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Abstract

We study optimal policy in an economy in which public debt is used as collateral or liquidity buffer.

Issuing more public debt raises welfare by easing the underlying financial friction; but this easing

lowers the liquidity premium and increases the government’s cost of borrowing. These considera-

tions, which are absent in the basic Ramsey paradigm, help pin down a unique, long-run level of

public debt. They require a front-loaded tax response to government-spending shocks, instead of tax

smoothing. And they explain why a financial recession, more than a traditional one, makes govern-

ment borrowing cheaper, optimally supporting larger fiscal stimuli.
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1 Introduction

Liquidity shocks and shortages of private collateral interfere with the efficient allocation of resources.

A theoretical literature has emphasized that public debt issuance may ease such frictions by contribut-

ing to the supply of assets that can be used as collateral or buffer stock (Woodford, 1990; Aiyagari and

McGrattan, 1998; Holmström and Tirole, 1998). In the same spirit, an empirical literature has shown

that, even after controlling for default risk, the spread between government and private bonds is both

substantial and sensitive to the quantity of public debt (Krishnamurthy and Vissing-Jorgensen, 2012;

Greenwood and Vayanos, 2014).

What are the implications of these considerations for optimal fiscal policy? Do they lead to a well-

defined optimal long-term target for public debt and, if yes, what are its determinants? How do they

matter for the optimal policy response to fiscal shocks or other business cycle shocks?

To address these questions, we augment the basic Ramsey paradigm (Barro, 1979; Lucas and Stokey,

1983; Aiyagari et al., 2002) with a liquidity function for public debt as suggested by the aforementioned

literature. In our model, public debt’s use as collateral helps ease the reallocation of a consumption good

across households, or of capital across firms. Such reallocation is necessary because of idiosyncratic

taste or productivity shocks. Tractability is nevertheless preserved by use of a quasi-linear specification

as in Lagos and Wright (2005). We are thus able to reduce the planner’s problem in our economy to an

analytically solvable, albeit non-convex, optimal control problem, in which it is as if public debt enters

(i) the utility or the production function and (ii) the interest-rate cost of government borrowing.

The optimal policy, both in the long and the short run, is dictated by the interplay of three forces. The

first is the desire to smooth taxes. The second is the desire to ease the financial friction so as to improve

private allocations. The third, which is perhaps the most novel element of our analysis, is the desire to

preserve the financial friction so as to suppress the interest-rate cost of public debt.

The relative importance of these three forces varies across the short and the long run. The trade

off between improving the private sector’s allocations and keeping the government’s interest-rate costs

low is the key determinant of the steady-state level of public debt. But tax smoothing naturally gains

influence when considering transition to the steady state or the optimal response to shocks.

Consider first the long run. In our model, the government could eliminate the financial friction by

issuing a sufficiently large amount of public debt to satiate the economy’s demand for collateral. But

doing so would have adverse budgetary consequences as it would eliminate the “profit” that the govern-

ment enjoys by paying an interest rate on public debt that is below the underlying social discount rate.

Crucially, this trade off hinges, not merely on taxation being distortionary, but also on the fact that the

price of public debt varies negatively with its quantity: in the absence of this effect, the optimal quantity

of public debt converges in the long run to the level that satiates the economy’s demand for collateral.1

1This presumes, for the sake of the argument, that the satiation level is lower than the maximal sustainable level of debt.
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This trade off can support a unique steady-state level of debt to which the economy converges for

any initial position below satiation. This contrasts with the steady-state indeterminacy –induced by tax

smoothing, in the standard model. Furthermore, there is a threshold strictly above satiation such that,

for initial levels of debt in between these two, it is optimal to reduce debt below satiation. This illustrates

the importance of the interest-rate suppression motive: the government may optimally create a shortage

of collateral in an economy where collateral was initially abundant.

The same motive also figures prominently in the optimal response to shocks. Consider, for instance,

an unanticipated, uninsured, positive shock to government spending. In the basic Ramsey paradigm,

this triggers a permanent increase in taxes by an amount equal to the annualized innovation in the

present discounted value of government spending. In our setting, instead, taxes increase relatively more

early on in order to keep interest rates on debt low, enabling a smaller tax burden later on.

In a similar vein, consider a shock that raises the labor wedge, reduces aggregate output and tax

revenue, and motivates a fiscal stimulus in the form of a temporary “payroll tax cut” to moderate the

increase in the labor wedge. Suppose also that the resulting recession is associated—exogenously or

endogenously—with more severe financial frictions. This has an ambiguous effect on the trade-off be-

tween liquidity provision and interest-rate suppression: while the larger friction encourages greater pro-

vision of liquidity, the higher profit that the planner can make by preserving the shortage of collateral

pulls in the opposite direction. But it unambiguously increases fiscal space by reducing the interest rate

on public debt, thereby supporting a larger fiscal stimulus.

This result provides a formal basis for the proposal, made by, among others, Paul Krugman and Brad

DeLong, that the Great Recession called for high deficits not only because of the need to stimulate aggre-

gate demand but also because the low interest rates made it “cheap” for the US government to borrow.

This proposal has no place in the textbook Ramsey paradigm, because the price of the bonds coincides

with the social discount factor. But it makes sense through the lenses of our analysis insofar as a lower

interest rate is a signal of a heightened shortage of collateral and, hence, of a higher spread between the

market price of public debt and the underlying social discount factor. From this perspective, a broader

contribution of our paper is to draw attention to the policy implications of both the cyclicality of this

spread and its endogeneity to the quantity of public debt.

Turning to the technical contribution of this paper, we highlight that, when the interest rate on pub-

lic debt increases with its level, the policy problem becomes non-convex. As a result, the standard

first-order approach does not apply: there can exist multiple paths that satisfy the planner’s Euler and

transversality conditions, and the challenge is to find out which one of them is truly optimal.2 An inte-

gral part of our contribution is to address this challenge by adapting the methods of Skiba (1978). This

2The non-convexity of the problem also explains why, in general, there can exist multiple steady states below satiation. We

avoid this complication in the main analysis, and guarantee the existence of a unique such steady state, by making appropriate

assumptions on the problem’s primitives. But we also explain why and how our main insights survive more broadly.
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allows sharp analytical results, in contrast to Aiyagari and McGrattan (1998), who rely on numerical sim-

ulations, abstract from transitional dynamics and shocks, and, as explained in Section 4.1, mis-measure

the shadow cost of government debt.

2 Micro-foundations

This section describes a micro-founded economy in which public debt serves as collateral and helps

improve the allocation of resources. We characterize the equilibrium for given policy and show how the

optimal policy problem nests in the class of reduced-form problems analyzed in the next section. We

also illustrate the policy conflict between liquidity provision and interest-rate suppression.

2.1 Setup

There is a unit-mass of ex-ante identical households, indexed by i ∈ [0,1], and a representative firm. Time

is discrete, indexed by t ∈ {0,1,2, . . .}, and each period is split into a “morning” and an “afternoon.” There

are two edible goods. The one is the (exogenous) fruit of a tree, which becomes ripe in the morning of

each period. The other is the (endogenous) output of the representative firm, which is produced in the

afternoon with the labor of the households. Each good has to be consumed in the sub-period in which it

is produced, or else it perishes. We refer to the first good as the “morning good” and to the second one,

which is also our numeraire, as “the afternoon good.” Idiosyncratic risk takes the form of taste shocks

to the utility of the morning good. The associated first-best allocation is impeded by a financial friction.

This friction can be eased by saving in a riskless bond, whose supply is controlled by the government.

The representative firm. The representative firm is competitive and produces the afternoon good us-

ing labor. Aggregate output is given by yt = Aht , where ht denotes the labor input and A denotes the

exogenous aggregate productivity (assumed to be time-invariant for the time being). It follows that, in

equilibrium, the pre-tax wage is given by wt = A and all income goes to labor.

The households. Consider a household i . Let hi t ∈R+ denote her period-t labor supply, and let xi t ∈R+
and ci t ∈R denote her period-t consumption of, respectively, the morning and the afternoon good. Her

life-time utility is given by

E0

[ ∞∑
t=0

βtU (ci t , xi t ,hi t ;θi t )

]
. (1)

β ∈ (0,1) is the subjective discount factor, θi t is an idiosyncratic taste shock, and U is given by

U (c, x,h;θ) ≡ c +θu(x)−ν(h), (2)

where u is strictly increasing and strictly concave, and ν is strictly increasing and strictly convex.

The taste shock is i.i.d. across households and follows a continuous Markov process, with transition

density ϕ(θ′|θ), unconditional density ϕ(θ), and support [θ,θ]. Its modeling role is to introduce a desire
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for trade: high-θ agents would like to buy the morning good from low-θ agents. As we explain next, such

trades are impeded by a financial friction—and this is where public debt enters the picture as a form

of buffer stock or collateral. Finally, the linearity of U in c plays the same role as in Lagos and Wright

(2005): it guarantees that the cross-sectional distribution of wealth is not a relevant state variable for the

aggregate equilibrium dynamics and the planner’s problem.

Markets and frictions. In the afternoon of each period, households can buy and sell a risk-free asset,

which delivers one unit of the numeraire good in the afternoon of the following period. This asset, whose

price is denoted by qt , may be issued either by the government or by other private agents: government

and private bonds are perfect substitutes. In addition, households can trade short-term IOUs in each

morning. These IOUs facilitate the transfer of resources within the period.

Let ai t denote household i ’s holdings of the risk-free asset—also, its net financial worth—in the be-

ginning of period t . The period-t budget constraint can then be expressed as follows:

ci t +pt xi t +qt ai t+1 = ai t + (1−τt )wt hi t +pt ē (3)

where pt is the price of the morning good and ē is the fixed endowment of it.

Let zi t = pt (xi t − ē) denote the value, in terms of the numeraire, of the household’s net trade of the

morning good. One can interpret zi t as short-term (intra-period) credit lines that help cover “liquidity

needs.” When zi t > 0, the household is a “borrower” in the sense that it finances its net purchase of the

morning good by issuing an IOU against its afternoon labor income; and conversely, the household is a

“lender” when zi t < 0.

Once the afternoon arrives, a borrower may be tempted to renege on her promise to pay back. If she

does so, her lenders can confiscate a fraction ξ ∈ (0,1) of the her labor income as well as all of her assets.

For default to be averted in equilibrium, the following constraint must therefore hold:

zi t ≤ ξwt hde f
i t +ai t (4)

where hde f
i t denotes labor supply in the (off-equilibrium) event of default. Applying the same logic to

inter-period borrowing, we get:

−ai t+1 ≤ ξwt+1hde f
i t+1. (5)

Condition (5) represents an upper bound on the agent’s debt, or equivalently on her net supply of the

risk-free asset. Condition (4), on the other hand, shows how holdings of the risk-free asset serve as col-

lateral in the IOU market, therefore enabling trade of the morning good.3

3By assumption, the risk-free asset is traded only in the afternoon. But because it can be posted as collateral, the equilibrium

allocations remain unaffected if we let it be traded in the morning alongside, or in place of the IOUs. Accordingly, we can think

of the risk-free asset interchangeably as collateral and as buffer stock.
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The government. The government’s budget constraint is given by

bt + g = qt bt+1 +τt wt ht (6)

where bt is the stock of public debt inherited from period t −1, g is the exogenous level of government

spending, wt ht is labor income, and τt is the tax rate. For any given b0, the government chooses the

sequence {τt ,bt+1}∞t=0 so as to maximize ex ante utility,

W ≡ E
[ ∞∑

t=0
βt (ci t +θi t u(xi t )−ν(hi t ))

]
,

subject to its budget constraint and the applicable equilibrium restrictions (to be derived next).

2.2 Equilibrium

We characterize the equilibrium in three steps. First, we study the individual’s problem and derive the

private value of liquidity for a given sequence of prices and policies, {pt , qt ,τt ,bt }∞t=0. Second, we solve

for the equilibrium prices {pt , qt }∞t=0 and derive the social value of liquidity. Finally, we show how to

represent all the objects that enter the planner’s problem as functions of the sequence {τt ,bt } alone.

Let us start by determining the pledgeable income of the household. This raises the question of what

tax rate the household would face in the event of default. Since default is an off -equilibrium object, the

associated tax rate can differ from the on-equilibrium tax rate τt . Without serious loss of generality, we

assume that it is zero. Along with the fact that a fraction ξ of labor income is confiscated by lenders, this

implies that labor supply under default solves ν′(hde f
i t ) = (1−ξ)wt . Using wt = A, we conclude that the

financial constraints (4) and (5) can be restated as, respectively,

zi t ≤φ+ai t and ai t ≥−φ,

where φ≡ ξA(ν′)−1((1−ξ)A).4

We now proceed to study how the financial friction gives rise to a private value for liquidity. The

optimal consumption of the morning good solves

max
x

{
θu(x)−p(x − ē)

}
subject to p(x − ē) ≤φ+a

Clearly, for given p, the constraint is binding ex post when θ is high enough relative to a. By the same

token, a higher a means a smaller ex ante chance that the collateral constrain will bind. This explains

the precise sense in which there is a precautionary motive and the precise source of the equilibrium pre-

mium on public debt. Public debt is priced at a premium because it helps ease the collateral constraint.

4We henceforth treat A, ξ, and φ as constants and do not show the dependence of all endogenous objects on them. Also

note that φ is strictly concave in ξ, with a maximum obtained at an interior ξ̄ ∈ (0,1). We assume ξ < ξ̄ and think of a tighter

constraint as, interchangeably, a higher ξ or a higher φ.
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To capture this function in a convenient form, let û(a,θ, p) denote the maximum obtained above, let

ũ(a,θ, p) ≡β
ˆ

û(a,θ′, p)ϕ(θ′|θ)dθ′

be the discounted, previous-period expectation of this maximum, and let c̃i t ≡ ci t + zi t . We can recast

the household’s problem as follows:

max
{c̃i t ,hi t ,ai t+1}∞t=0

E0

[ ∞∑
t=0

βt
(
c̃i t −ν(hi t )+ ũ

(
ai t+1,θi t , pt+1

))]
(7)

subject to c̃i t +qt ai t+1 = ai t + (1−τt )wt hi t and ai t+1 ≥−φ

It is therefore as if individual asset holdings entered the utility function.

For given θ and p, ũ(a,θ, p) is strictly increasing and concave in a if the next-period constraint is

binding with positive probability, and constant otherwise. The following Euler condition is therefore

necessary and sufficient for ai t+1 to be optimal:

ũa(ai t+1,θi t , pt+1) ≤ qt −β≡πt , (8)

with equality whenever ai t+1 >−φ.

Because ũa is equal to the expected value of the Lagrange multiplier on the morning collateral con-

straint, this condition means that each agent saves as much as it takes to equate the expected shadow

value of collateral, or the return to liquidity, with the spread πt , or the cost of liquidity. More succinctly,

the aggregation of this condition across agents gives the aggregate demand for liquidity as a decreasing

function of πt+1. And because the aggregate supply of liquidity is given by bt+1, we expect a higher bt+1

to map in equilibrium to a lower πt , as well as to a more efficient allocation of the morning good and

hence higher welfare. This intuition is incomplete because it does not take into account the endogeneity

of pt+1, but as the next proposition shows the essence remains the same.

Proposition 1. There exist functions π,V and a scalar bbl i ss such that the following is true:

(i) For any policy path {τt ,bt+1}, the equilibrium price of public debt is given by

qt =β+π(bt+1)

and welfare is given, up to a policy-invariant constant, by

W =
∞∑

t=0
βt [ct −ν(ht )+V (bt+1)] . (9)

(ii) For b < bbl i ss , π(b) > 0, V (b) < Vbli ss , and V (b) is increasing in b; and for b ≥ bbl i ss , π(b) = 0 and

V (b) =Vbl i ss , where Vbli ss is the value of E[θu(x)] obtained at the first-best allocation of the morning good.

In a nutshell, V (b) captures how much public debt contributes to social welfare by easing the friction

and improving the allocation of the morning good, whereas π(b) measures the price that the typical
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agent is willing to pay for the services provided. Finally, bbl i ss identifies the “satiation” level of public

debt, or aggregate collateral, above which the friction ceases to bind and, as a result, V ′(b) =π(b) = 0.

For b < bbli ss , the private and the social value of liquidity are both positive—but they are not equal to

each other, due to the pecuniary externality emerging from the dependence of the collateral constraint

on the price of the morning good. This helps illustrate the potential robustness of our main lessons

to pecuniary externalities a la Shleifer and Vishny (1992), Lorenzoni (2008) and Dávila (2015).5 At the

same time, the existence of the satiation point, although neither realistic nor strictly needed, allows us to

illustrate that the planner may optimally choose to manufacture a shortage of collateral, that is, to lead

the economy below bbli ss even if it starts above it.

2.3 The reduced-form policy problem

The government’s problem consists of finding the sequence
{
ct ,ht ,τt , qt ,bt+1

}∞
t=0 that maximizes (9)

subject to the following four constraints:

qt bt+1 = bt + g −τt Aht (10)

qt = β+π(bt+1) (11)

ν′(ht ) = (1−τt )A (12)

ct + g = Aht (13)

The first is the government’s budget constraint; the second is the bond pricing condition; the third is the

labor supply condition; and the last one is the economy’s resource constraint.

This problem is equivalent to that of a representative-agent economy in which public debt generates

a welfare flow of V (b) and is priced at q =β+π(b). The dependence of V and π on b epitomizes the dual

role of public debt in easing the trading friction (the effect captured by V ) and manipulating interest rates

(the effect captured by π). How this dual role, in combination with the desire to smooth taxes, shapes

the optimal policy is the subject of Section 3.

To ease that transition to that section, we further simplify the government’s problem as follows. Let

H(τ) ≡ (ν′)−1
(1−τ

A

)
and S(τ) ≡ τAH(τ) denote the equilibrium values of, respectively, labor supply and tax

revenue, as functions of the tax rate. It is straightforward to check that S is single-peaked—i.e., there is a

Laffer curve—and attains its maximum value, s̄, at τ= τ̄ for some τ̄ ∈ (0,1). For any s ≤ s̄, the tax rate that

raises revenue s is therefore given by τ= T (s) ≡ min{τ : S(τ) = s}. Next, let U (s) ≡ AH(T (s))−ν(H(T (s)))

measure the equilibrium utility from consumption and leisure as a function of s and note that this is

decreasing and concave in s, reflecting the distortionary effect of taxation. The government’s problem

can be re-expressed as follows:

5In Appendix B, we show that π(b) >V ′(b), i.e., there is a negative externality. Intuitively, when an agent decides how much

to save, she does not internalize how her enhanced ability to buy the morning good will increase its price, tightening the others’

constraints. That said, our main results in Section 3 allow π(b) and V ′(b) to be unequal in the opposite direction.
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Proposition 2. Let the functions V , π, and U be defined as above. The optimal policy path for taxes and

public debt solves the following problem:

max
{st ,bt+1}∞t=0

∞∑
t=0

βt [U (st )+V (bt+1)] (14)

subject to q(bt+1)bt+1 = bt + g − st (15)

where q(b) ≡β+π(b).

2.4 Liquidity provision versus interest-rate suppression

To build some intuition about the key trade-off faced by the policymaker, let us momentarily consider a

two-period version of the problem described in Proposition 2. Suppose further that the economy starts

with zero debt and that any debt issued at t = 1 has to be retired at t = 2. Finally, abstract from optimal

taxation and let some exogenous scalars λ1 and λ2 measure the value of tax revenue in periods t = 1 and

t = 2, respectively. These are effectively the Lagrange multipliers on the respective budget constraints,

except that they are treated as exogenous in the present exercise (but not in the main analysis).

Under these simplifications, the optimal debt issuance at t = 1 is given by

b∗ = argmax
b

{
λ1q(b)b +V (b)−βλ2b

}
. (16)

The first term captures the benefit of relaxing the budget at t = 1. The second term captures the benefit

of easing the financial friction at t = 2. The last term captures the tax burden of retiring the debt at t = 2 .

Suppose now that λ1 = λ2 = λ. This amounts to imposing tax smoothing as in Barro (1979) and let

us proxy within the present two-period exercise what goes on in the steady state of our infinite-horizon

model. Using q(b) =β−π(b), the problem can be restated as follows:

b∗ = argmax
b
Ω(b,λ), (17)

where

Ω(b,λ) ≡V (b)+λπ(b)b.

The first term captures the social value of the “liquidity services” of public debt, that is, the welfare gain

from easing the financial friction. The second term captures the “profit” the government makes by pro-

viding these services.

