each other. The frequencies
of six different score difference categories and question counts (n)
are: -2 (n = 4), -1 (n = 53), 0 (n = 187), 1 (n = 474), 2 (n = 252), 3
(n = 87), and 4 (n = 15). Total questions = 1,072. The Spearman
correlation test between score difference (d) and mean cosine
similarities (sim_score) was (coefficient = -0.315, p < 0.001). The
negative coefficient indicates when the mean cosine similarity
score decreases, the score difference increases. In other words, the
more changes are present in students’ subsequent answers, the
greater the score difference.
Score Increased Descriptive statistics in this category are: 828
unique questions, 1,963 submissions by 543 students. First
attempt score ranged from 0 to 3 with a mean 1.41. Last attempt
score varied from 1 to 4 with a mean 2.98. We found that the
positive score change groups have increased by 1, 2, 3, and 4
points. In these four groups, sim_score has a lower median value
compared to the rest. This observation indicates that students with
greater score increases had submissions that differed more than
their original answers, as represented by a lower sim_score. We
examined student submissions with identical responses (sim_score
= 1) but an increase in final score (n = 40) submissions.
Score Decreased. This group includes 57 unique questions with
124 submissions by 49 students. First attempt scores ranged from
1 to 4 with a mean 1.58. Last attempt score varied from 0 to 3
with a mean of 0.51.

Score Unchanged. Descriptive statistics for this category are: 187
unique questions, 415 submissions by 165 students. First and last
attempt scores have the same statistics in this category. First and
last attempt scores ranged from 0 to 4 with a mean 1.69.

5.2 RQ2 Results
Standardized effect sizes were calculated using the formula, ß =
(B*SDx)/(SDy) [50]. First attempt score had the highest
predictive power (B = 0.32, ß = 0.28, p < 0.001). Only reading
was a statistically significant positive predictor. Highlighting
behavior was negatively associated with the last score.

5.3 RQ3 Results
Feedback comments were coded as requiring either a correction (n
= 654), explanation (n = 565), a SRL behavior (n = 134),
addressing conventions (n = 77), and self-level feedback (n = 11).
SRL events after receiving feedback and before resubmission
were identified. Kruskal-Wallis test results indicated statistically
significant differences across the five feedback categories for
reading (p < 0.001), highlighting (p = 0.007), and vocabulary
lookup events (p = 0.006). Annotating text was not significant.
We conducted post-hoc analyses using Dunn’s pairwise tests with
Benjamini-Hochberg correction for features with statistically
significant results. Effect size (r) is reported using a
nonparametric test, Cliff's-Delta. Results indicated that students
were less likely to engage in reading after conventions feedback
when compared to SRL behavior feedback (p < 0.001, r = 0.25),
corrective (p < 0.001, r = 0.28), and explanation feedback (p <
0.001, r = 0.29). The Kruskal-Wallis test assessed whether the
group with non-zero entry (i.e., SRL Behavior) was statistically

822 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

different from the ones with all zero entries. We found statistically
significant differences between SRL Behavior and corrective
feedback (p = 0.002, r = 0.009) and explanation feedback (p =
0.001, r = 0.009). Students were more likely to look up
vocabulary words after corrective over explanation feedback (p =
0.003, r = 0.021).

6. DISCUSSION and CONTRIBUTIONS
Scholarly Implication: Student Response to Feedback
RQ1 results show that students’ who modified their answers had
greater score differences, which is consistent with prior findings
on automated feedback [39, 40, 64]. We found that teachers at
times scored revised responses lower than students’ initial score.
When examining students’ responses, we found students
sometimes submitted the identical answer or an empty answer
(“No response”) despite the teacher asking for explanation or
suggesting additional correction. This phenomenon in which
students do not address teacher feedback is known as the
“feedback gap” [24]. Students might not respond to feedback if
they find it difficult to decipher [9], lack study habits [20], or
erroneously believe it does not apply to them [28]. One limitation
of the present study is that it is not equipped to determine the
reason for lack of student response.

Our HLM analysis from RQ2 shows that reading events and initial
scores were statistically significant predictors of last scores.
However, SRL variables such as annotation, highlighting, and
vocabulary lookups were not statistically significant predictors.
We also found that highlighting was underutilized by students and
that self-level feedback was not commonly employed by teachers.

Feedback comments categorized as focusing on correction,
explanation, and SRL behaviors were associated with more
reading events during student revisions when compared to
feedback about conventions. We expected SRL feedback to
produce more reading events and SRL behaviors than other
categories based on prior research with automated feedback,
because these comments directed students to revisit the text to
revise their answers [39, 40]. However, SRL feedback did not
produce statistically significant differences in student behaviors
compared to correction and explanation feedback. One reason for
this finding might be that these feedback categories had similar
amounts of information; the level of feedback informativeness
may have a greater impact on student performance and behavior
[60]. Corrective (e.g., “Protons cannot be gained or lost”) and
explanation feedback provided did not explicitly direct students to
revisit the text or use an AL feature, but perhaps these behaviors
were implied perhaps these behaviors were implied during a
task-oriented reading assignment with explanation feedback
comments such as: “Great definitions but you need to explain why
phase changes are considered physical changes.”. This might
explain why vocabulary look-ups were more common in
corrective and explanation comments when compared to SRL
(e.g., “Go back and reread paragraph 9 and reanswer. Might help
you to plug some numbers into the equation to see how the
inverse relationship works.”) and conventions feedback
(“Capitalize the first word in a sentence.”). Conversely, perhaps
the SRL feedback could more effectively influence reading events
and SRL behaviors if teachers provided more explicit information
that helped students decide when and how to revisit the text to
revise an answer [39] or required students to select relevant
information from the text to support their answer [40]. SRL
feedback may have directed students to relevant portions of the

text based on relatively greater highlighting behavior after SRL
feedback, but this effect size was small, and highlighting was not
positively related to score change, calling into question the value
of this behavior.
For Teachers: Feedback Quality
Our analysis also showed that teacher comments were generally
short and contained limited information. It may be possible for
teachers to improve the quality and effectiveness of their feedback
by providing more SRL feedback [60, 31], and by avoiding
self-level feedback and comments about conventions, which were
shown to not support student performance in the present study. To
optimize feedback from teacher comments and increase student
feedback uptake, teachers should support students in
understanding feedback comments and evaluation criteria [13],
which may require greater elaboration within comments and
potentially instruction outside of AL.
Design Implications: Automated Feedback Affordances
Feedback can improve performance [38], but poor feedback can
hinder student learning [31]. Middle school teachers may not have
enough time to provide quality and timely feedback to all
students, particularly when providing feedback to open-ended
questions that require source-based explanations [6]. Although
automated feedback may assist teachers in providing quality and
timely feedback without increasing their workload [6, 14],
challenges remain in building platforms to provide such feedback
within the context of source-based science questions. For
example, AL science questions are often constructed responses
that require connecting information from different paragraphs.
The state-of-the-art NLP research to automatically infer
information from paragraphs in reading comprehension is still in
early stage [22, 35]. One possible design for automated support
would be to collect other teachers’ feedback on the same question
in the AL platform and provide suggestions to the teacher.

Design Implication: Supporting Feedback Actionability
Some students were not responsive to feedback as indicated by
their submission of an empty answer or re-submission the same
answer. One solution to increase actionability could be pointing to
additional learning materials in an automated feedback setting
[33]. For example, Broos and colleagues [7] designed a button
“Okay, what now?” in a dashboard to provide actionable
feedback. Students could click the button to view extra reading
content. Similarly, a nudge can be implemented in AL—“Are you
sure you want to submit that empty answer?”

7. CONCLUSIONS
This study has two main contributions to reading and SRL
research: (i) empirically evaluating students' response changes to
short answer questions upon receiving feedback and (ii)
measuring the association of students’ reading and SRL with five
feedback categories. Our findings show that students who revised
their answers demonstrated statistically significant differences in
their scores. We also observed that teachers mainly provided
corrective feedback followed by explanatory and feedback related
to SRL behavior. Students exhibited more reading behavior upon
receiving these types of feedback than convention-related
feedback. These results may aid educators in writing feedback
comments to students for maximal impact.

8. ACKNOWLEDGEMENTS
This research was supported by NSF #1821475 ``Concert:
Coordinating Educational Interactions for Student Engagement''
Collin F. Lynch, Tiffany Barnes, and Sarah Heckman (Co-PIs).

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 823

9. REFERENCES

[1] Rola Ajjawi and David Boud. 2017. Researching feedback
dialogue: An interactional analysis approach. Assessment &
Evaluation in Higher Education, 42, 2, 252-265.
DOI: https://doi.org/10.1080/02602938.2015.1102863

[2] Bita Akram, Wookhee Min, Eric Wiebe, Bradford Mott,
Kristy Elizabeth Boyer, and James Lester. 2018. Improving
Stealth Assessment in Game-Based Learning with
LSTM-Based Analytics. International Educational Data
Mining Society.

[3] Roger Azevedo. 2008. The role of self-regulated learning
about science with hypermedia. Recent innovations in
educational technology that facilitate student learning (2008):
127-156.

[4] L. P. Beaudoin, and P. Winne. 2009. nStudy: An Internet tool
to support learning, collaboration and researching learning
strategies. In Canadian e-Learning Conference

[5] Andrew Biemiller, and Naomi Slonim. 2001. Estimating root
word vocabulary growth in normative and advantaged
populations: Evidence for a common sequence of vocabulary
acquisition. Journal of educational psychology 93, 3, 498.

[6] Anthony F. Botelho and Neil T. Heffernan. 2019.
CROWDSOURCING CHAPTER 11–FEEDBACK TO
SUPPORT TEACHERS AND STUDENTS. Design
Recommendations for Intelligent Tutoring Systems: Volume
7-Self-Improving Systems, 101.

[7] Tom Broos, Laurie Peeters, Katrien Verbert, Carolien Van
Soom, Greet Langie, and Tinne De Laet. 2017. Dashboard
for Actionable Feedback on Learning Skills: Scalability and
Usefulness. In Learning and Collaboration Technologies.
Technology in Education (Lecture Notes in Computer
Science), Panayiotis Zaphiris and AndriIoannou (Eds.).
Springer International Publishing, Vancouver, Canada,
229–241.

[8] Inês Bruno and Leonor Santos. 2010. Written comments as a
form of feedback. Studies in Educational Evaluation, 36, 3,
111–120.
DOI:http://dx.doi.org/10.1016/j.stueduc.2010.12.001

[9] Deirdre Burke. 2009. Strategies for using feedback students
bring to higher education. Assessment & Evaluation in
Higher Education 34, 1, 41-50.

[10] Deborah L. Butler, and Philip H. Winne. 1995. Feedback and
self-regulated learning: A theoretical synthesis. Review of
educational research 65, 3,: 245-281.

[11] Therese Bouffard-Bouchard, Sophie Parent, and Serge
Larivee. 1991. Influence of self-efficacy on self-regulation
and performance among junior and senior high-school age
students. International journal of behavioral development 14,
2, 153-164.

[12] David Carless and David Boud. 2018. The development of
student feedback literacy:enabling uptake of feedback.
Assessment & Evaluation in Higher Education 43, 8 (2018),
1315–1325. https://doi.org/10.1080/02602938.2018.1463354

[13] David Carless and Naomi Winstone. 2020. Teacher feedback
literacy and its interplay with student feedback literacy.
Teaching in Higher Education (2020): 1-14.

[14] Anderson Pinheiro Cavalcanti, Arthur Diego, Rafael Ferreira
Mello, Katerina Mangaroska, André Nascimento, Fred
Freitas, and Dragan Gašević. 2020. How good is my

feedback? a content analysis of written feedback. In
Proceedings of the Tenth International Conference on
Learning Analytics & Knowledge, 428-437.

[15] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole
Limtiaco, Rhomni St John, Noah Constant et al. 2018.
Universal Sentence Encoder for English. Proceedings of the
2018 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 169-174. 2018

[16] Richard Correnti, Lindsay Clare Matsumura, Laura
Hamilton, and Elaine Wang. 2013. Assessing students' skills
at writing analytically in response to texts. The Elementary
School Journal, 114, 2, 142-177.

[17] Jennifer G. Cromley and Roger Azevedo. 2007. Testing and
refining the direct and inferential mediation model of reading
comprehension. Journal of Educational Psychology 99, 2,
311.

[18] Mihai Dascalu, Philippe Dessus, Ştefan Trausan-Matu,
Maryse Bianco, and Aurélie Nardy. 2031. ReaderBench, an
environment for analyzing text complexity and reading
strategies. International Conference on Artificial Intelligence
in Education, pp. 379-388. Springer, Berlin, Heidelberg,
2013.

[19] Mihai Dascalu, Larise L. Stavarache, Stefan Trausan-Matu,
Philippe Dessus, Maryse Bianco, and Danielle S. McNamara.
2015. ReaderBench: An integrated tool supporting both
individual and collaborative learning." In Proceedings of the
fifth international conference on learning analytics and
knowledge, pp. 436-437. 2015.

[20] Phillip Dawson, Michael Henderson, Tracii Ryan, Paige
Mahoney, David Boud, Michael Phillips, and Elizabeth
Molloy. 2018. Technology and feedback design. Learning,
design, and technology.

[21] Project DRIVER_SEAT
https://www.neilheffernan.net/projects/funded-projects/driver
seat

[22] Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019. DROP: A
Reading Comprehension Benchmark Requiring Discrete
Reasoning Over Paragraphs. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, 1 (Long and Short Papers), pp.
2368-2378.

[23] Satu Elo and Helvi Kyngäs. 2008. Qualitative Research and
Content Analysis. Journal of Advanced Nursing, 62,
107-115.

[24] Carol Evans. 2013. Making sense of assessment feedback in
higher education. Review of educational research 83, 1,
70-120.

[25] Effat Farhana, Teomara Rutherford, and Collin F. Lynch.
2020. Associations Between Self-Regulated Learning
Strategies and Science Assignment Score in a Digital
Literacy Platform. International Society of the Learning
Sciences (ISLS) .

[26] Actively Learn Feedback
https://help.activelylearn.com/hc/en-us/articles/11500059015
4-Revise-answers

[27] Tomer Gal, and Arnon Hershkovitz. 2019. Different Types of
Response-Based Feedback in Mathematics: The case of
textual and symbolic messages. In Proceedings of the 9th

824 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

https://doi.org/10.1080/02602938.2018.1463354

International Conference on Learning Analytics &
Knowledge, pp. 265-269. 2019.

[28] Teresa Garcia. 1995. The Role of Motivational Strategies in
Self-Regulated Learning. New Directions for Teaching and
Learning 63, 29-42.

[29] Niki Gitinabard, Tiffany Barnes, Sarah Heckman, and Collin
F. Lynch. 2019. What Will You Do Next? A Sequence
Analysis on the Student Transitions Between Online
Platforms in Blended Courses. International Educational
Data Mining Society (2019).

[30] Marjan J.B. Govaerts , Margje W.J. van de Wiel , Cees P.M.
van der Vleuten. 2013. Quality of Feedback following
Performance Assessments: Does assessor expertise matter?
European Journal of Training and Development, 37,
105-125. DOI: https://doi.org/10.1108/03090591311293310

[31] John Hattie and Helen Timperley. 2007. The power of
feedback. Review of Educational Research, 77, 81-112.
 DOI:10.3102/00346543029848

[32] Anton Havnes, Kari Smith, Olga Dysthe, and Kristine
Ludvigsen. 2012. Formative assessment and feedback:
Making learning visible. Studies in Educational Evaluation
38, 21–27.
DOI:http://dx.doi.org/10.1016/j.stueduc.2012.04.001

[33] Christothea Herodotou, Sarah Heiser, and Bart Rienties.
2017. Implementing randomised control trials in open and
distance learning: a feasibility study. OpenLearning: The
Journal of Open, Distance and e-Learning 32, 2, 147–162.

[34] Hamideh Iraj, Anthea Fudge, Margaret Faulkner, Abelardo
Pardo, and Vitomir Kovanović. 2020. Understanding
students' engagement with personalised feedback messages.
In Proceedings of the Tenth International Conference on
Learning Analytics & Knowledge, pp. 438-447. 2020.

[35] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predicting spans.
Transactions of the Association for Computational
Linguistics 8 (2020): 64-77.

[36] Vitomir Kovanović, Dragan Gašević, Shane Dawson, Srećko
Joksimović, Ryan S. Baker, and Marek Hatala. 2015.
Penetrating the black box of time-on-task estimation. In
Proceedings of the fifth international conference on learning
analytics and knowledge, pp. 184-193. 2015.

[37] Franki YH Kung, and Abigail A. Scholer. 2018. Message
Framing Influences Perceptions of Feedback (In) directness.
Social Cognition 36, 6, 626-670.

[38] Philip Langer. 2011. The Use of Feedback in Education: A
Complex Instructional Strategy. Psychological Reports 109,
3, (December 2011): 775–84.

[39] A. C. Llorens, R. Cerdán and Eduardo Vidal-Abarca. 2014.
Adaptive formative feedback to improve strategic search
decisions in task-oriented reading. Journal of Computer
Assisted Learning, 30, 3, 233–251.
DOI:http://dx.doi.org/10.1111/jcal.12050

[40] A. C. Llorens, Eduardo Vidal-Abarca and R. Cerdán. 2016.
Formative feedback to transfer self-regulation of
task-oriented reading strategies. Journal of Computer
Assisted Learning, 32, 4, 314–331.
DOI:http://dx.doi.org/10.1111/jcal.12134

[41] Tamas Makany, Jonathan Kemp, and Itiel E. Dror. 2009.
Optimising the use of note‐taking as an external cognitive

aid for increasing learning. British Journal of Educational
Technology 40, 4, 619-635.

[42] Linda H. Mason and Laura R. Hedin. 2011. Reading science
text: Challenges for students with learning disabilities and
considerations for teachers. Learning Disabilities Research &
Practice, 26, 4, 214–222.
DOI:http://dx.doi.org/10.1111/j.1540-5826.2011.00342.x

[43] Wannisa Matcha, Dragan Gašević, Nora'Ayu Ahmad Uzir,
Jelena Jovanović, and Abelardo Pardo. 2019. Analytics of
learning strategies: Associations with academic performance
and feedback. In Proceedings of the 9th International
Conference on Learning Analytics & Knowledge, pp.
461-470.

[44] Danielle S. McNamara. 2004. SERT: Self-explanation
reading training. Discourse processes 38, 1 , 1-30.

[45] Danielle S. McNamara., Irwin B. Levinstein, and Chutima
Boonthum. 2004. START: Interactive strategy training for
active reading and thinking. Behavior Research Methods,
Instruments, & Computers 36, 2, 222-233.

[46] Danielle S. McNamara, Tenaha P. O'Reilly, Rachel M. Best,
and Yasuhiro Ozuru. 2006. Improving adolescent students'
reading comprehension with iSTART. Journal of Educational
Computing Research 34, 2, 147-171.

[47] Danielle S. McNamara. 2007. Reading comprehension
strategies: Theories, interventions, and technologies.
Psychology Press., 2007.

[48] David Nicol. 2010. From monologue to dialogue: improving
written feedback processes in mass higher education.
Assessment & Evaluation in Higher Education 35, no. 5
(2010): 501-517.

[49] Paul R. Pintrich. 2000. The role of goal orientation in
self-regulated learning. 2000. Handbook of self-regulation,
451-502. Academic Press, 2000

[50] Anna D. Rowe, and Leigh N. Wood. 2008. Student
perceptions and preferences for feedback. Asian Social
Science 4, 3,: 78-88.

[51] Teomara Rutherford. 2017. Within and between person
associations of calibration and achievement. Contemporary
Educational Psychology 49, 226-237.

[52] Adithya Sheshadri, Niki Gitinabard, Collin F. Lynch, Tiffany
Barnes, and Sarah Heckman. 2018. Predicting student
performance based on online study habits: a study of blended
courses.International Educational Data Mining Society
(2018).

[53] Valerie J. Shute. 2008. Focus on formative feedback. Review
of Educational Research, 78, 153–189.
DOI:http://dx.doi.org/10.3102/0034654307313795

[54] Tuncay Türkben. 2019. The Effect of Self-Regulation Based
Strategic Reading Education on Comprehension, Motivation,
and Self-Regulation Skills. International Journal of
Progressive Education 15, 4,: 27-46.

[55] Melanie R Weaver. 2006. Do students value feedback?
Student perceptions of tutors’ written responses. Assessment
& Evaluation in Higher Education 31, no. 3 (2006): 379-394.

[56] Philip H.Winne and Allyson F. Hadwin. 1998. Studying as
self-regulated learning. The educational psychology series.
Metacognition in educational theory and practice (277–304).
Lawrence Erlbaum Associates Publishers.

[57] Philip H. Winne and Nancy E. Perry. 2000. Measuring

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 825

self-regulated learning. Handbook of self-regulation,
531-566. Academic Press, 2000.

[58] Philip H. Winne and Allyson F. Hadwin. 2012. The weave of
motivation and self-regulated learning. 2012. Motivation and
self-regulated learning , pp. 309-326. Routledge, 2012.

[59] Philip H. Winne , John Cale Nesbit, Ilana Ram, Zahia
Marzouk, Jovita Vytasek, Donya Samadi, and Jason Stewart.
2017. Tracing Metacognition by Highlighting and Tagging to
Predict Recall and Transfer. AERA Online Paper Repository
(2017).

[60] Benedikt Wisniewski, Klaus Zierer, and John Hattie. 2020.
The power of feedback revisited: A meta-analysis of
educational feedback research. Frontiers in Psychology, 10,
1-14. DOI:http://dx.doi.org/10.3389/fpsyg.2019.03087

[61] Carol Withey. 2013. Feedback engagement: forcing
feed-forward amongst law students. The Law Teacher 47, no.
3 (2013): 319-344.

[62] Heather Woltman, Andrea Feldstain, J. Christine MacKay,
and Meredith Rocchi. 2012. An introduction to hierarchical
linear modeling. Tutorials in quantitative methods for
psychology 8, 1, 52-69.

[63] Larry D Yore. 2012. Science literacy for all: More than a
slogan, logo, or rally flag!. In Issues and challenges in
science education research, pp. 5-23. Springer, Dordrecht,
2012.

[64] Mengxiao Zhu, Hee-Sun Lee, Ting Wang, Ou Lydia Liu,
Vinetha Belur, and Amy Pallant. 2017. Investigating the
impact of automated feedback on students’ scientific
argumentation. International Journal of Science Education
39, 12, 1648-1668

[65] Barry J. Zimmerman, and Albert Bandura. 1994. Impact of
self-regulatory influences on writing course attainment.
American educational research journal 31, 4 (1994),
845-862.

[66] Barry J. Zimmermann. 1989. Models of self-regulated
learning and academic achievement. Self-Regulated Learning
and Academic Achievement: Theory, Research and Practice,
1-26.

[67] Barry J. Zimmermann. 1989. A social cognitive view of
self-regulated academic learning. Journal of educational
psychology, 81, 3 ,329.

[68] Barry J. Zimmerman. 2000. Self-efficacy: An essential
motive to learn. Contemporary educational psychology, 25,
1, 82–91

[69] Barry J. Zimmerman. 2000. Attaining self-regulation: A
social cognitive perspective. Handbook of self-regulation,
13-39. Academic Press, 2000.

826 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Analysis of Factors Influencing User Contribution and
Predicting Involvement of Users on Stack Overflow

Maliha Mahbub
University of Saskatchewan

Saskatoon, Canada
mam789@mail.usask.ca

Najia manjur
University of Saskatchewan

Saskatoon, Canada
nam907@mail.usask.ca

Mahjabin Alam
University of Saskatchewan

Saskatoon, Canada
natasha.mahjabin@gmail.com

Julita Vassileva
University of Saskatchewan

Saskatoon, Canada
jiv@cs.usask.ca

ABSTRACT
Active involvement of new community members is essential
for Q&A platforms such as Stack Overflow, to make the plat-
form efficient and more inclusive. However, more than half
of Stack Overflow users contribute only once and disappear.
This decreases the diversity of viewpoints and experience on
the platform. This paper aims to identify factors that can
discourage users from active participation after their first
or second post. We collected a dataset of the responses to
questions posted by new users (answers, comments, upvotes,
downvotes) and analysed the tone of the feedback and its im-
pact on the users’ ongoing participation. We considered as
new users those who registered to Stack Overflow for the
last two years before the data collection and classified then
into three groups based on the number of their posts (low,
medium and high number of posts) on Stack Overflow. The
differences in the responses between the three user groups
have been validated by performing one-way ANOVA and
Pearson’s chi-square test. Based on these results we trained
a machine learning model using a SVM classifier which pre-
dicts whether a user is likely to post or not with an accuracy
of 88.69 %. Our work contributes to identifying and quanti-
fying the potential underlying factors behind the decline in
participation and dropout of new users on Stack Overflow.

Keywords
Stack Overflow, User Analysis, One-way ANOVA, SVM Clas-
sifier, User Prediction Model

1. INTRODUCTION
Stack Overflow (SO) is one of the most popular Q & A based
platforms for programmers, having over 50 million monthly
visitors[7], over 16 million questions[19] and 19 million an-

swers[11]. SO has detailed guidelines for posting questions
and some fundamental standards for providing feedback to
the questions. Expert users who have been using Stack
Overflow for a long time are rewarded with badges and repu-
tation [14]. In order to garner a high reputation on the site,
the user must be active on a regular basis on the SO plat-
form and their questions must have many positive responses.
However, novice users may not have the correct vocabulary
or expertise to formulate a technical question. As a result,
they may end up getting negative responses such as “stupid
question” or “This is such common issue, just google”. Such
negative responses to posts may discourage users to limit or
seize their contributions to the platform. This kind of users
make up for almost half the users of the platform [18]. Un-
solved questions in SO have seen an exponential growth over
the years [16] and they continue to be an issue for new users
who seek help. Studies have shown that online trolling and
negative responses worsen over the active time of a user in a
community [8] and 77% of users tend to ask for help on the
SO platform only once [13]. In this paper, we identify and
validate the factors which impact the state of participation
of the new users on Stack Overflow. “New users” are those
who have been registered to SO for less than 2 years until
August 2019 (when the dataset was created). We selected
and analysed five features from the SO post responses to
understand how getting little to no response and negative
responses is related to users posting behaviour. Based on
our findings, we built a machine learning classifier to pre-
dict posting status of users in SO.

2. RELATED WORK
The Stack Overflow or SO platform has turned into a valu-
able resource for both skilled and amateur programmers for
glitches, bug and any code related problems. Managing such
a large user base has been a challenge and an ongoing topic
for investigation and research from different perspectives.
Anderson et al. [3] explores the correlation between user rep-
utation and quality of answers and its impact on the design
of the site. Asaduzzaman et al. [4] mines the unanswered
questions in SO to reveal the underlying factors that lead to
questions remaining unanswered, such as title length, askers’
score, post length etc. Alharthi et al. [2] investigates sev-

Maliha Mahbub, Najia Manjur, Mahjabin Alam and Julita Vassileva
“Analysis of Factors Influencing User Contribution and Predicting In-
volvement of Users on Stack Overflow”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 827-832.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 827

eral factors that impact the quality of questions in SO and
predicts the score of the question, which indicates its overall
quality. Similar idea of prediction has been explored in Shao
et al. [17] developed a prediction model which analyses the
latent context of a question and recommends an answer for
the user. Calefato et al. [6] developed a framework based
on successful questions on SO to provide an evidence -based
guideline for programmers to write better questions in SO.
Grant et al. [12] explores the use of badge, to motivate
users. When a question has better wording and quality, it
attracts more users and the user gets upvotes which in turn
helps the score. Adaji et al. [1] investigates specific social
support strategies that influence users to contribute in SO
More recent studies have focused on the behavioural and
personality traits of SO users as well, in order to target
the emotional aspects of the users who ask questions [15,
5]. The novice or infrequent users who just started out face
some level of criticism or neglect by the more experienced
users on SO, a phenomenon related to maintaining commu-
nity boundaries by hazing. Hazing is a psycho-social phe-
nomenon where the newcomers in a tightly knit group face
backlash and elitist attitude (which is sometimes borderline
abusive)[9]. Slag et al. [18] discusses the difficulties encoun-
tered by ”one day flies”, users who post only once in their
profile’s lifetime and do not contribute to the platform after-
wards. Our work further investigates the effect of the factors
identified in [18] by providing statistical and empirical vali-
dation to the hypothesis proposed in [18].

3. RESEARCH QUESTIONS AND DATASET
Since we wanted to compare the responses of the posts, not
the nature of post itself, we eliminated two of Slag et al.
[18] factors: duplicate questions and uncommon tags. In-
stead, to further investigate the features of questions asked
by such inactive users, we added five new factors: the num-
ber of upvotes on a question (Up Votes), the downvotes
(Down Votes), the number of comments on a post (Com-
ment Count), the reputation of users (Reputation), and the
types of comments on a post (Comment Texts). We chose to
add reputation since it affects how a user’s posts is perceived
by other users. We aim to answer two research questions:
“1. Do these factors have any quantifiable relation to the
frequency of posts of users in Stack Overflow?”
“2. Can we predict whether a user will drop out and stop
posting?”.

3.1 Data Collection
We collected data from Stack Exchange Data Explorer 1,
an open source tool to collect publicly available data from
Stack Overflow. We used Stack Exchange Data Explorer to
collect information about users who created their profile on
Stack Overflow in 2017.

For our work, we chose to consider only the questions
posted by users as their contribution. We collected the num-
ber of answers, comments, upvotes, downvotes, view count
given against (received by) each post of a user and the user’s
reputation. We decided to analyze the mean values of these
features for each user so that we can consider all of them in
a normalized form since the distribution of responses is not
equal for all users. In order to determine the overall tone of

1https://data.stackexchange.com/stackoverflow/query/new

Figure 1: Distribution of users population (in thou-
sands) based on the number of posts they made on
Stack Overflow

Table 1: Group based on overall polarity of the com-
ment

Group Description
1 (Highly negative) If -1 <= polarity <-0.5
2 (Moderately negative) If -0.5 <= polarity <0
3 (Neutral) 0
4 (Moderately positive) If 0 <polarity <= 0.5
5 (Highly positive) If 0.5 <polarity <= 1

a comment, we inferred the polarity of the comments from
the text of the comments through sentiment analysis on the
text by using TextBlob on all the comments received by a
user. Polarity generally falls within the range of -1 to 1
where -1 refers to a very negative sentiment, 0 refers to a
neutral sentiment and 1 refers to a very positive sentiment.
We categorized this range into five different groups as shown
in Table 1.

3.2 Target user groups
The users were categorized into the following groups based
on the number of questions they posted from January 2017
to June 2019: group 1 (users who posted a question once),
group 2 (users who have posted from 2 to 5 times), group
3 (users who have posted more than 5 times). The distri-
bution of user population according to the number of posts
they made in their lifetime on SO in out collected data is
depicted in the figure 1. We aim to identify such users by
analyzing their past experiences on SO. In our prediction
model, described in Section 5, for predicting the future be-
havior of a user, group 1 is labelled as the negative class
whereas groups 2 and 3 are combined into a single category
as the positive class. Therefore, the labeled classes consid-
ered for this study are:

1. Negative class: Users who will discontinue making any
contribution to Stack Overflow after their first post.

2. Positive class: Users who will continue contributing to
the platform.

4. DATA ANALYSIS

828 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 2: Distribution of users population (in thou-
sands) based on the number of posts they made on
Stack Overflow

The data analysis of feature selection, validation of metrics
and prediction model is provided below.

4.1 Feature Selection
From the data collected from SO, we performed Pearson
correlation analysis to find out how strongly each feature is
related to another. The results of correlation analysis for the
features are shown in figure 2. Following the Cohen’s classi-
fication system [10], only the largest relationships i.e. where
the correlation coefficient r>0.5, have been considered to be
significantly correlated. From figure 2, it is evident that
the correlation coefficient of comment count, answer count,
downvote, upvote, and polarity are significant i.e. greater
than 0.5. Therefore, for our feature analysis, these five fea-
tures are selected as the final metrics for next stage.

4.2 Feature Distribution in User Groups
To answer the research question: Do these features have
any quantifiable relation to the frequency of posts of users
in Stack Overflow?, we analyzed their statistical differences
among the three user groups. We used a one-way ANOVA
test and Pearson’s chi-square test to establish the statistical
evidence of the differences in terms of the features among
the three user groups.
All of the five features are plotted against the number of
posts from users. And the plotting is done for each of the
three target user groups to observe the difference of plots in
each groups. The sections below provide in-depth descrip-
tion of each of the features on all three user groups.

