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Abstract
Objective and subjective quality assessment is still a challenging problem in various image
processing tasks. For instance, in the context of image compression, most of the conducted
studies have focused on image datasets encoded using standard algorithms such as JPEG
and JPEG2000. In this paper, we propose to further investigate the quality assessment
issue in the presence of neural networks-based compressed images. More precisely, a new
database of compressed images has been firstly built using JPEG2000 standard as well as
four recent neural networks based coding schemes. Then, subjective experiments are per-
formed to obtain the mean opinion scores of the generated distorted images. Finally, an
extensive evaluation and analysis of objective image quality assessment metrics is achieved.
For instance, in addition to conventional and machine learning metrics, we have considered
different deep learning based models, which have been trained on our database. The new
subjective database with its associated mean opinion scores as well as the learned models are
publicly available at https://github.com/zakopz/NNCD-IQA-Database. The obtained results
show the interest of deep learning based metrics in the context of neural networks-based
compressed images.
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1 Introduction

Due to the continuous advances of display and acquisition technologies, huge amounts of
diverse visual data are generated every day, which constitute a major issue in terms of
storage and transmission. In this respect, many research works have been dedicated to the
design of efficient visual data compression methods [15, 19]. For instance, most of the
developed algorithms are devoted to lossy compression and aim at minimizing the distor-
tion of the reconstructed image at a given bitrate. In this context, it becomes necessary to
find appropriate quality metrics to assess the quality of the reconstructed images resulting
from the employed image compression method. However, most of the developed quality
assessment studies, conducted in the context of compressed images, have considered con-
ventional (i.e non-deep learning) coding techniques [61]. For this reason, the main objective
of this paper is to perform an extensive analysis of quality assessment problem in the case of
neural networks-based compressed images. Before summarizing our contributions, we will
first review recent neural networks-based image compression techniques as well as image
quality assessment related works.

1.1 Related works

Many research efforts have been devoted to image (resp. video) compression, and con-
tributed to various standardization activities such as JPEG and JPEG2000 [50] (resp. HEVC,
AV1 and VVC [14]). The above codecs rely on linear transforms which are either the Dis-
crete Cosine Transform (DCT) or the Discrete Wavelet Transform (DWT). However, such
linear transforms may not appear so efficient to process complex and non-linear data. For
this reason, deep learning-based compression algorithms have attracted a great attention in
the last years due to the advantages of Neural Networks (NN) in achieving accurate non-
linear approximation and enabling high level data description. An overview of image and
video compression with deep learning approaches is provided in [28, 31]. More precisely,
the developed NN-based algorithms consist generally of three main steps. First, a NN-based
analysis stage is performed to transform the input image into a compact representation. The
latter is then quantized and encoded. Finally, the inverse transform is achieved to obtain
the reconstructed image. This typical architecture is referred to as auto-encoder where the
network parameters are trained in an end-to-end manner [1, 4, 5, 8, 27, 40, 54]. It should
be noted here that the main differences between these methods are related to the employed
NN architecture and/or the retained loss function in the training phase. For instance, among
the existing architectures, the Convolutional Neural Network (CNN) and Fully Connected
Neural Network (FCNN) have been recently investigated for intra prediction in the context
of image and video coding [26, 42]. A hybrid method, where small (resp. large) blocks are
predicted using an FCNN (resp. a CNN) model, is proposed in [13]. Moreover, motivated
by the different advantages of transform coding schemes, other methods have been devel-
oped to improve DCT (Discrete Cosine Transform) and DWT-based coding schemes [2, 10,
29, 30]. Indeed, a DCT-based coding scheme using a CNN is used in [29]. In [2], a DWT is
first applied to the input image, and then, the generated subbands are fed into a CNN to pro-
duce the final detail coefficients. In [30], the authors propose to design a separable lifting
structure based wavelet transform using a CNN. While the latter method employs the CNN
for only the prediction stage, a fully nonlinear transform where prediction and update stages
are performed using an FCNN has been recently developed in [10]. This recent method has
also been made adaptive by taking into account the input image to be encoded.
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Since the developed methods are often dedicated to lossy compression, the quality assess-
ment of the reconstructed (i.e. decoded) images becomes an important step to evaluate the
performance of these deep learning based coding schemes. In fact, quality assessment is a
crucial step in various image processing tasks such as compression, restoration [59], inpaint-
ing [3], etc. Most importantly, in the context of image compression, the quality assessment
problem has been widely investigated in the case of JPEG and JPEG2000 encoded images.
In this context, the full-reference PSNR and SSIM metrics have been extensively used to
evaluate the performance of conventional image compression algorithms. Moreover, other
works have also been developed to design no-reference quality assessment metrics [44, 57,
58]. For example, in [58], a no-reference metric for JPEG compressed images based on DCT
coefficients distribution and PSNR estimation is proposed. Another method for JPEG2000
compressed images using natural scene statistics is developed in [44].