This profit reminds seigniorage in monetary models. Here, it emerges because, and only because,

there is a wedge between the interest rate the government has to pay on public debt and the underlying

social discount rate. In the textbook paradigm (Barro, 1979; Lucas and Stokey, 1983), this wedge is zero,

implying that the planner sees neither a profit nor a cost to issuing an extra unit of debt. In our setting,

by contrast, the financial friction depresses the interest rate below the social discount rate. This in turn

explains the precise sense in which public debt is “cheap” when rates are low.
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Had the government cared only about this profit, it would have set b = bseig ≡ argmaxb π(b)b < bbliss.

At the other extreme, had the government cared only about “social surplus,” as measured by V (b), it

would have set b = bbliss. Here, the government strikes a balance between these two extremes, i.e., bseig <
b∗ < bbliss, because it values lowering financial frictions but also enjoying fiscal space. The stronger the

fiscal preoccupation, as measured by λ, the closer b∗ is to the “profit-maximizing” point bseig.

In Appendix E, we use an example (with two types and log utility for the morning good) to obtain

a closed-form solution for V and π and a sharper characterization of the determinants of b∗. We show,

inter alia, that when borrowing constraints are relaxed, causing the premium π to fall, the planner may

find it optimal to issue less public debt in order to moderate the fall in π. This anticipates our analysis in

Section 5 of how the desire to increase fiscal space by manipulating the government’s cost of borrowing

shapes the optimal policy response to shocks.

Clearly, such fiscal considerations are present only because taxation is distortionary. But it is impor-

tant to recognize that distortionary taxation alone does not suffice to make b∗ < bbliss : had the interest

rate on public debt been the same as the social discount rate, the government would have chosen to

flood the economy with liquidity regardless of how large the welfare cost of taxation is. Formally, when

π = 0, the terms λ1q(b)b and βλ2b in the objective of problem (16) cancel out, Ω reduces to V , and the

government chooses b = bbliss regardless of λ.

The relevant trade off is therefore not liquidity provision versus distortionary taxation but rather liq-

uidity provision versus interest-rate suppression: preserving the shortage of aggregate collateral makes

sense only because it helps suppress the interest rate on public debt.

This insight is key for understanding the properties of optimal policy established in this paper. But

while the two-period example has helped put the spotlight on the aforementioned two policy objectives

(liquidity provision and interest-rate suppression), it has abstracted from the question of how these ob-

jectives interact with that of tax smoothing. It also cannot distinguish between the short and the long

run, the transition between the two, and the optimal response to shocks. We address these limitations

and offer a complete and precise characterization of the optimal policy in the rest of the paper.

3 Optimal Policy

In Appendix A we obtain the analogue to Proposition 2 in a model that has the financial friction dis-

tort the allocation of capital and thereby also reduce aggregate productivity, in the spirit of Kiyotaki and

Moore (1997) and Holmström and Tirole (1998). While the precise channels via which public debt in-

fluences welfare and interest rates (or V and π) change, the essence of the policy problem remains the

same. With this in mind, in this section we suppress the micro-foundations and focus on solving the

reduced-form problem appearing in Proposition 2.

This task is complicated by the non-convexity of the problem. This complication cannot be simply
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assumed away, for it is inherent to the interest-rate effects of public debt and therefore to the trade off we

wish to study.6 To address this complication and complete the task at hand, we reformulate the policy

problem in continuous time and adapt the methods of Skiba (1978).

3.1 Continuous-time formulation

Let s̄ > 0 be the maximal possible tax revenue, or the peak of the Laffer curve, let s ≤ 0 be an arbitrary

lower bound, and let b̄ ≡ s̄−g
ρ > 0. We henceforth consider the following continuous-time version of the

problem obtained in Proposition 2.

Planner’s Problem. Choose a path for (s,b) in A ≡ [s, s̄]× [0, b̄] so as to solve

max

ˆ +∞

0
e−ρt [U (s)+V (b)]dt (18)

subject to ḃ = R(b)b + g − s ∀t (19)

with initial condition b(0) = b0, for some b0 ∈ [0, b̄) and for R(b) ≡ ρ−π(b).

We impose the following restrictions, which are consistent with but not limited to the micro-foundations

presented in the previous section:

Main Assumptions. [A1] U , V , and π are continuously differentiable.

[A2] U is concave in s, with a maximum attained at s = 0.

[A3] There exists a threshold bbliss ∈ (0, b̄) such that V ′(b) > 0 and π(b) > 0 for all b < bbliss, and V ′(b) =
0 and π(b) = 0 for all b > bbliss.

[A4] π(b) ≤ ρ for all b.

A1 is technical. A2 and A3 mirror the properties established in our micro-founded setting. In partic-

ular, A2 means that the welfare cost of taxation is convex, while A3 captures the dual role of the financial

friction on welfare and interest rates. A3 also imposes that the level of public debt that satiates the econ-

omy’s demand for collateral is sustainable, a property that is not strictly needed but makes the analysis

more interesting. Finally, A4 restricts the interest rate to be non-negative, an assumption that is not

strictly needed but simplifies the exposition.

3.2 The Euler condition and the economics behind it

Denote the costate variable with λ and consider the Hamiltonian of the problem:

H(s,b,λ) ≡U (s)+V (b)+λ[
s − (

ρ−π(b)
)

b − g
]

.

6Indeed, even if V (b) happens to be concave, and even if π(b)b is concave over the region b ∈ (0,bbli ss ), non-convexity

emerges from the fact that the “profit” π(b)b switches from positive for b < bbli ss to zero for b > bbl i ss .
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This can be rewritten as

H(s,b,λ) =U (s)+λ[
s −ρb − g

]+Ω(b,λ).

Similarly to Section 2.4, Ω(b,λ) ≡ V (b)+λπ(b)b measures the social value of the liquidity services of

public debt plus the profit made from providing these services, and λ measures the shadow value of tax

revenue. But whereas in that section we treated λ as exogenous and assumed it to be constant over time,

here we let it evolve endogenously.

Given λ, the optimal s (equivalently, the optimal τ) solves U ′(s)+λ= 0. Let s(λ) denote the solution

to this equation. The Euler condition can then be expressed as λ̇= ρλ+Hb(b,λ, s(λ)), or equivalently

λ̇ = Ωb(b,λ). (20)

In a steady state, this condition reduces to Ωb(b,λ) = 0. This suggests that a steady state of our dy-

namic problem is akin to the solution of the static problem studied in Section 2.4. We will later verify

that this intuition is correct, subject though to the following qualification: unless we strengthen our as-

sumptions about π and V , there can exist multiple steady states, each one associated with a different λ

and hence also with a different “static” solution argmaxbΩ(b,λ).

Away from steady state, condition (20) equates λ̇ with Ωb . The former encapsulates the welfare cost

of departing from tax smoothing; the latter captures the dual effect of the quantity of public debt on

welfare and interest rates. Condition (20) therefore means that, along the transition to a steady state, the

optimal policy balances not only the two objectives we emphasized before—namely liquidity provision

and interest-rate suppression—but also the traditional objective of smoothing tax distortions over time.

Intuitively, when Ωb is positive, there is value to increasing public debt, which means raising taxes

tomorrow relative to today. (And the converse is true if Ωb is negative.) If this tilt in the time profile

of taxes were of no consequence for welfare, the government would move to the steady state instanta-

neously. The desire to smooth taxes therefore acts as some sort of an adjustment cost that slows down

convergence to the steady state.

In fact, the desire to smooth taxes not only influences the rate of convergence to the relevant steady

state but may also tie this steady state to initial conditions. We will see a sharp version of this point below

in the form of a threshold for the initial level of debt such that the economy converges to a steady state

without satiation if and only if it starts below this threshold.7

3.3 Steady state(s) and transitional dynamics

A caveat to some of the intuition provided above is that, like the Euler condition upon which they are

based, they rely on local arguments. Such arguments are not only necessary but also sufficient for op-

7This discussion also underscores the intertwining of the optimal provision of liquidity and tax smoothing. As mentioned in

the Introduction, this intertwining is a key high-level difference between our analysis and the literature on Friedman rule. We

expand on this point in Appendix C.3.
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timality in convex optimization problems but not in our problem. We need additional arguments to

identify the global optimum among multiple local optima that satisfy both the Euler condition and the

transversality condition.

A formal treatment of this issue and a general solution are found in Appendix B. Here, we simplify

the exposition by imposing the following restrictions on the problem’s primitives.

Auxiliary Assumptions. [B1] The ratio V ′(b)/π(b) is a constant ω.

[B2] The elasticity σ(b) ≡−π′(b)b/π(b) is increasing in b ∈ (0,bbliss).

[B3] The level of government spending, g , is sufficiently large.

B1 imposes that the wedge between the social and the private value of collateral is invariant to b;

this nests the special case in which the social and private value of liquidity coincide (i.e., π = V ′). B2

guarantees that π(b)b is single-peaked, achieving its maximum at some bseign ∈ (0,bbliss), that is, there is

a Laffer curve in terms of b as well as in terms of τ. Finally, B3 guarantees that there is a sufficiently large

shadow value for depressing the government’s cost of borrowing. Together, these assumptions lead to

the following sharp characterization of the optimal debt dynamics.8

Theorem 1. There exists unique (bskiba,b∗, s∗), with bseign < b∗ < bbliss < bskiba and 0 < s∗ < s̄, such that:

(i) For b0 < bskiba, optimal debt and taxes converge monotonically to, respectively, b∗ and s∗.

(ii) For b0 ≥ bskiba, optimal debt and taxes stay constant at their initial levels.

This result identifies b∗ as the unique steady-state level of public debt below satiation, and bskiba as

the critical threshold for the initial level of debt below which the economy converges to this steady state.

Above this threshold, the economy instead rests for ever at its initial point.9

A detailed proof of this result is provided in Appendix B. Here, we sketch out the main ideas with the

help of the phase diagram in Figure 1.

To start with, consider the ḃ = 0 locus. This corresponds to balanced budget, or the value of λ (equiv-

alently, the rate of taxation) that solves s(λ) = g + (
ρ−π(b)

)
b. It is illustrated by the curve labeled “ḃ = 0”

in the figure. This curve is upward slopping because a higher level of debt requires a higher rate of taxa-

tion (equivalently, a higher λ) for the budget to be balanced.10

8The micro-foundation of B1 and B2 is an open question. But since our main lessons survive without them, in the sense

described later, we do not find it necessary to search for such micro-foundations. Also note that we do not restrict V to be

concave because it would no have helped eliminate the non-convexity of the problem.
9This threshold is an example of the “Skiba points” that emerge in non-convex, optimal control problems. These points

separate the state space in different sub-regions, each one corresponding to the basin of attraction of a different steady state. A

peculiarity of the particular problem studied here is that every point above bski ba is itself a steady state, mirroring the contin-

uum of steady states in Barro (1979).
10To be precise, this monotonicity holds if and only if the cost of debt, Rb = (ρ−π(b))b, is increasing in b, which is necessarily

the case in regions M and H of Figure 1 but may fail in region L. However, the result presented here are not unsettled by this

possibility, because it is always optimal to move the economy outside region L and into region M.
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Figure 1: Phase Diagram and the Optimal Path.
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Next, consider the λ̇ = 0 locus. There are three scenarios to consider here, corresponding to the

regions L, M and H in the figure.

In region L, which is defined by b < bseign, increasing b raises both π(b)b and V (b), so there is no

trade off between “liquidity provision” and “interest rate manipulation.” It follows that, for any λ≥ 0, the

marginal value of raising debt is positive, Ωb(b,λ) > 0, and therefore also λ̇ > 0. That is, the locus λ̇ = 0

does not exist in region L.11 By direct implication, there is also no steady state within this region.

In region M, which is defined by b ∈ (bseign,bbliss), increasing b raises V (b) at the expense of reducing

π(b)b, so the aforementioned trade off is now active. Which of the two sides of the trade off, liquidity pro-

vision or interest-rate suppression, dominates depends on how large the shadow value of government

resources, λ, is. Holding b constant, a large enough λ tilts the balance in favor of interest-rate suppres-

sion and maps to λ̇ =Ωb(b,λ) < 0. Conversely, λ̇ =Ωb(b,λ) < 0 for λ small enough. By the same token,

for any b ∈ (bseign,bbliss), there exists a critical value of λ = γ(b) such that Ωb(b,γ(b)) = 0. This gives the

curve labeled “λ̇= 0” in Figure 1.

This curve is decreasing, reflecting the idea that a higher λ shifts the balance in favor of interest-rate

suppression (i.e., its brings argmaxΩ closer to argmaxπ(b)b). The balanced-budget line, on the other

hand, is increasing, reflecting the higher tax distortion implied by higher level of debt. It follows that

the two lines intersect at a unique point (b,λ) = (b∗,λ∗), which identifies the unique steady state within

regions L and M . To the left of this point, debt and taxes increase over time; and to the right of it, debt

and taxes fall over time.

Finally, consider region H, which corresponds to levels of debt above satiation. In this region, we

have that both V (b) =Vbliss and π(b)b = 0, so Ωb(b,λ) = 0 and λ̇= 0 for all λ. That is, the locus of λ̇= 0 is

11This locus does not exist insofar as non-negative lump-sum transfers are allowed, for this restricts λ ≥ 0. Otherwise, the

λ̇= 0 locus exists in the negative territory of the L region.
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now the entirety of region H.

The last property may look peculiar but it actually epitomizes the optimality of tax smoothing in the

textbook paradigm (Barro, 1979; Lucas and Stokey, 1983). In that model, both the liquidity-provision

and the interest-rate concerns are absent, so λ̇ =Ωb = 0 over the entire phase diagram. Here, the same

applies to the portion of the phase diagram above satiation.

This also explains why, in region H, there exist a continuum of apparently optimal steady states,

corresponding to the segment of the “balanced budget” line inside that region. That is, for any b0 > bbliss,

the policy plan that keeps debt and taxes constant for ever satisfies not only the budget constraint and

the Euler condition, but also the transversality condition. However, for b0 ∈ (bskiba,bbliss), this plan is

actually dominated by an alternative plan, illustrated in Figure 1 by the segment of the saddle path that

starts inside region H and enters into region M.

Along this plan, debt falls gradually, crossing bbli ss within finite time and converging asymptotically

to b∗. Compared to the Barro-like plan of staying at b = b0 for ever, this plan necessitates a departure

from tax smoothing (higher taxes early, lower taxes later), which is costly. But it allows the government

to extract a profit in terms of interest-rate suppression, once debt has fallen below bbliss. Provided that

this happens fast enough, which is the case if b0 ∈ (bbliss,bskiba), the sacrifice in terms of tax smoothing is

justified. The converse is true if b0 > bskiba.

4 Discussion

In this section we comment on the nature of optimal-long run quantity of public debt, the role played

by the desire to smooth taxes, the robustness of our insights to the possibility that public debt crows out

(or, in) capital, and the importance of the assumption that debt is non-neutral.

4.1 The optimal long-run quantity of public debt

By the fact that (b∗,λ∗) is a steady state below satiation, Ωb(b∗,λ∗) = 0. By the Auxiliary Assumptions,

Ω(b,λ) is concave in b over [0,bbliss] for any λ≥ 0. The following is then immediate:

Proposition 3. Consider the steady state to which the economy converges whenever it starts with b0 <
bskiba. In this steady state, the level of debt satisfies

b∗ = arg max
b∈[0,bbliss]

{
V (b)+λ∗π(b)b

}
(21)

where λ∗ =U ′(s∗) and s∗+π(b∗)b∗ = g +ρb∗.

This verifies that the discussion in Section 2.4 provides the right intuition about the optimal steady-

state level of debt, subject to two caveats: that we take into account the fixed-point relation between the

debt level b∗ and the weight λ∗ that appears inside Ω; and that this steady state is applicable only for

some initial conditions, not all.
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We have thus established the existence of a well-defined, stable, long-run target debt level, b∗, that

falls short of the level that satiates the economy. And also that this level balances the value of easing

the financial friction with the need to suppress interest rates. The former property contrasts with the

textbook policy paradigm (Lucas and Stokey, 1983; Barro, 1979), where tax smoothing dictates that the

long-run level of debt moves one-to-one with its initial level. The same property also allows us to study

the optimal policy response to shocks (the topic of Section 5 below) using the transitional dynamics in

the neighborhood of this steady state.

The second property underscores the value of preserving the financial friction so as to keep gov-

ernment borrowing cheap. This value is missing from the analyses of Woodford (1990) and Holmström

and Tirole (1998), because they do not consider distortionary taxation. And although it is present in the

environment of Aiyagari and McGrattan (1998), it is not properly accounted for, because their solution

strategy—maximizing steady-state welfare subject to the steady-state budget—incorrectly treats the en-

tire interest rate payments on public debt as a fiscal cost. By contrast, the correct planning problem

ought to recognize that the component ρb of these interest rate payments is not a cost and, instead, debt

issuance is a profit-generating business to the tune of π(b)b.12

4.2 Tax smoothing and the tripartite trade off

When b0 > bbl i ss , the economy starts from a position of collateral abundance and has no role for public

debt. While we find this possibility of little practical interest, allowing for it in the model helps illustrate

two broader points. First, that the planner may intentionally manufacture a shortage of collateral, for

the sake of suppressing the interest rate on public debt. And second, that the desire to smooth taxes not

only shapes the rate of convergence to the applicable long-run target for public debt but may also justify

convergence to different long-run positions from different starting positions.13

Together, these points underscore how the optimal policy balances three objectives at once: the value

of easing the financial friction; the need to contain interest-rate costs; and the desire to smooth taxes. It

is this tripartite trade off that ultimately shapes all the properties of the optimal policy—including the

steady state(s), the transitional dynamics, and the response to shocks.

4.3 Crowding out (or in) capital

Consider the following extension of our baseline model. In each afternoon, households have access to

a technology of transforming the current consumption good into capital, which in turn can be used not

12See Appendix C.4 for a precise explanation of what the Aiyagari and McGrattan (1998) solution strategy is, of why it may

misses to detect the existence of multiple steady states, and of why it mis-characterizes the steady state even when it is unique.
13This same logic also explains why, without the Auxiliary Assumptions introduced above, it is possible ot have multiple

steady states below satiation. Intuitively, the “adjustment cost” of a long-lasting departure from tax smoothing can justify

remaining at one steady state when another, seemingly superior, steady state exists but is sufficiently far away (in terms of

initial conditions). See Appendix B for a detailed treatment.
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only for the production of the consumption good next afternoon but also as collateral next morning. This

brings exactly two changes in the model. First, it changes the borrowing constraints (4)-(5) replacing ai t

with ai t +ki t , where ki t denotes the amount of capital held in the beginning of period t . And second, it

modifies the budget constraint (3) as follows:

ci t +pt xi t +qt ai t+1 +ki t+1 = ai t + f (ki t )+ (1−τt )wt hi t +pt ē.

where f is a production function with f ′ > 0 > f ′′, f (0) = 0, and f ′(0) ≥ 1/β.

Because capital and the risk-free bond are equally good forms of collateral, the following arbitrage

condition has to hold for all i and t :

f ′(ki ,t+1) = 1

qt
≡ 1

β+πt
.

It follows that all households choose the same amount of capital, and this amount is positively related

to πt . Intuitively, when the financial friction is more binding, there is an incentive to hold both more

capital and bonds. By the same token, when the government issues more debt, it lowers πt and crowds

out capital, similarly to Aiyagari and McGrattan (1998). This however does not change the essence of the

policy problem.

Proposition 4. In the extension described above, public debt crowds out capital. Still, the reduced-form

representation of the policy problem given in Proposition 1 continues to hold.

The precise micro-foundations of V and π are now different, but neither their qualitative properties

nor the implications for policy are affected. The fact that the issuance of public debt may crowd out

capital is not an additional, separate element of the costs and benefits of debt issuance. It is merely a

symptom of the role of public debt in easing the underlying financial friction.

Furthermore, this symptom can be turned upside down by letting the financial friction impact the

production side of the economy, as in Kiyotaki and Moore (1997), Holmström and Tirole (1998). We

offer an example of such a model in Appendix A. There, public debt can crowd in capital accumulation

by easing the friction among firms, improving the cross-sectional allocation of capital and labor, and

raising aggregate TFP. Furthermore, this crowding-in can be strong enough to offset the crowding-out

of the higher taxes associated with higher levels of debt. Still, the basic trade-off we have emphasized—

between the benefits of easing the friction and the desire to suppress interest rates—remains present.