4.2.1 Number of Answers against Number of Posts
Figure 3 depicts the distribution of average number of an-
swers against the number of posts from each user from the
target group of users on SO. The mean number of answers
among three groups are: 1.10 (group 1), 3.31 (group 2) and
15.70 (group 3), which indicates that users in group 3 receive
significantly more responses to their posts compared to users
in groups 1 and 2. The p-value in one-way ANOVA test indi-
cates significant statistical difference among the three groups
in terms of the mean number of answers they receive against
their posts (F(2,375196) = 678.8, p = .000).

4.2.2 Number of Comments against Number of Posts
The mean number of comments among three groups are:
2.22 (group 1), 6.60 (group 2) and 30.00 (group 3), which

indicates that the mean number of comments significantly
increases with the increasing number of posts in each group.
Moreover, it is also evident from figure 4 that users who
posted less (no more than five times) exhibited a higher
tendency of receiving no comments from other users. The
result of one-way ANOVA test indicates significant statis-
tical difference between the groups than within the groups
in terms of number of comments they receive against their
posts (F(2,375196) = 187.3, p = .000).

4.2.3 Number of Upvotes against Number of Posts
The graphs show the relation between the average number
of upvotes with the number of posts in Figure 5. The mean
upvotes in group 1 and 2 are significantly lower than group
3 (0.696, 1.853 and 8.877 respectively), which indicates that
the posts made by the users of group 3 are more appreciated
and receive higher number of upvotes than the posts made
by the users who are less active. One-way ANOVA result
indicates significant statistical difference among the three
groups in terms of number of upvotes they receive against
their posts (F(2,375196) = 17.15, p = .000)

4.2.4 Number of Downvotes against Number of Posts
From figure 6, it can be observed that the mean number of
downvotes in group 1 and group 2 (0.548 and 1.309 respec-
tively) are lower than that of group 3 (4.17). This means
that the users who are posting more questions are also get-
ting fewer downvotes. This is an important and surprising
observation since a higher number of posts could have also
led to increased number of downvotes, which turns out to
not be the case. One-way ANOVA result indicates signif-
icant statistical difference between the groups than within
the groups in terms of number of comments they receive
against their posts (F(2,375196) = 473.04, p = .000).

4.2.5 Comment Polarity against Number of Posts

Table 2: Percentage of each comment polarity cate-
gory received by the user groups

User Group
Polarity Group 1 2 3

1 (Highly negative) 0.2% 0.1% 0%
2 (Moderately negative) 20.1% 20.7% 13.6%
3 (Neutral) 24.4% 11.7% 1.3%
4 (Moderately positive) 48.4% 67.2% 85.1%
5 (Highly positive) 1.1% 0.3% 0%

The result of cross tabulation in Table 2 revealed that users
from group 3 received zero highly negative comments, and
the least proportion of moderately negative comments. They
also received the highest proportion of moderately positive
comments (85.1%). On the other hand, the users of group
1 received the lowest amount of moderately positive com-
ments(49.5%) among the user groups. It can be concluded
from Table 2 that with the increase in the number of posts
made by the users, there is an increase in the positive com-
ments and decline in the negative remarks received by the
post owners. Lastly, the result of Pearson’s chi-square test
establishes the statistically significant relationship between
the polarity of comments and the user groups (χ2(8, 297447) =
20310.29, p = 0.000).

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 829

Figure 3: Distribution of average number of answers against number of posts among three user groups

Figure 4: Distribution of average number of comments against number of posts among three user groups

Name Measure

Features

Mean answer Scale
Mean comment Scale
Mean upvote Scale

Mean downvote Scale
Mean polarity Scale

Target User Class Nominal

Table 3: Attributes of the dataset employed in the
SVM classifier

Classifier Accuracy Precision Recall
SVM 0.8869 0.9875 0.7635

Table 4: Prediction model performance per evalua-
tion metric

5. PREDICTING USER PARTICIPATION
Based on the findings from correlation analysis and statis-
tical testing of factors influencing users post frequency, we
developed an actual prediction model to answer the second
research question. In order to develop and train our model,
we took advantage of a popular supervised machine learn-
ing algorithm called support vector machines (SVM). Table
3 describes the features and target groups employed in our
model. We divided the original data set into training set rep-
resenting 80% of the data and testing set representing the
remaining data. By using the five features, we divide our
users into two classes: likely to post and not likely to post.
The performance of our prediction model i.e. how well it
predicts the user class is evaluated using the metrics: accu-
racy, precision and recall. Our model performs significantly
well and yields a high score in terms of all three metrics as
illustrated by Table 4.

6. IMPLICATIONS AND FUTURE WORK
From our data analysis, we observed that a low number of
answers and comments, a high number of downvotes and
negative comments, and a low number of upvotes are more

prevalent in the posts of users who have posted fewer times
compared to the users who have higher number of posts.
Since these users are receiving negative remarks and down-
votes even with fewer posts, this may play a role in discour-
aging them from seeking help again from SO. In the light of
this discovery, we trained a SVM classifier model with the
five special features and divided the users into two classes:
users who will post in the future and users who will not.
The model has shown good performance with high accuracy
and effectiveness.
Previous works which mostly focused on how users can ask
better questions or build a better profile to attract more
answers to their questions. The novelty of our study is to
identify infrequent users and find a possible factor underly-
ing their withdrawal, so that the community owner/ moder-
ator can make the platform more welcoming and less hostile
for them. Our study has some limitations as well. We could
not consider the number of deleted questions of a user as one
of the factors that could contribute to users’ decline in posts
since Stack Exchange Data Explorer does not provide that
data. The research also lacks a qualitative analysis from
feedback of infrequent or absent users. Therefore, as part
of our our future plan, we will attempt to explore the user
modelling of infrequent posting through a targeted qualita-
tive user study of SO users.

7. CONCLUSIONS
More than half of the users in Stack Overflow tend to ask for
help on the platform only once and never post again. In this
paper, we identified five main features / metrics which we
hypothesized to be related to the inactive status of users.
We collected the responses to posts in SO for users who
have their SO profiles for 2 years (2017 to 2019) and se-
lected five factors with strong correlation. Ours statistical
analysis supports our hypotheses and validates the effect of
these factors having a significant correspondence to users’
posting frequency. Using these factors as selected features,
we trained a machine learning model that predicts whether
or not a user will post in the Stack Overflow platform, based

830 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 5: Distribution of average number of upvotes against number of posts among three user groups

Figure 6: Distribution of average number of downvotes against number of posts among three user groups

on the responses their posts received till now. This predic-
tion can identify users who have reduced their posting in SO
and face lack of encouragement and thus can benefit from a
positive nudge, help or mentorship. The significance of the
contribution of our analysis and prediction model is that it
can help to provide more equitable treatment of newcomers,
and thus increase the diversity of the SO community.

8. REFERENCES
[1] I. Adaji and J. Vassileva. Towards understanding

users’ motivation in a q&a social network using social
influence and the moderation by culture. In
Proceedings of the 25th Conference on User Modeling,
Adaptation and Personalization, pages 349–350, 2017.

[2] H. Alharthi, D. Outioua, and O. Baysal. Predicting
questions’ scores on stack overflow. In 2016
IEEE/ACM 3rd International Workshop on
CrowdSourcing in Software Engineering (CSI-SE),
pages 1–7. IEEE, 2016.

[3] A. Anderson, D. Huttenlocher, J. Kleinberg, and
J. Leskovec. Discovering value from community
activity on focused question answering sites: a case
study of stack overflow. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 850–858, 2012.

[4] M. Asaduzzaman, A. S. Mashiyat, C. K. Roy, and
K. A. Schneider. Answering questions about
unanswered questions of stack overflow. In 2013 10th
Working Conference on Mining Software Repositories
(MSR), pages 97–100. IEEE, 2013.

[5] B. Bazelli, A. Hindle, and E. Stroulia. On the
personality traits of stackoverflow users. In 2013 IEEE
international conference on software maintenance,
pages 460–463. IEEE, 2013.

[6] F. Calefato, F. Lanubile, and N. Novielli. How to ask
for technical help? evidence-based guidelines for
writing questions on stack overflow. Information and
Software Technology, 94:186–207, 2018.

[7] P. Chatterjee, M. Kong, and L. Pollock. Finding help

with programming errors: An exploratory study of
novice software engineers’ focus in stack overflow
posts. Journal of Systems and Software, 159:110454,
2020.

[8] J. Cheng, C. Danescu-Niculescu-Mizil, and
J. Leskovec. Antisocial behavior in online discussion
communities. In Ninth International AAAI Conference
on Web and Social Media, 2015.

[9] A. Cimino. The evolution of hazing: Motivational
mechanisms and the abuse of newcomers. Journal of
Cognition and Culture, 11(3-4):241–267, 2011.

[10] J. Cohen. Statistical power analysis. Current
directions in psychological science, 1(3):98–101, 1992.

[11] Craig Smith. Interesting stack overflow statistics and
facts (2020).
https://expandedramblings.com/index.php/stack-
overflow-statistics-and-facts/, 2020. [Online; accessed
25-March-2020].

[12] S. Grant and B. Betts. Encouraging user behaviour
with achievements: an empirical study. In 2013 10th
Working Conference on Mining Software Repositories
(MSR), pages 65–68. IEEE, 2013.

[13] John Slegers. The decline of stack overflow.
https://hackernoon.com/the-decline-of-stack-overflow-
7cb69faa575d, 2015. [Online; accessed
26-March-2020].

[14] D. Movshovitz-Attias, Y. Movshovitz-Attias,
P. Steenkiste, and C. Faloutsos. Analysis of the
reputation system and user contributions on a
question answering website: Stackoverflow. In 2013
IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining (ASONAM
2013), pages 886–893. IEEE, 2013.

[15] N. Novielli, F. Calefato, and F. Lanubile. Towards
discovering the role of emotions in stack overflow. In
Proceedings of the 6th international workshop on social
software engineering, pages 33–36, 2014.

[16] M. M. Rahman and C. K. Roy. An insight into the
unresolved questions at stack overflow. In 2015

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 831

IEEE/ACM 12th Working Conference on Mining
Software Repositories, pages 426–429, May 2015.

[17] B. Shao and J. Yan. Recommending answerers for
stack overflow with lda model. In Proceedings of the
12th Chinese Conference on Computer Supported
Cooperative Work and Social Computing, pages 80–86,
2017.

[18] R. Slag, M. de Waard, and A. Bacchelli. One-day flies
on stackoverflow-why the vast majority of
stackoverflow users only posts once. In 2015
IEEE/ACM 12th Working Conference on Mining
Software Repositories, pages 458–461. IEEE, 2015.

[19] Wikipedia contributors. Stack overflow — Wikipedia,
the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=StackOverflowoldid =
940723804, 2020.[Online; accessed20 − February −
2020].

832 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

SimGrade: Using Code Similarity Measures for More
Accurate Human Grading

Sonja Johnson-Yu, Nicholas Bowman, Mehran Sahami, and Chris Piech
Stanford University

{sonja, nbowman, sahami, piech}@cs.stanford.edu

ABSTRACT
While the use of programming problems on exams is a com-
mon form of summative assessment in CS courses, grad-
ing such exam problems can be a difficult and inconsis-
tent process. Through an analysis of historical grading pat-
terns we show that inaccurate and inconsistent grading of
free-response programming problems is widespread in CS1
courses. These inconsistencies necessitate the development
of methods to ensure more fairer and more accurate grad-
ing. In subsequent analysis of this historical exam data we
demonstrate that graders are able to more accurately assign
a score to a student submission when they have previously
seen another submission similar to it. As a result, we hy-
pothesize that we can improve exam grading accuracy by
ensuring that each submission that a grader sees is similar
to at least one submission they have previously seen. We
propose several algorithms for (1) assigning student submis-
sions to graders, and (2) ordering submissions to maximize
the probability that a grader has previously seen a similar
solution, leveraging distributed representations of student
code in order to measure similarity between submissions.
Finally, we demonstrate in simulation that these algorithms
achieve higher grading accuracy than the current standard
random assignment process used for grading.

Keywords
similarity, code embeddings, embeddings, assessment, grad-
ing, human, simgrade, grade

1. INTRODUCTION
Free-response coding questions are a common component
of many exams and assessments in programming courses.
These questions are popular because they give students the
opportunity to show their understanding of course mate-
rial and demonstrate their coding and problem-solving skills
[16]. However, the flexible nature of these problems intro-
duces unique challenges when it comes to grading student
responses, which are compounded in situations where the

scale of the course necessitates a team of graders working
together (“group grading”). The difficulty of consistent ap-
plication of grading criteria by a group of graders stems from
the incredible diversity of student submissions that are gen-
erated for free-response coding questions. In particular, it
has been previously shown that the space of different student
solutions to free-response programming problems follows a
long-tailed Zipf distribution [18]. For this reason, it is chal-
lenging to develop automated systems for grading and pro-
viding feedback and thus human grading remains the gold
standard for grading such free-response problems. However,
even a team of human graders with extensive experience can
struggle to consistently and accurately apply a single, uni-
fied criteria when grading. This is problematic as it can
result in negative impacts on students in the form of incor-
rectly assigned grades and inaccurate feedback. Our goal in
this paper to explore the frontier of techniques improving
the process and outcomes of the exam grading experience.

Our main insight in developing improved approaches for
grading is that it is easier for graders to grade in a consis-
tent manner if they are able to grade similar submissions one
after another. First, we examine historical data to provide
concrete evidence of a relationship between grader accuracy
and the similarity of previously graded submissions to the
current submissions a grader is grading. Then, we propose
algorithms that group and order similar submissions in dif-
ferent ways to minimize grader error. Finally, we show that
these algorithms perform better than current baseline meth-
ods for grading. This work’s primary contributions are:

1. Reporting of grader errors in a CS1 course

2. Using historical data to demonstrate the potential ben-
efits of similarity-based grading

3. Three algorithms for grading using code similarity

1.1 Related Work
Autograding One commonly used approach to scale grading
is the use of autograders [6]. While useful for comparing
program output for correctness or matching short snippets
of code, autograders are more problematic for free-response
questions in exam settings. In such contexts, the subtlety of
understanding that human graders provide is often essential
to providing appropriate feedback to students and properly
assessing the (partial) correctness of their solutions. While
promising, fully autonomous AI solutions are not ready for

Sonja Johnson-Yu, Nicholas Bowman, Mehran Sahami and Chris Piech
“SimGrade: Using Code Similarity Measures for More Accurate Human
Grading”. 2021. In: Proceedings of The 14th International Conference on
Educational Data Mining (EDM21). International Educational Data Mining
Society, 833-837. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 833

grading CS1 midterms [14, 11, 18, 12] especially for contexts
with only hundreds of available student submissions [17].

Grading by Similarity The idea of grouping and organizing
student submissions in order to improve grading outcomes
has been previously proposed for a variety of problem types.
Merceron and Yacef [9] use vectors that encode students’
mistakes in order to group together students who make sim-
ilar mistakes when working on formal proofs in propositional
logic. Gradescope, designed by Singh et al. [15] offers func-
tionality for grading similar solutions, which is currently
most effective on multiple-choice-type questions. This ap-
proach has also been applied to short answer questions, as
explored by Basu et al. [2], as well as math problems, as
demonstrated by Mathematical Language Processing [8]. In
this paper, we identify ”similar” student responses on free-
response programming questions to improve grading quality.

Code Similarity In order to define similarity metrics for stu-
dent code submissions, we apply techniques for generat-
ing numerical embeddings for student programs. Henkel
et al.what [5] created abstracted symbolic traces, a higher-
level, light-syntax summary of the programs, and embed-
ded them using the GloVe algorithm [13]. Alon et al. [1]
pioneered code2vec, an attention-based embedding model
specifically used to represent code. Recently, further ad-
vances have been made to improve code embeddings by
training contextual AI models on large datasets from Github
[7]. For this application, we favor simpler unsupervised em-
bedding strategies that do not require human-generated la-
bels by adapting the popular NLP technique Word2vec [10],
in which “word” representations are derived from surround-
ing context.

1.2 Dataset
Our analysis focuses on the student submissions and grader
logs from four exams for an introductory programming (CS1)
course taught in Python. The breakdown of summary statis-
tics across the four exams is presented in Table 1. As a note,
a “submission” is defined as one student’s written answer to
one free-response problem – thus, the total number of sub-
missions for a given exam is roughly the number of students
times the number of coding problems on the exam. In to-
tal, we analyze 11,171 student submissions across 1,490 stu-
dents. Additionally, we have grading logs for every student
submission, which consists of information about the grader,
the criteria items applied, the final score, and the amount of
time that the grader spent on the submission. 199 graders
contributed to grading these four exams. As discussed be-
low, the same student submission is sometimes graded by
more than one grader for validation purposes. Thus, our
dataset contains 14,597 individual grading log entries.

Our grading data comes from a grading software system
that randomly distributes student submissions to graders.
Among the standard student submissions for grading, this
software also inserts “validation” submissions that have al-
ready been graded by senior teaching assistants. Every grader
assigned to a specific problem will grade all “validation” sub-
missions for that problem. The presence of these special
submissions creates opportunities for assessing grader per-
formance, both relative to their peers and relative to “ex-
pert” performance.

Exam # # Students # Submissions # Graders
1 533 3,731 53
2 259 1,813 52
3 247 2,470 51
4 451 3,157 43

Total 1,490 11,171 199

Table 1: Exam Grading Dataset Summary Statistics

2. NATURAL GRADING ERROR
While anecdotal experience of grading inconsistency is a
common trend in our experience as educators, our first fo-
cus is to quantify the inconsistencies present in historical
grading sessions in a rigorous manner. In particular, our
analysis focuses on the aforementioned “validation” submis-
sions that were specially handled by the grading software
and assigned to every grader working on a specific problem.
As a result, we had a subset of the grading logs for which
we knew both the true grade (as defined by an expert) and
the “validation” grade assigned by each grader. Plotting
these values against one another is shown in Figure 1, which
reveals troubling inconsistencies in the grades assigned by
graders. With an RMSE of 7.5 (i.e., average error of 7.5
percentage points per problem), we see that grading error is
significant, nearly on the order of what would translate to
a full letter grade. Linear regression on this plot yields an
R-squared coefficient of 0.947 indicating that while the error
may be high, the direction of errors is generally unbiased.
In other words, there is not systematic over/under-grading.
Rather, the grading errors tend to be randomly distributed
around the true grade. Thus, the rest of this paper focuses
on methods for decreasing this demonstrated inconsistency
(absolute error) in human grading.

Figure 1: True grade assigned by expert vs. validation grade
assigned by human grader

3. METHODS
In this section, we will first outline methods for answering
key questions about the problem of improving human grad-
ing using similarity scores. Then, we will present three novel
algorithms for improving human grading.

3.1 Can code similarity be accurately captured?
We generate program embeddings for all student submis-
sions in our corpus. Word embeddings are an established

834 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 2: Submission assignment via three algorithms: Cluster, Snake, Petal

method of encoding semantics in human language [10, 13,
3, 3], and these same techniques applied to code accomplish
similar results. Algorithms for generating embeddings are
constantly evolving and improving; to avoid over-optimization
at the embedding generation stage, we chose to employ the
simple baseline Word2Vec algorithm. We then demonstrated
that our embeddings are semantically significant using zero-
shot rubric sampling [18]. For details, see the Appendix1.

3.2 Does similarity influence grader accuracy?
We hypothesize that graders score submissions more accu-
rately when they have recently seen a submission similar to
the current submission. To test this hypothesis, we ana-
lyze grading data for four exams. First, for each grader, we
generate a “percentage grading error,” which is an average
of their absolute percent deviation from the correct answer
on all validation submissions that they graded. Then, for
each of the validation submissions that a grader evaluated,
we sort their personal grading logs by time and look at the
window of three submissions leading up to each validation
submission they graded. To quantify similarity of the valida-
tion submission to recently graded submissions, we take the
maximum of the cosine similarity between the current vali-
dation submission and the three previous submissions. We
plot the maximum similarity between a validation submis-
sion and the previous submissions against a grader’s per-
centage grading error in order to identify the relationship
between a grader’s history and accuracy. Then we can infer
a formula that approximates the relationship between pre-
vious submission similarity and percentage grading error.

3.3 Algorithms to assist human grading
We compare four algorithms for assigning submissions to
graders: (1) Random, in which submissions are randomly
assigned to graders, with five “validation” submissions in-
terspersed for assessing grader bias. This is the status quo
and serves as the baseline. (2) Cluster, in which each grader
is assigned to a cluster of highly similar submissions. (3)
Snake, in which each grader is randomly assigned a set of
submissions and is shown the submissions greedily by near-
est neighbor. (4) Petal, in which the dataset is divided into
“petals” and all graders begin in the same place. Figure 2
provides a visualization of (2), (3), and (4). Detailed expla-
nations of the algorithms are in the Appendix1.

1https://compedu.stanford.edu/papers/appendices/
SimGradeAppendix.pdf

Figure 3: Relationship between grader accuracy and similar-
ity in 3-submission window prior to validation submission

3.4 Algorithm evaluation
To evaluate the performance of the different algorithms, we
simulate grading for a 444-person six-problem exam and ten
graders, using real student programs from an actual exam.
Details about the selection of validation submissions are in
the Appendix1. When running the simulation, we infer per-
centage grading error by examining the similarity of the pre-
vious three submissions to the current submission. While
we emphasize grader error as the most important metric
for assessing an algorithm, a secondary consideration is how
naturally validation submissions integrate with the rest of
a grader’s assigned submissions. Ideally, a validation sub-
mission is not “out-of-distribution” with respect to the other
submissions that a grader is assigned. Otherwise, a grader
will be able to tell when they are being evaluated for grad-
ing accuracy. To assess how “out-of-distribution” the vali-
dation submissions are, we examine how dissimilar the vali-
dation submissions are from the non-validation submissions
assigned to a grader. Specifically, for each validation submis-
sion, we measure the distance between the validation sub-
mission and the nearest non-validation submission assigned
to that grader. We average over the five validation submis-
sions in order to get the mean minimum distance from val-
idation to non-validation for a grader, which will be higher
if one of the validation submissions is out-of-distribution.

4. EXPERIMENTAL RESULTS
4.1 Similarity scores are meaningful
Embeddings are semantically significant because similarity
between embeddings corresponds to similarity between sub-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 835

https://compedu.stanford.edu/papers/appendices/SimGradeAppendix.pdf
https://compedu.stanford.edu/papers/appendices/SimGradeAppendix.pdf

Figure 4: Left: Average per-submission grading error for each algorithm, Center: Distance of validation submissions from
normally assigned submissions, Right: Summary performance statistics, including comparison to random baseline.

mission feedback labels, as described in the Appendix1.

4.2 Similarity influences grading
Graders score assignments more accurately when they have
recently seen a submission similar to the current submission
they are grading. From our analysis of historical data, we
find that when there is a high similarity between the cur-
rent submission and at least one of the previous three sub-
missions, the percentage grading error is low. Conversely,
when the similarity between previous submissions is low, the
percentage grading error is high. We find a linear relation-
ship between the maximum similarity of the previous three
submissions and the percentage grading error as shown in
Fig. 3, with R2 = 0.605. Given that the grading process
involves the numerous uncertainties that come along with
human involvement, we believe this correlation coefficient
shows a statistically significant relationship between histori-
cal similarity and grader accuracy. While the linear relation-
ship between historical submission similarity and percentage
grading error is a simplifying assumption, it is the best as-
sumption we can make given evidence provided in Fig. 3.

4.3 Improved accuracy by algorithm
We compare six algorithms for assigning submissions to graders
and selecting an order in which a grader will view a submis-
sion in Figure 4. We apply the equation of the linear rela-
tionship shown in Figure 3 to the similarity of submissions as
ordered for evaluation by different algorithms in our exper-
iments. This equation allows us to predict grader accuracy
when using the orderings provided by different algorithms.
We find that implementing a path ordering on a clustered
assignment of graders to submissions yields the lowest mean
error of 2.7% (bold-ed in Fig. 4), while the other algorithms
all show an improvement over the baseline 10.2% grading
error. We utilize bootstrapping [4] over 100,000 trials in or-
der to get the p-values that indicate the significance of the
difference in means between the baseline algorithm and the
other algorithms (see table in Fig. 4).

4.4 Validation viability by algorithm
When comparing the cluster, snake, and petal algorithms,
we observe that the cluster-based algorithms are most likely
to have validation submissions that are“out-of-distribution,”
with a mean validation distance of 0.0277. All other algo-
rithms have substantially lower mean minimum distances.

5. DISCUSSION
Overall, we saw that all of our novel proposed algorithms
for assignment of submissions to graders provided improve-
ments over the random baseline in simulation. In general,
we saw that path-based algorithms (petal-path and cluster-
path) had lower grading error than their non-path counter-
parts because they are designed to optimize for maximum
similarity between consecutive submissions that a grader
grades. In particular, the cluster-path algorithm yielded the
lowest grader error in simulation due to its strong tendency
to assign very similar submissions to graders. On the other
hand, the snake algorithm provided the most optimal aver-
age distance to validation submissions, which may be impor-
tant for a smooth experience for a real-life grader. Finally,
we saw that the petal algorithm offered a balanced trade-off
between these two extremes – while not optimal in either
metric, it can be a good choice when both metrics (grading
error and validation submission distance) are equally impor-
tant for designing a grading experience. For a more in-depth
discussion of our observed results, see the Appendix1.

6. CONCLUSION
Through analysis of historical exams, we demonstrated that
there is inconsistency between true scores and grader-assigned
scores. In doing so, we introduce a new task and associated
measure, grading correctness. Moreover, we found experi-
mental support for our hypothesis that graders are able to
assign scores to exam problems more accurately when they
have previously seen similar submissions. In turn, we pro-
posed the use of code embeddings to capture semantic in-
formation about the structure and output of programs and
identify similarity between submissions. Using similarity
of code embeddings in conjunction with historical grading
data, we demonstrate in simulation that graders are indeed
able to score submissions more accurately when they have
previously seen another submission similar to it. We propose
and compare several algorithms for this task, showing that it
is possible to achieve a significant increase in grading accu-
racy over simple random assignment of submissions. Future
extensions of this work include (i) improvements on code
embeddings and (ii) deployment of the grading algorithms
in an operational system to allow more direct experimental
comparison of grading accuracy. The use of such algorithms
show promise for improving accuracy, and in turn fairness,
in evaluations of student performance.

836 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

7. REFERENCES
[1] U. Alon, M. Zilberstein, O. Levy, and E. Yahav.

code2vec: Learning distributed representations of
code. CoRR, abs/1803.09473, 2018.

[2] S. Basu, C. Jacobs, and L. Vanderwende.
Powergrading: a clustering approach to amplify
human effort for short answer grading. Transactions of
the ACL, October 2013.

[3] J. Devlin, M. Chang, K. Lee, and K. Toutanova.
BERT: pre-training of deep bidirectional transformers
for language understanding. CoRR, abs/1810.04805,
2018.

[4] B. Efron. Bootstrap methods: Another look at the
jackknife. The Annals of Statistics, 7(1):1–26, Jan.
1979.

[5] J. Henkel, S. Lahiri, B. Liblit, and T. W. Reps. Code
vectors: Understanding programs through embedded
abstracted symbolic traces. CoRR, abs/1803.06686,
2018.

[6] M. Joy, N. Griffiths, and R. Boyatt. The boss online
submission and assessment system. J. Educ. Resour.
Comput., 5(3):2–es, Sept. 2005.

[7] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi.
Learning and evaluating contextual embedding of
source code, 2019.

[8] A. S. Lan, D. Vats, A. E. Waters, and R. G. Baraniuk.
Mathematical language processing: Automatic grading
and feedback for open response mathematical
questions. In Proceedings of the Second (2015) ACM
Conference on Learning @ Scale, L@S ’15, pages
167–176, New York, NY, USA, 2015. ACM.

[9] A. Merceron and K. Yucef. Clustering students to help
evaluate learning. Technology Enhanced Learning,
2004.

[10] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information
Processing Systems 26, pages 3111–3119. Curran
Associates, Inc., 2013.

[11] A. Nguyen, C. Piech, J. Huang, and L. Guibas.
Codewebs: scalable homework search for massive open
online programming courses. In Proceedings of the
23rd international conference on World wide web,
pages 491–502, 2014.

[12] S. Parihar, Z. Dadachanji, P. K. Singh, R. Das,
A. Karkare, and A. Bhattacharya. Automatic grading
and feedback using program repair for introductory
programming courses. In Proceedings of the 2017 ACM
Conference on Innovation and Technology in
Computer Science Education, pages 92–97, 2017.

[13] J. Pennington, R. Socher, and C. D. Manning. Glove:
Global vectors for word representation. In Empirical
Methods in Natural Language Processing (EMNLP),
pages 1532–1543, 2014.

[14] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati,
M. Sahami, and L. Guibas. Learning program
embeddings to propagate feedback on student code,
2015.

[15] A. Singh, S. Karayev, K. Gutowski, and P. Abbeel.
Gradescope: A fast, flexible, and fair system for

scalable assessment of handwritten work. In
Proceedings of the Fourth (2017) ACM Conference on
Learning @ Scale, L@S ’17, pages 81–88, New York,
NY, USA, 2017. ACM.

[16] D. Thissen, H. Wainer, and X.-B. Wang. Are tests
comprising both multiple-choice and free-response
items necessarily less unidimensional than
multiple-choice tests?an analysis of two tests. Journal
of Educational Measurement, 31(2):113–123, 1994.

[17] K. Wang, B. Lin, B. Rettig, P. Pardi, and R. Singh.
Data-driven feedback generator for online programing
courses. In Proceedings of the Fourth (2017) ACM
Conference on Learning@ Scale, pages 257–260, 2017.

[18] M. Wu, M. Mosse, N. Goodman, and C. Piech. Zero
shot learning for code education: Rubric sampling
with deep learning inference, 2018.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 837

A Time-Aware Approach to Detect Patterns and Predict
Help-Seeking Behaviour in Adaptive Educational Systems

Raquel Horta-Bartomeu
Universidad Nacional de Educación a Distancia

(UNED)
rhorta3@alumno.uned.es

Olga C. Santos
aDeNu Research group

Universidad Nacional de Educación a Distancia
(UNED)

ocsantos@dia.uned.es

ABSTRACT
In distance education and some computer-assisted learning
scenarios asking for help when needed is important. Some
students do not ask for help even when they do not know
how to proceed. In situations where a teacher is not present,
this can be a serious setback. We aim to find an approach
to learn about students’ help-seeking behaviour by studying
sequences of actions that end with the student asking for
help. The goal is to be able to recognize those students who
need help but fail to ask for it and offer them assistance. We
propose to include the temporal context of user-platform
interaction and suggest an ensemble model to learn from
both general and personal tendencies.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses in Edu-
cation; I.2.6 [Artificial Intelligence]: Learning; I.5.4 [Pattern
recognition]: Applications; G.3 [Probability and Statistics]:
Markov processes, Time series analysis

Keywords
Adaptive systems, time series, educational data mining, per-
sonalized education

1. INTRODUCTION
Researchers have found help-seeking to be important in learn-
ing scenarios and observed that some students do not reach
for help when they need it [4, 25]. When a teacher is not
always present, and the student needs some level of self-
discipline, not asking for help might be problematic as the
student could end up wheel-spinning [18] or abandoning the
task. The longitudinal nature of student-platform interac-
tions leads us to think that taking into account the temporal
context could be useful for analysing help-seeking behaviour.
There is literature on help-seeking including temporal data,
and some works have focused on performance prediction or
have centred on specific knowledge topics. However, we have
not found work that focuses on the behaviour around help-

seeking actions, including temporal data and independent of
student knowledge and task content. In this Master Thesis,
we propose to represent student-platform interactions as se-
quences of actions, study whether sequential patterns exist
in students’ help-seeking behaviour and explore whether a
prediction model could identify students that need help but
do not ask for it.

2. RELATED RESEARCH
Time series studies are very common in natural sciences and
some social sciences. Studies that make use of time series
data can also be found in the field of educational sciences [5,
8, 9, 13, 14, 15, 17, 29]. We have reviewed existing works on
both help-seeking behaviour and time series data analysis.
In section 3 we highlight the specific differences between the
works exposed here and what we propose to do.

