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Abstract 

 

The genetic roots of the diverse paces and shapes of ageing and of the large variations in longevity 

observed across the Tree of Life are poorly understood. Indeed, pathways associated with 

ageing/longevity are incompletely known, both in terms of their constitutive genes/proteins and of 

their molecular interactions. Moreover, there is limited overlap between the genes constituting 

these pathways across mammals. Yet, dedicated comparative analyses might still unravel 

evolutionarily conserved, important pathways associated with longevity or ageing. Here, we used 

an original strategy with a double evolutionary and systemic focus to analyse protein interactions 

associated with ageing or longevity during the evolution of five species of Opisthokonta. We ranked 

these proteins and interactions based on their evolutionary conservation and centrality in past and 

present protein-protein interaction networks (PPI), providing a big systemic picture of the evolution 

of ageing and longevity pathways, that identified which pathways emerged in which Opisthokonta 

lineages, were conserved and/or central. We confirmed that longevity/ageing associated proteins 

(LAPs), be they pro- or anti-longevity, are highly central in extant PPI, consistently with the 

Antagonistic Pleiotropy theory of ageing, and identified key antagonistic regulators of 

ageing/longevity, 52 of which with homologs in humans. While some highly central LAPs were 

evolutionarily conserved for over a billion years, we report a clear transition in the functionally 

important components of ageing/longevity within Bilaterians. We also predicted 487 novel 

evolutionarily conserved LAPs in humans, 54% of which are more central than mTOR, and 138 of 

which are druggable, defining new potential targets for anti-ageing treatments in humans.  

 

Introduction 

Ageing and longevity are critical components of organismal fitness, both characterised by 

their remarkable heterogeneity between, and sometimes even within, species across the Tree of 

Life. For instance, there is a 100-fold variation of longevity across mammals (Tacutu et al. 2018), 

and studies have revealed a diversity of paces and shapes of ageing across metazoans, even though 

all these taxa come from a last common ancestor (Baudisch and Vaupel 2012; Jones et al. 2014; 

Treaster et al. 2021; da Silva et al. 2022). Importantly, the genetic mechanisms that contribute to 

this heterogeneity are still poorly understood. While there is no doubt that ageing and longevity are 

in part genetically determined (Kenyon 2010), the pathways associated with ageing and longevity 

are incompletely known, both in terms of their constitutive genes/proteins and of their molecular 
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interactions. Indeed, genomic and transcriptomic analyses of organisms with high quality genomes, 

informed by careful considerations of molecular evolution, have uncovered sets of genes associated 

with ageing or longevity (Li and de Magalhães 2013; Gorbunova et al. 2014; Keane et al. 2015; 

Doherty and de Magalhães 2016; Foley et al. 2018; Sahm et al. 2018; Huang et al. 2019; Toren et 

al. 2020; Farré et al. 2021; Irving et al. 2021; Kacprzyk et al. 2021; Kolora et al. 2021; Orkin et al. 

2021; Lu et al. 2022; Tejada-Martinez et al. 2022) with little overlap, even across mammalian 

species (Farré et al. 2021). This observation of a diversity of genetic bases of longevity and ageing 

across species is consistent with Darwinian theory, which predicts that longevity can be selected 

for, yet does not imply that homologous genes should be involved in longevity in different 

populations or species. Like extant organismal lineages, whose members thrive in very diverse 

environments and niches, members from ancestral organismal lineages from different clades and 

from different populations were not all exposed to the same ecological challenges during the course 

of evolution. For example, some organisms belong to lineages that can fly, while others can live in 

caves, or must face their predators on the ground (Lunghi and Bilandžija 2022). Similarly, some 

organisms are solitary, whereas other live in societies (Keller and Genoud 1997), and evolution of 

their longevities and ageing can thus be affected by social organisation and kin selection, etc. Such 

differences in past and present selective pressures likely explain the considerable variations in 

ageing and longevity observed throughout the Tree of Life, and since the effect of each gene variant 

on the longevity in individual species can be small, as is the case for humans (Singh et al. 2019) 

different combinations of different genes are possibly associated with the variability of lifespan 

within and between species.  

More precisely, mainstream evolutionary theories of ageing, namely the Mutation 

Accumulation theory (MA) (Medawar 1952), the Antagonistic Pleiotropy theory (AP) (Williams 

1957) and the Disposable Soma theory (DS) (Kirkwood and Holliday 1979), hold that ageing is not 

genetically programmed per se but occurs as a side-effect due to the existence of a selection shadow 

(Johnson et al. 2019). As a result, AP and MA do not make strong predictions regarding whether 

the same genes should be collaterally associated with ageing across populations and species, while 

DS predicts that the functions of the genes associated with ageing are likely related with 

repair/maintenance and energy allocation to trade-offs between reproduction and survival, 

mediated by a network of interacting, possibly synergistic processes, rather than by a single 

mechanism (Kirkwood 1997). In addition, reknown experts on aging consider that aging is a 

programmed process (Rando and Chang 2012). While more aging-associated genes or proteins than 

appreciated could be conserved (consistent with either AP theory or programmed theory), this is 
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not necessarily the case for longevity. Thus, although theoretically plausible, the limited overlap in 

genes associated with ageing and longevity across species nonetheless raises important conceptual 

and practical challenges (Farré et al. 2021). On the one hand, this limited overlap may reflect some 

limits of current methods of detection of longevity- and ageing-associated genes. On the other hand, 

this genetic heterogeneity does not preclude a form of functional unity at a higher level than genes: 

even though different gene families are associated with longevity or ageing across species, some 

belong to pathways (e.g. proteostasis, immune and inflammatory response, hemostasis, 

development, metabolism) that appear to be shared across species (Muntané et al. 2018; Farré et 

al. 2021; Treaster et al. 2021).Therefore, updated or enhanced comparative analyses may still 

unravel evolutionarily conserved pathways associated with longevity or ageing. To reach this goal, 

however, technical developments that enhance the predictive power of genomics and comparative 

genomics to detect longevity- and ageing- associated genes appear warranted.  

Around twenty years ago, several pioneering ageing studies focusing on interactome data 

(e.g. (Promislow 2004; Ferrarini et al. 2005; Witten and Bonchev 2007; Fortney et al. 2010)) seeded 

an original path in this direction. They sought to identify not only the molecular components of 

pathways associated with ageing and longevity, but also the molecular interactions that compose 

these pathways. In brief, these approaches relied upon prior experimental evidence defining sets of 

genes associated with longevity or ageing, hereafter called longevity-associated genes (LAGs), 

such as those forming the mTOR nutrient-sensing signalling network (Kenyon 2010; Templeman 

and Murphy 2018; Papadopoli et al. 2019). mTOR is noteworthy because it has been shown to 

regulate many ageing-associated processes (including cellular senescence, immune responses, stem 

cell regulation, autophagy, mitochondrial function, and proteostasis) and to mediate caloric 

restriction-induced lifespan extension in model organisms. For some species, LAGs were further 

classified as pro- or anti-longevity (pro-LAG, anti-LAG), according to the altered lifespan 

phenotypes resulting from their genetic loss or gain of function in model organisms (Kenyon 2010; 

Tacutu et al. 2018). These phenotypic labels were then conjugated with additional, independent 

information from interactome databases (Szklarczyk et al. 2019) to perform protein-protein 

interaction networks (PPI) analyses with a focus on ageing and longevity associated pathways. 

