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Wetland emission and atmospheric sink 
changes explain methane growth in 2020

Shushi Peng1,2,3 ✉, Xin Lin4 ✉, Rona L. Thompson5, Yi Xi1,2, Gang Liu1,2, Didier Hauglustaine4, 
Xin Lan6,7, Benjamin Poulter8, Michel Ramonet4, Marielle Saunois4, Yi Yin9, Zhen Zhang10, 
Bo Zheng11,12 & Philippe Ciais4,13

Atmospheric methane growth reached an exceptionally high rate of 15.1 ± 0.4 parts 
per billion per year in 2020 despite a probable decrease in anthropogenic methane 
emissions during COVID-19 lockdowns1. Here we quantify changes in methane sources 
and in its atmospheric sink in 2020 compared with 2019. We find that, globally, total 
anthropogenic emissions decreased by 1.2 ± 0.1 teragrams of methane per year  
(Tg CH4 yr−1), fire emissions decreased by 6.5 ± 0.1 Tg CH4 yr−1 and wetland emissions 
increased by 6.0 ± 2.3 Tg CH4 yr−1. Tropospheric OH concentration decreased by 
1.6 ± 0.2 per cent relative to 2019, mainly as a result of lower anthropogenic nitrogen 
oxide (NOx) emissions and associated lower free tropospheric ozone during pandemic 
lockdowns2. From atmospheric inversions, we also infer that global net emissions 
increased by 6.9 ± 2.1 Tg CH4 yr−1 in 2020 relative to 2019, and global methane removal 
from reaction with OH decreased by 7.5 ± 0.8 Tg CH4 yr−1. Therefore, we attribute  
the methane growth rate anomaly in 2020 relative to 2019 to lower OH sink 
(53 ± 10 per cent) and higher natural emissions (47 ± 16 per cent), mostly from wetlands. 
In line with previous findings3,4, our results imply that wetland methane emissions  
are sensitive to a warmer and wetter climate and could act as a positive feedback 
mechanism in the future. Our study also suggests that nitrogen oxide emission trends 
need to be taken into account when implementing the global anthropogenic methane 
emissions reduction pledge5.

Methane (CH4) contributes 15–35% of the increase in radiative forc-
ing from greenhouse gases emitted by human activities6. The atmos-
pheric methane growth rate (MGR) has been high over the past 
decade, probably owing to the combined increases in fossil fuel and 
microbial sources7–11. In 2020, the MGR observed from surface sites 
of the NOAA Global Monitoring Laboratory (GML) network reached 
15.1 ± 0.4 parts per billion per year (ppb yr−1), the highest value from 
1984 to 2020 (Extended Data Fig. 1)12. The MGR was larger in the Northern  
than in the Southern Hemisphere, which suggests at first glance an 
increase of northern sources (Fig. 1). A similar, abnormally large, growth 
rate of 14.8 ppb yr−1 was also detected from total column concentration 
measurements (XCH4) by the Greenhouse Gases Observing Satellite 
(GOSAT; Supplementary Fig. 1). In the same year, the coronavirus pan-
demic led to a strong reduction of fossil fuel use, probably accompa-
nied by a drop of CH4 emissions by 10% from oil and gas extraction, 
according to reports from the International Energy Agency (IEA)1 and 
regional estimates of emissions over extraction basins, such as the 
Permian Basin13. The reduced combustion of carbon fuels14 and lower 

fire emissions15 also caused less carbon monoxide (CO) and nitrogen 
oxides (NOx) to be released to the atmosphere during the first half of 
202016,17. Both CO and NOx affect the atmospheric concentration of 
the hydroxyl radical (OH), which is the main sink of CH4. Even a small 
change in OH has a large impact on the MGR8. Meanwhile, the atmos-
pheric CH4 concentration also feeds back on the OH available to remove 
air pollutants such as CO and NOx (refs. 18,19). Reduced CO emissions 
should increase the concentration of OH, whereas reduced NOx emis-
sions should decrease OH (ref. 5), except in very polluted areas20. Thus, 
the net effect of COVID-19 emission changes on the MGR is uncertain.  
In addition, the year 2020 was exceptionally hot from early spring to 
late summer over northern Eurasia, a sensitive region for CH4 emis-
sions from biogenic sources such as wetlands, permafrost slumps and 
arctic lakes, which are expected to emit more CH4 as the temperature 
increases. Determining whether the high MGR anomaly in 2020 was 
due to less atmospheric removal resulting from a decrease in OH or 
to enhanced biogenic sources is key to developing our understanding 
of the complex interplay of the anthropogenic and natural drivers of 
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the methane budget required for the upcoming Global Stocktake of 
the Paris Agreement. Here we combined bottom-up and top-down 
approaches to understand the high MGR anomaly in 2020 relative to 
2019 and quantified anomalies in the surface sources and in the global 
atmospheric OH sink.

