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We derive a local uniform boundedness result for an equation with weight having interior singularity and log-holder weight. Also we have, sup u = f (inf u).

Introduction and Main Results

We set ∆ = ∂ 11 + ∂ 22 on open bounded domain Ω of R 2 .

We consider the following equation:

(P )            -∆u =    1 -log |x| 2d    β V e u in Ω ⊂ R 2 , u ≥ 0 in Ω.
Here:

u ∈ L 1 loc (Ω), 0 ≤ V ≤ b, Ω    1 -log |x| 2d    β e u dx ≤ C,
and,

d = diam(Ω), β ∈ (0, 1), 0 ∈ Ω
The solutions of this equations are defined in the sense of distributions. Many authors studied this type of equations, on open sets of the two-dimensional space also for surfaces, with or without the boundary condition, see [START_REF] Agmon | Lectures on Elliptic Boundary Values Problems[END_REF][START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF][START_REF] Bandle | Isoperimetric Inequalities and Applications[END_REF][START_REF] Bahoura | About Brezis Merle problem with Lipschitz condition[END_REF][START_REF] Bartolucci | sup+Cinf" inequality for Liouville-type equations with singular potentials[END_REF][START_REF] Bartolucci | sup+Cinf" inequality for the equation -∆u = V e u /|x| 2α[END_REF][START_REF] Bartolucci | A sup+inf inequality for Liouville type equations with weights[END_REF][START_REF] Bartolucci | A sup × inf-type inequality for conformal metrics on Riemann surfaces with conical singularities[END_REF][START_REF] Bartolucci | The Liouville equation with singular data: a concentration-compactness principle via a local representation formula[END_REF][START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF][START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF][START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF][START_REF] Brezis | Semi-linear second-order elliptic equations in L1[END_REF][START_REF] Chen | A priori estimates for solutions to nonlinear elliptic equations[END_REF][START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF][START_REF] Dautray | Part 2, Laplace operator[END_REF][START_REF] Yy | Blow-up analysis for solutions of -∆u = V e u in dimension two[END_REF][START_REF] Yy | Harnack Type Inequality: the method of moving planes[END_REF][START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF][START_REF] Tarantello | A Harnack inequality for Liouville-type equation with Singular sources[END_REF], here we can find existence and compactness results.

Among other results, we can see in [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] the following important Theorem Theorem A(Brezis-Merle [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]).If (u i ) is a sequence of solutions of problem (P ) with

(V i ) satisfying 0 < a ≤ V i ≤ b < +∞ and without the term    1 -log |x| 2d    β
, then, for any compact subset K of Ω, it holds:

sup K u i ≤ c,
with c depending on a, b, K, Ω One can find in [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] an interior estimate if we assume a = 0, but we need an assumption on the integral of e ui , namely, we have:

Theorem B(Brezis-Merle [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]).For (u i ) i and (V i ) i two sequences of functions relative to the problem (P ) without the term

   1 -log |x| 2d    β and with, 0 ≤ V i ≤ b < +∞ and Ω e ui dy ≤ C, then for all compact set K of Ω it holds; sup K u i ≤ c,
with c depending on b, C, K and Ω.

With more regularity on V one can have another type of estimates, a sup + inf type inequalities. Shafrir see [START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF], proved that, a sup +C inf inequality for solutions the previous equation without assumption on the boundary and without the term

   1 -log |x| 2d    β with V i satisfying 0 < a ≤ V i ≤ b < +∞.
Here, we have:

Theorem 1.1 For sequences (u i ) i and (V i ) i of the Problem (P ), for all compact set K of Ω, there exists a positive constant c = c(b, β, C, K, Ω) such that:

||u i || L ∞ (K) ≤ c(b, β, C, K, Ω),
Consider a positive number M > 0, if we assume u i ≥ -M , we can extend the previous result to any function u bounded from below by -M . If we consider the function v i = u i + M , then v i satisfies all the condition of the previous theorem.

