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Armand Koenig*, Pierre Lissy†

January 1, 2023

Abstract

The goal of the present article is to study controllability properties of mixed systems of lin-
ear parabolic-transport equations, with possibly non-diagonalizable diffusion matrix, on the one-
dimensional torus. The equations are coupled by zero or first order coupling terms, with constant
couplingmatrices, without any structure assumptions on them. The distributed control acts through
a constant matrix operator on the system, so that theremight be notably less controls than equations,
encompassing the case of indirect and simultaneous controllability. More precisely, we prove that
in small time, such kind of systems are never controllable in appropriate Sobolev spaces, whereas in
large time, null-controllability holds, for sufficiently regular initial data, if and and only if a spectral
Kalman rank condition is verified. We also prove that initial data that are not regular enough
are not controllable. Positive results are obtained by using the so-called fictitious control method
together with an algebraic solvability argument, whereas the negative results are obtained by using
an appropriate WKB construction of approximate solutions for the adjoint system associated to the
control problem. As an application to our general results, we also investigate into details the case of
2 × 2 systems (i.e., one pure transport equation and one parabolic equation).

MSC Classification 93B05, 93B07, 93C20, 35M30.

Keywords Parabolic-transport systems, null-controllability, observability.

1 Introduction

1.1 Context and state of the art
Controllability properties of coupled systems of PDEs has attracted a lot of attention this last two
decades, due to their link with real-life models and also the specific mathematical difficulties arising
in this context. An important part of the literature is devoted to systems where all components of the
equations have the same qualitative behaviour (meaning that they are for instance all parabolic, or all
hyperbolic, etc.). However, the case where different dynamics are mixed has been less studied, despite
its mathematical interest. Indeed, in this context, the controllability properties of each equation

*IMT, Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
(armand.koenig@math.univ-toulouse.fr)
Armand Koenig is supported by the ANR LabEx CIMI (under grant ANR-11-LABX-0040) within the French State Programme
“Investissements d’Avenir”.

†CEREMADE, Université Paris-Dauphine & CNRS UMR 7534, Université PSL, 75016 Paris, France
(lissy@ceremade.dauphine.fr).
Pierre Lissy is supported by the Agence Nationale de la Recherche, Project TRECOS, under grant ANR-20-CE40-0009.

1



taken separately might be totally different (for instance, the heat equation with distributed control is
controllable in arbitrary small time from any open subset [29, 22], whereas the wave equation with
distributed control is controllable in large time and under some geometric conditions [6]), so that the
controllability properties of the final coupled system might be difficult to guess. Moreover, when we
are considering underactuated systems (in the sense that there are less controls than equations) as in
the present article, additional mathematical difficulties are appearing, due notably to the algebraic
and analytic effects of the coupling terms, that become predominant in the understanding of the
controllability or observability properties of the system under study. Here, in the present article, we
aim to study the indirect controllability properties of a model of coupled parabolic-transport equations
as introduced in [7].

Let us mention that many realistic models already studied in the literature can be reformulated in
terms of coupled parabolic-transport equations, notably the wave equation with structural damping
[37, 34, 10, 24], the heat equation withmemory [26, 23], the 1D-Linearized compressible Navier-Stokes
equations [20, 13, 12, 8], or the Benjamin-Bona-Mahony equation [38]. For more details, we also refer
to [7, §1.4]. This justifies the interest of studying a general version of coupled parabolic-transport
systems as in the present article, that can be seen as an attempt to find a unified framework in order
to encompass many existing results of the literature and to generalize them. Other results of interest,
related to the present work, are [2], where the authors study a one-dimensional system of one transport
equation and one parabolic equation, for which they prove a non-controllability result in small time
by a WKB approach, and [11], where the authors prove a controllability result in large time for a
one-dimensional system of one transport equation and one elliptic equation.

1.2 Presentation of the parabolic-transport system under study
Let 𝑇 > 0 some final time , 𝕋 = ℝ/(2𝜋ℤ) the one-dimensional torus, 𝜔 an nonempty open subset of 𝕋,
𝑑 ∈ ℕ∗ (which represents the number of equations in our system) ,𝑚 ∈ {1,… , 𝑑} (which represents
the number of controls in our system), 𝐴, 𝐵, 𝐾 ∈ ℳ𝑑(ℝ) (that are some constant coupling matrices),
and 𝑀 ∈ ℳ𝑑,𝑚(ℝ) (that is a constant control operator). Our goal is to study the controllability
properties of the following coupled system of parabolic-transport equations:

{ 𝜕𝑡𝑓 − 𝐵𝜕2𝑥𝑓 + 𝐴𝜕𝑥𝑓 + 𝐾𝑓 = 𝑀𝑢1𝜔 in (0, 𝑇) × 𝕋,
𝑓(0, ⋅) = 𝑓0 in 𝕋. (Sys)

Here, the state is 𝑓∶ [0, 𝑇] × 𝕋 → ℝ𝑑, and the control is 𝑢∶ [0, 𝑇] × 𝕋 → ℝ𝑚. The exact regularity
chosen for 𝑓 and 𝑢 will be made more precise later on.

We assume that

𝑑 = 𝑑h + 𝑑p with 1 ≤ 𝑑h < 𝑑, 1 ≤ 𝑑p < 𝑑, (H.1)

𝐵 = (0 0
0 𝐷) , with 𝐷 ∈ ℳ𝑑p(ℝ), (H.2)

ℜ(Sp(𝐷)) ⊂ (0, +∞). (H.3)

𝑑h represents the number of purely hyperbolic equations, whereas 𝑑p represents the number of
parabolic equations.

Notice that (H.3) is necessary to ensure that the matrix operator 𝜕𝑡−𝐷Δ is parabolic is the sense of
Petrovskii ([28, Chapter 7, Definition 2]). Introducing the similar block decomposition for the 𝑑 × 𝑑
matrix 𝐴 = ( 𝐴′ 𝐴12

𝐴21 𝐴22
), we make the following hypothesis on the matrix 𝐴′ ∈ ℳ𝑑ℎ(ℝ)

𝐴′ is diagonalizable with Sp(𝐴′) ⊂ ℝ. (H.4)
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Notice that it is well-known that (H.4) is necessary (and sufficient, see [7, §2.2]) to ensure the well-
posedness of (Sys).

1.3 Main results
To state our results, we need to introduce the following notations:

ℓ(𝜔) ≔ sup{|𝐼|; 𝐼 connected component of 𝕋 ⧵ 𝜔}, (1)

𝜇∗ ≔ min{|𝜇|; 𝜇 ∈ Sp(𝐴′)},

and

𝑇∗ = 𝑇∗(𝜔) ≔ {
ℓ(𝜔)
𝜇∗

if 𝜇∗ > 0,
+∞ if 𝜇∗ = 0.

(2)

For 𝑛 ∈ ℤ, we also set
𝐵𝑛 ≔ −𝑛2𝐵 − i𝑛𝐴 − 𝐾 (3)

and
[𝐵𝑛|𝑀] ≔ (𝑀 𝐵𝑛𝑀 … 𝐵𝑑−1𝑛 𝑀) . (4)

Our main result is the following one.

Theorem 1. Assume that the hypotheses (H.1)–(H.4) hold, that 𝑇 > 𝑇∗.
Then, the spectral Kalman rank condition rank([𝐵𝑛|𝑀]) = 𝑑 holds for all 𝑛 ∈ ℤ if and only if

for every 𝑓0 ∈ 𝐻4𝑑(𝑑−1)(𝕋)𝑑, there exists a control 𝑢 ∈ 𝐿2([0, 𝑇] × 𝜔)𝑚 such that the solution 𝑓 of the
parabolic-transport system (Sys) with initial condition 𝑓0 satisfies 𝑓(𝑇, ⋅) = 0.

Remark 2. • Recall that the Kalman rank condition is necessary for the control of ODE sys-
tems [14, Theorem 1.16]. Therefore, writing the parabolic-transport system in Fourier, we imme-
diately find that for every 𝑇 > 0, the spectral Kalman-rank condition ∀𝑛 ∈ ℤ, rank([𝐵𝑛|𝑀]) = 𝑑
is necessary for the null-controllability of every 𝐻𝑘 initial conditions in time 𝑇.

• Actually, we prove two slightly stronger versions of this theorem, namely theorems 9 and 12,
that are useful in order to obtain some controllability results under some constraints on Fourier
coefficients of the hyperbolic part of the initial condition (see proposition 20, proposition 21,
proposition 22).

• One can refine a little bit the regularity stated in theorem 1, as follows. Assume that 𝑇 > 𝑇∗
and that for all 𝑛 ∈ ℤ, the spectral Kalman rank condition rank([𝐵𝑛|𝑀]) = 𝑑 holds. Then:

1. for every 𝑓0 ∈ 𝐻4𝑑(𝑑−1)(𝕋)𝑑ℎ × 𝐻4𝑑(𝑑−1)−1(𝕋)𝑑𝑝, there exists a control 𝑢 ∈ 𝐿2([0, 𝑇] × 𝜔)𝑚
such that the solution 𝑓 of the parabolic-transport system (Sys) with initial condition 𝑓0
satisfies 𝑓(𝑇, ⋅) = 0.

2. if 𝐴12 = 0, for every 𝑓0 ∈ 𝐻4𝑑(𝑑−1)(𝕋)𝑑ℎ × 𝐻4𝑑(𝑑−1)−2(𝕋)𝑑𝑝, there exists a control 𝑢 ∈
𝐿2([0, 𝑇]×𝜔)𝑚 such that the solution 𝑓 of the parabolic-transport system (Sys) with initial
condition 𝑓0 satisfies 𝑓(𝑇, ⋅) = 0.

Indeed, by letting evolve the system freely on a short interval of time, we can show using the
method of lemma 23 that the parabolic component becomes 𝐻4𝑑(𝑑−1)(𝕋)𝑑𝑝, so that theorem 1
can be applied, taking into account that the condition 𝑇 > 𝑇∗ is open and that the system is
time-invariant.
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• The spectral Kalman rank condition rank([𝐵𝑛|𝑀]) = 𝑑 was first introduced in [5] for coupled
systems of heat equations with diagonalizable diffusions (see also [33] for non-diagonalizable
diffusions).

Theorem 3. Let 𝜇 ∈ Sp(𝐴′), 𝑁 ∈ ℕ and 𝑇 > 0. Assume that every initial condition 𝑓0 ∈ 𝐿2(𝕋)𝑑 ∩
{∑|𝑛|>𝑁 𝑋𝑛e

i𝑛𝑥} is steerable to 0 in time𝑇with control in𝐿2((0, 𝑇)×𝜔). Then, there exists𝑉0 ∈ ker(𝐴′∗+𝜇)
such that𝑀∗( 𝑉00 ) ≠ 0.

Remark 4. Theorems 1, 9 and 12 only ensures null-controllability of smooth enough initial conditions.
Theorem 3 proves that such a regularity condition is needed in general: even if the time is large
enough and if the Kalman rank condition is satisfied for every 𝑛, it might happen that some 𝐿2 initial
condition cannot be steered to 0 with a 𝐿2 control.

1.4 Precise scope and organization of the article
This article can be seen as a continuation of [7], insofar as we generalize the results of the above-
mentioned article, since we are able to treat any matrices 𝐴, 𝐵, 𝐾,𝑀 without any restrictions on their
structure. Indeed, in [7], the authors treated the case where𝑀 = 𝐼𝑑 (where no Kalman rank condition
is needed), or particular cases where only the parabolic or the hyperbolic parts are controlled, under
strong restrictions on the structure of the coupling matrices 𝐴, 𝐵 and 𝐾 and also on the diffusion
matrix 𝐵.

Let us mention that our results are sharp in terms of the controllability conditions we obtain.
However, it is very likely that the initial state space (whose choice is determined by technical reasons
coming from the specific strategy we use, that is consuming in terms of regularity, see Section 3.2) is
almost never sharp and depends strongly on the structure of the coupling terms. Finding the exact
“good” state space remains an open problem that seems to be difficult to solve in all generality.

The article is organized as follows. In section 2, we give some notations and we gather some
existing results that will be used in our proof. Section 3 is devoted to proving that the condition
rank([𝐵𝑛|𝑀]) = 𝑑 is sufficient in order to obtain our desired controllability result in large time The
argument is based on a fictitious control argument detailed in section 3.1, where we first prove an
auxiliary controllability result, in the case𝑀 = 𝐼𝑑, with regular enough controls for regular enough
initial data. Then, in section 3.2, we explain how to obtain a control in the range on𝑀 by performing
algebraic manipulations. Notice that the method of fictitious control plus algebraic solvability, that
has been introduced in [16] in the context of the controllability of PDEs, has been successfully used
for various problems [4, 18, 19, 32, 15, 39, 40, 17]. One of the main novelties here is that the algebraic
solvability is not directly performed on the system (or its adjoint as in [17]) but on a projected version
of the system on its Fourier components. Section 4 is devoted to proving some necessary conditions
of controllability. Section 4.1 is devoted to constructing WKB solutions. These solutions are used to
disprove controllability in small time in section 4.2 and to prove theorem 3 in section 4.3. Section 5
aims to give an application of our results to the particular case of 2 × 2 systems together with some
considerations about the sharpness of our regularity assumptions in this precise setting. To conclude,
appendix A proves a general result about a “control up to a finite-dimensional space plus unique
continuation” strategy that is used in section 3.1, in the spirit of [30, 7].

2 Some notations and preliminary results
We will rely on some basic results on the parabolic-transport system (Sys) that are already known, see
[7]. For the reader convenience, we collect here the notations and results we will use most often, and
we will recall some others along the way as they are used.
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Let ℒ be the unbounded operator on 𝐿2(𝕋)𝑑 with domain 𝐻1(𝕋)𝑑h × 𝐻2(𝕋)𝑑p defined by

ℒ𝑓 = −𝐵𝜕2𝑥𝑓 + 𝐴𝜕𝑥𝑓 + 𝐾𝑓.

The operator −ℒ generates a strongly continuous semigroup of bounded operators of 𝐿2(𝕋)𝑑 [7,
Proposition 11]. Every 𝐻𝑘(𝕋)𝑑 is stable by e−𝑡ℒ, and the restriction of e−𝑡ℒ on 𝐻𝑘(𝕋)𝑑 is a strongly
continuous semigroup of bounded operators [7, Remark 13]. We denote by 𝑆(𝑇, 𝑓0, 𝑢) the solution at
time 𝑇 of the parabolic-transport system (Sys) with control matrix𝑀 = 𝐼𝑑 (the identity matrix of size
𝑑, i.e., we control every component with a different control), initial condition 𝑓0 and control 𝑢.

Let 𝑛0 ∈ ℕ to be chosen large enough later on. We denote by 𝑒𝑛 ∶ 𝑥 ∈ 𝕋 ↦ ei𝑛𝑥. We also denote
by 𝐸∶ ℂ → ℳ𝑑(ℂ) the following function:

𝐸(𝑧) = 𝐵 + 𝑧𝐴 − 𝑧2𝐾.

Let 𝑟 > 0 small enough. For |𝑧| < 𝑟, let 𝑃h(𝑧) be the eigenprojection on the sum of eigenspaces
of 𝐸(𝑧) associated to the set of eigenvalues 𝜆(𝑧) ∈ Sp(𝐸(𝑧)) such that |𝜆(𝑧)| < 𝑟. According to [7,
Proposition 5], 𝑃h(𝑧) satisfies:

• 𝑃h(0) = ( 𝐼 00 0 );

• 𝑧 ↦ 𝑃h(𝑧) is holomorphic;

• 𝑃h(𝑧) is a projection that commutes with 𝐸(𝑧);

• 𝑃h(𝑧)𝐸(𝑧) = 𝑂(𝑧) as 𝑧 → 0.

We also set 𝑃p(𝑧) = 𝐼 − 𝑃h(𝑧). This projection 𝑃p(𝑧) satisfies similar properties as 𝑃h(𝑧) ([7, Proposi-
tions 6]).

Following [7, Proposition 18], we denote by 𝐹0 the space of frequencies less than 𝑛0 and by
𝐹h (respectively 𝐹p) the space of hyperbolic frequencies greater than 𝑛0 (respectively the space of
parabolic frequencies greater than 𝑛0), i.e.

𝐹0 =⨁|𝑛|≤𝑛0
Span(𝑒𝑛);

𝐹p =⨁|𝑛|>𝑛0
Range(𝑃p(i/𝑛))𝑒𝑛;

𝐹h =⨁|𝑛|>𝑛0
Range(𝑃h(i/𝑛))𝑒𝑛.

By [7, Proposition 18], we notably have

𝐿2(𝕋)𝑑 = 𝐹0 ⊕ 𝐹p ⊕ 𝐹h.

The space 𝐹p is stable by the semigroup e−𝑡ℒ (see the definition of 𝑃p [7, Proposition 5] and the
definition of 𝐹p [7, Proposition 18]). We denote by ℒp the restriction of ℒ to 𝐹p.