A bottom-up view of emission anomalies
First, we estimated the change in anthropogenic CH4 emissions in 
2020 from the fossil fuel, agriculture and waste sectors. To do so, we 
combined national greenhouse gas inventories (NGHGIs) submitted 
to the United Nations (UN) Framework Convention on Climate Change 
(UNFCCC) for Annex-I countries and the updated Emissions Database 
for Global Atmospheric Research (EDGAR) v6.0 inventory21 with new 
activity data from IEA22 and the Food and Agriculture Organization 

(FAO)23 of the UN for other countries (see Methods). In the category of 
fossil fuel extraction activities, global coal production decreased by 
4.6% in 2020 compared with 2019, and global oil production and natural 
gas production decreased by 7.9% and 3.8%, respectively22. We inferred 
a decrease of CH4 emissions from oil and natural gas (−3.1 Tg CH4 yr−1) 
and from coal mining (−1.3 Tg CH4 yr−1). In the agricultural sector,  
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Fig. 1 | Atmospheric MGRs of four latitudinal bands. a–d, The annual growth 
rate is derived from weekly average marine surface atmospheric methane 
concentrations at NOAA’s surface sites in the four latitudinal bands following a 
previous work45. The colours correspond to the annual growth rate: warm colours 
for higher growth rate and cool colours for lower growth rate. The grey shaded 
area shows the standard deviation of the annual growth rate.
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Fig. 2 | Wetland methane emissions and temperature and precipitation in 
the four latitudinal bands during the period 2000–2020. a–d, The black 
lines show the anomalies of average wetland emissions simulated from the two 
WEMs with four climate forcing. The temperature anomalies over wetlands, from 
CRU TSv4.05, ERA5 and MERRA2, and the precipitation anomalies over wetlands, 
from these three datasets and MSWEP, are shown in red and blue, respectively. 
The shaded area shows the standard deviation of 12 simulations for wetland 
emissions (eight from ORCHIDEE-MICT and four from LPJ-wsl, see Methods). 
The correlation coefficients between wetland emissions and temperature  
(red) and precipitation (blue) are also marked in the upper left of each panel, 
with *** for P < 0.001, ** for P < 0.01 and ns for not significant. The vertical dashed 
line marks the year of 2019 for reference.
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the global rice cultivation area slightly increased according to FAO23 by  
1% (+0.5 Tg CH4 yr−1), and an increase in livestock stock and slaughter 
numbers was reported as well (+1.6 Tg CH4 yr−1). Statistical data are not 
yet available for the waste sector for non-Annex-I countries, so we used 
the linear trends from EDGAR v6.0 for 2014–2018 to project a small global 
increase of +1.0 Tg CH4 yr−1 in 2020 compared with 2019. In summary, the 
anthropogenic CH4 emissions in 2020 decreased by 1.2 ± 0.1 Tg CH4 yr−1 
(± standard deviation, hereinafter) (Extended Data Fig. 2), which at 
steady state would lead only to a 0.4 ± 0.0 ppb yr−1 decrease of growth 
in the atmosphere relative to 2019, based on the conversion factor of 
2.75 Tg CH4 ppb−1 (ref. 24). This shows that the observed MGR anomaly of 
5.2 ± 0.7 ppb yr−1 in 2020 compared with 2019 (15.1 ± 0.4 ppb yr−1 of MGR 
in 2020 relative to 9.9 ± 0.6 ppb yr−1 of MGR in 2019) must be attributed 
to a change of natural emissions and/or OH sink.

We then estimated biogenic and fire CH4 emissions in 2020 from 
bottom-up models. The year 2020 was wetter than normal in northern 
and tropical regions (Supplementary Fig. 2), and extremely warm in 
northern Eurasia from early spring to late summer25 (Extended Data 
Fig. 3). Two satellite-based fire emission datasets, the Global Fire Assimi-
lation System (GFAS) and the Global Fire Emissions Database (GFED4.1s), 
consistently show that the global fire emissions in 2020 were lower by 
6.5 ± 0.1 Tg CH4 yr−1 than in 2019 (Extended Data Fig. 4). The southern 
tropical regions (30° S–0°) dominated the 2020 decrease in fire emis-
sions in both datasets, although in the USA there were fewer fires in the 
first half of the year but more in the second half of the year26. The GFAS data 
show that eastern Siberia had higher fire emissions in 2020 compared 
with 2019, by 0.4 Tg CH4 yr−1. This anomaly is related to the heatwave 
in the region (Extended Data Fig. 3)25, where the fire season advanced 
by two months in 2020 and began in May27. Globally, fire emissions 
appear to have dropped in 2020 compared with 2019, implying other  
processes must explain the large positive MGR anomaly in 2020.

We found that most wetland areas of the world were exposed to 
warmer and wetter conditions in 2020 than normal years (Fig. 2 and 

Extended Data Fig. 3). Northern wetlands were exposed to warmer 
temperatures (+0.43–0.58 °C) relative to 2019 as shown in Fig. 2 (Supple-
mentary Table 1). Precipitation over global wetlands28 had a 2–11% 
annual increase relative to 2019, mainly in the northern high latitudes 
and in the tropics (Supplementary Table 1). With increased precipi-
tation, an expansion of wetland area and more shallow water tables 
promoting emissions are expected. In addition, the earlier soil thaw 
and later soil freeze in 2020 resulted in a longer emission season in 
the high northern wetlands (Supplementary Fig. 3), and possibly in 
increased emissions from permafrost and thermokarst lakes. To quan-
tify wetland emissions from 2000 to 2020, we used two process-based 
wetland emission models (WEMs) forced by different climate datasets 
(see Methods). These models show that wetland emissions significantly 
and positively correlate with precipitation in the tropics (30° S–30° N)29 
and in the southern extra-tropics (90° S–30° S) and with both tem-
perature and precipitation in northern wetlands (30° N–90° N) (Fig. 2). 
Warmer and wetter wetlands over the Northern Hemisphere in 2020 
(Supplementary Table 1) increased emissions by 6.0 ± 2.5 Tg CH4 yr−1 
relative to 2019, dominating the net increase in global wetland emis-
sions (6.0 ± 2.3 Tg CH4 yr−1) in 2020 (Extended Data Fig. 5). The spread 
in the estimates of WEMs is mainly due to differences in wetland area 
related to differences in the precipitation forcing (Supplementary 
Fig. 2), and partly to model structure, even though the two models have 
similarities in parameterizations. With a 4% increase in precipitation 
over wetlands from the Multi-Source Weighted-Ensemble Precipitation 
(MSWEP) precipitation field, which merges gauge, satellite, and reanaly-
sis data to obtain accurate precipitation estimates30,31, wetland emis-
sions increased by 5.8 ± 1.5 Tg CH4 yr−1. Using root-zone soil moisture 
from Global Land Evaporation Amsterdam Model (GLEAM) v3.5a32 as a 
proxy to calculate the expansion of wetland areas in 2020 (see Methods),  
we found a larger wetland emission increase of 7.4–9.3 Tg CH4 yr−1, 
mainly in the Northern Hemisphere (Extended Data Fig. 5). Observed 
land liquid water mass change from the GRACE-FO satellite33 confirms 
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that wetlands water storage increased in the Northern Hemisphere. The 
increase in soil moisture over wetlands in the Northern Hemisphere 
simulated by the two WEMs is less than the liquid mass change observed 
from GRACE-FO, especially north of 30° N (Supplementary Figs. 4 and 5),  
suggesting that the expansion of Northern Hemisphere wetlands or 
the water table levels—and thus emissions in 2020—may be underes-
timated by WEMs. Overall, it is probable that wetland emissions made 
a dominant contribution to the soaring level of atmospheric methane 
in 2020, although there is uncertainty regarding the magnitude of  
the contribution, mainly owing to uncertainty in the precipitation data.