However, in the context of neural networks based image compression algorithms, the
latter are often evaluated in terms of PSNR and SSIM (or MS-SSIM). In addition to this
commonly used evaluation approach, there are very few works which have proposed to
conduct some subjective experiments [7, 32, 53, 55]. Indeed, in [32], the authors achieve
a pairwise comparison study with 10 observers to show the preference of their method
compared to JPEG standard and a neural network baseline method [54]. In [53], a single-
stimulus rating test with 25 observers is also performed to validate their coding approach
and show its preference over JPEG and JPEG2000 compression methods as well as the neu-
ral network baseline method [54]. A similar subjective evaluation was conducted in [7] to
show that MS-SSIM is better than MSE for optimizing an end-to-end learned compression
method. However, the latter works do not investigate the correlation between the obtained
Mean Opinion Scores (MOS) and the employed objective metrics (PSNR and MS-SSIM).
For this reason, Valenzise et al. have proposed to study in [55] the accuracy of classical met-
rics in predicting MOS for deep learning based compression methods. More precisely, using
a double stimulus rating test and 23 observers, they have considered 6 reference images and
4 image compression methods which are JPEG2000, BPG as well as two NN-based algo-
rithms [4, 54]. It has been concluded that conventional PSNR and SSIM metrics are not
appropriate to assess the quality of deep learning-based compressed images. A similar work
using 8 reference images and focusing on traditional objective quality assessment metrics
has also been presented in [52].

1.2 Limitations and contributions

Although great attention has been paid to Image Quality Assessment (IQA), there are still
some issues that need to be addressed. For instance, in the context of compressed images,
most of image quality assessment subjective studies have been conducted using JPEG and
JPEG2000 coding schemes. Moreover, the few recent works dedicated to QA in the case of
deep learning based compressed images (addressed in Section 1.1) have performed some
analysis with mainly non-deep learning based metrics. It should be noted here that, in
these recent works, the employed deep learning based compressed images are not publicly
available. Finally, the PSNR and SSIM metrics, often considered to assess the quality of
compressed images, were found to be less correlated with human opinion as discussed in
recent deep learning based image coding works [4, 11, 54].

For these reasons, the objective of this paper is to further investigate quality assessment
issue in the context of deep learning based image compression. More precisely, we first
propose to build a new Neural Networks-based Compressed image Database referred to as
NNCD-IQA. The distorted images, obtained with the standard JPEG2000 coding standard
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and some recent neural networks based compression algorithms, as well as their associ-
ated MOS are made publicly available. Moreover, compared to the previous subjective
studies [52, 55], the proposed database includes more reference images with recent NN
compression algorithms resulting in a larger dataset. It is worth pointing out that such new
subjective dataset presents a great interest to the research communities working both on the
development of IQA algorithms as well as the design of deep learning based compression
algorithms. Based on this database, we achieve an extensive evaluation of image quality
assessment metrics and analyse their correlation with the subjective quality scores. In this
respect, and unlike recent studies [52, 55] focusing on traditional IQA algorithms, we pro-
pose here to investigate new emerging IQA methods based on deep learning approaches. It
is important to note here that the corresponding models have been trained on our database,
which allows us to learn new models more adapted to the quality assessment of neural
networks-based compressed images.

The remainder of this paper is organized as follows. In Section 2, an overview of the
retained neural networks based image compression algorithms is provided. Then, the sub-
jective test methodology is described in Section 3. Finally, the objective IQAmetrics as well
as the experimental results are discussed in Section 4, and some conclusions are drawn in
Section 5.

2 Retained neural networks-based image compression algorithms

Since the focus of this paper is on the quality assessment of deep learning compressed
images, we propose to select one conventional image compression method, which is often
used as a comparison method, and four neural networks based compression methods. The
conventional method is the standard JPEG2000 coding scheme [51] whereas the neural
networks based ones are described in the following.