Similarly, the space 𝐹h is stable by the semigroup e−𝑡ℒ. We denote by ℒh the restriction of ℒ to 𝐹h,
and −ℒh generates a strongly continuous group of bounded operators on 𝐹h [7, Proposition 19].

Let Π0, Πp, Πh and Π be the projections defined by

𝐿2(𝕋)𝑑 = 𝐹0 ⊕ 𝐹p ⊕ 𝐹h;
Π0 = 𝐼𝐹0 + 0 + 0;
Πp = 0 + 𝐼𝐹p + 0;
Πh = 0 + 0 + 𝐼𝐹h;
Π = 0 + 𝐼𝐹p + 𝐼𝐹h = Πp + Πh.

These projections are bounded operators on 𝐿2(𝕋)𝑑 [7, Proposition 18] (and also on every 𝐻𝑘(𝕋)𝑑, as
one can readily convince by following the proof of [7, Proposition 18]).
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3 Null controllability of regular initial conditions

3.1 Regular controls for regular initial conditions
As a technical preparation for the proof of theorem 1, we need some results regarding the regularity
of controls, when the control matrix is𝑀 = 𝐼𝑑.

Proposition 5. Assume that 𝑇 > 𝑇∗ (as defined in eq. (2)) and that 𝑀 = 𝐼𝑑. Let 𝑘, ℓ ∈ ℕ. For
every 𝑓0 ∈ 𝐻𝑘(𝕋)𝑑, there exists 𝑢 ∈ 𝐻𝑘

0 ((0, 𝑇) × 𝜔)𝑑h × 𝐻ℓ
0((0, 𝑇) × 𝜔)𝑑p such that the solution of the

parabolic-transport system (Sys) with initial condition 𝑓0 and control 𝑢 satisfies 𝑓(𝑇, ⋅) = 0.

We adapt the proof of the corresponding result when 𝑘 = 0 [7, Theorem 2]. First, we prove the
following adaptation of [7, Proposition 21].

Proposition 6. Let 𝑇 ′ ∈ (𝑇∗, 𝑇) and 𝑘 ∈ ℕ. If 𝑛0 (in the definition of 𝐹0, see [7, Eq. (40–42)]) is large
enough, there exists a continuous operator

𝒰h∶ 𝐻𝑘(𝕋)𝑑 × 𝐻𝑘
0 ((𝑇 ′, 𝑇) × 𝜔)𝑑p→ 𝐻𝑘

0 ((0, 𝑇 ′) × 𝜔)𝑑h
(𝑓0, 𝑢p) ↦ 𝑢h,

such that for every (𝑓0, 𝑢p) ∈ 𝐻𝑘(𝕋)𝑑 ×𝐻𝑘
0 ((𝑇 ′, 𝑇) × 𝜔)𝑑p (where 𝑢p is extended by 0 on (0, 𝑇 ′) and 𝑢h is

extended by 0 on (𝑇 ′, 𝑇)),
Πh𝑆(𝑇; 𝑓0, (𝒰h(𝑓0, 𝑢p), 𝑢p)) = 0.

Proof. As in [7, §4.3.1], the conclusion of proposition 6 is equivalent to the exact controllability of
the system 𝜕𝑡𝑓 + ℒh𝑓 = Πh(𝑢, 0) at time 𝑇 ′. Since −ℒh generates a strongly continuous group, the
exact controllability at time 𝑇 ′ is equivalent to the null-controllability at time 𝑇 ′, which is what we
are going to prove.

When 𝑘 = 0, [7, Proposition 23] is the claimed result. To extend this result to 𝑘 > 0, we use a
general result of Ervedoza and Zuazua concerning the regularity of controls for regular initial data in
the context of groups of operators [21, Theorem 1.4]. Let 𝜔 an open subset of 𝕋 such that 𝜔 ⊂ 𝜔 and
𝑇∗(𝜔) < 𝑇 ′. Let 𝜒 ∈ 𝐶∞

𝑐 (𝜔) such that 𝜒 = 1 on 𝜔. Let 𝜂 ∈ 𝐶∞
0 (0, 𝑇 ′). Let 𝑧0 ∈ 𝐻𝑘(𝕋)𝑑 be an initial

condition. Let 𝑌𝑇′ as defined by [21, Proposition 1.3] and define the control as

𝑉(𝑡) = 𝜂(𝑡)𝜒(𝑥)𝑀∗𝑌(𝑡),

where 𝑌 is the solution to
𝜕𝑡𝑌 − 𝐵∗𝜕2𝑥𝑌 − 𝐴∗𝜕𝑥𝑌 + 𝐾∗𝑌 = 0

associated to the initial condition 𝑌(𝑇 ′) = 𝑌𝑇′. According to [21, Proposition 1.3], 𝑉(𝑡) is a control that
steers 𝑧0 to 0 at time 𝑇 ′. According to [21, Theorem 1.4], 𝑌𝑇′ ∈ 𝐻𝑘(𝕋)𝑑 (hence 𝑉 ∈ 𝐿2(0, 𝑇 ′; 𝐻𝑘(𝜔)𝑑))
and 𝑉 ∈ 𝐻𝑘(0, 𝑇 ′; 𝐿2(𝜔)𝑑), with estimates of the form

‖𝑉‖2𝐿2(0,𝑇′;𝐻𝑘(𝜔)𝑑) + ‖𝑉‖2𝐻𝑘(0,𝑇′;𝐿2(𝜔)𝑑) ≤ 𝐶𝑘‖𝑧0‖2𝐻𝑘(𝕋)𝑑.

We claim that 𝐿2(0, 𝑇 ′; 𝐻𝑘
0 (𝜔)) ∩ 𝐻𝑘

0 (0, 𝑇 ′; 𝐿2(𝜔)) ⊂ 𝐻𝑘((0, 𝑇 ′) × 𝜔). Indeed, for every 𝜏 ∈ ℝ and
𝜉 ∈ ℝ,

(1 + 𝜏2 + 𝜉2)𝑘 ≤ 𝐶𝑘((1 + 𝜏2)𝑘 + (1 + 𝜉2)𝑘).

Hence, integrating in Fourier space,

‖𝑓‖2𝐻𝑘(ℝ2) ≤ 𝐶𝑘(‖𝑓‖2𝐿2(ℝ;𝐻𝑘(ℝ)) + ‖𝑓‖2𝐻𝑘(ℝ;𝐿2(ℝ))).
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Recall that for Ω ⊂ ℝ𝑛 convex1, 𝐻𝑘
0 (Ω) is the set of functions whose extension by zero outside

Ω are 𝐻𝑘(ℝ𝑛). Hence, 𝐿2(0, 𝑇 ′; 𝐻𝑘
0 (𝜔)) ∩ 𝐻𝑘

0 (0, 𝑇 ′; 𝐿2(𝜔)) ⊂ 𝐻𝑘((0, 𝑇 ′) × 𝜔) as claimed, so that
𝑉 ∈ 𝐻𝑘((0, 𝑇 ′) × 𝜔)𝑑.

Since 𝜂 ∈ 𝐶∞(0, 𝑇 ′) and 𝜒 ∈ 𝐶∞
0 (𝜔), we conclude that 𝑉 ∈ 𝐻𝑘

0 ((0, 𝑇 ′) × 𝜔)𝑑.

For the proof of proposition 5, we will also use:

Proposition 7 ([7], proposition 22). Let 𝑇 ′ ∈ (𝑇∗, 𝑇) and 𝑘 ∈ ℕ. If 𝑛0 is large enough, there exists a
continuous operator

𝒰p∶ 𝐿2(𝕋)𝑑 × 𝐿2((0, 𝑇 ′) × 𝜔)𝑑h→ 𝐶∞
𝑐 ((𝑇 ′, 𝑇) × 𝜔)𝑑p

(𝑓0, 𝑢h) ↦ 𝑢p,

(in the sense that for any 𝑠 ∈ ℕ,𝒰p ∶ 𝐿2(𝕋)𝑑 × 𝐿2((0, 𝑇 ′) × 𝜔)𝑑h → 𝐻𝑠
0(𝑇 ′, 𝑇) × 𝜔)𝑑p is continuous for

the natural topologies associated to these spaces) such that for every (𝑓0, 𝑢h) ∈ 𝐿2(𝕋)𝑑×𝐿2((0, 𝑇 ′) ×𝜔)𝑑h,

Πp𝑆(𝑇; 𝑓0, (𝑢h, 𝒰p(𝑓0, 𝑢h)) = 0.

We can now prove proposition 5 by mimicking the proof of the case 𝑘 = 0 [7, Proposition 20 &
§4.5].

Proof of proposition 5. Step 1: Control up to final dimensional space. — We claim that there exists a
closed finite codimensional space 𝒢 of 𝐻𝑘(𝕋)𝑑 and a continuous operator𝒰∶ 𝒢 → 𝐻𝑘

0 ((0, 𝑇 ′)×𝜔)𝑑h×
𝐶∞
𝑐 ((𝑇 ′, 𝑇) × 𝜔)𝑑p (in the sense that for any 𝑠 ∈ ℕ, 𝒰∶ 𝒢 → 𝐻𝑘

0 ((0, 𝑇 ′) × 𝜔)𝑑h × 𝐻𝑠
0(𝑇 ′, 𝑇) × 𝜔)𝑑p

is continuous for the natural topologies associated to these spaces) such that for every 𝑓0 ∈ 𝒢,
Π𝑆(𝑇, 𝑓0, 𝒰𝑓0) = 0.

The property Π𝑆(𝑇, 𝑓0, (𝑢h, 𝑢p)) = 0 holds if

{
𝑢h = 𝒰h(𝑓0, 𝑢p) = 𝒰h

1 (𝑓0) + 𝒰h
2 (𝑢p),

𝑢p = 𝒰p(𝑓0, 𝑢h) = 𝒰p
1(𝑓0) + 𝒰p

2(𝑢h).
(5)

Set 𝒞 = 𝒰p
1 +𝒰2

p𝒰h
1 . Then, the previous relations hold if

𝒞𝑓0 = (𝐼 − 𝒰p
2𝒰h

2 )𝑢p. (6)

Since 𝒰p
2 is continuous from 𝐻𝑘

0 ((𝑇 ′, 𝑇) × 𝜔)𝑑p into 𝐶𝑐((𝑇 ′, 𝑇) × 𝜔)𝑑p, we deduce that the operator
𝒞∶ 𝐻𝑘

0 ((𝑇 ′, 𝑇) × 𝜔)𝑑p → 𝐻𝑘
0 ((𝑇 ′, 𝑇) × 𝜔)𝑑p is compact. Thus, according to Fredholm’s alternative,

the relation (6) holds on a closed finite codimensional space 𝒢.

Step 2: Conclusion. — Dealing with the finite (co)dimensional spaces 𝐹0 and 𝒢 is a straightforward
adaptation of [7, §4.5]; more specifically, we use proposition 25 proved in Appendix A with 𝐻 = 𝑉 =
𝐻𝑘(𝕋)𝑑, 𝑈𝑇 = 𝐻𝑘

0 ((0, 𝑇) × 𝜔)𝑑h × 𝐻ℓ
0((0, 𝑇) × 𝜔), 𝐴 = −ℒ, 𝐵 = 1𝜔, 𝒢 = 𝒢 and ℱ = 𝐹0. The control

up to a finite dimensional space hypothesis is satisfied according to the previous step. The unique
continuation hypothesis is satisfied because every generalised eigenvector is a finite sum of elements
of the form 𝑋𝑛ei𝑛𝑥 (𝑋𝑛 ∈ ℂ𝑑), and finite linear combinations of 𝑋𝑛ei𝑛𝑥 have the unique continuation
property thanks to, e.g., Jerison-Lebeau’s spectral inequality (see [30, Theorem 3], or [7, Eq. (90)] for
our specific case).

For technical reasons, we will need the control to be in the form 𝑃(𝜕𝑥)𝑢, where 𝑃(𝜕𝑥) is a constant
coefficients differential operator to be chosen later on.

1More generally, satisfiying the segment condition, see[1, Definition 3.21 & Theorem 5.29].
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Proposition 8. Assume that𝑇 > 𝑇∗ (as defined in (2)) and that𝑀 = 𝐼𝑑. Let 𝑘, ℓ ∈ ℕ. Let 𝑃 be a nonzero
polynomial with complex coefficients. Assume that ℓ ⩾ deg(𝑃). Let 𝑓0 ∈ 𝐻𝑘(𝕋)𝑑 be such that for every
𝑛 ∈ ℤ, 𝑃(i𝑛) = 0 ⟹ 𝑐𝑛(𝑓0) = 0. Then, there exists 𝑢 ∈ 𝐻𝑘+deg(𝑃)

0 ((0, 𝑇) × 𝜔)𝑑h × 𝐻ℓ
0((0, 𝑇) × 𝜔)𝑑p

such that the solution of the parabolic-transport system (Sys) with initial condition 𝑓0 and control 𝑃(𝜕𝑥)𝑢
satisfies 𝑓(𝑇, ⋅) = 0.

Proof. 𝑘, ℓ ∈ ℕ with ℓ ⩾ deg(𝑃).Let 𝑓0 ∈ 𝐻𝑘(𝕋)𝑑 be such that for every 𝑛 ∈ ℤ, 𝑃(i𝑛) = 0 ⟹
𝑐𝑛(𝑓0) = 0. We define 𝑓0 ≔ 𝑃(𝜕𝑥)−1𝑓0 by 𝑐𝑛(𝑓0) ≔ 𝑃(i𝑛)−1𝑐𝑛(𝑓0) if 𝑃(i𝑛) ≠ 0 and 𝑐𝑛(𝑓0) ≔ 0 if
𝑃(i𝑛) = 0. Note that 𝑃(𝜕𝑥)𝑓0 = 𝑓0 and that 𝑓0 ∈ 𝐻𝑘+deg(𝑃)

0 (𝜔)𝑑. Then, applying proposition 5 to 𝑓0
leads to the fact that there exists ̃𝑢 ∈ 𝐻𝑘+deg(𝑃)

0 ((0, 𝑇) × 𝜔)𝑑h ×𝐻ℓ
0((0, 𝑇) × 𝜔)𝑑p such that the solution

𝑓 of the parabolic-transport system (Sys) with initial condition 𝑓0 and control ̃𝑢 satisfies 𝑓(𝑇, ⋅) = 0.
Moreover, since 𝑓0 ∈ 𝐻𝑘+deg(𝑃)

0 (𝜔)𝑑 and ̃𝑢 ∈ 𝐻𝑘+deg(𝑃)
0 ((0, 𝑇)×𝜔)𝑑h×𝐻ℓ

0((0, 𝑇)×𝜔)𝑑p with ℓ ⩾ deg(𝑃),
we notably have 𝑓 ∈ 𝐿2((0, 𝑇); 𝐻𝑘+deg(𝑃)(𝕋)). Hence, setting 𝑓 = 𝑃(𝜕𝑥)𝑓 and 𝑢 = 𝑃(𝜕𝑥)𝑓, and using
that 𝑃(𝜕𝑥) has constant coefficients (so that it commutes with the operator 𝜕𝑡 − 𝐵𝜕2𝑥 + 𝐴𝜕𝑥 + 𝐾𝐼𝑑))
ensures that 𝑓 verifies (Sys) with initial condition 𝑓0 and control 𝑃(𝜕𝑥)𝑢. Moreover, since 𝑓(𝑇, ⋅) = 0,
we also have𝑓(𝑇, ⋅) = 𝑃(𝜕𝑥)𝑓(𝑇, ⋅) = 0, which leads to the desired result.

3.2 Algebraic solvability
For 𝑘 ∈ ℕ, we define

[𝐵𝑛|𝑀]𝑘 ≔ (𝑀 𝐵𝑛𝑀 … 𝐵𝑘−1𝑛 𝑀) . (7)

We prove the following variant of theorem 1.

Theorem 9. Assume that the hypotheses (H.1)–(H.4) hold, and that 𝑇 > 𝑇∗. Let 𝑘 ∈ ℕ. Assume that
for all |𝑛| ∈ ℕ large enough, the Kalman rank condition rank([𝐵𝑛|𝑀]𝑘) = 𝑑 holds. Define the following
space of functions

𝐸 ≔ {𝑓 ∈ 𝐿2(𝕋)𝑑∶ ∀𝑛 ∈ ℤ, 𝑐𝑛(𝑓) ∈ Range([𝐵𝑛|𝑀])}.

Set, when it is defined,
[𝐵𝑛|𝑀]+𝑘 ≔ [𝐵𝑛|𝑀]∗𝑘 ([𝐵𝑛|𝑀]𝑘[𝐵𝑛|𝑀]∗𝑘)

−1 .