According to our ensemble of bottom-up estimates, an increase 
in wetland emissions (6.0 ± 2.3 Tg CH4 yr−1) does not fully explain  
the increased methane emissions (14.4 ± 2.0 Tg CH4 yr−1) inferred from 
the MGR anomaly (5.2 ± 0.7 ppb yr−1) between 2020 and 2019 under the 
assumption that the sink remains unchanged. Considering a decrease 
in anthropogenic emissions of 1.2 Tg CH4 yr−1 and fire emissions of 
6.5 Tg CH4 yr−1, even with our largest estimate of wetland emissions 
(9.4 Tg CH4 yr−1), the bottom-up budget is still not closed, revealing 
a missing source anomaly of more than 12.7 Tg CH4 yr−1, which must 
be attributed to a decrease in the atmospheric CH4 sink, to additional 
sources such as lakes or permafrost or to extra-wetland emissions that 
were missed by the WEMs.

Atmospheric constraints in 2020
The increase in wetland emissions is mainly located in the Northern  
Hemisphere, whereas the decrease in fire emissions is mainly in 

southern tropical regions, and so we expect that the MGR in the 
Northern Hemisphere should be higher than the MGR in the Southern 
Hemisphere. Indeed, the latitudinal averaged growth rate of methane 
observed from the surface sites confirms that the Northern Hemisphere 
had a higher growth rate than the Southern Hemisphere in 2020 (Supple-
mentary Fig. 6). The GOSAT data, which provide an MGR integrated 
over the whole column, and are thus much less sensitive to changes 
in the depth of the boundary layer at continental stations, also show 
a similar latitudinal pattern to the data from the surface sites, with a 
peak in the column growth rate at 10° N–50° N (Supplementary Fig. 7).

To quantify the spatial and temporal distribution of emission anoma-
lies in 2020 from atmospheric observations, we used a three-dimensional  
(3D) atmospheric inversion assimilating surface CH4 observations from 
a total of 103 stations (see Methods). Inversions have the advantage 
over bottom-up methods to match the observed MGR and gradients 
between all stations. We performed a 3Datmospheric inversion (INV) 
that prescribes changes in the OH concentration field, as simulated 
by a full chemistry transport model (LMDZ-INCA)34,35 with realistic 
CO, hydrocarbons and NOx anthropogenic emissions derived from 
gridded near-real-time fossil fuel combustion data that include 
lockdown-induced reductions in 202036,37. The chemistry transport 
model is driven by meteorology from ECMWF ERA5 data38 and biomass 
burning emissions from GFED4.1s15. Figure 3 shows a decrease in NOx 
emissions by 6% in 2020 relative to 2019, which is particularly apparent 
in the spring (March, April and May) when COVID-19 lockdown measures 
were imposed in many Northern Hemisphere countries (Extended Data 
Fig. 6). The decrease in global NOx emissions in 2020 relative to 2019 
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was seven times larger than the decreasing trend from 2005 to 2019  
(Supplementary Figs. 8 and 9). Both the global NOx emissions and 
satellite-derived tropospheric NO2 concentration from Ozone Moni-
toring Instrument (OMI) in 2020 were the lowest during the period 
2005–2020 (Supplementary Fig. 9). Our chemistry transport model 
LMDZ-INCA produced a globally averaged 1.6% decrease in annual 
tropospheric OH concentration in 2020 relative to 2019. The decrease 
in monthly tropospheric OH reached as high as 6% in April, May and 
June (Fig. 3d) over the Northern Hemisphere (0°–60° N; Extended Data 
Fig. 7), suggesting that the drop of NOx emissions in 2020 outweighed 
the effects of a decrease in anthropogenic and fire CO emissions (Supple-
mentary Fig. 10) and made OH lower. To independently verify this mod-
elled decrease of global OH in 2020, we used a 12-box model to infer 
changes in OH9,39 by simultaneously optimizing OH concentration and 
the emissions of two HFC and one HCFC species (HCFC-141b, HFC-32 
and HFC-134a) using atmospheric observations of these three species 
from the NOAA and AGAGE networks including the latest data for 2020. 
This diagnostic of OH is based on the premise that errors in the prior 
emissions should be largely independent between the three gases, but 
errors in OH will be correlated for all of them (see Methods). The box 
model shows a net decrease in OH of 1.6–1.8% in 2020 relative to 2019 
after the optimization. This estimate of the OH decrease in 2020 is 
independent and consistent with the full chemistry model simulation.

