An inequality for the solutions to an elliptic equation with weight
 Samy Skander Bahoura

To cite this version:

Samy Skander Bahoura. An inequality for the solutions to an elliptic equation with weight. 2023. hal-03917620

HAL Id: hal-03917620
https://hal.science/hal-03917620
Preprint submitted on 2 Jan 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

An inequality for the solutions to an elliptic equation with weight.

Samy Skander Bahoura*
Equipe d'Analyse Complexe et Géométrie.
Université Pierre et Marie Curie, 75005 Paris, France.

Abstract

We derive a local uniform boundedness result for an equation with weight having interior singularity and log-holder weight. Also we have, $\sup u=f(\inf u)$.

Keywords: C^{0} log-holder weight, interior singularity, a priori estimate, sup, inf, maximum principle, $\sup u=f(\inf u)$.

MSC: 35J60, 35B44, 35B45, 35B50

1 Introduction and Main Results

We set $\Delta=\partial_{11}+\partial_{22}$ on open bounded domain Ω of \mathbb{R}^{2}.
We consider the following equation:

$$
(P)\left\{\begin{aligned}
-\Delta u=\left(\frac{1}{-\log \frac{|x|}{2 d}}\right)^{\beta} V e^{u} & \text { in } \Omega \subset \mathbb{R}^{2}, \\
u \geq 0 & \text { in } \Omega
\end{aligned}\right.
$$

Here:

$$
\begin{gathered}
u \in L_{l o c}^{1}(\Omega) \\
0 \leq V \leq b, \quad \int_{\Omega}\left(\frac{1}{-\log \frac{|x|}{2 d}}\right)^{\beta} e^{u} d x \leq C
\end{gathered}
$$

and,

$$
d=\operatorname{diam}(\Omega), \beta \in(0,1), 0 \in \Omega
$$

The solutions of this equations are defined in the sense of distributions. Many authors studied this type of equations, on open sets of the two-dimensional space

[^0]also for surfaces, with or without the boundary condition, see [1-20], here we can find existence and compactness results.

Among other results, we can see in [12] the following important Theorem
Theorem \mathbf{A} (Brezis-Merle [12]).If $\left(u_{i}\right)$ is a sequence of solutions of problem (P) with $\left(V_{i}\right)$ satisfying $0<a \leq V_{i} \leq b<+\infty$ and without the term $\left(\frac{1}{-\log \frac{|x|}{2 d}}\right)^{\beta}$, then, for any compact subset K of Ω, it holds:
$\sup _{K} u_{i} \leq c$,
with c depending on a, b, K, Ω
One can find in [12] an interior estimate if we assume $a=0$, but we need an assumption on the integral of $e^{u_{i}}$, namely, we have:

Theorem B(Brezis-Merle [12]). For $\left(u_{i}\right)_{i}$ and $\left(V_{i}\right)_{i}$ two sequences of functions relative to the problem (P) without the term $\left(\frac{1}{-\log \frac{|x|}{2 d}}\right)^{\beta}$ and with,

$$
0 \leq V_{i} \leq b<+\infty \text { and } \int_{\Omega} e^{u_{i}} d y \leq C
$$

then for all compact set K of Ω it holds;

$$
\sup _{K} u_{i} \leq c,
$$

with c depending on b, C, K and Ω.
With more regularity on V one can have another type of estimates, a sup $+\inf$ type inequalities. Shafrir see [19], proved that, a sup $+C$ inf inequality for solutions the previous equation without assumption on the boundary and without the term $\left(\frac{1}{-\log \frac{|x|}{2 d}}\right)^{\beta}$ with V_{i} satisfying $0<a \leq V_{i} \leq b<+\infty$.

Here, we have:
Theorem 1.1 For sequences $\left(u_{i}\right)_{i}$ and $\left(V_{i}\right)_{i}$ of the Problem (P), for all compact set K of Ω, there exists a positive constant $c=c(b, \beta, C, K, \Omega)$ such that:

$$
\left\|u_{i}\right\|_{L^{\infty}(K)} \leq c(b, \beta, C, K, \Omega)
$$

Consider a positive number $M>0$, if we assume $u_{i} \geq-M$, we can extend the previous result to any function u bounded from below by $-M$. If we consider the function $v_{i}=u_{i}+M$, then v_{i} satisfies all the condition of the previous theorem.