Write [𝐵𝑛|𝑀]+𝑘 by blocks as

[𝐵𝑛|𝑀]+𝑘 = (
𝐿h𝑛,1 𝐿p𝑛,1
⋮ ⋮
𝐿h𝑛,𝑘 𝐿p𝑛,𝑘

) ,

where the 𝐿h𝑛,𝑗 are of size𝑚×𝑑h and the 𝐿
p
𝑛,𝑗 are of size𝑚×𝑑p. Considering the 𝐿h𝑛,𝑗 as rational functions

of 𝑛, and denoting their degree by deg(𝐿h𝑛,𝑗), set

𝑝 ≔ max
1≤𝑗≤𝑘

deg(𝑛𝑗−1𝐿h𝑛,𝑗) = max
1≤𝑗≤𝑘

(𝑗 − 1 + deg(𝐿h𝑛,𝑗)).

Then, for every 𝑓0 ∈ 𝐻𝑝(𝕋)𝑑 ∩ 𝐸, there exists a control 𝑢 ∈ 𝐿2([0, 𝑇] × 𝜔) such that the solution 𝑓 of the
parabolic-transport system (Sys) with initial condition 𝑓0 satisfies 𝑓(𝑇, ⋅) = 0.

The idea of the proof is to first choose a “fictitious” control that acts on every components. Then,
we look at the Fourier coefficients of 𝑓. This transforms the control system (Sys) into a family of
finite-dimensional control systems. On each of these finite-dimensional system, we perform some
algebraic manipulations, called algebraic solvability, that transform the fictitious control (that acted
on every component) into an “actual” control (that acts only on Range(𝑀)).

We begin with the algebraic solvability result we will use, which is essentially taken from [32,
§2.1].
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Lemma 10. Let 𝑘 ∈ ℕ∗. Let 𝐵 ∈ ℳ𝑑(ℂ) and 𝑀̃ ∈ ℳ𝑚,𝑑(ℝ). Let 𝑋0 ∈ ℂ𝑑 and 𝑤 ∈ 𝐻𝑘−1
0 (0, 𝑇; ℂ𝑚𝑘).

Write 𝑤 by blocks as

𝑤 = (
𝑤1
⋮
𝑤𝑘

) ,

where𝑤𝑗 ∈ 𝐻𝑘−1
0 (𝕋; ℂ𝑚), and set 𝑢 = 𝑤1+𝑤′

2+⋯+𝑤(𝑘−1)
𝑘 . Let 𝑋, 𝑋 ∈ 𝐶0(0, 𝑇; ℂ𝑑) be the solutions of

𝑋 ′ = 𝐵𝑋 + [𝐵|𝑀̃]𝑘𝑤, 𝑋 ′ = 𝐵𝑋 + 𝑀̃𝑢, 𝑋(0) = 𝑋(0) = 𝑋0,

where
[𝐵|𝑀̃]𝑘 ≔ (𝑀̃ 𝐵𝑀 … 𝐵𝑘−1𝑀̃) .

Then 𝑋(𝑇) = 𝑋(𝑇).

Proof. Consider ℳ̃𝑘 the operator matrix with 𝑑 + 𝑚 rows and 𝑘𝑚 columns defined by blocks as

ℳ̃𝑘 ≔ (
0 −𝑀̃ ⋯ −∑𝑘−2

𝑗=0 𝜕
𝑗
𝑡𝐵𝑘−2−𝑗𝑀̃

−𝐼 −𝜕𝑡 ⋯ −𝜕𝑘−1𝑡
) = (ℳ̃𝑘,1

ℳ̃𝑘,2
) .

Set also

𝒫∶ (𝑋,𝑊) ∈ 𝐻1
0(0, 𝑇; ℂ𝑑) × 𝐿2(0, 𝑇; ℂ𝑚) → 𝜕𝑡𝑋 − 𝐵𝑋 − 𝑀̃𝑊 ∈ 𝐿2(0, 𝑇; ℂ𝑑).

We claim that
𝒫 ∘ ℳ̃𝑘 = [𝐵|𝑀̃]𝑘. (8)

Indeed, we have by blocks 𝒫 ∘ ℳ̃𝑘 = (𝐶0 ⋯ 𝐶𝑘−1) with

𝐶ℓ = −(𝜕𝑡 − 𝐵)
ℓ−1
∑
𝑗=0

𝜕𝑗𝑡𝐵ℓ−1−𝑗𝑀̃ + 𝑀̃𝜕ℓ𝑡 .

Then, remarking that this is a telescoping sum,

𝐶ℓ = −
ℓ
∑
𝑗=1

𝜕𝑗𝑡𝐵ℓ−𝑗𝑀̃ +
ℓ−1
∑
𝑗=0

𝜕𝑗𝑡𝐵ℓ−𝑗𝑀̃ + 𝑀̃𝜕ℓ𝑡

= −𝜕ℓ𝑡 𝑀̃ + 𝐵ℓ𝑀̃ − 𝑀̃𝜕ℓ𝑡 ,

which proves the claimed formula (8).
Now, plug eq. (8) into the differential equation 𝑋 ′ = 𝐵𝑋 + [𝐵|𝑀̃]𝑘𝑤, which gives

𝑋 ′ = 𝐵𝑋 + (𝜕𝑡 − 𝐵)ℳ̃𝑘,1𝑤 − 𝑀̃ℳ̃𝑘,2𝑤.

With 𝑌 ≔ 𝑋 − ℳ̃𝑘,1𝑤, and remarking that ℳ̃𝑘,2𝑤 = −𝑢, this can be written as 𝑌 ′ = 𝐵𝑌 + 𝑀̃𝑢. Since
𝑤 ∈ 𝐻𝑘−1

0 (0, 𝑇; ℂ𝑚𝑘), ℳ̃𝑘,1𝑤(0) = ℳ̃𝑘,1𝑤(𝑇) = 0. Hence 𝑌(0) = 𝑋(0) = 𝑋(0) and 𝑌(𝑇) = 𝑋(𝑇).
Thus𝑌 solves the sameCauchy problem as𝑋. This proves that𝑌 = 𝑋, hence𝑋(𝑇) = 𝑌(𝑇) = 𝑋(𝑇).

We can now prove theorem 9.
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Proof of theorem 9. Let 𝑓0 ∈ 𝐻𝑝(𝕋)𝑑. Set 𝑋𝑛(𝑡) = 𝑐𝑛(𝑓(𝑡, ⋅)) and 𝑢𝑛(𝑡) = 𝑐𝑛(𝑢(𝑡, ⋅)). The desired
conclusion 𝑓(𝑇, ⋅) = 0 reads in Fourier as: ∀𝑛 ∈ ℤ, 𝑋𝑛(𝑇) = 0. Moreover, 𝑋𝑛 satisfies

{ 𝑋 ′
𝑛(𝑡) = 𝐵𝑛𝑋𝑛(𝑡) + 𝑀𝑢𝑛(𝑡), 𝑡 ∈ (0, 𝑇),

𝑋𝑛(0) = 𝑐𝑛(𝑓0).
(9)

First, let us give the idea of the proof: if 𝑣 steers 𝑓0 to 0 when 𝑀 = 𝐼, we want to define 𝑤𝑛 by
𝑐𝑛(𝑣(𝑡, ⋅)) = [𝐵𝑛|𝑀]𝑘𝑤𝑛 (this is possible for 𝑛 large enough) and choose 𝑢𝑛 ≔ 𝑤𝑛1+𝑤′

𝑛2+⋯+𝑤(𝑘−1)
𝑛𝑘 .

Then, according to lemma 10, the function 𝑢𝑛 steers 𝑋𝑛 from 𝑐𝑛(𝑓0) to 0. There are two problems with
this crude choice of 𝑢𝑛: this construction only works for 𝑛 large enough, and more importantly, we
have no guarantee that the support of ∑𝑢𝑛ei𝑛𝑥 is included in [0, 𝑇] × 𝜔.

The control strategy is to first bring frequencies less than 𝑛0 to 0 in time 𝜖 for some 𝑛0 > 0 large
enough to be chosen later and 𝜖 > 0 small enough so that 𝑇 > 𝑇∗ + 2𝜖, and second use a refined
version of the construction outlined above.

Step 1: Control of a finite number of frequencies. — Recall that Π is the projection on frequencies
larger than 𝑛0 and that 𝐸 was defined in the statement of theorem 9. We claim that for any 𝑛0 ∈ ℕ∗,
𝜖 > 0 and 𝑓0 ∈ 𝐸 there exists 𝑢 ∈ 𝐿2(0, 𝜖; 𝐻𝑝

0(𝜔))𝑚 such that (1 − Π)𝑆(𝜖, 𝑓0,𝑀𝑢) = 0.
This property is equivalent to the null-controllability of the system (Sys) projected on frequencies

less or equal than 𝑛0. The observability inequality associated with this problem [14, Theorem 2.44] is:

∃𝐶 > 0, ∀𝑔0 ∈ (1 − Π)𝐸, ‖e−𝜖ℒ∗𝑔0‖2𝐻−𝑝(𝕋)𝑑 ≤ 𝐶∫
𝜖

0
‖𝑀∗e−𝑡ℒ∗𝑔0‖2𝐿2(𝜔)𝑚 d𝑡.

Since (1 − Π)𝐸 is finite dimensional, this is equivalent to the unique continuation property

∀𝑔0 ∈ (1 − Π)𝐸, (𝑀∗e−𝑡ℒ∗𝑔0(𝑥) = 0 for (𝑡, 𝑥) ∈ (0, 𝜖) × 𝜔) ⟹ 𝑔0 = 0.

Let us prove this property. Let 𝑔0 ∈ (1 − Π)𝐸 such that𝑀∗e−𝑡ℒ∗𝑔0(𝑥) = 0 for (𝑡, 𝑥) ∈ (0, 𝜖) × 𝜔.
Since finite sums of ei𝑛𝑥 have the unique continuation property, we have for every 0 < 𝑡 < 𝜖 and
|𝑛| ≤ 𝑛0,

𝑐𝑛(𝑀∗e−𝑡ℒ∗𝑔0) = 0.

We can rewrite this as
𝑀∗e−𝑡𝐵∗𝑛𝑐𝑛(𝑔0) = 0.

Differentiating ℓ times in 𝑡 and evaluating at 𝑡 = 0, we get that for all ℓ ∈ ℕ and |𝑛| ≤ 𝑛0,

𝑀∗(𝐵∗𝑛)ℓ𝑐𝑛(𝑔0) = 0.

Since we assumed that for |𝑛| > 𝑛0, 𝑐𝑛(𝑔0) = 0, this means that 𝑐𝑛(𝑔0) ∈ ker([𝐵𝑛|𝑀]∗). But, by
definition of 𝐸, 𝑐𝑛(𝑔0) ∈ Range([𝐵𝑛|𝑀]) = ker([𝐵𝑛|𝑀]∗)⟂. Thus, 𝑐𝑛(𝑔0) = 0 and 𝑔0 = 0. This proves
the unique continuation property, and the claim.

Step 2: Construction of 𝑢𝑛. — We set 𝑇 ′ = 𝑇∗ + 𝜖 = 𝑇 − 𝜖.
Let us write [𝐵𝑛|𝑀]+𝑘 = 𝑄(i𝑛)/𝑃(i𝑛) where 𝑄 is a polynomial with matrix coefficients, 𝑃 is a

polynomial (with scalar coefficients). If we denote the adjugate matrix of a matrix 𝐶 by Adj(𝐶), note
that we may take

𝑄(i𝑛) = [𝐵𝑛|𝑀]∗𝑘Adj([𝐵𝑛|𝑀]𝑘[𝐵𝑛|𝑀]∗𝑘);
𝑃(i𝑛) = det([𝐵𝑛|𝑀]𝑘[𝐵𝑛|𝑀]∗𝑘).
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Increasing 𝑛0 if necessary, we may assume that for every |𝑛| > 𝑛0, 𝑃(i𝑛) ≠ 0. We first apply a
control as in step 1: for any 𝑓0 ∈ 𝐸, there exists 𝑢 ∈ 𝐿2(0, 𝜖; 𝐻𝑝

0(𝜔))𝑚 such that (1−Π)𝑆(𝜖, 𝑓0,𝑀𝑢) = 0.
Then, the resulting solution 𝑓(𝜖, ⋅) is such that 𝑃(i𝑛) = 0 ⟹ 𝑐𝑛(𝑓(𝜖, ⋅)) = 0, since 𝑃(i𝑛) ≠ 0 for
|𝑛| > 𝑛0 and 𝑐𝑛(𝑓(𝜖, ⋅)) = 0 for |𝑛| ⩽ 𝑛0.

We consider this 𝑓(𝜖, ⋅) as our new initial condition, that we denote by 𝑓𝜖, and we have to steer it
to 0 in time 𝑇 ′. Note that since 𝑓0 ∈ 𝐻𝑝(𝕋) and 𝑢 ∈ 𝐿2(0, 𝜖; 𝐻𝑝

0(𝜔))𝑑, according to Duahmel’s formula
and the fact that the semigroup e−𝑡ℒ is strongly continuous on 𝐻𝑝(𝕋)𝑑, the state 𝑓𝜖 also belongs to
𝐻𝑝(𝕋)𝑑.

Let ℓ ∈ ℕ large enough. According to proposition 8, there exists

𝑣 ∈ 𝐻𝑝+deg𝑃
0 ((0, 𝑇 ′) × 𝜔)𝑑h × 𝐻ℓ

0((0, 𝑇 ′) × 𝜔)𝑑p

such that 𝑆(𝑇 ′, 𝑓𝜖, 𝑃(𝜕𝑥)𝑣) = 0. Write 𝑄(i𝑛) by blocks as:

𝑄(i𝑛) = (
𝑄1(i𝑛)
⋮

𝑄𝑘(i𝑛)
) = (

𝑄h
1 (i𝑛) 𝑄p

1 (i𝑛)
⋮ ⋮

𝑄h
𝑘(i𝑛) 𝑄p

𝑘(i𝑛)
) .

where the 𝑄𝑗(i𝑛) are of size𝑚× 𝑑, the 𝑄h
𝑗 (i𝑛) are of size𝑚× 𝑑h and 𝑄

p
𝑗 (i𝑛) are of size𝑚× 𝑑p. Notice

that the 𝐿h𝑛,𝑗 defined in the statement of theorem 9 are 𝐿h𝑛,𝑗 = 𝑄h
𝑗 (i𝑛)/𝑃(i𝑛). Set also

𝑤𝑛(𝑡) ≔ 𝑄(i𝑛)𝑐𝑛(𝑣(𝑡, ⋅)).

Write it by blocks as

𝑤𝑛(𝑡) = (
𝑤𝑛,1(𝑡)
⋮

𝑤𝑛,𝑘(𝑡)
) = (

𝑄1(i𝑛)𝑐𝑛(𝑣(𝑡, ⋅))
⋮

𝑄𝑘(i𝑛)𝑐𝑛(𝑣(𝑡, ⋅))
) .

Finally, set
𝑢𝑛(𝑡) ≔ 𝑤𝑛,1(𝑡) + 𝑤′

𝑛,2(𝑡) +⋯ + 𝑤(𝑘−1)
𝑛,𝑘 (𝑡).

Step 3: Conclusion. — Remark that for every 𝑛 ∈ ℤ,

[𝐵𝑛|𝑀]𝑘𝑤𝑛(𝑡) = [𝐵𝑛|𝑀]𝑘𝑄(i𝑛)𝑐𝑛(𝑣(𝑡, ⋅))
= [𝐵𝑛|𝑀]𝑘[𝐵𝑛|𝑀]∗𝑘Adj([𝐵𝑛|𝑀]𝑘[𝐵𝑛|𝑀]∗𝑘)𝑐𝑛(𝑣(𝑡, ⋅))
= det([𝐵𝑛|𝑀]𝑘[𝐵𝑛|𝑀]∗𝑘)𝑐𝑛(𝑣(𝑡, ⋅))
= 𝑃(i𝑛)𝑐𝑛(𝑣(𝑡, ⋅)).

Moreover, since 𝑆(𝑇 ′, 𝑓𝜖, 𝑃(𝜕𝑥)𝑣) = 0, the control ̃𝑣𝑛(𝑡) ≔ 𝑃(i𝑛)𝑐𝑛(𝑣(𝑡, ⋅)) steers 𝑐𝑛(𝑓𝜖) to 0 for the
system 𝑋 ′

𝑛 = 𝐵𝑛𝑋𝑛 + ̃𝑣𝑛 in time 𝑇 ′. That is to say, 𝑤𝑛 steers 𝑐𝑛(𝑓𝜖) to 0 for the system 𝑋 ′
𝑛 = 𝐵𝑛𝑋𝑛 +

[𝐵𝑛|𝑀]𝑘𝑤𝑛 in time 𝑇 ′. Thus, according to lemma 10, 𝑢𝑛 steers 𝑐𝑛(𝑓𝜖) to 0 for the system (9) in time 𝑇 ′.
Thus, the control 𝑢 formally defined by 𝑢 ≔ ∑𝑛∈ℤ 𝑢𝑛𝑒𝑛 is such that 𝑆(𝑓𝜖, 𝑇

′,𝑀𝑢) = 0. Notice
that the previous sum is well-defined in 𝐿2(0, 𝑇 ′; 𝐿2(𝕋)). Remark that, if we define 𝑢 in the sense of
distributions,

𝑢 = (𝑄1(𝜕𝑥) + 𝜕𝑡𝑄2(𝜕𝑥) +⋯ + 𝜕𝑘−1𝑡 𝑄𝑘(𝜕𝑥))𝑣.