Prescribed with the decrease of OH and its spatial pattern from the  
chemistry transport model, the INV gives a global increase of 6.9 ±  
2.1 Tg CH4 yr−1 for surface emissions and a decrease of 7.5 ± 0.8 Tg CH4 yr−1 
for the weaker atmospheric CH4 sink. Considering the uncertainty of the 
decrease in OH and of the observed MGR12, the global increase in sur-
face emissions and decrease in the atmospheric CH4 sink contributed, 
respectively, 47 ± 16% and 53 ± 10% of the total positive MGR anomaly 
in 2020 relative to 2019 (Fig. 4). The global increase of surface emis-
sions is decomposed into an increase in the Northern Hemisphere of 
14.3 Tg CH4 yr−1, partly offset by a decrease in the Southern Hemisphere 
of 7.4 Tg CH4 yr−1 (Fig. 4a). The spatial pattern of emission anomalies 
produced by INV confirms enhanced emissions in northern North 
America, and western and eastern Siberia hinted by the bottom-up 
wetland models. In the Northern Hemisphere, our maximum bottom-up 
estimate of the increase in wetland emissions (11.2 Tg CH4 yr−1) is,  
however, smaller than the solution of INV. This suggests that either 
wetland models underestimated emissions, possibly because of under-
estimated soil water content (see above), too deep water table, missed 
emissions from small wetlands and/or other sources spatially collo-
cated with northern wetlands such as lake and pond emissions40, aqua-
culture emissions41 and thawing permafrost slump emissions42. The 
largest temperature anomaly of the past two decades was also indeed 
found over permafrost regions in 2020, particularly in Russia (Extended 
Data Fig. 3a and Supplementary Fig. 11), which could have increased 
methane emissions from upland permafrost soils43 and lakes, includ-
ing thermokarst lakes44. Estimation of changes in emissions from lakes 
(including reservoirs) and permafrost shows limited contributions 
from these two sources (<0.1 Tg CH4 yr−1) to fill the gap in the emission 
changes between bottom-up and top-down approaches, although with 
large uncertainties (Supplementary Information). We note that owing 
to the sparse atmospheric networks in Central and South Asia, Middle 
East, Africa and tropical South America (Supplementary Fig. 12), the 
inferred fluxes and therefore flux changes in these regions may have 
large uncertainties. The evaluations against independent observations 
revealed that emission changes over large latitudinal bands or at hemi-
spheric scales are robustly constrained (Supplementary Figs. 13–18). 
In addition, an extension of our 3D inversion and analyses to cover the 
period 2015–2020 also showed similar attribution of the MGR anomaly 
in 2020 (Supplementary Fig. 19).

In summary, our results show that an increase in wetland emissions, 
owing to warmer and wetter conditions over wetlands, along with 
decreased OH, contributed to the soaring methane concentration in 

2020. The large positive MGR anomaly in 2020, partly due to wetland 
and other natural emissions, reminds us that the sensitivity of these 
emissions to interannual variation in climate has had a key role in the 
renewed growth of methane in the atmosphere since 2006. The wetland 
methane–climate feedback is poorly understood, and this study shows 
a high interannual sensitivity that should provide a benchmark for 
future coupled CH4 emissions–climate models. We also show that the 
decrease in atmospheric CH4 sinks, which resulted from a reduction of 
tropospheric OH owing to less NOx emissions during the lockdowns, 
contributed 53 ± 10% of the MGR anomaly in 2020 relative to 2019. 
Therefore, the unprecedentedly high methane growth rate in 2020 
was a compound event with both a reduction in the atmospheric CH4 
sink and an increase in Northern Hemisphere natural sources. With 
emission recovery to pre-pandemic levels in 2021, there could be less 
reduction in OH. The persistent high MGR anomaly in 2021 hints at 
mechanisms that differ from those responsible for 2020, and thus 
awaits an explanation. Our study highlights that future improvements 
in air quality with reduced NOx emissions may increase the lifetime of 
methane in the atmosphere5, and therefore would require more reduc-
tion of methane emissions to achieve the target of Paris Agreement.
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Methods

Atmospheric methane growth rate (MGR)
We used the monthly time series of globally averaged marine surface 
atmospheric methane concentration covering the period July 1983–Dec 
2020 from NOAA’s Global Monitoring Laboratory (NOAA/GML)12,45. 
After the seasonal cycle of atmospheric methane is removed by the 
CCGvu programme46, the smoothed annual MGR shown in Fig. 1a is the 
MGR calculated for each specific month (for example, 1 March in that 
year to 1 March of the next year). The annual MGR in a given year is the 
increase in its abundance (mole fraction) from 1 January in that year to 
1 January of the next year12. The MGR anomaly in 2020 relative to 2019 
is defined as the difference in MGR between 2020 (15.1 ± 0.4 ppb yr−1) 
and 2019 (9.9 ± 0.6 ppb yr−1).

Anthropogenic methane emissions
For Annex-I countries that reported their national greenhouse gas 
inventories (NGHGIs) to UNFCCC and updated to 2020, we used the 
reported anthropogenic emissions (coal mining, oil and gas produc-
tion, agriculture and waste) of these 41 countries (https://unfccc.int/
ghg-inventories-annex-i-parties/2022). For other countries, emissions 
from coal mining, oil and gas production, agriculture and waste from 
2000 to 2018 were from EDGAR v6.021. We collected updated activity 
data from IEA22 and FAO23 for 2019 and 2020, and used the same emis-
sion factors as 2018 from EDGAR v6.0 to estimate methane emissions 
from coal mining, oil and gas production and agriculture sources in 
2019 and 2020. For oil and gas production and combustion, we col-
lected data from IEA22. For coal production, we collected coal produc-
tion data from IEA22 and corrected China’s production using data from 
the statistical yearbook for China47. For agricultural activity data, we 
used livestock data and rice cultivation area from FAO23. As waste activ-
ity data are not yet available for these countries, we used the linear 
trends of waste sector from EDGAR v6.0 for 2014–2018 to project the 
change in 2020 relative to 2019.

