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Objective and subjective quality assessment is still a challenging problem in various image processing tasks. For instance, in the context of image compression, most of the conducted studies have focused on image datasets encoded using standard algorithms such as JPEG and JPEG2000. In this paper, we propose to further investigate the quality assessment issue in the presence of neural networks-based compressed images. More precisely, a new database of compressed images has been firstly built using JPEG2000 standard as well as four recent neural networks based coding schemes. Then, subjective experiments are performed to obtain the mean opinion scores of the generated distorted images. Finally, an extensive evaluation and analysis of objective image quality assessment metrics is achieved. For instance, in addition to conventional and machine learning metrics, we have considered different deep learning based models, which have been trained on our database. The new subjective database with its associated mean opinion scores as well as the learned models are publicly available at https://github.com/zakopz/NNCD-IQA-Database. The obtained results show the interest of deep learning based metrics in the context of neural networks-based compressed images.

Introduction

Due to the continuous advances of display and acquisition technologies, huge amounts of diverse visual data are generated every day, which constitute a major issue in terms of storage and transmission. In this respect, many research works have been dedicated to the design of efficient visual data compression methods [START_REF] Hajihashemi | A novel high-efficiency holography image compression method, based on HEVC, wavelet, and nearest-neighbor interpolation[END_REF][START_REF] Kaaniche | Non separable lifting scheme with adaptive update step for still and stereo image coding[END_REF]. For instance, most of the developed algorithms are devoted to lossy compression and aim at minimizing the distortion of the reconstructed image at a given bitrate. In this context, it becomes necessary to find appropriate quality metrics to assess the quality of the reconstructed images resulting from the employed image compression method. However, most of the developed quality assessment studies, conducted in the context of compressed images, have considered conventional (i.e non-deep learning) coding techniques [START_REF] Zhang | Fine-grained quality assessment for compressed images[END_REF]. For this reason, the main objective of this paper is to perform an extensive analysis of quality assessment problem in the case of neural networks-based compressed images. Before summarizing our contributions, we will first review recent neural networks-based image compression techniques as well as image quality assessment related works.

Related works

Many research efforts have been devoted to image (resp. video) compression, and contributed to various standardization activities such as JPEG and JPEG2000 [START_REF] Taubman | High performance scalable image compression with EBCOT[END_REF] (resp. HEVC, AV1 and VVC [START_REF] Garcia-Lucas | Rate-distortion/complexity analysis of HEVC, VVC and AV1 video codecs[END_REF]). The above codecs rely on linear transforms which are either the Discrete Cosine Transform (DCT) or the Discrete Wavelet Transform (DWT). However, such linear transforms may not appear so efficient to process complex and non-linear data. For this reason, deep learning-based compression algorithms have attracted a great attention in the last years due to the advantages of Neural Networks (NN) in achieving accurate nonlinear approximation and enabling high level data description. An overview of image and video compression with deep learning approaches is provided in [START_REF] Liu | Deep learning-based video coding: a review and a case study[END_REF][START_REF] Ma | Image and video compression with neural networks: a review[END_REF]. More precisely, the developed NN-based algorithms consist generally of three main steps. First, a NN-based analysis stage is performed to transform the input image into a compact representation. The latter is then quantized and encoded. Finally, the inverse transform is achieved to obtain the reconstructed image. This typical architecture is referred to as auto-encoder where the network parameters are trained in an end-to-end manner [START_REF] Agustsson | Generative adversarial networks for extreme learned image compression[END_REF][START_REF] Ballé | End-to-end optimized image compression[END_REF][START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF][START_REF] Cheng | Learned image compression with discretized gaussian mixture likelihoods and attention modules[END_REF][START_REF] Li | Learning convolutional networks for content-weighted image compression[END_REF][START_REF] Rippel | Real-time adaptive image compression[END_REF][START_REF] Toderici | Full resolution image compression with recurrent neural networks[END_REF]. It should be noted here that the main differences between these methods are related to the employed NN architecture and/or the retained loss function in the training phase. For instance, among the existing architectures, the Convolutional Neural Network (CNN) and Fully Connected Neural Network (FCNN) have been recently investigated for intra prediction in the context of image and video coding [START_REF] Li | Fully connected network-based intra prediction for image coding[END_REF][START_REF] Schiopu | Macro-pixel prediction based on convolutional neural networks for lossless compression of light field images[END_REF]. A hybrid method, where small (resp. large) blocks are predicted using an FCNN (resp. a CNN) model, is proposed in [START_REF] Dumas | Context-adaptive neural network-based prediction for image compression[END_REF]. Moreover, motivated by the different advantages of transform coding schemes, other methods have been developed to improve DCT (Discrete Cosine Transform) and DWT-based coding schemes [START_REF] Ahanonu | Lossless image compression using reversible integer wavelet transforms and convolutional neural networks[END_REF][START_REF] Dardouri | Optimized lifting scheme based on a dynamical fully connected network for image coding[END_REF][START_REF] Liu | CNN-Based DCT-like transform for image compression[END_REF][START_REF] Ma | iWave: CNN-based wavelet-like transform for image compression[END_REF]. Indeed, a DCT-based coding scheme using a CNN is used in [START_REF] Liu | CNN-Based DCT-like transform for image compression[END_REF]. In [START_REF] Ahanonu | Lossless image compression using reversible integer wavelet transforms and convolutional neural networks[END_REF], a DWT is first applied to the input image, and then, the generated subbands are fed into a CNN to produce the final detail coefficients. In [START_REF] Ma | iWave: CNN-based wavelet-like transform for image compression[END_REF], the authors propose to design a separable lifting structure based wavelet transform using a CNN. While the latter method employs the CNN for only the prediction stage, a fully nonlinear transform where prediction and update stages are performed using an FCNN has been recently developed in [START_REF] Dardouri | Optimized lifting scheme based on a dynamical fully connected network for image coding[END_REF]. This recent method has also been made adaptive by taking into account the input image to be encoded.