Here we have, if we replace the condition u i ≥ 0 by u i ≥ -M :

Corollary 1.2 For sequences (u i ) i and (V i ) i of the first equation of (P ), for all compact subset K of Ω we have:

||u i || L ∞ (K) ≤ c(b, β, C, M, K, Ω).
Remarks: 1) In general, the solutions of the previous equation are not C 2 , but we can add assumptions on V to have C 2 solutions and C 2 compactness result. Indeed, if we add the conditions, V i ∈ C 0,ǫ , ǫ > 0 and V i → V in the space C 0,ǫ , ǫ > 0, one can reduce the problem to the Newtonian potential of

radial distributions f (x) = f (|x|) = V i (0)e ui(0)
log |x| 2d

β η(|x|) with η a radial cutoff function with compact support and η ≡ 1 in a neighborhood of 0, see the book of Dautray-Lions, [START_REF] Dautray | Part 2, Laplace operator[END_REF].

2) To have an example of (P ), we can add the Dirichlet condition, but we must assume the domain regular and the solutions u ∈ W 1,1 0 (Ω) and apply the maximum principle. Indeed, to apply the maximum principle, we need Agmon regularity theorem, the C 2 regularity of the domain is neccessary in this case, or we apply the weak version of the maximum principle by mean of Kato's inequality, in this case the smoothness of the domain is needed. In all cases, we must assume that the domain is at least a C 2 domain or smooth domain and the solutions more regular.

Here we consider a bounded domain not necessarily regular. And we assume that inf Ω u > -∞ or we add the assumption that u ∈ C 0 ( Ω). Also, one can consider the problem in a smallar domain Ω ′ ⊂⊂ Ω.

In the previous corollary we have:

sup K u ≤ c(b, β, C, K, Ω, inf Ω u).
It is an estimate of the maximum on each compact subset of Ω of the solutions by mean of the infimum on Ω and b, β, C, K and Ω. (Also we have an a priori estimate). Now, we assume Ω = B 1 (0) the unit disk. Here, we have for any open domain Ω ′ ⊂⊂ Ω = B 1 (0) with 0 ∈ Ω ′ : Corollary 1.3 For u solution of the first equation of (P ) relative to V , for all compact subset K of Ω ′ we have:

sup K u ≤ c(b, β, C, K, Ω ′ , inf Ω ′ u).

Proof of the Theorem

We have:

u i ∈ L 1 loc (Ω), and    1 -log |x| 2d    β e ui ∈ L 1 (Ω).
By solving a Dirichlet problem and if use Weyl Theorem and the Corollary 1 of Brezis and Merle paper, see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] we have:

e |ui| ∈ L k loc (Ω), ∀ k ≥ 1,
By the local elliptic estimates of Agmon, see [START_REF] Agmon | Lectures on Elliptic Boundary Values Problems[END_REF], we have:

u i ∈ W 2,k loc (Ω) ∩ C 1,ǫ (Ω), k > 2.
We write:

u i = (-log |x| 2d ) β ×    1 -log |x| 2d    β u i ,
We use the Holder inequality to have:

||u i || L 1 (B(x0,r0)) ≤ ||( -log |x| 2d ) β || L 2 (B(x0,r0)) ×||    1 -log |x| 2d    β u i || L 2 (B(x0,r0)) ,
Thus,

||u i || L 1 (B(x0,r0)) ≤ ||(-log |x| 2d ) β || L 1 (B(x0,r0)) 1/2 ×     ||    1 -log |x| 2d    β u 2 i || L 1 (B(x0,r0))     1/2 ≤ ≤ C B(x0,r)    1 -log |x| 2d    β e ui dx ≤ C.
Thus,

||u i || L 1 (B(x0,r0)) ≤ C.
Thus we proved that u i are locally uniformly bounded in L 1 .