Global fire methane emissions
Both the Global Fire Emissions Database version 4.1 including small 
fire burned area (GFED4.1s)15 and the Global Fire Assimilation System 
(GFAS, https://atmosphere.copernicus.eu/global-fire-monitoring) 
from Copernicus Atmosphere Monitoring Service (CAMS) are used 
to derive monthly global fire methane emissions. GFED4.1s combines 
satellite information on fire activity and vegetation productivity to 
estimate the gridded monthly burned area and fire emissions, and 
has a spatial resolution of 0.25° × 0.25° (ref. 15). Note that GFED4.1s 
fire emissions in 2017 and 2020 are from the beta version. The GFAS 
assimilates fire radiative power (FRP) observations from satellites to 
produce daily estimates of biomass burning emissions. We aggregated 
the GFAS daily fire emissions into monthly emissions.

Wetland CH4 emissions simulated by models
We used two process-based WEMs to simulate global wetland CH4 emis-
sions: ORCHIDEE-MICT48 and LPJ-wsl4. These two WEMs simulate meth-
ane production and transport to the atmosphere through diffusion, 
ebullition and plant transportation based on a previously published 
framework49. To estimate the uncertainty of the change in wetland emis-
sions in 2020, four climate forcing datasets were used to drive the two 
WEMs. First, we downloaded two reanalysis climate datasets: hourly 
ERA5 with a spatial resolution of 0.25° × 0.25° from 1979 to 202038 and 
hourly MERRA2 with a spatial resolution of 0.5° × 0.625° from 1980 to 
202050. We resampled these two reanalysis datasets (air temperature, 
precipitation, humidity, downward shortwave and longwave radiation, 
surface air pressure and wind speed) into 1° × 1° and 0.5° × 0.5° resolu-
tions to drive ORCHIDEE-MICT and LPJ-wsl, respectively. These differ-
ent climate datasets had large differences in the change of precipitation 
in 2020 (Supplementary Fig. 2), so we also used monthly temperature 

and precipitation data from CRU TS v4.0551 and monthly precipitation 
from MSWEP v2.830,31 to calibrate the ERA5 climate forcing. For the CRU 
data, we added the difference in monthly temperature between CRU 
and ERA5 into the hourly ERA5 temperature field, and scaled the ratio 
of monthly precipitation between CRU and ERA5 into hourly ERA5 pre-
cipitation from 1979 to 2020. These scaled data, along with the other 
unchanged ERA5 fields, were used to drive the models. For the MSWEP 
precipitation data, we only scaled the ratio of monthly precipitation 
between MSWEP and ERA5 into hourly ERA5 precipitation, and these 
data along with the other ERA5 fields was used to drive the models. The 
wetland area dynamics were simulated by a TOPMODEL-based diagnos-
tic model that has successfully predicted the spatial distribution and 
seasonality of natural wetlands extents (dynamics by ORCHIDEE-MICT52 
and dynamics by LPJ-wsl53 are described previously). For wetland 
dynamics simulated in ORCHIDEE-MICT, two wetland maps were used to 
calibrate the parameters, one is the Regularly Flooded Wetlands static 
map (RFW)28 recording the long-term maximum wetland area used to 
calibrate the long-term maximum wetland extent for each grid cell, 
and the other is the satellite-based global inundation product GIEMS-2 
(Global Inundation Estimate from Multiple Satellites version 2)54  
used to calibrate the yearly maximum wetland extent for each grid 
cell. Details of wetland dynamics and the parameter calibration can 
be found in earlier works52,55. Thus, for wetland emissions simulated by 
ORCHIDEE-MICT, we obtained two sets of wetland dynamics for each 
climate forcing: in total, eight simulations with four climate forcing 
and two sets of calibrated parameters from RFW and GIEMS2. In addi-
tion, we also used monthly root zone soil moisture from GLEAM v3.5a 
products32 with TOPMODEL to calculate wetland area dynamics, and 
with wetland emission density per wetland area from ORCHIDEE-MICT 
plus ERA5 climate forcing, we derived an additional estimate of the 
change in wetland emissions in 2020.

AGAGE 12-box model and inversions
This model has four equal area boxes in the latitudinal direction 
(90° N–30° N, 30° N–0°, 0°–30° S, 30° S–90° S) and three boxes in 
the vertical representing the lower and upper troposphere, and strato-
sphere, and has been used extensively in atmospheric chemistry and 
lifetime studies39,56,57. Horizontal and vertical mixing rates between 
the boxes are provided monthly and are based on a climatology of 
empirical values. The model was integrated in two-day time steps using 
the fourth-order vectorized Runge–Kutta algorithm. Atmospheric 
chemistry is calculated at each time step using Arrhenius equations and 
includes OH reactions. Atmospheric inversions were performed using 
the adjoint of the AGAGE 12-box model and a quasi-Newton algorithm to 
find the best linear unbiased estimate (for details see a previous work)9.