2.1 Help-seeking behaviour
Knowing when to ask for help is important [4, 11]. [10, 11]
agreed that it could improve resilience and efficacy. Accord-
ing to [10], help-seeking has been studied for years but the
rise of new technologies opens new research opportunities on
help-seeking in these new contexts.

Some works have focused on detecting specific situations
that are known to be problematic. For instance, in classes
where the teacher has more students than desired, it might
be difficult for them to identify students who need help or
are stuck. [18] developed a method using machine learn-
ing (ML) models to automatically predict wheel-spinning
and decide how to intervene. [4] attacked both problems
of asking for help too much and not enough by negotiat-
ing with the student. Rather than using ML models, they
predefined a set of heuristics. A slightly different situation
was studied by [32]. Their goal was to find a connection
between student procrastination (i.e. intentionally delaying
work) and their activities within different learning materials.
They used data from a massive open online course (MOOC)
platform and found two main study strategies: students who
delayed work worked intensively for short periods followed
by long pauses, while students who did not delay usually
split the tasks into subtasks and worked more constantly
but less intensively.

Other works have focused on knowledge tracing [6, 7, 24],
however, we will not be considering student knowledge but
their behaviour and interaction with the educational system.

Raquel Horta-Bartomeu and Olga C. Santos “A Time-Aware Approach to
Detect Patterns and Predict Help-Seeking Behaviour in Adaptive Educa-
tional Systems”. 2021. In: Proceedings of The 14th International Confer-
ence on Educational Data Mining (EDM21). International Educational Data
Mining Society, 838-843. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

838 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

2.2 Pattern recognition and sequence predic-
tion

To cluster categorical sequences, one needs to define the
function or method used to compare the sequences pair-
wise, that is, how to measure the distance between them.
[5] analyzed activity frequency through the length of dif-
ferent online courses to study if different activity patterns
were related to student performance. They used agglom-
erative hierarchical clustering (AHC) with the Levenshtein
distance. [17] used a similar approach and found patterns in
group problem-solving strategies analysing group behaviour
of students working on interactive tabletops. [8] also used
AHC with the Levenshtein distance and found 3 groups of
similar study state sequences using data from a drill-and-
practice learning environment in college mathematics.

[13] found that a large subgroup of MOOC participants
might have been engaging by watching video lectures with-
out doing the assignments. Their methodology consisted in
constructing, for each student, vectors of states represent-
ing their engagement trajectories through the course. They
computed the distance between trajectories by assigning a
numerical value to each label and calculating the L1 norm.

[14] proposed a method that would capture the clusters’
number and size evolution over time. They transformed
log data sequences into Markov chain models. Then, they
computed the pairwise similarities by computing the ex-
pected transition probabilities using the stationary distri-
bution over the actions. They used the Jensen-Shannon di-
vergence and the Hellinger distance between the expected
transition frequencies of the Markov chains (more details in
[21], as cited in [14]). They used k-means with an evolu-
tionary clustering method that tracks the evolution of the
similarities over time by smoothing the similarity matrices
([31] as cited in [14]). [9] also modelled student behaviour
using Markov chains. They randomly generated Markov
chain priors and assigned each sequence to the prior most
likely to generate it. Then, each prior would be updated to
the Markov chain generated using its associated sequences.
These last two steps were repeated until less than 5% of the
sequences would change their prior. As they stated, this
method is similar to k-means but with the clustering being
dependent on the Markov chains instead of on a similarity
measure performed directly on the sequences.

[29] was able to detect unprofitable learning experiences and
predict student performance by using time series data. They
used dynamic time warping (DTW) to measure the distance
between sequences and performed hierarchical clustering to
find clusters. DTW was proved to be useful; however, to
the best of our knowledge, it is not suitable for categorical
sequences but only for numerical ones and has therefore been
ruled out as a possible approach to our specific problem.

Artificial neural networks (ANNs) are known to be useful
for a vast variety of tasks. When it comes to time series, the
most used ones seem to be recurrent neural networks (RNN)
and long short-term memory networks (LSTM). RNNs’ main
limitation is their difficulty to work with long sequences due
to a vanishing gradient problem [12]. While LSTMs solve
this issue, they usually take quite a long to train and have
difficulties in capturing long-term dependencies in long se-

quences [12, 30]. Finally, a novel approach called trans-
former networks was introduced by [30]. This approach in-
troduces what the authors called an attention mechanism,
which solves the long-term dependency problem in LSTMs.
[2] used LSTMs in a multi-module system to analyse the
relationship between intent and user actions in interactive
systems. [16] used time-aware LSTMs (T-LSTM), a spe-
cial type of LSTM that can handle time irregularities, to
model student knowledge state in continuous time. They
conducted an empirical experiment and discovered that they
outperformed regular LSTMs, logistic regression and recent
temporal pattern mining (RTPs). [15] used RTPs along with
support vector machine (SVM) and logistic regression to
predict student performance and detect the need for inter-
vention using students’ answers to programming exercises.
They were able to classify students within only 1 minute
into the exercise.

3. EXPECTED CONTRIBUTION
To our knowledge, this would be the first work to use student-
platform interaction data in form of sequences of actions to
predict help-seeking behaviour while being independent of
the topic being taught. Our approach differs from exist-
ing work by joining three main aspects. First, help-seeking
behaviour: we have found works that linked the need for in-
tervention with performance or student knowledge [6, 15, 16]
instead of analyzing the behaviour surrounding actual help-
seeking actions. Second, time-awareness: we have found
works that have used cumulative data (e.g. number of at-
tempts) to predict the need for intervention [18] but did
not take into account the temporal context. Third, topic-
independence: we have found works that did take into ac-
count the temporal context but focused on the content of
student answers for specific topics [15, 23].

The approach we propose would include the temporal con-
text, would not be dependent on the nature of the content
being taught and would focus on user-platform interaction
(i.e. clicking, typing, deleting, consulting theory, etc).

While this research is still in the early stages, we believe
in the importance of students’ affective state [26, 27, 28]
and might consider including the affective context if possi-
ble. Finally, if we were to find successful results, we believe
that richer predictions could be obtained by joining student
knowledge information [6, 15, 16] along with the information
learnt from help-seeking behaviour. However, this is out of
the scope of this research.

4. RESEARCH QUESTIONS
We aim to study whether our proposal would be feasible and
for that we present two research questions:

Q1 Are there temporal patterns in students help-seeking
behaviour?

Q2 Can temporal student-platform interaction data be used
to detect students who need help but do not ask for it?

5. PROPOSED METHODOLOGY
We will be dealing with both supervised and unsupervised
problems: we will be using clustering algorithms towards
answering Q1 and prediction algorithms towards answering

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 839

Q2. We propose to perform clustering (Q1) as a preliminary
step to a more complex system (Q2). Clustering can lead
to interpretable results and reveal information that could be
useful to pedagogical experts while some prediction methods
are more powerful but may act as a black box. As well as
considering less interpretable methods, the system proposed
in Q2 addresses personalization. We expose the methodol-
ogy we intend to follow, and the methods we have considered
so far.

5.1 Data
The dataset to be used is yet to be found or constructed.
Efforts are being made to find a suitable dataset. Some
promising options are being considered but are yet to be
confirmed. Even though, the characteristics that we look for
in a dataset have been defined. The dataset should contain
action logs that originated from the interaction between a
student and a learning platform that has some kind of help
tool that the student can choose to use. Each log should
include, at least: (1) action type, (2) action start time, (3)
action end time, (4) student identification (anonymized) and
(4) exercise identification.

Given that some actions are continuous rather than instan-
taneous, we will need to decide how to represent this charac-
teristic. As an example, a student might consult the theory
section of the system just for 10 seconds, or they could spend
5 minutes consulting the content. It would be desirable that
those two cases were not represented in the same way and
that duration was taken into account. When using Markov
chains, if we consider action durations, the probabilities of
staying in the same state will always be 0, and the duration
would not be taken into account. To solve this, we could
consider splitting the actions into time slots. We will need
to take into account that some other actions might be in-
stant actions, with practically no duration, e.g. submitting
an exercise. We will need to make sure that the model we
use does not undermine these actions. Finally, if possible,
we might consider including idle actions, that is, time in
which the student does nothing.

5.2 Clustering
To answer Q1, we encounter two main decisions: how to
determine the distance between sequences and which clus-
tering algorithm to use.

5.2.1 Distance between the sequences
The main challenge of dealing with sequential data is that
they cannot be directly fed to traditional clustering algo-
rithms. First, one needs to decide how to represent the
sequences and define how to compare them. We have de-
cided to try two methods for representing the distance be-
tween sequences: Markov chains and the Levenshtein dis-
tance. Markov chains represent a sequence by considering
the probability of going from one state (i.e. action) to an-
other. The basic form of a Markov chain only considers
the current state to predict the next one. This could be
a limitation and therefore n-order Markov chains could be
considered. In a Markov chain of order n, n previous steps
are taken into account. On the other hand, the Levenshtein
distance is a type of edit distance, that is, the minimum
changes required to transform one sequence into another.

The Levenshtein distance considers insertions, deletions and
substitutions.

5.2.2 Clustering algorithms
Taking into account existing work, we have narrowed the
search for a clustering method down to two: hierarchical
clustering and k-means. The main drawback of k-means is
the requirement of a predefined number of clusters, which
in our case is unknown. Hierarchical clustering has the ad-
vantage that the number of clusters can be chosen a poste-
riori, however, it can be expensive when dealing with large
datasets. K-means is usually a fast algorithm, although it
might depend on the chosen distance metric [19].

5.3 Prediction
Towards answering Q2, we propose a prediction system; its
characteristics are presented in this section.

5.3.1 System structure
While we want to take advantage of how students in general
behave, we want to provide a personalized learning experi-
ence. To do so, a student’s personal traits and tendencies
must be taken into account. Therefore, we aim to take ad-
vantage of the general traits of student behaviour while pre-
serving the personal study tendencies of each student, thus
combining an inter-subject with an intra-subject approach.
To achieve this goal, we propose an ensemble system com-
posed of three blocks. We name the system SHEmblE (Se-
quence analysis of Help-seeking behaviour with an ensEM-
BLE model for Educational systems)

Firstly, we will have a prediction model that will be trained
with all the available data. We will refer to this model as
the common model as it will be shared among all students.
We expect it to be able to learn the general patterns of help-
seeking behaviour if those exist.

Secondly, we will have what we call a personal model. Each
student will have each own personal model trained with their
own data, if any. We expect this model to be able to learn
the personal tendencies and preferences of a student.

Finally, a third model will combine the predictions of com-
mon and personal models. We call this model the ensemble
model and we expect it to learn how to combine the predic-
tions the best way possible.

We will focus on students who regularly ask for help for the
general model. However, from those students, we will take
into account interactions that exhibit help-seeking behaviour
as well as those in which the student does not need help to
successfully reach their goal. Sequences from students who
never ask for help will not be included as we cannot know
if the student did really not need assistance, or they simply
never ask for it.

We are aware that data size will be a concern regarding
the personal model. Its goal is to provide individualization,
and thus, we believe it is an important part of the system
[1, 7, 22]. Therefore, the ensemble model could take into
account the amount of data with which the personal model
was trained in order to weigh the predictions properly.

840 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 1: General schema of SHEmblE, the proposed system.

The ultimate goal, if this system was to achieve good results,
would be to implement it in a real educational system. Fig-
ure 1 represents the overall structure of the proposed sys-
tem. The idea would be to be able to detect, in real-time,
students that need help and offer it to them. Apart from
collecting logs from students that ask for help themselves,
whenever we offer help we would save their response as well.
The scope of this work comprises the common, personal and
ensemble models, the rest could be the object of study of
future research.

5.3.2 Prediction algorithms
Time series prediction has been the challenge of many works
in literature. This work deals with categorical time series,
in other words, categorical sequences. It has been nar-
rowed down to three methods: artificial neural networks,
hidden Markov models, and recent temporal patterns. As
exposed in section 2, ANNs have been used in problems in-
volving time series data and showed promising results, dif-
ferent types found in the literature will be considered (e.g.
LSTM, T-LSTM, transformers). HMMs have also been use-
ful for predicting and classifying action sequences. [20] found
that HMMs needed fewer training samples and less CPU
time while performing similar to LSTMs. Finally, RTPs [3]
have been successful at similar tasks. [15] used them and
managed to detect students that needed intervention only
one minute after starting an exercise. While their data con-
sisted of attributes of the students’ answers’ content and
ours will consist of interaction data, we believe that a simi-
lar approach could be applied to our particular task.

5.3.3 System training and evaluation
The system we propose is going to be composed of three
different models. These models will be evaluated indepen-
dently and altogether. We intend to evaluate the common
model by performing a variation of the leave-one-out cross-
validation (LOOCV) in which in each iteration the whole
data of one student is left out for validation. Regarding
the personal model, the dataset will be split by the se-
quences’ student id and for each student, a LOOCV will be
performed. The performance of the personal model will be
assessed by combining all the performances (eg. mean and
standard deviation) and special attention will be paid to pos-

Figure 2: Graphical representation of the evaluation scheme
and the generation of the dataset for the ensemble model.

sible outliers. Finally, the ensemble model block will need to
be fed the predictions of the other two models. Therefore, a
whole new dataset E will need to be constructed such that:

• Consider the set of n students S = {si|i ∈ {1..n}}.

• Each student si has got mi sequences
Qi = {qij |j ∈ {1..mi}}

• The instance eij will correspond to the sequence j of
the student i and will contain at least 2 features:

– The output of the common model trained using
the sequences from students other than si.

– The output by the personal model trained using
the sequences of student si other than qij .

Moreover, additional features could be added, such as
the size of the dataset used to train the personal model,
given that some students might have few or no data.

• The dataset E will then have
∑n

i=1 mi rows.

Once the dataset has been constructed, k-fold cross-validation
can be performed. Figure 2 shows a graphical representation
of the proposed evaluation method.

6. CONCLUSIONS
We have not found works that aim to detect students who
need help by analysing behaviour around help-seeking ac-
tions using time-aware user-platform interaction data. In
this Master Thesis, we aim to study whether such data can
be useful to predict help-request actions and propose an en-
semble system that combines a shared model and a personal
model so as to achieve individualization.

This work is still at a very early stage. Any feedback and
ideas on this proposal are very much welcomed. Specifically,
comments on the sequence representation, and the clustering
and predictive model choices will be appreciated.

7. ACKNOWLEDGEMENTS
The work is partially supported by UNED’s master’s de-
gree in Research in AI and the project INT2AFF funded
under Grant PGC2018-102279-B-I00 (MCIU/AEI/FEDER,
UE) by the Spanish Ministry of Science, Innovation and Uni-
versities, the Spanish Agency of Research and the European
Regional Development Fund (ERDF).

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 841

8. REFERENCES
[1] M. Abell. Individualizing learning using intelligent

technology and universally designed curriculum. The
journal of technology, learning and assessment, 5(3),
2006.

[2] R. Agrawal, A. Habeeb, and C. Hsueh. Learning user
intent from action sequences on interactive systems. In
Thirty-Second AAAI Conference on Artificial
Intelligence, page 59–64, New Orleans, Louisiana,
USA, February 2-7 2018.

[3] I. Batal, D. Fradkin, J. Harrison, F. Moerchen, and
M. Hauskrecht. Mining recent temporal patterns for
event detection in multivariate time series data. In
Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 280–288, 2012.

[4] C.-Y. Chou, K. R. Lai, P.-Y. Chao, S.-F. Tseng, and
T.-Y. Liao. A negotiation-based adaptive learning
system for regulating help-seeking behaviors.
Computers & Education, 126:115–128, 2018. ID:
271849.

[5] R. Conijn and M. V. Zaanen. Trends in student
behavior in online courses. In 3rd International
Conference on Higher Education Advances, pages
649–657, 2017.

[6] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction,
4(4):253–278, 1994.

[7] A. T. Corbett, J. R. Anderson, V. H. Carver, and
S. A. Brancolini. Individual differences and predictive
validity in student modeling. In Proceedings of the
Sixteenth Annual Conference of the Cognitive Science
Society, 1994.

[8] M. Desmarais and F. Lemieux. Clustering and
visualizing study state sequences. In Proceedings of the
6th International Conference on Educational Data
Mining (EDM 2013), pages 224–227, 2013.

[9] C. Hansen, C. Hansen, N. O. D. Hjuler, S. Alstrup,
and C. Lioma. Sequence modeling for analysing
student interaction with educational systems. In
Proceedings of the 10th International Conference on
Educational Data Mining, EDM 2017, pages 232–237.
International Educational Data Mining Society
(IEDMS), 2017.

[10] S. Järvelä. How does help seeking help?–new prospects
in a variety of contexts. Learning and Instruction,
21(2):297–299, 2011.

[11] S. A. Karabenick and R. S. Newman. Help Seeking in
Academic Settings: Goals, Groups, and Contexts.
Lawrence Erlbaum Associates, Inc, 2006.

[12] F. Karim, S. Majumdar, H. Darabi, and S. Chen.
Lstm fully convolutional networks for time series
classification. IEEE access, 6:1662–1669, 2017.

[13] R. Kizilcec, C. Piech, and E. Schneider.
Deconstructing disengagement. In Proceedings of the
Third International Conference on Learning Analytics
and Knowledge, LAK ’13, pages 170–179. ACM, 2013.

[14] S. Klingler, T. Käser, B. Solenthaler, and M. Gross.
Temporally coherent clustering of student data. In
Proceedings of the 9th International Conference on
Educational Data Mining (EDM 2016), pages

202–209, 2016.

[15] Y. Mao. One minute is enough: Early prediction of
student success and event-level difficulty during novice
programming tasks. In Proceedings of the 12th
International Conference on Educational Data Mining
(EDM 2019), pages 119–128, 2019.

[16] Y. Mao, S. Marwan, T. W. Price, T. Barnes, and
M. Chi. What time is it? student modeling needs to
know. In Proceedings of The 13th International
Conference on Educational Data Mining (EDM 2020),
pages 171–182, 2020.

[17] R. Martinez, K. Yacef, J. Kay, A. Al-Qaraghuli, and
A. Kharrufa. Analysing frequent sequential patterns of
collaborative learning activity around an interactive
tabletop. In 4th International Conference on
Educational Data Mining, EDM 2011, pages 111–120.
CEUR-WS, 2011.

[18] T. Mu, A. Jetten, and E. Brunskill. Towards
suggesting actionable interventions for wheel-spinning
students. In 13th International Conference on
Educational Data Mining (EDM 2020), pages
183–193, 2020.

[19] E. Ofitserov, V. Tsvetkov, and V. Nazarov. Soft edit
distance for differentiable comparison of symbolic
sequences. 2019. Preprint available at
https://arxiv.org/abs/1904.12562.

[20] M. Panzner and P. Cimiano. Comparing hidden
markov models and long short term memory neural
networks for learning action representations. In
International Workshop on Machine Learning,
Optimization, and Big Data, pages 94–105. Springer,
2016.

[21] L. Pardo. Statistical inference based on divergence
measures. Chapman and Hall / CRC Press, 2018.

[22] Z. A. Pardos and N. T. Heffernan. Modeling
individualization in a bayesian networks
implementation of knowledge tracing. In International
Conference on User Modeling, Adaptation, and
Personalization, pages 255–266. Springer, 2010.

[23] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati,
M. Sahami, and L. Guibas. Learning program
embeddings to propagate feedback on student code. In
International conference on machine Learning, pages
1093–1102. PMLR, 2015.

[24] C. Piech, J. Spencer, J. Huang, S. Ganguli,
M. Sahami, L. Guibas, and J. Sohl-Dickstein. Deep
knowledge tracing. In Proceedings of Advances in
Neural Information Processing Systems 28 (NIPS
2015), 2015.

[25] I. Roll, R. S. d. Baker, V. Aleven, and K. R.
Koedinger. On the benefits of seeking (and avoiding)
help in online problem-solving environments. Journal
of the Learning Sciences, 23(4):537–560, 2014.

[26] S. Salmeron-Majadas, R. S. Baker, O. C. Santos, and
J. G. Boticario. A machine learning approach to
leverage individual keyboard and mouse interaction
behavior from multiple users in real-world learning
scenarios. IEEE Access, 6:39154–39179, 2018.

[27] S. Salmeron-Majadas, O. C. Santos, and J. G.
Boticario. An evaluation of mouse and keyboard
interaction indicators towards non-intrusive and low
cost affective modeling in an educational context.

842 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Procedia Computer Science, 35:691–700, 2014.

[28] O. C. Santos. Emotions and personality in adaptive
e-learning systems: an affective computing perspective,
pages 263–285. Emotions and personality in
personalized services. Springer, 2016.

[29] S. Shen and M. Chi. Clustering student sequential
trajectories using dynamic time warping. In
Proceedings of the 10th International Conference on
Educational Data Mining (EDM 2017), pages
266–271, 2017.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. In Proceedings of the 31st
Conference on Neural Information Processing Systems
(NIPS 2017), 2017.

[31] K. S. Xu, M. Kliger, and A. O. H. Iii. Adaptive
evolutionary clustering. Data Mining and Knowledge
Discovery, 28(2):304–336, 2014.

[32] M. Yao, S. Sahebi, and R. F. Behnagh. Analyzing
student procrastination in moocs: A multivariate
hawkes approach. In 13th International Conference on
Educational Data Mining (EDM 2020), pages
280–291, 2020.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 843

Mixed Data Sampling in Learning Analytics
Julian Langenhagen

Goethe University Frankfurt, Germany
langenhagen@econ.uni-

frankfurt.de

ABSTRACT
Technical progress facilitates collecting large amounts and new
kinds of data in a wide range of areas. That enables versatile new
possibilities in empirical research, especially with high-frequency
data. However, researchers are confronted with the problem that
not all available data have the same (high) frequency. For many
common methods, it is necessary to adjust the high-frequency to
the low-frequency data, resulting in a significant loss of
information. In accounting research, this kind of problem exists
due to the low-frequency reporting data of companies on the one
hand and the high-frequency financial market data on the other. A
promising solution to this problem is the innovative approach of
mixed data sampling (MIDAS). Since the coexistence of low-
frequency data (e.g., exam grades) and high-frequency data (e.g.,
learning management system usage data) is also prevalent in
educational settings, this paper will discuss the first application of
MIDAS in the field of learning analytics.

Keywords

time series, mixed data sampling, regression, prediction models

1. INTRODUCTION
Educational Data Mining (EDM) is a comparatively young field
of research. Even though certain research methods within this area
are already established, the field regularly benefits from valuable
contributions from interdisciplinary research approaches [e.g.,
14]. The methods used in Educational Data Mining can be divided
into four different areas: prediction models, structure discovery,
relationship mining, and discovery with models [2]. The focus of
this paper lies on prediction models, especially on those with
time-series data. Methods in this area include classifications,
regressions, and latent knowledge estimation [2]. In this area,
EDM researchers are confronted with a specific problem. The
variety of available data sources is growing due to the use of
complex learning management systems (LMS), game-based
learning applications, or other digital educational tools. These
sources often contain high-frequency data and therefore offer a lot
of potential information. However, in the most commonly used
methods in prediction models, it is usually the case that data from
different samples have to be brought to the same frequency to be
analyzed. This can lead to a significant loss of information. For

example, data from an LMS can be gathered for every possible
usage second to be used as an explanatory variable. However,
there is usually a low-frequency variable on the other side of the
equation, such as the exam grade or score. Accounting researchers
face a similar problem. Companies usually only publish reports at
a pre-defined low frequency, as financial statements or other
reports are often made available only annually or quarterly. An
independent variable available in corresponding research settings
is, for example, the share price, which, like the data from the
LMS, can be collected at a very high frequency. However, the
information contained here cannot be fully included in the
analysis if the variables on both sides of the equation have to be
adjusted to the lowest frequency available. A solution to this
problem in accounting is the method of mixed data sampling
(MIDAS). As the underlying problem is comparable to typical
educational research settings, this method will be examined in
more detail in the following section, and then a possible
application in Educational Data Mining will be discussed using
the example of a concrete implementation in the context of a
learning app in higher education.

2. MIDAS IN ACCOUNTING RESEARCH
The basic MIDAS model builds on a regression equation where
the dependent variable is measured in a lower frequency than one
or more of the independent variables [5]. The problem of the
different frequencies on both sides is solved with two separate
components. In the first component, each time disaggregated
observation of the higher frequency variable is included separately
as an independent variable. In other words, if the higher frequency
data is observable N times within a period, then N separate
independent variables are included in the regression. This allows
the independent variable’s effect on the dependent variable to
evolve over the course of the examined period, even though the
dependent variable was only measured once. The second
component of MIDAS is the requirement of each of the N
regression coefficients to follow a specific function of time that is
shaped by few estimated parameters. For example, if the temporal
distribution is assumed to be linear, this condition only requires
two parameters, namely an intercept and a slope. This condition is
the key feature of MIDAS to establish a balance between model
flexibility and parsimony to be able to reasonably interpret the
results. This basic model can be enhanced in many different
directions, e.g., to whether certain events within the observed
period have a different relationship to non-event data [5] or for the
evaluation of unequally spaced temporal data [11]. MIDAS has so
far been used mainly in accounting and macroeconomics research
[e.g., 4, 5, 8]. The method is particularly well suited to accounting
research as companies are legally obliged to publish certain
economic data such as revenues and costs on a regular low-
frequency cycle (e.g., quarterly or annually). Share prices, on the
other hand, can generally be retrieved every second and are
therefore high-frequency. The job of professional analysts is to

Julian Langenhagen “Mixed Data Sampling in Learning Analytics”. 2021.
In: Proceedings of The 14th International Conference on Educational Data
Mining (EDM21). International Educational Data Mining Society, 844-
846. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

844 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

use this information, among other things, to predict the
companies’ disclosures. For forecasts based on regressions, it is
usually necessary to adjust the frequency of the different data
samples to the lowest frequency available. For a share price, this
could result in the quarterly mean, for example. Therefore, the
information within the high-frequency stock market data lost in
this process represents a major challenge for analysts to optimize
their forecasts. A previous study has shown that MIDAS can
significantly help analysts with this challenge and improve the
forecasts accordingly [6]. Building on these findings, the next
section will discuss whether MIDAS can also help lecturers and
researchers in education with specific predictions.

3. MIDAS IN LEARNING ANALYTICS
Prediction models belong to the most used methods in
Educational Data Mining [1, 7]. Usually, the corresponding
analyses are carried out with classifications or regressions [3]. The
prediction of exam grades or scores is one of the most frequently
investigated research questions within prediction models [13]. The
dependent variables are usually the exam points (regression), the
exam grade (classification or regression), or the fact of whether a
student has passed or not (classification). In many cases, usage
data from learning management systems are used as independent
variables. This data is usually high-frequency and must be
adjusted to the low-frequency dependent variables for the methods
mentioned above. For example, an LMS may record all clicks
within the system with precise temporal data. Still, in the above
analyses, this information needs to be restricted, for example, to
the total number of clicks over the entire period of use [9]. These
limitations could be overcome with more sophisticated methods.
For instance, it was shown that GARCH, a method from finance
research, outperformed the other common methods in multi-modal
learning analytics [14]. As of this writing, there is no publication
in the field of Educational Data Mining or Learning Analytics that
has used the MIDAS approach. This research gap should be filled
with the present project. In a subsequent step, MIDAS could even
be linked to GARCH to further enrich the research setting [10].
Thus, the research question of this project is whether MIDAS is
suitable for predicting exam results in an educational context and
how the results compare to those of already known methods in
Educational Data Mining. Previous studies have shown that it is
important to look not only at aggregate usage data for a given time
period but also at the distribution and sequence of the
corresponding data points [e.g., 9, 12]. MIDAS could make a
valuable contribution to the range of methods already available, as
it takes into account the high frequency of independent variables
while still providing well-interpretable and thus actionable results
for instructors. These results could, for example, be used to build
an early warning system for students at risk of academic failure.
The good interpretability of MIDAS results could make it easier
for instructors to take appropriate measures compared to when
using complex machine learning algorithms, whose results might
be much more challenging to interpret. Such an early warning
system is especially beneficial in lectures where there is little
performance feedback between students and teachers in general
(e.g., because there is only one final exam at the end of the
semester) or due to special conditions (e.g., COVID-19). In such
cases, all actors involved see the result of learning and teaching
behavior only at the end of the semester through the exam result.
Since it is already too late for countermeasures at this point, an
early warning system with clear recommendations for action
would be beneficial in such a context. Therefore, MIDAS is a

promising addition to the current variety of methods and should
be considered in future studies.

4. NEXT STEPS
A first application of the basic MIDAS model will be carried out
in the following setting as soon as the project’s data collection is
completed. We developed a mobile learning app for an
undergraduate accounting course at a large public university in
Europe. The course is compulsory and ought to be taken in the
third semester of the bachelor’s program. The course is taken by
approximately 600 students per semester and consists of a weekly
lecture, a biweekly exercise, and biweekly tutorials (five meetings
in small groups). The content of this course includes the basics of
cost accounting as well as a summary of their significance and
classification in the management accounting context. The primary
learning material consists of a slide deck, a collection of exercises
(with solutions), and a trial exam (all available as PDF files). In
the evaluations of earlier semesters, students often complained
that there were no contemporary possibilities to learn the subject
matter. Therefore, we decided to develop an additional learning
tool in the form of a smartphone app, which was launched in the
summer semester of 2019. The use of the app is voluntary, and no
extra credits or advantages for the final exam can be earned by
collecting points in the app. The tool is available via a web
version and as an app in the Google Play Store and the Apple App
Store. The app’s core element is a database with over 550
questions that covers all nine chapters of the course. In addition to
the question types single and multiple-choice, there are also
sorting and cloze text tasks. The app can be used in three modes:
The chapter mode can be used to answer specific questions about
a single chapter. As soon as a student has mastered the problems
of one chapter, the next chapter is unlocked. In random mode,
questions are randomly selected from the chapters that have
already been unlocked in chapter mode. In the third mode, the so-
called Weekly Challenge, users can compare themselves with
other students. Once a week, they have the opportunity to answer
25 questions randomly selected from the chapters already covered
in the lecture. The results are subsequently displayed in a weekly
and a semester ranking. For good performances in the Weekly
Challenge and other learning achievements, students can earn so-
called badges, which are then displayed in their account under
their self-chosen username. By answering questions (regardless of
the mode), students also earn learning points and thus increase
their learning level. The progress display of the individual
chapters shows students how well they currently master a
particular topic. The app has been specifically designed to
complement the existing course and is not intended to replace
other learning materials such as the slides or the collection of
exercises. The app contains an individual explanation for each
question which is displayed if a wrong answer is given. Thus,
students can work their way through the catalog of questions
independently of time and place and eliminate any gaps in their
understanding without having to rely on the presence of the
lecturers. This is an essential value-added for the students,
especially in such a large course with approximately 600 students
per semester. The collected app data consists of details about the
usage behavior of each student (e.g., time of use, performance
(history) regarding every question, and earned badges). At this
stage, we already have four semesters of app usage, and the data
set is growing as the research project is still ongoing. This is
especially promising as the situation regarding COVID-19 lead to
an exogenous shock. While in the years 2018 and 2019, the course
was held face-to-face, in the summer semester 2020, it was

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 845

converted into a purely online lecture. Apart from the launch of
the app and the switch to an online lecture, there were no teaching
design changes over the course of the semesters. The lecturer and
the learning materials remained constant, as well as the design and
the grading of the final exam. This unique setting could provide
valuable insights into the impact of COVID-19 on higher
education. The starting point of the corresponding analysis would
be a basic linear regression with the exam score as dependent and
usage data from the app as independent variable. The exam score
is measured once, while the usage data from the app could be
evaluated by every second of the semester. In this setting, we face
the challenge of unequal frequencies on both sides of the equation
that was described before. If we would only take the sum of total
questions answered by a student as the independent variable, we
would miss a lot of information. The type and especially the time
of usage can be decisive for the effect on the exam score. We
would miss all this information with reducing the app usage on
measures like total questions answered. Therefore, the MIDAS
approach offers a promising possibility to extract more insights
from the data set. A comparative analysis with other already
known methods in Educational Data Mining or Learning
Analytics, which take into account the high frequency of data,
could highlight the additional benefits of MIDAS for this research
area.