Since the developed methods are often dedicated to lossy compression, the quality assessment of the reconstructed (i.e. decoded) images becomes an important step to evaluate the performance of these deep learning based coding schemes. In fact, quality assessment is a crucial step in various image processing tasks such as compression, restoration [START_REF] Zhang | Corrupted reference image quality assessment of denoised images[END_REF], inpainting [START_REF] Amirkhani | An objective method to evaluate exemplar-based inpainted images quality using Jaccard index[END_REF], etc. Most importantly, in the context of image compression, the quality assessment problem has been widely investigated in the case of JPEG and JPEG2000 encoded images. In this context, the full-reference PSNR and SSIM metrics have been extensively used to evaluate the performance of conventional image compression algorithms. Moreover, other works have also been developed to design no-reference quality assessment metrics [START_REF] Sheikh | No-reference quality assessment using natural scene statistics: JPEG2000[END_REF][START_REF] Wang | No-reference perceptual quality assessment of JPEG compressed images[END_REF][START_REF] Wang | No-reference image quality assessment for compressed images based on DCT coefficient distribution and PSNR estimation[END_REF]. For example, in [START_REF] Wang | No-reference image quality assessment for compressed images based on DCT coefficient distribution and PSNR estimation[END_REF], a no-reference metric for JPEG compressed images based on DCT coefficients distribution and PSNR estimation is proposed. Another method for JPEG2000 compressed images using natural scene statistics is developed in [START_REF] Sheikh | No-reference quality assessment using natural scene statistics: JPEG2000[END_REF].

However, in the context of neural networks based image compression algorithms, the latter are often evaluated in terms of PSNR and SSIM (or MS-SSIM). In addition to this commonly used evaluation approach, there are very few works which have proposed to conduct some subjective experiments [START_REF] Cheng | Perceptual quality study on deep learning based image compression[END_REF][START_REF] Minnen | Spatially adaptive image compression using a tiled deep network[END_REF][START_REF] Theis | Lossy image compression with compressive autoencoders[END_REF][START_REF] Valenzise | Quality assessment of deep learning-based image compression[END_REF]. Indeed, in [START_REF] Minnen | Spatially adaptive image compression using a tiled deep network[END_REF], the authors achieve a pairwise comparison study with 10 observers to show the preference of their method compared to JPEG standard and a neural network baseline method [START_REF] Toderici | Full resolution image compression with recurrent neural networks[END_REF]. In [START_REF] Theis | Lossy image compression with compressive autoencoders[END_REF], a singlestimulus rating test with 25 observers is also performed to validate their coding approach and show its preference over JPEG and JPEG2000 compression methods as well as the neural network baseline method [START_REF] Toderici | Full resolution image compression with recurrent neural networks[END_REF]. A similar subjective evaluation was conducted in [START_REF] Cheng | Perceptual quality study on deep learning based image compression[END_REF] to show that MS-SSIM is better than MSE for optimizing an end-to-end learned compression method. However, the latter works do not investigate the correlation between the obtained Mean Opinion Scores (MOS) and the employed objective metrics (PSNR and MS-SSIM). For this reason, Valenzise et al. have proposed to study in [START_REF] Valenzise | Quality assessment of deep learning-based image compression[END_REF] the accuracy of classical metrics in predicting MOS for deep learning based compression methods. More precisely, using a double stimulus rating test and 23 observers, they have considered 6 reference images and 4 image compression methods which are JPEG2000, BPG as well as two NN-based algorithms [START_REF] Ballé | End-to-end optimized image compression[END_REF][START_REF] Toderici | Full resolution image compression with recurrent neural networks[END_REF]. It has been concluded that conventional PSNR and SSIM metrics are not appropriate to assess the quality of deep learning-based compressed images. A similar work using 8 reference images and focusing on traditional objective quality assessment metrics has also been presented in [START_REF] Testolina | Performance evaluation of objective image quality metrics on conventional and learning-based compression artifacts[END_REF].