These points underscore the likely robustness of our policy lessons to different micro-foundations

of the role of public debt as buffer stock or collateral. A similar point applies to the substitutability of

private assets and government bonds in this function. Our baseline model allowed for perfect substi-

tutability. Assuming imperfect substitutability changes the magnitudes of V and π, but does not change

the essence of the problem and does not upset the results.
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4.4 On Ricardian Equivalence

What is essential for our results is the non-neutrality of public debt. To see this more clearly, modify our

baseline model so that the private sector’s pledgeable income moves one-to-one with future tax obli-

gations. This preserves the financial friction but renders public debt neutral: any increase in aggregate

collateral in the form of additional public debt issuance is perfectly offset by a commensurate reduction

in pledgeable income. The same point applies to Woodford (1990), Aiyagari and McGrattan (1998), and

Holmström and Tirole (1998): if borrowing constraints adjusted to future tax obligations, public debt

would be neutral in those papers as well.

This, however, does not mean that the economy reduces to that in Barro (1979). Although π is now

invariant to b, it is still positive (insofar as the financial friction binds). That is, the interest rate is still

depressed, although insensitive to the level of public debt. Accordingly, the Euler condition gives λ̇ =
πλ> 0, where π> 0 is fixed, and the following result obtains.

Proposition 5. Suppose that the friction is present but public debt is neutral. Then, optimal taxes and

debt exhibit a positive drift. In the long run, debt converges to b̄, the highest sustainable level.

This result is a “sanity test,” which further clarifies how our main lessons depend on the causal effect

of public debt on liquidity premia and interest rates—a causal effect that is corroborated by the evidence

in Krishnamurthy and Vissing-Jorgensen (2012) and Greenwood and Vayanos (2014).

5 Optimal Response to Shocks

We now study how the tripartite trade off between liquidity provision, interest-rate suppression and tax

smoothing shapes the optimal response to shocks. Thanks to the (local) determinacy and stability of

the steady state, this can be understood by studying the comparative dynamics in the phase diagram

introduced in Section 3. For further illustration, we also use the numerical, non-linear solution of a

stochastic extension of the original, discrete-time model from Section 2.14

5.1 Wars

Consider the comparative dynamics associated with an unexpected, once and for all, increase in g . They

are illustrated in Figure 2. Prior to the change, the economy is assumed to be resting at the steady-state

point b∗
ol d . The increase in g causes the ḃ = 0 locus to shift upwards, reflecting the increase in the taxes

required for balanced budget. By contrast, the λ̇= 0 locus does not move, because g does not enter the

planner’s Euler condition.

14Throughout this section, we let public debt be risk-free, as in Barro (1979) and Aiyagari et al. (2002). The opposite scenario,

which allows public debt to be fully state-contingent, is considered in Appendix C.2. As in Lucas and Stokey (1983), this scenario

allows the government to insure its budget against shocks; but now the optimal state-contingency balances such insurance with

the objectives of providing liquidity and suppressing interest rates.
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Figure 2: Permanent Increase in Government Spending
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As a result, the steady-state level of debt drops from b∗
ol d to b∗

new and the optimal dynamic response is

as follows: on impact, λ and the associated tax rate jump up from their old steady-state values to values

that set the economy on a new saddle path; thereafter, debt and tax monotonically decrease towards

the new steady state. Initially, taxes increase by more than the increase in g in order to allow debt to

decrease.. But as both the level of debt and the interest rate on it fall, the government can eventually

afford a lower increase in taxes than the increase in g .

Proposition 6. An unanticipated permanent increase in g calls for an increase in taxes by more than one-

to-one in the short run and by less than one-to-one in the long run.

Compare this result to Barro (1979) or Aiyagari et al. (2002). There, the optimal response to a fiscal

shock gives prominence to tax smoothing. Here, the optimal response deviates from tax smoothing in

order to squeeze liquidity and allow the government to enjoy a profit by means of lower interest rates.

The same logic applies to transitory fiscal shocks, what is often referred to in the literature as “wars”.

We illustrate this in Figure 3, using a stochastic example in which government spending follows a sym-

metric two-state Markov process, with the probability of staying in the same state equal to 0.9. The black

lines correspond to our baseline model, the orange lines to its Barro/AMSS counterpart.

In Barro/AMSS, the war leaves a permanent mark on the level of debt and the rate of taxation, re-

flecting the unit-root property of that benchmark. Furthermore, the size of the tax response is simply the

change in the annuity value of government spending. In our setting, by contrast, the debt level eventu-

ally reverts to its initial position, reflecting the determinacy of the long-run target level of debt. Finally,

the accumulation of debt during the war is less pronounced than that in Barro/AMSS, because doing so

permits the planner to moderate the increase in interest rates, which would have further tightened the

budget.15 By the same token, the planner raises larger taxes during the war, but also enjoys lower taxes

in the aftermath of the war.

15If the war is sufficiently persistent, this mechanism becomes so strong that the level of debt actually falls, as in the example

with the permanent change discussed earlier.
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Figure 3: Optimal Response to a War

Debt and Taxes in our Model; Debt and Taxes in Barro/AMSS; Government Spending.

5.2 Flight to Quality

Consider a shock that tightens the financial friction and raises the demand for public debt, without how-

ever affecting aggregate output, tax revenue, and the wedge between the private and social value of liq-

uidity. Formally, let V (b) = θṼ (b) and π(b) = θπ̃(b), for some fixed functions Ṽ and π̃, and consider an

increase in θ. We think of this situation as a “flight to quality.”

Because this raises the social value of liquidity and the profit from interest-rate suppression in pro-

portion to each other, it leaves the λ̇= 0 locus unaffected. It follows that, if the ḃ = 0 locus had also been

unaffected, the optimal policy response would have been to stay put. But ḃ = 0 actually shifts down,

because the shock reduces the interest-rate costs on public debt, thus also reducing the taxes needed for

balanced budget.

In a nutshell, a positive θ shock acts similarly to a negative g shock: the private sector’s flight to

quality brings a bonanza for the government.

Proposition 7. A unexpected permanent increase in θ causes an increase in the long-run level of public

debt, and a front-loaded reduction in taxes.

Of course, reality is more complicated than the scenario just described. A financial shock is likely to

have additional, and possibly countervailing, effects on the government budget, such as shrinking the

tax basis or necessitating a fiscal stimulus. Still, our insights provide a rationale for why financial shocks

may justify larger deficits than other shocks. We further expand on this below.

Finally, our analysis qualifies the familiar intuition that an increase in the demand for liquidity calls

for an increase in the government’s provision of it. The conventional intuition, though, fails to take into

account how such a shock may also raise the marginal return to interest-rate suppression. This explains

why, in our context, the optimal supply of liquidity would have not increased had it not been for the

aforementioned “bonanza” effect and the resulting drop in λ.16

16Only a pure externality shock, which raises V without affecting π, is fully consistent with the aforementioned intuition.
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5.3 Traditional vs Financial Recessions

Let us capture a “recession” as an exogenous shock to the labor wedge. This naturally leads to lower

aggregate output and tax revenue, and an increase in the deficit.17 Next, let us distinguish between “tra-

ditional” and “financial” recessions as follows: the former leaves the functions π and V unaffected, the

latter raises them by tightening the underlying financial constraints.

Figure 4 illustrates the optimal policy response to two such recessions of comparable size, in the

sense that the exogenous shock to the labor wedge is the same in both cases. , The difference is whether

the shock comes together with an increase in π (black lines) or not (orange lines). The figure indicates

that it is optimal to run a larger deficit in the former case. And yet, the higher deficits do not translate

into faster debt accumulation. This is because the government is able to roll over its original debt at lower

interest rates, as well as to pay less interest on newly issued debt. For the same reason, the government

is also able to afford a larger optimal stimulus in the form of a larger “payroll tax cut.”18

Figure 4: IRFs to a Financial vs Traditional Recession
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This provides a formal basis for the argument made by Paul Krugman, Brad DeLong and others that

the reduction in the government’s cost of borrowing during a financial crisis calls for (makes it optimal)

to run larger deficits. But it is important to emphasize the part of the statement that says “during a

financial crisis”: what is key is not the variation in the observed interest rate per se, but rather the extent

to which this represents variation in the wedge between that rate and the counterfactual rate that would

have obtained in the absence of a financial friction. Were ρ to drop along side the interest rate, leaving

the wedge, π, the same or smaller, public debt would not be cheaper.

Such a shock shifts the λ̇= 0 curve to the right without shifting the ḃ = 0 curve. It therefore raises b∗, but for a different reason

than that associated with a θ shock: the aforementioned “bonanza” effect is gone.
17Formally, we modify the model of Section 2 by letting the equilibrium condition for labor be v ′(nt ) = (1−τt )(1+ωt ), where

ωt is an exogenous shock. We then capture a recession as a transitory negative shock to ωt . As usual, this proxies a negative

demand shock in the New Keynesian model. A supply (productivity) shock has similar effects on output and tax revenue, but

negates the need for a fiscal stimulus.
18Clearly, the same is true for government spending if we endogenize g and let the recession raise its marginal value.
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6 Conclusion

We have studied optimal policy in a setting where public debt management helps not only smooth taxes

(as in Barro, 1979; Lucas and Stokey, 1983) but also regulate the amount of collateral or liquidity (as in

Woodford, 1990; Aiyagari and McGrattan, 1998; Holmström and Tirole, 1998). Issuing more public debt

raises welfare by easing the underlying financial friction. But it also tightens the government budget by

raising interest rates relative to the social discount rate.

This trade off creates the possibility that the government could optimally restrict the amount of liq-

uidity in the market in order to keep the cost of debt finance low. It necessitates a departure from tax

smoothing in the short run, so as to help attain an appropriate long-run level of debt. And it modifies the

optimal response to shocks. In particular, it becomes optimal to run smaller deficits during wars, so as to

contain the increase in interest rates; and larger deficits during financial crises, because such episodes

are associated with cheap borrowing opportunities.

An obvious direction for future research is the quantification of the effects documented in this paper.

The success of any such attempt would depend crucially on how sensitive the spread between the mar-

ket price of public debt and the appropriate social discount factor is both to the state of the economy

and to the quantity of public debt. The evidence in Krishnamurthy and Vissing-Jorgensen (2012) and

Greenwood and Vayanos (2014) is suggestive of high sensitivity in both dimensions. That work, however,

has focused on a different spread, that between government and high-grade corporate bonds, which is

likely to be only imperfectly correlated with the spread that, at least under the prism of our analysis, is

most relevant for optimal fiscal policy. We hope that these observations will guide future empirical and

quantitative work on the topic.

Another interesting direction for future research is the interaction of fiscal and monetary policy in

a sticky-price extension of our setting. We have in mind the following two issues in particular. During

normal times, monetary policy could help create fiscal space by manipulating the real interest rate on

public debt. And during a liquidity trap, public debt issuance could ease the zero lower bound constraint

on monetary policy by providing liquidity and raising the underlying natural rate of interest. We hope

that the tractability of the framework introduced in this paper will facilitate the exploration of these and

other questions.

References

Aiyagari, S. Rao, Albert Marcet, Thomas Sargent, and Jesus Seppälä. (2002) “Optimal Taxation without

State-Contingent Debt.” Journal of Political Economy, 110(6): 1220–1254.

Aiyagari, S. Rao, and Ellen McGrattan. (1998) “The Optimum Quantity of Debt.” Journal of Monetary

Economics, 42(3): 447–469.

21



Barro, Robert J. (1979) “On the Determination of the Public Debt.” Journal of Political Economy,

87(5): 940–971.

Brock, William A., and W.D. Dechert. (1983) “The Generalized Maximum Principle.” University of Wis-

consin miméo.

Dávila, Eduardo. (2015) “Dissecting Fire Sales Externalities.” New York University, Stern School of Busi-

ness miméo.

Dechert, W.D., and K. Nishimura. (1981) “A Note on Optimal Growth with a Convex-Concave Production

Function.” State University of New York at Buffalo Department of Economics Discussion Papers.

Greenwood, Robin, and Dimitri Vayanos. (2014) “Bond Supply and Excess Bond Returns.” The Review

of Financial Studies, 27(3): 663–713.

Holmström, Bengt, and Jean Tirole. (1998) “Private and Public Supply of Liquidity.” Journal of Political

Economy, 106(1): 1–40.

Kiyotaki, Nobuhiro, and John Moore. (1997) “Credit Cycles.” Journal of Political Economy, 105(2): 211–

248.

Krishnamurthy, Arvind, and Annette Vissing-Jorgensen. (2012) “The Aggregate Demand for Treasury

Debt.” Journal of Political Economy, 120(2): 233–267.

Lagos, Ricardo, and Randall Wright. (2005) “A Unified Framework for Monetary Theory and Policy Anal-

ysis.” Journal of Political Economy, 113(3): 463–484.

Lorenzoni, Guido. (2008) “Inefficient Credit Booms.” Review of Economic Studies, 75(3): 809–833.

Lucas, Robert E., Jr., and Nancy L. Stokey. (1983) “Optimal Fiscal and Monetary Policy in an Economy

without Capital.” Journal of Monetary Economics, 12(1): 55–93.

Shleifer, A., and R.W. Vishny. (1992) “Liquidation Values and Debt Capacity: A Market Equilibrium Ap-

proach.” Journal of Finance, 47(4): 1343–1366.

Skiba, A. K. (1978) “Optimal Growth with a Convex-Concave Production Function.” Econometrica,

46(3): 527–539.

Woodford, Michael. (1990) “Public Debt as Private Liquidity.” American Economic Review, 80(2): 382–

388.

22



Online Appendices

A Variant Micro-foundations with Capital

In this appendix we present a variant model in which the financial friction impedes the allocation of

capital across entrepreneurs, as opposed to the allocation of a good across consumers. This variant

offers, not only an illustration of the broader applicability of the policy insights we developed in the

main text, but also a bridge to the literature that emphasizes the role of collateral in the production side

of the economy, as in Kiyotaki and Moore (1997) and Holmström and Tirole (1998).

There is only one good, which can be either consumed or converted into capital. There are no taste

shocks and per-period utility is given by ci t −ν(hi t ), where ci t denotes consumption and hi t denotes

labor supply. Each household comprises a “worker”, who supplies hi t in a competitive labor market, and

an “entrepreneur”, who runs a private firm. The latter’s output is given by yi t = θi t f (ki t ,ni t ), where ki t is

the firm’s capital input, ni t is the firm’s employment, and θi t is an idiosyncratic productivity shock. f (·, ·)
is strictly increasing and strictly concave.

Let κi t denote the amount of capital owned by household i in the morning of period t . It is given by

κi t = (1−δ)κi t−1 + ιi t−1, where δ denotes depreciation and ιi t−1 denotes last period’s saving. The firm’s

input ki t can differ from κi t insofar as entrepreneurs can rent capital from one another. Such trades are

beneficial because κi t is fixed prior to the realization of the current shocks, whereas ki t and ni t adjust ex

post. In short, there are gains from reallocating capital.

Importantly, this reallocation is impeded by a financial friction. Let pt denote the rental rate of capi-

tal. To use ki t > κi t , the entrepreneur must borrow zi t = pt (ki t −κi t ) in a short-term IOU market. As in

the baseline model, he can do so by pledging φ and/or by posting his financial assets, ai t , as collateral.

Moreover, he can use a fraction of the invested capital and/or the firm’s output as additional collateral.

That is, the relevant constraint is

zi t ≤φ+ai t +ξk ki t +ξy yi t

where ξk ,ξy ∈ (0,1) are the fractions of invested capital and of anticipated income that can serve as collat-

eral. Finally, the agent can also borrow in the afternoon, if he wishes so, but only subject to the constraint

ai t+1 ≤φ+κi t+1; that is, his net worth cannot fall below φ.

Relative to the baseline model, the model described above allows the quantity of public debt to enter

the economy’s aggregate production function. In particular, by improving the allocation of capital, more

aggregate collateral in the form of more public debt can map to higher aggregate TFP. Furthermore, pub-

lic debt can have an ambiguous effect on capital accumulation. On the one hand, more public debt can

crowd in capital via the aforementioned channel, namely by raising aggregate TFP and thereby the mean

return to investment. On the other hand, more public debt can crowd out capital by offering a substitute

form of collateral or buffer stock, as in Aiyagari and McGrattan (1998).
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Notwithstanding these differences, the nature of the policy problem remains essentially the same. In

particular, it can be shown that the following variant of Proposition 2 holds.

Proposition 8. There exist functions W,Q, and S such that the optimal policy path {τt ,bt+1}∞t=0 solves the

following problem:

max
{τt ,bt }∞t=0

∞∑
t=0

βt W (τt ,bt ) (22)

s.t . Q(τt+1,bt+1)bt+1 = bt + g −S(τt ,bt ) (23)

Proof. See Appendix D.

To relate this proposition to Proposition 2, note that W , Q, and S capture, respectively, the per-period

welfare flow, the market price of public debt and the tax revenue.19 As we move from the baseline model

to the new model, the micro-foundations that underlie these objects change, and so do their functional

forms. For instance, the two distortions now have non-separable effects on welfare, interest rates, and

the tax base. Yet, the strategy for obtaining the desired representation remains the same: the key step is

to define W as the welfare flow that obtains when the planner takes as given (τt ,bt ) and optimizes over

the set of the cross-sectional allocations of labor, capital, and asset holdings and the aggregate supplies

of capital and labor; Q and S are then defined by, respectively, the interest rate that supports the best

implementable allocation and the primary surplus induced by it. Importantly, the only reason why W ,

Q and S depend on b is that the latter controls the financial friction. The representation obtained there-

fore encapsulates, once again, the dual role of the financial distortion on welfare and the government

budget. What is new relative to the baseline model is that the financial friction affects the budget, not

only via interest rates, but also via the tax base: by interfering with the allocation of capital, it affects

wages, income, and tax revenue for any given tax rate. However, neither this feature nor the details of the

underlying micro-foundations need alter the properties of optimal policy.

In particular, consider the following continuous-time policy problem which is motivated by the pre-

ceding micro-foundations and which also nests the policy problem we studied before:

max

ˆ +∞

0
e−ρt W (τ,b)dt (24)

s.t . ḃ = [ρ−π(τ,b)]b + g −S(τ,b) ∀t (25)

b(0) = b0 (26)

Suppose that the functions W,S,π are continuously differentiable in both τ and b. Suppose further that

there exists a function bbl i ss such that ρ > π(τ,b) > 0 and Wb(b,τ) > 0 if b < bbl i ss(τ), whereas π(τ,b) =
19In the baseline model, we could express the policy problem in terms of s rather than τ because there was a one-to-one

mapping between them. In the current model, this is no more true and, accordingly, we keep the tax rate as a control variable.
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Wb(b,τ) = 0 if b ≥ bbl i ss(τ); this allows for the possibility that the “satiation point” beyond which the fric-

tion ceases to bind may depend on the tax rate. Similarly, let bsei g n(τ) ≡ argmax{π(τ,b)b +S(τ,b)} ; this

is the analogue to the level of debt that maximized seigniorage in our baseline model, except that now

we accommodate the possibility that the quantity of aggregate collateral affects the government budget,

not only via the interest rate on public debt, but also via aggregate output and tax revenue. Adjusting the

notion of “liquidity plus seigniorage” accordingly gives

Ω(b,λ) ≡ max
τ

{W (τ,b)+λ[π(τ,b)b +S(τ,b)]} .

We can express the planner’s Euler condition as

λ̇= Γ(b,λ) ≡Ωb(b,λ),

which has exactly the same interpretation as its counterpart in our baseline model. Similarly, we can

express the budget constraint as

ḃ =Ψ(b,λ),

where Ψ(b,λ) ≡ [ρ − π(T (λ),b)]b − S(T (λ),b) and T (λ) = argmaxτ {W (τ,b)+λ[π(τ,b)b +S(τ,b)]} . We

therefore obtain essentially the same ODE system as in our baseline model; the underlying micro-foundations

and some details are different but the essence remains the same.

Figure 5: Entrepreneurial Model
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We illustrate this in Figure 5. For this example, we assume that [π(τ,b)b +S(τ,b)], is single-peaked

in b. This guarantees that the phase diagram can be split in three regions, similar to regions L, M and

H in Figure 1. The boundaries of these regions are now curved, rather than vertical, reflecting the fact

that bsei g n and bbl i ss are allowed to vary with the rate of taxation and thereby with λ. Other than this

difference, however, the analysis of the phase diagram remains intact: there is a unique steady state in
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which the financial friction does not bind, and the economy converges to it for all initial b0 < bski ba , for

some bski ba .

Although we will not provide a complete characterization of the more general class of policy prob-

lems using this model, we hope to have conveyed the message that our insights are robust to different

micro-foundations of the financial friction and of the liquidity-enhancing role of public debt.