2.1 End-to-end learned image compressionmodels

This method, developed by Ballé et al. [4], is among the first developed end-to-end image
compression methods based on deep learning. Its block diagram is shown in Fig. 1.

Thus, the method consists of a nonlinear analysis transform ga , a uniform quantizer q and
a nonlinear synthesis transform gs . For the analysis and synthesis transforms, they are per-
formed using three convolutional layers and nonlinear activation functions. More precisely,
for the analysis (resp. synthesis) stage, each convolutional layer is followed by downsam-
pling (resp. upsampling) and generalized divisive normalization GDN (resp. inverse of
the generalized divisive normalization IGDN) operations. To optimize their network and
find the optimal parameters of the analysis and synthesis transforms, the authors use a
Rate-Distortion (R-D) loss function L given by

L = R + λD

= −E[log2(Pq)] + λE[d(x, x̂)] (1)

where Pq is the discrete probability distribution of the quantized vector, d(x, x̂) is the dis-
tortion (typically the Mean Square Error) between the original x and reconstructed images
x̂, λ controls the trade-off between the rate and distortion terms, and E[·] represents the
expectation operation approximated by average over a given training set of images. For opti-
mization purpose via gradient descent algorithm, Pq will be approximated by the density
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Fig. 1 Block diagram of the baseline end-to-end image compression algorithm [4]

function of ỹ (denoted by pỹ) which is obtained by replacing the quantizer with an additive
i.i.d uniform noise source. Based on this approximation of the quantized coefficient distri-
bution, and given a probability model pỹ, the loss function becomes suitable for stochastic
optimization.

The above architecture [4] has been then considered as a reference model in many other
deep learning based image compression algorithms [5, 8, 25, 47]. Among them, we retain
here the method proposed in [5]. The latter aims to extend the first model [4] by integrating a
hyperprior h that captures the spatial dependencies in the latent representation y. The block
diagram of this architecture is shown in Fig. 2.

In this extended architecture, ha and hs can be seen as an auxiliary autoencoder that
aims to estimate the probability distribution pỹ after decoding ẑ. In this respect, different

Fig. 2 Block diagram of the end-to-end image compression algorithm with a scale hyperprior [5]
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methods have been developed to model this distribution. More precisely, three variants
of this generic autoencoder (AE) architecture have been retained in this work. The first
approach uses a non-adaptive distribution model based on piecewise linear functions and is
referred to as factorized-prior model [5]. The second one, designated by hyperprior model
in [5], assumes a zero mean Gaussian distribution with standard deviation parameters σ 2.
The third approach corresponds to a more recent work where authors resort to a Gaussian
mixture model [8]. In what follows, these three NN based coding schemes will be designated
by AE-Factor [5], AE-Hyp-GM [5] and AE-Hyp-GMM [8], respectively.

2.2 Fully connected network for lifting based image coders

While the previous approaches as well as most of the developed neural networks based com-
pression methods are not suitable for lossy-to-lossless coding applications, a novel method
based on lifting schemes [49] has been recently developed in [10]. In this architecture,
shown in Fig. 3, the conventional predictors and update linear operators are replaced by
fully connected neural network (FCNN) models.

More precisely, three FCNN based prediction models, denoted by f
(HH)
j , f

(LH)
j , and

f
(HL)
j , are employed to generate the three detail wavelet subbands oriented diagonally,

vertically and horizontally. These FCNN models are learned by minimizing the energy (i.e
the �2-norm) of the detail coefficients. Then, an FCNN based update model, designated by
f

(LL)
j , is used to generate the approximation subband. The latter model is optimized by

minimizing the quadratic error between the approximation coefficients and those obtained
using an ideal low pass filter. More details regarding this approach can be found in [11].

3 Subjective study

In this section, we describe the conducted subjective experiment to build a new database
with MOS for quality assessment of neural networks based compressed images.

Fig. 3 Block diagram of the fully connected network based lifting coding scheme [11]
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3.1 Image database

Our database has been derived from 16 reference (i.e. uncompressed) images taken from the
standard Kodak PhotoCD dataset. The latter is composed of color pictures of size 768×512
with different foreground/background contents as it can be seen from some samples shown
in Fig. 4.

While other dataset images (such as CLIC and DIV2K) exist for training neural net-
works based compression models, it should be noted that the popular Kodak dataset has
been selected since it is often used to validate recent deep learning-based image coding
algorithms.