Limitations and contributions

Although great attention has been paid to Image Quality Assessment (IQA), there are still some issues that need to be addressed. For instance, in the context of compressed images, most of image quality assessment subjective studies have been conducted using JPEG and JPEG2000 coding schemes. Moreover, the few recent works dedicated to QA in the case of deep learning based compressed images (addressed in Section 1.1) have performed some analysis with mainly non-deep learning based metrics. It should be noted here that, in these recent works, the employed deep learning based compressed images are not publicly available. Finally, the PSNR and SSIM metrics, often considered to assess the quality of compressed images, were found to be less correlated with human opinion as discussed in recent deep learning based image coding works [START_REF] Ballé | End-to-end optimized image compression[END_REF][START_REF] Dardouri | Dynamic neural network for lossyto-lossless image coding[END_REF][START_REF] Toderici | Full resolution image compression with recurrent neural networks[END_REF].

For these reasons, the objective of this paper is to further investigate quality assessment issue in the context of deep learning based image compression. More precisely, we first propose to build a new Neural Networks-based Compressed image Database referred to as NNCD-IQA. The distorted images, obtained with the standard JPEG2000 coding standard and some recent neural networks based compression algorithms, as well as their associated MOS are made publicly available. Moreover, compared to the previous subjective studies [START_REF] Testolina | Performance evaluation of objective image quality metrics on conventional and learning-based compression artifacts[END_REF][START_REF] Valenzise | Quality assessment of deep learning-based image compression[END_REF], the proposed database includes more reference images with recent NN compression algorithms resulting in a larger dataset. It is worth pointing out that such new subjective dataset presents a great interest to the research communities working both on the development of IQA algorithms as well as the design of deep learning based compression algorithms. Based on this database, we achieve an extensive evaluation of image quality assessment metrics and analyse their correlation with the subjective quality scores. In this respect, and unlike recent studies [START_REF] Testolina | Performance evaluation of objective image quality metrics on conventional and learning-based compression artifacts[END_REF][START_REF] Valenzise | Quality assessment of deep learning-based image compression[END_REF] focusing on traditional IQA algorithms, we propose here to investigate new emerging IQA methods based on deep learning approaches. It is important to note here that the corresponding models have been trained on our database, which allows us to learn new models more adapted to the quality assessment of neural networks-based compressed images.

The remainder of this paper is organized as follows. In Section 2, an overview of the retained neural networks based image compression algorithms is provided. Then, the subjective test methodology is described in Section 3. Finally, the objective IQA metrics as well as the experimental results are discussed in Section 4, and some conclusions are drawn in Section 5.

Retained neural networks-based image compression algorithms

Since the focus of this paper is on the quality assessment of deep learning compressed images, we propose to select one conventional image compression method, which is often used as a comparison method, and four neural networks based compression methods. The conventional method is the standard JPEG2000 coding scheme [START_REF] Taubman | JPEG2000: Image Compression fundamentals, standards and practice[END_REF] whereas the neural networks based ones are described in the following.

End-to-end learned image compression models

This method, developed by Ballé et al. [START_REF] Ballé | End-to-end optimized image compression[END_REF], is among the first developed end-to-end image compression methods based on deep learning. Its block diagram is shown in Fig. 1.

Thus, the method consists of a nonlinear analysis transform g a , a uniform quantizer q and a nonlinear synthesis transform g s . For the analysis and synthesis transforms, they are performed using three convolutional layers and nonlinear activation functions. More precisely, for the analysis (resp. synthesis) stage, each convolutional layer is followed by downsampling (resp. upsampling) and generalized divisive normalization GDN (resp. inverse of the generalized divisive normalization IGDN) operations. To optimize their network and find the optimal parameters of the analysis and synthesis transforms, the authors use a Rate-Distortion (R-D) loss function L given by

L = R + λD = -E[log 2 (P q )] + λE[d(x, x)] (1) 
where P q is the discrete probability distribution of the quantized vector, d(x, x) is the distortion (typically the Mean Square Error) between the original x and reconstructed images x, λ controls the trade-off between the rate and distortion terms, and E[•] represents the expectation operation approximated by average over a given training set of images. For optimization purpose via gradient descent algorithm, P q will be approximated by the density function of ỹ (denoted by p ỹ) which is obtained by replacing the quantizer with an additive i.i.d uniform noise source. Based on this approximation of the quantized coefficient distribution, and given a probability model p ỹ, the loss function becomes suitable for stochastic optimization.

The above architecture [START_REF] Ballé | End-to-end optimized image compression[END_REF] has been then considered as a reference model in many other deep learning based image compression algorithms [START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF][START_REF] Cheng | Learned image compression with discretized gaussian mixture likelihoods and attention modules[END_REF][START_REF] Lee | Context adaptive entropy model for end-to-end optimized image compression[END_REF][START_REF] Sun | End-to-end learned image compression with fixed point weight quantization[END_REF]. Among them, we retain here the method proposed in [START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF]. The latter aims to extend the first model [START_REF] Ballé | End-to-end optimized image compression[END_REF] by integrating a hyperprior h that captures the spatial dependencies in the latent representation y. The block diagram of this architecture is shown in Fig. 2.