Since 𝑣 is supported on [0, 𝑇 ′] × 𝜔, so is 𝑢. Consider the differential operator 𝒬 ≔ 𝑄1(𝜕𝑥) + 𝜕𝑡𝑄2(𝜕𝑥) +
⋯ + 𝜕𝑘−1𝑡 𝑄𝑘(𝜕𝑥). We have 𝑢 = 𝒬𝑤. Write this operator by blocks as 𝒬 = (𝒬h 𝒬p). In other words,

𝒬h ≔ 𝑄h
1 (𝜕𝑥) + 𝜕𝑡𝑄h

2 (𝜕𝑥) +⋯ + 𝜕𝑘−1𝑡 𝑄h
𝑘(𝜕𝑥).
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The order of the differential operator 𝒬h is at most

Order(𝒬h) ≤ max
1≤𝑗≤𝑘

(𝑗 − 1 + deg(𝑄h
𝑗 )).

Since 𝐿h𝑛,𝑗 = 𝑄h
𝑗 (i𝑛)/𝑃(i𝑛), according to the definition of 𝑝 (see theorem 9), Order(𝒬h) ≤ 𝑝 + deg(𝑃).

Moreover, recall that 𝑣 ∈ 𝐻𝑝+deg(𝑃)
0 ((0, 𝑇 ′)×𝜔)𝑑h×𝐻ℓ

0((0, 𝑇 ′)×𝜔)𝑑p. Thus, if we choose ℓ ≥ Order(𝒬p),
𝑢 ∈ 𝐿2((0, 𝑇 ′) × 𝜔).

3.3 Upper bound on the loss of regularity
Theorem 9 requires initial condition to be 𝐻𝑝 for some 𝑝. In this section, we provide an elementary
upper bound on 𝑝.

Proposition 11. Assume that for |𝑛| large enough, the Kalman rank condition rank([𝐵𝑛|𝑀]) = 𝑑 holds.
Let

𝑘(𝑛) ≔ inf{𝑘∶ rank([𝐵𝑛|𝑀]𝑘) = 𝑑} ∈ {−∞} ∩ ℕ.

Then, the sequence (𝑘(𝑛))𝑛∈ℤ is eventually constantwhen |𝑛| → +∞. Wewill denote𝑘0 ≔ lim|𝑛|→+∞ 𝑘(𝑛).

Proof. The rank condition rank([𝐵𝑛|𝑀]𝑘) = 𝑑 is equivalent to det([𝐵𝑛|𝑀]𝑘[𝐵𝑛|𝑀]∗𝑘) ≠ 0. Let 𝑃𝑘(𝑛) =
det([𝐵𝑛|𝑀]𝑘[𝐵𝑛|𝑀]∗𝑘). 𝑃𝑘 is a polynomial in 𝑛, hence if 𝑃𝑘(𝑛0) ≠ 0 for some 𝑛0, then 𝑃𝑘(𝑛) ≠ 0 for
every large enough |𝑛|. Thus, for every 𝑛0, there exists 𝑛1 such that 𝑘(𝑛) ≤ 𝑘(𝑛0) whenever |𝑛| ≥ 𝑛1.
Since 𝑘(𝑛) is integer valued, it is eventually constant.

Then, we have the following version of theorem 9.

Theorem 12. Assume that the hypotheses (H.1)–(H.4) hold, that 𝑇 > 𝑇∗ and that for all |𝑛| ∈ ℕ large
enough, the Kalman rank condition rank([𝐵𝑛|𝑀]) = 𝑑 holds. Let 𝑘0 as in proposition 11. Let 𝐸 as in
theorem 9.

Then, for every 𝑓0 ∈ 𝐻4𝑑(𝑘0−1)(𝕋)𝑑∩𝐸, there exists a control 𝑢 ∈ 𝐿2([0, 𝑇]×𝜔) such that the solution
𝑓 of the parabolic-transport system (Sys) with initial condition 𝑓0 satisfies 𝑓(𝑇, ⋅) = 0.

The sufficient part of theorem 1, as stated in the introduction is a special case of this theorem,
since we always have 𝑘0 ⩽ 𝑑. Here is the main lemma that allows us to bound the 𝑝 of theorem 9 (see
also [5, Theorem 2.1] for similar considerations).

Lemma 13. Let 𝐴 ∈ ℳ𝑑(ℂ)𝑝[𝑋] a polynomial of degree at most 𝑝 with 𝑑 × 𝑑 matrices coefficients.
Assume that for some 𝑧0 ∈ ℂ,𝐴(𝑧0) is invertible. Then,𝐴−1 ∈ ℂ𝑑×𝑑

𝑝(𝑑−1)(𝑋), i.e., the coefficients of (𝐴(𝑧))
−1

are rational functions of 𝑧 of degree at most 𝑝(𝑑 − 1).

Proof. Write
𝐴(𝑧)−1 = 1

det(𝐴(𝑧))
Adj(𝐴(𝑧)),

where Adj(𝐴(𝑧)) is the adjugate matrix of 𝐴(𝑧). det(𝐴(𝑧)) and Adj(𝐴(𝑧)) are nonzero polynomials in
𝑧. Moreover, the coefficients of Adj(𝐴(𝑧)) are sums of products on 𝑑 − 1 coefficients of 𝐴(𝑧). Hence,
they are polynomials of degree at most (𝑑 − 1)𝑝.

The case we are interested in is:

Corollary 14. With 𝑘0 as in proposition 11, set, when it is defined

[𝐵𝑛|𝑀]+𝑘0 ≔ [𝐵𝑛|𝑀]∗𝑘0([𝐵𝑛|𝑀]𝑘0[𝐵𝑛|𝑀]∗𝑘0)
−1.

Then, as a function of 𝑛, [𝐵𝑛|𝑀]+𝑘0 ∈ ℂ𝑑×𝑑
2(𝑘0−1)(2𝑑−1)(𝑋).
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Proof. We have [𝐵𝑛|𝑀]𝑘0 ∈ ℂ𝑑×𝑚𝑘0
2(𝑘0−1)[𝑋], hence

[𝐵𝑛|𝑀]𝑘0[𝐵𝑛|𝑀]∗𝑘0 ∈ ℂ𝑑×𝑑
4(𝑘0−1).

According to the previous lemma,

([𝐵𝑛|𝑀]𝑘0[𝐵𝑛|𝑀]∗𝑘0)
−1 ∈ ℂ𝑑×𝑑

4(𝑘0−1)(𝑑−1)(𝑋).

Hence [𝐵𝑛|𝑀]+𝑘0 ∈ ℂ𝑑×𝑑
𝑘 (𝑋) with 𝑘 = 4(𝑘0 − 1)(𝑑 − 1) + 2(𝑘0 − 1) = 2(𝑘0 − 1)(2𝑑 − 1).

Proof of theorem 12. According to theorem 9, every initial condition in 𝐸 ∩ 𝐻𝑝(𝕋)𝑑 can be steered
to 0, where 𝑝 = deg([𝐵𝑛|𝑀]+𝑘0) + 𝑘0 − 1 (degree as a rational function of 𝑛). But according to
corollary 14, deg([𝐵𝑛|𝑀]+𝑘0) ≤ 2(𝑘0 − 1)(2𝑑 − 1). Thus 𝑝 ≤ 4𝑑(𝑘0 − 1). Hence, every initial condition
in 𝐸 ∩ 𝐻4𝑑(𝑘0−1)(𝕋)𝑑 can be steered to 0.

4 Necessary conditions for null-controllability

4.1 Construction of WKB solutions
We will give other necessary conditions of null-controllability using so calledWKB solutions, that we
construct here. Using these kind of approximate solutions is standard for wave equation (see, e.g.,
[25, pp. 426–428] or [31, Appendix B] for a more elementary presentation) or Schrödinger equation
(see, e.g., [35, pp. 16–17]). WKB solutions were also used to disprove observability of some 2 × 2
parabolic-transport system with variable coefficients [2, §3] (see also [3, §3] for a Navier-Stokes system
with Maxwell’s law). Our construction is a generalization of their construction for system of arbitrary
size, which brings a few difficulties. For the sake of clarity, we construct WKB solutions only for
systems with constant coefficients, which is enough for our purposes. But it is likely that such a
construction could be adapted to a large class of variable-coefficients parabolic-transport systems of
arbitrary sizes.

To disprove the observability inequality, these WKB solutions ought to be constructed for the
adjoint system. But the parabolic-transport system (Sys) and its adjoint have the same structure, so,
in order to lighten the notations, we construct the WKB solutions for the system (Sys).

Let 𝜙 ∈ 𝐶∞([0, 𝑇] × 𝕋; ℂ) such that ℑ(𝜙) ≥ 0 and 𝜕𝑥𝜙 never vanishes. We search approximate
solutions 𝑔WKB

ℎ (𝑡, 𝑥) of the parabolic-transport system (Sys) with the following ansatz, where ℎ > 0 is
assumed to be small:

{
𝑔WKB
ℎ (𝑡, 𝑥) = 𝑋ℎ(𝑡, 𝑥)ei𝜙(𝑡,𝑥)/ℎ,

𝑋ℎ(𝑡, 𝑥) ∼ ∑
𝑗≥0

ℎ𝑗𝑌𝑗(𝑡, 𝑥). (10)

We have

𝜕𝑥𝑔WKB
ℎ = (𝜕𝑥𝑋ℎ +

i
ℎ𝜕𝑥𝜙𝑋ℎ) e

i𝜙/ℎ,

𝜕𝑡𝑔WKB
ℎ = (𝜕𝑡𝑋ℎ +

i
ℎ𝜕𝑡𝜙𝑋ℎ) e

i𝜙/ℎ,

𝜕2𝑥𝑔WKB
ℎ = (𝜕2𝑥𝑋ℎ +

2i
ℎ 𝜕𝑥𝜙𝜕𝑥𝑋ℎ −

1
ℎ2 (𝜕𝑥𝜙)

2𝑋ℎ +
i
ℎ𝜕

2
𝑥𝜙𝑋ℎ) ei𝜙/ℎ.
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Assuming that this 𝑔WKB
ℎ is solution of the parabolic-transport system (Sys), we get

0 = (𝜕𝑡 − 𝐵𝜕2𝑥 + 𝐴𝜕𝑥 + 𝐾) (𝑋ℎei𝜙/ℎ)

=[ (𝜕𝑡 − 𝐵𝜕2𝑥 + 𝐴𝜕𝑥 + 𝐾)𝑋ℎ +
1
ℎ (i𝜕𝑡𝜙 + i𝐴𝜕𝑥𝜙 − i𝐵𝜕2𝑥𝜙 − 2i𝐵𝜕𝑥𝜙𝜕𝑥) 𝑋ℎ +

1
ℎ2𝐵(𝜕𝑥𝜙)

2𝑋ℎ]ei𝜙/ℎ.

Plugging in the asymptotic expansion of 𝑋ℎ, we get

0 ∼ ∑
𝑗≥−2

[(𝜕𝑥𝜙)2𝐵𝑌𝑗+2 + (i𝜕𝑡𝜙 + i𝐴𝜕𝑥𝜙 − i𝐵𝜕2𝑥𝜙 − 2i𝐵𝜕𝑥𝜙𝜕𝑥) 𝑌𝑗+1 + (𝜕𝑡 − 𝐵𝜕2𝑥 + 𝐴𝜕𝑥 + 𝐾)𝑌𝑗]ℎ𝑗,

where, by convention, 𝑌𝑗 = 0 for 𝑗 < 0. We want to cancel each of the terms in this sum. Thus, we are
looking for (𝑌𝑗)𝑗≥0 such that for all 𝑗 ≥ −2,

(𝜕𝑥𝜙)2𝐵𝑌𝑗+2 + (i𝜕𝑡𝜙 + i𝐴𝜕𝑥𝜙 − i𝐵𝜕2𝑥𝜙 − 2i𝐵𝜕𝑥𝜙𝜕𝑥) 𝑌𝑗+1 + (𝜕𝑡 − 𝐵𝜕2𝑥 + 𝐴𝜕𝑥 + 𝐾)𝑌𝑗 = 0. (11)

Solving this induction relation requires us to look at different projections of this equation. From
now on, we will denote

𝑌𝑗 = (
𝑌h
𝑗
𝑌p
𝑗
) with 𝑌h

𝑗 ∈ ℂ𝑑h and 𝑌p
𝑗 ∈ ℂ𝑑p.

Then, recalling that 𝐵 = ( 0 0
0 𝐷 ) and taking the parabolic components of eq. (11) (i.e., the 𝑑p last

components), we get

(𝜕𝑥𝜙)2𝐷𝑌
p
𝑗 = − (0 𝐼) [(i𝜕𝑡𝜙 + i𝐴𝜕𝑥𝜙 − i𝐵𝜕2𝑥𝜙 − 2i𝐵𝜕𝑥𝜙𝜕𝑥) 𝑌𝑗−1 + (𝜕𝑡 − 𝐵𝜕2𝑥 + 𝐴𝜕𝑥 + 𝐾)𝑌𝑗−2] . (12)

Since 𝐷 is invertible, this formula determines 𝑌p
𝑗 as a function of 𝑌𝑗−1 and 𝑌𝑗−2.

Before looking at the other projections of eq. (11), let us recall that 𝐴 = ( 𝐴′ 𝐴12
𝐴21 𝐴22

). We similarly
write 𝐾 in blocks as ( 𝐾′ 𝐾12

𝐾21 𝐾22
). Then, taking the transport (i.e., the first 𝑑h) components of eq. (11), we

get
0 = (i𝜕𝑡𝜙 + i𝜕𝑥𝜙𝐴′)𝑌h

𝑗 + i𝜕𝑥𝜙𝐴12𝑌
p
𝑗 + (𝐼 0) (𝜕𝑡 + 𝐴𝜕𝑥 + 𝐾)𝑌𝑗−1. (13)

From now on, we choose 𝜙 of the form2

𝜙(𝑡, 𝑥) = 𝜓(𝑥 − 𝜇𝑡), (14)

where 𝜇 is an eigenvalue of 𝐴′ an 𝜓′ never vanishes. With this 𝜙, eq. (13) reads

0 = i𝜓′(𝑥 − 𝜇𝑡)(𝐴′ − 𝜇)𝑌h
𝑗 + i𝜓′(𝑥 − 𝜇𝑡)𝐴12𝑌

p
𝑗 + (𝐼 0) (𝜕𝑡 + 𝐴𝜕𝑥 + 𝐾)𝑌𝑗−1

= i𝜓′(𝑥 − 𝜇𝑡)(𝐴′ − 𝜇)𝑌h
𝑗 + i𝜓′(𝑥 − 𝜇𝑡)𝐴12𝑌

p
𝑗 + (𝜕𝑡 + 𝐴′𝜕𝑥 + 𝐾′)𝑌h

𝑗−1 + (𝐴12𝜕𝑥 + 𝐾12)𝑌
p
𝑗−1.