Based on these reference images, we applied the standard JPEG2000 image compression
algorithm as well as the four deep learning-based ones, described in Section 2, to gener-
ate the different distorted images. Moreover, and in order to generate different distortion
levels, the retained compression methods are performed at four bitrates (i.e four quality lev-
els). Since distortions are more visible at low and middle bitrates, the latter are set to 0.1,

Fig. 4 Some reference images taken from Kodak and used in our study
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0.2, 0.3, 0.4 bits per pixel (bpp). Some examples of compressed images are displayed in
Fig. 5. To further illustrate the distortion types obtained with conventional and recent neural
networks-based compression methods, Fig. 6 shows an example of decoded images at 0.2
bpp. As it can be seen from the cropped windows (shown on the right side of each decoded
image), JPEG2000 results in visual artefacts like blurring and ringing. While NN-based
compression methods allow to suppress the ringing artefacts, they may suffer from blurring
and smoothing effects.

It is worth noting that the created database is made publicly available. For instance, all of
the publicly available IQA databases (shown in Table 1) are generated using JPEG and/or
JPEG2000 compression methods (in addition to other distortion types such as noise, blur,
etc). However, the recent image quality assessment works devoted to deep learning based
compressed images (addressed in Section 1.1) are not public. Moreover, compared to these
recent subjective studies which are conducted with small datasets (6 reference images and
113 compressed ones in [55]; 8 reference images and 240 compressed ones in [52]), our
new database is larger and contains 336 images (16 reference and 320 compressed ones).

3.2 Test methodology

While single and double stimulus procedures have been widely used in the literature [22],
we propose in this paper to follow the second one during the subjective quality assess-
ment step. More specifically, we have selected Double Stimulus Impairment Scale (DSIS)
methodology [17] where a pair of images are displayed side-by-side with one of them
being the reference and the other one is the distorted. During the subjective experiments,
the observers are asked to evaluate the distorted image in comparison to the reference one
using a continuous linear impairment scale from 0 to 100. The scale is also marked with
five equally-spaced adjectives corresponding to the level of impairment. These five levels
from best (i.e 100) to worst (i.e 0) were imperceptible, perceptible but not annoying, slightly
annoying, annoying and very annoying. In our study, it has been observed that 7-8 seconds
are sufficient to provide a score to a given test image, resulting in a duration of around 40
minutes for the whole subjective evaluation process. The total number of observers partici-
pating in the subjective study is 21. The latter correspond mainly to naive subjects and few

Fig. 5 Examples of compressed images (at different quality levels)
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Fig. 6 Image distortions with JPEG2000 and NN based compression methods (at bitrate of 0.2 bits per pixel)

researchers with age ranging from 24 to 44 years. Before starting the subjective tests, a brief
introduction of the goal of the study followed by a short training session (of about 5 min-
utes) is presented to each observer. Note that the images used in the training are different
from those of the constructed subjective database. Moreover, the different images are ran-
domly displayed while ensuring that two consecutive test images do not correspond to the
same content. For each single test image, the observer provides an opinion score of the pic-
ture visual quality by moving a slider along a continuous graded quality scale. A screenshot
of the interface used in our experiments is shown in Fig. 7.

Table 1 Summary of publicly available IQA databases with compression distortions. Note that the new
dataset is highlighted in bold

Database No. of reference /
compressed images

Resolution No. of compression
methods/levels

NN-based
compression methods

LIVE [45] 29 / 344 768×512 2 / 8 0

TID2008 [38] 25 / 400 512×384 2 / 4 0

TID2013 [37] 25 / 500 512×384 2 / 5 0

CSIQ [24] 30 / 300 512×512 2 / 5 0

MICT [9] 14 / 196 768×512 2 / 7 0

MDID [48] 20 / 160 512×384 2 / 4 0

MCL-JCI [18] 50 / 5000 1920×1080 1 / 100 0

FG-IQA [60] 100 / 1200 723×480 1 / 3 0

NNCD-IQA 16 / 320 768×512 5 / 4 4
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Fig. 7 Subjective experiment interface

3.3 Subjective scores

Let us denote by Si,j the raw score assigned by the i-th observer to the j -th image. Thus,
by taking the average of the scores given by the N = 21 observers, we obtain the Mean
Opinion Score MOSj for each image with index number j :

MOSj = 1

N

N∑

i=1

Si,j (2)

Once the subjective scores are collected, a screening of observers was firstly performed for
outlier detection using the method described in the ITU-R-REC-BT.500-13 [17]. Following
this procedure, no outlier was detected.