In this extended architecture, h a and h s can be seen as an auxiliary autoencoder that aims to estimate the probability distribution p ỹ after decoding ẑ. In this respect, different Fig. 2 Block diagram of the end-to-end image compression algorithm with a scale hyperprior [START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF] methods have been developed to model this distribution. More precisely, three variants of this generic autoencoder (AE) architecture have been retained in this work. The first approach uses a non-adaptive distribution model based on piecewise linear functions and is referred to as factorized-prior model [START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF]. The second one, designated by hyperprior model in [START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF], assumes a zero mean Gaussian distribution with standard deviation parameters σ 2 . The third approach corresponds to a more recent work where authors resort to a Gaussian mixture model [START_REF] Cheng | Learned image compression with discretized gaussian mixture likelihoods and attention modules[END_REF]. In what follows, these three NN based coding schemes will be designated by AE-Factor [START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF], AE-Hyp-GM [START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF] and AE-Hyp-GMM [START_REF] Cheng | Learned image compression with discretized gaussian mixture likelihoods and attention modules[END_REF], respectively.

Fully connected network for lifting based image coders

While the previous approaches as well as most of the developed neural networks based compression methods are not suitable for lossy-to-lossless coding applications, a novel method based on lifting schemes [START_REF] Sweldens | The lifting scheme: a custom-design construction of biorthogonal wavelets[END_REF] has been recently developed in [START_REF] Dardouri | Optimized lifting scheme based on a dynamical fully connected network for image coding[END_REF]. In this architecture, shown in Fig. 3, the conventional predictors and update linear operators are replaced by fully connected neural network (FCNN) models.

More precisely, three FCNN based prediction models, denoted by f

(H H ) j , f (LH ) j
, and

f (H L) j
, are employed to generate the three detail wavelet subbands oriented diagonally, vertically and horizontally. These FCNN models are learned by minimizing the energy (i.e the 2 -norm) of the detail coefficients. Then, an FCNN based update model, designated by f (LL) j

, is used to generate the approximation subband. The latter model is optimized by minimizing the quadratic error between the approximation coefficients and those obtained using an ideal low pass filter. More details regarding this approach can be found in [START_REF] Dardouri | Dynamic neural network for lossyto-lossless image coding[END_REF].

Subjective study

In this section, we describe the conducted subjective experiment to build a new database with MOS for quality assessment of neural networks based compressed images. 

Image database

Our database has been derived from 16 reference (i.e. uncompressed) images taken from the standard Kodak PhotoCD dataset. The latter is composed of color pictures of size 768 × 512 with different foreground/background contents as it can be seen from some samples shown in Fig. 4.

While other dataset images (such as CLIC and DIV2K) exist for training neural networks based compression models, it should be noted that the popular Kodak dataset has been selected since it is often used to validate recent deep learning-based image coding algorithms.

Based on these reference images, we applied the standard JPEG2000 image compression algorithm as well as the four deep learning-based ones, described in Section 2, to generate the different distorted images. Moreover, and in order to generate different distortion levels, the retained compression methods are performed at four bitrates (i.e four quality levels). Since distortions are more visible at low and middle bitrates, the latter are set to 0.1, Fig. 4 Some reference images taken from Kodak and used in our study 0.2, 0.3, 0.4 bits per pixel (bpp). Some examples of compressed images are displayed in Fig. 5. To further illustrate the distortion types obtained with conventional and recent neural networks-based compression methods, Fig. 6 shows an example of decoded images at 0.2 bpp. As it can be seen from the cropped windows (shown on the right side of each decoded image), JPEG2000 results in visual artefacts like blurring and ringing. While NN-based compression methods allow to suppress the ringing artefacts, they may suffer from blurring and smoothing effects.

It is worth noting that the created database is made publicly available. For instance, all of the publicly available IQA databases (shown in Table 1) are generated using JPEG and/or JPEG2000 compression methods (in addition to other distortion types such as noise, blur, etc). However, the recent image quality assessment works devoted to deep learning based compressed images (addressed in Section 1.1) are not public. Moreover, compared to these recent subjective studies which are conducted with small datasets (6 reference images and 113 compressed ones in [START_REF] Valenzise | Quality assessment of deep learning-based image compression[END_REF]; 8 reference images and 240 compressed ones in [START_REF] Testolina | Performance evaluation of objective image quality metrics on conventional and learning-based compression artifacts[END_REF]), our new database is larger and contains 336 images (16 reference and 320 compressed ones).