We close this appendix by illustrating how the present model allows for public debt to crowd in cap-

ital, in contrast to Aiyagari and McGrattan (1998). This is done in Figure 6, for a particular parameteriza-

tion of the model.

Figure 6: Crowding in or out
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The left panel of Figure 6 considers the policy rule for aggregate capital. In particular, we consider

two economies: one with a relatively low level of government spending (g =17% of steady-state output);

and another with a relatively high level of government spending (g =27% of steady-state output) cor-

responding higher taxes in steady state. For each of these economies, we then show how the optimal

amount of capital varies with the level of public debt, holding constant the tax rate at the respective

steady-state level.20 As can be seen from this panel, public debt crowds in capital. This is unlike Aiyagari

and McGrattan (1998), because here public debt helps improve production efficiency and thereby raise

the return to capital, which in turn encourages capital accumulation.

The right panel of Figure 6 shifts attention to the aggregate capital dynamics along the transition to

steady state, starting from an initial level of debt below steady state. Along this transition, the increase

in public debt crowds in capital by easing the underlying financial friction. But taxes increase in tandem

with public debt, and this contributes in the opposite direction, by discouraging labor supply. It follows

that capital could either increase or decrease along the transition to the steady state. But it is interesting

to note that, as illustrated by the low-g scenario in the figure, it is possible that the crowding-in effect of

public debt can dominate the crowding-out effect of taxes.

20Both public debt and private capital are normalized by the steady-state level of output in the respective economy
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B Characterization of Optimal Plan

In this Appendix we offer a complete, self-contained, characterization of the solution to problem (18)-

(19). In particular:

• We show how to adapt the methods of Skiba (1978) to our setting so as to identify the truly optimal

path among the many that satisfy the Euler and transversality conditions

• We fill in the details of the benchmark case considered in the main text.We show how Assumption

B guarantees the existence of a unique steady state below satiation and prove Theorem 1.

• We show how, away from the aforementioned benchmark, it is possible to have multiple steady

states below satiation, as well as no such steady state.

• We finally explain the precise sense in which the lessons obtained in the main text remain robust

to the richer cases allowed here.

Also note that some of the results from this appendix are used in the proofs found in Appendix D.

B.1 The ODE system

As shown in the main text, the Hamiltonian of the planner’s problem can be written as follows:

H(s,b,λ) =U (s)+λ[
s −ρb − g

]+Ω(b,λ),

where Ω(b,λ) ≡ V (b)+λπ(b)b measures the social value of the liquidity services of public debt plus the

profit made from providing these services, and λmeasures the shadow value of tax revenue. Throughout

this Appendix, we are ruling out both lump-sum taxes and lump-sum transfers. This allows the possi-

bility that λ < 0, or equivalently s < 0 and τ < 0, which means the planner may be using a distortionary

subsidy in order to accumulate debt fast enough.21

We now study the ODE system for b and λ implied by the budget constraint and the planner’s Euler

condition.

Consider first the budget constraint. This can be expressed as follows:

ḃ =Ψ(b,λ) ≡ g + (
ρ−π(b)

)
b − s(λ), (27)

where s(λ) denotes the optimal tax revenue. It is straightforward to check that s(λ) is increasing in λ as

the economy lies on the increasing branch of the Laffer curve and therefore that Ψ(b,λ) is decreasing

21Had we allowed the planner to use lump-sum transfers, this possibility would not have emerged: the optimal policy would

have achieved the same goal with a non-distortionary lump-sum transfer. This curtails the negative territory of the phase

diagram (i.e., it restricts λ≥ 0) but does not otherwise affect the optimal dynamics.
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in λ: a higher λ means higher taxes today, which in turn means lower debt tomorrow.22 By the Implicit

Function Theorem, there exists a function ψ : [b, b̄) →R+ such thatΨ(b,ψ(b)) = 0 for all b; equivalently,

ḃ = 0 if and only if λ=ψ(b).

The mapping ψ(b) identifies the value of λ, or equivalently the tax rate, that balances the budget when

the level of debt is b. Note that ḃ < 0 when λ > ψ(b), that is, debt falls if taxes exceed the aforemen-

tioned level, and symmetrically ḃ > 0 if λ<ψ(b). Finally, note that the function ψ satisfies the following

properties.

Lemma 1. ψ is continuous and strictly increasing, with ψ(b) = 0 and limb→b̄ψ(b) =+∞.

Proof. ψ(b) is strictly increasing in b because higher debt requires higher taxes to balance the budget;

ψ(b) starts at zero when b = b because taxes are zero when the government has a large enough asset

position to fully finance its spending using interest income received on its assets; and ψ(b) diverges to

+∞ as b approaches b̄ because the shadow cost of taxation explodes as debt approaches the maximal

sustainable level and, equivalently, the tax rate approaches the peak of the Laffer curve.

Consider next the Euler condition. As explained in the main text, this can be written as

λ̇=Ωb(b,λ),

whereΩ(b,λ) ≡V (b)+λπ(b)b. Equivalently,

λ̇ = v(b)−λπ(b) (σ(b)−1) . (28)

where v(b) ≡V ′(b) is the social marginal value of liquidity, π(b) is the corresponding private value, or the

liquidity premium, and

σ(b) ≡−π
′(b)b

π(b)
≥ 0

is the elasticity of the liquidity premium with respect to the quantity of public debt.

As a reference point, consider momentarily the case in which public debt has no liquidity value, so

that v(b) = π(b) = 0 for all b. Condition (28) then reduces to λ̇ = 0, which represents Barro’s celebrated

tax-smoothing result: when debt is priced at the social discount rate, λ is constant over time, and hence

the optimal tax is also constant. Relative to this reference point, we see that whenever the right-hand-

side of (28) is non-zero, optimality requires a non-zero drift in λ, that is, a deviation from tax smoothing.

Let ∆≡ {b ∈ [b,bbli ss) :σ(b) 6= 1} and define the function γ :∆→R as follows:

γ(b) ≡ v(b)

π(b)(σ(b)−1)
.

22Note also thatΨ(b,λ) has a kink at λ= 0, because the corner solution τ= 0 binds as λ crosses zero from below. Relaxing the

lower bound on τ and/or introducing lump sum transfers would help speed up the accumulation of debt in situations in which

λ< 0, but would not otherwise affect the results.
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We can then restate the Euler condition (28) as follows:

λ̇=
 v(b)

[
1− λ

γ(b)

]
if b ∈∆

0 if b ∉∆
(29)

By implication,

λ̇= 0 if and only if

 either b ∈∆ and λ= γ(b)

or b ∉∆ and λ ∈R
It follows that the graph of γ identifies the λ̇ = 0 locus over the region to the left of the satiation point

(that is, for b < bbl i ss). To the right of this point, we instead have λ̇= 0 regardless of (λ,b).

The graph of γ can be quite complicated, in part because there may exist multiple “holes” in the

domain ∆, that is, multiple points at which σ(b) = 1. To interpret these points, note that

d [π(b)b]

db
=π′(b)b +π(b) =−(σ(b)−1)π(b). (30)

It follows that the points at which σ(b) = 1 correspond to the critical points of the function π(b)b, which,

as explained before, represents the rent, or the profit, that the government can make by falling short

of satiating the economy’s demand for liquidity. With abuse of language, we henceforth refer to this

rent as “seigniorage”. Next, note that π(b)b is continuous over the closed interval [0,bbli ss], it is zero

at the boundaries of the interval, and is strictly positive in the interior of the interval. It follows that

seigniorage attains a global maximum in the interior of that interval. In general, π(b)b may admit an

arbitrary number of local maxima and minima in addition to its global maximum. By the same token, σ

may cross 1 multiple times. Note, however, that the derivative of π(b)b crosses zero from above at any

point that attains the global maximum, which in turn means thatσ(b) is necessarily increasing in an area

around such a point.

B.2 The case studied in the main text

We now focus on a slightly more general case than the one studied in the main text—more specifically

we dispense with Auxiliary Assumption B3 and only maintain the following two assumptions

B1. the ratio v/π is constant;

B2. the elasticity σ is increasing in b ∈ (0,bbl i ss).

The first assumption imposes that the wedge between the social and the private value of collateral is

invariant to b, the second guarantees that π(b)b is single-peaked and also extends the aforementioned

local monotonicity of σ to its entire domain. In the sequel, we will refer to the peak in π(b)b as bsei g n .

This peak satisfies π(bsei g n)+π′(bsei g n)bsei g n =π(bsei g n)(1−σ(bsei g n)) = 0. An implication of B2 is then

that σ(b) < 1 for b < bsei g n and σ(b) > 1 for b > bsei g n . Dispensing from B3 will allow use to obtain a

more general characterization of the cases implied by B1 and B2.

Together, these assumptions lead to following characterization of the optimal debt dynamics.
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Proposition 9. Let Assumptions B1 and B2 hold. There exists a unique b∗ ∈ (b,bbl i ss] such that, for any

initial point b0 < bbl i ss , the optimal level of public debt converges monotonically to b∗. Furthermore,

b∗ < bbli ss if g > ĝ and b∗ = bbl i ss if g < ĝ , for some ĝ .

This result identifies b∗ as the steady state to which the economy converges from any initial point

b0 < bbl i ss . It also relates b∗ to the satiation point bbli ss . In particular, it shows that b∗ is strictly lower

than bbli ss if and only if g is high enough. Theorem 1 in the main text then follows directly from noting

that Property B3 in the main text is the same as g > ĝ here. The rest of the section is dedicated to proving

Proposition 9 in multiple steps, developing additional insights on the way. We start by noting that Prop-

erty B1 and B2 imply the following structure for the function γ, which is instrumental for the subsequent

analysis.

Lemma 2. Let Assumptions B1 and B2 hold. The domain of γ is ∆ = [b,bsei g n)∪ (bsei g n ,bbl i ss), where

bsei g n ≡ argmaxπ(b)b. For b ∈ [b,bsei g n), γ is negatively valued and decreasing. For b ∈ (bsei g n ,bbl i ss),

γ is positively valued and decreasing. Finally, γ(b) → −∞ as b → bsei g n from below and γ(b) → +∞ as

b → bsei g n from above.

Proof. Recall that bsei g n = argmaxb π(b)b, so that bsei g n solves π(b)(1−σ(b)) = 0. Note that, as afore-

mentioned, for bsei g n to be a maximum, the following has to hold: π(b)(1−σ(b)) ≷ 0 for b ≶ bsei g n .

From the definition of γ and the assumption V ′(b) ∝π(b), we have

γ(b) ∝ 1

π(b)(σ(b)−1)
≶ 0 for b≶ bsei g n

The latter result together with the definition of bsei g n implies that limb↑bsei g n γ(b) =−∞ and limb↓bsei g n γ(b) =
∞. Finally, as b increases above bsei g n , π(b)(1−σ(b)) < 0 and γ(b) <∞. Together with the monotonicity

of σ(b), this implies that γ(b) is decreasing over the domain [b,bbl i ss).

Recall that the graph of γ identifies the λ̇ = 0 locus in the region to the left of the satiation point,

whereas the ḃ = 0 locus is given by the graph of ψ. By Lemma 1, ψ is positively valued and strictly

increasing. Together with Lemma 2, this means that γ and ψ can intersect at most once. In particular,

letting γbl i ss ≡ limb↑bbl i ss γ(b) and ψbl i ss ≡ψ(bbl i ss),23 we have the following property.

Lemma 3. Let Assumptions B1 and B2 hold. If γbli ss > ψbl i ss , then γ and ψ never intersect. If instead

γbl i ss < ψbli ss , then γ and ψ intersect exactly once, and this intersection occurs at b = b∗, for some b∗ ∈
(bsei g n ,bbli ss).

23Recall that γ is defined to the left of the satiation point but not at it, which explains why we write γbl i ss ≡ limb↑bbl i ss
γ(b)

rather than γbli ss ≡ γ(bbl i ss ). Also, the existence of the limit follows from the property that, in the neighborhood of bbl i ss , γ

is decreasing and bounded from below by 0. Finally, note that this last property is true in general, not just in the special case

under consideration.
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Proof. From Lemma 2, we know that ψ(b) and γ(b) can only intersect in (bsei g n ,bbl i ss). Given (i) the

monotonicity of σ(b) and hence γ(b), (ii) the fact that ψ(b) is increasing and (iii) limb↓bsei g n γ(b) = ∞,

γ(b) and ψ(b) can intersect at most once. If γbl i ss > ψbl i ss , (i) and (iii) imply that γ(b) lies above ψ(b)

everywhere in (bsei g n ,bbli ss] and therefore they never intersect. In γbl i ss <ψbl i ss , (i)–(iii) imply that they

intersect only once.

The two scenarios are illustrated in, respectively, Figures 7 and 8. The latter is the same as Figure 1 in

the main text, reproduced here to ease the exposition.

Let us first consider Figure 7. The phase diagram is split in three regions: the region L, for b < bsei g n ;

the region M, for b ∈ (bsei g n ,bbl i ss); and the region H, for b > bbl i ss . The dynamics of b are qualitatively

similar across all three regions: ḃ > 0 below the graph of ψ and ḃ < 0 above it. By contrast, the dynamics

of λ differ qualitatively across the three regions. In region L, γ is negatively valued; λ̇> 0 above the graph

of γ; and λ̇ < 0 below it. In region M, the reverse is true: γ is positively valued; λ̇ < 0 above the graph of

γ; and λ̇ > 0 below it. Finally, in region H, γ is undefined and λ̇ = 0 throughout. These properties also

hold true in Figure 8. What distinguishes the two figures is whether γ andψ admit an intersection within

region M. In Figure 7, they do not. This is because we have imposed γbli ss >ψbl i ss , which together with

the monotonicity of γ and ψ guarantees that γ lies above ψ throughout region M.

Figure 7: Benchmark, with ψbli ss < γbl i ss .
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What do these properties imply for the solution to the planner’s problem? Since γ and ψ never inter-

sect for the case depicted in Figure 7, the ODE system (27)-(29) admits no steady state to the left of the

satiation point bbli ss (regions L and M). By contrast, there is a continuum of such steady-state points to

the right of the satiation point (region H): any point along the segment of ψ that lies to the right of bbl i ss

trivially satisfies both λ̇ = 0 and ḃ = 0. Whether the planner finds it optimal to rest at such a point or

move away from it—i.e., whether these points correspond to a steady state of the optimal dynamics as

31



opposed to merely a fixed point of the ODE system—remains to be seen. For now, let us note that the

lowest of these fixed points is associated with b = bbl i ss and λ=ψbl i ss ≡ψ(bbl i ss); the latter corresponds

to the level of taxes that balances the budget when the economy rests at the satiation point.

For any b0 < bbli ss , there exists a unique value of the costate, λ0 < ψ(b0), such as the following is

true: if the economy starts from (b0,λ0) and thereafter follows the dynamics dictated by (27)-(29), then,

and only then, the economy converges asymptotically to (bbl i ss ,λbl i ss). In other words, there is a unique

path that satisfies the planner’s Euler condition and the budget constraint at all dates, and that eventually

leads to satiation. This path is indicated with blue color in the figure.24

The aforementioned path trivially satisfies the transversality condition, and is therefore a candidate

for optimality. By contrast, any path that starts with λ(0) > λ0 (higher taxes) and that follows the ODEs

causes the level of debt to reach the lower bound b in finite time; at this point, λ would have to jump

down, violating the Euler condition, which means that this path cannot be optimal. Similarly, any path

that starts with λ(0) < λ0 (lower taxes) causes the level of debt to increase past the satiation point bbl i ss

and to reach the upper limit b̄ in finite time; at this point, λ would diverge to infinity and the transver-

sality condition would be violated, which means that neither this path can be optimal.

Consequently, for any b0 < bbli ss , the path that leads to satiation is the optimal path, and Proposition

9 applies with b∗ = bbl i ss . For any b0 ≥ bbli ss , the only candidate for optimality is the steady-state point

associated with smoothing taxes and “staying put” at the initial level of debt: (b,λ) = (b0,λ0) for all t , with

λ0 =ψ(b0).

Proposition 10. Let Assumptions B1 and B2 hold and supposeψbl i ss < γbl i ss . If b0 < bbli ss , debt converges

monotonically to bbl i ss and taxes exhibit a positive drift along the transition. If instead b0 ≥ bbl i ss , debt

stays constant at b0 for ever, and tax smoothing applies.

Proof. Let us first consider b0 ≥ bbl i ss . In this case, V ′(b) =π(b) = 0 and the ODE system reduces to

ḃ = ρb −S(λ)

λ̇= 0

implying that λ and hence the tax rate is perfectly smoothed, so that b stays put at b0. This is the cele-

brated Barro tax smoothing result.

Let us now consider b0 < bbl i ss . Let us first assume that γ(bbl i ss) > ψ(bbl i ss) and define λbli ss =
ψ(bbl i ss). Using the fact that with satiationπ(b) = 0, the approximate local dynamics around the satiation

24One cannot rule out λ0 < 0 for sufficiently low b0. When this is the case, the negative λ signals the high value that the

planner attaches to issuing public debt. In fact, if it were feasible for b to jump, the planner would let b jump to the point where

λ turns non-negative, and only thereafter we she follow the blue path in the figure. By the same token, if we allow the planner

to make non-negative lump-sum transfers, these transfers will not affect the solution in the region where λ> 0, but would help

speed up the accumulation of debt in the region where λ< 0.
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point are given by

Ẋ (t ) = JX (t ) with J =
 ρ − ρ

ψ′(bbl i ss )

V ′′(b)−λbli ssπ
′(bbl i ss)(σ(bbl i ss)−1) 0


Note that Tr(J)=ρ > 0 so that the two eigenvalues of J sum up to a positive number. The determinant of J

is given by

det(J) = ρ

ψ′(bbl i ss)

(
V ′′(bbl i ss)−ψ(bbl i ss)π′(bbl i ss)(σ(bbl i ss)−1)

)
By assumption, γ(bbl i ss) >ψ(bbli ss), we have

det(J) < ρ

ψ′(bbl i ss)

(
V ′′(bbli ss)−γ(bbli ss)π′(bbl i ss)(σ(bbli ss)−1)

)
At bbli ss , both V ′(b) and π(b) are zero, therefore γ(bbl i ss) obtains from L’Hôpital’s rule as

lim
b→bbl i ss

γ(b) = V ′′(bbli ss)

π′(bbli ss)(σ(bbli ss)−1)

implying that det(J) < 0. Furthermore, the discriminant of the polynomial associated with the eigenvalue

problem is strictly positive, ∆ = ρ2 −4det(J) > 0. Taken together, these results imply that the two eigen-

values are real, add up to a positive number and are of opposite sign. The local dynamics around the

point (bbli ss ,λbl i ss) therefore satisfy a saddle path property. It is also easy to show that the eigenvector

associated to the stable eigenvalue is given by

v =
(

ρ

ψ′(bbl i ss)
,
ρ+p

∆

2

)

and is not degenerate as ψ′(b) > 0. In other words, starting from b(0) ∈ {bbl i ss − ε;ε > 0}, there exists a

unique path taking the economy to satiation. This establishes the first part of the proposition.

Let us now consider a situation where γ(bbli ss) < ψ(bbl i ss). In this case, the inequality established

for the determinant of J is reversed and det(J) > 0. The two eigenvalues have the same sign and sum

up to a positive number, and are therefore positive. (bbl i ss ,λbl i ss) is not locally stable and starting from

b < bbl i ss , there exists no path leading the economy towards it.

Let us now consider Figure 8. In this case, γ and ψ intersect exactly once, at b = b∗ ∈ (bsei g n ,bbl i ss).

Let λ∗ ≡ψ(b∗) denote the shadow cost of taxation associated with balancing the budget when b = b∗. By

construction, the pair (b∗,λ∗) identifies the unique steady state of the ODE system (27)-(29) to the left of

the satiation point (i.e., within regions L and M). As is clear from the figure, this steady state is saddle-path

stable. In particular, for any b0 < bbl i ss , we can find a continuous path that satisfies conditions (27)-(29)

and that asymptotically converges to (b∗,λ∗). Exactly the same arguments as in Figure 7 guarantee that

this path is the unique candidate for optimality, and hence also the optimal path, as long as b0 < bbl i ss .

A crucial difference from the case in Figure 7 is that the economy now converges to a steady state

characterized by a debt level that is strictly lower than the satiation level: Proposition 9 applies with b∗ <
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Figure 8: Benchmark, with ψbli ss > γbl i ss .