(15)

Denote by 𝑃′𝜇 the projection on the eigenspace of 𝐴′ associated with 𝜇 along the other eigenspaces.
We consider 𝑌h

𝑗,𝜇 ∈ Range(𝑃′𝜇) defined by 𝑌h
𝑗,𝜇 = 𝑃′𝜇𝑌h

𝑗 . Similarly, we set 𝑌h
𝑗,≠𝜇 ∈ ker(𝑃′𝜇) as 𝑌h

𝑗,≠𝜇 =
(𝐼 − 𝑃′𝜇)𝑌h

𝑗 . Finally, we write in blocks 𝐴′ and 𝐾′ along the sum ℝ𝑑 = Range(𝑃′𝜇) ⊕ ker(𝑃′𝜇) as

𝐴′ = (𝜇 0
0 𝐴′22

) , 𝐾′ = (𝐾
′
11 𝐾′

12
𝐾′
21 𝐾′

22
) ,

2Equations (12) and (13) with 𝑗 = 0 implies (𝜕𝑡𝜙+ 𝜕𝑥𝜙𝐴′)𝑌h
0 = 0. If we want a non-trivial 𝑌h

0 , this imposes 𝜙 to depend
only on 𝑥 − 𝜇𝑡 for some 𝜇 ∈ Sp(𝐴′).
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where 𝐴′22 ∈ ℒ(ker(𝑃′𝜇)), 𝐾′
11 = 𝑃′𝜇𝐾′𝑃′𝜇 ∈ ℒ(Range(𝑃′𝜇)), 𝐾′

12 ∈ ℒ(ker(𝑃′𝜇),Range(𝑃′𝜇)), etc. Then,
projecting eq. (15) on ker(𝑃′𝜇) along Range(𝑃′𝜇) (i.e., multiplying by (𝐼 − 𝑃′𝜇)), we get

i𝜓′(𝑥 − 𝜇𝑡)(𝐴′22 − 𝜇)𝑌h
𝑗,≠𝜇 = −(𝐼 − 𝑃′𝜇) [i𝜓′(𝑥 − 𝜇𝑡)𝐴12𝑌

p
𝑗 + (𝐼 0) (𝜕𝑡 + 𝐴𝜕𝑥 + 𝐾)𝑌𝑗−1] . (16)

Since 𝑃′𝜇 is the projection on the eigenspace of 𝐴′ associated with the eigenvalue 𝜇, 𝐴′ − 𝜇 is invertible
on ker(𝑃′𝜇), i.e., 𝐴′22 − 𝜇 is invertible. Hence, eq. (16) determines 𝑌h

𝑗,≠𝜇 as a function of 𝑌
p
𝑗 and 𝑌𝑗−1.

Finally, we project eq. (15) on Range(𝑃′𝜇), we get

0 = (𝜕𝑡 + 𝜇𝜕𝑥 + 𝐾′
11)𝑌h

𝑗,𝜇 + 𝐾′
12𝑌h

𝑗,≠𝜇 + 𝑃′𝜇(𝐴12𝜕𝑥 + 𝐾12)𝑌
p
𝑗 + i𝜓′(𝑥 − 𝜇𝑡)𝑃′𝜇𝐴12𝑌

p
𝑗+1. (17)

We then use eq. (12) to express 𝑌p
𝑗+1 as

𝑌p
𝑗+1 = 𝐷1𝑌h

𝑗 + 𝐷2𝑌
p
𝑗 + 𝐷3𝑌𝑗−1, with 𝐷1 = − i

𝜓′(𝑥 − 𝜇𝑡)
𝐷−1𝐴21,

and where 𝐷2 and 𝐷3 are matrix first or second-order differential operators. Their specific expressions
do not matter for our purpose. Plugging this in eq. (17), we get

(𝜕𝑡 + 𝜇𝜕𝑥 + 𝐾′
11 + 𝑃′𝜇𝐴12𝐷−1𝐴21𝑃′𝜇)𝑌h

𝑗,𝜇

= −𝐾′
12𝑌h

𝑗,≠𝜇 − 𝑃′𝜇(𝐴12𝜕𝑥 + 𝐾12)𝑌
p
𝑗 − i𝜓′(𝑥 − 𝜇𝑡)𝑃′𝜇𝐴12(𝐷1(𝐼 − 𝑃′𝜇)𝑌h

𝑗,≠𝜇 + 𝐷2𝑌
p
𝑗 + 𝐷3𝑌𝑗−1). (18)

If we chose an initial condition 𝑌h
𝑗,𝜇,0 for 𝑌h

𝑗,𝜇, eq. (18) determines 𝑌h
𝑗,𝜇 as a function of 𝑌h

𝑗,𝜇,0, 𝑌h
𝑗,≠𝜇, 𝑌

p
𝑗

and 𝑌𝑗−1.
We have seen that if 𝜙 is given by eq. (14), the (𝑌𝑗)𝑗∈ℕ that solve theWKB recurrence equation (11)

are given by eqs. (12), (16) and (18).
To be rigorous, we have only proved that if (𝑌𝑗)𝑗𝑛ℕ solves eq. (11), then 𝑌

p
𝑗 , 𝑌h

𝑗,≠𝜇 and 𝑌h
𝑗,𝜇 solves

eqs. (12), (16) and (18) respectively, but not the reciprocal (which is what we are actually interested in).
However, we easily rephrase the computations of this section as a sequence of equivalences:

• ∀𝑗 ≥ −2, 𝑌𝑗 solves eq. (11) if and only if;

• ∀𝑗 ≥ 0, 𝑌p
𝑗 solves eq. (12), 𝑌h

𝑗,≠𝜇 solves eq. (16) and 𝑌h
𝑗,𝜇 solves eq. (17) if and only if;

• ∀𝑗 ≥ 0, 𝑌p
𝑗 solves eq. (12), 𝑌h

𝑗,≠𝜇 solves eq. (16) and 𝑌h
𝑗,𝜇 solves eq. (18).

We summarize the computations of this section in the following proposition:

Proposition 15. Let 𝜓 ∈ 𝐶∞(𝕋) such that 𝜓′ never vanishes and ℑ(𝜓) ≥ 0. Let 𝜇 ∈ Sp(𝐴′) and set 𝜙 as
in eq. (14).

For every 𝑗 ≥ 0, let 𝑌h
𝑗,𝜇,0 ∈ 𝐶∞(𝕋; ker(𝐴′ − 𝜇)). Define (𝑌p

𝑗 )𝑗≥−2, (𝑌h
𝑗,≠𝜇)𝑗≥−2 and (𝑌h

𝑗,𝜇)𝑗≥−2 with the
following recursive procedure:

• set 𝑌p
−2 = 𝑌p

−1 = 0, 𝑌h
−2,≠𝜇 = 𝑌h

−1,≠𝜇 = 0, 𝑌h
−2,𝜇 = 𝑌h

−1,𝜇 = 0;

• if 𝑌p
𝑘 , 𝑌

h
𝑘,≠𝜇, 𝑌

h
𝑘,𝜇 are defined for −2 ≤ 𝑘 ≤ 𝑗 − 1, define 𝑌p

𝑗 with eq. (12), 𝑌h
𝑗,≠𝜇 with eq. (16) and

𝑌h
𝑗,𝜇 with eq. (18) with initial condition 𝑌h

𝑗,𝜇,0.

For 𝑗 ≥ 0, set 𝑌𝑗(𝑡, 𝑥) = (
𝑌h
𝑗,𝜇+𝑌

h
𝑗,≠𝜇

𝑌p
𝑗

). Let 𝑞 ∈ ℕ. Let the function 𝑔WKB
ℎ be defined by

𝑔WKB
ℎ (𝑡, 𝑥) =

𝑞
∑
𝑗=0

ℎ𝑗𝑌𝑗ei𝜙(𝑡,𝑥)/ℎ. (19)
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Then, defining 𝑟ℎ by
(𝜕𝑡 − 𝐵𝜕2𝑥 + 𝐴𝜕𝑥 + 𝐾)𝑔WKB

ℎ (𝑡, 𝑥) = 𝑟ℎ(𝑡, 𝑥)ei𝜙(𝑡,𝑥)/ℎ,

for every 𝑘 ∈ ℕ, ℓ ∈ ℕ, 𝑡 ∈ [0, 𝑇] and 𝑥 ∈ 𝕋,

|𝜕𝑘𝑡 𝜕ℓ𝑥𝑟ℎ(𝑡, 𝑥)| ≤ 𝐶𝑘,ℓℎ𝑞−1.

Remark 16. Assume that ℎ−1 ∈ ℕ. Then, replacing 𝜙 by 𝜙+ 2𝑘𝜋 in eq. (10) does not change theWKB
solution 𝑔WKB

ℎ . Hence, 𝜙 can be defined up to a factor 2𝑘𝜋. That way, 𝜙 can be non-periodic, as long
as 𝜙 mod 2𝜋 is. Thus, we can choose

𝜙(𝑡, 𝑥) = i𝜑(𝑥 − 𝜇𝑡) + 𝑛0(𝑥 − 𝜇𝑡) with 𝜇 ∈ Sp(𝐴′), 𝜑 ≥ 0, and 𝑛0 ∈ ℕ ⧵ {0}.

These WKB solutions will be used to disprove observability inequalities that often feature a
projection on high frequencies. To deal with these projection on high frequencies, we will use the
following lemma.

Lemma 17. Let 𝑛 ∈ ℤ. Under the assumptions of proposition 15, for every ℓ ∈ ℕ, we have uniformly in
0 ≤ 𝑡 ≤ 𝑇, in the limit ℎ → 0+,

(𝑔WKB
ℎ (𝑡, ⋅), 𝑒𝑛)𝐿2 = 𝑂(ℎℓ).

Proof. The scalar product (𝑔WKB
ℎ (𝑡, ⋅), ei𝑛𝑥)𝐿2 can be written as

(𝑔WKB
ℎ (𝑡, ⋅), 𝑒𝑛)𝐿2 = ∫

𝕋
𝑤𝑡,ℎ,𝑛(𝑥)ei𝜓(𝑥−𝜇𝑡)/ℎ d𝑥,

where

𝑤𝑡,ℎ,𝑛(𝑥) ≔
𝑞
∑
𝑗=0

ℎ𝑗𝑌𝑗(𝑡, 𝑥)e−i𝑛𝑥.

Note that 𝑤𝑡,ℎ,𝑛 and its derivative are uniformly bounded for 0 ≤ 𝑡 ≤ 𝑇 and ℎ ≤ 1. Consider the
differential operator 𝐿 ≔ (i𝜓′(𝑥−𝜇𝑡))−1𝜕𝑥. Here, we use the fact that 𝜓′ never vanishes. This operator
is such that

ℎ𝐿ei𝜓(𝑥−𝜇𝑡)/ℎ = ei𝜓(𝑥−𝜇𝑡)/ℎ.

Thus, denoting 𝐿∗ the adjoint of 𝐿, by integration by parts,

(𝑔WKB
ℎ (𝑡, ⋅), 𝑒𝑛)𝐿2 = ℎ𝑙∫

𝕋
(𝐿∗)ℓ(𝑤𝑡,ℎ,𝑛)(𝑥)ei𝜓(𝑥−𝜇𝑡)/ℎ d𝑥.

The operator 𝐿∗ is a differential operator independent of ℎ. Hence, by definition of 𝑤𝑡,ℎ,𝑛

(𝑔WKB
ℎ (𝑡, ⋅), 𝑒𝑛)𝐿2 = 𝑂(ℎℓ).

4.2 The parabolic-transport system is not null controllable in small time
We now prove that the time condition 𝑇 ⩾ 𝑇∗ is necessary (remark that the equality case 𝑇 = 𝑇∗

remains an open question). It was already proved to be necessary for the null-controllability of every
𝐿2 initial conditions [7]. But this proof did not exclude the null-controllability of every 𝐻𝑘 initial
condition when 𝑇 < 𝑇∗.

Proposition 18. Let 𝑇 > 0 and assume that there exists 𝑁 ∈ ℕ∗ and 𝑘 ∈ ℕ such that every initial
conditions in𝐻𝑘(𝕋)𝑑 ∩ {∑|𝑛|>𝑁 𝑋𝑛e

i𝑛𝑥} for the parabolic-transport system (Sys) can be steered to 0 in
time 𝑇. Then 𝑇 ≥ 𝑇∗.
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Proof. Let 𝜇 ∈ Sp(𝐴′) with maximummodulus. By definition, 𝑇∗ = ℓ(𝜔)/|𝜇|. Let 𝑇 < 𝑇∗.
We aim to disprove that the observability inequality associated to the control problem of propo-

sition 18 using theWKB solution constructed above. We claim that this observability inequality is:
there exists 𝐶 > 0 such that for every 𝑔0 ∈ 𝐿2(𝕋)𝑑, the solution 𝑔 of

(𝜕𝑡 − 𝐵∗𝜕𝑥 − 𝐴∗𝜕𝑥 + 𝐾∗𝜕𝑥)𝑔(𝑡, 𝑥) = 0, 𝑔(0, 𝑥) = 𝑔0(𝑥) (20)

satisfies
‖𝜋𝑁𝑔(𝑇, ⋅)‖𝐻−𝑘(𝕋) ≤ 𝐶‖𝑀∗𝑔‖𝐿2((0,𝑇)×𝜔), (21)

where 𝜋𝑁∶ ∑𝑛∈ℤ 𝑋𝑛e
i𝑛𝑥 ∈ 𝐿2(𝕋) ↦ ∑|𝑛|>𝑁 𝑋𝑛e

i𝑛𝑥.
This is proved using a standard duality lemma, see e.g. [14, Lemma 2.48] with 𝐶2 = e−𝑡ℒ ∘ 𝜋∗𝑁 ∘ 𝜄𝑘

and 𝐶1∶ 𝑢 ∈ 𝐿2((0, 𝑇) × 𝜔) ↦ ∫𝑇
0 e−(𝑇−𝑡)ℒ𝑀𝑢(𝑡) d𝑡, where 𝜄𝑘 is the injection 𝐻𝑘(𝕋) → 𝐿2(𝕋). Note

that 𝜋∗𝑁 is the injection {∑|𝑛|>𝑁 𝑋𝑛e
i𝑛𝑥} → 𝐿2(𝕋), and that 𝜄∗𝑘 is a bijective isometry 𝐻−𝑘(𝕋) → 𝐻𝑘(𝕋)

([7, Lemma 33]).
Testing this observability inequality on initial conditions of the form 𝜕𝑘𝑥𝑔0 instead of 𝑔0, we get

‖𝜋𝑁𝑔(𝑇, ⋅)‖𝐿2(𝕋) ≤ 𝐶‖𝜕𝑘𝑥𝑀∗𝑔‖𝐿2((0,𝑇)×𝜔), (22)

Step 1: Construction of the counterexample. — Let 𝑇 < 𝑇∗. There exists 𝑥0 ∉ 𝜔 such that 𝑥0 − 𝜇𝑡 ∉ 𝜔
for every 0 ≤ 𝑡 ≤ 𝑇. Choose 𝜑 ∈ 𝐶∞(𝕋) real-valued such that 𝜑(𝑥0) = 0, 𝜑″(𝑥0) = 1 and 𝜑(𝑥) > 0
for every 𝑥 ≠ 𝑥0. Then, choose 𝜙(𝑡, 𝑥) = i𝜑(𝑥 + 𝜇𝑡) + (𝑥 + 𝜇𝑡)𝑛0, as we did in remark 16 (the change
from 𝜇 to −𝜇 is because we are considering −𝐴∗ instead of 𝐴).

This choice of 𝜙 ensures that whatever the choices of the 𝑌𝑗, the WKB solution 𝑔WKB
ℎ defined

by eq. (10) stays concentrated around 𝑥0 + 𝜇𝑡.
Let 𝑌h

0,𝜇,0 ∈ 𝐶∞(𝕋; ker(𝐴′∗ + 𝜇)) with 𝑌h
0,𝜇,0(𝑥0) ≠ 0. For 𝑗 ≥ 1, set 𝑌h

𝑗,𝜇,0 = 0. Let 𝑞 > 𝑘 + 1.
Consider the function 𝑔WKB

ℎ defined by proposition 15 (where 𝐵, and 𝐾 are replaced respectively by 𝐵∗
and 𝐾∗, and where 𝐴 is replaced by −𝐴∗).

Set also 𝑔ℎ(𝑡, 𝑥) the solution of the adjoint system (20) with initial condition 𝑔WKB
ℎ (𝑡 = 0, ⋅).

Step 2: Estimation of the difference between 𝑔WKB
ℎ and 𝑔ℎ. — According to proposition 15,

(𝜕𝑡 − 𝐵∗𝜕2𝑥 − 𝐴∗𝜕𝑥 + 𝐾∗)𝑔WKB
ℎ = 𝑂(ℎ𝑘+1)ei𝜙(𝑡,𝑥)/ℎ,

Hence, with 𝑟ℎ ≔ 𝑔WKB
ℎ − 𝑔ℎ, we have 𝑟ℎ(0, 𝑥) = 0 and

(𝜕𝑡 − 𝐵∗𝜕2𝑥 − 𝐴∗𝜕𝑥 + 𝐾∗)𝑟ℎ = 𝑂(ℎ𝑘+1)ei𝜙(𝑡,𝑥)/ℎ.

where the 𝑂 has to be understood in the 𝐶∞-topology. Since the parabolic-transport system is well-
posed in 𝐻𝑘(𝕋)𝑑, we get that for every 𝑗 ∈ ℕ, uniformly in 0 < 𝑡 < 𝑇,

‖𝜕𝑗𝑥(𝑔WKB
ℎ (𝑡, ⋅) − 𝑔ℎ(𝑡, ⋅))‖𝐿2 ≤ 𝐶𝑗ℎ𝑘−𝑗+1. (23)

Step 3: Upper bound on the right-hand side of the observability inequality. — According to the triangle
inequality,

‖𝜕𝑘𝑥𝑀∗𝑔ℎ‖𝐿2((0,𝑇)×𝜔) ≤ ‖𝜕𝑘𝑥𝑀∗𝑔WKB
ℎ ‖𝐿2((0,𝑇)×𝜔) + ‖𝜕𝑘𝑥𝑀∗𝑟ℎ‖𝐿2((0,𝑇)×𝜔).