Test methodology

While single and double stimulus procedures have been widely used in the literature [START_REF] Korshunov | Subjective quality assessment database of HDR images compressed with JPEG XT[END_REF], we propose in this paper to follow the second one during the subjective quality assessment step. More specifically, we have selected Double Stimulus Impairment Scale (DSIS) methodology [START_REF]Methodology for the subjective assessment of the quality of television pictures[END_REF] where a pair of images are displayed side-by-side with one of them being the reference and the other one is the distorted. During the subjective experiments, the observers are asked to evaluate the distorted image in comparison to the reference one using a continuous linear impairment scale from 0 to 100. The scale is also marked with five equally-spaced adjectives corresponding to the level of impairment. These five levels from best (i.e 100) to worst (i.e 0) were imperceptible, perceptible but not annoying, slightly annoying, annoying and very annoying. In our study, it has been observed that 7-8 seconds are sufficient to provide a score to a given test image, resulting in a duration of around 40 minutes for the whole subjective evaluation process. The total number of observers participating in the subjective study is 21. The latter correspond mainly to naive subjects and few 

Subjective scores

Let us denote by S i,j the raw score assigned by the i-th observer to the j -th image. Thus, by taking the average of the scores given by the N = 21 observers, we obtain the Mean Opinion Score MOS j for each image with index number j :

MOS j = 1 N N i=1 S i,j (2) 
Once the subjective scores are collected, a screening of observers was firstly performed for outlier detection using the method described in the ITU-R-REC-BT.500-13 [START_REF]Methodology for the subjective assessment of the quality of television pictures[END_REF]. Following this procedure, no outlier was detected. Figure 8 illustrates the MOS distribution for all the tested images. Firstly, it can be seen that the MOS histogram is close to a uniform distribution. Moreover, there are no values at the extremities of the MOS scale especially at the higher end, depicting that none of the compressed images is perceptually similar to the pristine one.

Performance evaluation

In this section, we evaluate the performance of various objective quality assessment metrics when applied to the new neural networks based compressed image database.

Objective image quality assessment metrics

Unlike the recent works devoted to quality assessment of NN-based compressed images which considered only conventional IQA metrics [START_REF] Testolina | Performance evaluation of objective image quality metrics on conventional and learning-based compression artifacts[END_REF][START_REF] Valenzise | Quality assessment of deep learning-based image compression[END_REF], we propose here to cover a wide range of metrics by investigating machine learning as well as recent deep learning based metrics. In what follows, we will briefly describe these metrics.

Conventional metrics

They include some popular metrics often used in IQA as well as some recent ones. In addition to the most commonly used Peak Signal-to-Noise ratio (PSNR) metric, we have considered the following ones: • Structure SIMilarity (SSIM) [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF]: It is a widely used metric that measures the similarity between a reference image and the tested one based on their structural information. • Visual Information Fidelity (VIF) [START_REF] Sheikh | Image information and visual quality[END_REF]: This measure is considered as a Human Visual System (HVS) based method and aims to quantify the loss of image information to the distortion process. • Gabor Features-based Model (GFM) [START_REF] Ni | A gabor feature-based quality assessment model for the screen content images[END_REF]: It is based on the exploitation of imaginary part of Gabor filter to extract features from luminance components for both the reference and distorted images. The local similarity between these features for the two images along with the chrominance components are then used in the prediction of the final quality score. • Perceptual image quality assessment using a Normalized Laplacian Pyramid (PIQA- NLP) [START_REF] Laparra | Perceptual image quality assessment using a normalized laplacian pyramid[END_REF]: It is based on local luminance subtraction and local gain control obtained after applying the Laplacian pyramid decomposition to images. It should be noted here that these metrics belong to the class of Full-Reference (FR) metrics which use the reference image to assess the quality of the tested one.

Machine Learning (ML)-based metrics Natural Scene Statistics (NSS) models followed

by training are among the ML-based metrics which are often used in IQA studies. These metrics include:

• DIIVINE [START_REF] Moorthy | Blind image quality assessment: From natural scene statistics to perceptual quality[END_REF]: It aims to extract statistical features using Discrete Wavelet Transform (DWT). Then, Support Vector Machine (SVM) followed by Support Vector Regression (SVR) stages are used to predict the quality score of the tested image. • BLIINDS-II [START_REF] Saad | Blind image quality assessment: a natural scene statistics approach in the DCT domain[END_REF]: It relies on a statistical model of local discrete cosine transform (DCT) coefficients and employs a probabilistic predictive model to train the features and predict the image quality. • BRISQUE [START_REF] Mittal | No-reference image quality assessmentin the spatial domain[END_REF]: Unlike the two previous metrics where statistical features are extracted from DCT and DWT domains, BRISQUE operates in the spatial domain, and then uses SVM and SVR to predict the image quality score. • NIQE [START_REF] Mittal | Making a completely blind image quality analyzer[END_REF]: Based on spatial domain NSS features, it consists in evaluating the image quality based on a multivariate Gaussian (MVG) fitting model. While this method does not involve SVM and SVR modules, it requires a training on pristine images to generate the parameters of the MVG model. It should also be noted here that these metrics belong to the class of No-Reference (NR) metrics where the quality of a tested image is evaluated without using the reference image.

Deep Learning (DL)-based metrics

Recently, and motivated by the success of neural networks, deep learning based metrics have been developed. Among them, we have considered the following ones.