Figure 8 illustrates the MOS distribution for all the tested images. Firstly, it can be seen
that the MOS histogram is close to a uniform distribution. Moreover, there are no values
at the extremities of the MOS scale especially at the higher end, depicting that none of the
compressed images is perceptually similar to the pristine one.

4 Performance evaluation

In this section, we evaluate the performance of various objective quality assessment metrics
when applied to the new neural networks based compressed image database.

4.1 Objective image quality assessmentmetrics

Unlike the recent works devoted to quality assessment of NN-based compressed images
which considered only conventional IQA metrics [52, 55], we propose here to cover a wide
range of metrics by investigating machine learning as well as recent deep learning based
metrics. In what follows, we will briefly describe these metrics.

Conventional metrics They include some popular metrics often used in IQA as well as
some recent ones. In addition to the most commonly used Peak Signal-to-Noise ratio
(PSNR) metric, we have considered the following ones:
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Fig. 8 Distribution of all mean opinion scores (MOS)

• Structure SIMilarity (SSIM) [56]: It is a widely used metric that measures the similarity
between a reference image and the tested one based on their structural information.

• Visual Information Fidelity (VIF) [43]: This measure is considered as a Human Visual
System (HVS) based method and aims to quantify the loss of image information to the
distortion process.

• Gabor Features-based Model (GFM) [36]: It is based on the exploitation of imaginary
part of Gabor filter to extract features from luminance components for both the ref-
erence and distorted images. The local similarity between these features for the two
images along with the chrominance components are then used in the prediction of the
final quality score.

• Perceptual image quality assessment using a Normalized Laplacian Pyramid (PIQA-
NLP) [23]: It is based on local luminance subtraction and local gain control obtained
after applying the Laplacian pyramid decomposition to images.

It should be noted here that these metrics belong to the class of Full-Reference (FR)
metrics which use the reference image to assess the quality of the tested one.

Machine Learning (ML)-based metrics Natural Scene Statistics (NSS) models followed
by training are among the ML-based metrics which are often used in IQA studies. These
metrics include:

• DIIVINE [35]: It aims to extract statistical features using Discrete Wavelet Transform
(DWT). Then, Support Vector Machine (SVM) followed by Support Vector Regression
(SVR) stages are used to predict the quality score of the tested image.

• BLIINDS-II [41]: It relies on a statistical model of local discrete cosine transform
(DCT) coefficients and employs a probabilistic predictive model to train the features
and predict the image quality.

• BRISQUE [33]: Unlike the two previous metrics where statistical features are extracted
from DCT and DWT domains, BRISQUE operates in the spatial domain, and then uses
SVM and SVR to predict the image quality score.

• NIQE [34]: Based on spatial domain NSS features, it consists in evaluating the image
quality based on a multivariate Gaussian (MVG) fitting model. While this method does
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not involve SVM and SVRmodules, it requires a training on pristine images to generate
the parameters of the MVG model.

It should also be noted here that these metrics belong to the class of No-Reference
(NR) metrics where the quality of a tested image is evaluated without using the
reference image.

Deep Learning (DL)-based metrics Recently, and motivated by the success of neural net-
works, deep learning based metrics have been developed. Among them, we have considered
the following ones.

• Blind Image Evaluator based on a Convolutional Neural Network (BIECON) [21]: A
CNN is used to estimate a local quality map followed by one hidden layer to regress
the extracted features into a subjective quality score.

• Region-Adaptive Deformable Network (RADN) [46]: It consists of a modified resid-
ual block, a patch-level attention one and a reference-oriented deformable convolution
block. The latter is performed on different non-overlapping patches and the final quality
score is obtained using a weighted average operation.

• Perceptual Image-Error Assessment through Pairwise Preference (PieAPP) [39]: A
pairwise-learning approach is developed to predict the perceptual error between an orig-
inal image and a tested one. A deep CNN is used to train an error estimation function
and produce the perceptual error score.

• Deep Image QuAlity Measure for FR IQA (DIQaM) [6]: The method uses a Convo-
lutional Neural Network (CNN) for feature extraction followed by a Fully Connected
Neural Network (FCNN) for regression, yielding the quality score prediction.

• Deep Image Quality Assessment Model (DeepQA) [20]: In this method, an error map
with the compressed image are fed into a deep convolutional network to generate a
sensitivity map. The product of this sensitivity map and the error map are then regressed
onto the subjective score.