Specifically, the topology of PPI of a few extant species was analysed to track the interactions 

between longevity-associated proteins (LAPs) (e.g. proteins encoded by LAGs) in order to 

determine the pathways to which these LAPs connected, and whether the patterns of connection of 

these LAPs presented distinctive topological features that could be exploited to predict additional 

components of longevity/ageing associated pathways using PPI. Owing to the paucity of the data, 
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these pioneering studies were generally conducted on one or two species, with a limited number of 

network metrics (Promislow 2004; Ferrarini et al. 2005; Budovsky et al. 2007; Bell et al. 2009; 

Wang et al. 2009; Zhang et al. 2016). Nonetheless, they made for stimulating findings. LAPs from 

model organisms (Saccharomyces cerevisiae, Sc and Drosophila melanogaster, Dm) were shown 

to be central, connected nodes in PPI networks. In particular, LAPs displayed higher node degree 

(the number of connections per node in the network) than other proteins not proposed to be 

associated with ageing or longevity (non-LAPs). Such a high connectivity was interpreted as a 

proxy for the functional pleiotropy of LAPs, in support of the AP theory (Promislow 2004), 

considering that, as more highly connected proteins tend to be more pleiotropic than expected by 

chance, these proteins will also be most likely to evolve an association with senescence. Indeed, by 

chance alone, more pleiotropic proteins are more likely to have some of their effects found at 

different ages, and that some of these hold opposite consequences on fitness. This idea that AP is 

a general principle of ageing was also brought forward in (Yanai et al. 2017). Moreover, the high 

centrality of LAPs in PPI was proposed as evidence that LAPs regulate fundamental biological 

processes (Fernandes et al. 2016; Tacutu et al. 2018). In addition, pro- and anti-longevity proteins 

were shown to be intertwined in the interactome of the worm Caenorhabditis elegans (Ce), with 

only few significant topological differences between their subnetworks, which represented two sets 

of interactions with opposing effects on longevity (Fernandes et al. 2016). The interactions between 

LAPs and non-LAPs in PPI were also a source of important findings. Interactions between LAPs 

and proteins encoded by age-related diseases (ARD) genes (Tacutu et al. 2011) and cancer genes 

(Budovsky et al. 2007; Bell et al. 2009; Budovsky et al. 2009; Wang et al. 2009; Zhang et al. 2016) 

unraveled connections between their respective pathways, hinting at mechanistical connections 

between some aspects of ageing and some diseases. Furthermore, using LAPs as reference nodes 

and mining PPI of a few extant species for non-LAP nodes with comparable topological properties 

than LAPs, allowed some authors to propose subsets of noteworthy non-LAP proteins that may 

contribute to presently unidentified ageing- or longevity-associated pathways in Hs, Sc, Ce and Dm 

(de Magalhães and Toussaint 2004; Managbanag et al. 2008; Tacutu et al. 2012; Wuttke et al. 2012; 

Avelar et al. 2020).  

While powerful, the predictive approaches mentioned above did not systematically 

determine how critical for ageing/longevity their predicted candidate LAPs are, and did not fully 

exploit their comparative potential. Here, we developed evosystemics analyses of PPI (Watson et 

al. 2020) to uncover important, evolutionary conserved ageing associated pathways, i.e. pathways 

made of proteins with significant possible effects on ageing/longevity. We relied upon two non-
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mutually exclusive criteria to rank proteins and protein interactions as critical to understanding 

ageing/longevity: their high evolutionary conservation across Opisthokonta, a one-billion-year-old 

clade, encompassing fungi and animals, and their high centrality in extant and/or ancestral protein 

interaction networks. Through systematic analyses of the topological properties of LAPs within 

such neworks and through guilt-by-association analyses, we characterised central evolutionarily 

conserved pathways associated with ageing/longevity and predicted novel central, evolutionarily 

conserved LAPs in five Opisthokonta species (Dm, Ce, Sc, with Mus musculus, Mm, and Homo 

sapiens, Hs), some of these non-LAPs that we here proposed as new LAPs were supported by 

independent bibliographical validation. Promisingly, 265 of these 487 predicted additional LAPs 

are more central than mTOR in the human interactome and dominated by ribosomal proteins and 

ubiquitination pathways. Moreover, 28.3 % of the proteins predicted to hold important roles in 

longevity or ageing-associated pathways in humans are druggable, defining targets for potential 

novel anti-ageing treatments in humans in the short-term. 

 

 

Results and Discussion 

 

Theoretical pay-offs of evosystemic PPI analyses 

Evosystemics jointly analyses evolutionary and topological signals (Watson et al. 2020). 

High evolutionary conservation across five species of Opisthokonta and high centrality in PPI (as 

defined in Figure S1A-D) provide two non-mutually exclusive criteria to rank proteins and protein 

interactions as critical to understanding ageing/longevity. On the one hand, highly conserved 

proteins and proteins interactions indicate homologous mechanisms, deeply rooted in the biology 

of Opisthokonta, which can therefore be experimentally studied in non-human species with 

potential translational payoffs. Likewise, highly central proteins contribute to interactions across 

many pathways and/or within large molecular machineries. Thus, changes in the genes coding such 

central proteins (or changes in their regulations) are likely to have strong impacts on many 

interconnected processes. Because evolutionarily conserved proteins are encoded by gene families 

with long time of residency within lineages, evolutionarily conserved proteins have had more 

opportunities to get involved into diverse functional partnerships, and are often expected to be more 

central in PPI than proteins from more recently evolved gene families (Bapteste and Huneman 

2018). Consequently, uncovering i) highly central proteins and ii) evolutionarily conserved proteins 
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and interactions associated with ageing/longevity in PPI could identify critical pathways associated 

with longevity or ageing and suggest important targets to medically interfere with the 

ageing/longevity process, which could be validated across a broad range of species.  

LAPs are highly central across PPI of five extant species of Opisthokonta 

Our study used multiple stringency thresholds for PPI networks based on interaction 

confidence scores, a broader selection of Opisthokonta (Sc, Ce, Dm; Mm and Hs) and more network 

metrics (e.g. betwenness, closeness, degree, PageRank, Fig. S1A-D) than former PPI analysis on 

ageing/longevity (Promislow 2004; Ferrarini et al. 2005; Budovsky et al. 2007; Bell et al. 2009; 

Wang et al. 2009; Zhang et al. 2016). We used these different metrics, as, although often correlated 

in real networks, they could have captured slightly different aspects of network centrality. In our 

study, it turned out that irrespective of what specific network centrality was measured, the general 

conclusion regarding the centrality of LAPs is the same and generalises two previous findings 

derived from single species longevity networks. First, across the five tested species of 

Opisthokonta, LAPs are significantly more central in PPI than non-LAPs. This higher centrality 

was observed at various stringency thresholds, but limited by network size and the number of 

identified LAPs at high stringency for Dm, Mm and Ce (Fig. 1). This result, compatible with the 

AP theory (Promislow 2004; Ferrarini et al. 2005), is true for both pro-LAPs and for anti-LAPs 

(Fig. S2), with the same dependence on stringency, network size and number of identified LAPs; 

however, the imbalance between pro- and anti-longevity annotations in Sc (13% and 87% of the 

400 Sc annotated ageing-associated proteins, respectively) may lead to a less robust signal of 

centrality for pro-longevity proteins. Accordingly, pro- and anti-longevity proteins appeared 

equally central in longevity networks across these five species of Opisthokonta (Fig S2). A few 

notable exceptions were found for experimental networks of Sc, possibly due to the imbalance 

mentioned above, and for Ce, where pro-longevity proteins displayed significantly higher centrality 

than anti-longevity proteins. The Ce observation is consistent with previously described higher 

clustering coefficient of pro-longevity proteins in the BioGrid PPI network (Fernandes et al. 2016).  

Interestingly, pro-LAPs tend to interact significantly more with pro-LAPs whereas anti-

LAPs tend to interact significantly more with anti-LAPs, both in entire interactomes (featuring both 

LAP and non-LAP nodes) and in longevity networks (featuring only LAPs as nodes) (Fig. 2, S3A), 

as determined by assortativity analyses and network permutation tests (Fig. S4). But this 

observation does not mean that there is a neat partition between pro-LAPs and anti-LAPs in the 
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PPI, since overall, the assortativity (Fig. S1E) values are only slightly positive (Fig. 2). In other 

words, interacting LAPs with antagonistic effects are widespread in PPI, suggesting that ageing 

and longevity associated pathways are commonly regulated by a diversity of checks and balances 

with opposite effects. However, remarkably, some pro-longevity and anti-longevity proteins 

entertain, in all analysed species, significantly more interactions with one another than expected by 

chance. It is interesting that our results identified differential correlations between pro-LAP and 

anti-LAP proteins, because this suggests that these two classes might indeed be biologically 

distinct, which was not necessarily obvious. Indeed, many of these pro-LAP and anti-LAP were 

identified by experiments that knock out genes and observe the effect on aging, whereas in nature 

more subtle variations in expression than a complete turn-off are likely to affect these genes, with 

effects that can both increase and decrease lifespan, depending on the specific expression changes 

for a given gene. Bearing this note of caution in mind, we propose that such LAPs, significantly 

strongly involved in interactions with proteins with opposite effects on longevity, correspond to 

key regulators in antagonistic regulatory mechanisms of longevity (ARMLs). 