5. CONCLUSION AND FUTURE WORK
In this paper, it was shown that the innovative approach MIDAS
could be a promising extension of the variety of methods in
Educational Data Mining and Learning Analytics. Further insights
will be gained by testing the approach with the usage data from
our gamified learning app. Based on the findings, it will be further
discussed whether the basic model of MIDAS should be extended
for the use in an educational setting or whether other novel
methods should be applied in this setting. Besides, it could be
promising to apply the MIDAS approach to already published
analyses in order to test the corresponding added value. If the
results are similarly insightful as those in accounting research,
MIDAS could find numerous use cases in Educational Data
Mining and Learning Analytics.

6. REFERENCES
[1] Aldowah, H. et al. 2019. Educational data mining and

learning analytics for 21st century higher education: A
review and synthesis. Telematics and Informatics. 37,
(2019), 13–49.

[2] Baker, R.S. and Inventado, P.S. 2014. Educational data
mining and learning analytics. Learning analytics. Springer.
61–75.

[3] Bakhshinategh, B. et al. 2018. Educational data mining
applications and tasks: A survey of the last 10 years.
Education and Information Technologies. 23, 1 (2018), 537–
553.

[4] Ball, R.T. et al. 2019. Tilting the evidence: the role of firm-
level earnings attributes in the relation between aggregated
earnings and gross domestic product. Review of Accounting
Studies. 24, 2 (2019), 570–592.

[5] Ball, R.T. and Gallo, L.A. 2018. A mixed data sampling
approach to accounting research. Available at SSRN
3250445. (2018).

[6] Ball, R.T. and Ghysels, E. 2018. Automated earnings
forecasts: beat analysts or combine and conquer?
Management Science. 64, 10 (2018), 4936–4952.

[7] Chen, G. et al. 2020. Let’s shine together! a comparative
study between learning analytics and educational data
mining. Proceedings of the Tenth International Conference
on Learning Analytics & Knowledge (2020), 544–553.

[8] Clements, M.P. and Galvão, A.B. 2009. Forecasting US
output growth using leading indicators: An appraisal using
MIDAS models. Journal of Applied Econometrics. 24, 7
(2009), 1187–1206.

[9] Conijn, R. et al. 2016. Predicting student performance from
LMS data: A comparison of 17 blended courses using
Moodle LMS. IEEE Transactions on Learning
Technologies. 10, 1 (2016), 17–29.

[10] Engle, R.F. et al. 2013. Stock market volatility and
macroeconomic fundamentals. Review of Economics and
Statistics. 95, 3 (2013), 776–797.

[11] Ghysels, E. et al. 2007. MIDAS regressions: Further results
and new directions. Econometric reviews. 26, 1 (2007), 53–
90.

[12] Malekian, D. et al. 2020. Prediction of students’ assessment
readiness in online learning environments: the sequence
matters. Proceedings of the Tenth International Conference
on Learning Analytics & Knowledge (2020), 382–391.

[13] Romero, C. and Ventura, S. 2010. Educational data mining:
a review of the state of the art. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and
Reviews). 40, 6 (2010), 601–618.

[14] Sharma, K. et al. 2019. Modelling Learners’ Behaviour: A
Novel Approach Using GARCH with Multimodal Data.
European Conference on Technology Enhanced Learning
(2019), 450–465.

846 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Towards fair, explainable and actionable clustering for
learning analytics

Tai Le Quy
Leibniz University Hannover

Hannover, Germany
tai@l3s.de

Eirini Ntoutsi
Freie Universität Berlin

Berlin, Germany
eirini.ntoutsi@fu-berlin.de

ABSTRACT
Clustering is an important technique in learning analytics
for partitioning students into groups of similar instances.
Application examples include group assignments, students-
class allocation, etc. However, traditional clustering does
not ensure a fair-representation in terms of some protected
attributes like gender or race, and as a result, the result-
ing clusters might be biased. Moreover, traditional cluster-
ing might result in clusters of varying cardinalities reduc-
ing their actionability for end user. In many applications,
like group assignment, the capacity of the resulting clusters
should be controllable to allow direct applicability of the re-
sulting clusters. Furthermore, it is important to be able to
explain why an instance/student is clustered into a specific
cluster and/or which attributes play a crucial role in the
clustering process. We believe that the aforementioned as-
pects of fairness, capacity and explainability are important
for the successful application of clustering in the learning
analytics domain.

Keywords
learning analytics, clustering, fairness, bias, explainability,
capacity, actionability

1. INTRODUCTION
In education, machine learning (ML) has been used in a
wide variety of decision-making tasks, for example, student
dropout prediction [11], education admission decisions [25]
or forecasting on-time graduation of students [16]. Recently,
the incidents of discrimination in ML-based decision-making
systems in education, such as grades prediction [4, 15], are
an important reason for the increase of the attention to bias
and fairness in ML of researchers [32]. Accordingly, the de-
cisions made by the ML-based systems against groups or
individuals on the basis of protected attributes like gender,
race, etc. Bias in education has been studied in many as-
pects from different sources of bias in education [27], stu-
dents’ data analysis [3], racial bias [39] and gender bias [26].

However, ML-based decision-making systems have the po-
tential to amplify prevalent biases or create new ones and
therefore, fairness-aware ML approaches are required also
for the learning environments.

In our research, we are focusing on the fairness of clustering
methods in learning analytics since clustering is an effective
method to analyze student data [8, 17, 28, 36]. Cluster-
ing algorithms are useful tools for partitioning students into
groups of similar instances [3, 31]. Results from cluster-
ing methods are applicable in educational activities such as
group assignments [10] and student team achievement divi-
sions [37]. However, the traditional clustering algorithms do
not take into account the fairness w.r.t. protected attributes
like gender or race, as a consequence of focusing only on the
similarity objective. Moreover, the cardinality of the result-
ing clusters is typically not part of the objective function and
as a result clusters of very different cardinalities might be
extracted reducing the usefulness of the results. Moreover,
understanding the instances-to-clusters assignments, the im-
portant features for clustering and what characterizes each
cluster (the so-called, cluster labels) is not always easy [33].

The aim of this research is to study the fairness, capacity
and explainability requirements and challenges in the learn-
ing analytics domain and propose effective solutions that can
be used by the domain experts. In this direction, we pro-
pose the concept of fair-capacitated clustering which extends
traditional clustering focusing on clustering quality to also
ensure fairness of representation in terms of some protected
attribute(s) and the applicability of the resulting clusters by
ensuring balanced cluster cardinalities. Such clusters can be
exploited by different stakeholders in the learning environ-
ment: educators can better organize the learning activities,
e.g., group assignments; students can learn better in a more
inclusive and equitable environment.

In another direction, we plan to extend the fair capacitated
clustering with explainability to give insights to the end users
about how certain assignment decisions are made, what fea-
tures are important for clustering and what the extracted
clusters represent. Such information will allow educators to
customize teaching activities to each group and improve the
learning trajectory of each student, each group and the class
in overall.

We believe that the results of our research are useful in
other domains as well, for example business (clustering cus-

Tai Le Quy and Eirini Ntoutsi “Towards fair, explainable and ac-
tionable clustering for learning analytics”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 847-851.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 847

tomers in marketing studies, salesmen areas distribution),
traffic (vehicle routing) and communication (network de-
sign). Moreover, our research contributes to the further
development of the domain of fairness and responsible AI
with new methods (for the unsupervised learning problem)
and application domain (learning analytics).

The rest of our paper is structured as follows: Section 2
overviews the related work. Research questions are pre-
sented in Section 3. Section 4 describes our ongoing work on
fair-capacitated clustering and preliminary results. Finally,
conclusions and outlook are presented in Section 5.

2. RELATED WORK
Chierichetti et al. [7] first introduced the fair clustering prob-
lem and presented a balance measure for computing fairness
in the resulting clusters. They defined “fairlet” as a small
cluster preserving fairness measure, and then they apply k-
Center clustering algorithm on these fairlets to obtain the
final clusters. In the later studies, Backurs et al. [1] de-
scribed an algorithm for the fairlets computation in nearly
linear time. The problem of fair clustering with multiple
protected attributes is investigated in the researches of Rös-
ner and Schmidt [34] and Bera et al. [2].

The capacitated clustering problem (CCP) was first intro-
duced by Mulvey and Beck [30] with heuristic and subgra-
dient algorithms. Later, researchers proposed approaches to
solve the problem in the different clustering methods. For
instance, Khuller and Sussmann [19] introduced an approxi-
mation algorithm for the capacitated k-Center problem. An
improved version of k-Means algorithm for CCP was pre-
sented by Geetha et al. [12] with the use of a priority mea-
sure to assign points to their centroid. Lam and Mittenthal
[20] proposed a heuristic hierarchical clustering method for
CCP.

Quite a few researchers, recently, are interested in the use-
fulness of explainable and interpretable clustering models.
Chen et al. [6] proposed a probabilistic discriminative model
with the ability to learn rectangular decision rules for each
cluster. Saisubramanian et al. [35] offered a voting method
to consider which features are meaningful for the end user.
Moshkovitz et al. [29] used an unsupervised decision tree to
explain k-Means and k-Medians methods.

3. RESEARCH QUESTIONS
We organize the challenges into the research questions Q1−
Q3 explained hereafter:

Q1: What is fairness in learning analytics and how to mit-
igate discrimination in clustering? Fairness in education is
an interesting topic researchers [5, 9, 13]. We investigate
the fairness terminology in student analytics w.r.t protected
attributes such as gender, race. Student performance can
be considered as the protected attribute because in some
cases no knowledge of the student’s performance can help
to prevent bias in the grading procedure [23, 24]. Related
work in the fairness-aware ML area depicts a large variety of
approaches that can be categorized into: i) pre-processing
approaches that intervene at the input data [22]; ii) in-
processing approaches that directly tweak the clustering al-
gorithm to account for fairness [7] and iii) post-processing

approaches that adjust the clustering results to ensure fair-
ness [38]. We will mainly follow the in-processing approaches
that directly incorporate fairness in the clustering process.
However, such approaches depend on the clustering algo-
rithm per se; our current work focuses on hierarchical and
partitioning algorithms, in the future density-based cluster-
ing will be also investigated.

Q2: How to satisfy multiple objectives, namely capacity of
clusters and fairness of representation on top of the (stan-
dard) cluster similarity objective? As already mentioned, the
actionability of the results is important. As a concrete exam-
ple consider group assignments: groups should be compara-
ble to allow for a fair allocation of work among students. In
the capacitated clustering problem [30], they do not consider
fairness, nor explainability. Likewise approaches for fair
clustering also exist [7]. However, approaches that jointly
consider the different objectives do not exist.

Q3: What is the explanation of a (fair-capacitated) cluster-
ing model and how to find it? The importance of explain-
able clustering results for the end users has been already dis-
cussed. Explainability does not only allow for understanding
how certain decisions are made but also allows for debugging
of algorithmic decisions and corrections in case of decisions
based on protected attributes like gender or race. There are
different aspects to explainability in clustering: understand-
ing how a certain assignment of an instance to a cluster was
made, understanding what attributes contributed to clus-
tering and explaining what each cluster is about (or cluster
labeling). We will investigate the different aspects to allow
educators to better understand the groups that are formed
and to allow both educators and single users/students to
understand how they fit into a particular cluster.

4. PRELIMINARY RESULTS ON FAIR CA-
PACITATED CLUSTERING

In this section, we present the preliminary results of our
work namely fair-capacitated clustering [21] problem. The
goal is to cluster students into fair-groups w.r.t. single pro-
tected attribute. Gender, typically, is chosen as the pro-
tected attribute. In other words, we would like to balance
the number of males and females in the resulting clusters
and our proposed methods should satisfy the size of group
constraint in order to make the results more actionable.

We define the problem of (t, k, q)-fair-capacitated clustering
as finding a clustering C = {C1, · · ·Ck} that partitions the
data X into k clusters such that the cardinality of each clus-
ter Ci ∈ C does not exceed a threshold q, i.e., |Ci| ≤ q (the
capacity constraint), the balance of each cluster is at least t,
i.e., balance(C) ≥ t (the fairness constraint), and minimizes
the objective function. Parameters k, t, q are user-defined re-
ferring to the number of clusters, minimum balance thresh-
old and maximum cluster capacity, respectively.

We present a two-step solution to the problem: i) we rely on
fairlets [7] to generate minimal sets that satisfy the fair con-
straint and ii) we propose two approaches, namely hierarchi-
cal clustering (denoted by hierarchical fair-capacitated) and
partitioning-based clustering (denoted by k-Medoids fair-
capacitated, to obtain the fair-capacitated clustering. The
hierarchical approach embeds the additional cardinality re-

848 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

quirements during the merging step while the partitioning-
based one alters the assignment step using a knapsack prob-
lem formulation to satisfy the additional requirements.

We experiment our proposed methods on four educational
datasets: UCI Student performance1, PISA test scores2,
OULAD3, MOOC4, containing the demographics, grades
and school-related attributes of students. Table 1 in Ap-
pendix A summarizes the characteristics of datasets.

We report on clustering quality (measured as clustering cost,
see Eq. 1), cluster fairness (expressed as cluster balance [7],
see Eq. 2 and Eq. 3) and cluster capacity (expressed as
cluster cardinality). The parameters are set as follows: the
minimum threshold of balance t = 0.5, i.e., the proportion of
the minority group is at least 50% in the resulting clusters;

the maximum capacity of clusters q =
⌈ |X| ∗ ε

k

⌉
; ε is set to

1.01 and 1.2, for k-Medoids fair-capacitated and hierarchical
fair-capacitated methods, respectively.

L(X, C) =
∑
si∈S

∑
x∈Ci

d(x, si) (1)

balance(Ci) = min
(

|{x∈Ci|ψ(x)=0}|
|{x∈Ci|ψ(x)=1}| ,

|{x∈Ci|ψ(x)=1}|
|{x∈Ci|ψ(x)=0}|

)
(2)

balance(C) = min
Ci∈C

balance(Ci) (3)

The baseline includes well-known clustering methods with
fairness-aware approaches and a traditional algorithm. 1) k-
Medoids[18]. This is a traditional partitioning technique of
clustering that uses the actual instances as centers (medoids)
and divides the dataset into k clusters and minimizes the
clustering cost. 2) Vanilla fairlet [7]. A vanilla fairlet de-
composition that ensures fair clusters is generated, then, a
k-Center clustering algorithm [14] is applied to cluster those
fairlets into k clusters. 3) MCF fairlet [7]. It is an updated
version of the Vanilla fairlet with The fairlet decomposition
is transformed into a minimum cost flow (MCF) problem,
by which an optimized version of fairlet decomposition in
terms of cost value is computed.

The preliminary results show that our approaches deliver
well-balanced clusters in terms of both fairness and cardi-
nality while maintaining a good clustering quality. In terms
of clustering cost (Figure 1-a) (Appendix B), our approaches
outperform the vanilla fairlet and MCF fairlet methods al-
though they are worse compared to the vanilla k-Medoids
clustering. This is obvious due to the fact that our meth-
ods have to satisfy constraints on fairness or/and cardinality.
MCF fairlet hierarchical fair-capacitated shows the best per-
formance due to the optimization in the merging step. As
illustrated in Figure 1-b regarding to fairness, our methods
are comparative to the competitors. In which, the minimum
threshold of balance t is visualized as a dashed line and the

1https://archive.ics.uci.edu/ml/datasets/Student+Performance
2https://www.kaggle.com/econdata/pisa-test-scores
3https://analyse.kmi.open.ac.uk/open dataset
4https://github.com/kanika-narang/MOOC Data Analysis

actual balance from the dataset is plotted as a dotted line.
In Figure 1-c, the maximum capacity thresholds q are pre-
sented by the dashed and dotted lines. Our approaches are
more preeminent with a lower dispersion, in terms of car-
dinality. The boxplots of our methods are drawn thicker
because the variation of the capacity of resulting clusters is
tiny in quite a few cases. MCF fairlet shows the worst per-
formance, followed by Vanilla fairlet and vanilla k-Medoids
algorithm.

5. CONCLUSION AND OUTLOOK
The investigations of the fairness, capacity and explainabil-
ity requirements in the learning analytics domain are the
main goals of our research. In this paper, we present the
challenges of our work with 3 research questions. The pre-
liminary results on the fair-capacitated clustering problem
show that our approaches can satisfy multiple objectives
namely fairness, capacity and clustering cost. In the next
step, we want to deploy the implementation of an explain-
able fair clustering algorithm to achieve the clarification of
the assignment in a fair clustering method.

Acknowledgements
The work of the first author is supported by the Ministry
of Science and Education of Lower Saxony, Germany, within
the PhD program“LernMINT: Data-assisted teaching in the
MINT subjects”, for which the second author is a principal
investigator.

6. REFERENCES
[1] A. Backurs, P. Indyk, K. Onak, B. Schieber,

A. Vakilian, and T. Wagner. Scalable fair clustering.
In International Conference on Machine Learning,
pages 405–413. PMLR, 2019.

[2] S. Bera, D. Chakrabarty, N. Flores, and
M. Negahbani. Fair algorithms for clustering. In
H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
NIPS, volume 32. Curran Associates, Inc., 2019.

[3] S. Bharara, S. Sabitha, and A. Bansal. Application of
learning analytics using clustering data mining for
students’ disposition analysis. Education and
Information Technologies, 23(2):957–984, 2018.

[4] K. Bhopal and M. Myers. The impact of covid-19 on a
level students in england. SocArXiv, 2020.

[5] S. Bøyum. Fairness in education–a normative analysis
of oecd policy documents. Journal of Education
Policy, 29(6):856–870, 2014.

[6] J. Chen, Y. Chang, B. Hobbs, P. Castaldi, M. Cho,
E. Silverman, and J. Dy. Interpretable clustering via
discriminative rectangle mixture model. In 2016 IEEE
16th International Conference on Data Mining
(ICDM), pages 823–828. IEEE, 2016.

[7] F. Chierichetti, R. Kumar, S. Lattanzi, and
S. Vassilvitskii. Fair clustering through fairlets. In
NIPS, pages 5036–5044, 2017.

[8] A. M. De Morais, J. M. Araujo, and E. B. Costa.
Monitoring student performance using data clustering
and predictive modelling. In 2014 IEEE frontiers in
education conference (FIE) proceedings, pages 1–8.
IEEE, 2014.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 849

[9] N. J. Dorans and L. L. Cook. Fairness in educational
assessment and measurement. Routledge, 2016.

[10] M. Ford and J. Morice. How fair are group
assignments? a survey of students and faculty and a
modest proposal. Journal of Information Technology
Education: Research, 2(1):367–378, 2003.

[11] J. Gardner, C. Brooks, and R. Baker. Evaluating the
fairness of predictive student models through slicing
analysis. In LAK’19, pages 225–234, 2019.

[12] S. Geetha, G. Poonthalir, and P. Vanathi. Improved
k-means algorithm for capacitated clustering problem.
INFOCOMP, 8(4):52–59, 2009.

[13] C. Gipps and G. Stobart. Fairness in assessment. In
Educational assessment in the 21st century, pages
105–118. Springer, 2009.

[14] T. F. Gonzalez. Clustering to minimize the maximum
intercluster distance. Theoretical computer science,
38:293–306, 1985.

[15] S. Hubble and P. Bolton. A level results in england
and the impact on university admissions in 2020-21.
House of Commons Library, 2020.

[16] S. Hutt, M. Gardner, A. L. Duckworth, and S. K.
D’Mello. Evaluating fairness and generalizability in
models predicting on-time graduation from college
applications. Proceedings of The 12th International
Conference on Educational Data Mining (EDM 2019),
2019.

[17] Y. Jayabal and C. Ramanathan. Clustering students
based on student’s performance-a partial least squares
path modeling (pls-pm) study. In International
Workshop on Machine Learning and Data Mining in
Pattern Recognition, pages 393–407. Springer, 2014.

[18] L. Kaufman and P. J. Rousseeuw. Partitioning around
medoids (program pam). Finding groups in data: an
introduction to cluster analysis, 344:68–125, 1990.

[19] S. Khuller and Y. J. Sussmann. The capacitated
k-center problem. SIAM Journal on Discrete
Mathematics, 13(3):403–418, 2000.

[20] M. Lam and J. Mittenthal. Capacitated hierarchical
clustering heuristic for multi depot location-routing
problems. Int. J. Logist. Res. Appl., 16(5):433–444,
2013.

[21] T. Le Quy, A. Roy, G. Friege, and E. Ntoutsi.
Fair-capacitated clustering. The 14th International
Conference on Educational Data Mining (EDM 2021),
2021.

[22] B. T. Luong, S. Ruggieri, and F. Turini. k-nn as an
implementation of situation testing for discrimination
discovery and prevention. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 502–510, 2011.

[23] J. M. Malouff, A. J. Emmerton, and N. S. Schutte.
The risk of a halo bias as a reason to keep students
anonymous during grading. Teaching of Psychology,
40(3):233–237, 2013.

[24] J. M. Malouff, S. J. Stein, L. N. Bothma, K. Coulter,
and A. J. Emmerton. Preventing halo bias in grading
the work of university students. Cogent Psychology,
1(1):988937, 2014.

[25] F. Marcinkowski, K. Kieslich, C. Starke, and
M. Lünich. Implications of ai (un-) fairness in higher

education admissions: the effects of perceived ai (un-)
fairness on exit, voice and organizational reputation.
In Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, pages 122–130,
2020.

[26] T. Masterson. An empirical analysis of gender bias in
education spending in paraguay. World Development,
40(3):583–593, 2012.

[27] M. Meaney and T. Fikes. Early-adopter iteration bias
and research-praxis bias in the learning analytics
ecosystem. In Companion Proceeding of the 9th
International Conference on Learning Analytics &
Knowledge (LAK’19), Fairness and Equity in Learning
Analytics Systems Workshop, pages 14–20, 2019.

[28] A. Merceron and K. Yacef. Clustering students to help
evaluate learning. In IFIP World Computer Congress,
TC 3, pages 31–42. Springer, 2004.

[29] M. Moshkovitz, S. Dasgupta, C. Rashtchian, and
N. Frost. Explainable k-means and k-medians
clustering. In International Conference on Machine
Learning, pages 7055–7065. PMLR, 2020.

[30] J. M. Mulvey and M. P. Beck. Solving capacitated
clustering problems. European Journal of Operational
Research, 18(3):339–348, 1984.

[31] Á. A. M. Navarro and P. M. Ger. Comparison of
clustering algorithms for learning analytics with
educational datasets. IJIMAI, 5(2):9–16, 2018.

[32] E. Ntoutsi, P. Fafalios, U. Gadiraju, V. Iosifidis,
W. Nejdl, M.-E. Vidal, S. Ruggieri, F. Turini,
S. Papadopoulos, E. Krasanakis, et al. Bias in
data-driven artificial intelligence systems-an
introductory survey. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 10(3):e1356,
2020.

[33] E. Ntoutsi, M. Spiliopoulou, and Y. Theodoridis.
Tracing cluster transitions for different cluster types.
Control & Cybernetics, 38(1), 2009.

[34] C. Rösner and M. Schmidt. Privacy preserving
clustering with constraints. arXiv preprint
arXiv:1802.02497, 2018.

[35] S. Saisubramanian, S. Galhotra, and S. Zilberstein.
Balancing the tradeoff between clustering value and
interpretability. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, pages 351–357,
2020.

[36] M. Tanai, J. Kim, and J. H. Chang. Model-based
clustering analysis of student data. In International
Conference on Hybrid Information Technology, pages
669–676. Springer, 2011.

[37] M. Tiantong and S. Teemuangsai. Student team
achievement divisions (stad) technique through the
moodle to enhance learning achievement.
International Education Studies, 6(4):85–92, 2013.

[38] C. Vrain, I. Davidson, et al. Constrained clustering via
post-processing. In International Conference on
Discovery Science, pages 53–67. Springer, 2020.

[39] N. Warikoo, S. Sinclair, J. Fei, and D. Jacoby-Senghor.
Examining racial bias in education: A new approach.
Educational Researcher, 45(9):508–514, 2016.

850 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

APPENDIX
A. DATASET

Table 1: An overview of the datasets

Dataset #instances #attributes Protected attribute Balance score
UCI student performance-Mathematics 395 33 Gender (F: 208, M: 187) 0.899
UCI student performance-Portuguese 649 33 Gender (F: 383; M: 266) 0.695

PISA test scores 3,404 24 Male (1: 1,697; 0: 1,707) 0.994
OULAD 4,000 12 Gender (F: 2,000; M: 2,000) 1
MOOC 4,000 21 Gender (F: 2,000; M: 2,000) 1

B. UCI STUDENT PERFORMANCE DATASET

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of clusters

1000

1100

1200

1300

1400

1500

Cl
us

te
rin

g
co

st

a) Clustering quality (lower is better)

k-Medoids
Vanilla fairlet
Vanilla fairlet hierarchical fair-capacitated
Vanilla fairlet k-Medoids fair-capaciatated
MCF fairlet
MCF fairlet hierarchical fair-capacitated
MCF fairlet k-Medoids fair-capacitated

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of clusters

0.0

0.2

0.4

0.6

0.8

Ba
la

nc
e

b) Clustering fairness (higher is better)

k-Medoids
Vanilla fairlet
Vanilla fairlet hierarchical fair-capacitated
Vanilla fairlet k-Medoids fair-capaciatated
MCF fairlet
MCF fairlet hierarchical fair-capacitated
MCF fairlet k-Medoids fair-capacitated
Minimum balance
Dataset's balance

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of clusters

0

50

100

150

200

250

Nu
m

be
r o

f i
ns

ta
nc

es

c) Clustering cardinality
k-Medoids
Vanilla fairlet
Vanilla fairlet hierarchical fair-capacitated
Vanilla fairlet k-Medoids fair-capacitated
MCF fairlet
MCF fairlet hierarchical fair-capacitated
MCF fairlet k-Medoids fair-capacitated
Maximum capacity of hierarchical fair-capacitated
Maximum capacity of k-Medoids fair-capacitated

Figure 1: Performance of different methods on UCI student performance dataset - Mathematics subject

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 851

TOWARDS A CONCEPTION AND INTEGRATION OF AN

EDUCATIONAL SOCIAL NETWORK INTO AN

INSTITUTIONAL LEARNING PLATFORM
Romaric BASSOLE1

bassoler12@gmail.com,
 Frédéric Tounwendyam OUEDRAOGO1

frederic.ouedraogo@unz.bf
Laurence Capus2

laurence.capus@ift.ulaval.ca
1Université Norbert ZONGO,

 2Université Laval

ABSTRACT

 In this article, we take a look at digital social networks in

education. The observation made on the campus of Norbert

ZONGO University is that the digital device set up on the campus

to support the learning and teaching process has not had the

support of users who prefer social networks adapted to their

smartphone. Most students use digital social networks for

exchanges with their peers or teachers, especially with

WhatsApp, Facebook about their courses. Yet these technologies

are not designed for educational purposes. After a survey of 318

students to take into account the needs of students and teachers,

we propose to design an educational social network. This social

network will be integrated into a distance learning platform under

development as part of a project. We end by presenting the

software architecture of our future educational social network.

Keywords

Educational social networks, CEHL, West Africa, University

1. INTRODUCTION
A Computing Environment for Human Learning (CEHL) is a

computer environment whose purpose is to lead learners to

develop one or more activities favorable to the achievement of

educational objectives [1]. They are used to support or encourage

learners in learning. The collaborative learning environment is an

example of CEHL, designed to promote certain types of

interactions including argumentation, explanations, conflict

resolution etc. Many more examples of CEHL exist in the

scientific literature.

New research work on CEHL has emerged with the new

capabilities offered by Internet and new communication and

information technologies [2]. The use of social networks in

education is a part of this new work. The educational platforms

used to support teaching and learning are neglected in the profile

of social networks including Facebook, WhatsApp etc. Yet these

technologies are not designed for educational purposes.

Social networks with an existing educational component often

require a monthly or annual subscription and are often not

designed in an institutional framework. Students feel the need to

use digital platforms in their learning process, which pushes them

towards these technologies that are less suited to their context.

In view of this observation, we propose to design an educational

social network (ESN) better suited to the West African context.

This ESN could be integrated into the new system [3] proposed

by a group of researchers with a profile of West African

universities.

In the rest of our work, we will present the context of our study

then we will present the analysis of the needs carried out for the

implementation of a new device and will end with the architecture

of our future device.

2. CONTEXT AND STATE OF THE ART
In this section, we present the context of this research project. We

also present a small preview on Facebook technology. We end

this part by connecting social networks and computing

environments for human learning.

2.1 Context
Computing Environments for Human Learning (CEHL) are used

to stimulate and support learning among learners. Despite the

multitude of learning / teaching platforms that exist, universities

in African countries, particularly Norbert ZONGO University

(previously University of Koudougou), have difficulty setting up a

resource sharing platform better suited to their context. Some

environments such as Moodle which is an online learning

platform are being implemented in some universities in West

Africa to support learning / teaching. This powerful platform is

badly used or even abandoned by the first users. Teachers and

students are sometimes tempted to use other technology such as

WhatsApp [4]–[6] for learning / teaching purposes. To take into

account their needs, researchers [3] propose to set up a system

better suited to the West African context while keeping services

existing.

Students see themselves using other means to share, interact with

their peers and teacher. Its means are among others through social

Romaric Bassole, Frédéric T. Ouedraogo and Laurence Capus “To-
wards a Conception and Integration of an Educational Social Net-
work into an Institutional Learning Platform”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 852-855.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

852 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

mailto:frederic.ouedraogo@unz.bf
mailto:laurence.capus@ift.ulaval.ca

media such as: WhatsApp, Facebook, etc. Social media are used

by students as the preferred tools for sharing, communicating,

photographing parts of the course / TD. Its tools, easily accessible

through their smartphones, are practically used on a daily basis.

Although these media have a real advantage, accessibility and

flexibility of use [7], it should be noted that they are not suitable

for learning / teaching. These technologies are used to create

groups without the knowledge of the pedagogy managers which

makes it difficult to follow up, see its contribution in improving

the learning / teaching of students.

.

 To have an CEHL adapted to the West African context, a project

[3] is already underway to set up a digital device. Our problem

comes in addition to this project but we are focusing more on

social networks aspect.

2.2 Curent situation

2.2.1 Social networks
First introduced by Australian anthropologist John A. Barnes [8],

a social network is defined as a set of social interactions that unite

a group of individuals. These social interactions can be:

friendships, family ties, professional ties or specific ties. With the

advent of Internet, the notion of social network took a new turn

and gave birth to the notion of digital social network. Boyd and

Ellison define digital social networks as "a web service allowing

individuals to build a profile or not created by a combination of

content and, on the other hand, to articulate this public profile

with others" [9]. The most famous social networks these days are:

Facebook, Twitter, LinkedIn, MySpace etc. these digital networks

have drawn the attention of researchers [4], [7], [8] to its possible

use in learning / teaching.

2.2.2 Educational social networks
An educational social network is first and foremost a social

network. But unlike this one, the individuals in relationships are

the learners and the teachers. It is a network that enables teacher-

student and student-student, one-to-one, one-to-many and many-

to-many interactions. Social networks occupy an important place

nowadays in society and its more and more used by young people.

This trend has prompted teachers to use these networks in the

classroom [4], [6], [9] including Facebook, WhatsApp, etc.

Some educational social networks have been developed to support

and stimulate learning among pupils or students. We can cite:

Learndia1 is an educational social network and interactive

learning space dedicated to students. It provides students with

course content and a space to simulate assessments. In February

2017, the founders announced the release of the desktop version

which does not require an Internet connection.

Freasyway2 is an international educational social network for

students, institutions, independent teachers. Beyond the fact that it

offers interactive teaching, this platform offers students the

possibility of obtaining information on the types of procedures to

be carried out with institutions.

Madabooky [10] is an educational social network targeting

terminal and third grade students. Created by three young

Madagascans, Tsira Louis Venceslas, Dada Manacé Sylvano and

1 https://learndia.com/

2 https://freasyway.com/public/

Haritiana Rabemanantsoa, after one of them failed the

Baccalauréat exams many times.

These social networks all have in common the objective of

stimulating learning among pupils or students. However, these

networks raise two major problems:

 Cost: Access to these platforms is conditioned by a

subscription to the platform for a flat fee. The cost of

these platforms is a barrier for students. In addition to

this, the cost of the internet connection is an issue. The

questionnaire found that 87% of students use the

Internet connection of mobile operators (Orange,

Telecel and Moov Africa).

 Institutional scope: These educational social networks

have been developed outside the institutions in charge

of education (universities, colleges and high schools,

training centre, institute, etc.). This causes two major

problems, students do not always interact with their

teachers and the syllabus may be not consistent with

their own courses.