• Ensemble of Gradient Boosting (EGB) based metric [16]: It is composed of two main
blocks. The first one uses VGG16 network to extract feature vector from the reference
and distorted images. Then, three gradient boosting regression models are considered
to produce the final quality score.

• Deep Image Structure and Texture Similarity (DISTS) index [12]: It firstly consists
in generating new representations of the reference and distorted images using CNN.
Then, a set of measurements that captures the appearance of different visual textures
and structural details are combined to produce an IQA score.

While BIECON is a NR-metric, the remaining DL based metrics are FR ones.

4.2 Analysis of objective quality metrics

Experimental setup While the conventional IQA metrics as well as the ML-based ones
can be easily tested since their implementations are publicly available, those of DL-based
metrics need more care since only the pre-trained models and the code for the test phase
are available. However, such models may not be appropriate for neural networks based
compressed image dataset and so should be fine-tuned. In this respect, significant efforts
have been made to perform the training phase and obtain the new models. To this end, and
for each DL-based metric, we have used the default setting parameters (number of epochs,
learning rate, optimizer) provided in its respective reference paper. It is important to note
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here that, in addition to the new database and MOS, the obtained trained models will also
be provided.

Moreover, for the ML and DL based metrics, 75% of the dataset is used for training while
the rest is used for testing. More precisely, since our new database is built from 16 reference
images, we have chosen to use 4-fold cross validation. This is achieved by dividing them
into four non-overlapping subsets where each test subset is composed of 4 reference images
(i.e 80 distorted images) and the remaining 12 reference images (i.e 240 distorted images)
are used for training.

Evaluation criteria In order to judge the performance of the objective metrics against our
benchmark subjective scores, we have used three different criteria. They are the Pear-
son Linear Correlation Coefficient (PLCC), Spearman Rank-Order Correlation Coefficient
(SROCC) and Kendall Rank-Order Correlation Coefficient (KROCC). Before evaluating
the correlation coefficients, a five-parameter logistic function, given by (3), is applied to the
predicted scores to take intro account for non-linear relation betweenMOS and the predicted
scores

f (x) = β1(
1

2
− 1

1 + eβ2(x−β3)
) + β4x + β5 (3)

where β1, β2, β3, β4 and β5 are the five model parameters which are obtained by minimizing
the mean square error between the MOS and the predicted scores.

Correlation results Tables 2, 3 and 4 provide the correlation values between the objective
scores and the subjective ones in terms of PLCC, SROCC and KROCC, respectively. It
should be noted that the two best metric values are highlighted in bold.

Thus, different observations can be made from these tables. First, regarding the conven-
tional IQA metrics, it can be seen that the widely used PSNR metric leads to the lowest

Table 2 Pearson Linear Correlation Coefficient of different IQA metrics with MOS

Category Metric JPEG2000 AE-Factor [5] AE-Hyp- AE-Hyp FCNN- Overall

GM [5] GMM [8] LS [10]

Classical PSNR 0.7856 0.7943 0.8206 0.8063 0.8478 0.8409

SSIM [56] 0.8127 0.9009 0.8971 0.9134 0.8444 0.8953

VIF [43] 0.8482 0.9018 0.8951 0.9016 0.8737 0.9061

GFM [36] 0.8749 0.9081 0.9292 0.9214 0.8992 0.9096

PIQA NLP [23] 0.8206 0.8777 0.8814 0.8939 0.8710 0.9012

ML-based BRISQUE [33] 0.7035 0.8418 0.8299 0.5683 0.7787 0.7862

DIIVINE [35] 0.5986 0.8126 0.8864 0.7162 0.8301 0.7271

BLIINDS-II [41] 0.8469 0.7664 0.7973 0.6543 0.7678 0.7313

NIQE [34] 0.9070 0.7552 0.7908 0.6912 0.5503 0.7712

DL-based RADN [46] 0.8690 0.8688 0.8767 0.9082 0.9395 0.8777

EGB [16] 0.7499 0.7563 0.7802 0.6712 0.8074 0.7152

BIECON [21] 0.8180 0.8189 0.8464 0.7566 0.7900 0.8494

DISTS [12] 0.8696 0.8288 0.8635 0.8615 0.8689 0.8475

PieApp [39] 0.9103 0.8635 0.8875 0.8727 0.9418 0.8958

DIQaM [6] 0.8720 0.9425 0.9388 0.9472 0.9338 0.9347

DeepQA [20] 0.9361 0.9365 0.9441 0.9635 0.9526 0.9461
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Table 3 Spearman Rank-order Correlation Coefficient of different IQA metrics with MOS