 

Three species harbor key antagonistic regulators of ageing/longevity  

Using network permutation tests (Fig. S4), we found that three species displayed 

significantly stronger connections between pro-LAP and anti-LAP than what would be expected 

by chance, suggesting that such LAPs may be critically involved in the regulation of 

ageing/longevity (Fig. 3). Namely, we identified 13 LAPs involved in ARMLs in Dm; 38 in Ce and 

40 in Sc. Several of these LAPs are homologs found in all three species and contribute to the mTOR 

signalling network, including mTOR itself (Dm Tor/Ce LET-363/Sc TOR1), but also the AGC 

kinases Akt (mTORC1 upstream activator and mTORC2 target: Dm Akt1, Ce AKT-1) and S6k 

(mTOR substrate: Dm S6k, Sc SCH9). As these LAPs are well-characterised for their key role in 

regulating ageing (Kenyon 2010; Templeman and Murphy 2018; Papadopoli et al. 2019), this 

observation provides proofs of concept that our approach can identify key antagonistic regulators. 

Dm and Ce also share the insulin/mTOR signalling network members PTEN phosphatase (Dm 

Pten/Ce DAF-18), Insulin receptor (Dm InR/Ce DAF-2), FOXO transcriptional regulator (Dm 

foxo/Ce DAF-16) and the NAD+-dependent protein acetylase sirtuin Sir2 (Dm Sir2/Ce SIR-2.1), 

whereas Ce and Sc share NAD+-reducing enzymes of the TCA cycle malate dehydrogenase and 

isocitrate dehydrogenase (Ce MDH-2/Sc MDH1/MDH2; Ce IDH-1/Sc IDH1). The existence of 

homologous key antagonistic regulators across Opisthokonta species supports the idea that 
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modulating lifespan has been evolutionarily important for at least a billion year and has 

occasionally relied on the same players, from fungi to animals. 

In addition, we identified some LAPs (Dm: 3/13; Ce: 20/38; Sc: 23/40) involved in species-

specific ARMLs with a comparable number of antagonistic interactions as emblematic mTOR 

network members, including, for example, the oxidative stress response protein Keap1, the cardiac-

restricted actin-binding protein Vinc and the JNK phosphatase puc in Dm (Fig. 3A), which suggests 

that regulation by these LAPs may deserve careful investigations.  

Overall, functions enriched in ARMLs in Ce and Dm correspond to functions described for 

proteins in the mTOR/Insulin network, such as stress response, regulation of translation, of 

regulated cell death and of growth and development (Fig. S5). Functions related to respiration were 

also enriched among Ce and Sc ARMLs: TCA cycle in Ce and Sc, ATP synthesis and mitochondrial 

electron transport chain in Sc. Finally, Sc ARMLs also displayed enrichment for chromatin 

regulation and DNA integrity checkpoint functions. 

Strikingly, 52 ARML nodes and their associated interactions appear evolutionarily 

conserved at the taxonomic scale of Opisthokonta and can be found in humans, corresponding to 

58% of these antagonistic regulators found either in Ce, Dm and Sc. These candidate antagonistic 

regulators of ageing/longevity in humans are associated with 5-14% of evolutionarily conserved 

interactions (depending on PPI stringency). Although genes are only seldom annotated as pro- or 

anti-longevity in humans, association with longevity can be inferred by genome-wide association 

studies (GWAS) as recorded in the LongevityMap database. Thus, among the 52 human homologs 

of ARMLs identified in Dm, Ce and Sc, we found 4 proteins (3 mTOR network members: AKT3, 

MTOR, RPS6KB1, and SOD2) that are significantly associated with long life in our species. 

Therefore, 48 other human genes may act as critical, evolutionarily conserved regulators of 

longevity/ageing in our species. Interestingly, 3 proteins (SOD2, ALDH2, PRKAA2) are also 

associated with ageing-related diseases (ARD) and can be targeted by drugs (Table 1). 

  

Functional analyses of highly central LAPs 

Unveiling highly central LAPs in ‘longevity PPI’, exclusively composed of LAPs, can 

point to especially critical components of ageing/longevity pathways. Indeed, by knowing these 

most central LAPs amongst the LAPs, one can focus on some ageing phenotypes that point to (the 
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expression of) important (central) proteins, at high risk of negatively affecting organismal or 

cellular homeostasy, or point to adaptations to longevity involving extremely deep structural 

components, i.e., the most highly central proteins of the interactome.  

We analysed the functions of those LAPS by ranking LAPs by their centrality and by 

identifying high centrality outliers amongst LAPs in each extant longevity network, using network 

permutation tests (Fig. S4). Such high centrality outliers were found at all stringency thresholds, 

including in experimental networks, and their numbers unsurprisingly decreased with stringency 

(Fig. 4). As expected, many functions enriched among most central LAPs correspond to 

mTOR/Insulin signalling network-associated functions (Fig. S6), including maintenance/repair 

mechanisms, oxidative stress response, cell growth or autophagy (although Tor itself did not 

contribute to the top 20 most enriched functions among Dm centrality outliers).  

In Bilateria, other signalling pathways involved in development and homeostasis, 

crosstalking with the mTOR network, were also found within centrality ouliers, including MAPK 

(Ce: LET-23, LET-60, SEM-5, MPK-1, JNK-1; Dm: p38b, bsk; Hs: ERBB2, EGFR, GRB2, HRAS, 

MAPK3, MAPK14 and various growth factors), TGFbeta (Dm: dpp), Wnt (Ce: BAR-1, Hs: 

GSK3B, CTNNB1), Notch (Ce: GLP-1), JAK/STAT (Hs: JAK2, STAT5B, STAT3, NFkB (Hs: 

RELA, NFKB1), AR (Hs: AR) and TP53 (Hs: TP53, MDM2, TP53BP1; Mm: Trp53, Trp53bp1) 

signalling pathways. Highly central proteins from these signalling pathways contributed to the 

enrichment in the same functions as the mTOR network, e.g. MAPK signalling through p38 and 

JNK was associated with response to stress functions. The above results are compatible with the 

idea that aspects of ageing and longevity are connected to developmental programs, as well as with 

claims that some developmental processes can provoke ageing when they are active late in life, 

executing detrimental quasi-programs due to selection shadow (Blagosklonny 2006; Gems 2022). 

Besides signalling-associated functions, most central LAPs also displayed enrichment for ribosome 

biogenesis/protein translation, cellular respiration (ATP synthesis/ mitochondrial electron transport 

chain/TCA cycle functions) in Ce and Sc, telomere regulation in Hs and Sc, and regulated cell death 

in Mm and Hs (Fig. S6). 

Interestingly, some highly central LAPs belonged to the same orthology family and were 

consistently recovered as highly central across 3 or 4 different Opisthokonta species (Fig. 4). These 

conserved centrality outliers were less frequently found in experimental networks, which is likely 

explained by their small size compared to the thresholded networks (with the exception of Sc). 
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These highly central, evolutionarily conserved LAPs were mTOR, AKT/S6K AGC kinases and 

PTEN homologs, all acting in the mTOR/Insulin signalling network, as well as the homologs for 

the oxidative stress regulators superoxide dismutase 2 and catalase, and for the protein acetylase 

sirtuin2.  

 

Progressive changes in enriched ageing/longevity associated functions during Opisthonkota 

history 

We next turn towards a more systematic analysis of the evolutionary conservation of LAPs 

and their pathways by analysing ancestral PPI of five species of Opisthokonta. We inferred 

ancestral PPI networks throughout the phylogeny of these Opisthokonta (Fig. S7) to identify which 

pathways, implementing which functions, had emerged in which lineages. These ancestral 

longevity networks are comprised only of nodes corresponding to orthogroups (Fig. S3B) and edges 

associated with ageing or longevity in at least two extant species. Such edges are important, either 

because they represent convergences in longevity networks (hinting at their possible functional 

importance) or because they were inherited from a common ancestor. Considering that possibility, 

we could infer the ancestral longevity networks composed by such edges by comparing extant 

longevity networks featuring only orthoproteins as nodes (obtained for increasing levels of 

stringencies, from PPI edge score >= 500 to the use of experimental edges only) (M&M). Given 

the small number of species, and the very large number of potential protein-protein interactions, 

one might worry that the likelihood of both false-positive and false-negative claims for deep 

evolutionary conservation of PPIs (i.e., both presence of and absence of conserved interactions) 

could be elevated. We verify this was not the case: using resampling of input PPI networks with 

networks from sister species of Ce, Dm or Sc, we found that this approach had a false positive rate 

of 0 for all resampled species, and a false negative rate, depending on PPI score thresholds, 

comprised between 0 and 3.7 % for Ce or Dm replacement, and between 8 and 16% for Sc 

replacement, indicating that our inferences of ancestral edges are conservative and that Sc networks 

have the most weight on the inference of the common ancestral network (M&M). 