Social networks such as Facebook, WhatsApp are widely used by

students nowadays. These easily accessible technologies via

smartphones are now used by learners and teachers to learn/teach

[5], [6], [9]. These technologies, although used by students for

consultation, collaboration, sharing and production activities in

their learning processes, were not designed for pedagogical

purposes. Moreover, access to user data for integration with

existing educational platforms such as Moodle is problematic [6].

Furthermore, these platforms cannot be linked to institutional

systems set up to support learning. Finally, the question of

accessibility to user data arises with these applications. Yet these

data are useful for monitoring learning and for educational

research. In an article entitled "How WhatsApp makes

Educational Data Mining difficult in West African

universities"[6], the authors posed the difficulty for researchers in

the field to have educational data for their research.

Educational social networks designed to support learning are

inspiring solutions but they do not address the concerns observed

on the campus of the Norbert ZONGO University. The design of

these educational social networks is not adapted to the system set

up in the universities of Burkina Faso. The cost of these

applications is a major problem.

In view of this, we proposed an appropriate solution. The

following section presents our proposal.

3. PROPOSED SOLUTION
This section of our paper deals with the analysis of students' needs

following a survey conducted on a sample of 318 students from

public and private universities in Burkina Faso. We propose a

new learning device and present its architecture.

3.1 Description of the questionnaire
To understand student practices on campus, we conducted a

survey with a student questionnaire. This study concerned 318

students from public and private universities in Burkina Faso.

The questionnaire consists of four parts: student identification,

access to communication and information technologies (ICT), use

of ICT and use of educational platforms.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 853

https://learndia.com/

The identification of the student made it possible to collect the

demographic social information of the students (sex, age group,

sector, university, etc.). The section, Access to ICT, allowed us to

collect information on the types of electronic support available to

students, on Internet access at the University and at home. The

last two sections of our questionnaire concerned the use made by

students of ICT and educational platforms.

3.2 Needs analysis and specifications
To better understand student practices, we conducted a survey of

318 students from public and private universities in Burkina Faso.

This survey allowed us to capture the needs of the students.

Users: Teachers and students are the future users of our solution.

Indeed, the network should connect students of the same class and

their teachers. Also, students should be able to send invitations to

other students (their elders for example). As for teachers, they

should be able to send and receive invitations from their

colleagues and students. An administrator should ensure the

proper functioning of the system.

Analysis of student needs: The survey revealed the following

student needs, namely communication, sharing, mutual support:

Communication is the major problem for students. The number

of students per teacher is very high so that the students are not

satisfied with explanations in class. There is not anyway to contact

or ask questions of the teacher outside of the classroom. The

students noted that they have class WhatsApp groups to

communicate. Although they have this communication tool, their

teachers are not included in these groups.

Sharing files, lessons, tutorials, exercise solutions and tutorials

are also a major concern for students. The WhatsApp group serves

as their tools for sharing but the storage problem is posed. The

data of these groups are quickly deleted if the storage disk is full.

Mutual aid appears important when an exercise or another part of

a course is misunderstood. Students use Web searches.

As a result of this analysis, our solution should be able to allow

students and teachers to make the following actions grouped in

this table.

Requirements specification

Student Teacher Admin

 Manage an account

 Send invitations

 Ask questions

 Answer questions

 Share information

 Manage an account

 Send invitations

 Answer questions

 Share information

 Create discussion

topic

 Manage accounts

Tableau 1:requirements specification

3.3 Functional architecture of the new

device
Figure 1 shows the software architecture that we have chosen for

the development of the future device.

Figure 1: Software architecture

The new device complements existing platforms. This figure

below presents an overview of our future system. The users will

have access to the social network by Internet or by a local

network. To respond to the difficulties related to the accessibility

of the Internet connection on campus, students will be able to

access the social network through a local network. It will be

accessible via smartphones, tablets, laptops and desktops.

This device will be powered by text, audio, video, image and

podcast data from students and teachers.

4. Conclusion
In this paper, we have dealt with the establishment of a social

network for students from West Africa, particularly those of

Burkina Faso. We have presented the background and the

objectives of this research. To better understand and take into

account the needs of students, we conducted a survey with a

questionnaire on 318 students. The results of this questionnaire

allowed us to highlight the needs and expectations of students for

a better learning environment. We proposed to design an

educational social network more suited to the learning context of

students in West African universities. We presented the

architecture of our future device. Our goal in this research is to

create a free and open source platform that will create a

community of researchers around this theme.

The work already done and presented in this paper is a first step of

this research. The next step will concern the design of this new

device. We plan to evaluate our proposed learning system at two

levels: pedagogical, technical. To do this, we will enlist experts in

education science to our research team.

5. Références
[1] P. Tchounikine, Précis de recherche en Ingénierie des

EIAH. 2009.

[2] P. Tchounikine et A. Tricot, « Environnements

informatiques et apprentissages humains », in Informatique

et sciences cognitives : Influences ou confluence ?, D. K.

Catherine Garbay, Éd. OPHRYS / MSH, 2011, p. 153‑186.

[3] M. Bousso AU - L. Capus AU - T.F. Ouédraogo, « A project

to create an African e-learning platform more equitable », in

854 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

INTED2020 Proceedings, mars 2020, p. 8816‑8819, doi:

10.21125/inted.2020.2403.

[4] A. Serge Armel, M. Coulibaly, et T. Karsenti, « WhatsApp:

Un enjeu d’enseignement/Apprentissage en Afrique?

Enquête auprès des acteurs scolaires au Bénin »,

Transmettre, vol. 1, p. 87‑112, déc. 2016.

[5] S. So, « Mobile instant messaging support for teaching and

learning in higher education », Internet High. Educ., vol. 31,

p. 32‑42, oct. 2016, doi: 10.1016/j.iheduc.2016.06.001.

[6] R. BASSOLE, T. F. OUEDRAOGO, et L. CAPUS, « How

WhatsApp makes Educational Data Mining difficult in West

African universities », Fairness Account. Transpar. Educ.

Data FATED, 2020.

[7] L. Mélot, A. Strebelle, J. Mahauden, et C. Depover,

« Utilisation de Facebook en contexte universitaire », vol.

24, mai 2017, Accessed March 9 2021.

http://sticef.org/num/vol2017/24.1.4.melot/24.1.4.melot.htm.

sur:

http://sticef.org/num/vol2017/24.1.4.melot/24.1.4.melot.htm.

[8] P. Mercklé, « La “découverte” des réseaux sociaux. À

propos de John A. Barnes et d’une expérience de traduction

collaborative ouverte en sciences sociales », Réseaux, vol.

182, no 6, p. 187‑208, 2013, doi: 10.3917/res.182.0187.

[9] Danah m. Boyd et N. B. Ellison, « Social Network Sites:

Definition, History, and Scholarship », J. Comput.-Mediat.

Commun., vol. 13, no 1, p. 210‑230, oct. 2007, doi:

10.1111/j.1083-6101.2007.00393.x.

[10] Madabooky. https://www.madabooky.com/ (Accessed

March , 2021).

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 855

Benefits of alternative evaluation methods for
Automated Essay Scoring

Øistein E. Andersen
ALTA Institute

University of Cambridge
United Kingdom

oa223@cam.ac.uk

Zheng Yuan
ALTA Institute

University of Cambridge
United Kingdom

zheng.yuan@cl.cam.ac.uk

Rebecca Watson
iLexIR Ltd
Cambridge

United Kingdom
bec@ilexir.co.uk

Kevin Yet Fong Cheung
Cambridge Assessment
University of Cambridge

United Kingdom
Cheung.K@cambridgeenglish.org

ABSTRACT
Automated essay scoring (AES), where natural language
processing is applied to score written text, can underpin ed-
ucational resources in blended and distance learning. AES
performance has typically been reported in terms of correla-
tion coefficients or agreement statistics calculated between
a system and an expert human examiner. We describe the
benefits of alternative methods to evaluate AES systems
and, more importantly, facilitate comparison between AES
systems and expert human examiners. We employ these
methods, together with multi-marked test data labelled by
5 expert human examiners, to guide machine learning model
development and selection, resulting in models that outper-
form expert human examiners.

We extend on previous work on a mature feature-based lin-
ear ranking perceptron model and also develop a new multi-
task learning neural network model built on top of a pre-
trained language model – DistilBERT. Combining these two
models’ scores results in further improvements in perfor-
mance (compared to that of each single model).

Keywords
Student Assessment, Metrics, Evaluation, Automated Essay
Scoring, Natural Language Processing, Deep Learning

1. INTRODUCTION
Automated essay scoring (AES) is the task of employing
computer technology to score written text. Learning to
write a foreign language well requires a considerable amount
of practice and appropriate feedback. On the one hand,

AES systems provide a learning environment in which for-
eign language learners can practice and improve their writ-
ing skills even when teachers are not available. On the other
hand, AES reduces the workload of examiners and enables
large-scale writing assessment. In fact, these technologies
have already been deployed in standardised tests such as
the TOEFL and GMAT [7, 6] as well as in a classroom set-
ting [26].

As English is one of the world’s most widely used languages,
and learners naturally outnumber teachers, AES systems
aimed at ‘English as a Second or Other Language’ (ESOL)
are in high demand. Consequently, there is a large body of
literature with regards to AES systems of text produced by
ESOL learners [20, 3, 5, 28, 2, 30, 1, 23, 16], overviews of
which can be found in various studies [25, 22, 15].

AES systems exploit textual features in order to measure
the overall quality and assign a score to a text. The earli-
est systems used superficial features, such as essay length,
as proxies for understanding the text. As multiple factors
influence the quality of texts, later systems have used more
sophisticated automated text processing techniques to ex-
ploit a large range of textual features that correspond to
different properties of text, such as grammar, vocabulary,
style, topic relevance, and discourse coherence and cohesion.
In addition to lexical and part-of-speech (PoS) n-grams, lin-
guistically deeper features such as types of syntactic con-
structions, grammatical relations and measures of sentence
complexity are some of the properties that form an AES
system’s internal marking criteria. The final representation
of a text typically consists of a vector of features that have
been manually selected and tuned to predict a score on a
marking scale as accurately as possible, an approach which
has involved extensive work on feature development and op-
timisation.

In contrast, the most recent AES systems are based on neu-
ral networks that learn the feature representations automat-
ically, without the need for this kind of manual tuning [1,
23, 19, 16, 27]. Taking the sequence of (one-hot vectors of

Øistein E. Andersen, Rebecca Watson, Zheng Yuan and Kevin Yet Fong
Cheung “Benefits of alternative evaluation methods for Automated Essay
Scoring”. 2021. In: Proceedings of The 14th International Conference on
Educational Data Mining (EDM21). International Educational Data Mining
Society, 856-864. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

856 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 1: Data distributions (0-20 score on x-axis, count on y-axis). Left to right: Full training set (98,138 responses), u400
training set (14,966), test set (364).

the) words in an essay as input, Alikaniotis et al. [1] and
Taghipour et al. [23] studied a number of neural architec-
tures for the AES task and determined that a bidirectional
Long Short-Term Memory (LSTM) [14] network was the
best performing single architecture. With recent advances in
pre-trained bidirectional Transformer [24] language models
such as Bidirectional Encoder Representations from Trans-
formers (BERT) [11], pre-trained language models have been
applied for AES to achieve state-of-the-art performance [19,
16].

The B2 First exam, formerly known as Cambridge English:
First (FCE), is a Cambridge English Qualification that as-
sesses English at an upper-intermediate level. We extend a
mature state-of-the-art feature-based AES system [5, 28, 2],
researched and developed over the last decade using Cam-
bridge English’s FCE exam answers and their corresponding
operational scores as training data. Further, we develop a
new multi-task learning (MTL) neural network model built
on top of a pre-trained masked language model – Distil-
BERT [21].

Various evaluation metrics have been used to evaluate AES
systems, including correlation metrics such as Pearson’s Cor-
relation Coefficient (PCC) and Spearman’s Correlation Co-
efficient (SCC), agreement metrics like quadratic weighted
Kappa [8] (QWK) and quadratic agreement coefficient [13]
(AC2), and error metrics such as Mean Absolute Error (MAE)
and Mean Square Error (MSE).

We introduce novel evaluation methods that employ multi-
marked test data, where each test item has been labelled by
more than one expert human examiner, to facilitate compar-
ison of human and AES system performance. Our methods
aim to recognise that the set of examiner scores per answer
represent an acceptable range of scores and thence we aim to
evaluate AES systems against this set of scores rather than
against a single gold standard score or via inter-rater agree-
ment metrics. This is an important distinction given that
expert examiner performance represents the upper bound on
the AES task. To the best of our knowledge, this is the first
work to perform an in-depth comparison of feature-based
and neural-based AES model performance. Further, we il-
lustrate that these models can be considered complementary,
and combined to improve performance.

2. DATA
We employ a large training set, collected by Cambridge
Assessment,1 comprising almost 50,000 FCE examination
scripts from 2016–20 with operational scores, as well as a
newly created multi-marked test set containing 182 scripts
labelled by 5 expert human examiners.2 Each script con-
sists of two questions, and responses are scored using 4 fine-
grained assessment scales: content, communicative achieve-
ment, organisation and language. Each scale provides a
score between 0 and 5 inclusively, and the overall score is
calculated by summing over these 4 individual scales to pro-
vide an answer score in the range 0–20. For this AES task,
we employ the overall 0–20 score to train and test models.3

The full training set contains almost 100,000 individual re-
sponses to over 50 different prompts, all labelled with a score
in the range 0–20, but with an uneven distribution strongly
concentrated around 14 (the score expected by an average
learner having attained the B2 level for which the exam is
designed). In order for the multi-marked test set to include
as wide a range of responses as possible, 182 scripts (each
consisting of two answers) were sampled to provide a more
uniform distribution of scores in the range 16–40 as well as a
certain number of lower scores (scripts with scores 0–15 are
rarely seen since they correspond to a level far below the one
required to pass the exam); the 364 individual answers show
a relatively uniform distribution of scores above 8. Similarly,
a more balanced training set of just under 15,000 answers
was extracted from the full training set by excluding super-
numerary scripts from the middle of the scale; u400.4 The
resulting distributions can be seen in Figure 1.

3. METRICS
3.1 Traditional Metrics
Yannakoudakis & Cummins [29] investigated the appropri-
ateness and efficacy of evaluation metrics for AES including

1https://www.cambridgeassessment.org.uk/
2The operational score, combined with 5 examiner scores,
results in 6 scores per answer in the test data. In contrast,
the training data contains a single operational score.
3Previously, Yannakoudakis et al. [28] worked at the script
level (i.e. across two answers) and therefore used scores in
the range 0–40.
4Note: u400 was selected to be uniformly distributed at the
script-level; with 400 randomly selected (maximum) scripts
for each script score level 0–40.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 857

SCC, PCC, QWK and AC2 under different experimental
conditions. They recommend AC2 [13] for evaluation and
reporting SCC and PCC measures for error analysis and
system interpretation. Therefore we report these three eval-
uation metrics (AC2, SCC, PCC), as well as RMSE which
we consider operationally desirable; it penalises larger errors
more than smaller errors.

Ke & Ng [15] provide a survey of AES system research and
popular public corpora employed in evaluation. Most public
corpora contain a single human annotator score and evalu-
ation is limited to considering this score the gold standard
thence evaluation aids in comparison of AES systems but it
is not possible to determine a reasonable upper bound on
the task.

The CLC-FCE dataset [28] and the Automated Student As-
sessment Prize (ASAP) corpus, released as part of a Kaggle
competition,5 include scores assigned by four and two hu-
man annotators, respectively. For these, multi-marked cor-
pus evaluation can be performed against a single reference
score by taking an average of the scores [1, 16].6 Alterna-
tively, agreement between the AES system and (each) hu-
man expert can be compared to inter-rater agreement per-
formance (which represents the upper bound the task) [28,
19]. Yannakoudakis et al. [28] calculate the average pair-wise
agreement across all markers (human examiners and AES
system) to produce a single (comparable) metric for SCC
and PCC.We perform inter-rater and rater-to-AES pair-wise
evaluations for SCC, PCC, AC2 and RMSE in our experi-
mentation, and determine the average performance across
the 5 expert human examiners.

3.2 Multi-marked Metrics
We also employ a novel evaluation method whereby scores
are only considered to be erroneous if they fall outside the
acceptable range of scores, as defined by the set of expert
human examiner scores considered. We consider two score
ranges: i) the range of 5 expert examiner scores (ALL) and
ii) a narrower range (MID3) where we remove the top and
bottom scores (for each test item). In addition, we report
performance achieved for each of these ranges after removing
a single examiner’s score from the range, in turn, so that
we can compare the performance of each expert examiner
against the AES models.

Given a score range, we report the accuracy (percentage of
scores that fall within the range) and a novel RMSE variant;
RMSER, which considers the size of the error as equal to the
distance between the score and the range. For example, if
a score falls above the range we calculate the error as the
difference between the score and the highest score in the
range.

3.3 RMSEc Graphs
Operationally, the best performing model may not necessar-
ily be one that achieves the highest performance value based

5https://www.kaggle.com/c/asap-aes
6For ASAP, the resolved score is often employed, which is
calculated as the average between the two human examiner
scores (if the scores are close), or is determined by a third
examiner (if the scores are far apart).

on single metric such as AC2. Rather, a model that performs
well across the assessment scale is preferable. Further, it is
possible for models to achieve similar (single) metric perfor-
mance but exhibit very different performance distributions
across the scale (cf. uniform vs non-uniform distributions
with the same average).

Baccianella et al. [4] argued that macro-averaged metrics, in-
cluding macro-averaged root mean squared error (RMSEM),
are more suitable for ordinal regression tasks. RMSEM is
calculated by averaging over RMSEc (RMSE determined for
each score c on the assessment scale). That is, RMSEc is
RMSE calculated over the subset of test items that are la-
belled c. They argue that macro-averaged metrics are more
robust to test set distribution given the average results in
equally weighting the error rate for each label in the assess-
ment scale. Therefore, we report the RMSEM metric.

We also want to explicitly analyse how a model performs
across the assessment scale. Therefore, we employ individ-
ual RMSEc measures, for each reference score c (0–20), and
produce novel graphs; RMSEc graphs, where the score (c) is
plotted on the x-axis and the RMSEc value is plotted on the
y-axis. We also produce RMSER

c graphs, where we calculate
RMSEc values based on our novel RMSER variant.

4. AES MODELS
4.1 Feature-based
In this work, we extend a mature feature-based AES model [5,
28, 2]: a ranking timed aggregate perceptron (TAP) model
trained on a set of features shown to encode the information
required to distinguish between texts exhibiting different
levels of language proficiency attained by upper-intermedite
learners. Features include ones that can be extracted di-
rectly from the text (word and character n-grams) or a
parsed representation (PoS n-grams and parse rule names),
as well as various statistics (PoS categories, lengths, read-
ability scores, use of cohesive devices, etc.) and error es-
timations (rule-based and corpus-based). We also include
features that measure congruence between question and an-
swer (similarity between embeddings for different parts), but
that is not the focus of this paper.

Unlike for models used in previous work, the n-gram features
have been filtered to exclude ones that encode punctuation
without context; this forces the model to focus on other, pos-
sibly more relevant, aspects of the text and at the same time
removes the possibility of artificially inflating model scores
by adding superfluous punctuation characters. The models
trained on the full and u400 training sets will be referred to
as the TAP and TAP1, respectively, in the following.

4.2 Neural Network
In recent years, fine-tuning pre-trained masked language
models like BERT via supervised learning has become the
key to achieving state-of-the-art performance in various nat-
ural language processing (NLP) tasks. These models often
consist of over 100 million parameters across multiple layers
and have been pre-trained on large amounts of existing text
data to capture context-sensitive meaning of, and relations
between, words. Following [19, 16], our neural approach
builds upon this, where we use pre-trained DistilBERT as

858 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 1: Average inter-rater and rater-to-AES performance (Ex1–Ex5)

Op Ex1 Ex2 Ex3 Ex4 Ex5 TAP TAP1 NN TAP+NN TAP1+NN
SCC 0.74 0.77 0.72 0.75 0.74 0.77 0.75 0.74 0.78 0.79 0.78
PCC 0.73 0.76 0.69 0.76 0.75 0.76 0.74 0.73 0.78 0.78 0.77
AC2 0.90 0.92 0.92 0.94 0.94 0.94 0.94 0.93 0.94 0.94 0.94
RMSE 2.74 2.41 2.44 2.19 2.19 2.25 2.20 2.21 2.09 2.08 2.05

Table 2: RMSE using average examiner (Ex1–Ex5) scores
(ExAvg).

TAP TAP1 NN TAP+NN TAP1+NN
RMSE 1.70 1.72 1.58 1.56 1.52
RMSEM 1.70 1.34 1.55 1.54 1.33

the basis for our neural network model and add additional
layers on top to perform supervised tasks. We choose Distil-
BERT for practical reasons – it retains 97% of the language
understanding capabilities of BERT, while reducing param-
eter size by 40% and decreasing model inference time by
60% [21].

We treat AES as a sequence regression problem and con-
struct the input by adding a special start token ([CLS]) to
the full text:

[CLS], w1, w2, . . . , wt, . . . , wn (1)

This representation is then used as input to the output layer
to perform regression.

Compared with feature-based models, for neural network
models to be effective, they need to be trained on a large
amount of annotated data. MTL allows models to learn from
multiple objectives via shared representations, using infor-
mation from related tasks to boost performance on tasks for
which there is limited target data [18, 10, 31, 9]. Instead of
only predicting the score of an essay, we extended the model
to incorporate auxiliary objectives. The information from
these auxiliary objectives is propagated into the weights of
the model during training, without requiring the extra la-
bels at testing time. Inspired by the linguistic features used
in the feature-based AES systems, we experimented with a
number of linguistic auxiliary tasks, and identified the de-
pendency parsing as the most effective one.

The neural AES model is developed as a MTL neural net-
work model trained jointly to perform AES and Grammat-
ical Relation (GR) prediction. Model weights are shared
among these two training objectives. The final layer for
the AES objective is a fully connected layer that performs
regression (i.e. scoring head), while another linear layer is
introduced to perform token-level classification to predict
the type of the GR in which the current token is a depen-
dent (i.e. classification head). The overall loss function is a
weighted sum of the essay scoring loss (measured as MSE)
and the dependency parsing loss (as cross-entropy):

Loss = λLossAES + (1− λ)LossGR (2)

During training the whole model is optimised in an end-to-
end manner. We refer to the neural MTL model trained on
the full training set as the NN model in Section 5.

Table 3: Accuracy for ALL range.

-Ex1 -Ex2 -Ex3 -Ex4 -Ex5
Op 61.3 54.1 55.5 56.0 56.0 59.3
Ex1 ∗ 73.4 ∗ ∗ ∗ ∗
Ex2 ∗ ∗ 69.0 ∗ ∗ ∗
Ex3 ∗ ∗ ∗ 76.4 ∗ ∗
Ex4 ∗ ∗ ∗ ∗ 73.6 ∗
Ex5 ∗ ∗ ∗ ∗ ∗ 80.8
TAP 82.1 76.1 76.4 79.4 76.9 79.7
TAP1 78.8 71.4 72.8 73.9 74.7 76.1
NN 81.0 75.0 76.9 76.1 76.4 78.0
TAP+NN 84.9 78.8 79.1 79.9 81.0 82.4
TAP1+NN 85.4 77.5 80.8 80.5 80.5 82.1

Table 4: Accuracy for MID3 range.

-Ex1 -Ex2 -Ex3 -Ex4 -Ex5
Op 36.0 25.5 27.2 26.4 28.3 26.9
Ex1 ∗ 46.2 ∗ ∗ ∗ ∗
Ex2 ∗ ∗ 43.1 ∗ ∗ ∗
Ex3 ∗ ∗ ∗ 42.9 ∗ ∗
Ex4 ∗ ∗ ∗ ∗ 40.9 ∗
Ex5 ∗ ∗ ∗ ∗ ∗ 50.0
TAP 59.9 46.4 49.5 45.1 49.2 46.7
TAP1 53.6 44.5 45.6 41.5 41.5 42.6
NN 58.2 43.4 45.9 42.6 43.7 43.7
TAP+NN 61.8 47.0 49.2 46.7 47.3 48.1
TAP1+NN 59.6 47.3 46.7 45.1 44.0 45.9

5. EVALUATION
To facilitate comparison between AES systems and human
examiners, we employed traditional evaluation metrics as de-
scribed in §3.1. Table 1 shows average inter-rater or rater-to-
AES performance in terms of SCC, PCC, AC2 and RMSE
calculated between 1) operational scores (Op), scores as-
signed by an expert (Ex1–Ex5) or scores predicted by an
AES system, and 2) each of the experts’ scores (excluding
the expert being evaluated, if any).7 For instance:

SCC(Ex3) =
1

n− 1

∑
i 6=3

SCC(Ex3,Exi) (3)

For each metric (row) in Table 1, we have highlighted the
best performance in bold. AC2 scores 7 of the 10 models
the same (top) score of 0.94 and thence, in our experimenta-
tion, does not aid in system comparison. Apart from AC2,
these traditional evaluation metrics indicate that the NN
model outperforms all examiners and feature-based (TAP)
models. Both TAP models perform comparatively to the
individual examiners, that is, fall in the performance range
achieved by examiners (Ex1–Ex5). Performance of the com-
bined TAP and NN models (the average score) is shown in
the last two columns of Table 1. Based on these traditional

7For interested readers, we have included pair-wise results
for SCC, PCC, AC2 and RMSE metrics in the Appendix.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 859

Table 5: RMSER for ALL range.

-Ex1 -Ex2 -Ex3 -Ex4 -Ex5
Op 1.35 1.48 1.46 1.49 1.46 1.43
Ex1 ∗ 1.12 ∗ ∗ ∗ ∗
Ex2 ∗ ∗ 1.16 ∗ ∗ ∗
Ex3 ∗ ∗ ∗ 0.77 ∗ ∗
Ex4 ∗ ∗ ∗ ∗ 0.78 ∗
Ex5 ∗ ∗ ∗ ∗ ∗ 0.93
TAP 0.74 0.90 0.92 0.82 0.84 0.79
TAP1 0.71 0.87 0.85 0.83 0.83 0.81
NN 0.64 0.81 0.74 0.76 0.77 0.70
TAP+NN 0.62 0.79 0.76 0.73 0.74 0.68
TAP1+NN 0.58 0.74 0.68 0.68 0.68 0.65

Table 6: RMSER for MID3 range.

-Ex1 -Ex2 -Ex3 -Ex4 -Ex5
Op 1.84 2.11 2.03 2.12 2.04 2.04
Ex1 ∗ 1.77 ∗ ∗ ∗ ∗
Ex2 ∗ ∗ 1.77 ∗ ∗ ∗
Ex3 ∗ ∗ ∗ 1.42 ∗ ∗
Ex4 ∗ ∗ ∗ ∗ 1.41 ∗
Ex5 ∗ ∗ ∗ ∗ ∗ 1.48
TAP 1.21 1.41 1.49 1.42 1.55 1.42
TAP1 1.21 1.51 1.44 1.43 1.52 1.46
NN 1.09 1.38 1.31 1.33 1.40 1.31
TAP+NN 1.08 1.32 1.32 1.30 1.41 1.28
TAP1+NN 1.01 1.31 1.23 1.25 1.34 1.25

metrics, it is unclear whether combining models improves
performance. PCC and AC2 indicate no improvement is
made over the single NN model, while SCC and RMSE in-
dicate that TAP+NN and TAP1+NN are best, respectively.

Table 2 compares the AES systems using RMSE and RMSEM

calculated using the average examiner scores (ExAvg) as the
single reference score. The combined TAP1+NN achieves
the best RMSE and RMSEM performance (in line with av-
erage examiner RMSE performance in Table 1). RMSEM is
the only metric that illustrates a large performance differ-
ence between TAP and TAP1 models. In fact, TAP1 sig-
nificantly outperforms the NN model as well for this metric,
indicating that this model performs better across the assess-
ment scale than the other AES models. RMSE and RMSEM,
over ExAvg scores, suggest that there is some small perfor-
mance gains made by combining models.

In addition to traditional evaluation methods, we employed
novel multi-marked metrics, as described in §3.2. Tables 3
and 4 illustrate the accuracy (percentage of scores that fall
in range) over the ALL and MID3 ranges, respectively. Ta-
bles 5 and 6 show the corresponding RMSER performance
for these ranges, respectively. For all four tables, perfor-
mance is directly comparable within each column, with the
highest accuracy highlighted in bold.8 The most important
evaluation relates to the first column for the ALL range in
Tables 3 and 5, as these results compare the performance
of the AES models evaluated against all 5 examiner scores’
range. Other columns in these tables (-ExN) facilitate com-
parison between the AES systems and each human examiner
(N).

8Note, the asterisk symbol in these four tables indicate that
the score is part of the acceptable range.

Accuracy and RMSER metrics are complementary, as ac-
curacy represents the proportion of scores that are correct
while RMSER evaluates the degree to which scores fall out-
side the range of human examiner scores. Operationally, we
consider RMSER more important than accuracy, given AES
systems should be consistent and errors, when they do oc-
cur, should be penalised to a greater degree as the scores
falls further outside the range of human examiner scores.

Tables 5 and 6 suggest that NN outperforms both TAP
models and all human examiners, while both TAP mod-
els perform comparatively to the individual examiners; in
line with evaluation based on traditional metrics in Table 1.
However, in contrast to the metrics discussed thus far, the
RMSER metric indicates combined models outperform their
corresponding individual models. This improvement is more
evident for TAP1+NN, which outperforms all human exam-
iners and AES models across both ranges.

As described in §3.3, we produced novel RMSEc graphs
to compare model performance across the assessment scale.
RMSEc (and RMSER

c) graphs for the single and combined
AES models are shown in Figure 2. The Op and ExAvg
graphs plot RMSEc calculated against the operational and
average examiner scores (i.e. c on the x-axis), respectively.
The bottom graph, a RMSER

c graph, plots the RMSER per-
formance for the ALL range where the c score (x-axis) is
the average examiner score in the ALL range (i.e. using the
same distribution of test items as the ExAvg RMSEc graph).

Comparing the AES models across the assessment scale, we
can see that all AES models follow a similar pattern; they
perform better in the mid ranges and worse in the lower and
upper score ranges. This finding is not unexpected, given we
have ample training data in the mid ranges and very little
training data in the upper and lower ranges of the assessment
scale (see Figure 1). The TAP1 model, trained over a more
uniformly distributed training set trades smaller declines in
performance in the middle of the scale for more consistent
results across the scale, in line with the RMSEM evaluation
metric. The NN model achieves better performance in the
upper and lower scores compared to TAP, suggesting that it
is more robust over skewed training datasets. However, as
evident in these RMSEc graphs, the TAP and NN models
tend to perform better in particular ranges of the scale and
thence these models are complementary, and combined mod-
els benefit from the relative strengths of individual models
across the scale.

6. CONCLUSIONS
We deployed two types of AES systems: feature-based and
neural network. We found that the NN model is more ro-
bust over skewed datasets as it achieves better performance
in the upper and lower scores. However, the feature-based
models are more interpretable, require significantly less com-
putational overhead to train and can be trained over much
smaller datasets than neural-based models. The TAP1 model,
trained over a more uniform subset of the training data per-
formed more consistently than NN across the assessment
scale. We illustrated that feature-based TAP and NN mod-
els are complementary, and combined models benefit from
the relative strengths of individual models across the scale,
outperforming human examiners. In operational deploy-

860 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 2: RMSEc graphs for operational score (Op) and
average examiner score (ExAvg). RMSER

c graph for the
ALL range.

ment, the best performing TAP1+NN model can make ef-
fective use of the constantly growing set of training data by
retraining TAP1 frequently to incorporate any new informa-
tion available and only retraining the NN models over the
full training set from time to time.

We presented novel approaches to evaluating AES that make
use of multi-marked/annotated data. These approaches have
advantages over traditional evaluation methods and also demon-
strate the value of using resources to repeatedly annotate
essays for the AES context. Building on the recommenda-
tions made by Yannakoudakis & Cummins [29], we make the
following observations and suggestions for those working on
AES:

• In addition to RMSEM, we recommend calculating RMSEc

and plotting RMSEc graphs to explicitly analyse how
system performance varies across an assessment scale.

• We recommend that, where feasible, a proportion of
texts in evaluation sets should be annotated by mul-
tiple examiners to allow different forms of evaluation
that account for rating variability exhibited by human
examiners.