OH was optimized by simultaneously solving for an annual scalar 
of OH concentration and the monthly emissions of two HFC species 
(HFC-134a and HFC-32) and HCFC-141b, on the basis of the premise 
that errors in the prior emissions of these species are probably not 
strongly correlated, whereas the impact of errors in the prior OH on the 
atmospheric concentrations of all three species will be fully correlated. 
The three species were chosen because they all are principally lost by 
oxidation by OH, have relatively short atmospheric lifetimes (14, 5.4 and 
9.4 years for HFC-134a, HFC-32 and HCFC-141b, respectively) and have 
had substantial emissions over the past decade58. Observations were 
used from the NOAA GML discrete sampling network, which has 12 sites 
globally with observation uncertainties of 0.2 ppt, 0.2 ppt and 0.1 ppt 
for the mean concentrations in the four latitudinal boxes for HFC-134a, 
HFC-32 and HCFC-141b, respectively. Prior emissions of HFC-134a and 
HFC-32 were based on UNFCCC reports and published data59 for China 
with seasonality based on ref. 60. Prior emissions of HCFC-141b were 
from ref. 58. Uncertainties of the two HFC species were based on previ-
ous estimates59 and for HCFC-141b an uncertainty of 50% was assumed. 
Prior OH concentrations were obtained from the Copernicus reanalysis 
product EAC461. With the prior emission uncertainties described above 
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and 10% prior uncertainty for OH concentration, the decrease in OH 
in 2020 relative to 2019 was 1.8%, and the posterior uncertainty of OH 
decreased by 55% compared with the prior uncertainty. We ran another 
sensitivity test using 10% prior uncertainty for OH and 25% uncertainty 
in the prior emissions of all species, and found a 1.6% decrease in OH in 
2020. An additional sensitivity test was run using a 5% prior uncertainty 
for the OH concentration, although it is too optimistic, and we found 
0.6% decrease in OH in 2020. The inversed magnitude of change in OH 
partly depends on the prior uncertainties of OH and F gases, but still 
offers OH change signal from independent F-gases observations. The 
posterior uncertainty in OH was estimated as the 1 standard deviation 
(1σ) of the results from a Monte Carlo ensemble of 100 inversions, with 
random errors added to the prior emissions and observations for each 
member of the ensemble.

OH concentrations simulated from a full chemistry transport 
model LMDZ-INCA
Global gridded OH concentrations were simulated by the full chem-
istry transport model LMDZ-INCA34,35. The anthropogenic emissions 
were derived from the Community Emissions Data System (CEDS) 
emission inventory up to 201936 and were further updated to 2020 on 
the basis of the sectoral CO2 emission changes estimated by Carbon 
Monitor37 to reflect the influence of COVID-19 on emission changes. 
The emissions data revealed the decline and rebound in anthropo-
genic emissions of NOx, the key precursor of OH, during and after the 
COVID-19 lockdowns around the world, which are broadly consist-
ent with different bottom-up and top-down estimates17,62,63. For the 
baseline simulations, each year, we used the monthly anthropogenic 
emissions compiled previously64. These emissions include the different 
sectors: energy, industrial, residential, transportation and waste. The 
agricultural soil emissions for NOx and NH3 are also included, and no 
natural soil emissions are added in complement to those emissions. 
The biomass burning emissions are from GFED4.1s15. The ORCHIDEE 
vegetation model is used to calculate offline the biogenic surface fluxes 
of isoprene, terpenes, acetone and methanol as described previously65. 
Natural emissions of dust and sea salt are computed using the 10-m 
wind components from ECMWF ERA5 reanalysis. The lightning NOx 
emissions are parameterized in the model on the basis of convective 
cloud heights as described in an earlier work66. On the basis of this 
parameterization, the total lightning NOx emissions for the baseline 
simulation are 5.5 Tg N yr−1. The meteorological fields used to drive 
the LMDZ-INCA model simulations were derived from the ECMWF 
ERA5 reanalysis dataset38. Our LMDZ-INCA simulations reproduced 
the monthly changes in mid-troposphere ozone and tropospheric NO2 
columns during the last decade up to 2020 (Supplementary Figs. 20  
and 21). Given that ozone and NOx have important roles in OH sources 
and sinks, the agreement of our LMDZ-INCA simulations with their 
observed values suggests that the simulations are representative of 
the global atmospheric chemical state including the variations of OH.

Atmospheric 3D inversion
A variational Bayesian inversion system, PYVAR-LMDZ-SACS, was used 
to infer weekly CH4 fluxes at a spatial resolution of 1.9° (in latitude) 
by 3.75° (in longitude) between July 2018 and May 2021. The system 
combines a variational data assimilation system Python Variational 
(PYVAR)67, an atmospheric transport model Laboratoire de Météoro-
logie Dynamique with zooming capability (LMDZ)68, and a Simplified 
Atmospheric Chemistry System (SACS)69. It has been widely applied 
to optimize sources and sinks of reactive atmospheric tracers such as 
CH4 and CO11,70–73, and has contributed to top-down inversions of the 
global CH4 budgets74,75. Technically, the inversion system finds the 
optimal state vector that statistically best fits both the observations 
y and a prior state vector xb weighted by their respective uncertain-
ties (defined as the covariance matrices B and R), through iteratively 
minimizing a cost function J defined as follows:

x x x x x x y x yJ B H R H( ) = 0.5( − ) ( − ) + 0.5( ( ) − ) ( ( ) − ) (1)b T −1 b T −1

where x is the state vector that contains the variables to be optimized, 
including (1) the time series of grid-point-based eight-day mean sur-
face emission fluxes of CH4, and (2) grid-point-based scaling factors 
for the initial column-mean concentrations of CH4. H represents the 
observation operator that projects the state vector into the observa-
tion space, and includes the chemistry-transport model (CTM) plus the 
convolution operation. Here, the CTM is composed of the atmospheric 
transport model LMDZ68 coupled with the SACS module69 that accounts 
for the chemical interactions between CH4 and OH. The transport model 
was nudged towards reanalysed horizontal wind fields from ERA5, and 
run in an offline mode with precomputed three-hourly transport mass 
fluxes. The minimization of the cost function is solved iteratively until 
a reduction of 99% in the gradient of the cost function is achieved.