L M H

b
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λ̇= 0

λ̇= 0

b∗

λ∗

bbl i ss . Consequently, the sign of the drift in debt and taxes now depends on the initial position: if b0 < b∗,

then debt and taxes increase monotonically over time, whereas the converse is true if b0 ∈ (b∗,bbl i ss).

Another important difference concerns the behavior of the system in the region to the right of the

satiation point. In the previous case, the Barro-like plan of keeping taxes and debt constant over time

was the unique candidate for optimality throughout region H, that is, for all b0 > bbl i ss . This is no longer

true. Instead, as it is evident in the figure, for any b0 ∈ [bbli ss ,bski ba), there is an additional candidate for

optimality: the path indicated with blue color in the figure.

This path lets b fall over time, crossing bbl i ss in finite time and asymptotically converging to b∗.

Accordingly, the economy goes through two phases. In the first phase, which is defined by the time

interval over which b remains above bbl i ss , λ stays constant over time, which means that tax smoothing

applies. Although this resembles Barro (1979), there is a key difference: the constant value of λ exceeds

ψ(b) throughout this phase, which means that taxes are smoothed at a level that is higher than what is

required for balancing the budget (in turn explaining why debt falls over time). In the second phase,

which starts as soon as b has crossed bbl i ss from above, debt continues to fall, but tax smoothing no

longer holds, for the reasons explained earlier on.

By construction, the path described above satisfies the ODE system (27)-(29) at all t and asymptot-

ically converges to (b∗,λ∗), which means that it also satisfies the transversality condition. This verifies

that, as long as it exists, this path is a candidate for optimality. But so is the Barro-like plan of “staying

put” at the point of the graph of ψ that corresponds to the initial level of debt, that is, at (b,λ) = (b0,λ0)

with λ0 =ψ(b0). How can we tell which path is better?

To address this question, we use an elementary but powerful result from optimal-control theory.

Below, we first state the result, which holds true for any configuration of the planner’s problem. We then
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use it to complete the characterization of the particular benchmark under consideration.

For any b0, let P (b0) be the set of all the paths for (b,λ) that start from b0, satisfy the ODE system

in all t , and also satisfy the transversality condition at infinity. Since these conditions are necessary

for optimality, the optimal path is necessarily contained in P (b0). More generally, we can reduce the

planner’s problem to that of choosing a path P (b0). Next, note that any path in P (b0) is associated

with a different initial value for the costate and let Λ(b0) be the set of such initial values for the costate.

Choosing a path in P (b0) is therefore equivalent to choosing an initial value λ0 in Λ(b0). The following

result is helpful for evaluating the welfare associated with any candidate path.

Lemma 4 (Skiba, 1978, Brock and Dechert, 1983). For any b0 and any λ0 ∈Λ(b0), the path in P (b0) that

starts from initial point (b0,λ0) yields a value that is equal to H (b0,λ0)/ρ.

Proof. See Brock and Dechert (1983).

For any given b0, the above result allows one to rank the candidate paths in P (b0) by simply inspect-

ing how the value of the Hamiltonian, H (b0,λ0), varies as λ0 varies within the set Λ(b0). But now note

that H (b,λ) is strictly convex in λ, as it is defined as the upper envelop of functions that are linear in

λ. It follows that, whenever P (b0) is not a singleton, the optimal path is necessarily the path that starts

with λ0 either at the maximal or the minimal value inside Λ(b0). This property is instrumental for iden-

tifying the optimal path starting from any given initial level of debt, not only in the benchmark under

consideration, but also in the more general case studied later.

Let us now go back to Figure 8. Pick any b0 ≥ bbli ss and suppose there exists a continuous path that

satisfies the ODEs and asymptotically converges to b∗. As already noted, this path is a candidate for

optimality. But so is the Barro-like plan that keeps b and λ constant for ever at, respectively, b0 and

ψ(b0). Note, next, that the first plan is associated with a higher λ0 (i.e., higher taxes) than the second,

because the first runs a surplus whereas the second balances the budget. Finally, note that, along any

candidate path, Hλ(b,λ) = ḃ. For the path that leads the economy to b∗, we have that ḃ < 0 at t = 0,

and hence Hλ(b0,λ0) < 0. For the Barro-like plan, instead, ḃ = 0 and hence Hλ(b0,λ0) = 0. Since H is

convex, this means that the Barro-like plan attains the minimum of H over the set of candidate paths.

It follows that, whenever the path that takes the economy to b∗ exists, this path strictly dominates the

Barro-like, and it is the optimal one.

The preceding argument supposes the existence of such a path. Whether such a path exists or not

depends on the initial level of debt, b0. In the figure, it is evident that this is the case if and only if b0 is

lower than the threshold bski ba . But how is this threshold defined in the first place, and what guarantees

its own existence?

Consider b0 = bbli ss . If we initiate the ODE system with a starting value λ(0) slightly above ψbl i ss =
ψ(bbl i ss), which means that we run a sufficiently small enough surplus, then the resulting path for b

never reaches b∗. By contrast, if we start with λ(0) far above ψ(bbl i ss), debt falls below b∗ in finite time.
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Finally, note the path of b induced by the ODE system is continuous and monotonic in λ(0). It follows

that there exists a critical value λski ba ∈ (ψbl i ss ,∞) such that, if we start with λ(0) =λski ba , then and only

then the economy converges asymptotically to b∗.

By continuity, this kind of path also exists for b0 above but close enough to bbli ss . Furthermore,

because the planner’s Euler condition dictates λ̇= 0 (tax smoothing) throughout region H, the plan under

consideration keeps λ constant as long as b is above bbl i ss . It follows that the portion of this path that is

to the right of the satiation point is flat at the level λski ba .

Define next bski ba ∈ (bbl i ss , b̄) as the level of debt that balances the budget when taxes are set at the

level corresponding to λski ba ; that is, bski ba ≡ ψ−1(λski ba). Note that ψ is continuous and monotone,

λbl i ss >ψ(bbli ss), and limb→b̄ψ(b) =∞; this verifies that bski ba exists and is necessarily strictly between

bbli ss and b̄. It is then immediate that a continuous path that satisfies the ODEs and that converges to

b∗ exists if and only if b0 < bski ba , as illustrated in the figure.

We thus have the following complement to Proposition 10.

Proposition 11. Let Assumptions B1 and B2 hold and suppose ψbl i ss > γbl i ss . There exist unique points

b∗ ∈ (bsei g n ,bbl i ss) and bski ba ∈ (bbl i ss , b̄) such as the optimal debt level converges monotonically to b∗ if

b0 < bski ba , whereas it stays constant at b0 for ever if b0 ≥ bski ba . Optimal taxes exhibit a positive drift as

long as b ∈ (bsei g n ,b∗), a negative drift as long as b ∈ (b∗,bbl i ss), and are smoothed as long as b > bbli ss .

Proof. The discussion preceding the proposition in the main text establishes the existence of bski ba by

using a continuity argument. Here we analyze the stability of the steady state (b∗,λ∗).

The linear approximation of the system of the ODEs around a stationary point (b∗,λ∗) is given by

Ẋ (t ) =
 ρ+$V ′(b∗)(σ(b∗)−1) −S′(λ∗)

V ′′(b∗)−λ∗$V ′′(b∗)(σ(b∗)−1)−λ∗$V ′(b∗)σ′(b∗) −$V ′(b∗)(σ(b∗)−1)

 X (t ) = JX (t )

where $≡ π(b)/V ′(b) and X (t ) ≡ (b(t )−b∗,λ(t )−λ∗)′. Using the definitions of the functions ψ(b), γ(b)

and their respective derivatives, the matrix J, evaluated at (b∗,λ∗), is

J =
(
ρ+ V ′(b∗)

γ(b∗)

)
− 1
ψ′(b∗)

(
ρ+ V ′(b∗)

γ(b∗)

)
γ′(b∗) V ′(b∗)

γ(b∗) −V ′(b∗)
γ(b∗)


First note that the trace of matrix J is given by ρ > 0, implying that the two eigenvalues of J sum up to a

positive number. The determinant of the J matrix, evaluated at (b∗,λ∗), is

det(J) = V ′(b∗)

γ(b∗)

(
ρ+ V ′(b∗)

γ(b∗)

)(
γ′(b∗)

ψ′(b∗)
−1

)
Given that b∗ < bbli ss , σ(b∗) < 1, γ(b∗) > 0 and V ′(b∗) > 0. Finally, from Lemma 2, we know that γ′(b) <
0 for b ∈ (bsei g n ,bbl i ss]. Therefore, given that ψ′(b) > 0, det(J) < 0 and hence the two eigenvalues are

distributed around 0. Therefore, (b∗,λ∗) a saddle path stable.
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Note that, the stable root of the system is given by

µ= ρ−p
∆

2

where ∆= ρ2 −4 V ′(b∗)
γ(b∗)

(
ρ+ V ′(b∗)

γ(b∗)

)(
γ′(b∗)
ψ′(b∗) −1

)
> 0 is the discriminant of the polynomial. Hence the eigen-

vector, (v1, v2), associated to this eigenvalue satisfies(
ρ

2
+ V ′(b∗)

γ(b∗)
+
p
∆

2

)
v1 −S′(λ∗)v2 = 0

Consider the eigenvector is
(
S′(λ∗), ρ2 + V ′(b∗)

γ(b∗) +
p
∆

2

)
. Given that V ′(b∗) > 0, γ(b∗) > 0 (since σ(b) > 1) and

S′(λ∗) > 0 in the upward sloping part of the Laffer curve, both components of the vector are positive. The

co-movement result follows: For any ε> 0, starting from b0 = b∗−ε (resp. b0 = b∗+ε) , the economy will

converge to (b∗,λ∗) increasing (resp. decreasing) both debt and taxes along the transition path.

For practical purposes, we think it is appropriate to restrict b0 < bbli ss , so that the financial distor-

tion is present in the initial period. Under this restriction, the combination of Propositions 10 and 11

generates the following two key lessons.

The first lesson is that the economy can belong in one of two classes. In the one, debt converges to

bbli ss , which means that the planner extinguishes the financial distortion in the long run. In the other

class, the opposite is true: the planner preserves the financial distortion in the long run. We will study

below whether and how this taxonomy extends to the general case. For now, we wish to emphasize that

both classes feature a deviation from tax smoothing along the transition.

The second lesson is that the conditionψbl i ss > γbli ss is both necessary and sufficient for an economy

to belong in the second of the aforementioned two classes. In order to derive an interpretation of this

condition recall that ψ(b) measures the value of λ implied by balancing the budget; that γ(b) identifies

the value of λ that balances the planner’s conflicting objectives: when λ > γ(b), then and only then the

value the planner attaches to interest-rate manipulation (or seigniorage) outweighs the value of collateral

creation (or liquidity provision); and finally that ψbl i ss ≡ψ(bbl i ss) and γbl i ss ≡ limb↑bbl i ss γ(b). It follows

that ψbli ss > γbl i ss if and only if Ωb(b,λ) < 0 for (b,λ) close enough to (bbli ss ,ψ(bbli ss)), which leads to

the following simple interpretation.

Fact 1. ψbli ss > γbl i ss if and only if, in the neighborhood of bbli ss , the benefit of relaxing the government

budget by depressing the interest rate on public debt exceeds the cost of the financial distortion.

The proof of Proposition 9 is then completed by noting that ψbl i ss > γbl i ss if and only if g is high

enough, a property that holds even outside our benchmark and that is proved in Lemma 5 below.

But: Do the lessons obtained above apply outside the benchmark under consideration? We address

this question next.
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B.3 Beyond the Benchmark

The benchmark studied above has two key properties: π(b)b is singled-peaked, so that the phase diagram

can be organized in the three regions described above; and γ is decreasing over the region M, so that it

can intersect at most once withψ. If we modified the benchmark by allowing either for a non-monotone

σ or for V ′ 6=π but maintained the aforementioned properties, then the preceding arguments go through

and Propositions 10 and 11 continue to hold.

What if the aforementioned properties do not hold, as it may be the case for certain micro-foundations?

There is a plethora of possibilities. To make progress, we will continue for a moment to assume thatπ(b)b

is single-peaked, which preserves the tripartite structure of the phase diagram, but will let γ(b) be non-

monotone over region M .25 In this case, the graphs of γ andψmay intersect multiple times. Clearly, any

such intersection identifies a steady-state point of the ODE system. What are the local dynamics around

each of these points? Starting from a given initial b0, how many paths are candidates for optimality? And

what are the properties of the optimal path?

There is a multitude of possible answers to these questions. To illustrate, consider the case in which γ

and ψ happen to intersect three times, giving rise to three steady-state points for the ODE system within

region M. Figures 9, 10 and 11 below illustrate three phase diagrams that are consistent with this case.

The three diagrams feature similar configurations of the γ and ψ functions and similar local dynam-

ics around each of the three steady states, but different global dynamics and different types of optimal

policies. We go over each of these three possibilities one by one.

Consider Figure 9. In order to simplify the exposition, we truncate region L, where b < bsei g n , γ is

negatively valued, and there can be no steady state; we thus focus on region M, where b ∈ (bsei g n ,bbli ss)

and where γ and ψ intersect three times. Denote the level of debt at the three intersection points by b∗
L ,

b∗
M , and b∗

H (for, respectively, “low”, “medium”, and “high”). Because γ goes to infinity in the neighbor-

hood of bsei g n , we know that γ must intersect ψ from above at b∗
L and b∗

H , and from below at b∗
M . This is

useful to note, because, as shown in the next proposition, the relation between the slope of γ and that of

ψ dictates the local stability properties of the ODE system around any steady state.

Proposition 12. Consider any (b∗,λ∗) such that λ∗ = γ(b∗) =ψ(b∗), that is any steady-state point of the

ODE system in the region to the left of the satiation point. There exists a finite scalar χ > 0 such that the

local dynamics around that steady-state point are

(i) saddle-path stable if γ′(b∗) <ψ′(b∗);

(ii) explosive with real eigenvalues if ψ′(b∗) < γ′(b∗) <ψ′(b∗)+χ;

(iii) explosive with imaginary eigenvalues (i.e. with cycles) if γ′(b∗) >ψ′(b∗)+χ.
25Recall that γ is necessarily decreasing in a neighborhood to the right of bsei g n , because σ(b) ↓ 1 and γ(b) ↑∞ as b ↓ bbli ss .

Allowing for a non-monotone γ therefore means that γ is increasing over a portion of region M. This in turn can happen when

the elasticity σ and/or that the ratio π/V ′ is decreasing over a subset of (bsei g n ,bbl i ss ).
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Proof. The linear approximation of the system of the ODEs around a stationary point (b],λ]) is given by

Ẋ (t ) =
 ρ+π(b∗)(σ(b∗)−1) −S′(λ∗)

V ′′(b∗)−λ∗π′(b∗)(σ(b∗)−1)−λ∗π(b∗)σ′(b∗) −π(b∗)(σ(b∗)−1)

 X (t ) = JX (t )

with X (t ) = (b(t )−b∗,λ(t )−λ∗)′. Using the definitions of the functions ψ(b), γ(b), ψ′(b) and γ′(b), we

can rewrite the matrix J, evaluated at (b∗,λ∗) as

J =
(
ρ+ V ′(b∗)

γ(b∗)

)
− 1
ψ′(b∗)

(
ρ+ V ′(b∗)

γ(b∗)

)
γ′(b∗) V ′(b∗)

γ(b∗) −V ′(b∗)
γ(b∗)


First note that the trace of matrix J is given by ρ > 0, implying that the two eigenvalues of J sum up to a

positive number. The determinant of the J matrix, evaluated at (b∗,λ∗), is

det(J) = V ′(b∗)

γ(b∗)

(
ρ+ V ′(b∗)

γ(b∗)

)(
γ′(b∗)

ψ′(b∗)
−1

)
Given that b∗ < bbli ss , σ(b∗) < 1, γ(b∗) > 0 and V ′(b∗) > 0. Therefore, the position of γ′(b∗)/ψ′(b∗)

with respect to 1 determines the sign of the determinant, and hence the position of the two eigenvalues

around 0. Note that a steady state only exists in regions where σ(b∗) > 1 and hence γ(b∗) > 0. When

γ′(b∗) <ψ′(b∗), det(J) < 0 and hence the two eigenvalues are distributed around 0. Therefore, a saddle

path exists (recall that Tr(J) = ρ > 0), hence proving the first statement. In the opposite situation the two

eigenvalues have positive real part, hence establishing the explosiveness part of the proposition.

The emergence of cycles is related to the real vs complex nature of the eigenvalues. This is established

by looking at the discriminant, ∆, of the characteristic polynomial:

∆= (TrJ)2 −4detJ = ρ2 −4
V ′(b∗)

γ(b∗)

(
ρ+ V ′(b∗)

γ(b∗)

)(
γ′(b∗)

ψ′(b∗)
−1

)
The two roots are complex if the discriminant is negative

∆< 0 ⇐⇒ γ′(b∗) >ψ′(b∗)+χ with χ≡ ρ2ψ′(b∗)

4
(
ρ+ V ′(∗)

γ(b∗)

)
V ′(b∗)
γ(b∗)

Therefore establishing the condition for the emergence of complex vs real explosive eigenvalues.

This result restricts the local dynamics of the ODE system in the neighborhood of any steady state

point, i.e. around the intersections of γ and ψ. Consistent with this result, Figure 9 imposes that the

lowest and the highest steady states (b∗
L and b∗

H ) are saddle-path stable, while letting the middle one

(b∗
M ) feature explosive cycles.

Notwithstanding these restrictions on the local dynamics, there remain three distinct possibilities

with regard to the global dynamics. Figure 9 considers one of these possibilities.

In Figure 9, we have imposed the following property on the global dynamics: both the stable arm that

leads to b∗
L from above and the one that leads to b∗

H from below cycle back to b∗
M . It follows that there exist
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Figure 9: Beyond the Benchmark: Rich Dynamics and Multiple Steady States
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values b̃ and ˜̃b, as indicated in the figure, such that the following is true within region M. Whenever b0 < b̃,

Λ(b0) is a singleton and the unique candidate for optimality is the saddle path that leads to b∗
L . Whenever

b > ˜̃b,Λ(b0) is again a singleton, but now the unique candidate is the saddle path that leads to b∗
H . Finally,

whenever b0 ∈ [b̃, ˜̃b], there are multiple paths that are candidates for optimality. For instance, if we take

b0 = b̂ as indicated in the figure, one candidate is obtained by setting λ0 = λ̂1 ≡ maxΛ(b0) and letting

debt decrease monotonically towards b∗
L ; another candidate is obtained by setting λ0 = λ̂2 = minΛ(b0)

and letting debt increase monotonically towards b∗
H ; and yet another candidate is obtained by setting

λ0 = λ̂3 and letting debt to cycle twice around b̂ before eventually converging to b∗
H . The closer b0 is to

b∗
M , the larger the number of candidates; when b0 is exactly b∗

M , there is actually a countable infinity of

candidates.

At first glance, the task of comparing candidate paths seems daunting. Fortunately, Lemma 4 and the

convexity of the Hamiltonian with respect λ guarantee that only the paths associated with the extremes

of Λ(b0) can be optimal. For any b0 ∈ [b̃, ˜̃b], we can thus rule out cycles and restrict attention to just two

candidate paths, namely the paths that let b converge monotonically either to b∗
L or to b∗

H . To rank these

two candidate paths, we proceed as follows.

First, recall that the value of any candidate path is given by the Hamiltonian as described in Lemma

4; that the Hamiltonian is convex in λ; and that its derivative is given by Hλ = ḃ. Next, consider the value

of ḃ at each of the two candidate paths. For all b0 ∈ [b̃, ˜̃b), the path that leads to the lowest steady state

starts from a point above the graph ofψ, meaning that ḃ < 0. But as b0 gets closer to ˜̃b, the starting points

gets closer to the graph of ψ, meaning that value of ḃ gets closer to 0. In the knife-edge case in which

b0 = ˜̃b, this path is associated with ḃ = 0. Conversely, the path that leads to the highest steady state is

associated with ḃ > 0 for all b0 ∈ (b̃, ˜̃b], and with ḃ = 0 in the reverse knife-edge case in which b0 = b̃.
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Combining these observations, we obtain the following properties. When b0 = b̃, the path that leads

to b∗
L features Hλ = ḃ < 0, whereas the path that leads to b∗

H features Hλ = ḃ = 0. By the convexity of H ,

the latter path is dominated. Conversely, when b0 = ˜̃b, it is the former path that now features Hλ = ḃ = 0

and that is therefore dominated. By continuity,26 the path that leads to b∗
L is therefore optimal for b0

close enough to b̃, whereas the path that leads to b∗
H is optimal for b0 close enough to ˜̃b. Finally, the

assumption that U is convex in s guarantees that the optimal path for b is monotone. It follows that there

exists a threshold b̂ ∈ (b̃, ˜̃b) such that the unique optimal path is the path leading to the lowest steady state

whenever b0 < b̂ and it is the path leading to the higher steady state whenever b0 > b̂. See Figure 9 for

an illustration: the bold segments of the two stable arms indicate the optimal selection among the two

candidate paths.27

So far, we focused on region M. In region H (b0 ≥ bbl i ss), the analysis is similar to Figure 8. That is,

there is a threshold bski ba ∈ (bbl i ss , b̄) such that, as long as b0 ∈ (bbl i ss ,bski ba), there are two candidate

paths, the one leading to b∗
H and the Barro-like one, and the former dominates the latter, whereas the

latter is the only candidate for b0 ≥ bski ba . Finally, in region L (b0 < bsei g n), there is a unique candidate

path, one leading to b∗
L .