• Where multiple human-derived scores are available,
system performance should be evaluated using meth-
ods that incorporate the range of scores given for each
text. We recommend using a novel RMSE variant;
RMSER, that considers the size of the error as equal
to the distance between the score and the upper or
lower bound of the range.

• Where multiple human-derived scores are available, we
also recommend that the accuracy of a system is cal-
culated, by treating texts scored within the range of
scores provided by humans as correct classifications.

Further work is needed to explore the evaluation approaches
proposed here to establish how they vary in different con-
texts, to inform how they should be interpreted. For ex-
ample, we expect these evaluation metrics to behave differ-
ently according to the granularity of the reporting scale, the
distribution of evaluation sets and the inter-rater reliabil-
ity observed between human examiners. Therefore, work to
systematically investigate these measures in terms of their
robustness to trait prevalence, robustness to marginal homo-
geneity and robustness to scale scores should be conducted
systematically, in a similar vein to simulations reported by
Yannakoudakis & Cummins [29].

We have demonstrated the value of producing multi-marked
data to support evaluation. However, our proposed metrics
can be refined further to allow for more sophisticated uses
of multi-marked data, by incorporating methods commonly
used for psychometric evaluation and quality assurance, such
as Many-Facet Rasch Measurement [17, 12]. Further work
should explore how these methods can account for examiner
reliability issues when making use of multi-marked data.

7. ACKNOWLEDGMENTS
We would like to thank Ted Briscoe, Michael Corrigan, He-
len Yannakoudakis and the anonymous reviewers for their

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 861

valuable comments and suggestions. This paper reports on
research supported by Cambridge Assessment, University of
Cambridge.

8. REFERENCES
[1] D. Alikaniotis, H. Yannakoudakis, and M. Rei.

Automatic text scoring using neural networks. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 715–725, Berlin, Germany,
August 2016. Association for Computational
Linguistics.

[2] Ø. E. Andersen, H. Yannakoudakis, F. Barker, and
T. Parish. Developing and testing a self-assessment
and tutoring system. In Proceedings of the Eighth
Workshop on Innovative Use of NLP for Building
Educational Applications, pages 32–41, Atlanta,
Georgia, June 2013. Association for Computational
Linguistics.

[3] Y. Attali and J. Burstein. Automated essay scoring

with e-rater® v.2. The Journal of Technology,
Learning and Assessment, 4(3), Feb. 2006.

[4] S. Baccianella, A. Esuli, and F. Sebastiani. Evaluation
measures for ordinal regression. pages 283–287, 01
2009.

[5] T. Briscoe, B. Medlock, and Ø. Andersen. Automated
assessment of ESOL free text examinations. Technical
Report UCAM-CL-TR-790, University of Cambridge,
Computer Laboratory, Nov. 2010.

[6] J. Chen, J. H. Fife, I. I. Bejar, and A. A. Rupp.

Building e-rater® Scoring Models Using Machine
Learning Methods. ETS Research Report Series,
2016(1):1–12, June 2016.

[7] M. Chodorow and J. Burstein. Beyond essay length:

Evaluating e-rater®’s performance on toefl® essays.
ETS Research Report Series, 2004(1):i–38, 2004.

[8] J. Cohen. Inter-rater reliability: Dependency on trait
prevalence and marginal homogeneity. Psychological
bulletin, 4(70):213–220, 1968.

[9] H. Craighead, A. Caines, P. Buttery, and
H. Yannakoudakis. Investigating the effect of auxiliary
objectives for the automated grading of learner
English speech transcriptions. In Proceedings of the
58th Annual Meeting of the Association for
Computational Linguistics, pages 2258–2269, Online,
July 2020. Association for Computational Linguistics.

[10] R. Cummins and M. Rei. Neural multi-task learning in
automated assessment. CoRR, abs/1801.06830, 2018.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
BERT: Pre-training of deep bidirectional transformers
for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics.

[12] S. Goodwin. A many-facet rasch analysis comparing
essay rater behavior on an academic english
reading/writing test used for two purposes. Assessing
Writing, 30:21–31, 2016. Innovation in rubric use:
Exploring different dimensions.

[13] K. Gwet. Inter-rater reliability: Dependency on trait
prevalence and marginal homogeneity. Stat Methods
Inter-Rater Reliab Assess, 2, 01 2002.

[14] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural Computation, 9(8):1735–1780, 1997.

[15] Z. Ke and V. Ng. Automated essay scoring: A survey
of the state of the art. In Proceedings of the
Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19, pages 6300–6308.
International Joint Conferences on Artificial
Intelligence Organization, 7 2019.

[16] E. Mayfield and A. W. Black. Should you fine-tune
BERT for automated essay scoring? In Proceedings of
the Fifteenth Workshop on Innovative Use of NLP for
Building Educational Applications, pages 151–162,
Seattle, WA, USA â†’ Online, July 2020. Association
for Computational Linguistics.

[17] C. Myford and E. Wolfe. Detecting and measuring
rater effects using many-facet rasch measurement:
Part ii. Journal of applied measurement, 5:189–227, 02
2004.

[18] M. Rei and H. Yannakoudakis. Auxiliary objectives
for neural error detection models. In Proceedings of the
12th Workshop on Innovative Use of NLP for Building
Educational Applications, pages 33–43, Copenhagen,
Denmark, Sept. 2017. Association for Computational
Linguistics.

[19] P. U. Rodriguez, A. Jafari, and C. M. Ormerod.
Language models and automated essay scoring. CoRR,
abs/1909.09482, 2019.

[20] L. M. Rudner and T. Liang. Automated essay scoring
using bayes’ theorem. The Journal of Technology,
Learning and Assessment, 1(2), June 2002.

[21] V. Sanh, L. Debut, J. Chaumond, and T. Wolf.
DistilBERT, a distilled version of BERT: smaller,
faster, cheaper and lighter. In Proceedings of the 5th
Workshop on Energy Efficient Machine Learning and
Cognitive Computing, Vancouver BC, Canada, Dec.
2020.

[22] M. D. Shermis and J. Burstein, editors. Handbook of
Automated Essay Evaluation. Routledge, 2013.

[23] K. Taghipour and H. T. Ng. A neural approach to
automated essay scoring. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language
Processing, pages 1882–1891, Austin, Texas, Nov.
2016. Association for Computational Linguistics.

[24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin. Attention is All you Need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages
5998–6008. Curran Associates, Inc., 2017.

[25] D. M. Williamson, X. Xi, and F. J. Breyer. A
framework for evaluation and use of automated
scoring. Educational Measurement: Issues and
Practice, 31(1):2–13, 2012.

[26] J. Wilson, D. Chen, M. P. Sandbank, and M. Hebert.
Generalizability of automated scores of writing quality
in grades 3-5. Journal of Educational Psychology,
111(4):619–640, May 2019.

[27] R. Yang, J. Cao, Z. Wen, Y. Wu, and X. He.

862 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Enhancing automated essay scoring performance via
fine-tuning pre-trained language models with
combination of regression and ranking. In Findings of
the Association for Computational Linguistics:
EMNLP 2020, pages 1560–1569, Online, Nov. 2020.
Association for Computational Linguistics.

[28] H. Yannakoudakis, T. Briscoe, and B. Medlock. A new
dataset and method for automatically grading ESOL
texts. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics:
Human Language Technologies, pages 180–189,
Portland, Oregon, USA, June 2011. Association for
Computational Linguistics.

[29] H. Yannakoudakis and R. Cummins. Evaluating the
performance of automated text scoring systems. In
Proceedings of the Tenth Workshop on Innovative Use
of NLP for Building Educational Applications, pages
213–223, Denver, Colorado, June 2015. Association for
Computational Linguistics.

[30] H. Yannakoudakis, Øistein E Andersen,
A. Geranpayeh, T. Briscoe, and D. Nicholls.
Developing an automated writing placement system
for esl learners. Applied Measurement in Education,
31(3):251–267, 2018.

[31] Z. Yuan, F. Stahlberg, M. Rei, B. Byrne, and
H. Yannakoudakis. Neural and FST-based approaches
to grammatical error correction. In Proceedings of the
Fourteenth Workshop on Innovative Use of NLP for
Building Educational Applications, pages 228–239,
Florence, Italy, Aug. 2019. Association for
Computational Linguistics.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 863

APPENDIX
A. FULL PAIR-WISE RESULTS
We include, in the Appendix, individual pair-wise inter-rater and rater-to-AES performance, across the 5 examiners, for
operational scores (Op), each human examiner (Ex1–Ex5) and the AES models for SCC, PCC, AC2 and RMSE. Results in
the last row in each table, the average of the Ex1–Ex5 scores in each column, can be seen in Table 1 .

Table 7: SCC (best score per row shown in bold).

Op Ex1 Ex2 Ex3 Ex4 Ex5 TAP TAP1 NN TAP+NN TAP1+NN
Op ∗ 0.76 0.69 0.76 0.72 0.75 0.73 0.73 0.79 0.77 0.77
Ex1 0.76 ∗ 0.69 0.79 0.76 0.82 0.80 0.80 0.84 0.84 0.84
Ex2 0.69 0.69 ∗ 0.73 0.74 0.72 0.69 0.66 0.72 0.72 0.70
Ex3 0.76 0.79 0.73 ∗ 0.73 0.77 0.75 0.74 0.80 0.80 0.78
Ex4 0.72 0.76 0.74 0.73 ∗ 0.75 0.72 0.73 0.75 0.76 0.76
Ex5 0.75 0.82 0.72 0.77 0.75 ∗ 0.78 0.77 0.82 0.81 0.81
Avg (Ex1–Ex5) 0.74 0.77 0.72 0.75 0.74 0.77 0.75 0.74 0.78 0.79 0.78

Table 8: PCC (best score per row shown in bold).

Op Ex1 Ex2 Ex3 Ex4 Ex5 TAP TAP1 NN TAP+NN TAP1+NN
Op ∗ 0.75 0.68 0.76 0.73 0.72 0.73 0.74 0.77 0.77 0.77
Ex1 0.75 ∗ 0.66 0.79 0.76 0.82 0.79 0.79 0.83 0.83 0.83
Ex2 0.68 0.66 ∗ 0.71 0.70 0.68 0.68 0.65 0.69 0.70 0.69
Ex3 0.76 0.79 0.71 ∗ 0.76 0.79 0.75 0.73 0.80 0.80 0.79
Ex4 0.73 0.76 0.70 0.76 ∗ 0.77 0.73 0.74 0.76 0.77 0.77
Ex5 0.72 0.82 0.68 0.79 0.77 ∗ 0.76 0.76 0.81 0.81 0.80
Avg (Ex1–Ex5) 0.73 0.76 0.69 0.76 0.75 0.76 0.74 0.73 0.78 0.78 0.77

Table 9: AC2 (best score per row shown in bold).

Op Ex1 Ex2 Ex3 Ex4 Ex5 TAP TAP1 NN TAP+NN TAP1+NN
Op ∗ 0.90 0.88 0.91 0.89 0.90 0.88 0.89 0.89 0.89 0.90
Ex1 0.90 ∗ 0.90 0.93 0.93 0.94 0.93 0.94 0.94 0.94 0.95
Ex2 0.88 0.90 ∗ 0.94 0.92 0.93 0.92 0.90 0.92 0.92 0.92
Ex3 0.91 0.93 0.94 ∗ 0.95 0.95 0.94 0.94 0.95 0.95 0.95
Ex4 0.89 0.93 0.92 0.95 ∗ 0.95 0.94 0.93 0.94 0.94 0.94
Ex5 0.90 0.94 0.93 0.95 0.95 ∗ 0.94 0.94 0.95 0.95 0.95
Avg (Ex1–Ex5) 0.90 0.92 0.92 0.94 0.94 0.94 0.94 0.93 0.94 0.94 0.94

Table 10: RMSE (best score per row shown in bold).

Op Ex1 Ex2 Ex3 Ex4 Ex5 TAP TAP1 NN TAP+NN TAP1+NN
Op ∗ 2.72 2.92 2.58 2.72 2.78 2.93 2.71 2.74 2.79 2.64
Ex1 2.72 ∗ 2.77 2.30 2.30 2.28 2.29 2.15 2.05 2.10 1.99
Ex2 2.92 2.77 ∗ 2.30 2.20 2.48 2.22 2.40 2.26 2.17 2.24
Ex3 2.58 2.30 2.30 ∗ 2.08 2.07 2.20 2.24 2.06 2.07 2.05
Ex4 2.72 2.30 2.20 2.08 ∗ 2.15 1.95 2.01 1.90 1.85 1.84
Ex5 2.78 2.28 2.48 2.07 2.15 ∗ 2.34 2.25 2.20 2.21 2.13
Avg (Ex1–Ex5) 2.74 2.41 2.44 2.19 2.19 2.25 2.20 2.21 2.09 2.08 2.05

864 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Methods for Language Learning Assessment at Scale:
Duolingo Case Study

Lucy Portnoff
Duolingo

lucy@duolingo.com

Erin Gustafson
Duolingo

erin@duolingo.com

Klinton Bicknell
Duolingo

klinton@duolingo.com

Joseph Rollinson
Duolingo

joseph@duolingo.com

ABSTRACT
Students using self-directed learning platforms, such as Duolingo,
cannot be adequately assessed relying solely on responses to
standard learning exercises due to a lack of control over learners’
choices in how to utilize the platform: for example, how learners
choose to sequence their studying and how much they choose to
revisit old material. To provide accurate and well-controlled
measurement of learner achievement, Duolingo developed two
methods for injecting test items into the platform, which
combined with Educational Data Mining techniques yield insights
important for product development and curriculum design. We
briefly discuss the unique characteristics and advantages of these
two systems - Checkpoint Quiz and Review Exercises. We then
present a case study investigating how different study approaches
on Duolingo relate to learning outcomes as measured by these
assessments. We demonstrate some of the unique benefits of these
systems and show how educational data mining approaches are
central to making use of this assessment data.
Keywords

online learning; language learning; assessment; regression
1. INTRODUCTION
Online learning platforms have at their disposal large volumes of
data about how students engage with learning material, how they
navigate educational software, and how the learning process
unfolds over time. Using a variety of methods - machine learning,
statistics, psychometrics, etc. - Educational Data Mining (EDM)
and Learning Analytics (LA) researchers identify students at risk
of dropout from a course [e.g., 13], detect changes in study
behavior [e.g., 11], predict exam performance [e.g., 1, 4, 12], and
characterize the different learning strategies that learners adopt
[e.g., 1, 12].
Duolingo is a learning platform that provides free language
education through mobile apps and a website. With around 40
million users active on the platform each month, Duolingo may

well possess the largest language learning dataset of any company
or research institution. Researchers at Duolingo leverage
EDM/LA methodologies to mine datasets - including internal
assessment and log data - for insights that inform improvements to
the learning experience, help identify opportunities for changes to
curriculum design, and fuel research on second language (L2)
learning more generally.
Due to the self-directed nature of the Duolingo learning platform
and the desire for holistic learner assessment, we have developed
two assessment systems - the Checkpoint Quiz and Review
Exercises - that allow for carefully controlled measurement of
learner achievement. These two assessments were designed with
the challenges gamified platforms struggle with in mind,
including ensuring the learning experience remains motivating
and maintaining a scalable content creation process.
The utility of the Checkpoint Quiz and Review Exercises for
assessing learner achievement depends, at least in part, on the
high volume of data collected from Duolingo learners and the
EDM methodologies that can be applied to that data. By
leveraging predictive modeling and natural language processing
(NLP) methods, we are able to control for the various ways that
learners choose to navigate through the platform. Further, these
methods allow us to uncover useful insights into how this
variation in user navigation relates to learning outcomes - insights
that we can leverage for product development and curriculum
design. In this paper, we present two of our assessment systems
and a case study highlighting the importance of applying EDM
methodologies to derive insights from Duolingo assessment and
log data.

2. RELATED WORK
Most EDM/LA applications at Duolingo focus on pedagogy-
oriented issues [10] or computer-supported predictive analytics
[2]. Most relevant to the current work are studies focused on
predicting performance on upcoming course exercises [9] and
predicting performance on an assessment [1, 4, 12]
Rather than relying on assessment data, some systems discussed
in other studies instead model student interaction with and
performance on individual course exercises. Knowledge tracing
[7] is a popular approach for maintaining a model of whether
students have learned specific concepts in a course. One system
[9] compared the performance of a Bayesian Knowledge Tracing
(BKT) model with a Deep Knowledge Tracing (DKT) model
using Long Short-Term Memory (LSTM) to better capture longer-

Lucy Portnoff, Erin Gustafson, Joseph Rollinson and Klinton Bicknell
“Methods for Language Learning Assessment at Scale: Duolingo Case
Study”. 2021. In: Proceedings of The 14th International Conference on
Educational Data Mining (EDM21). International Educational Data Min-
ing Society, 865-871. https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 865

term learning. These models predicted future performance on
exercise xt+1 given the previous performance record for a student
(x0, ..., xt). This system treats every student interaction as an
opportunity for assessment and the model output was used for
developing student-facing modules for progress tracking and
content recommendation. However, knowledge tracing
approaches primarily focus on characterizing mastery of specific
concepts rather than providing a holistic assessment of knowledge
or achievement.
Other studies rely both on knowledge tracing and assessment data
to analyze course effectiveness and provide this more holistic
view. This approach is especially useful in more self-directed
learning platforms. One study [4] used BKT to characterize
learning using a digital game and used outputs from these models
to predict post-test scores following a period of learning with the
game. They found that mastery scores for two knowledge
components (output from BKT models) had positive and
significant association with post-test scores. Insights from the
BKT model itself were also useful for identifying concepts that
are difficult for students to master, which highlights opportunities
for improving course effectiveness. This study also found
evidence that learners have poor meta-cognition about their
mastery of key concepts; when left to use the learning platform
freely, many students continue to practice concepts the BKT
model predicts they have mastered rather than moving on to new
material.
Knowledge tracing is not the only approach used for
characterizing student behavior using clickstream or log data. To
make log data useful for predictive modeling, many researchers
turn to methods from NLP to aggregate events [1, 12]. Simple
methods include calculating n-grams for particular event types.
For example, unigrams can capture the number of times a student
completes a particular learning module and bigrams can capture
the number of times students complete two modules in sequence
[12]. Such data can be used as inputs into predictive models either
relying solely on raw n-gram counts [12] or by processing the data
further using unsupervised machine learning methods - such as
hierarchical clustering - to identify common sequence patterns [1].

3. DUOLINGO ASSESSMENT SYSTEMS
3.1 Duolingo Course Structure
Duolingo courses are organized into a series of units, each of
which concludes with a Checkpoint. Courses used by the majority
of learners have the following structure: 25-30 skills per unit with
five difficulty levels per skill and 5-6 lessons per level. Skills are
designed around a particular theme (e.g., Travel). The vocabulary
taught in the skill is aligned around that theme (e.g., hotel, airport,
passport) and grammatical topics tend to be consistent across
lessons within a skill. Lessons typically consist of 12-15 exercises
designed to teach some vocabulary and/or grammatical concept.
Duolingo curriculum designers incorporate aspects of spiral
curriculum [5] to revisit familiar concepts in more complex
contexts in future skills. See Figure 1 for an example of the
typical Duolingo course structure.

The five levels for each skill provide a scaffolded learning
experience, where learners review the same vocabulary or
grammatical concepts in increasingly difficult contexts. All skills
start with a foundational Level 0 and as learners “level up” a skill
they see the same sequence of lessons teaching the same content
but using different exercise types. Early levels include exercises
that focus on passive recognition, such as matching a second
language (L2) word/picture pair with the corresponding word in

the first language (L1); see Figure 2). Exercises in later levels are
more difficult, as they require recall and production in the L2
(e.g., translating an L1 sentence into L2; see Figure 2). The level
achieved for a given skill is indicated in the user interface with a
number inside a crown icon (see Figure 1).

Figure 1. Duolingo course and Checkpoint Quiz design.

Figure 2. Example exercise types. Top left: passive
recognition; top right: recall and production. Bottom left:

recall L2àL1; bottom right: recall L1àL2.

866 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

When learners begin a Duolingo course, not all skills in the first
unit are immediately available; a row unlocks once Level 0 is
complete for all skills in the prior row. For example, only the
Basics 1 skill is available at first and the next set of skills in the
row below Basics 1 (e.g., Phrases and Travel; see Figure 1) will
only unlock once Basics 1 reaches Level 1. Once skills are
unlocked, learners are free to return to them to practice previously
studied material and “level up” the skill. Duolingo learners are,
therefore, given agency to choose their learning path. Some
learners prefer to attempt only the foundational level in a skill
(Level 0) before moving on to new material, while others prefer to
level up all skills. Leveling up is entirely optional and learners are
required to complete only the foundational level for each skill
before they can move on to the next unit of content. This self-
directed nature of the learning platform provides challenges for
assessing learner achievement.
Other modes of learning are available to users outside of course
skills. Learners can build reading and listening proficiency
through the Stories feature, which reinforces unit content through
interactive dialogues with exercises to check comprehension.
Learners can also complete generalized practice sessions, which
drill users on content they have already studied from throughout
the course. Further, after learners have leveled a skill up all the
way, they can return for skill practice to reinforce their
knowledge. If learners find skill material too easy, they also have
the option to “test out” of a level and jump to harder exercises at
the next level.
We use a variety of methods to assess learner achievement and
proficiency throughout a Duolingo course. In the sections below,
we describe two of the core assessments in use today: Checkpoint
Quiz and Review Exercises.

3.2 Checkpoint Quiz
For a subset of Duolingo’s courses, learners must complete a
custom-built assessment once they finish a unit and reach a
Checkpoint. The Checkpoint Quiz is an achievement test that
measures the extent to which our learners have achieved the
objectives for each unit of a course. Checkpoint Quiz items
are independent from the items used in course skills and users are
only exposed to the quiz items during the assessment. This
ensures that learners do not have the opportunity to learn the items
in the assessment while studying course content and is important
for test validity. Checkpoint Quiz items were designed by
curriculum experts and Duolingo assessment scientists have
conducted analyses to ensure their quality.
Learners do not receive corrective feedback or a final grade for
the assessment and may only take the quiz once. At each
Checkpoint, learners complete a randomly generated quiz
consisting of 15 items (sampled from a larger pool of items).
Seven items are pre-test items that test the next unit of the course
that the learner is about to start and another seven are post-test
items that test the unit the learner just completed (critically, the
same seven items the learner saw in the previous quiz as a pre-
test). This pre-test / post-test design allows us to establish a
baseline level of performance so we can later assess gain in
accuracy from pre-test to post-test. The final item is a self-
directed writing item designed to assess the current unit (with no
pre-test). See Figure 1 for an illustration of Checkpoint Quiz
design.
The assessment tests knowledge of vocabulary, grammar,
listening comprehension, reading comprehension, and free-form

writing using separate items designed to test one of these language
skills and components. Vocabulary and grammar items are a
combination of multiple choice and fill-in-the-blank questions
(i.e., learners type the missing word), listening and reading are
exclusively multiple choice, and writing questions are free-
response. Each item is accompanied by a set of curated tags for
grammatical concepts and communicative components.

3.3 Review Exercises
Review Exercises prompt learners to review content from a skill
earlier in their course. A single Review Exercise is inserted into
randomly selected lessons in the foundational level of a skill (only
for skills beyond the first five in the course). These exercises are
randomly and uniformly sampled from the pool of available
exercises from either three skills or five skills earlier in the course.
For example, randomly selected exercises from the Animals skill
are injected into Level 0 lessons seen by learners studying the
Places skill (see Figure 3). These exercises are inserted into the
lesson in a random position, as long as it is not among the first
two or last two exercises. Therefore, lessons with Review
Exercises will be one exercise longer than a standard lesson.
Review Exercises come in two forms: assisted recall and
translation from L1-to-L2 or vice versa (see bottom row of Figure
2).

Figure 3. Review Exercise design for testing five skills earlier

in course.
Review Exercises as a form of assessment have a number of
advantages over the Checkpoint Quiz: 1) Review Exercises are
available in all courses; 2) they allow us to measure learning at
every skill in a course, rather than just at unit-terminal
Checkpoints; and 3) they provide an order of magnitude more data
than Checkpoint Quizzes.

However, Review Exercises have a few disadvantages over the
Checkpoint Quiz. One key disadvantage is that the items used for
Review Exercises overlap with items used for lessons with skills;
therefore, we sacrifice some test validity in order to be able to use
the assessment at scale across all courses and all skills in a given
course. Further, the sentences used as Review Challenges have
not been assessed for their quality as measures of learning.
Another disadvantage is that the data is not tagged for
grammatical concepts or communicative components, which

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 867

limits the insights this assessment can provide for informing
curriculum design.

Table 1. Key differences between the Checkpoint Quiz and
Review Exercises.

Checkpoint Quiz Review Exercises

Slow data collection
(only at Checkpoints)

Fast data collection
(at every skill in a course)

Tagged and calibrated by
curriculum experts Not tagged or calibrated

Items siloed from course Items sampled from course

Only certain courses All courses

4. CASE STUDY
Learners on Duolingo use the platform in a variety of different
ways. In this case study, we investigate how learning decisions
impact outcomes, so that we could “nudge” learners to use the app
more effectively.
This case study demonstrates how EDM methodologies allow us
to investigate the various ways that learners choose to navigate
through the platform - focusing on differences in “leveling up”
behavior - and how course navigation relates to learning
outcomes. We show a correlation between leveling up and higher
accuracy on the Checkpoint Quiz. Complementary modeling with
Review Exercise data establishes a causal link between
completing sessions in higher levels and accuracy on assessments.

4.1 Checkpoint Quiz
4.1.1 Data
Our work uses four months of Checkpoint Quiz data. For every
learner completing at least two consecutive Checkpoint Quizzes
within this timeframe, we collected the pre-test / post-test item
response pairs (e.g., the pre-test responses collected at Checkpoint
1 and the corresponding post-test responses collected at
Checkpoint 2) as well as summary statistics on learners’ studying
behavior in the unit the items assess (e.g., number of lessons
completed at each level across skills in Unit 2, number of Stories
completed between pre-test and post-test). Responses to free-form
writing items were not included in this analysis.

4.1.2 Methods
To isolate the impact of lessons completed at each level on
Checkpoint Quiz outcomes, we built a logistic regression model to
predict post-test scores for items that were answered incorrectly in
the pre-test (a measure of learning gain). Primary variables of
interest capture the number of lessons learners completed at a
given level for each skill in the unit of interest (frequency counts
for Level 1 through Level 4; e.g., a learner completed 20 Level 1
lessons, 15 Level 2 lessons, etc.). Although Duolingo has five
levels for all skills (starting with Level 0), we exclude counts for
the foundational level because all learners must complete the
same number of Level 0 lessons to finish a unit. The model
controls for item and user covariates: language component of the
item (e.g., vocabulary), unit (e.g., Unit 2), course (e.g., French for
English Speakers), number of sessions completed for other types
of study material (e.g., Stories, generalized practice, test-outs),

self-reported prior proficiency (0-10), and subscriber status1 (non-
paying or paying learner).
4.1.3 Results
We found that average post-test item accuracy increases linearly
with every skill-level completed (Figure 4). In other words, each
additional level completed across all skills increases the odds of
answering a Checkpoint Quiz item correctly by the end of the
unit.

Figure 4. Average post-test accuracy by the number of skill-

levels completed as a function of pre-test accuracy.
This finding was supported by the results of our logistic
regression model (summarized in Figure 5). We observed that the
probability of answering a post-test item correctly increases with
every additional lesson in Levels 1, 2, and 4. Level 3 has a
negative coefficient, but this is likely an artifact of variable
suppression2.

Figure 5. Checkpoint Quiz logistic regression model output.
Coefficients of the number of times a user completed seven
different session types in a model including other user and

item covariates (see Section 4.1.2).

1 Duolingo offers a paid subscription that removes ads, allows
offline access, and includes additional features and learning
modes. All learners have access to the same course content.

2 Because learners tend to complete the same number of lessons in
Levels 3 and 4, we attributed the negative coefficient to the
statistical consequence of highly collinear relationships existing in
the correlation matrix, which can cause variable suppression and
model instability [8]. To verify that this multicollinearity did not
result in model instability, we repeatedly fit the model on
bootstrapped samples of the original data. We found that small
changes to the data do not cause any erratic changes in the
coefficients, so we concluded that our model estimates are stable.

868 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

We also compared the magnitudes of the leveling up effects with
those of other types of learning modes, specifically Stories
(interactive dialogues to practice reading and listening skills), skill
practice, and generalized practice (see Section 2 for more details
about these learning modes). Coefficients capturing leveling up
behavior show dominant effects in the model; one additional skill-
level has a greater impact on Checkpoint Quiz scores than one
additional Story, skill practice, or generalized practice.

The Checkpoint Quiz findings show that providing learners with
multiple difficulty levels to practice study material improves
learning outcomes. Further, we found evidence that completing
lessons at Levels 1, 2, 4 is not only positively associated with
learning outcomes, but is more positively associated than any
other activity. However, the Checkpoint Quiz analysis is not
necessarily causal. The findings could also be due to self-selection
biases, wherein the type of learner that is motivated to complete
additional (non-required) levels is likely to perform better in
general. A complementary analysis is required to establish a
causal link.
4.2 Review Exercises
We utilized Review Exercise data to establish a causal link
between leveling up and better learning outcomes. Review
Exercises are better suited to this complementary analysis than the
Checkpoint Quiz because each Review Exercise targets material
from a single source lesson. This design allows us to compare
learners who exhibit the same studying behavior except for the
completion of one additional level for that lesson. Isolating the
change in accuracy from one additional level means that we have
controlled for self-selection biases and can interpret the change as
causal.

4.2.1 Data
For the Review Exercise analysis, we collected all Review
Exercises completed over the course of approximately two
months. Data comes from all Duolingo courses. Along with
Review Exercise response accuracy, we collect important control
variables: whether the exercise came from 3 or 5 skills earlier in
the course, exercise type, and the skill the exercise was sampled
from (see Figure 3 for Review Challenge design).
4.2.2 Methods
Using logistic regression and a regression discontinuity design
(RDD) [3, 6], we are able to model the impact of completing
higher levels on Review Exercise accuracy while controlling for
self-selection bias that may occur for learners who choose to level
up vs. those who do not. An RDD is a quasi-experimental
approach where a synthetic treatment condition is assigned to
observations that fall above or below a certain “cut-off” point. We
achieve this by first identifying learners who have completed any
lessons at a given level for the skill a Review Exercise was
sampled from (e.g., learners who have completed at least one
Level 1 lesson). Among those learners, we define a cut-off point
to compare those who have completed that level for the Review
Exercise source lesson (e.g., Level 1) to those who have
completed that level for the lesson that immediately precedes the
source lesson but who have not yet completed that level for the
source lesson itself (e.g., preceding lesson to Level 1, but source
lesson to Level 0). This approach controls for most potential self-
selection bias in deciding to level up (all comparisons include
learners who have chosen to level up the skill) and can provide
stronger evidence for a causal relationship between leveling up
and Review Exercise accuracy.

We created a variable with eight levels for use in the regression
model to capture 1) the highest level a learner has leveled up the
Review Exercise source lesson to and 2) whether the learner
studied the source lesson to the same level as the preceding lesson
(e.g., both at Level 1) or studied the source lesson one time less
than the preceding lesson (e.g., preceding lesson at Level 2 but
source lesson at Level 1). For example, this scheme yields
coefficients of the form Level 1:Same Level, indicating
learners for whom both the source lesson and preceding lesson
were at Level 1, or Level 1:Lower Level, indicating
learners for whom the source lesson was at Level 1 and the
preceding lesson was at Level 2. This coding scheme required
excluding certain observations. Cases where the learner had
completed the highest level possible for the Review Exercise
source lesson (i.e., Level 4) is not included because it is
impossible for the lesson preceding the source lesson to be leveled
up any higher. We also exclude observations where the source
lesson is the first lesson of a skill because there will be no
preceding lesson to serve as a control comparison.
In addition to this main variable, we also control for other factors
that influence Review Exercise accuracy: the number of skills
away from the source skill (three or five), and the exercise type of
the Review Exercise (L1-to-L2 translation or vice versa), and the
difficulty of the source skill. We defined difficulty of source skills
by computing the log-odds of answering a Review Exercise
correctly in each skill in the data overall3. This allows us to
control for the fact that, all else being equal, accuracy is likely to
be lower overall for Review Exercises sampled from more
difficult skills, which increases the power of the analysis.