Consequently, we first used these ancestral networks to estimate the proportion of LAPs 

and their interactions from extant longevity networks that had already evolved in the past. These 

numbers reflect the proportion of LAPs and their interactions inherited in extant interactomes. 

Thus, a third of human LAPs and 7 % of their interactions date from ancestral interactomes of 
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Opisthokonta (Fig. 5). Moreover, extant ARMLs, e. g. 8 to 43% of the human ARML orthologs 

(Table 1) and 1 to 10 % of their extant interactions, depending on PPI stringency thresholds, can 

also be found in ancestral networks. Therefore, a phylogenetically broad range of organisms could 

still be used to experimentally highlight numerous mechanistic aspects associated with human 

ageing and longevity.  

Second, we assigned a GO-term to each node in these ancestral networks by using the most 

GO-annoted species for each lineage for ancestral networks (i.e. human proteins for the common, 

bilaterian and euarchontoglire ancestors, and Ce proteins for the ecdisozoan ancestor). We 

identified functionally enriched GO-terms (top 20) for each network with Metascape (M&M) (Fig. 

6). To assess whether different GO-terms (and below different functions) had been associated with 

ageing or longevity as Opisthokonta diverged from their last common ancestor, we compared these 

top 20 GO functional annotations for ancestral longevity networks. 40 % of the enriched GO-terms 

were shared between the common and the bilaterian ancestral networks, but only 5% were shared 

between the bilaterian and the ecdisozoan ancestral networks and 5% were shared between the 

bilaterian and the euarchontoglire ancestral networks. Thus, functionally enriched GO-terms 

associated with ageing/longevity shifted over time, with some evolutionary conservation outside 

bilaterians. Next, we compared which gene families contributed to GO-terms enrichment between 

ancestral networks (Table S8): for each of the evolutionarily conserved GO-terms, we further 

checked whether they involved similar or different gene families in the successive ancestral 

networks, using a Jaccard index between pairs of sequential ancestral networks (M&M). We 

concluded that a significant proportion of both genes and pathways had been conserved between 

the common and the bilaterian ancestral networks (Jaccard indices ranging from 0.53 to 0.89), 

whereas there were less shared gene families between the bilaterian and the ecdisozoan ancestral 

networks (Jaccard index = 0.21 for their unique shared GO-term) and between the bilaterian and 

the euarchontoglire ancestral networks (Jaccard index = 0.29 for their unique shared GO-term). 

These results show a limited overlap between gene families from functionally enriched GO-terms 

associated with ageing/longevity, reinforcing the notion that important LAPs differ within lineages 

of Opisthokonta, especially since the last common ancestor of bilaterians, i.e., there are many 

lineage specific evolutionary roads to ageing and longevity. 

Although gene families and functionally enriched GO-terms associated with ageing and 

longevity showed limited overlap between Opisthokonta, we still wanted to verify whether some 

convergence in their even more general functions could not be detected for these enriched GO-
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terms. For this, we grouped functionally enriched GO-terms into common functions, e.g. 

autophagy, stress response, or protein translation, etc. Functions enriched in the common ancestral 

network are linked to protein translation, stress response, energy production, autophagy and 

apoptosis. Consistent with the above results, the bilaterian ancestral network shared most of these 

enriched functions found in the common ancestral network, to the exception of apoptosis and with 

the addition of response to nutrient levels, a function linked to the mTOR signalling network. 

Interestingly however, ecdisozoan and euarchontoglire ancestral networks that displayed different 

enrichment of GO terms were also functionally divergent. The ecdisozoan network was enriched 

in autophagy and cell death, whereas the euarchontoglire network was enriched in DNA repair, 

telomere, response to nutrient levels, glucose homeostasis, apoptosis, cell cycle regulation and cell 

senescence-related functions. This distinction may reflect genuine differences in biological 

processes, i.e. lineage-specific evolution of longevity/ageing processes, or reflect an experimental 

bias in the functions investigated by researchers for these different clades. Consistently, a Pubmed 

search for "cellular senescence" in combination with species names and ageing/longevity/lifespan 

as keywords returns 28 times more abstracts for euarchontoglire species (Hs: 1302; Mm: 346) than 

for ecdisozoan species (Ce: 41, Dm: 18), even though cellular senescence can occur in ecdisozoan 

at least in Dm (Ito and Igaki 2016), but a similar search for "autophagy/mitophagy" returns only 

2.5 times more abstracts for euarchontoglire species (Hs: 899; Mm: 440) than ecdisozoan species 

(Ce: 313, Dm: 229). These patterns are indeed in accordance with the imbalance in numbers of 

studies on cellular senescence performed in humans and mice versus flies and nematodes (~40 

times more studies in humans and mice), rather than reflecting a preferential link with ageing and 

longevity. 

Overall, these results suggest a progressive transition in enriched functions associated with 

ageing/longevity along the Opisthokonta phylogeny, although this interpretation could still be 

dependent on experimental biases, and the limited species sampling that was available for our study. 

Indeed, this sampling included four highly lab-adapted species (for which labels relative to 

ageing/longevity had previously been gathered from experiments) and humans, which have an 

unusual longevity; and therefore future studies with a broader taxonomic sampling covering even 

more of the diversity of Opisthokonta will be useful to assess the generality of our conclusions 

across animals and fungi. Still, resampling-based estimations of false negative and positive rates 

suggest low rates of type I and moderate rates of type II errors and thus a good representativity of 

the results even with a limited number of input species. 
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Inferring new evolutionarily conserved LAPs 

Finally, we expanded our analysis of ageing and longevity associated pathways beyond the 

borders of extant and ancestral longevity networks (composed only of LAPs) by connecting these 

networks to the rest of the PPI networks from which they constitute a subset (the global 

interactomes, also featuring non-LAPs). We mined the global PPI networks (comprised of all 

orthologous proteins from a given organism, or all the conserved orthologous protein families for 

a clade) and all significantly supported edges (for various stringency thresholds), both for extant 

interactomes and for inferred ancestral interactomes (Fig. S9), to identify non-LAPs with 

significantly similar sets of neighbours to LAPs (Fig. S10). We reasoned that when a non-LAP (or 

a non-LAP family) significantly interacts with the same sets of proteins than a LAP (or a LAP 

family), this non-LAP may perform biological functions closely related to that of the LAP with 

which it plays the same structural role in the PPI network.  

In extant networks, depending on which species was investigated, hundreds to thousands 

of non-LAPs shared significantly similar sets of neighbours than LAPs. Achieving phenotypic 

assays for so many candidate components of longevity or ageing-associated pathways would be 

overwhelming. Fortunately, analyses of ancestral PPI networks returned a much more manageable 

number of candidates, which in addition are evolutionarily conserved. Predicted proteins from 

ancestral networks were enriched for functions such as translation/ribosomal biogenesis in all 5 

species, ubiquitination/proteasomal degradation in bilaterians, neddylation, cell cycle progression 

and DNA repair in euarchontoglires.  

Our strategy makes an asymmetric use of LAPs, as these proteins have been known for a 

long time to have some direct or indirect connections with ageing, and of non-LAPs, which are 

proteins that were not reported to have direct or indirect connections with ageing in GenAge. 