The kind of optimal policy illustrated in Figure 9 has the following properties: (i) whenever b0 < b̂,

debt converges monotonically to b∗
L ; (ii) whenever b0 ∈ (b̂,bski ba), debt converges monotonically to b∗

H ;

and (iii) whenever b0 ≥ bski ba , debt stays constant at b0 for ever. Comparing this result to our earlier

benchmark, we see that one key property survives whereas another is lost: as in our benchmark, it is true

that there exists a threshold bski ba > bbl i ss such that debt converges to a steady-state level below bbl i ss

whenever the economy starts below bski ba ; but unlike our benchmark, the steady-state level is not the

same for all initial conditions.

We now turn to two variants of the case studied in Figure 9. One of these variants is illustrated in

Figure 10, the other in Figure 11. These variants maintain the same qualitative configuration for the

functions γ andψ, the same steady-state points, and the same local dynamics around them, but perturb

the global dynamics. One of the stable arms is now allowed to extend throughout region M instead of

cycling back to b∗
M . This path then emerges as the optimal path for all initial conditions: in the case seen

in Figure 10), it is optimal to converge to b∗
H for all b0 < bski ba ; and in the case seen in Figure 11, it is

optimal to converge to b∗
L .

Let us fill in the details, starting with Figure 10. Unlike Figure 9, the stable arm corresponding to

the highest steady state no longer cycles back to b∗
M ; instead, it extends past b∗

L . This has the following

important implication. If we consider b0 = b∗
L , then there are two candidate optimal plans, namely the

26Here, we take for granted the continuity of the value of each candidate path with respect to b0; for a general proof of this

property, see Dechert and Nishimura (1981).
27In the optimal-control literature, any threshold level of the state variable at which the solution switches from one to another

candidate path, such as the threshold b̂ here, is often referred to as a “Skiba point”. In our paper, we reserve the notation bski ba

to refer only to the highest such threshold.
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Figure 10: Optimal to Converge to b∗
H for all b0 < bski ba
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Figure 11: Optimal to Converge to b∗
L for all b0 < bski ba
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plan of staying put at b∗
L and the plan that leads to b∗

H . The former plan is dominated because it features

Hλ = ḃ = 0, whereas the latter features Hλ = ḃ > 0. By continuity, the saddle path that leads to b∗
L is

dominated also for any b0 in an open neighborhood of b∗
L . But then the path leading to b∗

L can never be

optimal: if the economy were to follow this path starting from any initial point b0, the economy would

enter the aforementioned neighborhood in finite time; at that point, switching paths would increase wel-

fare, which contradicts the optimality of the original path. We conclude that, contrary to what happens

in Figure 9, the path that leads to b∗
H in Figure 10 is now the optimal path for all b0 < bski ba .

Consider next Figure 11. This illustrates a diametrically opposite scenario from that shown in Figure

10: it is now the stable arm that leads to b∗
L that fails to cycle back to b∗

M , extends past b∗
H , and dominates

throughout. What the two scenarios share in common that distinguishes from the scenario depicted in

Figure 9 is the following: even though the ODE system continues to admit multiple saddle-path stable

steady states, the optimal policy now features a unique and globally stable steady state in the region to

the left of the satiation point, that is, optimal debt converges monotonically to the same long run value

b? for all initial values b0 ≤ bbli ss .

These findings illustrate the following more general points and qualify some of the properties of the

benchmark model. To the extent that the ODE system admits multiple steady states below bbl i ss , any

such point represents a point of indifference between the desire to depress the interest rate on public

debt and the desire to improve liquidity and efficiency; this is our earlier observation that Ωb = 0 at

any such point. Furthermore, to the extent that such a point is locally saddle-path stable, it is optimal

to converge to it over time if the economy starts in a small enough neighborhood of this point and if

in addition the planner is precluded from moving outside that neighborhood. In this regard, the local

optimality of the steady state can be understood by inspecting the trade off between collateral creation

and interest rate manipulation, as what we did in our benchmark. However, once the planner is free to

move from one steady state to another, such local intuitions are no longer sufficient. Moreover, as we

show below, there is no guarantee that the steady state can be rationalized as either a global or a local

maximum ofΩ, despite the fact that it satisfiesΩb = 0.

The number of possible scenarios would increase if we allowed γ and ψ to intersect more than three

times. Yet an additional layer of complexity emerges if the assumption that π(b)b is single-valued is re-

laxed. The tripartite structure of the phase diagram is then lost. Instead, the phase diagram now looks

like the outcome of patching together multiple pairs of L and M regions from our earlier examples. How-

ever, as explained next, this complication does not change the big picture.

Suppose that π(b)b has N local extrema, denoted by {b1,b2,b3, . . . ,bN }, with b < b1 < b2 < . . . < bN <
bbli ss , where N is an arbitrary finite number. First, note that σ(b) crosses 1 whenever b crosses any of

these points. Next, note that the last point, namely bN , is necessarily a local maximum, because after that

point π(b)b falls to zero as b approaches bbl i ss . It follows that σ(b) is higher than 1 when b ∈ (bN ,bbl i ss),

lower than 1 when b ∈ (bN−1,bN ), higher than 1 when b ∈ (bN−2,bN−1), and so on. By the same token, γ
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is positively valued b ∈ (bN ,bbl i ss), negatively valued than 1 when b ∈ (bN−1,bN ), positively valued when

b ∈ (bN−2,bN−1), and so on.

We illustrate this in Figure 12. As anticipated above, the phase diagram now looks like the product

of patching together multiple pairs of L and M regions from our earlier examples. But the earlier lessons

survive in the following sense: if the economy starts inside any of the L regions, it is optimal to exit this

region in finite time and thereafter converge asymptotically either to an intersection point of γ and ψ

within one of the M regions or to satiation.

Figure 12: Multiple Regions
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Notwithstanding all the complexity, we can thus establish the following result, which offers a quali-

fied generalization of Proposition 11 in our benchmark.

Proposition 13. Suppose ψbl i ss > γbl i ss . There exists a threshold bski ba > bbl i ss such that, for every b0 <
bski ba , the optimal policy lets debt converge monotonically to a point strictly below bbli ss .

Proof. By a similar argument as in Dechert and Nishimura (1981), the optimal path for b is monotone,

for any initial condition. Because b is bounded between b and b̄, this also means that b converges. The

limit point may depend on the initial level of debt. Nevertheless, it is necessarily contained either in the

set B∗ or in the interval [bbl i ss , b̄).

Let b‡ ∈ (0,bbli ss) be the last local maximum of π(b)b.28 By construction of b‡, γ(b) > 0 for all b ∈
(b‡,bbl i ss) and limb↓b‡ γ(b) =+∞>ψ(b‡). By the assumption that γbl i ss <ψbli ss along with the continu-

28Because π(b)b is strictly positive for all b ∈ (0,bbl i ss ) and converges to zero as b approaches either 0 from above or bbl i ss

from below, we know that there exists ε> 0 such that π(b)b is increasing for b ∈ (0,ε) and decreasing for b ∈ (bbl i ss − ε,bbl i ss ).

Because the derivative of π(b)b is −(σ(b)−1)π(b), the aforementioned property means that σ(b) < 1 for b ∈ (0,ε) and σ(b) > 1

for b ∈ (bbl i ss −ε,bbl i ss ). By the continuity of σ, then, the threshold b‡ exists and is strictly between 0 and bbl i ss .
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ity and differentiability of γ and ψ, there exists at least one point b∗ ∈ (b‡,bbl i ss) such that γ(b∗) =ψ(b∗)

and γ′(b∗) <ψ′(b∗), that is, a steady-state point in which γ intersects ψ from above. If there are multi-

ple such points, consider the highest one. By Proposition 12, we know that this steady state is saddle-

path stable. Similarly to Figure 8, the following is therefore true: there exists a threshold bski ba > bbl i ss

and a scalar ε > 0 such that, whenever b0 ∈ (b∗− ε,bski ba), there exists path that satisfies the ODE sys-

tem at all t and that asymptotically leads to b∗. Clearly, this path is a candidate for optimality for all

b0 ∈ (b∗− ε,bski ba). Furthermore, this path dominates the Barro-like plan for all b0 ∈ [bbli ss ,bski ba). Fi-

nally, there is no candidate path that leads to satiation when b0 < bbl i ss , thanks again to the assumption

that γbl i ss <ψbl i ss .

All these facts obtain by applying the same arguments as in our benchmark. What is different is

that we no longer know (i) whether the path that leads to b∗ ceases to exist for b0 low enough and (ii)

whether this path is itself dominated by another candidate path in a region of b0. Notwithstanding these

possibilities, any other candidate path must itself be a saddle path leading to one of the intersection

points of γ and ψ. By construction of b∗, any other such point is strictly below b∗. It follows that, no

matter the initial level of debt and no matter which candidate path is the optimal one, debt converges to

a point that does not exceed b∗, which proves the claim.29

B.4 The conditionψbl i ss > γbl i ss

In the preceding analysis, the condition ψbl i ss > γbl i ss played a crucial role: it guaranteed that it is op-

timal to lead the economy to a steady state below satiation not only for all initial levels of debt below

bbli ss , but also over a range of initial levels above it. This generalized the related insight from the main

text.

As already explained, the condition ψbli ss > γbli ss has a simple interpretation: it means that, in the

neighborhood of bbl i ss , the shadow cost of taxation is sufficiently high so that the marginal value of de-

pressing the interest rate on public debt outweighs the marginal cost of the financial distortion. Consis-

tent with this interpretation, it is straightforward to show this case obtains when the level of government

spending is sufficiently high.30

Lemma 5. Suppose γbli ss <∞. There exists a threshold ĝ such that ψbl i ss > γbl i ss if and only if g > ĝ .

Proof. Note that ψbl i ss is continuous and increasing in g as long as g < gmax and diverges to +∞ as

g → gmax . This is because a higher g requires higher taxes to balance the budget, and the marginal cost

29This argument mirrors Theorem 2 in Brock and Dechert (1983). Applied to our setting, this theorem states that, whenever

the policy rule of the costate features a discontinuous jump, this jump is downward. By the same token, as we move from higher

to lower levels of debt, the costate can only jump upwards, which means that lower levels of debt are necessarily associated with

convergence to weakly lower steady states.
30In fact, the threshold ĝ in the lemma can be negative in some economies, implying that, in these economies, this result

obtains for all positive levels of government spending.
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of these taxes explodes to infinity as we approach the peak of the Laffer curve. Furthermore, ψbl i ss = 0

if and only if g = −ρbbli ss < 0. Finally, note that γbl i ss is (i) invariant to g ; (ii) positive for the reasons

offered above; and (iii) finite by assumption. It then follows that there exists a threshold ĝ , necessarily

less than gmax and possibly negative, such that ψbl i ss > γbl i ss if and only if g > ĝ .

This generalizes the related point made in the main text. The only subtlety is the following. In the

benchmark studied in the main text,ψbli ss > γbl i ss (and by the same token g > ĝ ) was both sufficient and

necessary for bski ba > bbl i ss and, equivalently, for the existence of a steady state below satiation. Suffi-

ciency was established in Proposition 11, necessity in Proposition 10. In the more general case allowed

here, sufficiency remains valid by Proposition 13, but necessity may not apply.

Figure 13: No Satiation Despite ψbl i ss < γbl i ss (or g low enough)
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We illustrate this in Figure 13. As in our benchmark (see Figure 7 in particular), letting γbli ss >ψbl i ss

guarantees the local existence of a candidate path that leads to satiation: for some ε > 0 and all b0 ∈
(b0 − ε,bbli ss), there exists a path that satisfies the ODEs at all dates and that asymptotically converges

to bbli ss . But unlike what was true in our benchmark, this type of path does not exist for sufficiently low

b0. What is more, for all b0 < bbli ss , there happens to exist another candidate optimal path, namely the

one that leads to a steady state below bbl i ss . Finally, note that the path leading to bbli ss features an initial

value for ḃ that is arbitrarily close to 0 when b0 is close enough to bbli ss , whereas the path leading to

b∗
L features a ḃ bounded way from zero. Using once again Lemma 4, the convexity of H in λ, and the

fact that Hλ = ḃ, we infer that the latter path dominates the former for b0 in a neighborhood of bbli ss .

But this also means that the path leading to satiation can not be optimal for any initial b0. Instead, there
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again exists a bski ba > bbl i ss such that for all b0 < bski ba it is optimal to converge either to b∗
L or to some

point further below.

To sum up, away from the benchmarks studied in the main text, g high enough may not be necessary

for the existence of a steady state below satiation. But it is always sufficient for this to be true, and this is

what we think of as the most interesting scenario.

B.5 Complete Characterization

Building on the preceding results, we can now offer a characterization of the optimal policy that nests all

possible scenarios. To this goal, we henceforth let

B # ≡ {
b ∈ (b,bbl i ss] : γ(b) =ψ(b) and γ′(b) ≤ψ′(b)

}
be the set of the points at which γ intersects ψ from above. As shown in Proposition 12, these points

identify the saddle-path stable steady states of the ODE system.31 Depending on primitives, B # may

be empty, or may contain an arbitrary number of elements.32 Regardless of this, we have the following

result.

Theorem 2. In every economy, there exists a threshold bski ba ∈ [b,b] and a set B∗ ⊆ B # such that the

following are true along the optimal policy:

(i) If either b0 ∈ B∗ or b0 > max{bbli ss ,bski ba}, debt stays constant at b0 for ever.

(ii) If b0 < bski ba and b0 ∉ B∗, then debt converges monotonically to a point inside B∗.

(iii) If bski ba < bbl i ss and b0 ∈ (bski ba ,bbli ss), debt converges monotonically to bbl i ss .

Proof. We prove this result with the help of Theorem 2 from Brock and Dechert (1983). Consider the

optimal policy rule for the co-state variable, namely the correspondence from any given b0 to the opti-

mal value for λ0. Denote this correspondence by Λopt . Note that this is is a selection from the corre-

spondence Λ (which was defined in the context of Lemma 4). To illustrate, consider Figure 9. In this

example, the aforementioned correspondence is given by the combination of three segments: the thick

green line on the left of b̂, plus the solid blue line between b̂ and bski ba , plus the segment of the graph

of the ḃ = 0 locus that rests on the right of bski ba . As it is evident in this example, the correspondence

λ∗ is single-valued and continuous for all b0 other than b̂; the discontinuity at b̂ reflects a switch in

the optimal selection among different candidate paths. Moving beyond this specific example, the pol-

icy rule for the co-state can feature multiple such discontinuities. Any such discontinuity, however, has

31In knife-edge cases in which a steady state of the ODE system features γ′(b) = ψ′(b), we can not be sure of saddle-path

stability. Clearly, such knife-edge cases are degenerate. In any event, they do not affect the validity of the result stated below,

because this result allows B∗ to be a strict subset of B#.
32We wish to think of the empirically relevant case as one in which B# contains either a single or a “small” finite number of

points. At the present level of abstraction, however, the best we can say is that B# is generically countable.
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to involve a jump in a specific direction: applied to our setting, Theorem 2 from Brock and Dechert

(1983) states that, at any point b̂ such that limb↑b̂Λ
opt (b) 6= limb↓b̂Λ

opt (b), it is necessarily the case that

limb↑b̂Λ
opt (b) > limb↓b̂Λ

opt (b),33 In other words, as we move from higher to lower levels of debt, the

co-state can only jump upwards, which means that the rate of taxation and the level of government sur-

pluses must also jump upwards. It then follows that lower initial conditions are necessarily associated

with convergence to lower steady states, which in turn is the key to the result.

Thus suppose there exists an initial point b0 = b̃0 such that it is optimal to converge to a point b∗ <
bbli ss . Clearly, b∗ must be inside B #. Next, consider the set of points at which the policy rule of the co-

state features a discontinuity and let b̂ be the highest such point below b∗; if no such point exists, just let

b̂ = b. When b0 ∈ (b̂, b̃0), debt converges to b∗. When instead b0 < b̂ (which, of course, is relevant only

insofar as b̂ > b), debt converges to a point that is below b̂, and hence also below b∗, but still inside B #. It

follows that there exists a point bski ba ≥ b∗ such that, when b0 ≤ bski ba , then and only then it is optimal

to converge to a point inside B #.

The above argument presumed the existence of an initial point at which it became optimal to con-

verge to a point below bbl i ss . If no such initial point exists, we simply let bski ba = b. This completes the

proof of part (ii) of our theorem.

To prove part (iii), recall from Proposition 13 that ψbl i ss > γbli ss is sufficient for bski ba > bbl i ss . It fol-

lows that bski ba < bbl i ss is possible only insofar as ψbl i ss < γbl i ss , which in turn guarantees the existence

of a candidate path that converges to bbl i ss for any b0 ∈ [b̂,bbli ss) and some b̂ < bbl i ss . Clearly, b̂ ≤ bski ba .

By definition of bski ba , the optimal path is one of the candidate paths that converge to a point inside B #

if and only if b0 < bski ba . Therefore, for any b0 ∈ [bski ba ,bbl i ss), either the path that leads to bbl i ss is the

unique candidate path, or it dominates any of the candidate paths that lead to a point inside B #.

Turning to part (i), note that this contains two subparts: one regarding b0 ∈ B∗, and another regarding

b0 ≥ max{bski ba ,bbl i ss}. Once part (ii) of the theorem is established, the first of the aforementioned two

subparts is trivial: it merely identifies B∗ as the set of the steady states of the optimal policy that happen

to lie below bbl i ss . The second subpart, on the other hand, is proved by the following variant of the proof

of part (ii). As long as b0 ≥ bbl i ss , there necessarily exists a Barro-like candidate path that keeps the level

of debt constant at its initial value and the premium at zero for ever. Whenever another candidate path

exists, it converges to a point inside B #. By definition of bski ba , such an path is optimal if and only if

b0 < bski ba . It follows that, whenever b0 ≥ max{bbl i ss ,bski ba}, either the aforementioned Barro-like path

is the unique candidate path or it dominates any alternative path.

The point bski ba is a threshold in the state space such that it is optimal to satiate the private sector’s

demand for collateral—and eliminate the financial distortion—in the long run if and only if the initial

33At first glance, the original version of Theorem 2 in Brock and Dechert (1983) appears to state the opposite; the apparent

contradiction is resolved by noting that our co-state variable is defined with the opposite sign than theirs.
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level of public debt exceeds this threshold. The set B∗, on the other hand, identifies the set of the steady-

state points of the optimal policy—aka the optimal steady states—that lie below the satiation point.

When B∗ is a singleton, debt converges to the unique point in B∗ for all b0 < bski ba . When instead

B∗ contains multiple points, each such point is associated with a basin of attraction around it, and the

union of all these basins equals [b,bski ba).

Clearly, B∗ has to be a subset of B #, but the two need not coincide: it is possible that the planner

never finds optimal to converge to some, or even any of the points in B #. For instance, whereas B∗ = B #

in Figures 8 and 9, B∗ is a strict subset of B # in Figures 10 and 11.

Finally, it is generally possible that B∗ =;, meaning that satiation obtains in the long run regardless

of initial conditions. But as already explained, this scenario is possible only if g is low enough, orψbl i ss <
γbl i ss . Conversely, g high enough suffices for for the economy to admit at least one steady state below

satiation—and this is the case we find most interesting.

We conclude with the following clarification: Proposition 2 identifies a set of possible scenarios for

the optimal policy, but does not specify whether each of these scenarios does obtain for some economies.

The next result completes the picture by offering a complete taxonomy of all the economies under con-

sideration and of all possibilities that do obtain for some specification of U ,V and π.

Theorem 3. Any economy belongs to one of the following three non-empty classes:

(i) Economies in which B∗ =; and bski ba = b.