4.2.3 Results
If leveling up causes higher Review Exercise accuracy, we
expected to see that the Level N:Same Level (source lesson
and preceding lesson to Level N) coefficients were significantly
larger than the Level N-1:Lower Level (source lesson one
level lower than preceding lesson; Levels N-1 and N,
respectively) coefficients. Such an effect would indicate that -
controlling for leveling up behavior overall - completing higher
levels of the lesson a Review Exercise came from yields
significant improvements in Review Exercise accuracy.
Figure 6 summarizes the results of our logistic regression model.
We can see that Level 1:Same Level is significantly higher
than Level 0:Lower Level. This effect indicates that
learners who have studied a Review Exercise source lesson twice
(at Level 0 and Level 1) are more likely to provide a correct
response on their Review Exercise than learners who have studied
a Review Exercise source lesson once (only at Level 0) but
already had studied the previous lesson twice (at Level 0 and
Level 1). This result provides evidence for a causal relationship
between leveling up study material and assessment performance,
at least for the first time learners level up. The model shows
similar trends for leveling up beyond Level 1 (e.g., Level
2:Same Level is numerically higher than Level 1:Lower
Level), suggesting this relationship continues to exist as users
study the Review Exercise source lesson additional times
(although perhaps with diminishing returns).
The regression results also show significant differences between
Level 0:Same Level / Level 0:Lower Level and

3 Empirical log odds defined as log((correct + 1) / (incorrect +
1)).

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 869

Level 1:Same Level / Level 1:Lower Level.
Although the learners captured in the Lower Level coefficients
had not leveled up the source lesson to Level 1, we see clear
improvements in Review Exercise accuracy stemming from
leveling up any lessons preceding the source lesson. These
learners will not have had additional opportunity to study the
exact exercise used for the Review Exercise, but the content and
concepts in other lessons in the skill will have been related.
Therefore, the benefit of studying in one lesson transfers to other
lessons.

Figure 6. Review Exercises model output. Coefficients of

leveling up behavior in a model including other item
covariates (see Section 4.2.2).

5. CONCLUSIONS
In a case study of the levels mechanic, wherein learners study
content in increasingly difficult contexts by “leveling up”,
complementary analyses of the Checkpoint Quiz and Review
Exercises showed that completing sessions in higher levels leads
to stronger performance on assessments. Analyzing accuracy rates
on the Checkpoint Quiz by the number of skill-levels completed
in the course unit revealed a strong positive trend. Because
variation in how learners navigate the platform may introduce
self-selection bias and complicate interpretation of these results,
we conducted an additional analysis of Review Exercises that
controlled for this bias. The Review Exercises analysis supports a
causal link between leveling up and improved assessment
performance, showing that completing additional levels for a skill
(beyond the foundational level) has measurable learning value.
Together, these results directly motivated the implementation of a
number of interventions that encourage learners to reach higher
levels. For example, because learner awareness of the existence
and purpose of levels was relatively low, we added design
elements that give learners a visual stand-in for how the levels
system works. Learners also now receive a pop-up with a redirect
button upon finishing a level prompting them to start the next
level in the skill. Randomized controlled experiments (i.e., A/B
tests) introducing these changes showed >10% increases in the
number of lessons completed in each level beyond the required
foundational level and significantly more studying activity on the
app overall. These interventions exemplify how insights from the
Checkpoint Quiz and Review Exercises have lasting impact on the
Duolingo learning experience.
This study focused on one type of variation in how learners
choose to navigate the Duolingo learning platform, namely
leveling up. Learners can additionally choose their own study
sequence for the skills (e.g., completing all the levels in a skill
before starting the next skill, completing the entire course unit one
level at a time, leveling up clusters of skills within a unit), as well
as which types of learning material to study (e.g., course skills,
generalized practice, Stories). Future iterations of this work will

aim to capture such variation, thereby improving model fit and
deepening our understanding of how other types of navigational
choices relate to learning outcomes. Previous EDM studies [1, 9]
provide methodologies that can be used to characterize this
variation.
Future work will also continue to explore the utility and
limitations of the Review Exercise assessment system. For
example, data from Review Exercises show promise as a method
for measuring learning improvements over the course of an A/B
test due to the high volume of daily data generated, highly
localized measurement (i.e., testing learning of content from
specific course skills), and the distributed nature of the assessment
(i.e., testing learning in all course skills). Future work could also
consider whether Review Exercise accuracy can be predicted
based on engagement with (and accuracy on) source lessons in the
past.
Self-directed learning platforms such as Duolingo require accurate
and well-controlled assessments to measure learner achievement.
Because learners exercise a high degree of agency in how they
navigate the courses, achievement cannot be adequately assessed
by analyzing exercise responses alone. Duolingo developed two
forms of assessment - the Checkpoint Quiz and Review Exercises
- to capture insights about how different study approaches relate
to learning outcomes. Applying EDM techniques to these
assessments yields useful insights that inform our understanding
of how the navigation of course content relates to learning
outcomes and how we can leverage these insights to improve the
learning experience on the platform.

6. ACKNOWLEDGMENTS
Special thanks to Daniel Falabella, Xiangying Jiang, Geoff
LaFlair, Bozena Pajak, and Karin Tsai for helpful comments on
this work.
7. REFERENCES
[1] Nil-Jana Akpinar, Aaditya Ramdas and Umit Acar. 2020.

Analyzing Student Strategies in Blended Courses Using
Clickstream Data. In Proceedings of the 13th International
Conference on Educational Data Mining (EDM 2020), July
10-13, 2020, 6-17.

[2] Hanan Aldowah, Hosam Al-Samarraie, & Wan Mohamad
Fauzy. 2019. Educational data mining and learning analytics
for 21st century higher education: A review and synthesis.
Telemat Inform, 37 (Apr. 2018), 13–49.
https://doi.org/10.1016/j.tele.2019.01.007

[3] Joshua D. Angrist & Jörn-Steffen Pischke. 2014. Mastering
Metrics: The Path from Cause to Effect. 2014. Princeton
University Press, Princeton, NJ.

[4] Huy Anh Nguyen, Xinying Hou, John Stamper, & Bruce M
McLaren. 2020. Moving beyond Test Scores: Analyzing the
Effectiveness of a Digital Learning Game through Learning
Analytics. In Proceedings of the 13th International
Conference on Educational Data Mining (EDM 2020), July
10-13, 2020. 487–495.

[5] Jerome S. Bruner. 1960. The Process of Education. Harvard
University Press, Cambridge, MA.

[6] Thomas D. Cook, Donald T. Campbell, & William Shadish.
2002. Experimental and quasi-experimental designs for
generalized causal inference. Houghton Mifflin, Boston,
MA.

870 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

[7] Albert T. Corbett & John R. Anderson. 1995. Knowledge
Tracing: Modeling the Acquisition of Procedural
Knowledge. User Model User-Adapted Interaction 4, 4
(March 1995), 253–278.

[8] Lynn Friedman & Melanie Wall. 2005. Graphical Views of
Suppression and Multicollinearity in Multiple Linear
Regression. Am Stat 59, 2, 127-136.
https://doi.org/10.1198/000313005X41337

[9] Tao Huang, Zhi Li, Hao Zhang, Huali Yang, & Hekun Xie.
EAnalyst : Toward Understanding Large-scale Educational
Data. In Proceedings of the 13th International Conference on
Educational Data Mining (EDM 2020), July 10-13, 2020,
620–623.

[10] Zacharoula Papamitsiou, & Anastasios A. Economides.
2014. Learning analytics and educational data mining in
practice: A systematic literature review of empirical
evidence. Educational Technology and Society 17, 4, 49–64.

[11] Jihyun Park, Kameryn Denaro, Fernando Rodriguez,
Padhraic Smyth, & Mark Warschauer. 2017. Detecting
Changes in Student Behavior from Clickstream Data. In
Proceedings of the Seventh International Learning Analytics
& Knowledge Conference (LAK 2017), March 2017, 21-30.
https://doi.org/10.1145/3027385.3027430

[12] Bertrand Schneider, & Paulo Blikstein. 2015. Unraveling
Students’ Interaction Around a Tangible Interface Using
Multimodal Learning Analytics. Journal of Educational
Data Mining 7, 3, 89-116. DOI:
https://doi.org/10.5281/zenodo.3554729

[13] Wanli Xing & Dongping Du. 2019. Throughput Prediction in
MOOCs: Using Deep Learning for Personalized
Intervention. J Educ Compt Res 57, 3, 547-570.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 871

UPreG: An Unsupervised approach for building the
Concept Prerequisite Graph

Varun Sabnis
R V College of Engineering,

Bangalore
varunsabnis@gmail.com

Kumar Abhinav
Accenture Labs, Bangalore

k.a.abhinav
@accenture.com

Venkatesh Subramanian
Accenture Labs, Bangalore
venkatesh.subramania

@accenture.com
Alpana Dubey

Accenture Labs, Bangalore
alpana.a.dubey

@accenture.com

Padmaraj Bhat
Accenture Labs, Bangalore

padmaraj.bhat
@accenture.com

ABSTRACT
Today, there is a vast amount of online material for learners.
However, due to the lack of prerequisite information needed
to master them, a lot of time is spent in identifying the right
learning content for mastering these concepts. A system that
captures underlying prerequisites needed for learning differ-
ent concepts can help improve the quality of learning and can
save time for the learners as well. In this work, we propose an
unsupervised approach, UPreG, for automatically inferring
prerequisite relationships between different concepts using
NLP techniques. Our approach involves extracting the con-
cepts from unstructured texts in MOOC (Massively Open
Online Courses) course descriptions, measuring semantic re-
latedness between the concepts and statistically inferring the
prerequisite relationships between related concepts. We con-
ducted both qualitative and quantitative studies to validate
the effectiveness of our proposed approach. As there are no
ground truth labels for these prerequisite relations, we con-
ducted a user study for the evaluation of the prerequisite
relations. We build the concept graph using prerequisite re-
lations. We demonstrate few examples of the learning maps
generated from the graph. The learning maps provide pre-
requisite information and learning paths for different con-
cepts.

Keywords
Prerequisite relation, Text mining, Learning path

1. INTRODUCTION
In today’s fast-paced world, skill development and a strong
foundation in fundamental concepts are becoming very cru-
cial for career growth. MOOCs, offering a wide variety of
courses online are becoming ubiquitous among many learn-

ers interested in acquiring knowledge and becoming compe-
tent in their field of interest. In this journey, learners need
to know the order in which they must learn different con-
cepts to attain a good level of mastery in a specific topic.
Knowing the prerequisites when learning a topic improves
the learning experience of learners and is influential to the
learner’s achievements [20]. Prerequisite concepts define the
concepts one must know or understand first before attempt-
ing to learn or understand something new.

With the increasing amount of educational data available,
automatic discovery of concept prerequisite relations has be-
come both an emerging research opportunity and an open
challenge. There is a growing interest today in researching
different techniques for automatically inferring the prereq-
uisite relations between concepts [17][20]. Various solutions
like curriculum planning [23], learning assistant [10], auto-
mated reading list generation [9] etc, have been developed
based on such techniques.

Prerequisites at the course-level have been manually curated
by experts and this helps find prerequisite relations between
the concepts covered within the courses. For example, con-
cepts in a course on Optimization are prerequisites to con-
cepts in a course on Deep Learning. An example in this sce-
nario would be the Gradient Descent algorithm being a pre-
requisite for understanding the Backpropagation algorithm
used in Deep Neural Networks. Such relations created man-
ually will not scale in real-world online applications. Mod-
ern applications today support learning content from a wide
variety of domains and cater to learners from multiple edu-
cational backgrounds. Manual processes for creating prereq-
uisite relations in such applications are expensive and time-
consuming. Hence, it is necessary to develop solutions that
can infer prerequisite relations using automated approaches.

In this work, we propose an unsupervised approach, UP-
reG, for automatically inferring prerequisite relationships
between different concepts using NLP techniques. We built
a concepts graph capturing the concepts and the prerequisite
relation between them. Concepts here refer to technologies,
programming languages, tools, and topics in the Software
and Computer Science domain. The concepts graph can be

Varun Sabnis, Kumar Abhinav, Venkatesh Subramania, Alpana Dubey
and Padmaraj Bhat “UPreG: An Unsupervised approach for build-
ing the Concept Prerequisite Graph”. 2021. In: Proceedings
of The 14th International Conference on Educational Data Mining
(EDM21). International Educational Data Mining Society, 872-878.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

872 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 1: Flow Diagram

leveraged to find the right content for the learner, includ-
ing the prerequisite content. We conducted both qualitative
and quantitative studies to validate the effectiveness of our
proposed approach. As there are no ground truth labels for
these prerequisite relations, we conducted a user study for
the evaluation of the prerequisite relations. We observed
that our approach is effectively able to infer the prerequisite
relations between concepts. The approach can be extended
to other domains as well.

This paper is structured as follows. We present the re-
lated work in Section 2. In Section 3, we describe our ap-
proach for concept graph generation followed by the evalu-
ation methodology and results in Section 4. In section 5,
we discuss the challenges we encountered while building the
concepts graph. Finally, Section 6 concludes with future
work.

2. RELATED WORK
Pan et al. [17] propose a learning-based method for latent
representations of course concepts. They defined various fea-
tures and trained a classifier that can identify prerequisite
relations among concepts. Roy et al. [20] proposed PRE-
REQ, a supervised learning method for inferring concept
prerequisite relations. The approach uses latent representa-
tions of concepts obtained from the Pairwise Latent Dirichlet
Allocation model, and a neural network based architecture.
They assumed that concept prerequisites are available to
train supervised model. Yu et al. [24] present an improved
version PREREQ-S by introducing students’ video watch or-
der to enhance the video dependency network. They sorted
the watched videos of each student by time and utilize these
sequences for replacing the video sequences. They apply
two simple DNN models, which first encode the embeddings
of the concept pairs and then train an MLP to classify the
prerequisite ones. Alzetta et al. [3] applied a deep learning-
based approach for prerequisite relation extraction between
educational concepts of a textbook. Lu et al. [13] proposed
an iterative prerequisite relation learning framework, iPRL,
which combines a learning based model and recovery based
model to leverage both concept pair features and dependen-
cies among learning materials. Liang et al. [12] addressed
the problem of recovering concept prerequisite relations from
university course dependencies. They [11] further applied
active learning to the concept of prerequisite learning prob-
lem. Pal et al. [16] proposed an approach to find the order of
concepts from textbooks using the rule-based method. Prior
work assumes the prerequisite relationship pairs available as
ground truth and apply supervised learning approach. How-

ever, acquiring labeled prerequisite pairs is time-consuming
and expensive. Currently, the major drawback of supervised
learning is that it doesn’t perform well over cross-domains
[16]. To the best of our knowledge, we are the first to apply
unsupervised approach to extract the prerequisite relation-
ship for software domain.

3. APPROACH
In this section, we discuss our approach to build the concepts
graph. It is a directional graph where nodes represent the
concepts and the edges between nodes represent the prereq-
uisite relationship between them. Our approach in building
the concepts graph involves concept representation, measur-
ing semantic similarity between the concepts and identifica-
tion of the prerequisite relationship between them.

3.1 Concept Representation
The descriptions of the courses in MOOCs contain rich infor-
mation about the concepts that will be taught to the learn-
ers. Many courses do not have annotated course tags to rep-
resent the concepts taught in the course. It is very expensive
and time-consuming to manually create course tags from the
course content [13]. Hence, the concepts must be extracted
from the course content using text mining approaches. We
collected course metadata from different MOOCs (Udemy
and edX) and our internal Learning Management System.
We apply Latent Dirichlet Allocation (LDA) [4], a topic
modeling algorithm on each course description to extract
the concepts. The algorithm generates a topical distribu-
tion for each course description. To determine the most
relevant topic that represents the concepts a course covers,
the topic with highest probability from the distribution is
selected. After performing several iterations, we found that
setting k=5 (number of topics to be extracted) gave the best
results. We extract a total of 9750 unique concepts.

3.2 Semantic similarity between concepts
The Semantic similarity measure between concepts gives a
measure of the semantic relatedness between them. Con-
cepts that appear in the same context or appear together
very often have higher semantic similarity scores. Seman-
tic Similarity computation eliminates noise present in the
results of the topic modeling algorithm and reduces the pos-
sibilities of weak relations in the concepts graph. It is also
useful in prerequisite relation identification as it is likely
that concepts appearing in similar contexts will have better
chances of being identified with prerequisite relation. This
improves the selection of candidates in the concepts graph.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 873

Figure 2: Concepts generated for a JavaScript course

Figure 3: Stack Overflow questions and tags

To measure semantic similarity between the concepts we
compute Pointwise Mutual Information (PMI) and Word2Vec
cosine similarity scores. The Semantic similarity scores be-
tween the concepts are computed as the weighted average of
the two scores.

3.2.1 Pointwise Mutual Information
PMI gives a measure of concept association used in informa-
tion theory [6]. It gives a measure of how likely two concepts
would occur together when compared to their independent
occurrences in the data. For computing the PMI of con-
cept pairs, tags of Stack Overflow questions obtained from
Stack Overflow data dumps were used. The author posting
a question on Stack Overflow is asked to provide tags as-
sociated with the posted question (as shown in Figure 3).
Tags that appear often together across all the questions are
likely to be strongly related. Higher the score between the
two concepts, the more similar they are. We assume that
the concepts occurring together have some correlation over
a large set of pairs. To compute the PMI scores, we lever-

age the Stack Overflow dump consisting of 1,000,000 Stack
Overflow questions along with their tags [21]. PMI score
between any two concepts c1 and c2 is defined as:

PMI(c1, c2) = max

(
0,

log [p(c1) · p(c2)]

log p(c1, c2)
− 1

)
(1)

Here p(c1, c2) is the probability of co-occurrence of concepts
c1 and c2. It is fraction of Stack Overflow questions in which
concepts c1 and c2 co-occur as tags. p(c1) and p(c2) is the
probability of the independent occurrence of concepts c1 and
c2 as tags across all Stack Overflow questions. The score
obtained is a normalized score that takes values between 0
and 1. This ensures PMI and Word2Vec similarity scores
have the same scale when taking their weighted average.

3.2.2 Word2Vec Embeddings
Raw word frequency is not a great measure of association
between words. One problem is that raw frequency is very
skewed and not very discriminative. It also does not capture

874 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

the kinds of contexts shared between the words, which word
embedding techniques capture [2]. We apply Word2Vec ap-
proach to learn semantic relatedness between concepts. The
Word2Vec model is based on the intuition that words which
are similar in context appear closer in the word embedding
space. Word2Vec algorithm uses a neural network model
to learn word associations from a large corpus of text. We
use skip-gram model [15] to learn word embeddings which
are low dimensional vector representations of the extracted
concepts. The neural network is trained using a text corpus
of course descriptions. We train the skip-gram model for
generating 300-dimensional word embeddings. Word2Vec
neural network is trained using the text corpus of the course
description and objectives. We train Word2Vec model on
a corpus of 64,150 courses using the Python library gen-
sim [18] with default parameters. Some of the Word2Vec
similarity scores between concepts are captured in Table 2.
Word2Vec(W2V) similarity score between the concepts is
computed as the cosine similarity between these word em-
beddings.

W2V (c1, c2) =
c1 · c2
‖c1‖‖c2‖

(2)

Here c1 and c2 represent 300 dimensional embedding vectors
of concept c1 and c2.

Finally, we compute the similarity score as a weighted av-
erage of the above two scores. For simplicity, we set the
weights to 0.5.

Sim(c1, c2) = w1 ·W2V (c1, c2) + w2 · PMI(c1, c2) (3)

We observed that extracted concepts can appear with dif-
ferent representations in the Stack Overflow question tags.
Examples include synonymous pairs such as node.js and
nodejs, javascript and js, mvc and model view controller,
etc. To identify such instances, we use the Stack Overflow
synonym tag api [22] and identify the matching or synony-
mous concepts in the Stack Overflow tags. We also filter
out irrelevant concepts having no occurrence or synonyms
in the Stack Overflow tags. After this process, we end up
with 5200 concepts. During the computation of probabili-
ties for PMI scores, we also consider the occurrence count
of the synonyms. For example, when computing PMI be-
tween javascript and any other concept, we compute the
independent and co-occurrence probabilities by counting oc-
currences of both javascript and js tags in the Stack Overflow
questions.

3.3 Identifying Concept Relation
In this section, we explain the process of identifying the
prerequisite relationship between different concepts. We
only consider the concept pairs with high semantic similar-
ity scores. It is very likely that concept pairs that have very
low semantic similarity scores are not related at all and we
can ignore such pairs. For example, it is not useful to learn
the relationship between Neural Network and PHP which
are not related and occur in different domains (deep learn-
ing and web development respectively). However, it would
be interesting to study the concept pairs Gradient Descent
and Backpropagation which are algorithms used in machine
learning and share high semantic similarity scores. Inferring
the relation that Gradient Descent is a prerequisite of Back-
propagation and not vice-versa would be useful. To infer

such relations, we make use of Wikipedia articles. For each
pair of concepts with high semantic similarity (threshold of
0.5), we compute the concept relevancy scores. For concepts
c1 and c2, we measure how often the concept c1 is referred in
the Wikipedia article of concept c2 and vice-versa. Based on
the concept relevancy scores, we can infer the prerequisite
relation. For example, we know that Java is a prerequisite of
Spring Boot. So, it is quite possible that in an explanation
for Spring Boot (a Java Web framework), the concept Java
would be mentioned more often when compared to the con-
cept Spring Boot being mentioned in an explanation about
Java. Algorithm 1 captures the steps to identify the prereq-
uisite relation between concepts.

Algorithm 1 Prerequisite relation inference between concepts

Input: Pair of concepts ci and cj which are strongly related,
and Wikipedia Knowledge articles.

Output: Relationship between concept pairs (prerequisite
relationship) i.e. c1 is prerequisite of c2 or vice-versa

1: Tokenize the knowledge articles for all the concepts
(Cn), where Cn is set of concepts

2: for ordered pair concepts (ci, cj) do
3: Compute Concept Relevancy scores (CRS) for ordered

pairs (ci, cj) as

CRS(ci, cj) =
TF (ci ∈ Dj)

V (Di, Dj)

CRS(cj , ci) =
TF (cj ∈ Di)

V (Di, Dj)

where ci and cj are the concepts for which CRS is
computed, Di and Dj are the wikipedia articles for
concepts ci and cj respectively, TF (ci ∈ Dj) captures
the term frequency for concept ci in wikipedia article
Dj , TF (cj ∈ Di captures the term frequency for con-
cept cj in wikipedia article Di, and V (Di, Dj) is the
normalization term that captures the total vocabulary
in articles Di and Dj .

4: If CRS(ci, cj) > CRS(cj , ci), then ci is prerequisite
of cj and vice-versa

5: end for

Table 1: Data collected from online learning platforms

Platform # Courses Categories
Udemy 13601 Software development,

and design
Edx 1072 Software development
Internal LMS 49202 Software development,

and design

3.4 Learning Maps
The identified prerequisite relation pairs were used to build
the concept graph. The concept graph has 1325 concepts
and 1868 edges. We use networkx [8] python library to build
the concept graph. We pass the adjacency list created from
the identified concept-prerequisite pairs as an input to the
library. The edges in the graph have directions from the
concept node to the prerequisite node. The learning maps
are built for each concept in the graph using the Depth-first
search (DFS) algorithm. They are represented as DFS trees
generated by the algorithm. To visualize the learning maps

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 875

Table 2: Semantic similarity scores from Word2Vec Embeddings and PMI

c1 c2 PMI Scores W2V Scores
Hadoop Hive 0.67 0.43
MongoDB NoSQL 0.64 0.72
JavaScript jQuery 0.44 0.68
JavaScript NodeJS 0.57 0.61
Neural Network Backpropagation 0.74 0.61
Blockchain Cryptocurrency 0.34 0.73
Inheritance Polymorphism 0.54 0.62
ASP.NET Java 0.17 0.08
NodeJS Promise 0.54 0.21
ASP.NET C# 0.20 0.42
Hadoop Java 0.1 0.23
SVM Classification 0.62 0.43
RDBMS SQL 0.19 0.37
Machine Learning Linear Algebra 0.18 0.49

we use d3.js force layout [5]. In visualizing the learning maps
we reverse the edge direction, i.e, from prerequisite node to
concept node. This is done for the purpose of meaningful
and easy identification of prerequisites in the learning maps.
The learning maps for the concepts Blockchain and Java
Spring framework are shown in Figure 4. The root node
colored in blue represents the main concept and all nodes
below the root node colored in orange represent the con-
cepts that are prerequisites for the main concept. The child
nodes represent the prerequisite concepts for its parent node
concept.

Table 3: Extracted prerequisite relation between concepts

c1 c2
Distributed systems Mapreduce

Probability Logistic Regression
Encryption Cryptography

Smart Contract Ethereum
Backpropagation Neural Networks

Regression Neural Networks
JavaScript NodeJS

4. EVALUATION AND RESULTS
4.1 Datasets
We collected metadata about various courses from MOOC
platforms and our internal Learning Management System
(LMS) using REST APIs. We fetched data from categories
relevant to Software Development and Design. The distri-
bution of the number of courses fetched from different plat-
forms is shown in Table 1. There are 13,600 courses from
Udemy, 1,050 courses from edX, and 49,500 courses from
our LMS in the Software Development and Design category.
The output from the REST APIs was in JSON format and
each had a different schema. Hence, we selected MongoDB,
a NoSQL database to store the retrieved data.

We apply text pre-processing on course metadata. Specif-
ically, the course descriptions from Udemy contain HTML
tags. We parse the HTML tags in course descriptions us-
ing Beautiful Soup [19]. We remove stopwords and apply
Lemmatization and Stemming to reduce words to their base

forms. We also create custom stopwords manually by ana-
lyzing the topic modeling output. We stored pre-processed
data in MongoDB for further processing and evaluation.

4.2 Evaluating extracted concepts
We apply Latent Dirichlet Allocation (LDA), a topic mod-
eling algorithm to infer topics from the course descriptions.
We extract five topics from each course description. Each
topic is a vector representation that not only indicates the
words belonging to the topic but also the probability of the
words belonging to the topic. From the topical distribution
for the course description, the words from the topic with
maximum probability were considered and stored against
each course metadata as tags in the database. Figure 2
shows the description and the tags obtained for a Javascript
course in Udemy.

To evaluate the concepts extracted from the course descrip-
tion, we apply the Overlap Coefficient to measure the sim-
ilarity between the concepts extracted from the course de-
scription and concepts tagged by Udemy. The overlap co-
efficient, or Szymkiewicz–Simpson coefficient, is a similarity
measure that measures the overlap between two finite sets
[1]. It is related to the Jaccard index and is defined as the
size of the intersection divided by the smaller of the size of
the two sets. Mathematically, we define the Concept overlap
coefficient as

concept overlap(X,Y) =
|X ∩ Y |

min(|X|, |Y |) (4)

where concept overlap(X, Y) captures the average concept
overlap between two sets X and Y, X is the concepts ex-
tracted from topic modeling, Y is the concepts tagged in
course descriptions of Udemy dataset, and N is the num-
ber of course descriptions in the dataset. We observed the
average concept overlap coefficient to be 0.97. This shows
that the concepts extracted from the topic modeling algo-
rithm quite well capture the relevant concepts covered in the
course. Udemy’s course description contains a maximum of
two concepts tagged. We further analyzed how well our ap-
proach is able to identify the other concepts from course
descriptions, not captured in Udemy’s concepts tag. We
performed a quantitative analysis with 20 Subject Matter

876 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Figure 4: Learning maps for Blockchain and Java Spring framework

Experts (SMEs). The SMEs are having experience ranging
from 5-10 years and have worked on different technologies in
IT companies. We randomly sampled 100 courses offered on
Udemy and provided five courses to each SME along with
inferred concepts for each course. The SMEs were asked to
provide their response on whether these inferred concepts
are relevant for the course or not. We computed the ac-
curacy considering SME’s responses as true labels. We ob-
served the accuracy of inferred concepts to be 0.73.

4.3 Evaluating concept Prerequisite Relations
There are no ground truth labels available for inferred pre-
requisite relationships. To assess the effectiveness of pre-
requisite pairs generated by our approach, we conducted a
quantitative analysis with 25 SMEs to identify if a concept
c1 is a prerequisite for another concept c2. We created five
groups with 5 SMEs in each group. We randomly sampled
250 concept prerequisite pairs. Each group is provided with
50 concept prerequisite pairs. We used the Majority voting
approach to aggregate their responses. We computed the
accuracy of these pairs considering the SME’s response as
ground truth labels. We observed the accuracy of concept
prerequisite pairs to be 0.82. We also measure inter-rater
agreement amongst experts using Fleiss’ Kappa [14]. Fleiss’
Kappa is a statistical measure for assessing the reliability of
agreement between a fixed number of raters when assigning
categorical ratings to a number of items or classifying items.
If the raters are in complete agreement then κ =1. If there
is no agreement among the raters (other than what would
be expected by chance) then κ ≤ 0. We observed κ coeffi-
cient to be 0.74 which indicates a level of strong agreement
among the raters. We believe some level of disagreement
may be due to the fact that prerequisites can be subjective
[12] i.e. it is difficult to get consensus for some pairs of con-
cepts. Different individuals may have different experiences
of acquiring knowledge on specific topics, and this may lead
to different opinions of the prerequisite requirement for a
topic. Some of the extracted prerequisite relationships are
shown in Table 3.

5. CHALLENGES
Some of the challenges that we faced while building the con-
cepts graph.

1. For some concepts extracted from the course descrip-
tion we had disambiguation issues when checked in
Wikipedia. For example, Java can refer to a program-
ming language or an island in Indonesia. To deal with
this issue, we pass the extracted concepts to google
search API [7] and fetch the Wikipedia article that is
ranked higher in the search results. Due to the popu-
larity of these software concepts, we observe that rele-
vant results were returned by picking the higher ranked
Wikipedia article from the search queries.

2. Our inference of prerequisite relationships is based on
reference scores computed from Wikipedia articles of
the concepts. These scores may not always provide ac-
curate results. It is possible that articles for some of
the concepts may have high reference scores for con-
cepts that are derived from it and not vice-versa.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed our approach to infer prerequi-
site relations between concepts and build the concept graph.
The proposed method does not require manually annotated
data which was the major drawback of supervised learning
approaches. We use relevant data sources in different steps
to incorporate relevant and rich semantic information to in-
fer prerequisite relations accurately. To validate our results,
we performed both quantitative and qualitative evaluations.
The identified concept prerequisite pairs were evaluated by
subject matter experts. We observed an accuracy of 0.82
for the inferred prerequisite relations. We built the concept
graph from the prerequisite relation pairs and demonstrated
few examples of the learning maps generated from the con-
cept graph. Learning maps can be used in many applica-
tions ranging from content-based recommendation systems
to more sophisticated online tutoring systems etc. As future
work, we plan to extend our research by creating a personal-
ized curriculum planner system that captures the concepts
learners currently know and what they want to learn. By
leveraging this information, the system will create a person-
alized learning plan for them using their input information
and prerequisite relations. Although, our approaches are not
limited to the software domain, we plan to carry out further
studies and experimentation to measure the system’s gener-
alization to other domains.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 877

7. REFERENCES
[1] J. Adler and I. Parmryd. Quantifying colocalization

by correlation: the pearson correlation coefficient is
superior to the mander’s overlap coefficient.
Cytometry Part A, 77(8):733–742, 2010.

[2] F. Almeida and G. Xexéo. Word embeddings: A
survey, 2019.

[3] C. Alzetta, A. Miaschi, G. Adorni, F. Dell’Orletta,
F. Koceva, S. Passalacqua, and I. Torre. Prerequisite
or not prerequisite? that’s the problem! an nlp-based
approach for concept prerequisite learning. In CLiC-it,
2019.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. J. Mach. Learn. Res., 3:993–1022,
2003.

[5] M. Bostock, V. Ogievetsky, and J. Heer. D3
data-driven documents. IEEE Transactions on
Visualization and Computer Graphics,
17(12):2301–2309, Dec. 2011.

[6] G. Bouma. Normalized (pointwise) mutual
information in collocation extraction. Proceedings of
GSCL, pages 31–40, 2009.

[7] A. Casagrande. Google Search API.
https://github.com/abenassi/Google-Search-API,
2020. [Online; accessed 05-Mar-2021].