• Blind Image Evaluator based on a Convolutional Neural Network (BIECON) [START_REF] Kim | Fully deep blind image quality predictor[END_REF]: A CNN is used to estimate a local quality map followed by one hidden layer to regress the extracted features into a subjective quality score. • Region-Adaptive Deformable Network (RADN) [START_REF] Shi | Region-adaptive deformable network for image quality assessment[END_REF]: It consists of a modified resid- ual block, a patch-level attention one and a reference-oriented deformable convolution block. The latter is performed on different non-overlapping patches and the final quality score is obtained using a weighted average operation. • Perceptual Image-Error Assessment through Pairwise Preference (PieAPP) [START_REF] Prashnani | PieAPP: Perceptual image-error assessment through pairwise preference[END_REF]: A pairwise-learning approach is developed to predict the perceptual error between an original image and a tested one. A deep CNN is used to train an error estimation function and produce the perceptual error score. • Deep Image QuAlity Measure for FR IQA (DIQaM) [START_REF] Bosse | Deep neural networks for no-reference and full-reference image quality assessment[END_REF]: The method uses a Convo- lutional Neural Network (CNN) for feature extraction followed by a Fully Connected Neural Network (FCNN) for regression, yielding the quality score prediction. • Deep Image Quality Assessment Model (DeepQA) [START_REF] Kim | Deep learning of human visual sensitivity in image quality assessment framework[END_REF]: In this method, an error map with the compressed image are fed into a deep convolutional network to generate a sensitivity map. The product of this sensitivity map and the error map are then regressed onto the subjective score. • Ensemble of Gradient Boosting (EGB) based metric [START_REF] Hammou | EGB: Image Quality assessment based on ensemble of gradient boosting[END_REF]: It is composed of two main blocks. The first one uses VGG16 network to extract feature vector from the reference and distorted images. Then, three gradient boosting regression models are considered to produce the final quality score. • Deep Image Structure and Texture Similarity (DISTS) index [START_REF] Ding | Image quality assessment: Unifying structure and texture similarity[END_REF]: It firstly consists in generating new representations of the reference and distorted images using CNN. Then, a set of measurements that captures the appearance of different visual textures and structural details are combined to produce an IQA score.

While BIECON is a NR-metric, the remaining DL based metrics are FR ones.

Analysis of objective quality metrics

Experimental setup While the conventional IQA metrics as well as the ML-based ones can be easily tested since their implementations are publicly available, those of DL-based metrics need more care since only the pre-trained models and the code for the test phase are available. However, such models may not be appropriate for neural networks based compressed image dataset and so should be fine-tuned. In this respect, significant efforts have been made to perform the training phase and obtain the new models. To this end, and for each DL-based metric, we have used the default setting parameters (number of epochs, learning rate, optimizer) provided in its respective reference paper. It is important to note here that, in addition to the new database and MOS, the obtained trained models will also be provided. Moreover, for the ML and DL based metrics, 75% of the dataset is used for training while the rest is used for testing. More precisely, since our new database is built from 16 reference images, we have chosen to use 4-fold cross validation. This is achieved by dividing them into four non-overlapping subsets where each test subset is composed of 4 reference images (i.e 80 distorted images) and the remaining 12 reference images (i.e 240 distorted images) are used for training.

Evaluation criteria

In order to judge the performance of the objective metrics against our benchmark subjective scores, we have used three different criteria. They are the Pearson Linear Correlation Coefficient (PLCC), Spearman Rank-Order Correlation Coefficient (SROCC) and Kendall Rank-Order Correlation Coefficient (KROCC). Before evaluating the correlation coefficients, a five-parameter logistic function, given by (3), is applied to the predicted scores to take intro account for non-linear relation between MOS and the predicted scores

f (x) = β 1 ( 1 2 - 1 1 + e β 2 (x-β 3 ) ) + β 4 x + β 5 (3) 
where β 1 , β 2 , β 3 , β 4 and β 5 are the five model parameters which are obtained by minimizing the mean square error between the MOS and the predicted scores.

Correlation results

Tables 2, 3 and 4 provide the correlation values between the objective scores and the subjective ones in terms of PLCC, SROCC and KROCC, respectively. It should be noted that the two best metric values are highlighted in bold. Thus, different observations can be made from these tables. First, regarding the conventional IQA metrics, it can be seen that the widely used PSNR metric leads to the lowest correlation values while the recent GFM one presents higher correlations. Moreover, the ML-based metrics have lower correlation values overall. Indeed, while some of them (especially BLIINDS-II and NIQE) can outperform some conventional metrics (like PSNR and SSIM) for JPEG2000 compressed images, ML-based metrics are generally less performant than the conventional metrics for the DL compressed images. This suggests that this category of metrics are not suitable for quality assessment in the context of neural networks based image compression. This may be explained by the fact that these ML based metrics belong to the class of NR IQA methods and so they are trained using only the distorted images. Finally, using the DL based metrics, better correlation values are obtained. For instance, DIQaM and DeepQA metrics outperform all the other metrics and yield the highest correlation values in overall.