Category Metric JPEG2000 AE-Factor [5] AE-Hyp- AE-Hyp FCNN- Overall

GM [5] GMM [8] LS [10]

Classical PSNR 0.7758 0.8040 0.8058 0.8284 0.8355 0.8322

SSIM [56] 0.8091 0.8983 0.8903 0.9133 0.8496 0.8908

VIF [43] 0.8478 0.8938 0.8855 0.9049 0.8609 0.9013

GFM [36] 0.8824 0.9067 0.9222 0.9278 0.8987 0.9062

PIQA NLP [23] 0.8258 0.8783 0.8750 0.8922 0.8610 0.8966

ML-based BRISQUE [33] 0.6843 0.8272 0.7382 0.5037 0.7603 0.7780

DIIVINE [35] 0.6320 0.7978 0.8596 0.7088 0.8206 0.7211

BLIINDS-II [41] 0.8653 0.6794 0.7544 0.5419 0.7809 0.7224

NIQE [34] 0.9005 0.6875 0.7478 0.6456 0.4963 0.7608

DL-based RADN [46] 0.8487 0.8618 0.8478 0.8794 0.9199 0.8696

EGB [16] 0.7281 0.7610 0.7066 0.6441 0.7853 0.6923

BIECON [21] 0.8178 0.7963 0.7868 0.6816 0.7904 0.8372

DISTS [12] 0.8586 0.8154 0.8221 0.8419 0.8119 0.8412

PieApp [39] 0.9042 0.8699 0.8801 0.8507 0.9338 0.8956

DIQaM [6] 0.8483 0.9346 0.9191 0.9184 0.9206 0.9343

DeepQA [20] 0.9303 0.9265 0.9522 0.9463 0.9419 0.9451

correlation values while the recent GFM one presents higher correlations. Moreover, the
ML-based metrics have lower correlation values overall. Indeed, while some of them (espe-
cially BLIINDS-II and NIQE) can outperform some conventional metrics (like PSNR and

Table 4 Kendall Rank-Order Correlation Coefficient of different IQA metrics with MOS

Category Metric JPEG2000 AE-Factor [5] AE-Hyp- AE-Hyp FCNN- Overall

GM [5] GMM [8] LS [10]

Classical PSNR 0.5816 0.6071 0.6114 0.6190 0.6455 0.6384

SSIM [56] 0.5995 0.7192 0.7067 0.7411 0.6514 0.7091

VIF [43] 0.6481 0.7093 0.7156 0.7321 0.6723 0.7267

GFM [36] 0.6988 0.7232 0.7682 0.7589 0.7219 0.7325

PIQA NLP [23] 0.6313 0.6954 0.6908 0.7054 0.6683 0.7162

ML-based BRISQUE [33] 0.5317 0.6500 0.5625 0.3917 0.5958 0.5854

DIIVINE [35] 0.4773 0.6250 0.6917 0.5584 0.6125 0.5447

BLIINDS-II [41] 0.7030 0.5125 0.5792 0.4042 0.6458 0.5458

NIQE [34] 0.7612 0.5625 0.6208 0.4917 0.3958 0.5698

DL-based RADN [46] 0.6862 0.7000 0.6875 0.7417 0.7917 0.7051

EGB [16] 0.5778 0.5750 0.5375 0.4792 0.6042 0.5180

BIECON [21] 0.6487 0.6208 0.6250 0.5375 0.6417 0.6590

DISTS [12] 0.7320 0.6500 0.6917 0.6708 0.7000 0.6707

PieApp [39] 0.7670 0.7042 0.7208 0.6750 0.8250 0.7231

DIQaM [6] 0.6737 0.8000 0.7792 0.7750 0.7917 0.7821

DeepQA [20] 0.8070 0.7958 0.8458 0.8375 0.8208 0.7975
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SSIM) for JPEG2000 compressed images, ML-based metrics are generally less performant
than the conventional metrics for the DL compressed images. This suggests that this cat-
egory of metrics are not suitable for quality assessment in the context of neural networks
based image compression. This may be explained by the fact that these ML based metrics
belong to the class of NR IQA methods and so they are trained using only the distorted
images. Finally, using the DL based metrics, better correlation values are obtained. For
instance, DIQaM and DeepQAmetrics outperform all the other metrics and yield the highest
correlation values in overall.