Therefore, an analysis of the scientific literature to validate our predicted for novel LAPs from non-

LAPs should not capture information that was used, in the first place, to define longevity-associated 

proteins. Consistently, we validated a subset of these non-LAPs that we predicted to be associated 

with ageing or longevity by querying either publication records in PubMed database or phenotypic 

annotations in species-specific databases (M&M). Predictions with such external support amounted 

to 24% in Ce, 9% in Dm, 10% in Hs, 5% in Mm and 8% in Sc (Table S11). Although selecting Dm 

genes at random (1321 genes with ageing-related annotations among 13986 protein-coding genes: 
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9.4%) would lead to a similar number of ageing-related annotations as evosystemic predictions (9 

out of 119 predictions: 7.5%, P > 0.05), we saw an enrichment for ageing-annotated Ce genes (17 

out of 74 predictions: 23%) compared to random sampling (1171 genes with ageing-related 

annotations in Wormbase among 19886 protein-coding genes: 5.9%, P < 0.05), suggesting that 

evosystemic analysis can be used to predict new ageing-associated genes.  

Remarkably, 265 non-LAPs that we predicted to be associated with ageing/longevity are 

more central than MTOR in the human interactome (Table S12), forming a list of novel 

evolutionarily conserved super-central candidate proteins associated with ageing or longevity, 

dominated by ribosomal proteins and ubiquitination pathways. This list also includes KEAP1, a 

candidate regulator of ageing or longevity, since KEAP1 is also homologous to a key antagonistic 

regulator that we identified in Dm. Consistently with our prediction, KEAP1 has been suggested to 

regulate the ageing of human aortic endothelial cells (EC) in culture, as a repressor of Nrf2 

transcription factor, the critical modulator of cellular stress-response (Kopacz et al. 2020). In 

addition, 138 out of the 487 new LAPs we predicted are potentially druggable, based on 

documented drug-protein interactions (M&M), and KEAP1 is one of those (Fig. 7, Table S11). 

Most interestingly for translational purposes, 28/138 of these druggable proteins are more central 

than MTOR (Table S12) and 1 amongst those is associated with ageing-related diseases (the proto-

oncogene small GTPase superfamily member KRAS). Consequently, these candidate LAPs figure 

as possible targets for potential novel anti-ageing treatments in humans. 

Conclusion 

We presented a network-based approach to make some progresses in the analysis of ageing and 

longevity genes. This approach is surely not the only strategy to reach this goal, given that protein 

interaction networks lack direct information on mutations associated with longevity located in non-

coding/regulatory regions of the genomes, however, we showed that evosystemics has some 

potential for ageing studies and for proposing novel candidate ageing or longevity related genes. 

Namely, we tracked the evolutionary history of protein interactions associated with ageing or 

longevity throughout the phylogeny of five species of Opisthokonta, to identify which pathways 

known to be associated with ageing or longevity had emerged in which lineages, were conserved 

and central. To do this, we conjugated two non-mutually exclusive criteria to rank proteins and 

protein interactions by their high evolutionary conservation across these Opisthokonta and their 

high centrality in extant and in inferred ancestral PPI. We applied our approach to five species of 

Opisthokonta, a broader taxonomic selection than used thus far in any previous PPI analyses on 
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ageing and longevity, mapped extant and ancestral networks with LAP, pro- and anti-longevity 

labels, and analysed their connections with a large range of network metrics. We confirmed that 

LAPs, be they pro- or anti-longevity, are highly central in extant PPI, and identified key 

antagonistic regulators of ageing/longevity. While some highly central proteins are evolutionarily 

conserved, we observed a transition in functionally important components of ageing or longevity 

along these different Opisthokonta lineages. Still, a third of the human LAPs and 7 % of their 

interactions date from ancestral interactomes of Opisthokonta, indicating that a phylogenetically 

broad range of model organisms could be investigated to understand central mechanistic aspects 

associated with human ageing and longevity. We also predicted new central, evolutionarily 

conserved LAPs, of which some could be validated by published independent experimental 

support. Importantly, we propose that a set of 487 LAPs should be included in the human longevity 

network. About half of them, largely associated with ribosomal proteins and ubiquitination 

pathways, are more central than mTOR in the human PPI. In addition, 28.3% of the proteins we 

predict to hold important roles in longevity or ageing-associated pathways in humans are druggable, 

defining potential targets for novel anti-ageing treatments in humans. While we feel this approach 

is promising, it is worth keeping in mind that our analysis could at the time being only rely upon 

five species for which a priori knowledge on ageing- and longevity-associated proteins were 

already available. Although this was the most phylogenetically diverse set of species we could 

currently analyze by this approach, two of the five species (mice and humans) have diverged less 

than a hundred million years ago, and as such represent a fraction of the genetic diversity of 

animals. Consequently, we hope that future evosystemic studies, benefiting from an enlarged 

taxonomic dataset from fungi to animals, will determine to what extent our conclusions generalize 

to all Opisthokonta species, beyond the five species carefully investigated here.  

 

Materials and Methods 

Protein-protein interaction stringency 

Protein-protein interaction (PPI) networks were built from the STRING database 

(https://string-db.org/)(Szklarczyk et al. 2019) for five species with longevity-related annotations 

in the GenAge database (http://genomics.senescence.info/genes/, Build 20)(Tacutu et al. 2018): S. 

cerevisiae (Sc, txid4932), C. elegans (Ce, txid6239), D. melanogaster (Dm, txid7227), M. musculus 

(Mm, txid10090) and H. sapiens (Hs, txid9606). STRING-recorded interactions between pairs of 
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proteins are weighted by confidence scores ranked from 0 to 1000. STRING PPI networks were 

filtered at different PPI stringencies either based on interaction score thresholds (scores above 500, 

600, 700, 800 or 900), or solely based on interactions experimentally supported (hereafter referred 

to as experimental networks). 

Label-based subnetwork induction 

Nodes in PPI networks were labelled as longevity/ageing-associated proteins (LAPs) in 

accordance with the annotations in the GenAge database. Pro- (genes whose decreased expression 

by knockout, mutations or RNA interference reduces lifespan and/or whose overexpression extends 

lifespan) or anti-longevity (genes whose decreased expression extends lifespan and/or whose 

overexpression decreases it) labelling was also used for Ce, Dm, Mm and Sc proteins; genes 

associated with ‘unclear’ or ‘unannotated’ effects on longevity were labelled as ‘unclear’ in our 

dataset. LAPs, subdivided into pro-longevity, anti-longevity and ‘unclear’ labelled nodes and the 

edges connecting them (at the indicated PPI network threshold) defined the species-specific 

longevity networks used in this study (Fig S3A). 

Orthology relationships 

Orthology criteria were those of the Alliance of Genome Resources Portal (Alliance 

Database Version: 4.1.0, http://www.alliancegenome.org), which focuses on aggregating and 

curating orthology relationships between model organisms from a diversity of databases (The 

Alliance of Genome Resources Consortium et al. 2020) to annotate homologs among ARML and 

centrality outliers (using a ‘--HH + number’ arbitrary code (Table S13). For ancestral PPI network 

inference, orthology relationships were based on the more stringent OMA orthogroups from the 

OMA database (Orthologous MAtrix, https://omabrowser.org/oma/home/, OMA All.Jan2020 

release)(Altenhoff et al. 2018). Orthology-labelled nodes were used to derive networks of 

orthologs, sharing the same OMA orthogroup identifiers (Fig. S3B), for each species and at each 

PPI stringency threshold. 

Centrality analysis and outlier detection 

Four metrics distributions were computed to determine the centrality of LAPs in PPI 

networks (Figure S2A-D). Three metrics (betweenness, closeness, and degree) were calculated 

using the NetworkAnalyser plugin in Cytoscape (Doncheva et al. 2012) and the PageRank (Page 

http://www.alliancegenome.org/
https://omabrowser.org/oma/home/


 

 

17 

 

et al. 1999) of each node was calculated using the algorithm implemented in the networkx Python 

package (https://networkx.org) with default parameters. Metrics distribution for pro-, anti-

longevity proteins (model organisms) or only LAPs (for all five species), were compared to proteins 

not associated with longevity (non-LAPs) using the Mann-Whitney U-test (unilateral or bilateral, 

as indicated). P-values were adjusted for multiple testing using the Bonferroni method. To detect 

centrality outliers with statistically significant high values for centrality metrics in longevity 

networks (Figure S2A-D), normalized betweenness, degree, PageRank and closeness were 

computed using the networkx Python package at all PPI stringency thresholds. Statistically 

significant high values were determined by node rewiring permutation tests (see Network 

permutation tests Methods section). Because network permutation tests scale poorly with 

increasing network size, we compared node centrality in entire PPI networks by their average 

degree rank across all PPI stringency threshold. 