Here we have, if we replace the condition $u_{i} \geq 0$ by $u_{i} \geq-M$:
Corollary 1.2 For sequences $\left(u_{i}\right)_{i}$ and $\left(V_{i}\right)_{i}$ of the first equation of (P), for all compact subset K of Ω we have:

$$
\left\|u_{i}\right\|_{L^{\infty}(K)} \leq c(b, \beta, C, M, K, \Omega)
$$

Remarks: 1) In general, the solutions of the previous equation are not C^{2}, but we can add assumptions on V to have C^{2} solutions and C^{2} compactness result. Indeed, if we add the conditions, $V_{i} \in C^{0, \epsilon}, \epsilon>0$ and $V_{i} \rightarrow V$ in the space $C^{0, \epsilon}, \epsilon>0$, one can reduce the problem to the Newtonian potential of radial distributions $f(x)=f(|x|)=\frac{V_{i}(0) e^{u_{i}(0)}}{\left(-\log \frac{|x|}{2 d}\right)^{\beta}} \eta(|x|)$ with η a radial cutoff function with compact support and $\eta \equiv 1$ in a neighborhood of 0 , see the book of Dautray-Lions, [16].
2) To have an example of (P), we can add the Dirichlet condition, but we must assume the domain regular and the solutions $u \in W_{0}^{1,1}(\Omega)$ and apply the maximum principle. Indeed, to apply the maximum principle, we need Agmon regularity theorem, the C^{2} regularity of the domain is neccessary in this case, or we apply the weak version of the maximum principle by mean of Kato's inequality, in this case the smoothness of the domain is needed. In all cases, we must assume that the domain is at least a C^{2} domain or smooth domain and the solutions more regular.

Here we consider a bounded domain not necessarily regular. And we assume that $\inf _{\Omega} u>-\infty$ or we add the assumption that $u \in C^{0}(\bar{\Omega})$. Also, one can consider the problem in a smallar domain $\Omega^{\prime} \subset \subset \Omega$.

In the previous corollary we have:

$$
\sup _{K} u \leq c\left(b, \beta, C, K, \Omega, \inf _{\Omega} u\right) .
$$

It is an estimate of the maximum on each compact subset of Ω of the solutions by mean of the infimum on Ω and b, β, C, K and Ω. (Also we have an a priori estimate).

Now, we assume $\Omega=B_{1}(0)$ the unit disk. Here, we have for any open domain $\Omega^{\prime} \subset \subset \Omega=B_{1}(0)$ with $0 \in \Omega^{\prime}$:

Corollary 1.3 For u solution of the first equation of (P) relative to V, for all compact subset K of Ω^{\prime} we have:

$$
\sup _{K} u \leq c\left(b, \beta, C, K, \Omega^{\prime}, \inf _{\Omega^{\prime}} u\right) .
$$

2 Proof of the Theorem

We have:

$$
u_{i} \in L_{l o c}^{1}(\Omega), \text { and }\left(\frac{1}{-\log \frac{|x|}{2 d}}\right)^{\beta} e^{u_{i}} \in L^{1}(\Omega)
$$

By solving a Dirichlet problem and if use Weyl Theorem and the Corollary 1 of Brezis and Merle paper, see [12] we have:

$$
e^{\left|u_{i}\right|} \in L_{l o c}^{k}(\Omega), \forall k \geq 1,
$$

By the local elliptic estimates of Agmon, see [1], we have:

$$
u_{i} \in W_{l o c}^{2, k}(\Omega) \cap C^{1, \epsilon}(\Omega), k>2
$$

We write:

$$
u_{i}=\sqrt{\left(-\log \frac{|x|}{2 d}\right)^{\beta}} \times \sqrt{\left(\frac{1}{-\log \frac{|x|}{2 d}}\right)^{\beta}} u_{i}
$$