According to step 2, the second term of the right-hand side is 𝑂(ℎ). For the first term of the right-
hand side, we recall that 𝑔WKB

ℎ = ∑𝑞
𝑗=0 ℎ

𝑗𝑌𝑗ei𝜓(𝑥−𝜇𝑡), and that, thanks to our choice of 𝜓, ei𝜓(𝑥+𝜇𝑡) is
exponentially small when 𝑥 + 𝜇𝑡 ≠ 𝑥0. Therefore, since 𝑥0 − 𝜇𝑡 ∉ 𝜔 for every 0 ≤ 𝑡 ≤ 𝑇, for some
𝑐 > 0,

‖𝜕𝑘𝑥𝑀∗𝑔WKB
ℎ ‖𝐿2((0,𝑇)×𝜔) = 𝑂(e−𝑐/ℎ).
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This proves that
‖𝜕𝑘𝑥𝑀∗𝑔ℎ‖𝐿2((0,𝑇)×𝜔) = 𝑂(ℎ). (24)

Step 4: Lower bound on the left-hand side of the observability inequality. — According to lemma 17, for
any ℓ ≥ 0,

‖𝜋𝑁𝑔WKB
ℎ (𝑇, ⋅)‖𝐿2(𝕋) = ‖𝑔WKB

ℎ (𝑇, ⋅)‖𝐿2(𝕋) + 𝑂(ℎℓ). (25)

Thus, using the inverse triangle inequality,

‖𝜋𝑁𝑔ℎ(𝑇, ⋅)‖𝐿2(𝕋) ≥ ‖𝜋𝑁𝑔WKB
ℎ (𝑇, ⋅)‖𝐿2(𝕋) − ‖𝜋𝑁𝑟ℎ(𝑇, ⋅)‖𝐿2(𝕋).

Using the error estimates of step 2, and eq. (25), we get

‖𝜋𝑁𝑔ℎ(𝑇, ⋅)‖𝐿2(𝕋) ≥ ‖𝑔WKB
ℎ (𝑇, ⋅)‖𝐿2(𝕋) − 𝐶ℎ. (26)

Thus, we only need to find a lower-bound for ‖𝑔WKB
ℎ (𝑇, ⋅)‖𝐿2(𝕋). We have

‖𝑔WKB
ℎ (𝑇, ⋅)‖2𝐿2(𝕋) = ∫

𝕋

||||

𝑞
∑
𝑗=0

ℎ𝑗𝑌𝑗(𝑡, 𝑥)
||||

2

e−2𝜑(𝑥+𝜇𝑇)/ℎ d𝑥 = ∫
𝕋
|𝑌0(𝑡, 𝑥)|2e−2𝜑(𝑥+𝜇𝑇)/ℎ d𝑥 + 𝑂(ℎ).

Recall that 𝜑(𝑥0) = 0, that for 𝑥 ≠ 𝑥0, 𝜑(𝑥) is strictly positive and that 𝜑″(𝑥0) ≠ 0. Then, using
Laplace’s method (see e.g. [36, §2.2] and in particular [36, eq. (2.34)]), we get

‖𝑔WKB
ℎ (𝑇, ⋅)‖2𝐿2(𝕋) = 𝑐√ℎ + 𝑂(ℎ3/2)

for some 𝑐 > 0. Plugging this into eq. (26), we get that for ℎ small enough,

‖𝜋𝑁𝑔ℎ(𝑇, ⋅)‖𝐿2(𝕋) ≥ 𝑐√ℎ. (27)

Step 5: Conclusion. — Comparing the lower bound (27) and the upper bound (24) and taking ℎ small
enough, we see that the observability inequality (21) cannot hold if 𝑇 < 𝑇∗, hence the parabolic-
transport system (Sys) with initial conditions in 𝐻𝑘 ∩ 𝜋𝑁(𝐿2(𝕋)) is not null-controllable in time
𝑇 < 𝑇∗.

4.3 Rough initial conditions are not null-controllable
We now give necessary conditions for every 𝐿2 initial condition to be steerable to 0. To do this, we
only need the first term of the WKB expansion of proposition 15. By analyzing higher-order terms of
the WKB expansion, it is likely that we could get necessary conditions for the null-controllability of
every𝐻𝑘 initial conditions. But doing this analysis in general seems hard, and we leave this for future
work, or on a case-by-case basis. In fact, we will prove the following statement, which is a refined
version of theorem 3.

Proposition 19. Let 𝜇 ∈ Sp(𝐴′), 𝑁 ∈ ℕ and 𝑇 > 0. Let 𝑃′𝜇 be the projection on the eigenspace of 𝐴′

associated to 𝜇. Write 𝐾 in blocks as ( 𝐾′ 𝐾12
𝐾21 𝐾22

), with 𝐾′ ∈ ℳ𝑑ℎ(ℝ). Set

𝐾∗
𝜇 ≔ (𝑃′𝜇)∗ ((𝐾′)∗ + 𝐴∗21(𝐷∗)−1𝐴∗12) (𝑃′𝜇)∗

Assume that every initial condition 𝑓0 ∈ 𝐿2(𝕋)𝑑 ∩ {∑|𝑛|>𝑁 𝑋𝑛e
i𝑛𝑥} is steerable to 0 in time 𝑇 with control

in 𝐿2((0, 𝑇) × 𝜔). Then, for every 𝜇 ∈ Sp(𝐴′) and for every non-zero subspace 𝑆 ⊂ Range((𝑃′𝜇)∗) that is
stable by 𝐾∗

𝜇, there exists 𝑉0 ∈ 𝑆 such that𝑀∗( 𝑉00 ) ≠ 0.
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Proof. Step 1: Observability inequality. — Using a standard duality lemma [14, Lemma 2.48], and
as in the proof of proposition 18, we get an observability inequality that is equivalent to the null-
controllability of the system (Sys) with initial conditions in 𝐿2(𝕋)𝑑∩{∑|𝑛|>𝑁 𝑋𝑛e

i𝑛𝑥}. This observability
inequality is: there exists 𝐶 > 0 such that for every 𝑔0 ∈ 𝐿2(𝕋)𝑑, the solution 𝑔 of

(𝜕𝑡 − 𝐵∗𝜕2𝑥 − 𝐴∗𝜕𝑥 + 𝐾∗)𝑔(𝑡, 𝑥) = 0, 𝑔(0, 𝑥) = 𝑔0(𝑥) (28)

satisfies
‖𝜋𝑁𝑔(𝑇, ⋅)‖𝐿2(𝕋) ≤ 𝐶‖𝑀∗𝑔‖𝐿2((0,𝑇)×𝜔), (29)

where, as in the proof of proposition 18, 𝜋𝑁∶ ∑𝑛∈ℤ 𝑋𝑛e
i𝑛𝑥 ∈ 𝐿2(𝕋) ↦ ∑|𝑛|>𝑁 𝑋𝑛e

i𝑛𝑥.

Step 2: Construction of the counterexample. — Let 𝑉0 ∈ 𝑆⧵ {0}. Set 𝜑 ≔= 0 and let 𝜙(𝑡, 𝑥) = 𝑛0(𝑥−𝜇𝑡)
as in remark 16. Set 𝑌h

0,𝜇,0(𝑥) ≔ 𝑉0. For 𝑗 > 0, set 𝑌h
𝑗,𝜇,0 ≔ 0. Let 𝑔WKB

ℎ be defined by proposition 15
with 𝐵 and 𝐾 replaced respectively by 𝐵∗ and 𝐾∗ and 𝐴 by −𝐴∗, and with 𝑞 ≥ 2. Let 𝑔ℎ be the solution
of the parabolic-transport system (Sys) with initial condition 𝑔WKB

ℎ (0, ⋅).
Remark that according to proposition 15, and in particular eq. (18),

(𝜕𝑡 − 𝜇𝜕𝑥 + 𝐾∗
𝜇)𝑌h

0,𝜇 = 0.

Thus, 𝑌h
0,𝜇(𝑡, 𝑥) = e−𝑡𝐾∗

𝜇𝑉0. In particular, since 𝑆 is stable by 𝐾∗
𝜇, 𝑌h

0,𝜇(𝑡, 𝑥) ∈ 𝑆 for all 𝑡, 𝑥.

Step 3: Error estimate between 𝑔WKB
ℎ and 𝑔ℎ. — Set 𝑟ℎ ≔ 𝑔ℎ − 𝑔WKB

ℎ . Then 𝑟ℎ(0, 𝑥) = 0, and according
to proposition 15,

(𝜕𝑡 − 𝐵∗𝜕2𝑥 − 𝐴∗𝜕𝑥 + 𝐾∗)𝑟ℎ = 𝑂(ℎ)e𝑖𝜙(𝑡,𝑥)/ℎ.

Since the parabolic-transport system is well-posed in 𝐿2(𝕋)𝑑, uniformly in 0 ≤ 𝑡 ≤ 𝑇,

‖𝑟ℎ(𝑡, ⋅)‖𝐿2(𝕋) ≤ 𝐶ℎ.

Step 4: Upper bound of the right-hand side of the observability inequality. — Using the error estimate
of the previous step, the right-hand side of the observability inequality (29) satisfies

‖𝑀∗𝑔ℎ‖2𝐿2((0,𝑇)×𝜔) ≤ ‖𝑀∗𝑔WKB
ℎ ‖2𝐿2((0,𝑇)×𝜔) + 𝐶ℎ

≤ ‖𝑀∗𝑌h
0 ei𝜙/ℎ‖2𝐿2((0,𝑇)×𝜔) + 𝐶ℎ

=
‖
‖‖𝑀

∗ (𝑌
h
0,𝜇
0 )

‖
‖‖

2

𝐿2((0,𝑇)×𝜔)
+ 𝐶ℎ

= 2𝜋∫
𝑇

0

|
|
|𝑀

∗ (e
−𝑡𝐾∗

𝜇𝑉0
0 )

|
|
|

2

d𝑡 + 𝐶ℎ, (30)

where we used the definition of 𝑔WKB
ℎ for the last three inequalities.

Step 5: Lower-bound of the left-hand side of the observability inequality. — Using again the error
estimate of step 3, the left-hand side of the observability inequality (29) satisfies

‖𝜋𝑁𝑔ℎ(𝑇, ⋅)‖2𝐿2 ≥ ‖𝜋𝑁𝑔WKB
ℎ (𝑇, ⋅)‖2𝐿2 − 𝐶ℎ.

Then, using the estimate on low frequencies of 𝑔WKB
ℎ (lemma 17)

‖𝜋𝑁𝑔ℎ(𝑇, ⋅)‖2𝐿2 ≥ ‖𝑔WKB
ℎ (𝑇, ⋅)‖2𝐿2 − 𝐶ℎ.
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Now, using the definition of 𝑔WKB
ℎ , and the fact that |ei𝜙| = 1,

‖𝜋𝑁𝑔ℎ(𝑇, ⋅)‖2𝐿2 ≥ ‖𝑌h
0,𝜇(𝑇, ⋅)‖2𝐿2 − 𝐶ℎ.

= 2𝜋|e−𝑇𝐾∗
𝜇𝑉0|2 − 𝐶ℎ. (31)

Step 6: Conclusion. — Comparing the upper bound on the right-hand side of the observability
inequality (eq. (30)) and the lower bound on the left-hand side (eq. (31)), we see that 𝑀∗e−𝑡𝐾∗

𝜇𝑉0
cannot vanish for every 0 ≤ 𝑡 ≤ 𝑇. Since e−𝑡𝐾∗

𝜇𝑉0 ∈ 𝑆 for every 𝑡, this proves the proposition.

5 Systems of two equations
We apply the general theorems of the previous sections on 2 × 2 systems. Some of these results are
not new (see, e.g., [13]). Our goal here is only to check whether our results are optimal, at least in this
setting.

5.1 Control properties of 2 × 2 systems: statements
Here, we consider the parabolic transport-system (Sys) with

𝐵 = (0 0
0 𝑑) , 𝐴 = ( 𝑎

′ 𝑎12
𝑎21 𝑎22

) , 𝐾 = (𝑘11 𝑘12
𝑘21 𝑘22

) , 𝑀 = (𝑚1
𝑚2

) . (32)

where all lower-case letters are real numbers, with 𝑑 > 0 and 𝑎′ ≠ 0. Here, we assume that𝑀 has
rank one. We do not need to treat the case where rank(𝑀) = 2, because it is already covered with
the general theorem where there is a control on every component (see [7, Theorem 2] or theorem 12
with 𝑘 = 1): every initial condition in 𝐿2(𝕋)𝑑 is null-controllable in time 𝑇 > 𝑇∗. In the following
three propositions, we detail the applications of our general theorem to eleven cases, showcasing the
variety of phenomena that can appear depending on the values of every coefficients. The proofs are
given in the next subsections.

Proposition 20. Assume that 𝐵, 𝐴, 𝐾,𝑀 are given by eq. (32). Assume that (𝑚1, 𝑚2) = (1, 0). If
(𝑎21, 𝑘21) = (0, 0), the parabolic-transport system (Sys) is not null-controllable, whatever the time 𝑇 is.

Let 𝑇 > ℓ(𝜔)/|𝑎′| (where ℓ(𝜔) is defined in eq. (1)).

• If 𝑘21 ≠ 0, every initial condition in 𝐿2(𝕋)2 for the system (Sys) can be steered to 0 in time 𝑇 with 𝐿2
controls.

• If 𝑎21 ≠ 0 and 𝑘21 = 0, every initial condition 𝑓0 = (𝑓h0 , 𝑓
p
0 ) in 𝐿2(𝕋)2 such that ∫𝕋 𝑓

p
0 = 0 for the

system (Sys) can be steered to 0 in time 𝑇 with 𝐿2 controls.

Proposition 21. Assume that 𝐵, 𝐴, 𝐾,𝑀 are given by eq. (32). Assume that (𝑚1, 𝑚2) = (0, 1). If
(𝑎12, 𝑘12) = (0, 0), the parabolic-transport system (Sys) is not null-controllable, whatever the time 𝑇 is.

Let 𝑇 > ℓ(𝜔)/|𝑎′|.

• If 𝑎12 ≠ 0 and 𝑘12 ≠ 0, every initial condition in𝐻1(𝕋) × 𝐿2(𝕋) for the system (Sys) can be steered
to 0 in time 𝑇 with 𝐿2 controls.

• If 𝑎12 ≠ 0 and 𝑘12 = 0, every initial condition 𝑓0 = (𝑓h0 , 𝑓
p
0 ) in𝐻1(𝕋) × 𝐿2(𝕋) such that ∫𝕋 𝑓

h
0 = 0

for the system (Sys) can be steered to 0 in time 𝑇 with 𝐿2 controls.

• If 𝑎12 = 0 and 𝑘12 ≠ 0, every initial condition in𝐻2(𝕋) × 𝐿2(𝕋) for the system (Sys) can be steered
to 0 in time 𝑇 with 𝐿2 controls.
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In every cases, there exists an initial condition 𝑓0 in 𝐿2(𝕋) such that ∫𝕋 𝑓0 = 0 that cannot be steered to 0
in time 𝑇 with 𝐿2 controls.

In the case where 𝑎21 = 0 and 𝑘21 ≠ 0, there is a gap in the regularity condition that is sufficient for
the null controllability (i.e., 𝐻2 × 𝐿2), and the lack of null-controllability of 𝐿2 × 𝐿2 initial conditions.
Are every𝐻1×𝐿2 initial conditions steerable to 0? We conjecture that this is not the case, but theorem 3
is not enough to prove so. We would need to look at the second term in theWKB expansion to find
out, or use another method; maybe using a refined version of regularization properties of lemma 23.

We do not detail in general the case where𝑚1 ≠ 0 and𝑚2 ≠ 0. Let us just mention that there is
no regularity condition for null-controllability to hold. But depending on whether the solution of
det([𝐵𝑛,𝑀]) = 0 (which is a quadratic equation in 𝑛) are integer, there might be a condition on at
most two fourier components for an initial condition to be steerable to 0. We only detail the following
case that is about the simultaneous control of a transport and a parabolic equation.

Proposition 22. Assume that 𝐵,𝑀 are given by eq. (32). Assume that 𝐴 = ( 𝑎′ 0
0 𝑎22 ) and 𝐾 = ( 𝑘11 0

0 𝑘22 ).
Assume that (𝑚1, 𝑚2) = (1, 1). Let 𝑇 > ℓ(𝜔)/|𝑎′|.

• If 𝑎′ ≠ 𝑎22 and 𝑘11 = 𝑘22, every initial condition 𝑓0 = (𝑓h0 , 𝑓
p
0 ) ∈ 𝐿2(𝕋)2 such that ∫𝑇 𝑓

h
0 = ∫𝕋 𝑓

p
0

can be steered to zero with controls in 𝐿2.