Since,

Ω    1 -log |x| 2d    β V i e ui dx ≤ C,
We have a convergence to a nonegative measure µ:

Ω    1 -log |x| 2d    β V i e ui φdx → Ω φdµ, ∀ φ ∈ C c (Ω).
We set S the following set:

S = {x ∈ Ω, ∃ (x i ) ∈ Ω, x i → x, u i (x i ) → +∞}.
We say that x 0 is a regular point of µ if there function ψ ∈ C c (Ω), 0 ≤ ψ ≤ 1, with ψ = 1 in a neighborhood of x 0 such that:

ψdµ < 4π. (1)
We can deduce that a point x 0 is non-regular if and only if µ(x 0 ) ≥ 4π. A consequence of this fact is that if x 0 is a regular point then:

∃ R 0 > 0 such that one can bound (u i ) = (u + i ) in L ∞ (B R0 (x 0 )). (2) 
We deduce (2) from corollary 4 of Brezis-Merle paper, because we have proved that locally we have:

||u + i || 1 = ||u i || 1 ≤ c.
We denote by Σ the set of non-regular points.

Step 1: S = Σ. We have S ⊂ Σ. Let's consider x 0 ∈ Σ. Then we have:

∀ R > 0, lim ||u + i || L ∞ (BR(x0)) = +∞. (3) 
Suppose contrary that:

||u + i || L ∞ (BR 0 (x0)) ≤ C. Then: ||e ui k || L ∞ (BR 0 (x0)) ≤ C, and BR(x0)    1 -log |x| 2d    β V i k e ui k = o(1).
For R small enough, which imply (1) for a function ψ and x 0 will be regular, contradiction. Then we have (3). We choose R 0 > 0 small such that B R0 (x 0 ) contain only x 0 as non -regular point. Σ. Let's x i ∈ B R (x 0 ) scuh that:

u + i (x i ) = max BR(x0) u + i → +∞.
We have x i → x 0 . Else, there exists x i k → x = x 0 and x ∈ Σ, i.e. x is a regular point. It is impossible because we would have [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF].

Since the measure is finite, if there are blow-up points, or non-regular points, S = Σ is finite.

Step 2: Σ = {∅}. Now: suppose contrary that there exists a non-regular point x 0 . We choose a radius R > 0 such that B R (x 0 ) contain only x 0 as non-regular point. Thus outside Σ we have local unfirorm boundedness of u i , also in C 1 norm. Also, we have weak *-convergence of V i to V ≥ 0 with V ≤ b.

Let's consider (by a variational method):

z i ∈ W 1,2 0 (B R (x 0 )), -∆z i = f i =    1 -log |x| 2d    β V i e ui in B R (x 0 ), et z i = 0 on ∂B R (x 0 ).
By a duality theorem:

z i ∈ W 1,q 0 (B R ), ||∇z i || q ≤ C q . By the maximum principle, u i ≥ z i in B R (x 0 ).    1 -log |x| 2d    β e zi ≤    1 -log |x| 2d    β e ui ≤ C. (4) 
On the other hand, z i → z a.e. (uniformly on compact sets of B R (x 0 )-{x 0 }) with z solution of :

-∆z = µ in B R (x 0 ), et z = 0 on ∂B R (x 0 ).
Also, we have up to a subsequence, z i → z in W 1,q 0 (B R (x 0 )), 1 ≤ q < 2 weakly, and thus z ∈ W 1,q 0 (B R (x 0 )). Then by Fatou lemma:

   1 -log |x| 2d    β e z ≤ C. (5) 
As x 0 ∈ S is not regular point we have µ({x 0 }) ≥ 4π, which imply that, µ ≥ 4πδ x0 and by the maximum principle in W 1,1 0 (B R (x 0 )) (obtainded by Kato's inequality)

z(x) ≥ 2 log 1 |x -x 0 | + O(1) if x → x 0 .
Because, which is a contradiction.

z 1 ≡ 2 log 1 |x -x 0 | + 2 log R ∈ W 1,s 0 (B R (x 0 )), 1 ≤ s < 2.

  0 | 2log |x| 2d β , C > 0.Both in the cases x 0 = 0 and x 0 = 0 we have because β ∈ (0, 1):