We use the Holder inequality to have:

$$
\left\|u_{i}\right\|_{L^{1}\left(B\left(x_{0}, r_{0}\right)\right)} \leq\left\|\left(\sqrt{-\log \frac{|x|}{2 d}}\right)^{\beta}\right\|_{L^{2}\left(B\left(x_{0}, r_{0}\right)\right)} \times\left\|\left(\sqrt{\frac{1}{-\log \frac{|x|}{2 d}}}\right)^{\beta} u_{i}\right\|_{L^{2}\left(B\left(x_{0}, r_{0}\right)\right)},
$$

Thus,

$$
\begin{aligned}
& \left\|u_{i}\right\|_{L^{1}\left(B\left(x_{0}, r_{0}\right)\right)} \leq\left(\left\|\left(-\log \frac{|x|}{2 d}\right)^{\beta}\right\|_{L^{1}\left(B\left(x_{0}, r_{0}\right)\right)}\right)^{1 / 2} \times\left(\left\|\left(\frac{1}{-\log \frac{|x|}{2 d}}\right)^{\beta} u_{i}^{2}\right\|_{L^{1}\left(B\left(x_{0}, r_{0}\right)\right)}\right)^{1 / 2} \leq \\
& \quad \leq C \int_{B\left(x_{0}, r\right)}\left(\frac{1}{-\log \frac{|x|}{2 d}}\right)^{\beta} e^{u_{i}} d x \leq C .
\end{aligned}
$$

Thus,

$$
\left\|u_{i}\right\|_{L^{1}\left(B\left(x_{0}, r_{0}\right)\right)} \leq C .
$$

Thus we proved that u_{i} are locally uniformly bounded in L^{1}.
Since,

$$
\int_{\Omega}\left(\frac{1}{-\log \frac{|x|}{2 d}}\right)^{\beta} V_{i} e^{u_{i}} d x \leq C
$$

We have a convergence to a nonegative measure μ :

$$
\int_{\Omega}\left(\frac{1}{-\log \frac{|x|}{2 d}}\right)^{\beta} V_{i} e^{u_{i}} \phi d x \rightarrow \int_{\Omega} \phi d \mu, \forall \phi \in C_{c}(\Omega)
$$

We set S the following set:
$S=\left\{x \in \Omega, \exists\left(x_{i}\right) \in \Omega, x_{i} \rightarrow x, u_{i}\left(x_{i}\right) \rightarrow+\infty\right\}$.
We say that x_{0} is a regular point of μ if there function $\psi \in C_{c}(\Omega), 0 \leq \psi \leq 1$, with $\psi=1$ in a neighborhood of x_{0} such that:

$$
\begin{equation*}
\int \psi d \mu<4 \pi \tag{1}
\end{equation*}
$$

We can deduce that a point x_{0} is non-regular if and only if $\mu\left(x_{0}\right) \geq 4 \pi$.
A consequence of this fact is that if x_{0} is a regular point then:

$$
\begin{equation*}
\exists R_{0}>0 \text { such that one can bound }\left(u_{i}\right)=\left(u_{i}^{+}\right) \text {in } L^{\infty}\left(B_{R_{0}}\left(x_{0}\right)\right) . \tag{2}
\end{equation*}
$$

We deduce (2) from corollary 4 of Brezis-Merle paper, because we have proved that locally we have:

$$
\left\|u_{i}^{+}\right\|_{1}=\left\|u_{i}\right\|_{1} \leq c
$$

We denote by Σ the set of non-regular points.
Step 1: $\mathrm{S}=\Sigma$.
We have $S \subset \Sigma$. Let's consider $x_{0} \in \Sigma$. Then we have:

$$
\begin{equation*}
\forall R>0, \quad \lim \left\|u_{i}^{+}\right\|_{L^{\infty}\left(B_{R}\left(x_{0}\right)\right)}=+\infty \tag{3}
\end{equation*}
$$

Suppose contrary that:

$$
\left\|u_{i}^{+}\right\|_{L^{\infty}\left(B_{R_{0}}\left(x_{0}\right)\right)} \leq C
$$

Then:

$$
\begin{gathered}
\left\|e^{u_{i_{k}}}\right\|_{L^{\infty}\left(B_{R_{0}}\left(x_{0}\right)\right)} \leq C, \text { and } \\
\int_{B_{R}\left(x_{0}\right)}\left(\frac{1}{-\log \frac{|x|}{2 d}}\right)^{\beta} V_{i_{k}} e^{u_{i_{k}}}=o(1)
\end{gathered}
$$