Homophily analysis and candidate ARML detection 

Homophily between labelled nodes in networks, i.e. the preferential connection with the 

same labels, was measured by computing assortativity coefficients (Figure S2E) as defined in 

equation II from Newman, 2003 (Newman 2003), in order to quantify the extent to which nodes 

with the same label connect with each other rather than with differently labelled nodes. 

Assortativity coefficients were calculated using the attribute_assortativity_coefficient function 

from the networkx Python package either for LAPs in entire networks or for pro- and anti-longevity 

labelled nodes in entire networks and longevity networks. Statistically significant assortativity 

coefficient values were determined by label permutation tests (see Network permutation tests 

Methods section). To detect candidate key regulators of ARMLs among pro- or anti-longevity 

labelled nodes in longevity networks, statistically significant high numbers of neighbors with the 

opposite label were determined by node rewiring permutation tests (see Network permutation tests 

Methods section). 

Inference of ancestral PPI networks 

To infer ancestral PPI networks, species-specific networks of orthologs (Fig. S3B) derived 

from longevity networks (Fig. S3A) at all PPI stringency thresholds and the reference phylogenetic 

tree associated with these taxa (in the bracketed format: (Sc, (Ce, Dm), (Mm, Hs))) were used as 

input for an in-house script (available on GitHub: 

https://networkx.org/
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https://github.com/TeamAIRE/ancestral_interactome_inference), to detect conserved protein-

protein interaction (edges between the same pair of orthologous proteins, present in different 

species) and map these edges on the phylogeny of five species of Opisthokonta. For any given edge, 

all mapped extant taxa in which the protein-protein interaction is observed were given as input to 

the ‘get_common_ancestor’ function of the ete3 Python package version 3.1.1 (Huerta-Cepas et al. 

2016) to conduct a parsimony analysis and identify the last common ancestor (returned as an 

intermediate node of the phylogenetic tree) in which the protein-protein interaction was likely 

present (Fig. S7). Next, this last common ancestor was used to define the root of a subtree, 

subsequently explored to define which of its children intermediate nodes have likely conserved the 

edge (at least one descendant extant taxon possessing the edge) or lost the edge (none of its 

descendant extant taxa possessing the edge). For each intermediate node of the phylogeny, all the 

edges inferred to be present were then used to reconstruct the corresponding ancestral PPI network. 

To estimate the false negative/positive rates associated to ancestral edge inferences, we used a 

resampling approach to construct alternative ancestral networks from thresholded entire networks, 

by replacing the input of either Sc, Ce and Dm networks by the PPI network of a species with the 

same taxonomic rank (family) in the NCBI reference phylogeny, with more than 85% of protein 

sequences being 100% identical between the OMA and STRING databases. Alternative species 

were, for Ce : C. briggsae (txid6238), C. remanei (txid31234); for Dm: D. ananassae (txid7217), 

D. erecta (txid7220), D. grimshawi (txid7222), D. persimilis (txid7234), D. sechellia (txid7238), 

D. simulans (txid7240), D. virilis (txid7244), D. yakuba (txid7245), D. willistoni (txid7260); for 

Sc: K. lactis (txid284590), C. glabrata (txid284593), E. gossypii (txid284811), V. polyspora 

(txid436907), L. thermotolerans (txid559295), K. naganishii (txid1071383). False negatives were 

defined as edges present in all alternative but absent from reference ancestral networks, and false 

positives as edges present in reference and absent in all alternative ancestral networks. False positive 

rates were 0 for all three resampled species, and false negative rates were comprised between Sc: 12 and 

20%; Ce: 0.5 and 4%; Dm: 0 and 1.5%. 

 

LAP prediction based on ancestral networks 

To predict ancestral proteins with similar topological properties as inferred ancestral LAPs, 

inferred ancestral PPI networks were mined for orthogroups with similar roles. This prediction is 

of course a first step. We do not consider that when a non-LAP shares the centrality and 

conservation properties of one or several ageing- or longevity- associated proteins, this topological 

proximity is in itself a sufficient evidence that the non-LAP is also an ageing- or longevity-
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associated protein, e.g. it may not be sufficient to share topological properties with an ageing-

associated protein to be another, undetected, ageing-associated protein. Further validation of the 

prediction is also necessary. However, it is worth noting here that our predictions were very 

stringent.  

Precisely, node label permutation tests were used to identify significantly high Jaccard 

indices combined with significantly high numbers of common direct neighbors, with a Jaccard 

index minimal threshold of 0.5 and at least 1 common neighbor. Species-specific LAP predictions 

were obtained from the non-LAPs with significant LAP neighborhood in at least one of the 

ancestral networks from the lineage of the focal species. As expected, this approach identified non-

LAPs in a species that are homologous to LAPs in another species and figured by construction as 

non-LAPs in the ancestral networks, which reassuringly supported our guilt-by-association 

approach. These already documented LAPs, representing from 0 to 28 % of all predictions, 

depending on the species, were filtered out. 

To further validate our approach of functional prediction by guilt-by-association within a 

PPI network, independently of the ageing-associated labels, we verified that the functional 

distributions of these protein families and that of the protein families to which they were structurally 

equivalent matched with one another. To compute the functional similarity between predicting and 

predicted proteins, each predicting and associated predicted orthogroups were translated to species-

specific representative Ensembl identifiers, and the biomaRt R package was used to retrieve 

species-specific associated GO-terms from the Ensembl database. Semantic similarity analysis was 

performed using GOGO on pairs of proteins (predictor-predicted) and semantic similarity scores 

for each GO category were computed as described (Zhao and Wang 2018). Median semantic 

similarity for molecular function was found superior to 0.5, indicating good functional 

correspondence between predictors and predicted proteins and supporting the potential 

involvement of predicted proteins in regulating ageing and longevity (Figs. S14, S15). 

Supporting information for a role as a novel candidate LAP in extant species was gathered 

using systematic queries to the Pubmed database, following the template: {symbol of the predicted 

LAG} AND {species-specific keywords} AND (ageing OR aging OR longevity OR lifespan OR 

"life span" OR senescence). Species-specific keywords were ‘elegans’ for Ce, ‘drosophila’ for Dm, 

‘human OR sapiens’ for Hs, ‘mouse OR musculus’ for Mm and ‘yeast OR cerevisiae’ for Sc. 

Curated abstracts with mention of a potential link between the predicted LAP and longevity were 
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retained as supporting data. Further, predicted LAPs for the three species Sc, Dm and Ce were 

compared with the list of genes associated to lifespan and ageing alterations in genetic experiments 

recorded in the corresponding species-specific databases Saccharomyces Genome Database 

(yeastgenome.org), Flybase (flybase.org) and Wormbase (wormbase.org). Sc phenotypes queried 

were ‘aging’, ‘lifespan decreased’ and ‘lifespan increased’; Dm phenotypes queried were ‘aging’, 

‘lifespan’, ‘abnormal aging’, ‘delayed aging’, ‘premature aging’, ‘short lived’ and ‘long lived’; Ce 

phenotypes queried were ‘dauer lifespan variant’ (WBPhenotype:0001540), ‘extended life span’ 

(WBPhenotype:0000061), ‘shortened life span’ (WBPhenotype:0001171) and ‘aging variant’ 

(WBPhenotype:0001739). To calculate enrichments in ageing-related annotations in our 

predictions relative to random sampling, the number of all known protein-coding genes was derived 

from the number of genes associated with and Uniprot reference identifier in Wormbase for Ce, 

and from Flybase statistics for Dm, and a chi-square test was used. Hs predicted LAPs were 

additionally probed for genes associated with human cell senescence in the CellAge database 

(https://genomics.senescence.info/cells/, (Avelar et al. 2020)), genes with alleles associated with 

exceptional human longevity in the LongevityMap database 

(https://genomics.senescence.info/longevity/, (Budovsky et al. 2013)), Aging-Related Disease 

(ARD) genes (Fernandes et al. 2016) and druggable proteins recorded in the DGIdb database 

(Griffith et al. 2013). We also determined from DGIdb the number of drugs, the number of US 

Food and Drug Administration (FDA)-approved drugs, and the maximum DGIdb interaction score 

associated with each predicted LAP in human. 