The prior CH4 fluxes were compiled from existing bottom-up inven-
tories for different sectors. Detailed information is given in Supple-
mentary Table 2. The dataset incorporates recent development of 
emission inventories and current understanding of various CH4 sources 
and sinks, and has therefore been proposed for use as the priors for 
top-down CH4 inversions contributing to the next phase of the global 
methane budget assessment. The OH and O(1D) fields were prescribed 
from model outputs of the chemistry–climate model LMDZ-INCA with 
a full tropospheric photochemistry scheme34,76 (see Methods section 
‘OH concentrations simulated from a full chemistry transport model 
LMDZ-INCA’). The definition of prior errors (the B matrix) follows previ-
ous schemes11,70,71, that is, 70% for gridded CH4 emissions.

Observations of CH4 concentrations were obtained from ground- 
based greenhouse gas monitoring networks. For the set-up of observa-
tion constraints, surface in situ and flask–air CH4 observations from 
a total of 103 stations were assimilated, including 71 stations with 
their records extending to late 2020 or early 2021, mostly from the 
NOAA and ICOS networks (Supplementary Fig. 12). All these observa-
tions have been reported on, or linked to, the WMOX2004 calibration 
scale. With respect to continuous CH4 measurements, daily afternoon 
means (12:00–16:00 lst; lst, local sidereal time) were assimilated 
for stations below 1,000 m above sea level (a.s.l.) and morning means 
(0:00–4:00 lst) for those above 1,000 m a.s.l., owing to uncertainties 
in the model’s representation of boundary layer mixing and complex 
terrain mesoscale circulations77,78. The observation errors (the R matrix) 
combine measurement errors, representation errors and transport 
model errors that contribute to model–observation misfits. For surface 
CH4 observations, the synoptic variability at each station was used 
as a proxy for representation errors and transport model errors70,71, 
and was calculated as the residual standard deviation (RSD) of the 
de-trended and de-seasonalized observations. For the effect of OH vari-
ations on derived emission anomalies, we took the OH field simulated 
by a full chemistry transport model LMDZ-INCA (see Methods section 
‘OH concentrations simulated from a full chemistry transport model 
LMDZ-INCA’). Note that, to ensure the assumption of OH changes from 
LMDZ-INCA, the OH fields were not adjusted in 3D inversions.

To validate the robustness of our 3D CH4 inversion, we compared 
the prior and posterior model states with independent observations 
from multiple platforms (Supplementary Fig. 13), including the XCH4 
observations from the Total Carbon Column Observing Network 
(TCCON; Supplementary Figs. 14 and 15) and the CH4 vertical profiles 
from aircraft samplings (Supplementary Fig. 16) and AirCore cam-
paigns (Supplementary Figs. 17 and 18). The evaluation demonstrates 
the overall good performance of our 3D inversion in separating lati-
tudinal emissions and representing large-scale atmospheric mixing 
(horizontally and vertically). The underestimation of XCH4 increases in 
northern TCCON sites (Supplementary Figs. 14 and 15), as well as biases 
in the vertical CH4 difference within northern low-to-mid latitudes 
(Supplementary Fig. 16), may suggest uncertainties in flux inversion 



in the Northern Hemisphere, including those related to sparse data 
coverage (as shown in Supplementary Fig. 12 for certain regions) and 
inherent transport model errors (for example, biases in representing 
stratospheric processes) that are not resolved yet by the current model 
community.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All observation and model data that support the findings of this study 
are available as follows. The atmospheric methane growth rate data 
were obtained from https://gml.noaa.gov/ccgg/trends_ch4. The 
GOSAT satellite data were obtained from https://data2.gosat.nies.
go.jp/. The EDGAR v6.0 data were downloaded from https://edgar.
jrc.ec.europa.eu/country_profile. The hourly ERA5 reanalysis data 
were downloaded from https://www.ecmwf.int/en/forecasts/data-
set/ecmwf-reanalysis-v5. The precipitation data from MERRA2 were 
downloaded from https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2. 
The monthly temperature and precipitation data from CRU TS v4.05 
were downloaded from https://crudata.uea.ac.uk/cru/data/hrg/cru_
ts_4.05. The monthly precipitation from MSWEP v2.8 was downloaded 
from http://www.gloh2o.org/mswep. The GLEAM v3.5a root-zone soil 
moisture data were downloaded from https://www.gleam.eu. The RFW 
datasets are available at https://doi.org/10.1594/PANGAEA.892657. 
The land liquid water equilibrium from the GRACE-FO satellite was 
downloaded from https://gracefo.jpl.nasa.gov/data/grace-fo-data. 
The Global Fire Emissions Database version 4.1, including small fire 
burned area, was obtained from https://www.geo.vu.nl/~gwerf/GFED/
GFED4. The monthly global fire methane emissions from the Global 
Fire Assimilation System (GFAS) from Copernicus Atmosphere Moni-
toring Service (CAMS) were obtained from https://apps.ecmwf.int/
datasets/data/cams-gfas. The anthropogenic emissions from the CEDS 
emission inventory up to 2019 were downloaded from https://data.
pnnl.gov/dataset/CEDS-4-21-21. The gridded near-real-time fossil fuel 
combustion data that include lockdown-induced reductions in 2020 
were obtained from https://carbonmonitor.org. The tropospheric 
NO2 concentration data from OMI satellite measurements were down-
loaded from https://disc.gsfc.nasa.gov/datasets/OMNO2_003/sum-
mary. The NOAA and ICOS surface CH4 observations used in inversions 
are available at https://doi.org/10.15138/VNCZ-M766 and https://doi.
org/10.18160/KCYX-HA35, respectively; surface CH4 observations 
from other networks are available from the World Data Centre for 
Greenhouse Gases (https://gaw.kishou.go.jp) and the Global Environ-
mental Database (https://db.cger.nies.go.jp/ged/en/index.html). The 
TCCON XCH4 data were obtained from the TCCON Data Archive hosted 
by CaltechDATA at https://tccondata.org. The aircraft CH4 vertical 
profiles are from NOAA’s GGGRN (available at https://gml.noaa.gov/
ccgg/obspack), IAGOS (available at https://www.iagos.org) and JMA 
(available at https://gaw.kishou.go.jp). The CH4 measurements from 
NOAA’s AirCore campaigns are publicly available at https://gml.noaa.
gov/aftp/data/AirCore. The outputs of the two WEMs, LMDZ-INCA and 
atmospheric 3D inversions are publicly available at Figshare (https://
doi.org/10.6084/m9.figshare.21076171). Source data are provided 
with this paper.