For R small enough, which imply (1) for a function ψ and x_{0} will be regular, contradiction. Then we have (3). We choose $R_{0}>0$ small such that $B_{R_{0}}\left(x_{0}\right)$ contain only x_{0} as non -regular point. Σ. Let's $x_{i} \in B_{R}\left(x_{0}\right)$ scuh that:

$$
u_{i}^{+}\left(x_{i}\right)=\max _{B_{R}\left(x_{0}\right)} u_{i}^{+} \rightarrow+\infty .
$$

We have $x_{i} \rightarrow x_{0}$. Else, there exists $x_{i_{k}} \rightarrow \bar{x} \neq x_{0}$ and $\bar{x} \notin \Sigma$, i.e. \bar{x} is a regular point. It is impossible because we would have (2).

Since the measure is finite, if there are blow-up points, or non-regular points, $S=\Sigma$ is finite.

Step 2: $\Sigma=\{\emptyset\}$.
Now: suppose contrary that there exists a non-regular point x_{0}. We choose a radius $R>0$ such that $B_{R}\left(x_{0}\right)$ contain only x_{0} as non-regular point. Thus outside Σ we have local unfirorm boundedness of u_{i}, also in C^{1} norm. Also, we have weak ${ }^{*}$-convergence of V_{i} to $V \geq 0$ with $V \leq b$.

Let's consider (by a variational method):

$$
z_{i} \in W_{0}^{1,2}\left(B_{R}\left(x_{0}\right)\right)
$$

$$
-\Delta z_{i}=f_{i}=\left(\frac{1}{-\log \frac{|x|}{2 d}}\right)^{\beta} V_{i} e^{u_{i}} \text { in } B_{R}\left(x_{0}\right) \text {, et } z_{i}=0 \text { on } \partial B_{R}\left(x_{0}\right) .
$$

By a duality theorem:

$$
z_{i} \in W_{0}^{1, q}\left(B_{R}\right),\left\|\nabla z_{i}\right\|_{q} \leq C_{q}
$$

By the maximum principle, $u_{i} \geq z_{i}$ in $B_{R}\left(x_{0}\right)$.

$$
\begin{equation*}
\int\left(\frac{1}{-\log \frac{|x|}{2 d}}\right)^{\beta} e^{z_{i}} \leq \int\left(\frac{1}{-\log \frac{|x|}{2 d}}\right)^{\beta} e^{u_{i}} \leq C \tag{4}
\end{equation*}
$$

On the other hand, $z_{i} \rightarrow z$ a.e. (uniformly on compact sets of $B_{R}\left(x_{0}\right)-\left\{x_{0}\right\}$) with z solution of :

$$
-\Delta z=\mu \text { in } B_{R}\left(x_{0}\right), \text { et } z=0 \text { on } \partial B_{R}\left(x_{0}\right)
$$

Also, we have up to a subsequence, $z_{i} \rightarrow z$ in $W_{0}^{1, q}\left(B_{R}\left(x_{0}\right)\right), 1 \leq q<2$ weakly, and thus $z \in W_{0}^{1, q}\left(B_{R}\left(x_{0}\right)\right)$.

Then by Fatou lemma:

$$
\begin{equation*}
\int\left(\frac{1}{-\log \frac{|x|}{2 d}}\right)^{\beta} e^{z} \leq C \tag{5}
\end{equation*}
$$

As $x_{0} \in S$ is not regular point we have $\mu\left(\left\{x_{0}\right\}\right) \geq 4 \pi$, which imply that, $\mu \geq 4 \pi \delta_{x_{0}}$ and by the maximum principle in $W_{0}^{1,1}\left(B_{R}\left(x_{0}\right)\right)$ (obtainded by Kato's inequality)

$$
z(x) \geq 2 \log \frac{1}{\left|x-x_{0}\right|}+O(1) \text { if } x \rightarrow x_{0} .
$$