In addition, Fig. 9 illustrates the scatter plots of all the considered metrics versus the MOS. Ideally, for a good IQA method, the scatter plot should show good linearity, tight clustering and a relatively uniform density along both axes. Our results show that the conventional GFM metric as well as the two FR DL based metrics DIQaM and DeepQA exhibit high correlations with MOS. Moreover, DIQaM and DeepQA show better linear relationship with respect to the MOS compared to the remaining metrics.

Finally, the best IQA metrics have been retained to evaluate their performance with respect to the different quality levels of distorted images. More precisely, in addition to the PSNR and SSIM metrics often used to assess the quality of deep learning based image compression algorithms, we have considered VIF, GFM, PieAPP, DIQaM and DeepQA. Figure 10 shows the correlation values of these metrics with respect to the four quality levels. These plots confirm the results provided in the previous tables and show that DIQaM and DeepQA outperform the other IQA metrics. Moreover, two main important observations can be made from this figure. First, while some of the classical FR metrics have led to good correlation values in overall (around 0.9 as shown in Tables 2 and3), it can be seen from Fig. 10 that the DL-based metrics DeepQA, DIQaM and PieApp are more suitable than the classical ones at low birtates (i.e higher distortion levels). Moreover, the curves obtained with DIQaM and DeepQA show small variations of correlation values compared to other curves such as those corresponding to PSNR and SSIM. This indicates that the performance of the above DL based metrics are less sensitive to the coding rate (i.e quality level) and so have the advantage to be more consistent.

Qualitative results

To confirm again the limitations of standards PSNR and SSIM metrics, often used in the evaluation of deep learning based image compression algorithms, Fig. 11 illustrates some reconstructed images with their associated PSNR, SSIM, GFM, DIQaM and DeepQA metrics as well as the MOS. For example, from the first row of Fig. 11, it can be observed that the AE-Factor [START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF] method leads to better subjective reconstructed quality compared to JPEG2000. However, the conventional PSNR and SSIM metrics obtained with JPEG2000 are higher than those obtained with the AE-Factor [START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF] method. Thus, these metrics are not appropriate to show the relevance of the DL based compression method. Unlike PSNR and SSIM, DIQaM and DeepQA show more coherent results well correlated with the human perception.

Overall discussion

Based on the above results, we summarize here the main observations of the conducted study and analysis. In fact, while the PSNR has poor correlation scores with all compression methods, the SSIM leads to better results. However, the correlation coefficient of SSIM obtained with the JPEG2000 coding standard is much lower to those obtained with neural networks-based compressed images. This gap is significantly reduced by the deep learning based metrics (such as DeepQA) which leads to high correlation scores with JPEG2000 standard compression method as well as recent neural networks-based coding methods. This confirms the interest of such deep learning based metric for assessing both traditional as well as NN-based compressed images.

Moreover, it must be emphasized that the interest of deep learning based metrics with respect to the conventional quality measures is much important at low compression quality level. This suggests the strong need for deep learning based metrics for very low bitrate coding application.

Conclusion and perspectives

In this paper, a new database of deep learning-based compressed images is built for quality assessment purpose. In this respect, in addition to the JPEG2000 compression standard, four recent neural networks based coding methods have been considered while using different coding rates. Then, after performing the subjective experiments, different categories of IQA metrics, including conventional, ML and DL based metrics, have been evaluated. Our experiments confirm that the standard PSNR and SSIM metrics, often used in the context of image and video coding, are not suitable for neural networks based compressed images, and promising results are obtained with recent DL based metrics like DIQaM and DeepQA.

It is worth pointing out that this new database with the subjective scores will allow to advance the future research works of IQA community. Moreover, the trained models, obtained with our neural networks based compressed database, will be of great interest to 
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Table 1

 1 Summary of publicly available IQA databases with compression distortions. Note that the new dataset is highlighted in bold

	Database	No. of reference /	Resolution	No. of compression	NN-based
		compressed images		methods/levels	compression methods
	LIVE [45]	29 / 344	768×512	2 / 8	0
	TID2008 [38]	25 / 400	512×384	2 / 4	0
	TID2013 [37]	25 / 500	512×384	2 / 5	0
	CSIQ [24]	30 / 300	512×512	2 / 5	0
	MICT [9]	14 / 196	768×512	2 / 7	0
	MDID [48]	20 / 160	512×384	2 / 4	0
	MCL-JCI [18]	50 / 5000	1920×1080	1 / 100	0
	FG-IQA [60]	100 / 1200	723×480	1 / 3	0
	NNCD-IQA	16 / 320	768×512	5 / 4	