• If 𝑎′ ≠ 𝑎22 and 𝑘11 ≠ 𝑘22, every initial condition in 𝐿2(𝕋)2 can be steered to zero with controls in
𝐿2.

• If 𝑎′ = 𝑎22 and√(𝑘22 − 𝑘11)/𝑑 ∉ ℕ, every initial condition in 𝐿2(𝕋)2 can be steered to zero with
controls in 𝐿2.

• If 𝑎′ = 𝑎22 and 𝑛0 ≔ √(𝑘22 − 𝑘11)/𝑑 ∈ ℕ, every initial condition 𝑓0 = (𝑓h0 , 𝑓
p
0 ) ∈ 𝐿2(𝕋)2 such that

𝑐±𝑛0(𝑓
h
0 ) = 𝑐±𝑛0(𝑓

p
0 ) can be steered to zero with controls in 𝐿2.

The case 𝑎′ ≠ 𝑎22 and 𝑘11 = 𝑘22 is not new, at least in spirit: the simultaneous controllability
(equivalently, additive observability) of a heat equation and a wave equation has been studied by
Zuazua [41, §2.1–2.2].

5.2 Regularity of the free equation
We will use some basic regularity results.

Lemma 23. Let 𝑓0 ∈ 𝐻1(𝕋)𝑑h × 𝐿2(𝕋)𝑑p. For every 𝑡 > 0, e−𝑡ℒ𝑓0 ∈ 𝐻1(𝕋)𝑑.
Assume in addition that𝐴12 = 0, and that 𝑓0 ∈ 𝐻2(𝕋)𝑑h×𝐿2(𝕋)𝑑p. For every 𝑡 > 0, e−𝑡ℒ𝑓0 ∈ 𝐻2(𝕋)𝑑.

To prove it, we will use the following (sub)lemma:

Lemma 24. Consider ℒp and 𝐹p as defined in section 2 (or [7, §4.1]). For every 𝑡 > 0, 𝑘 ∈ ℕ and
𝑓0 ∈ 𝐹p, e−𝑡ℒp𝑓0 ∈ 𝐻𝑘(𝕋)𝑑.

Proof. Set 𝑓(𝑡) = e−𝑡ℒp𝑓0. Denote the first 𝑑h components of 𝑓(𝑡) by 𝑓h(𝑡) and the last 𝑑p components
of 𝑓(𝑡) by 𝑓p(𝑡) (and similarly for 𝑓0).

We will use some simple tools from [7, §4.4.1]. For the sake of readability, we redo the proof in
full here.

Step 1: Computing 𝑓h(𝑡) as a function of 𝑓p(𝑡). — Since 𝑓(𝑡) ∈ 𝐹p, by definition of 𝐹p (section 2), for
every |𝑛| > 𝑛0,

𝑃p(i/𝑛)𝑐𝑛(𝑓(𝑡)) = 𝑐𝑛(𝑓(𝑡)).
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Writing 𝑃p(𝑧) by blocks as ( 𝑝11(𝑧) 𝑝12(𝑧)𝑝21(𝑧) 𝑝22(𝑧)
), and taking the first 𝑑h components,

𝑝11(i/𝑛)𝑐𝑛(𝑓h(𝑡)) + 𝑝12(i/𝑛)𝑐𝑛(𝑓p(𝑡)) = 𝑐𝑛(𝑓h(𝑡)).

Since 𝑃p(0) = ( 0 0
0 𝐼 ), 𝑝11(0) = 0 and for 𝑧 small enough, |𝑝11(𝑧)| < 1. Then, increasing 𝑛0 if necessary,

for |𝑛| > 𝑛0,
𝑐𝑛(𝑓h(𝑡)) = (𝐼 − 𝑝11(i/𝑛))−1𝑝12(i/𝑛)𝑐𝑛(𝑓p(𝑡)).

For 𝑧 ∈ ℂ small enough, let 𝐺(𝑧) = (𝐼 −𝑝11(𝑧))−1𝑝12(𝑧). Then, 𝐺 depends holomorphically in 𝑧 small
enough, and for |𝑛| > 𝑛0 𝑐𝑛(𝑓h(𝑡)) = 𝐺(i/𝑛)𝑐𝑛(𝑓p(𝑡)).

Step 2: Conclusion. — Define𝒟 the unbounded operator on 𝐿2(𝕋)𝑑p with domain 𝐻2(𝕋)𝑑p by

𝒟(∑
𝑛
𝑋𝑛ei𝑛𝑥) ≔ ∑

𝑛
(𝑛2𝐷 − i𝑛𝐴22 − 𝐾22 − 𝐺(i/𝑛)(i𝑛𝐴21 + 𝐾21))𝑋𝑛ei𝑛𝑥.

Recall that
(𝜕𝑡 − 𝐷𝜕2𝑥 + 𝐴22𝜕𝑥 + 𝐾22)𝑓p(𝑡) + (𝐴21𝜕𝑥 + 𝐾21)𝑓h(𝑡) = 0.

Since 𝑐𝑛(𝑓h(𝑡)) = 𝐺(i/𝑛)𝑐𝑛(𝑓p(𝑡)), this can be written as (𝜕𝑡 +𝒟)𝑓p(𝑡) = 0. Hence,

𝑓p(𝑡) = e−𝑡𝒟𝑓p0 = ∑
|𝑛|>𝑛0

e−𝑡(𝑛
2𝐷+i𝑛𝐴22+𝐾22+𝐺(i/𝑛)(i𝑛𝐴21+𝐾21))𝑐𝑛(𝑓

p
0 ).

Since ℜ(Sp(𝐷)) ⊂ (0, +∞), 𝑓p(𝑡) is in every 𝐻𝑘(𝕋)𝑑p. Since the first 𝑑h components of 𝑓(𝑡) are

𝑓h(𝑡) = ∑
|𝑛|>𝑛0

𝐺(i/𝑛)𝑐𝑛(𝑓p(𝑡))𝑒𝑛,

and since 𝐺(i/𝑛) is bounded as |𝑛| → +∞, 𝑓h(𝑡) also belongs in every 𝐻𝑘(𝕋)𝑑h.

Proof of lemma 23. Theproof consists in looking at the projection onhyperbolic (respectively parabolic)
components of e−𝑡ℒ𝑓0, using the asymptotics for the hyperbolic projection. As in the previous proof,
we denote the first 𝑑h components of 𝑓0 by 𝑓h0 and the last 𝑑p components by 𝑓

p
0 .

Let us also recall that according to [7, §4.1],

e−𝑡ℒ𝑓0 = e−𝑡ℒ0Π0𝑓0 + e−𝑡ℒhΠh𝑓0 + e−𝑡ℒpΠ0𝑓p. (33)

Step 1: Asymptotics for the hyperbolic projection. — We use the notations 𝑃p(𝑧), 𝑃h(𝑧) defined in
[7, Proposition 5–6]. Using the series for the perturbation of the total eigenprojections [27, Ch. II,
eq. (2.14)], we get

𝑃h(𝑧) = (𝐼 0
0 0) − 𝑧 ((𝐼 0

0 0)𝐴 (
0 0
0 𝐷−1) + (0 0

0 𝐷−1)𝐴 (
𝐼 0
0 0)) + 𝑂(𝑧2)

= (𝐼 0
0 0) − 𝑧 ( 0 𝐴12𝐷−1

𝐷−1𝐴21 0 ) + 𝑂(𝑧2).

Thus,

Πh𝑓0 = ∑
|𝑛|>𝑛0

[(𝑐𝑛(𝑓
h
0 )
0 ) − i

𝑛 (
𝐴12𝐷−1𝑐𝑛(𝑓

p
0 )

𝐷−1𝐴21𝑐𝑛(𝑓h0 )
) + 𝑂(𝑛−2𝑐𝑛(𝑓0))] ei𝑛𝑥. (34)

Step 2: Case where 𝑓0 ∈ 𝐻1 × 𝐿2. — Since Π0𝑓0 is a finite sum of ei𝑛𝑥, it is in every 𝐻𝑘, and so is
e−𝑡ℒ0Π0𝑓0. According to the regularity of the parabolic frequencies (lemma 24), e−𝑡ℒ

pΠp𝑓0 is in every
𝐻𝑘.
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Since𝑓h0 ∈ 𝐻1(𝕋)𝑑h, (𝑐𝑛(𝑓h0 ))𝑛 ∈ ℓ2(ℤ; 1+𝑛2) (the ℓ2 spacewithweight 1+𝑛2). Since𝑓p0 ∈ 𝐿2(𝕋)𝑑p,
(𝑐𝑛(𝑓

p
0 ))𝑛 ∈ ℓ2(ℤ). Hence,

(𝑐𝑛(𝑓h0 ) −
i
𝑛𝐴12𝐷−1𝑐𝑛(𝑓

p
0 ))

|𝑛|>𝑛0
∈ ℓ2(|𝑛| > 𝑛0; 1 + 𝑛2),

and
(𝐷−1𝐴21𝑐𝑛(𝑓h0 ))|𝑛|>𝑛0 ∈ ℓ2(|𝑛| > 𝑛0; 1 + 𝑛2).

Hence, according to the asymptotics for Πh of eq. (34), Πh𝑓0 ∈ 𝐻1(𝕋)𝑑. Since e−𝑡ℒh is continuous on
every 𝐻𝑘, e−𝑡ℒhΠh𝑓0 ∈ 𝐻1.

Step 3: Case where 𝑓0 ∈ 𝐻2 × 𝐿2 and 𝐴12 = 0. — The asymptotics (34) reads

Πh𝑓0 = ∑
|𝑛|>𝑛0

[(𝑐𝑛(𝑓
h
0 )
0 ) − i

𝑛 (
0

𝐷−1𝐴21𝑐𝑛(𝑓h0 )
) + 𝑂(𝑛−2𝑐𝑛(𝑓0))] ei𝑛𝑥. (35)

The rest of the proof is very similar to the previous case: e−𝑡ℒ0Π0𝑓0 and e−𝑡ℒ
pΠp𝑓0 are in every 𝐻𝑘,

while the asymptotics (35) proves that Πℎ𝑓0 “gains” two derivatives compared to 𝑓
p
0 .

5.3 Control properties of 2 × 2 systems: proofs
Proof of proposition 20. In this case,

[𝐵𝑛|𝑀] = (1 i𝑛𝑎′ + 𝑘22
0 i𝑛𝑎21 + 𝑘21

) .

In particular, det([𝐵𝑛|𝑀]) = i𝑛𝑎21 + 𝑘21. We see that if (𝑎21, 𝑘21) = (0, 0), the Kalman rank condition
never holds, whatever 𝑛 is. Hence, according to remark 2, item 1, null-controllability does not hold,
whatever 𝑇 is.

Note that in our case, [𝐵𝑛|𝑀]+ = [𝐵𝑛|𝑀]−1 (when the right-hand side exists). Hence,

[𝐵𝑛|𝑀]−1 = 1
i𝑛𝑎21 + 𝑘21

(i𝑛𝑎21 + 𝑘21 −i𝑛𝑎′ − 𝑘22
0 1 ) .

In particular, with the notations of theorem 9 with 𝑘 = 2, 𝐿h𝑛,1 = 1 and 𝐿h𝑛,2 = 0. Thus, 𝑝 = 0.
If 𝑘21 ≠ 0, det([𝐵𝑛|𝑀]) = i𝑛𝑎21 + 𝑘21 never vanishes. In this case, 𝐸 (as defined in theorem 9) is

𝐸 = 𝐿2(𝕋)2. Hence, according to theorem 9, every 𝐿2(𝕋)2 can be steered to 0 with 𝐿2 controls in time
𝑇 > ℓ(𝜔)/|𝑎′|

If 𝑎21 ≠ 0 and 𝑘21 = 0, the Kalman rank condition holds for every 𝑛 ≠ 0. For 𝑛 = 0, according to
the formula for [𝐵𝑛|𝑀], rank([𝐵0|𝑀]) = ℂ × {0}. Thus, 𝐸 = {(𝑓h0 , 𝑓

p
0 ) ∈ 𝐿2(𝕋)2, ∫𝕋 𝑓

p
0 = 0}. Therefore,

according to theorem 9, every initial condition (𝑓h0 , 𝑓
p
0 ) ∈ 𝐿2(𝕋)2 such that ∫𝕋 𝑓

p
0 = 0 can be steered to

0 with controls in 𝐿2 in time 𝑇 > ℓ(𝜔)/|𝑎′|.

Proof of proposition 21. In this case,

[𝐵𝑛|𝑀] = (0 i𝑛𝑎12 + 𝑘12
1 −𝑛2𝑑 + i𝑛𝑎22 + 𝑘22

) .

In particular, det([𝐵𝑛|𝑀]) = −i𝑛𝑎12−𝑘12. We see that if (𝑎12, 𝑘12) = (0, 0), the Kalman rank condition
never holds, whatever 𝑛 is. Hence, according to remark 2 item 1, null-controllability does not hold,
whatever 𝑇 is.
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As in the previous proof, [𝐵𝑛|𝑀]+ = [𝐵𝑛|𝑀]−1. Hence,

[𝐵𝑛|𝑀]−1 = 1
−i𝑛𝑎12 − 𝑘12

(−𝑛
2𝑑 + i𝑛𝑎22 + 𝑘22 −i𝑛𝑎12 − 𝑘12

−1 0 ) .

In particular, with the notations of theorem 9 with 𝑘 = 2, 𝐿h𝑛,1 = −(−𝑛2𝑑 + i𝑛𝑎22 + 𝑘22)/(i𝑛𝑎12 + 𝑘12)
and 𝐿h𝑛,2 = 1/(i𝑛𝑎12+𝑘12). In particular, if 𝑎12 ≠ 0, 𝑝 = max(1, 1−1) = 1. And if 𝑎12 = 0 and 𝑘12 ≠ 0,
𝑝 = max(2, 1 + 0) = 2.

Step 1: Case 𝑎12 ≠ 0 and 𝑘12 ≠ 0. — The Kalman rank condition holds for every 𝑛. Hence, with the
notations of theorem 9, 𝑝 = 1 and 𝐸 = 𝐿2(𝕋)2, and every initial condition in 𝐻1(𝕋)2 can be steered to
0 with controls in 𝐿2 in time 𝑇 > ℓ(𝜔)/|𝑎′|.

The strategy to control initial conditions in 𝐻1 × 𝐿2 is first to let the solution evolve freely during
an arbitrarily small time, which gives a 𝐻1(𝕋)2 state (lemma 23), that we can steer to 0 according to
the previous discussion.

Step 2: Case 𝑎12 ≠ 0 and 𝑘12 = 0. — The case is almost the same as the previous one, except that the
Kalman rank condition is not satisfied for 𝑛 = 0 (and only for 𝑛 = 0). We have rank([𝐵0|𝑀]) = {0}×ℂ
and 𝐸 = {(𝑓h0 , 𝑓

p
0 ) ∈ 𝐿2(𝕋)2, ∫𝕋 𝑓

h
0 = 0}. We still have 𝑝 = 1. Hence, we can steer every initial

condition (𝑓h0 , 𝑓
p
0 ) ∈ 𝐻1(𝕋)2 such that ∫𝕋 𝑓

h
0 = 0 an be steered to 0with controls in time 𝑇 > ℓ(𝜔)/|𝑎′|.

As in the previous case, to control initial conditions in 𝐻1 × 𝐿2, we let the solution evolve freely,
which gives a 𝐻1(𝕋)2 state, and preserves the property ∫𝕋 𝑓

h
0 = 0. Then, we can steer this state in time

𝑇 > ℓ(𝜔)/|𝑎′|.

Step 3: Case 𝑎12 = 0 and 𝑘12 ≠ 0. — In this case, the Kalman rank condition is satisfied for every 𝑛,
and 𝑝 = 2. Hence, according to theorem 9, we can steer every 𝐻2(𝕋)2 initial condition to 0 in time
𝑇 > ℓ(𝜔)/|𝑎′| with controls in 𝐿2.

Again, to control an initial condition in 𝐻2 × 𝐿2, we let the solution evolve freely for a small time,
which gives a 𝐻2(𝕋)2 state (lemma 23), that we can steer to 0 in time 𝑇 > ℓ(𝜔)/|𝑎′|.

Step 4: Lack of null-controllability of 𝐿2 initial conditions. — We have𝑀∗( 10 ) = 0. Hence, according
to theorem 3, (recall that 𝐴′ has size 1 × 1), there exists a 𝐿2(𝕋)2 initial condition with zero average
that cannot be steered to 0.

Proof of proposition 22. We have

[𝐵𝑛|𝑀] = (1 i𝑛𝑎′ + 𝑘11
1 −𝑑𝑛2 + i𝑛𝑎22 + 𝑘22

) .