Because,

$$
z_{1} \equiv 2 \log \frac{1}{\left|x-x_{0}\right|}+2 \log R \in W_{0}^{1, s}\left(B_{R}\left(x_{0}\right)\right), 1 \leq s<2
$$

Thus,

$$
\left(\frac{1}{-\log \frac{|x|}{2 d}}\right)^{\beta} e^{z} \geq \frac{C}{\left|x-x_{0}\right|^{2}\left(-\log \frac{|x|}{2 d}\right)^{\beta}}, C>0
$$

Both in the cases $x_{0}=0$ and $x_{0} \neq 0$ we have because $\beta \in(0,1)$:

$$
\int_{B_{R}\left(x_{0}\right)}\left(\frac{1}{-\log \frac{|x|}{2 d}}\right)^{\beta} e^{z}=\infty
$$

But, by (5):

$$
\int\left(\frac{1}{-\log \frac{|x|}{2 d}}\right)^{\beta} e^{z} \leq C
$$

which is a contradiction.

References

[1] S. Agmon. Lectures on Elliptic Boundary Values Problems. Van Nostrand 1965.
[2] T. Aubin. Some Nonlinear Problems in Riemannian Geometry. SpringerVerlag, 1998.
[3] C. Bandle. Isoperimetric Inequalities and Applications. Pitman, 1980.
[4] Bahoura, S.S. About Brezis Merle problem with Lipschitz condition. ArXiv:0705.4004.
[5] Bartolucci, D. A "sup+Cinf" inequality for Liouville-type equations with singular potentials. Math. Nachr. 284 (2011), no. 13, 1639-1651.
[6] Bartolucci, D. A "sup+Cinf" inequality for the equation $-\Delta u=V e^{u} /|x|^{2 \alpha}$. Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), no. 6, 1119-1139.
[7] Bartolucci, D. A sup+inf inequality for Liouville type equations with weights. J. Anal. Math. 117 (2012), 29-46.
[8] Bartolucci, D. A sup \times inf-type inequality for conformal metrics on Riemann surfaces with conical singularities. J. Math. Anal. Appl. 403 (2013), no. 2, 571-579.
[9] Bartolucci, D. Tarantello. G. The Liouville equation with singular data: a concentration-compactness principle via a local representation formula, Journal of Differential Equations 185 (2002), 161-180.
[10] L. Boccardo, T. Gallouet. Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87 no 1, (1989), 149-169.
[11] H. Brezis, YY. Li and I. Shafrir. A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities. J.Funct.Anal. 115 (1993) 344-358.
[12] H. Brezis, F. Merle. Uniform estimates and Blow-up behavior for solutions of $-\Delta u=V(x) e^{u}$ in two dimension. Commun. in Partial Differential Equations, 16 (8 and 9), 1223-1253(1991).
[13] H. Brezis, W. A. Strauss. Semi-linear second-order elliptic equations in L1. J. Math. Soc. Japan 25 (1973), 565-590.
[14] W. Chen, C. Li. A priori estimates for solutions to nonlinear elliptic equations. Arch. Rational. Mech. Anal. 122 (1993) 145-157.
[15] C-C. Chen, C-S. Lin. A sharp sup+inf inequality for a nonlinear elliptic equation in \mathbb{R}^{2}. Commun. Anal. Geom. 6, No.1, 1-19 (1998).
[16] R. Dautray. J-L. Lions. Part 2, Laplace operator.
[17] YY. Li, I. Shafrir. Blow-up analysis for solutions of $-\Delta u=V e^{u}$ in dimension two. Indiana. Math. J. Vol 3, no 4. (1994). 1255-1270.
[18] YY. Li. Harnack Type Inequality: the method of moving planes. Commun. Math. Phys. 200,421-444 (1999).
[19] I. Shafrir. A sup + inf inequality for the equation $-\Delta u=V e^{u}$. C. R. Acad.Sci. Paris Sér. I Math. 315 (1992), no. 2, 159-164.
[20] G. Tarantello. A Harnack inequality for Liouville-type equation with Singular sources. Indiana University Mathematics Journal. Vol 54, No 2 (2005). pp 599-615.

[^0]: *e-mails: samybahoura@yahoo.fr, samybahoura@gmail.com