Network permutation tests 

To detect centrality outlier nodes or candidate key antagonistic regulators, node rewiring 

permutation tests (Fig. S4) were performed by 1000 random network permutations rewiring the 

nodes but preserving the total number of edges, without preserving the degree distribution. To 

detect statistically significant high values of assortativity, and significantly high values of Jaccard 

index and numbers of common direct neighbors, node label permutation tests (Fig. S4) were 

performed by randomly shuffling node labels 1000 times. For each node and each metric, a counter 

was incremented each time the random value was greater than the reference value. P-values were 

then calculated by the ratio counter/number of permutations, and adjusted for multiple testing using 

the Bonferroni method. 

https://genomics.senescence.info/cells/
https://genomics.senescence.info/longevity/
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Functional enrichment analysis 

Functional enrichment analysis was performed using the Metascape online tool 

(https://metascape.org/gp/index.html)(Zhou et al. 2019) with customized Enrichment tab settings 

to retrieve enriched Biological Processes GO terms only. For inferred ancestral networks, 

orthogroups were translated to their extant protein representative in the most annoted species for 

each lineage, according to the Gene Ontology statistics 

(http://current.geneontology.org/products/pages/downloads.html): Hs proteins for the common, 

bilaterian and euarchontoglire ancestors, and Ce proteins for the excdisozoan ancestor. Metascape 

analysis files were parsed to retrieve the genes annotated with the top 20 enriched GO terms and a 

Jaccard index was computed to compare gene sets for shared GO terms between networks. 
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Figure legends 

 

Figure 1. Analysis of the centrality of LAPs in PPI networks. 

Matrix displaying pairwise comparisons (LAPs VS non-LAPs) of node centrality metrics 

distributions in the PPI networks from five Opisthokonta species (S. cerevisiae, D. melanogaster, 

C. elegans, M. musculus and H. sapiens) for six PPI stringency thresholds (from 500: less stringent 

networks to exp: mores stringent networks). Stars in red cells indicate significantly higher centrality 

values for LAPs. Significance was determined using the unilateral Mann-Whitney U-test: **: P < 

0.001; *: P < 0.05; NS: not significant (blue cells). P-values were adjusted for multiple testing using 

the Bonferroni method. This analysis shows that LAPs are more central than non-LAPs in PPI 

networks. 

Figure 2. Homophily of LAPs in entire PPI networks and in longevity networks. 

Homophily represents preferential interactions between similar kinds of nodes, and is estimated by 

assortativity coefficients. The distributions of assortativity coefficients were computed at six PPI 

stringency thresholds: (A) for LAPs and non-LAPs in the entire PPI networks of S. cerevisiae, D. 

melanogaster, C. elegans, M. musculus and H. sapiens; (B) for pro-longevity LAPs (pro-LAPs) 

and anti-longevity LAPs (anti-LAPs) in the entire PPI networks of S. cerevisiae, D. melanogaster, 

C. elegans and M. musculus; (C) for pro-LAPs and anti-LAPs in the longevity networks of S. 

cerevisiae, D. melanogaster, C. elegans and M. musculus. Assortativity coefficients were all 

significantly positive in node label permutation tests (P < 0.05), except in the C. elegans 

experimental longevity network (NS: not significant), indicating that proteins belonging to the same 

kind of LAPs (hence with the same effects on longevity) preferentially interact together. 

Figure 3. Identification of candidate antagonistic regulatory mechanisms of longevity in 

longevity networks. 

In longevity networks, some LAPs display a significantly high proportion of direct neighbours with 

an opposite effect on longevity (e.g. a pro-LAP being connected to significantly more anti-LAPs 

than expected by chance) and are therefore candidate regulators of longevity. Matrices of nodes 

with such a property for one or more PPI stringencies are indicated for three species: (A) D. 

melanogaster, (B) C. elegans and (C) S. cerevisiae. For each protein, the proportion of its 

neighbours with opposite effect on longevity is color-coded in cells, from blue: 0% to red: 100%. 
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Black cells indicate that the corresponding protein is absent from the network at the corresponding 

PPI stringency thresholds. The numbers of neighbors with opposite effects are indicated in the 

relevant cells only when significantly higher than by chance according to a node rewiring 

permutation test. Homolog outlier LAPs, i.e. LAPs found in multiple species, are indicated by a ‘-

-H + number’ homology code (as defined in Table S13) to the right of the protein names, 

highlighted in blue (when shared by two species) or yellow (when shared by three species), whereas 

species-specific outlier LAPs are indicated in bold. A star labels LAPs which were not found among 

centrality outliers in Fig. 4, indicating candidate regulators of longevity that are not highly central 

in the network. The white, light grey and dark grey bars on the left of each matrix further classify 

proteins depending on their outlier status, respectively, in both thresholded and experimentally-

supported (exp) networks, in thresholded networks only, or in exp networks only. This figure shows 

that several species host evolutionary conserved LAPs highly connected to proteins with opposite 

effects on longevity/ageing. 

Figure 4. Identification of the most central LAPs in longevity networks. 

Some LAPs display a significantly high centrality in longevity networks, defined as possessing a 

significantly high value for at least two centrality metrics among betweenness, closeness, degree 

and PageRank. Matrices of nodes with such a property for one or more PPI stringencies are 

indicated for five species: (A) S. cerevisiae, (B) C. elegans, (C) D. melanogaster, (D) M. musculus 

and (E) H. sapiens. For each protein, the number of significantly high centrality metrics is color-

coded in cells, from blue: 0-1 to red: 4. Homolog outlier LAPs found in multiple species are 

indicated by a ‘--H + number’ homology code (as defined in Table S13) to the right of the protein 

names, highlighted in blue (when present in four species) or yellow (when present in five species), 

whereas species-specific outlier LAPs are indicated in bold. The white, light grey and dark grey 

bars on the left of each matrix further classify proteins depending on their outlier status, 

respectively, in both thresholded and experimentally-supported (exp) networks, in thresholded 

networks only, or in exp networks only. This figure shows that several species host evolutionary 

conserved highly central LAPs in their longevity networks. 

Figure 5. Inference of ancestral interactions based on shared LAP-LAP interactions between 

longevity networks. 
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The longevity networks of orthologs from S. cerevisiae (Sc), C. elegans (Ce), D. melanogaster 

(Dm), M. musculus (Mm) and H. sapiens (Hs) were used to infer ancestral networks at inner 

branches of the species phylogeny (as described in Figure S7) from ortholog-ortholog interactions 

shared between species. The resulting ancestral networks are shown here for PPI stringency 

threshold = 500. In these ancestral networks, node and edge colours indicate inferred presence in 

the last common ancestor of all 5 species (blue, in the last common ancestor of Opisthokonta), of 

all 4 bilaterian species (pink, in the bilaterian ancestor), of Hs and Mm (yellow, in the 

euarchontoglire ancestor) or of Dm and Ce (green, in the ecdisozoan ancestor). Extant longevity 

networks and proportions of ancestral nodes and edges in these networks are displayed to the right 

of the species phylogeny. These extant networks represent the interactions between LAPs 

belonging to shared orthogroups for each species. Nodes and edges in extant networks are coloured 

based on their inferred phylogenetic date of appearance, or grey if only present in the corresponding 

species. This figure shows that each extant longevity network contains evolutionarily conserved 

interactions, some of which as old as the last common ancestor of Opisthokonta. 

Figure 6. Functional enrichment analysis of ancestral longevity networks. 

To perform functional enrichment analysis of the proteic interactions inferred to be present in 

ancestral networks, ancestral orthogroups identified at each PPI stringency were analyzed using 

Metascape. H. sapiens protein identifiers were used as Metascape input to represent the functions 

of orthogroups found in common, bilaterian and euarchontoglire ancestral networks, and C. elegans 

protein identifiers were used as Metascape input to represent the functions of orthogroups found in 

ecdisozoan ancestral networks. On the species phylogeny, the top 20 enriched GO-terms identified 

by Metascape for ancestral proteins are positioned at the inner branches, and the top 20 enriched 

GO-terms for extant proteins (orthogroups found in extant longevity networks) are positioned at 

the leaves. Identical enriched GO-terms between ancestors or between ancestor and extant species 

are highlighted with the color corresponding to the oldest ancestor implementing the function (blue: 

for the last common ancestor of Opisthokonta; pink: for the bilaterian ancestor; yellow: for the 

euarchontoglire ancestor; green: for the ecdisozoan ancestor). Colored boxes surround GO-terms 

absent from ancestral networks but identical between sister species, suggesting that the same 

functions are used by closely related species to regulate longevity. This figure shows that the main 

enriched functions associated with longevity/ageing regulation have changed with the history of 

species. 
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Figure 7. Druggable human predicted LAPs. 