Fig. 7 Subjective experiment interface

Table 2

 2 Pearson Linear Correlation Coefficient of different IQA metrics with MOS

	Category	Metric	JPEG2000 AE-Factor [5] AE-Hyp-AE-Hyp	FCNN-Overall
					GM [5]	GMM[8] LS [10]	
	Classical	PSNR	0.7856	0.7943	0.8206	0.8063	0.8478	0.8409
		SSIM [56]	0.8127	0.9009	0.8971	0.9134	0.8444	0.8953
		VIF [43]	0.8482	0.9018	0.8951	0.9016	0.8737	0.9061
		GFM [36]	0.8749	0.9081	0.9292	0.9214	0.8992	0.9096
		PIQA NLP [23]	0.8206	0.8777	0.8814	0.8939	0.8710	0.9012
	ML-based BRISQUE [33]	0.7035	0.8418	0.8299	0.5683	0.7787	0.7862
		DIIVINE [35]	0.5986	0.8126	0.8864	0.7162	0.8301	0.7271
		BLIINDS-II [41] 0.8469	0.7664	0.7973	0.6543	0.7678	0.7313
		NIQE [34]	0.9070	0.7552	0.7908	0.6912	0.5503	0.7712
	DL-based RADN [46]	0.8690	0.8688	0.8767	0.9082	0.9395	0.8777
		EGB [16]	0.7499	0.7563	0.7802	0.6712	0.8074	0.7152
		BIECON [21]	0.8180	0.8189	0.8464	0.7566	0.7900	0.8494
		DISTS [12]	0.8696	0.8288	0.8635	0.8615	0.8689	0.8475
		PieApp [39]	0.9103	0.8635	0.8875	0.8727	0.9418	0.8958
		DIQaM [6]	0.8720	0.9425	0.9388	0.9472	0.9338	0.9347
		DeepQA [20]	0.9361	0.9365	0.9441	0.9635	0.9526	0.9461

Table 3

 3 Spearman Rank-order Correlation Coefficient of different IQA metrics with MOS

	Category	Metric	JPEG2000 AE-Factor [5] AE-Hyp-AE-Hyp	FCNN-Overall
					GM [5]	GMM[8] LS [10]	
	Classical	PSNR	0.7758	0.8040	0.8058	0.8284	0.8355	0.8322
		SSIM [56]	0.8091	0.8983	0.8903	0.9133	0.8496	0.8908
		VIF [43]	0.8478	0.8938	0.8855	0.9049	0.8609	0.9013
		GFM [36]	0.8824	0.9067	0.9222	0.9278	0.8987	0.9062
		PIQA NLP [23]	0.8258	0.8783	0.8750	0.8922	0.8610	0.8966
	ML-based BRISQUE [33]	0.6843	0.8272	0.7382	0.5037	0.7603	0.7780
		DIIVINE [35]	0.6320	0.7978	0.8596	0.7088	0.8206	0.7211
		BLIINDS-II [41] 0.8653	0.6794	0.7544	0.5419	0.7809	0.7224
		NIQE [34]	0.9005	0.6875	0.7478	0.6456	0.4963	0.7608
	DL-based RADN [46]	0.8487	0.8618	0.8478	0.8794	0.9199	0.8696
		EGB [16]	0.7281	0.7610	0.7066	0.6441	0.7853	0.6923
		BIECON [21]	0.8178	0.7963	0.7868	0.6816	0.7904	0.8372
		DISTS [12]	0.8586	0.8154	0.8221	0.8419	0.8119	0.8412
		PieApp [39]	0.9042	0.8699	0.8801	0.8507	0.9338	0.8956
		DIQaM [6]	0.8483	0.9346	0.9191	0.9184	0.9206	0.9343
		DeepQA [20]	0.9303	0.9265	0.9522	0.9463	0.9419	0.9451

Table 4

 4 Kendall Rank-Order Correlation Coefficient of different IQA metrics with MOS

	Category	Metric	JPEG2000 AE-Factor [5] AE-Hyp-AE-Hyp	FCNN-Overall
					GM [5]	GMM[8] LS [10]	
	Classical	PSNR	0.5816	0.6071	0.6114	0.6190	0.6455	0.6384
		SSIM [56]	0.5995	0.7192	0.7067	0.7411	0.6514	0.7091
		VIF [43]	0.6481	0.7093	0.7156	0.7321	0.6723	0.7267
		GFM [36]	0.6988	0.7232	0.7682	0.7589	0.7219	0.7325
		PIQA NLP [23]	0.6313	0.6954	0.6908	0.7054	0.6683	0.7162
	ML-based BRISQUE [33]	0.5317	0.6500	0.5625	0.3917	0.5958	0.5854
		DIIVINE [35]	0.4773	0.6250	0.6917	0.5584	0.6125	0.5447
		BLIINDS-II [41] 0.7030	0.5125	0.5792	0.4042	0.6458	0.5458
		NIQE [34]	0.7612	0.5625	0.6208	0.4917	0.3958	0.5698
	DL-based RADN [46]	0.6862	0.7000	0.6875	0.7417	0.7917	0.7051
		EGB [16]	0.5778	0.5750	0.5375	0.4792	0.6042	0.5180
		BIECON [21]	0.6487	0.6208	0.6250	0.5375	0.6417	0.6590
		DISTS [12]	0.7320	0.6500	0.6917	0.6708	0.7000	0.6707
		PieApp [39]	0.7670	0.7042	0.7208	0.6750	0.8250	0.7231
		DIQaM [6]	0.6737	0.8000	0.7792	0.7750	0.7917	0.7821
		DeepQA [20]	0.8070	0.7958	0.8458	0.8375	0.8208	0.7975
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