[8] A. A. Hagberg, D. A. Schult, and P. J. Swart.
Exploring network structure, dynamics, and function
using networkx. In G. Varoquaux, T. Vaught, and
J. Millman, editors, Proceedings of the 7th Python in
Science Conference, pages 11 – 15, Pasadena, CA
USA, 2008.

[9] J. G. Jardine. Automatically generating reading lists.
In Technical Report UCAM-CL-TR-848, 02 2014.

[10] L. Jiang, S. Hu, M. Huang, Z. Wang, J. Yang, X. Ye,
and W. Zheng. Massistant: A personal knowledge
assistant for mooc learners. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP):
System Demonstrations, pages 133–138, 2019.

[11] C. Liang, J. Ye, S. Wang, B. Pursel, and C. L. Giles.
Investigating active learning for concept prerequisite
learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[12] C. Liang, J. Ye, Z. Wu, B. Pursel, and C. Giles.
Recovering concept prerequisite relations from
university course dependencies. In Proceedings of the
AAAI Conference on Artificial Intelligence,
volume 31, 2017.

[13] W. Lu, Y. Zhou, J. Yu, and C. Jia. Concept
extraction and prerequisite relation learning from
educational data. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages
9678–9685, 2019.

[14] M. L. McHugh. Interrater reliability: the kappa
statistic. Biochemia medica, 22(3):276–282, 2012.

[15] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

[16] S. Pal, V. Arora, and P. Goyal. Finding prerequisite
relations between concepts using textbook. arXiv
preprint arXiv:2011.10337, 2020.

[17] L. Pan, C. Li, J. Li, and J. Tang. Prerequisite relation
learning for concepts in moocs. In Proceedings of the
55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1447–1456, 2017.

[18] R. Řeh̊uřek and P. Sojka. Software Framework for
Topic Modelling with Large Corpora. In Proceedings
of the LREC 2010 Workshop on New Challenges for
NLP Frameworks, pages 45–50, Valletta, Malta, May
2010. ELRA.

[19] L. Richardson. Beautiful soup documentation. April,
2007.

[20] S. Roy, M. Madhyastha, S. Lawrence, and V. Rajan.
Inferring concept prerequisite relations from online
educational resources. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages
9589–9594, 2019.

[21] I. Stack Exchange. Stack Exchange Data Dump.
https://archive.org/details/stackexchange, 2021.
[Online; accessed 05-Mar-2021].

[22] StackExchange. StackExchange.
https://api.stackexchange.com/docs/synonyms-by-
tags, 2020. [Online; accessed
05-Mar-2021].

[23] Y. Yang, H. Liu, J. Carbonell, and W. Ma. Concept
graph learning from educational data. WSDM 2015 -
Proceedings of the 8th ACM International Conference
on Web Search and Data Mining, pages 159–168, 02
2015.

[24] J. Yu, G. Luo, T. Xiao, Q. Zhong, Y. Wang, J. Luo,
C. Wang, L. Hou, J. Li, Z. Liu, et al. Mooccube: A
large-scale data repository for nlp applications in
moocs. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
3135–3142, 2020.

878 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Online Estimation of Student Ability and Item Difficulty
with Glicko-2 Rating System on Stratified Data

Jaesuk Park
Knowre Korea Inc.

epark@knowre.com

ABSTRACT
We propose an adaptation of the Glicko-2 rating system in
a K-12 math learning software setting, where variable time
intervals between solution attempts and the stratification
of student-item pairings by grade levels necessitate modifi-
cation of the original model. The discrete-time stochastic
process underlying the original system has been modified
into a continuous-time process to account for the irregular-
ity of intervals between solution attempts. Also, concep-
tual prerequisite relationships between items were used to
provide initial rating estimates that allow for rating values
to be meaningfully compared across grade levels. Fitting
the model using real student learning data results in rating
value distributions successfully exhibiting a gradation with
the increase of grade level. A potential area of application
in a personalized education setting is also briefly discussed.

Keywords
Item response theory, dynamic paired comparison model,
stratified data, educational assessment, stochastic variance
model

1. INTRODUCTION
We consider the problem of assigning appropriate curricu-
lum levels in a large-scale K-12 math learning software to
students who are substantially ahead or behind their peers.
Previous studies have suggested the importance of matching
learning content difficulty to a student’s ability for positive
student learning outcomes [3, 10, 16]. In light of this, stu-
dents who are much farther ahead (e.g., gifted students) or
behind their peers (e.g., students with learning disabilities)
can benefit much from receiving a more tailored educational
feedback, based on learner and skill models that can model
their differences more effectively.

With the recent advances in computing devices, various ap-
proaches have been sought to harness the power of comput-
ing to model learners more accurately in educational con-

texts, as comprehensively overviewed in [2]. In one particu-
lar line of approach [11, 13, 12, 15], dynamic paired compar-
ison models were used to quickly estimate student abilities
and item difficulties in a scalable manner. In these adapta-
tions, the players consist of students (“users”) and units of
learning task (e.g., problem items, assignments), and each
solution attempt is conceptualized as a match between a stu-
dent and a learning task, in which the winner earns 1 point
and the loser earns 0 points (with no draw). The primary
advantage of such models over traditional IRT methodolo-
gies is in their ability to compute ability estimates “on the
fly” [11] while retaining a similar mathematical structure to
IRT.

The problem occurs, however, when the dataset is strati-
fied—i.e. when student-problem pairings can be grouped
into distinct (or largely nonoverlapping) groups such that a
problem’s rating cannot be adequately adjusted by a student
outside the group to which it belongs. In a K-12 math learn-
ing software, because students are only exposed to prob-
lems appropriate for their grade level, grade levels serve as
strata. Consequently, we cannot adequately tell how a stu-
dent would perform outside of their regular grade level just
by looking at the student’s rating value. See Fig. 1 for an
illustration.

Ideally, we would not have this problem by gathering enough
learning data from a large number of students for 12+ years,
during which they would work through all curricula offered
by the product in sequence. However, in a commercial edu-
cational software context where a user is not bound to use
products from just one vendor, this is highly impractical.

Hence we raise a question: is there a way to enforce rating
values to reflect the relative positions of the strata, despite
the absence of sufficient overlaps in students/items among
them? One possible strategy is to initialize the ratings differ-
ently for each stratum according to their relative positions,
e.g., to initialize first-grade rating values to 100, second-
grade rating values to 200, etc., and then let the dynamic
paired comparison algorithm do the calibration within each
grade level. But then how could we justify that the initial
estimation done for all curricula is properly reflective of their
actual difficulties relative to one another?

Here, the key insight is that the partial ordering of mathe-
matical concepts due to prerequisite relationships provides
a basis for the division of concepts into grade-level curric-

Jaesuk Park “Online Estimation of Student Ability and Item Difficulty
with Glicko-2 Rating System on Stratified Data”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 879-885.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 879

id user_id unit_id result modified_at

id user_id unit_id result modified_at

id user_id unit_id result modified_at

id user_id unit_id result modified_at

Gr. 2

Gr. 4

Alg. 2

Student Ability

Problem Difficulty

——— : Student Ability
- - - - - : Problem Difficulty

Figure 1: An illustration of the impact of data stratification on the rating interpretability. As a result of
stratification, the distributions of rating values can overlap unreasonably much with each other, and the
corresponding mean rating values may not align with the actual order of grade levels.

ula, which then in turn stratifies the learning data. In the
K-12 math learning software used in our study, each prob-
lem item is conceptualized as a particular instantiation of
a mathematical concept (“knowledge unit,” or just “unit”)
with specific values. These mathematical concepts have pre-
requisite relationships defined among them, the collection of
which can be represented as a directed graph. We attempt
to employ these relationships to obtain statistically inter-
pretable and contextually appropriate estimations.

Specifically, our contribution is twofold: 1) modification of a
dynamic paired comparison rating system model to account
for imbalance in rating update frequencies between students
and items, and 2) use of prerequisite relationships between
concepts for rating initialization to achieve rating compara-
bility between curriculum levels. We aim to yield, from a
stratified dataset, a set of ratings that can be meaningfully
compared across grade levels: where students and items in
a lower grade level would generally have lower ratings than
those in a higher grade level.

The remainder of this paper is organized as follows. Sec-
tion 2 presents our particular adaption of a dynamic paired
comparison model, including the details for incorporating
the conceptual prerequisite information into rating initial-
ization. Section 3 describes the dataset used for evaluating
our model and presents our results. Section 4 discusses the
potential for applying our model to assign grade levels for
students far ahead or behind their peers, lists some of the
limitations of our work, and suggests a few possible direc-
tions for further research.

2. MODEL
The Glicko-2 rating system [7] falls under the family of dy-
namic paired comparison models, along with the Glicko rat-
ing system [6] (its predecessor) and the Elo rating system [4]
(of which the two Glicko systems are extensions). Improv-
ing upon its predecessor, the Glicko-2 rating system models
the change in variance of player strength as another stochas-
tic process, thereby accounting for the possibility of sudden
changes in strength. More specifically, the algorithm models
the change in player strength per unit time with a normal
distribution with variance equal to the square of the rating
volatility, whose logarithmic change per unit time is itself

normally distributed.

2.1 Continuous-time Glicko-2 Model
The original Glicko-2 system presented in [7] assumes the
underlying stochastic processes to be discrete-time, where
the overall measurement period is discretized into time in-
crements called “rating periods.” Within each rating period,
the matches are assumed to occur simultaneously. However,
because there is too much imbalance in the average number
of matches between users and items, [7]’s recommendation
of having 5-10 matches per rating period for every player is
not feasible to implement in our application context. [15]
has successfully worked around this limitation by constrain-
ing each rating period to contain only one match, but the
workaround did not account for an increase in rating un-
certainty due to the passage of time, which is a key feature
of the Glicko rating system family. Here, we take the ap-
proach of modifying the Glicko-2 model under a continuous-
time stochastic process framework, so that the model can
account for rating uncertainty increase due to the passage
of time without discretizing the measurement period.

Let θs(t) denote the ability estimate of user s at time t, and
let βi(t) denote the difficulty estimate of unit i at time t.
Then as a result of using continuous-time stochastic process
framework, the model equations for latent trait parameters
become

θs(t) ∼ N (µs(t), φ
2
s(t)). (1)

θs(t+∆t) | θs(t), σ2
s(t+∆t) ∼ N (θs(t), ∆t σ2

s(t+∆t)) (2)

log σ2
s(t+ ∆t) | log σ2

s(t), τ2 ∼ N (log σ2
s(t), τ2) (3)

for user ability estimates, and

βi(t) ∼ N (µi(t), φ
2
i (t)) (4)

for unit difficulty estimates. Here, as in [8], µ denotes rat-
ing, φ denotes rating deviation (RD), and σ denotes rating
volatility. Note that the difficulty of a mathematical con-
cept is expected to remain constant over time, so we do not
impose any stochastic volatility assumption on βi(t).

As for the correctness probability (i.e., the probability of
user s correctly answering an instantiation of unit i at time

880 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

t), the Glicko rating system family differs from the Elo rating
system in its incorporation of rating uncertainty to calculate
this quantity. We are generally interested in the correctness
probability before the user s actually attempts unit i. How-
ever, the time elapsed between the user’s last attempt and
the current attempt can vary throughout the user’s activity
history, which also varies the amount of inflation to apply
each time on the user’s rating uncertainty, φs. Hence we
apply equation (2) prior to calculating the correctness prob-
ability. Let ts and ti denote the last time user and unit latent
trait estimates, respectively, were updated. Let Ys,i(t) be a
Bernoulli random variable denoting user response correct-
ness. Then the correctness probability is given by:

Pr(Ys,i(t) = 1) = E(ˆµs(t), ˆµi(t), ˆφ2
s(t) + ˆφ2

i (t)) (5)

where E(µ1, µ2, φ
2) =

[
1 + e−g(φ

2)(µ1−µ2)
]−1

is the ex-

pected score function that accounts for rating uncertainty
[7], and

• g(φ2) =
[
1 + 3φ2

π2

]−1/2

,

• ˆφ2
s(t) = φ2

s(ts) + (t− ts)σ2
s(ts),

• ˆφ2
i (t) = φ2

i (ti),

• ˆµs(t) = µs(ts), and

• ˆµi(t) = µi(ti).

Here, we use σ2
s(ts) in place of σ2

s(t) to estimate ˆφ2
s(t), al-

though their equivalence only holds in expectation.

After user s finishes solution attempt for unit i with result
ys,i ∈ {0, 1}, the update equations for latent trait estimates
are given as below, following [7]’s derivation of corresponding
equations under the continuous-time framework:

σ2
s(t) = exp

(
arg max

a(t)
p(a(t)|ys,i)

)
(6)

φ2
s(t) = min

{
φ2
s(0),

[
1

φ2
s(ts) + σ2

s(t)
+

1

v2s(t)

]−1
}

(7)

φ2
i (t) = min

{
φ2
i (0),

[
1

φ2
i (ti)

+
1

v2i (t)

]−1
}

(8)

µs(t) = µs(ts) + φ2
s(t) · g(ˆφ2

i (t)) · (ys,i(t)− Es(t)) (9)

µi(t) = µi(ti) + φ2
i (t) · g(ˆφ2

s(t)) · ((1− ys,i(t))−Ei(t)) (10)

In these equations, we have

• Es(t) = E(ˆµs(t), ˆµi(t), ˆφ2
i (t)),

• Ei(t) = E(ˆµi(t), ˆµs(t), ˆφ2
s(t)),

• v2s(t) =
[
g(ˆφ2

i (t))
2Es(t)(1− Es(t))

]−1

, and

• v2i (t) =
[
g(ˆφ2

s(t))
2Ei(t)(1− Ei(t))

]−1

.

Also, in equation (6), p(a(t)|ys,i) is the marginal posterior
density function for a(t) = log σ2

s(t), approximated using the
product of the following two normal density functions (here,
ϕ(z;m, ς2) denotes the normal density function with mean
m and variance ς2):

1. ϕ(a(t); a(ts), τ
2), which comes from equation (3), and

2. ϕ(θ∗s (t);µs(ts), φ
2
s(ts) + (t − ts)ea(t) + v2s(t)), which is

the normal approximation of the marginal likelihood
distribution of θs(t), whose mode is denoted with θ∗s (t).

The latter normal density function features the quantity
(θ∗s (t) − µs(ts)), which is approximated in [6] using first-
order Taylor expansion.

Finally, note that to prevent a rating deviation from becom-
ing arbitrarily large, the quantity is constrained in equa-
tions (7) and (8) to never exceed the value for a brand new
user/unit, just like how it was done in [5].

2.2 Initial Parameter Estimation
To address the stratification issue mentioned in the intro-
duction, the user and unit ratings are differentially initial-
ized based on their respective curricula. Instead of setting
each curriculum’s initial rating value arbitrarily, we want
the values to reflect more closely our prior knowledge of the
distributions of concepts within each curriculum.

We find this prior knowledge in our proprietary conceptual
precedence graph, where units are represented as nodes (ver-
tices) in a directed graph. Each edge (u, v) in the graph is
interpreted as: “An instance of unit u is being used as a step
in solving an instance of unit v.” Hence unit u corresponds
to a prerequisite concept that a user must have mastered
before being able to successfully master unit v.

The key idea in our usage of the graph is that a question
item (corresponding to a specific knowledge unit) that in-
volves one or more steps to solve must in general be harder
than any of the steps themselves. Hence we assign each unit
with a non-negative integer value, which we call “depth,” in
such a way that for every edge, the tail node is assigned
with a lower depth value than the head node. This way, a
concept appearing in a higher grade level would in general
correspond to a higher depth value (since they would gener-
ally incorporate lower-level curriculum concepts as prereq-
uisites), making the depth values roughly signify how “in-
depth” the corresponding concepts are. See Fig. 2 for an
illustration.

We also seek to differentiate among units with no parents
(i.e., concepts with no prerequisites) by imposing that the
depth difference between a unit and its successor be as small
in magnitude as possible, while still ensuring that every unit
has a strictly greater depth value than any of its parents.

From a graph theory perspective, the problem of assigning
depth values can be formulated as a variant of layer assign-
ment problem on a directed acyclic graph G = (V (G), E(G))
with minimal dummy vertices, formally stated as the follow-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 881

Figure 2: Illustration of assigning depth values to
knowledge units in a simple conceptual precedence
graph. Knowledge units are represented as nodes
(gray ovals). On the right of each oval, a red circle
shows the corresponding depth values assigned.

Figure 3: Three instances of simple cycles in the con-
ceptual precedence graph used in our study, which
all belong to one strongly connected component. We
found that cycles exist mostly due to the presence of
“gateway units” (shown in cyan ovals), whose main
role is to select which concept to apply from multiple
related concepts.

ing integer linear program (ILP):

min
∑

(u,v)∈E(G)

d(v)− d(u)

s.t. d(v)− d(u) ≥ 1 ∀(u, v) ∈ E(G)

d(v) ∈ Z≥0 ∀v ∈ V (G)

(11)

(here, d(v) denotes the depth value assigned to node v). For
a general overview of the layer assignment problem and its
variations, readers are referred to Section 13.3 of [9].

Two challenges arise in initializing rating values through
solving the depth assignment problem. The first challenge is
that our conceptual precedence graph could contain cycles,
such as ones shown in Fig. 3. To address this challenge, we
assign the same depth value to all units in the same strongly
connected component (SCC), noting that any directed cy-
cle is strongly connected. Implementationally, this corre-
sponds to solving the ILP given in (11) on the conceptual
precedence graph’s condensation, which is a directed acyclic
graph formed by contracting each SCC into one node.

The second challenge in assigning depths to nodes on the
conceptual precedence graph is that the graph (and thus also
its condensation) may consist of multiple weakly connected
components (WCCs), which are subgraphs whose underly-
ing undirected graphs are connected. The above ILP assigns
depth values relative only to other SCCs in the same WCC,

so additional steps must be taken to equate the depth value
distributions for each curriculum across all WCCs. In par-
ticular, we label each SCC with the lowest-level curriculum
that features at least one of its constituent units. Next, we
take the smallest number of WCCs that together contain all
curriculum labels. We call this collection of WCCs reference
WCCs. Afterward, we offset the depth value for each SCC in
every non-reference WCC to be at least the minimum depth
value of all SCCs in the reference WCCs that are labeled
with the same curriculum.

Once the adjusted depth values for all SCCs (and thereby
all units) are thus computed, each curriculum’s depth value
is set to be the average depth value of all units in the cur-
riculum.

Below is the summary of procedure for assigning depth d(k)
for each curriculum k ∈ X = {1, . . . ,K}:

1. Let G = (V (G), E(G)) be our conceptual precedence
graph, which is a directed graph such that each node
v ∈ V (G) is associated with a curriculum χ(v) ∈ X.

2. Condense G to yield a directed acyclic graph C =
(V (C), E(C)).

3. Let W1, . . . ,Wn be WCCs of C, from largest to small-
est.

4. For each Wi = (V (Wi), E(Wi)), solve the ILP given in
(11) to yield pre-adjustment depth values dinit(S) for
each SCC S.

5. Label each SCC S with a curriculum

χmin(S) = min
v∈V (S)

χ(v).

6. LetA = {W1, . . . ,Wr} be the reference WCCs (defined
above), such that r is minimized; i.e., choose no more
WCCs than necessary.

7. For each curriculum k ∈ X, let

dmin(k) = min{d(S) | χmin(S) = k, S ∈
r⋃
i=1

V (Wi)}.

8. For each Wj = Wr+1, . . . ,Wn, adjust depth value d(S)
for each SCC S ∈ Wj to be at least dmin(χmin(S)).
However, do so in a way that the adjusted depth values
still satisfy the constraints of the ILP given in (11).

9. We now have the adjusted depth values for every SCC
S ∈ V (C). For each SCC S, let d(v) = d(S) for all
v ∈ S.

10. For each k ∈ X, let

d(k) = mean{d(v) | v ∈ V (G), χ(v) = k}.

We now give each user s or unit i associated with curriculum
k as follows:

µs(0) = µmin + α · d(k) (12)

µi(0) = µmin + α · d(k) (13)

where quantities µmin and α are hyperparameters to be op-
timized.

882 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

3. EVALUATION
We evaluate our model using a dataset consisting of stu-
dent practice records from January 2016 to December 2019
through our adaptive software used in math learning cen-
ters located throughout the United States. Students are
given problems to practice based on their current grade level
and the content areas where they struggle. The data con-
sists of 5,179,493 records of 10,194 users’ combined attempts
for problems associated with 7,513 knowledge units, ranging
from Grade 2 concepts to Algebra 2 concepts. When a stu-
dent gets a problem wrong in the first attempt, the student
gets to make a second attempt for the same problem after
being walked through the steps; in our analysis, however,
only the first attempt’s result was considered.

For the Glicko-2 model hyperparameters, we used the values
suggested in [8]: 350.0 for the initial RD (in Glicko-1 scale;
[8] shows how to convert between the two scales) and 0.06 for
the initial user volatility. In the case of τ , for which a range
of values is suggested, we used 0.5. The time elapsed from
one attempt to the next, used in rating uncertainty inflation,
is measured in days. Finally, through extensive simulations,
we chose α ≈ 0.2303 and µmin ≈ −2.8782, which, in Glicko-
1 scale (on which the values were originally set), are exactly
40.0 and 1000.0, respectively.

Each unit’s associated curriculum was based on the infor-
mation provided in our content management system. For
units appearing in multiple curricula, the earliest curricu-
lum in the sequence was used. For users, due to the lack
of availability of exact registration dates for all users at the
time of the study, each user’s curriculum was set as the cur-
riculum associated with the first unit attempted by the user.
The initial parameters for both users and units were then
set following the procedure described previously.

3.1 Predictive Performance
To assess the predictive performance of our adaptation of
the Glicko-2 rating system, we plotted the change in RMSE
values for every 1,000 records over time (for the rationale
behind the metric choice, see [14]). As the latent trait esti-
mates are calibrated based on student practice records, we
expect the RMSE across the entire system to decay over
time. We see that this is exactly the case in Fig. 4, where
the calibration curve for our model is also reported along
with the reliability and resolution values.

We also report a convergent pattern in unit rating values
and dynamically adjusting user rating values, analogous to
the results obtained in [15], in Fig. 5.

3.2 Gradation of Unit Rating Distributions
We also plot the distributions of the final unit rating values
for each curriculum. We expect that using a conceptual
precedence graph to initialize rating values would cause the
central tendencies of the rating distributions would show an
upward trend as the curriculum level increases. As shown
in Fig. 6, the final ratings computed without the graph-
based rating initialization fail to show an upward trend in
the mean rating values, whereas they do with the graph-
based rating initialization. Also noteworthy is the complete
disappearance of overlap in IQR between two curricula far

Figure 4: Top: Cumulative RMSE values calculated
at every 1,000 records. For effective visualization,
only results from the first 500,000 records were plot-
ted. Bottom: Reliability diagram with sharpness
graph inserted in the lower right.

Figure 5: Rating values as a function of time for 5
most frequently attempted units (top) and for the
user with the most number of attempts (bottom).

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 883

Figure 6: Final distributions of knowledge unit ratings. Orange bars indicate medians, green dots indicate
means. Note that the rating values on the vertical axis are on the Glicko-1 scale.

apart from each other, such as Grade 2 and Algebra 2, upon
using a conceptual precedence graph to initialize ratings.

4. DISCUSSION
We have used conceptual prerequisite relationships to give
our model a better prior distribution— one that better re-
flects the stratified nature of student practice data. The
depth values used to calculate the initial rating values, how-
ever, are still quite coarse estimates; for example, the dif-
ference in difficulty between a unit and one of its prereq-
uisite units may not be even across the conceptual prece-
dence graph. Nevertheless, we see that the distribution of
the lowest-level curriculum (Grade 2 in our study) and that
of the highest-level one (Algebra 2 in our study) show a
substantially little overlap compared to when we used the
initialization method of the original Glicko-2 system, which
suggests that there was still a nontrivial improvement. Note
that the separation of unit rating distributions between two
adjacent curricula (for example, Grade 2 and Grade 3) are
not well separated. This is expected, as we would not ex-
pect a huge jump in terms of curriculum difficulty from one
school year to the next.

One interesting area of application of this framework is de-
termining the appropriate grade level for students whose
mathematical achievement levels are substantially ahead or
behind their grade levels. With estimates of item difficulties
that account for grade-level hierarchy, we can have a data-
based justification that would allow gifted students to be
placed at a higher-level curriculum that is neither too hard
nor too easy for them. Likewise, we could allow for students
lagging behind their peers to be placed at a lower-level cur-
riculum, where they could ensure that their foundational
understanding of lower-level mathematical concepts is firm
before moving onto the next grade level. For this applica-
tion, a separate round of validation with external measure-
ments, e.g., standardized test scores, must first take place.

A well-known limitation of using the Glicko rating system
family for educational applications is its inability to model
multiple-choice item correctness probabilities. This is be-
cause the correctness probability of such an item has an
infimum strictly greater than 0, making the corresponding
probability distribution improper. Hence a natural future
direction would be to address this limitation, e.g., by incor-
porating the particle-based method presented in [12].

Another potential threat to the validity of using the Glicko-
2 model for student ability measurement is in its unidi-
mensionality assumption. Part of the challenge of verifying
whether the student response data can be modeled with a
one-dimensional construct in a learning setting is that un-
like in IRT settings, a student’s ability is expected to change
throughout the data collection period. An interesting future
direction would be to investigate whether there is sufficient
evidence to suggest that students’ mathematical ability is
multidimensional, and if so, how a model like the Glicko-2
rating system can be extended to reflect the multidimen-
sionality; the degree to which the extension presented in [1]
can be applied also remains to be seen.

Also, when assigning each curriculum with a depth value,
the average depth values for all constituent units were cal-
culated. In practice, however, as learning software product
continues to expand, units can be added or removed, or their
edge connections may change. Our current choice of taking
an average makes the algorithm sensitive to changes in the
conceptual precedence graph’s internal connectivity struc-
ture. Median may be a more robust, and thus more practi-
cal, choice, though this may come at the risk of decreased
differentiability across consecutive curricula.

5. CONCLUSION
We have presented an adaptation of the Glicko-2 rating sys-
tem in a K-12 math learning software context. The stratified
nature of student-item pairings has made effective discrim-
ination of students and problems across grade levels chal-
lenging. We have shown evidence that by using the prereq-
uisite relationships between concepts to initialize rating val-
ues, we can allow for the gradation of rating distributions
from lower-level curriculum to the higher-level curriculum
while ensuring that the prediction error for student response
correctness still decreases over time. A potential area of ap-
plication is for determining the grade level appropriate for
students substantially ahead or behind their peers.

6. ACKNOWLEDGEMENT
I thank my boss Kurt Cho, who gave nudges in productive
directions whenever I was stuck, and my colleagues Sungh-
wan Cho and Seunghun Lee, who worked on developing data
pipeline infrastructure on which the proposed model can be
deployed. Also, I thank everyone in my company, who pa-
tiently waited in support while the project was in the works.

884 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

7. REFERENCES
[1] L. Cai. Potential applications of latent variable

modeling for the psychometrics of medical simulation.
Military Medicine, 178(suppl 10):115–120, 2013.

[2] M. C. Desmarais and R. S. J. d. Baker. A review of
recent advances in learner and skill modeling in
intelligent learning environments. User Modeling and
User-Adapted Interaction, 22(1-2):9–38, 2012.

[3] J. S. Eccles. Expectancies, values and academic
behaviors. Achievement and achievement motives,
pages 74–146, 1983.

[4] A. E. Elo. The Rating of Chessplayers, Past and
Present. Arco Publishing, 1978.

[5] M. E. Glickman. The Glicko system.
http://www.glicko.net/glicko/glicko.pdf.

[6] M. E. Glickman. Parameter estimation in large
dynamic paired comparison experiments. Journal of
the Royal Statistical Society: Series C (Applied
Statistics), 48(3):377–394, 1999.

[7] M. E. Glickman. Dynamic paired comparison models
with stochastic variances. Journal of Applied
Statistics, 28(6):673–689, 2001.

[8] M. E. Glickman. Example of the Glicko-2 system.
http://www.glicko.net/glicko/glicko2.pdf, 2013.

[9] P. Healy and N. Nikolov. Hierarchical Drawing
Algorithms, pages 409–454. 08 2013.

[10] C. S. Hulleman, K. E. Barron, J. J. Kosovich, and
R. A. Lazowski. Student motivation: Current theories,
constructs, and interventions within an
expectancy-value framework. In Psychosocial Skills
and School Systems in the 21st Century, pages
241–278. Springer, 2016.

[11] S. Klinkenberg, M. Straatemeier, and H. L. van der
Maas. Computer adaptive practice of maths ability
using a new item response model for on the fly ability
and difficulty estimation. Computers & Education,
57(2):1813–1824, 2011.

[12] J. Nižnan, R. Pelánek, and J. Rihák. Student models
for prior knowledge estimation. International
Educational Data Mining Society, 2015.

[13] J. Papousek, R. Pelánek, and V. Stanislav. Adaptive
practice of facts in domains with varied prior
knowledge. In Educational Data Mining 2014, 2014.

[14] R. Pelánek. Metrics for evaluation of student models.
Journal of Educational Data Mining, 7(2):1–19, 2015.

[15] R. Reddick. Using a Glicko-based algorithm to
measure in-course learning. International Educational
Data Mining Society, 2019.

[16] S. Sampayo-Vargas, C. J. Cope, Z. He, and G. J.
Byrne. The effectiveness of adaptive difficulty
adjustments on students’ motivation and learning in
an educational computer game. Computers &
Education, 69:452–462, 2013.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 885

	Organizing Committee
	Senior Program Committee Members
	Program Committee Members
	Subreviewers
	Sponsors
	Platinum
	Gold
	Silver

	Introduction
	Main contributions

	Related Work
	Background
	Feedback as a Prediction Problem
	Difficulty of Automated Feedback

	Modelling Student Cognition
	Student Decision Process (SDP)
	Idea2Text

	Inference
	Adaptive Grammar Sampling
	Neural Approximate Parsing
	kNN Baseline

	Experiments
	Datasets
	Simulator Descriptions
	Results for Feedback Prediction

	Extensions
	Nearest In-Simulator Neighbour
	Human-in-the-loop Grading
	Highlighting feedback in student solutions.
	Automatically Improving Simulators

	Limitations and Future Work
	Conclusion
	Introduction
	Background
	OpenAI Gym
	Proximal Policy Optimization (PPO)
	Apprentice Learner Architecture

	TutorGym
	Fraction Arithmetic Tutor
	Multicolumn Addition Tutor

	Learning Models
	Apprentice Learner
	PPO-Number
	PPO-Operator

	Simulation Study
	Tuning and Training Models
	Results
	Discussion

	Related Work
	Future Work
	Conclusions
	References
	Hyperparameter Tuning
	Introduction
	Keystroke Logging
	Inferences & Relations to Writing Quality

	Method
	Data Set
	Propensity Score Matching
	Feature Extraction
	Cluster Analysis and Interpretation

	Results
	Outcome of Propensity Scoring Matching
	Cluster Analysis Results
	Comparing the Clusters

	Discussion
	References
	Introduction
	Related Work
	Preliminaries
	Proposed Approach
	Training Details

	Experimental Setup
	Compared Methods

	Results
	Conclusions and Future Work
	References
	Introduction
	Related Work
	Computing creativity in Scratch
	Human Creativity Assessment
	User Study
	Agreement between experts

	Predicting Creativity Scores
	Discussion and Conclusion
	Acknowledgments
	Introduction
	Our approach and contributions
	Related work

	Problem Formulation
	Student knowledge state
	Graphical representation of knowledge
	Quizzing policy for knowledge inference
	Evaluation

	Designing quizzing policies
	Heuristic approaches
	RL-based approach

	Experimental Evaluation
	Simulations
	The synthetic dataset
	Results

	NeurIPS 2020 Education Challenge
	The Eedi dataset
	Student performance prediction
	Results

	Conclusion
	References
	Introduction
	System Architecture
	API
	RIIP
	LevelMarker Module
	Data
	Evaluation

	ES index
	Sanitisation

	Reading on the platform
	Finding engaging reading material at an appropriate level
	Developing one's vocabulary
	Running comprehension tests
	Accessing reading history

	Conclusions and Future Work
	References
	Introduction
	Data and Methods
	Co-operative Process Overview
	Data
	Methods

	Results
	Employer Ranking Strategies
	Consequences of Employer Ranking Strategies

	Discussion and Conclusions
	References