In addition, Fig. 9 illustrates the scatter plots of all the considered metrics versus the
MOS. Ideally, for a good IQA method, the scatter plot should show good linearity, tight
clustering and a relatively uniform density along both axes. Our results show that the con-
ventional GFMmetric as well as the two FR DL based metrics DIQaM and DeepQA exhibit
high correlations withMOS.Moreover, DIQaM and DeepQA show better linear relationship
with respect to the MOS compared to the remaining metrics.

Finally, the best IQA metrics have been retained to evaluate their performance with
respect to the different quality levels of distorted images. More precisely, in addition to
the PSNR and SSIM metrics often used to assess the quality of deep learning based image
compression algorithms, we have considered VIF, GFM, PieAPP, DIQaM and DeepQA.
Figure 10 shows the correlation values of these metrics with respect to the four quality lev-
els. These plots confirm the results provided in the previous tables and show that DIQaM
and DeepQA outperform the other IQA metrics. Moreover, two main important observa-
tions can be made from this figure. First, while some of the classical FR metrics have led
to good correlation values in overall (around 0.9 as shown in Tables 2 and 3), it can be seen
from Fig. 10 that the DL-based metrics DeepQA, DIQaM and PieApp are more suitable than
the classical ones at low birtates (i.e higher distortion levels). Moreover, the curves obtained
with DIQaM and DeepQA show small variations of correlation values compared to other
curves such as those corresponding to PSNR and SSIM. This indicates that the performance
of the above DL based metrics are less sensitive to the coding rate (i.e quality level) and so
have the advantage to be more consistent.

4.3 Qualitative results

To confirm again the limitations of standards PSNR and SSIM metrics, often used in the
evaluation of deep learning based image compression algorithms, Fig. 11 illustrates some
reconstructed images with their associated PSNR, SSIM, GFM, DIQaM and DeepQA met-
rics as well as the MOS. For example, from the first row of Fig. 11, it can be observed
that the AE-Factor [5] method leads to better subjective reconstructed quality compared to
JPEG2000. However, the conventional PSNR and SSIM metrics obtained with JPEG2000
are higher than those obtained with the AE-Factor [5] method. Thus, these metrics are not
appropriate to show the relevance of the DL based compression method. Unlike PSNR and
SSIM, DIQaM and DeepQA show more coherent results well correlated with the human
perception.

4.4 Overall discussion

Based on the above results, we summarize here the main observations of the conducted
study and analysis. In fact, while the PSNR has poor correlation scores with all compression
methods, the SSIM leads to better results. However, the correlation coefficient of SSIM
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Fig. 9 Scatter plots of the different IQA metrics versus the MOS
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Fig. 10 PLCC Performance of IQA metrics with respect to the compression quality level

obtained with the JPEG2000 coding standard is much lower to those obtained with neural
networks-based compressed images. This gap is significantly reduced by the deep learning
based metrics (such as DeepQA) which leads to high correlation scores with JPEG2000
standard compression method as well as recent neural networks-based coding methods. This
confirms the interest of such deep learning based metric for assessing both traditional as
well as NN-based compressed images.

Moreover, it must be emphasized that the interest of deep learning based metrics with
respect to the conventional quality measures is much important at low compression quality
level. This suggests the strong need for deep learning based metrics for very low bitrate
coding application.

5 Conclusion and perspectives

In this paper, a new database of deep learning-based compressed images is built for qual-
ity assessment purpose. In this respect, in addition to the JPEG2000 compression standard,
four recent neural networks based coding methods have been considered while using dif-
ferent coding rates. Then, after performing the subjective experiments, different categories
of IQA metrics, including conventional, ML and DL based metrics, have been evaluated.
Our experiments confirm that the standard PSNR and SSIM metrics, often used in the con-
text of image and video coding, are not suitable for neural networks based compressed
images, and promising results are obtained with recent DL based metrics like DIQaM and
DeepQA.

It is worth pointing out that this new database with the subjective scores will allow
to advance the future research works of IQA community. Moreover, the trained models,
obtained with our neural networks based compressed database, will be of great interest to
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Fig. 11 Examples of reconstructed images with their associated MOS as well as some evaluated IQA metrics

researchers working on the design of neural networks-based image compression methods
and requiring to evaluate their compression methods using the DL based metrics retained in
this paper. As a future work, it would be interesting to develop a new deep learning based
metric for the quality assessment of neural networks-based compressed images.
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