In particular, det([𝐵𝑛|𝑀]) = −𝑑𝑛2 + i𝑛(𝑎22 − 𝑎′) + 𝑘22 − 𝑘11. We see that for 𝑛 large enough, this
determinant is non zero. In fact, taking the real and imaginary parts,

det([𝐵𝑛|𝑀]) = 0 ⇔ { −𝑑𝑛2 + 𝑘22 − 𝑘11 = 0
𝑛(𝑎22 − 𝑎′) = 0 (36)

Moreover,

[𝐵𝑛|𝑀]+ = [𝐵𝑛|𝑀]−1 = 1
det([𝐵𝑛|𝑀]) (

−𝑑𝑛2 + i𝑛𝑎22 + 𝑘22 −i𝑛𝑎′ − 𝑘11
−1 1 ) .

Thus,

𝐿h𝑛,1 =
−𝑑𝑛2 + 𝑂(𝑛)
−𝑑𝑛2 + 𝑂(𝑛)

, and 𝐿h𝑛,2 =
−1

−𝑑𝑛2 + 𝑂(𝑛)
.

24



Thus, 𝑝 = max(0, 1 − 2) = 0.

Step 1: Case 𝑎′ ≠ 𝑎22 and 𝑘11 = 𝑘22. — According to eq. (36), the Kalman condition is satisfied for
𝑛 ≠ 0. Moreover, for 𝑛 = 0, Range([𝐵0|𝑀]) = ℂ𝑀, thus 𝐸 = {(𝑓h0 , 𝑓

p
0 ) ∈ 𝐿2(𝕋)2, ∫𝕋 𝑓

h
0 = ∫𝕋 𝑓

p
0 }. The

theorem 9 gives the claimed controllability result.

Step 2: Case 𝑎′ ≠ 𝑎22 and 𝑘11 ≠ 𝑘22. — According to eq. (36), the Kalman condition is satisfied for
every 𝑛 ∈ ℤ. The theorem 9 gives the claimed controllability result.

Step 3: Case 𝑎′ = 𝑎22 and√(𝑘22 − 𝑘11)/𝑑 ∉ ℕ. — As in the previous case, according to eq. (36), the
Kalman condition is satisfied for every 𝑛 ∈ ℤ. The theorem 9 gives the claimed controllability result.

Step 4: Case 𝑎′ = 𝑎22 and 𝑛0 ≔ √(𝑘22 − 𝑘11)/𝑑 ∈ ℕ. — According to eq. (36), the Kalman condition
is satisfied for 𝑛 ≠ ±𝑛0. For 𝑛 = ±𝑛0, Range([𝐵±𝑛0|𝑀]) = ℂ𝑀. The theorem 9 gives the claimed
controllability result.

A Afinite dimension-uniqueness principle for thenull-controllability
In the null controllability of parabolic-transport systems, we sometimes prove null-controllability
“up to a finite dimensional space”, and then use functional analysis arguments to deal with the finite-
dimensional spaces that are left [30, 7]. In the previous articles, this was not stated as a general result.
This is the purpose of this appendix.

Proposition 25. Let 𝑇0 > 0. Let 𝐻 be a complex Hilbert space. Let 𝐴 be an unbounded operator on
𝐻 that generates a strongly continuous semigroup of bounded operator on𝐻. Let 𝑈 be another Hilbert
space and let 𝐵∶ 𝑈 → 𝐻 a bounded control operator. For every 𝑇 > 0, let 𝑈𝑇 be a Hilbert space that is a
subspace of 𝐿2(0, 𝑇; 𝑈) with continuous and dense injection that satisfies the following “extension by 0
property”:3 if 𝑢 ∈ 𝑈𝑇, 𝑎, 𝑏 > 0, then the function ̃𝑢 defined by ̃𝑢(𝑡) = 0 for 0 < 𝑡 < 𝑎, ̃𝑢(𝑡) = 𝑢(𝑡 − 𝑎) for
𝑎 < 𝑡 < 𝑇 + 𝑎, and ̃𝑢(𝑡) = 0 for 𝑇 + 𝑎 < 𝑡 < 𝑇 + 𝑎 + 𝑏 is in 𝑈𝑇+𝑎+𝑏.

Assume that there exists a finite dimensional space ℱ of 𝐻 that is stable by the semigroup e𝑡𝐴 and a
closed finite codimensional space4 𝒢 of 𝐻 such that:

• (control up to finite dimension) for every 𝑓0 ∈ 𝒢, there exists 𝑢 ∈ 𝑈𝑇0 such that the solution 𝑓 of
𝑓′ = 𝐴𝑓 + 𝐵𝑢 satisfies 𝑓(𝑇0) ∈ ℱ,

• (unique continuation) for every 𝜖 > 0 and for every finite linear combination of generalized
eigenfunctions 𝑔0 ∈ 𝐻 of 𝐴∗, we have 𝐵∗(e𝑡𝐴∗𝑔0) = 0 on 𝑡 ∈ (0, 𝜖) ⟹ 𝑔 = 0.

Then, for every 𝑇 > 𝑇0 and every 𝑓0 ∈ 𝐻, there exists 𝑢 ∈ 𝑈𝑇 such that the solution 𝑓 of 𝑓′ = 𝐴𝑓+𝐵𝑢,
𝑓(0) = 𝑓0 satisfies 𝑓(𝑇) = 0.

Remark 26. • In this proposition, we can weaken the hypothesis “𝐵 bounded” into “𝐵 admissible”
(see [14, §2.3]), but in this article, 𝐵 is always bounded.

• If the assertion “(𝑔0 ∈ 𝐻 is a finite linear combination of generalized eigenfunctions of 𝐴∗
and 𝐵∗𝑔0 = 0) ⟹ 𝑔0 = 0” holds, the unique continuation hypothesis is satisfied by well-
posedness.

3In the application we use here,𝑈 = 𝐿2(𝜔) and𝑈𝑇 = 𝐻𝑘
0 ((0, 𝑇) × 𝜔). The hypotheses of proposition 25 are tailored to

allow this situation.
4We do not require 𝒢 to be stable by e𝑡𝐴.
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Proof. Step 1: We may assume that ℱ ⊂ 𝒢. — We prove that if we replace 𝒢 by ℱ + 𝒢, the hypotheses
are still satisfied. Let 𝑓0 ∈ ℱ + 𝒢. We write 𝑓0 = 𝑓ℱ + 𝑓𝒢. According to the hypotheses, there exists
𝑢 ∈ 𝑈𝑇0 such that the solution 𝑓 of 𝑓

′ = 𝐴𝑓+𝐵𝑢, 𝑓(0) = 𝑓𝒢 is such that 𝑓(𝑇0) ∈ ℱ. Then, the solution
𝑓 of 𝑓′ = 𝐴𝑓 + 𝐵𝑢, 𝑓(0) = 𝑓0 is such that

𝑓(𝑇0) = e𝑇0𝐴𝑓ℱ⏟⎵⏟⎵⏟
∈ℱ

+𝑓(𝑇0)⏟
∈ℱ

.

Note that if we replace 𝑇0 by any 𝑇1 > 𝑇0, the hypotheses are still satisfied.

Step 2: For 𝑇 > 𝑇0, the control 𝑢 ∈ 𝑈𝑇 such that 𝑓(𝑇) ∈ ℱmay be chosen linearly and continuously in
𝑓0 ∈ 𝒢. — This is a standard proof of control theory. For 𝑓0 ∈ 𝒢, set

𝑉(𝑓0) ≔ {𝑢 ∈ 𝑈𝑇∶ 𝑓(𝑇) ∈ ℱ, 𝑓 solves 𝑓′ = 𝐴𝑓 + 𝐵𝑢, 𝑓(0) = 𝑓0}.

Since 𝐴 generates a strongly continuous semigroup, 𝑉(𝑓0) is a closed affine subspace of 𝑈𝑇. Then, we
can define 𝒰(𝑓0) as the orthogonal projection of 0 onto 𝑉(𝑓0) for the 𝑈𝑇-norm. Using the characteri-
zation of orthogonal projection on closed convex set, we see that 𝒰 is linear. Using the fact that 𝐴
generates a strongly continuous semigroup, the characterization of the projection on closed convex
subsets and the closed graph theorem, we see that 𝒰 is bounded.

For the rest of the proof we set 𝒰𝑇∶ 𝒢 → 𝑈𝑇 such a map. We also set

𝒩𝑇 ≔ {𝑓0 ∈ 𝐻∶ ∃𝑢 ∈ 𝑈𝑇, 𝑓(𝑇) = 0, 𝑓 solves 𝑓′ = 𝐴𝑓 + 𝐵𝑢, 𝑓(0) = 𝑓0}. (37)

Step 3: For 𝑇 ≥ 𝑇0,𝒩𝑇 is a closed finite codimensional subspace of 𝐻. — Set 𝑆0(𝑡) the semigroup e𝑡𝐴
restricted to ℱ. Since ℱ is finite dimensional, 𝑆0(𝑡) can be written as e𝑡𝐴0, where 𝐴0 is a bounded
operator of ℱ. Moreover, 𝐴0 = 𝐴|ℱ. In particular, 𝑆0 is actually a group of bounded operators.

For 𝑓0 ∈ 𝒢, and 𝑓′ = 𝐴𝑓 + 𝐵𝒰𝑇𝑓0, 𝑓(0) = 𝑓0, we have 𝑓(𝑇) ∈ ℱ, which allows us to define

𝒦∶ 𝑓0 ∈ 𝒢 ↦ −𝑆0(−𝑇)𝑓(𝑇) ∈ ℱ

The range of this operator𝒦 satisfies Range(𝒦) ⊂ ℱ. Hence,𝒦 has finite rank and is compact. Thus,
according to Fredholm’s alternative, (𝐼 + 𝒦)𝒢 is a closed subspace of 𝒢 of finite codimension.

Moreover, for every 𝑓0 ∈ 𝒢, the solution 𝑓 of 𝑓′ = 𝐴𝑓 + 𝐵𝒰𝑇𝑓0, 𝑓(0) = 𝑓0 +𝒦𝑓0 satisfies

𝑓(𝑇) = 𝑓(𝑇) + e𝑇𝐴𝒦𝑓0 = 𝑓(𝑇) − 𝑆0(𝑇)𝑆0(−𝑇)𝑓(𝑇) = 0.

Thus, (𝐼 + 𝒦)𝒢 ⊂ ℱ𝑇. According to [9, Proposition 11.5], this proves that𝒩𝑇 is closed and has finite
codimension in 𝐻.

Step 4: There exists 𝛿 > 0 such that for every 𝑇, 𝑇 ′ ∈ (𝑇0, 𝑇0 + 𝛿),𝒩𝑇 = 𝒩𝑇′. — Assume 𝑇0 < 𝑇 < 𝑇 ′.
If 𝑢 ∈ 𝒩𝑇, and if we extend 𝑢 by 0 on (𝑇, 𝑇 ′), we have have 𝑢 ∈ 𝒩𝑇′. Thus codim(𝒩𝑇′) ≤ codim(𝒩𝑇).
Since codim(𝒩𝑇) is an integer, the discontinuities of 𝑇 ↦ codim(𝒩𝑇) are isolated, which proves the
claim.

From now on, we choose 𝜖 ∈ (0, 𝛿/2) arbitrarily small and we set 𝑇1 = 𝑇0 + 𝜖.

Step 5: For 𝑡 ∈ (0, 𝜖), (e𝑡𝐴∗𝒩⊥
𝑇1)

⊥ ⊂ 𝒩𝑇1. — Let 0 < 𝑡 < 𝜖 and 𝑓0 ∈ (e𝑡𝐴∗𝒩⊥
𝑇1)

⊥. For every 𝑔0 ∈ 𝒩⊥
𝑇1,

we have
0 = ⟨e𝑡𝐴∗𝑔0, 𝑓0⟩ = ⟨𝑔0, e𝑡𝐴𝑓0⟩.

Thus, e𝑡𝐴𝑓0 ∈ (𝒩⊥
𝑇1)

⊥. Since𝒩𝑇1 is closed (step 3), e
𝑡𝐴𝑓0 ∈ 𝒩𝑇1. By definition of𝒩𝑇1 and the “extension

by 0” property of 𝑈𝑇1, this proves that 𝑓0 ∈ 𝒩𝑇1+𝑡. According to the previous step,𝒩𝑇1+𝑡 = 𝒩𝑇1, which
proves the claim.
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Step 6: 𝒩⊥
𝑇1 is left-invariant by e

𝑡𝐴∗. — First, consider 0 < 𝑡 < 𝜖. According to the previous step,
𝒩⊥
𝑇1 ⊂ ((e𝑡𝐴∗𝒩⊥

𝑇1)
⊥)⊥. Since 𝒩⊥

𝑇1 is finite dimensional hence closed, 𝒩
⊥
𝑇1 ⊂ e𝑡𝐴∗𝒩⊥

𝑇1. Moreover,
dim(e𝑡𝐴∗𝒩⊥

𝑇1) ≤ dim(𝒩⊥
𝑇1). Thus, for 0 < 𝑡 < 𝜖, e𝑡𝐴∗𝒩⊥

𝑇1 = 𝒩⊥
𝑇1. Thanks to the semigroup property,

this is true for all 𝑡 > 0.

Step 7: Unique continuation property associated to the control problem “steer every 𝑓0 ∈ 𝐻 into𝒩𝑇1 in
time 𝜖 with a control in 𝑈𝜖”. — The control problem is, in mathematical form, the following:

∀𝑓0 ∈ 𝐻, ∃𝑢 ∈ 𝑈𝜖, 𝑓(𝑇) ∈ 𝒩𝑇1, where 𝑓
′ = 𝐴𝑓 + 𝐵𝑢, 𝑓(0) = 𝑓0. (38)

Let Π∶ 𝐻 → 𝐻 the orthogonal projection on 𝒩⊥
𝑇1. Set also 𝑅𝑇∶ 𝐿

2(0, 𝑇; 𝑈) → 𝐻 the input-to-
output map defined by

𝑅𝑇𝑢 ≔ 𝑓(𝑇), where 𝑓′ = 𝐴𝑓 + 𝐵𝑢, 𝑓(0) = 0.

Then, the control problem (38) is equivalent to

∀𝑓0 ∈ 𝐻, ∃𝑢 ∈ 𝑈𝜖, Πe𝜖𝐴𝑓0 + Π𝑅𝜖𝑢 = 0.

We denote by 𝜄𝜖 the injection map 𝑈𝜖 → 𝐿2(0, 𝑇; 𝑈). Then, the previous assertion is equivalent to

Range (Π ∘ e𝜖𝐴) ⊂ Range (Π ∘ 𝑅𝜖 ∘ 𝜄𝜖).

The observability inequality associated to this control problem is (see [14, Lemma 2.48]):

∀𝑔0 ∈ 𝐻, ‖e𝜖𝐴∗ ∘ Π∗𝑔0‖ ≤ 𝐶‖𝜄∗𝜖 ∘ 𝑅∗𝜖 ∘ Π∗𝑔0‖.

Since Range(Π∗) = 𝒩⊥
𝑇1 is finite-dimensional, and since ker(𝜄

∗) = Range(𝜄)⊥ = {0}, this is equivalent
to

∀𝑔0 ∈ 𝒩⊥
𝑇1, 𝑅

∗
𝜖𝑔0 = 0 ⟹ e𝜖𝐴∗𝑔0 = 0. (39)

To conclude, since𝒩⊥
𝑇1 is finite dimensional and stable by e

𝑡𝐴∗, the semigroup e𝑡𝐴∗ is in fact a group,
and in particular e𝜖𝐴∗ is invertible on𝒩⊥

𝑇1. Moreover, 𝑅
∗
𝜖𝑔0(𝑡) = 𝐵∗e(𝜖−𝑡)𝐴∗𝑔0 (see [14, Lemma 2.47]).

Thus, the assertion (39) is equivalent to

∀𝑔0 ∈ 𝒩⊥
𝑇1, (𝐵

∗e𝑡𝐴∗𝑔0 = 0 for 0 < 𝑡 < 𝜖) ⟹ 𝑔0 = 0. (40)

Step 8: Conclusion. — The unique continuation property (40) of the previous step is exactly the
unique continuation property we assumed. Thus, according to the previous step, we can steer every
𝑓0 ∈ 𝐻 into𝒩𝑇1 in time 𝜖 with a control in 𝑈𝜖. According to the definition of 𝒩𝑇1, we can steer every
𝑓0 ∈ 𝒩𝑇1 to 0 in time 𝑇1 = 𝑇 + 𝜖 with a control in 𝑈𝑇1. Hence, we can steer every 𝑓0 ∈ 𝐻 to 0 in
time 𝑇1 + 𝜖 = 𝑇 + 2𝜖 with a control in 𝑈𝑇+2𝜖. Since 𝜖 can be chosen arbitrarily small, this proves the
proposition.
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