Code availability
Code and documentation for ORCHIDEE (MICT v8.4.4) is publicly avail-
able at http://forge.ipsl.jussieu.fr/orchidee. Code and documentation 
for the LPJ-wsl model is publicly available at https://github.com/ben-
poulter/LPJ-wsl_v2.0.git. The LMDZ-INCA global model is part of the 
Institut Pierre Simon Laplace (IPSL) Climate Modelling Center Coupled 
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Extended Data Fig. 1 | Globally averaged methane concentrations and 
growth rates. Globally averaged monthly marine surface atmospheric methane 
concentrations from 1984 to 2020 from NOAA’s Global Monitoring Laboratory 
(NOAA/GML, data available at https://gml.noaa.gov/ccgg/trends_ch4/)12,45. 
Orange line shows the trend curve with the seasonal cycle removed. Brown line 
shows annual growth rate, and grey shaded area shows the uncertainty of 
annual growth rate. Note that the uncertainties of global averaged methane 
concentration and deseasonalized trend are 0.6–3 ppm and 0.4–1.5 ppm, 
respectively.

https://gml.noaa.gov/ccgg/trends_ch4/
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Extended Data Fig. 2 | Anthropogenic methane emissions from coal mining, 
oil and natural gas production, agriculture and waste. The black dots show 
anomaly of the total anthropogenic CH4 emissions. For Annex-I countries, we 
used national greenhouse gas inventories (NGHGIs) submitted to UNFCCC 
(https://unfccc.int/ghg-inventories-annex-i-parties/2022). For other countries, 
we used EDGAR v6.0 covering the period 2010–2018, and updated to 2020 using 
activity data from IEA and FAO with constant emission factors from EDGAR v6.0.

https://unfccc.int/ghg-inventories-annex-i-parties/2022


Extended Data Fig. 3 | Spatial patterns of difference in annual mean 
temperature, precipitation and soil moisture between 2020 and 2019.  
a, Annual mean temperature is from CRU TS v4.05 (https://crudata.uea.ac.uk/
cru/data/hrg/cru_ts_4.05/). b, Annual precipitation is from MSWEP (http://www.
gloh2o.org/mswep/). c, Annual mean soil moisture is from GLEAM v3.5a 
(https://www.gleam.eu/).

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/
http://www.gloh2o.org/mswep/
http://www.gloh2o.org/mswep/
https://www.gleam.eu/
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Extended Data Fig. 4 | Annual fire methane emissions from 2010 to 2020. 
a,b, Annual fire methane emissions derived from GFED4.1s (a) and GFAS (b) are 
shown for four latitudinal bands during the period 2010–2020. The horizontal 
dashed line indicates the average from 2010 to 2020. GFED4.1s is available at 
https://www.geo.vu.nl/~gwerf/GFED/GFED4/, and GFAS data are available at 
https://apps.ecmwf.int/datasets/data/cams-gfas/.

https://www.geo.vu.nl/~gwerf/GFED/GFED4/
https://apps.ecmwf.int/datasets/data/cams-gfas/


Extended Data Fig. 5 | Anomaly of wetland methane emissions in 2020 
relative to 2019. Differences in wetland methane emissions between 2020 and 
2019 are shown for four latitudinal bands from simulations of wetland emission 
models with different climate forcing data (CRU, ERA5, MERRA2 and MSWEP). 
ORCHIDEE-wet1 and ORCHIDEE-wet2 indicate that simulated wetland area 
dynamics are calibrated by RFW and GIEMS2, respectively. Note that changes  
in wetland emissions derived from wetland area calculated from GLEAM root 
zone soil moisture with CH4 flux density per wetland area simulated from ERA5 
are shown as “GLEAM” bars. The black dots show the anomaly of global wetland 
CH4 emissions.
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Extended Data Fig. 6 | Spatial patterns of difference in seasonal NOx emissions between 2020 and 2019. a–d, JFM, AMJ, JAS and OND indicate the three consecutive 
months from January to December. The CEDS emissions data are available at https://data.pnnl.gov/dataset/CEDS-4-21-21.

https://data.pnnl.gov/dataset/CEDS-4-21-21


Extended Data Fig. 7 | Spatial patterns of difference in seasonal tropospheric 
OH concentration between 2020 and 2019. a–d, The OH field is simulated by a 
full chemistry transport model (LMDz-INCA) prescribed with CO and NOx 

emissions derived from gridded near-real-time fossil fuel combustion data 
(see Methods). JFM, AMJ, JAS and OND indicate the three consecutive months 
from January to December.
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