(ii) Economies in which B∗ 6= ; and bski ba ∈ (b,bbl i ss).

(iii) Economies in which B∗ 6= ; and bski ba > bbli ss .

Furthermore, g high enough is sufficient for an economy to belong to the last class.

Proof. That any economy must belong to one of these three classes follows from Theorem 2. That

the first and the third classes are not empty follows from the examples we have already considered;

an example of the second class was provided above. Finally, the claimed sufficiency of the condition

ψbl i ss > γbli ss follows from Proposition 13.

B.6 Local Dynamics and Local Comparative Statics

We conclude this Appendix with two additional results. The first result establishes that, in a neighbor-

hood of any steady state below satiation, debt and taxes co-move along the transition to it. The second

result offers a general result on the comparative statics of the model.

Proposition 14. For any b∗ ∈ B∗ there exists ε> 0 such that the following is true: if b0 ∈ (b∗− ε,b∗), then

both debt and taxes increase over time; and if b0 ∈ (b∗,b∗+ε), then both debt and taxes decrease over time.
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Proof. By the definition of b∗ ∈ B? and b∗ < bbl i ss , we know that the point (b∗,λ∗ ≡ ψ(b∗)) is locally

stable. Similarly to Proposition 12, the local dynamics are given by

Ẋ (t ) =
 ρ+π(b∗)(σ(b∗)−1) −S′(λ∗)

V ′′(b∗)−λ∗π′(b∗)(σ(b∗)−1)−λ∗π(b∗)σ′(b∗) −π(b∗)(σ(b∗)−1)

 X (t ) = JX (t )

we know from proposition 12, that the eigenvalue associated with the stable arm is given by µ = ρ−p∆
2

with ∆ > 0 (see proof of Proposition 12). It is then straightforward to obtain the eigenvector v = (v1, v2)

satisfying (
ρ

2
+ V ′(b∗)

γ(b∗)
+
p
∆

2

)
v1 −S′(λ∗)v2 = 0

An eigenvector is
(
S′(λ∗), ρ2 + V ′(b∗)

γ(b∗) +
p
∆

2

)
. Given that V ′(b∗) > 0, γ(b∗) > 0 (since σ(b∗) > 1) and S′(λ∗) >

0 in the upward sloping part of the Laffer curve, both components of the vector are positive. The co-

movement result follows: For any ε > 0, starting from b0 = b∗−ε (resp. b0 = b∗+ε) , the economy will

converge to (b∗,λ∗) increasing (resp. decreasing) both debt and taxes along the transition path.

Proposition 15. Let v(·) =ωπ(·) and holdσ(·) constant. For any b∗ ∈ B∗, b∗ increases with a small enough

increase in ω, a small enough decrease in g , or a small enough increase in π(·).

Proof. Any b∗ ∈ B∗ is such that γ(b∗) =φ(b∗). Therefore, it inherits the comparative statics of the γ and

φ functions described in Section B.1.

These two results together imply that, at least for small changes in the primitives of the economy,

the relevant trade off, the nature of transitional dynamics, and the comparative statics of the optimal

long-run quantity of debt are the same as those discussed in the main text.

C Additional Results

C.1 Private versus social value of liquidity

Consider the micro-founded model of Section 2. Let a(θ,b) and P (b) denote the allocation of the bond

and the price of the afternoon good that obtains from solving the planning sub-problem (36)-(44) re-

ported in Section D and, to simplify, let a(θ,b) > −φ for all θ. From the definition of V (·) together with

the fact that the aggregate net trade of the morning good is zero in equilibrium, we have that

V (b) =
ˆ

U (a(θ,b),θ,P (b))ϕ(θ)dθ

and therefore

V ′(b) =
ˆ [

Ua(·)ab(θ,b)+Up (·)Pb(b)
]
ϕ(θ)dθ.
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From the household’s Euler condition (43), we have that Q(b) =β+Ua(·) for all θ. From the bond market

clearing condition (Equation 38), we have
´

ab(θ,b)ϕ(θ)dθ = 1. Using these last two relations, we infer

that

V ′(b) =π(b)+e(b),

where π(b) ≡Q(b)−β is the market premium and e(b) ≡ ´ Up (.)ϕ(θ)dθPb(b) is the relevant externality.

Finally, it can be shown that
´

Up (.)ϕ(θ)dθ and Pb(b) are strictly negative and strictly positive when the

collateral constraint binds with positive probability, and zero otherwise. The intuition is simple: as long

as the constraint binds, a higher b means a higher P because it facilitates a more efficient allocation of the

morning good. A higher price has a negative aggregate welfare effect because it tightens the constraint

and distorts the allocation. As long as the constraint binds, we therefore have e(b) < 0, or equivalently

π(b) >V ′(b).

C.2 Allowing for state-contingent debt

We now discuss how our analysis qualifies the insights of Lucas and Stokey (1983). Relative to Barro and

AMSS, the key difference in Lucas and Stokey (1983) is the availability of state-contingent debt. This

makes it feasible for the government to completely insulate its budget against any shock. But is it desir-

able to do so?

The answer to this question is unambiguously “yes” in Lucas and Stokey (1983). This is because the

transfers implemented by state-contingent debt are non-distortionary, so that the planner necessarily

prefers them to any variation in the distortionary tax. This also explains why Lucas and Stokey (1983)

find that the tax distortion is smoothed, not only across dates, but also across states; or, by the same

token, why the optimal allocation is history-independent, in sharp contrast to the unit-root persistence

predicted by Barro and AMSS.

The answer differs in our setting. When state-contingent debt is available, our planner maintains the

option to equate the shadow cost of taxation across different histories of shocks, exactly as in Lucas and

Stokey (1983). But unlike that environment, the planner no longer finds it optimal to do so. Instead, he

finds it optimal to deviate from tax smoothing across states, in a manner that resembles the departure

from smoothing taxes across dates in the deterministic model.

The rationale is simple. In order to eliminate variation in the shadow cost of taxation, the planner

would have to endure a non-trivial variation in the aggregate collateral, or liquidity, of the private sector.

Starting from this reference point, a small mean-preserving reduction in the variation of the value of

government liabilities leads to a second-order welfare loss in terms of increased variation in the cost

of taxation but to a first-order welfare gain in terms of reduced variation in the social value of liquidity

and/or seigniorage collected. It follows that the optimal policy accommodates some variation in the

tax distortion in order to smooth the supply of liquidity to the private sector. But this also means that

the economy behaves as if the planner did not have access to a complete set of state contingent debt
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instruments: the optimal tax and the optimal allocation depend on the history of fiscal shocks as if those

were (partially) uninsurable.

We illustrate this property in Figure 14 using a persistent war. This is exactly the same as in the

bottom of Figure 3, except that now debt is allowed to be state-contingent. The black lines give the

impulse responses of the market value of debt and the tax rate in our model; the orange lines give their

Lucas-Stokey counterparts, i.e., those that obtain in the absence of the financial friction. In both cases,

the market value of debt jumps down in response to the war, reflecting the state-contingency of the debt

burden. But the drop is more modest in the presence of the financial friction (black line), reflecting the

planner’s desire to limit the reduction in aggregate collateral. By the same token, the planner in our

setting opts to raise more taxes during the war, while in the Lucas-Stokey benchmark the tax rate does

not change at all.

Figure 14: Response to a war shock, with state-contingent debt
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To sum up, once public debt is non-neutral for the reasons we have accommodated in this paper, the

difference between Barro/AMSS and Lucas-Stokey is attenuated: the qualitative response of the optimal

tax and the optimal allocation is the same whether the government has access to state-contingent debt

or not.

C.3 On the Friedman Rule

Our analysis departs from that in the Friedman-rule literature by allowing all types of government-issued

assets, rather than a subset of them, to facilitate private liquidity. This assumption seems both appro-

priate for the issues we are addressing and realistic (see Krishnamurthy and Vissing-Jorgensen (2012) for

corroborating evidence). To elaborate on the role played by this assumption, we now consider a modifi-

cation of our baseline model that helps nest the case studied in the Friedman-rule literature.

Suppose that the government enacts a law that prohibits the use of corporate bonds as collateral in

morning transactions. This restriction adds a constraint to the planner’s sub-problem defined in (36)-
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(44) and results in a change in the functions V and π. By shutting the private supply of collateral down

the law may reduce V and increase π, so it has ambiguous welfare implications. But its effect on the

price of corporate bonds is unambiguous: they are now priced at the discount factor, while government

bonds command a premium over the discount factor. Our model is now directly comparable to those in

the Friedman rule literature, with government bonds playing the role of money and corporate bonds the

role of the non-money asset.

Suppose next that the government can not only borrow in the money-like asset (here, government

bonds), but also invest freely in the non-money asset (here, corporate bonds). Then, public debt is given

by b = m +n, where m is the stock of government bonds and −n is the quantity of corporate bonds held

by the government. The budget constraint is given by

ṁ + ṅ = [ρ−π(m)]m +ρn + g − s,

or equivalently

ḃ = ρb −π(m)m + g −S(τ), (31)

where π(m)m is seigniorage and S(τ) is tax revenue. The following is evident: For any given b,π(m)m, g ,

the government can vary the mixture of taxes and new debt issued that satisfies its budget without af-

fecting either the level of private sector liquidity or the interest rate on public debt. Moreover, the latter

is now equal to the discount rate.

Therefore, when the government varies b, it does not face the key trade off present in our model. By

the same token, the optimal supply of liquidity is disentangled from the optimal dynamics of debt and

taxes, and the latter are determined in exactly the same fashion as in Barro (1979).

To see this more clearly, integrate (31) over time to obtain the familiar intertemporal budget con-

straint:

b0 +G =
ˆ +∞

0
e−ρt [π(m)m +S(τ)]dt . (32)

where G ≡ ´ +∞0 e−ρt g dt is the present value of government spending. The planner’s problem reduces to

finding the paths of m and τ that maximize ex ante welfare,
ˆ +∞

0
e−ρt [U (τ)+V (m)]dt ,

subject to the single integral constraint in (32). Let λ? denote the Lagrange multiplier on the intertem-

poral budget. It is then immediate that the optimal supply of liquidity is given by

m? = argmax
m

Ω(m,λ?), (33)

where Ω(m,λ) ≡ V (m)+λπ(m)m measures “liquidity plus seigniorage”. Depending on primitives, m?

may or may not coincide with satiation; that is, the Friedman rule may or may not apply. Regardless

of this, however, tax smoothing obtains and the optimal fiscal policy is determined in exactly the same

fashion as in Barro (1979).
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Another, subtler point is that the m? characterized above necessarily attains the global maximum of

Ω(m,λ). By contrast, this is not necessarily true in our context. In particular, under the Auxiliary As-

sumptions introduced in Section 3.3, it is true that b? is unique and maximizes Ω(b,λ?). But without

these assumption, it is possible that there are multiple steady states, or even a unique steady state that

attains a local minimum of Ω. And while we don’t view this possibility as practically relevant, it does

reinforce our point about how the optimal provision of liquidity is intertwined with the transitional dy-

namics, or the desire to smooth taxes.

C.4 Relation to Aiyagari and McGrattan (1998)

In this Appendix we discuss why the solution strategy followed in Aiyagari and McGrattan (1998) both

fails to recognize this trade off and offers a distorted answer to the question of interest.

That paper allows for more realistic micro-foundations than ours, including concave utility and an

empirically calibrated labor-income risk. The role played by public debt is fundamentally similar (it

eases the underlying borrowing constraint), but the wealth heterogeneity is a relevant state variable for

aggregate outcomes, forcing the authors not only to rely on numerical simulations but also to take a

certain short-cut. Instead of solving the problem of a Ramsey planner who chooses the dynamic path

of taxes and debt so as to maximize ex-ante utility, they restrict taxes and debt to be constant over time,

abstract from transitional dynamics, and maximize welfare in steady state.

Replicating this strategy in our framework means maximizing U (s)+V (b) subject to R(b)b = g+s. Let

b̂ denote the debt level that solves this problem and let λ̂ be the associated Lagrange multiplier. Clearly,

b̂ = argmax
b

{
V (b)− λ̂R(b)b

}
, (34)

This underscores how the Aiyagari-McGrattan approach treats the interest payments on public debt,

R(b)b, as a cost. But as first highlight in Section 4.1, the component ρb of these interest-rate payments

is not a cost. Accordingly, the truly optimal steady state satisfies

b? = argmax
b

{
V (b)+λ?π(b)b

}
, (35)

which underscores that the correct planning problem treats debt issuance as a profit-generating busi-

ness to the tune of π(b)b.

In summary, the solution strategy Aiyagari and McGrattan (1998) not only abstracts from transitional

dynamics (or, relatedly, the optimal response to shocks) but also offers a distorted perspective on op-

timal long-run quantity of public debt. At the same time, Aiyagari and McGrattan (1998) allow for an

interesting economic effect that our main analysis abstract from: that public debt may crowds out cap-

ital accumulation by offering a substitute form of buffer stock. We explain why this possibility, or even

the opposite one, does not fundamentally change the policy problem in Section 4.1 in the main text.
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Finally, note that discussion here presumes, like the analysis in Section 3.3, that the Auxiliary As-

sumptions hold. As explained in Appendix B.3, the economy may feature multiple steady states when

these assumptions do not hold. In these circumstances, the Aiyagari-McGrattan approach will never

detect this multiplicity, for it is the (generically) unique solution to a static optimization problem.
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D Main Text Proofs

Proof of Proposition 1. The proof of part (i) of the proposition proceeds in two steps. The first step

show how to represent the individual’s problem as one in which the level of assets enters the utility func-

tion. The second solves for the equilibrium in the morning and afternoon markets and shows how to

express the resulting welfare and the equilibrium price of public debt as functions of the quantity of

public debt.

Step 1. Let us start from the primitive formulation of the individual’s problem:

E0

[ ∞∑
t=0

βt (ci t +θu(xi t )−ν(hi t ))

]
s.t . ci t +pt xi t +qt ai t+1 = ai t + (1−τt )wt hi t +pt e

pt
(
xi t −e

)≤ ξwt hde f
i t +ai t

−ai t+1 ≤ ξwt+1hde f
i t+1

Assuming a zero tax rate when there is default, the labor supply in the event of default solves

ν′(hde f
i t ) = (1−ξ)wt

because the marginal utility of the afternoon consumption good, and hence the Lagrange multiplier

associated to the budget constraint, is 1. Using the fact that the equilibrium wage rate is A, the two

financial constraints can be written as

zi t ≤φ+ai t

ai t ≥−φ

where φ≡ ξA(ν′)−1((1−ξ)A) and zi t = pt (xi t −e). Defining c̃i t = ci t + zi t , we have

E0

[ ∞∑
t=0

βt (
ci t +θu(xi t )−pt

(
xi t −e

)−ν(hi t )
)]

s.t . c̃i t +qt ai t+1 = ai t + (1−τt )wt hi t

pt
(
xi t −e

)≤φ+ai t

ai t+1 ≥−φ

Consider now the sub problem of determining the demand for the morning good. This problem is purely

static and is given by

max
x

[
θu(x)−p

(
x −e

)]
s.t . p

(
x −e

)≤φ+a
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which gives x =X (a,θ, p) and an indirect utility net of the cost of purchasing u(a,θ, p) = θu
(
X (a,θ, p)

)−
pX (a,θ, p). Defining the discounted expected indirect utility of the morning good as

U (a,θ, p) ≡β
ˆ

u(a,θ′, p)ϕ(θ′|θ)dθ′

and using it in the optimization program allows us to write it as

E0

[ ∞∑
t=0

βt (
c̃i t −ν(hi t )+U (ai t+1,θt , pt+1)

)]
s.t . c̃i t +qt ai t+1 = ai t + (1−τt )wt hi t

ai t+1 ≥−φ

The utility U (ai t+1,θt , pt+1) will be used in the next part of the proof. This concludes the first part of the

proof.

Step 2. Because the utility is linear in the afternoon good, the optimal savings decision of every agent

in any period t is independent of her initial asset position. This implies that, for any t , the set of im-

plementable next-period wealth distribution, the next-period allocation of the morning good, and the

prices qt and pt+1 is independent of the period-t wealth distribution. It follows that we can split the

planner’s in two parts: an “inner” problem for each period t , where the planner solves for the best imple-

mentable allocation of the risk-free asset and the morning good, taking as given the aggregate quantity

of public debt; and an “outer” problem over all t , where the planner solves for the optimal path of public

debt and taxes.

Fix a t ≥ 0 and consider the period-t subproblem. This can be represented as follows:

max
(p,q)∈R2+,(x,a):[θ,θ̄]→R+×[−φ,+∞)

ˆ
θu(x(θ))ϕ(θ)dθ (36)

subject to

ˆ
x(θ)ϕ(θ)dθ = ē (37)

ˆ
a(θ−)ϕ(θ−)dθ− = b (38)

φ+a(θ−)−p(x(θ)− ē)> 0 ∀(θ,θ−) (39)

θu′(x(θ))> p ∀θ (40)[
θu′(x(θ))−p

][
φ+a(θ−)−p(x(θ)− ē)

]= 0 ∀(θ,θ−) (41)

a(θ−)+φ> 0 ∀θ− (42)

β+Ua(a(θ−),θ−, p) ≤ q ∀θ− (43)[
Ua(a(θ−),θ−, p)−π][

a(θ−)+φ]= 0 ∀θ− (44)

In this problem, x(θ) stands for xi ,t+1 = x(θi ,t+1), a(θ−) stands for ai ,t+1 = a(θi ,t ), p stands for pt+1, q

stands for qt , and b stands for bt+1. Letting the planner choose the functions (x, a) means that we let

her choose the cross-sectional allocation of the risk-free asset and the morning good during period t +1.
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This choice is not free as the planner must respect the feasibility and implementability constraints stated

in conditions (37) through (44): conditions (37) and (38) are the resource constraint for the morning

good and the clearing condition for the asset market; conditions (39)-(44) are the household’s optimality

conditions for morning consumption and asset holdings, together with the associated collateral con-

straints and complementary slackness conditions. Finally, note that (36) is simply the ex-ante utility of

the morning good. It follows that the solution to (36)-(44) identifies the best cross-sectional allocation

of asset holdings and morning-good consumption among those that can be implemented as an equilib-

rium whenever bt+1 = b, along with the corresponding prices.34

Now take any path for {τt ,bt } that is part of an equilibrium. If there exists a unique equilibrium with

this path for taxes and debt, the above problem simply returns the associated allocation of the morning

good and the risk-free asset. And if there exist multiple such equilibria, the above problem selects the

best one (i.e., the one that maximizes ex-ante utility).

For any b, let P (b) be the resulting value for p; Q(b) be the resulting value for q ; and letπ(b) ≡Q(b)−β.

Next, note that welfare (ex-ante utility) is given, from step 1, by

W ≡ E0
[∑

βt (ci t +θi t u(xi t )−ν(hi t ))
]

.

By the preceding argument we have that E0[θi t u(xi t )] equals 1
βV (bt ) along the best implementable allo-

cation. Strictly speaking, the last statement is valid for t > 1 but not for t = 0. This is because the wealth

distribution in period 0 is exogenous and does not have to coincide with the one obtained by the solu-

tion to (36)-(44) when b = b0. That is, if we let V0 denote the value of E[θi 0u(xi 0)] attained at the period-0

equilibrium allocation of the morning good, whatever this is, we have that, in general, V0 6= V (b0). To

simplify the notation, we impose V0 = V (b0). This is a completely innocuous constant for our results,

because b0 is fixed and the restriction V0 = V (b0) does not affect the optimal choice of {τt ,bt+1}∞t=0. In

other words,

E0

[ ∞∑
t=0

βtθi t u(xi t )

]
=V0 +E0

[ ∞∑
t=1

βt V (bt )

β

]
=V0 +E0

[ ∞∑
t=0

βt V (bt+1)

]
In addition, we know that E[ci t ] equals aggregate consumption, ct , and all agents supply the same amount

of labor, hi t = ht , due to the quasi-linearity in preferences. We infer that, once we have solved the afore-

mentioned subproblem, we can express welfare as

W = E0

∞∑
t=0

βt [ct −ν(ht )+V (bt+1)] (45)

which completes the part (i) of the proof.

34One potentially confusing point in the definition of the above problem is the following: the problem allows the planner to

choose the allocation of the morning good; but it also uses the function Ua (a(θ−),θ−, p), which itself embeds the individual’s

optimal consumption of the morning good. Are the two elements consistent? Yes, because the individual’s optimality and

feasibility conditions are themselves included in the constraints of the problem.
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The properties reported in part (ii) can be proved by considering the first best allocation of the morn-

ing good.

θu′(x FB(θ)) = p FP (46)ˆ
x FB(θ)φ(θ)dθ = e (47)

Note that at the first best allocation, debt is priced at the discount fact such that q = β and accordingly

π(b) = 0. Let us consider the agent with the highest type, θ. At this allocation the borrowing constraint

has to be satisfied for this individual

φ+a(θ−)+p FP(x FB(θ)−e)> 0

Integrating over the previous period type, θ−, we get

φ+
ˆ

a(θ−)ϕ(θ−)dθ−+p FP(x FB(θ)−e)> 0

Using the market clearing condition ˆ
a(θ−)ϕ(θ−)dθ− = b

The condition rewrites

φ+b +p FP(x FB(θ)−e)> 0

Then there exists a debt level, bbli ss , such that

φ+bbli ss +p FP(x FB(θ)−e) = 0

Note that the optimal consumption decision (46) implies that the constraint is slack for any θ < θ. In

other words, for any b > bbli ss , the constraint never binds for any type θ ∈ (θ,θ) implying that π(b) = 0

and V (b) = Vbli ss ≡ V (bbl i ss). By the same token, for any b < bbli ss , there exists θ̃ ∈ (θ,θ) such that the

constraint binds for any θ ∈ [θ̃,θ), implying that π(b) > 0 and V (b) <Vbl i ss .

Q.E.D. �

Proof of Proposition 2. Proposition 1 implicitly defines the optimal problem of the planner as

max
{ct ,ht ,τt ,bt+1}∞t=0

E0

[ ∞∑
t=0

βt (ct −ν(ht )+V (bt+1)

]
qt bt+1 = bt + g t −τt Aht

qt =β+π(bt+1)

ct + g t = Aht

v ′(ht ) = (1−τt )A
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Note that the only implementability constraint that has not already been incorporated in V and Q is the

one for the supply of labor

ν′(ht ) = (1−τt )A (48)

Let us further simplify the planner’s problem by solving (48) and the resource constraint for consumption

and labor supply as functions of the tax rate. More specifically, let H(τ) ≡ (ν′)−1
(1−τ

A

)
and S(τ) ≡ τAH(τ)

denote the equilibrium values of, respectively, labor supply and tax revenue, as functions of the tax rate.

Note that it is straightforward to check that S is single-peaked—i.e., there is a Laffer curve—and attains

its maximum value, s̄, at τ= τ̄ for some τ̄ ∈ (0,1). For any s ≤ s̄, we thus have that, whenever the planner

wishes to collect tax revenue equal to s, the tax rate that implements this goal is given by τ = T (s) ≡
min{τ : S(τ) = s}. Let U (s) ≡ AH(T (s))−ν(H(T (s))) measure the resulting utility from consumption and

leisure, as a function of tax revenue, and note that U (s) is decreasing in s, reflecting the welfare cost of

taxation. The problem simplifies to

max
{stτt ,bt+1}∞t=0

E0

[ ∞∑
t=0

βt (U (st )+V (bt+1)

]
qt bt+1 = bt + g t − st

where qt =β+π(bt+1).

Q.E.D. �

Proof of Theorem 1. Assumption B3 corresponds to the case g > ĝ of Lemma 5, such that Ψbl i ss >
γbl i ss . Then Proposition 11 applies and establishes part (i) of the theorem.

Q.E.D. �

Proof of Proposition 3. Let us define Ω(b,λ∗) = V (b)+λ∗π(b)b, where λ∗ =U ′(s∗) and s∗ solves s∗+
π(b∗)b∗ = g + r b∗. Note first that

Ωb(b,λ∗) = (σ(b)−1)π(b)
[
γ(b)−λ∗]

Let us then recall that, in our benchmark a steady-state level, b∗ below bbl i ss exists if and only if ψbl i ss >
γbl i ss , and it is then unique. Furthermore, the single-peakedness of π(b)b guarantees that σ(b) < 1 and

γ(b) < 0 for all b < bsei g n , whereas σ(b) > 1 and γ(b) > 0 for all b > bsei g n . Finally, the monotonicity of γ

guarantees that γ(b) > γ(b∗) for b ∈ (bsei g n ,b∗), whereas γ(b) < γ(b∗) = λ∗. Together with the fact that

γ(b∗) =ψ(b∗) =λ∗ > 0, this implies thatΩb(b,λ∗) > 0 for all b ∈ [b,b∗) andΩb(b,λ∗) < 0 for all b ∈ [b,b∗),

which proves that b∗ solves b∗ = ar g maxbΩ(b,λ∗) where λ∗ =ψ(b∗) and hence part (i).

Q.E.D. �

Proof of Proposition 4. As stated in the text, the borrowing constraints are now affected by the presence

of the capital stock. This implies that the program defined by the system 36–44 now includes the capital

stock, and is completed by the first order condition on capital holdings. The solution of the problem
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then gives both the price of capital, the level of capital and the price of bond as a function of public

debt. The optimal labor decision implies that ht = H(τt ) such that the disutility of labor takes the form

U (τt ) = v(H(τt )). The budget constraint of the government then reads

qt bt+1 = bt + g t −τt AH(τt ) ⇐⇒Q(bt+1)bt+1 = bt + g t −S(τt )

The aggregate resource constraint of the model implies that ct = f (kt )−kt+1 − g . Hence, relying on the

results of proposition 1, the welfare function writes

Wt =
∞∑

t=0
βt (ct − v(ht )+V (bt+1)

Using the aggregate resource constraint, we obtain

Wt =
∞∑

t=0
βt (

f (kt )− g t −kt+1 − v(H(τt ))+V (bt+1
)

=
∞∑

t=0
βt (

β f (kt+1)− g t −kt+1 −U (τt )v
)+ f (k0)

using the result that since kt+1is a function, gk (·), of bt ,this rewrites

=
∞∑

t=0
βt (

βgc (bt )− g t −kt+1 −U (τt )+V (bt+1
)+ f (k0)

where, gc (bt )=βf(gk (bt ))-gk (bt ) such that

=
∞∑

t=0
βt (V (bt+1)−U (τt ))+ f (k0)+ f (gk (b0))− gk (b0)

β

where V (b) ≡V (b)+βgc (b)− g . The crowding out effect is a direct consequence of the first order condi-

tion on capital and the properties of functions f (·) and π(·).

Q.E.D. �

Proof of Proposition 5. The proposition is a direct consequence of the fact that λ̇
λ =π> 0.

Q.E.D. �

Proof of Proposition 6. See discussion in main text.

Q.E.D. �

Proof of Proposition 7. See discussion in main text.

Q.E.D. �

Proof of Proposition 8. Let us start with the entrepreneur. He chooses his production plan by solving

the following problem:

max
k≥0,n≥0

[
θ f (k,n)+ (1−δ)k −pk −wn

]
subject to z ≤φ+a +ξk k +ξyθ f (k,n)

z = p(k −κ)
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Using the second constraint in the first one, and defining x ≡ a + pκ, as the net worth in period t , we

obtain that the profit of the entrepreneur net of investment and labor costs is

ω(x, p, w ;θ) ≡ max
k≥0,n≥0

[
θ f (k,n)+ (1−δ)k −pk −wn

]
subject to pk ≤φ+x +ξk k +ξyθ f (k,n)

The production plan consists of the demand for labor, n(x, p, w ;θ), and the demand for capital, k(x, p, w ;θ).

The aggregate quantities are

n(x, p, w) =
ˆ

n(x, p, w ;θ)ϕ(θ)dθ (49)

k(x, p, w) =
ˆ

k(x, p, w ;θ)ϕ(θ)dθ (50)

The problem of the household is

max E0

[ ∞∑
t=0

βt (ci t −ν(hi t ))

]
s.t. ci t +κi t+1 +qt ai t+1 = ai t +ptκi t + (1−τt )wt hi t +ωi t

where we assumed that ai t < φ+κi t . ωi t denotes the profit received by household i . Note that (i) due

to the linearity of the utility of consumption, all households supply the same amount of hours; and (ii)

E[ci t ] is aggregate consumption, ct . Use the asset market clearing condition
´

ai t di = bt , let κt ≡
´
κi t di

denote aggregate investment, and define

Ω(x, p, w) ≡β
ˆ
ω(x, p, w ;θ)ϕ(θ)dθ.

The problem of the representative household can then be expressed as follows:

max
∞∑

t=0
βt (ct −ν(ht ))

s.t. ct +κt+1 +qt bt+1 = bt +ptκt + (1−τt )wt ht +Ω(xt , pt , wt )

where xt = bt +ptκt . The first order conditions are given by

ν′(ht ) = (1−τt )wt (51)

qt =β(1+Ωx (xt+1, pt+1, wt+1)) (52)

1 =β(
1+Ωx (xt+1, pt+1, wt+1)pt+1

)
(53)

where the last two conditions imply that pt+1 = 1/qt , reflecting arbitrage between financial assets and

physical capital. Notwithstanding this fact, the interest rate is lower than 1/β whenΩx (·) > 0.

Clearing the labor and capital markets (ht = nt and kt = κt ) implies

ν′(n(bt +pt kt , pt , wt )) = (1−τt )wt

kt = k(bt +pt kt , pt , wt )
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which can be solved for the wage w(bt ,kt ,τt ) and the price of capital p(bt ,kt ,τt ). Using them in the

aggregate decisions for labor and capital, we have

ht = H(bt ,τt ) and kt = K (bt ,τt ) (54)

so that

wt =W (bt ,τt ) and pt = P (bt ,τt ) (55)

Likewise, using the resource constraint, we get

ct = θ f (kt ,nt )+ (1−δ)kt −kt+1 − g = C̃ (bt ,τt )−kt+1 (56)

Using (54) and (56) in the welfare function, we get

∞∑
t=0

βt
(
C̃ (bt ,τt )− kt

β
−ν(H(bt ,τt ))

)
+ K (b0,τ0)

β

which can be written as ∞∑
t=0

βt W (τt ,bt )+ K (b0,τ0)

β

Likewise, using the preceding results in (52), we get

qt =Q(τt+1,bt+1)

τt wt ht − g = τt W (bt ,τt )H(bt ,τt )− g = S(τt ,bt )

and the government budget is

Q(τt+1,bt+1)bt+1 = bt −S(τt ,bt )

Hence, the problem of the central planner reduces to

max
{τt ,bt }∞t=0

∞∑
t=0

βt W (τt ,bt )

s.t . Q(τt+1,bt+1)bt+1 = bt −S(τt ,bt )

Q.E.D. �
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E A Simple Analytic Example

In this appendix, we use a simplified version of our model to obtain a sharper characterization of the

functions (V ,π) and of the optimal long-run level of public debt. This example uses log utility for the

morning good and two types.

The household solves the problem

max E0

∞∑
t=0

βt [
ci ,t +θi ,t u(xi ,t )− v(hi ,t )

]
(57)

subject to

ci ,t +pi ,t xi ,t +qt bi ,t+1 = bi ,t + (1−τt )wt hi ,t +pt ēi (58)

pt (xi ,t −ei )6 ξ+bi ,t (59)

where u(x) = log x and θi t is i.i.d., drawn from the binary support {θH ,θL}, for some θH > θL > 0. Letϕ be

the share of high types in the population and, to simplify the exposition, set θL = 1, θH = ϑ > 1, eH = 0,

and eL = ē/(1−φ). The rest of the notation is identical to that used in Section 2.1.

In equilibrium, the borrowing constraint (59) can bind at most for the high type. Letting µt be the

associated multiplier, we can thus write the conditions that characterize the equilibrium in the market

for the afternoon good in period t as follows:

ϑu′(xH t ) = pt (1+µt ) (60)

u′(xLt ) = pt (61)

pt xH t ≤ ξ+bt (62)

µt ≥ 0 (63)

µt (ξ+bt −pt (xH t − ē)) = 0 (64)

ϕxH t + (1−ϕ)xLt = ē (65)

The Euler condition for the optimal savings in period t , on the other hand, reduces to

πt ≡ qt −β=βϕµt+1 ≥ 0 (66)

Let (x∗
H , x∗

L ) denote the first-best allocation. This solves

ϑu′(x∗
H ) = u′(x∗

L ) (67)

ϕx∗
H + (1−ϕ)x∗

L = ē (68)

and trivially satisfies x∗
H > ē > x∗

L and ∂x∗
H /∂ϑ > 0 > ∂x∗

L /∂ϑ. In particular, using the assumption u(x) =
log x, we get

x∗
H = ϑē

ϕϑ+1−ϕ and x∗
L = ē

ϕϑ+1−ϕ .
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Clearly, this allocation can be attained in equilibrium if and only if

pt =ϑu′(x∗
H ) and pt x∗

H ≤ ξ+bt .

Therefore, if we define

bbl i ss ≡ϑu′(x∗
H )x∗

H −ξ=ϑ−ξ,

we immediately have that bt ≥ bbli ss is sufficient for the borrowing constraint not to bind (µt = 0) and

the first best allocation to obtain.

And conversely, when bt < bbli ss , the first best allocation is unattainable, the borrowing constraint

binds, and the equilibrium yields

xH t = (b +ξ)ē

ϕ(b +ξ−1)+1
e, xLt = (ϕ+1)ē

ϕ(b +ξ−1)+1
, and µ= ϑ−b −ξ

b +ξ+φ−1
.

Using the definition of bbli ss , we can rewrite the above as

xH t = ē(bt −bbliss +ϑ)

ϕ(bt −bbliss +ϑ)+1−ϕ , xLt = ē

ϕ(bt −bbliss +ϑ)+1−ϕ , and µt = (bbliss −bt )

ϑ− (bbliss −bt )
,

which makes clear how the equilibrium allocation converges monotonically to the first-best counterpart,

and how µt converges monotonically to 0 from above, as bt converges to bbl i ss from below.

Using these results, we then also have the following closed-form solution for (V ,π) : for b ≥ bbli ss ,

π(b) = 0 and V (b) =Vbl i ss , where

Vbli ss ≡β
{
ϕϑu(x∗

H )+ (1−ϕ)u(x∗
L )

}=β{
v − (ϕϑ+1−ϕ) log(ϕϑ+1−ϕ)

}
and v ≡ (ϕϑ+1−ϕ) log(e); and for b < bbl i ss ,

π(b) =βϕ (bbliss −b)

ϑ− (bbliss −b)
> 0

and

V (b) =β{
v +ϕϑ log(ϑ+b −bbliss)− (1−ϕ+ϕϑ) log

(
ϕ(ϑ+b −bbliss)+1−ϕ)}

.

We therefore reach the following result:

Lemma 6. Suppose ξ<ϑ. There exists a threshold bbl i ss > 0, given by bbl i ss =ϑ−ξ, such that the following

properties hold for all b < bbl i ss :

π(b) > 0, π′(b) < 0, π′′(b) > 0,

V (b) <Vbli ss , V ′(b) > 0, V ′′(b) < 0.

For b ≥ bbli ss , on the other hand, π(b) = 0 and V (b) = Vbl i ss . Finally, a tighter financial friction, or lower

private collateral (lower ξ), increases bbli ss and uniformly raises both V (b) and π(b) for all b < bbl i ss .
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Proof. The properties of π and V with respect to b follow directly from their closed-form characteriza-

tion. And the effect of ξ follows from the fact that bbl i ss =ϑ−ξ along with the fact that, for any bbli ss and

any b < bbli ss , π and V are increasing in bbl i ss and otherwise invariant to ξ.

Consider now the problem introduced in Section 2.4, which as shown in Section 4.1 also character-

izes the optimal steady state. In particular, consider the following two objects:

bseign = argmaxπ(b)b

b∗ = argmax
b
Ω(b,λ)

whereΩ(b,λ) ≡V (b)+λπ(b)b and λ> 0. The following result can then be shown.

Lemma 7. π(b)b and Ω(b,λ) are strictly concave in b ∈ [0,bbl i ss] and their maxima satisfy at 0 < bsei g n <
b∗ < bbli ss .

Proof. Consider g (b) ≡π(b)b and note that

g ′(b) =π(b)+π′(b)b and g ′′(b) = 2π′(b)+π′′(b)b

Using the fact that π′′(b) =−2π′(b)
b+ξ , we get that

g ′′(b) = 2π′(b)
ξ

b +ξ < 0

which proves that g (b) ≡π(b)b is concave. Next, note that g ′(0) =βϕϑ−ξ
ξ > 0 and g ′(bbli ss) =π′(bbli ss)bbl i ss =

−βϕϑ−ξ
θ < 0. It follows that bsei g n is the unique solution to g ′(b) = 0 and is strictly between 0 and bbli ss .

Consider nowΩ(b,λ) ≡V (b)+λπ(b)b. Its concavity follows directly from the concavity of V (b), which

was established in the previous result, and the concavity of g (b) = π(b)b, which was just established. It

follows that b∗ is the unique solution to ∂Ω(b,λ)/∂b = 0. Furthermore, because g ′(bsei g n) = 0, g ′(bbl i ss) <
0, V ′(bsei g n) > 0, and V ′(bbl i ss) = 0, we have that ∂Ω(b,λ)/∂b > 0 at b = bsei g n and ∂Ω(b,λ)/∂b < 0 at

b = bbliss, and therefore that b∗ is strictly between bsei g n and bbliss.

This result echoes the properties we establish in Section 3 for the steady state. But because we now

have a simple closed-form characterization ofΩ, we can go a step further to study the comparative statics

of b∗ with respect to the underlying primitives. Using our closed-form solution for π and V along with

the fact bbliss = θ−ξ, we can show that

∂2Ω

∂b∂θ
= βϕ(1−ϕ)

(b +ξ)(ϕ(b +ξ)+1−ϕ)
+λ βϕξ

(b +ξ)2 > 0

Furthermore,
∂2Ω

∂b∂λ

∣∣∣∣
b=b∗

=λg ′(b∗) < 0
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by the fact that b∗ > bsei g n . Applying the Implicit Function Theorem (IFT), we then have that

∂b?

∂θ
> 0 and

∂b?

∂λ
< 0.

Finally, consider how b∗ varies with ξ. Note that

∂2Ω

∂b∂ξ
= ∂2V

∂b∂ξ
+λ ∂2g

∂b∂ξ

and ∂2V
∂b∂ξ = V ′′(b) < 0. But because ∂2g (b)

∂b∂ξ = βϕθ(b−ξ)
(β+ξ)2 changes sign with the position of b relative to ξ, the

effect of ξ on b∗ is generally ambiguous. In particular, we have found numerically that b∗ is inversely

U-shaped with respect to ξ.

Proposition 16. The optimal quantity of public debt increases with the size of the liquidity shocks (θ),

decreases with the value of fiscal space (λ), and is generally non-monotonic in the amount of private col-

lateral (ξ) .

Although b∗ can be decreasing in ξ, which means that more private collateral can crowd out the

government-provided collateral, there is no complete crowding out: an increase in ξ always increases

total collateral, b∗+ ξ.35 It then also follows that, at the optimal quantity of public debt, more private

collateral depresses the liquidity premium (∂π(b∗)
∂ξ < 0), whereas the converse is true with an aggravation

of liquidity needs (∂π(b∗)
∂ϑ > 0).

To conclude, these findings complement the intuitions developed in Section 2.4. Strictly speaking,

they do not apply to the steady state of the infinite-horizon model, because they treat λ as exogenous.

But we can use the government budget evaluated at the steady state to obtainλ as an increasing function

of b, an increasing function of g , and a decreasing function of π (and thereby a decreasing function of θ

and an increasing function of ξ). We can then readily translate the result to the steady-state level of debt,

modulo the replacement of λ with g . That is, the value of fiscal space is re-parameterized by g , but the

comparative statics with respect to ϑ and ξ go through.

35To see this, let z ≡ b +ξ and re-express V , π, andΩ as functions of z instead of b :

π(b) = π̃(z) ≡βϕϑ− z

z

V (b) = Ṽ (z) ≡β{
v +ϕϑ log(z)− (1−ϕ+ϕϑ) log(ϕz +1−ϕ}

Ω(b,λ) = Ω̃(z,λ) ≡ Ṽ (z)+λπ̃(z)(z −ξ)

Because Ṽ and π̃ are invariant to ξ, it is immediate that ∂2Ω̃
∂z∂ξ = −λπ̃′(z) > 0, which via the IFT implies that z∗ ≡

argmaxz Ω̃(z,λ) = b∗ + ξ increases with ξ. In fact, because the property that V and π are invariant to ξ conditional on z ap-

plies generally, so does the result that z∗ increases with ξ.
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