We predicted 138 novel human LAPs, most with known drug interactions recorded in the DGIdb 

database. Predicted LAPS are ordered from left to right by their inferred age of first appearance (as 

old as the last common ancestor of Opisthokonta, as old as the Bilaterian ancestor, as old as the 

euarchontoglire ancestor) and by decreasing average centrality (average degree rank) in the 

corresponding ancestral longevity networks. A bar plot indicates the number of drugs linked to 

each of the 138 predicted human LAPs, with the number of FDA-approved drugs, when available, 

on top of each bar. Below the bar plot, a matrix displays support (purple cells) for a LAP function 

from (P) the literature in Pubmed abstracts, (C) the cellular senescence database Cellage or (L) 

GWAS data providing an association with longevity from the LongevityMap database. (A) 

indicates whether the LAP is associated to an Aging-Related Disease (ARD). This figure reports 

predicted evolutionary conserved human longevity-associated proteins, currently known to be 

targeted by drugs. 
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Figure 5
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Figure 6

GO:0007005: mitochondrion organization
GO:0090033: positive regulation of filamentous growth
GO:0140053: mitochondrial gene expression
GO:0010906: regulation of glucose metabolic process
GO:0051090: regulation of DNA-binding transcription factor activity
GO:0051053: negative regulation of DNA metabolic process
GO:0044087: regulation of cellular component biogenesis
GO:0031399: regulation of protein modification process
GO:0072350: tricarboxylic acid metabolic process
GO:0010737: protein kinase A signaling
GO:0002181: cytoplasmic translation
GO:0051726: regulation of cell cycle
GO:1901293: nucleoside phosphate biosynthetic process
GO:0007154: cell communication
GO:0051128: regulation of cellular component organization
GO:0006464: cellular protein modification process
GO:0006099: tricarboxylic acid cycle
GO:0031497: chromatin assembly
GO:0048519: negative regulation of biological process
GO:0034727: piecemeal microautophagy of the nucleus

GO:0051098: regulation of binding
GO:0031331: positive regulation of cellular catabolic process
GO:0006468: protein phosphorylation
GO:0010564: regulation of cell cycle process
GO:1901214: regulation of neuron death
GO:0040008: regulation of growth
GO:0048732: gland development
GO:0097190: apoptotic signaling pathway
GO:0007167: enzyme-linked receptor protein signaling pathway
GO:0010942: positive regulation of cell death
GO:0009991: response to extracellular stimulus
GO:0002520: immune system development
GO:0001934: positive regulation of protein phosphorylation
GO:0010035: response to inorganic substance
GO:2001233: regulation of apoptotic signaling pathway
GO:0009314: response to radiation
GO:0080135: regulation of cellular response to stress
GO:0006974: cellular response to DNA damage stimulus
GO:0009725: response to hormone
GO:0006979: response to oxidative stress

GO:0044271: cellular nitrogen compound biosynthetic process

GO:0071495: cellular response to endogenous stimulus
GO:0065008: regulation of biological quality
GO:0061063: positive regulation of nematode larval development
GO:0010506: regulation of autophagy
GO:0048523: negative regulation of cellular process
GO:0048583: regulation of response to stimulus
GO:0046034: ATP metabolic process
GO:0009605: response to external stimulus
GO:0009792: embryo development ending in birth or egg hatching
GO:0070887: cellular response to chemical stimulus
GO:0022611: dormancy process
GO:0048609: multicellular organismal reproductive process
GO:0009628: response to abiotic stimulus
GO:0061062: regulation of nematode larval development
GO:0051128: regulation of cellular component organization

GO:0009893: positive regulation of metabolic process
GO:0002119: nematode larval development
GO:0050793: regulation of developmental process
GO:0008340: determination of adult lifespan

GO:0040007: growth
GO:1902531: regulation of intracellular signal transduction
GO:0006796: phosphate-containing compound metabolic process
GO:0042981: regulation of apoptotic process
GO:0002682: regulation of immune system process
GO:0006091: generation of precursor metabolites and energy
GO:0031399: regulation of protein modification process
GO:0031175: neuron projection development
GO:0007552: metamorphosis
GO:0007610: behavior
GO:0033500: carbohydrate homeostasis
GO:0009628: response to abiotic stimulus

GO:0043467: regulation of generation of precursor metabolites
 and energy

GO:0034599: cellular response to oxidative stress
GO:0051128: regulation of cellular component organization
GO:0010506: regulation of autophagy
GO:0031667: response to nutrient levels
GO:1901700: response to oxygen-containing compound
GO:0006979: response to oxidative stress
GO:0008340: determination of adult lifespan

Common ancestor
GO:0006091: generation of precursor metabolites and energy

GO:0001649: osteoblast differentiation
GO:0009725: response to hormone
GO:0016570: histone modification

GO:0010506: regulation of autophagy

GO:1903169: regulation of calcium ion transmembrane
 transport

GO:0048660: regulation of smooth muscle cell proliferation
GO:0019216: regulation of lipid metabolic process
GO:0021766: hippocampus development
GO:1901699: cellular response to nitrogen compound
GO:0097190: apoptotic signaling pathway
GO:0002639: positive regulation of immunoglobulin production

GO:0010332: response to gamma radiation

GO:0002262: myeloid cell homeostasis
GO:0005975: carbohydrate metabolic process
GO:0042743: hydrogen peroxide metabolic process
GO:0006790: sulfur compound metabolic process
GO:0007005: mitochondrion organization
GO:0062197: cellular response to chemical stress
GO:0043603: cellular amide metabolic process

Bilaterian ancestor

GO:0016570: histone modification

GO:0031400: negative regulation of protein modification
 process

GO:0009896: positive regulation of catabolic process
GO:0001775: cell activation
GO:0009408: response to heat
GO:0005975: carbohydrate metabolic process
GO:0055093: response to hyperoxia
GO:0010506: regulation of autophagy

GO:2000377: regulation of reactive oxygen species metabolic
 process

GO:0019725: cellular homeostasis
GO:0018105: peptidyl-serine phosphorylation
GO:0010212: response to ionizing radiation
GO:0007005: mitochondrion organization
GO:0006790: sulfur compound metabolic process
GO:0031667: response to nutrient levels
GO:0009725: response to hormone
GO:0006099: tricarboxylic acid cycle
GO:0043603: cellular amide metabolic process
GO:0062197: cellular response to chemical stress

GO:0015980: energy derivation by oxidation of organic
 compounds

Ecdisozoan ancestor

GO:0051128: regulation of cellular component organization

GO:0010942: positive regulation of cell death
GO:0009893: positive regulation of metabolic process
GO:0019725: cellular homeostasis
GO:0032879: regulation of localization
GO:0033554: cellular response to stress
GO:0009605: response to external stimulus

GO:0050793: regulation of developmental process

GO:0009792: embryo development ending in birth or egg
 hatching

GO:0002119: nematode larval development
GO:0006979: response to oxidative stress
GO:0046034: ATP metabolic process
GO:0000422: autophagy of mitochondrion

GO:0044271: cellular nitrogen compound biosynthetic
 process

GO:0009060: aerobic respiration
GO:0008340: determination of adult lifespan

Euarchontoglire ancestor

GO:0010821: regulation of mitochondrion organization
GO:0019216: regulation of lipid metabolic process
GO:0032200: telomere organization
GO:0042593: glucose homeostasis
GO:0006468: protein phosphorylation
GO:0046324: regulation of glucose import
GO:0097193: intrinsic apoptotic signaling pathway
GO:0048732: gland development
GO:0090398: cellular senescence
GO:0040008: regulation of growth
GO:0031331: positive regulation of cellular catabolic process
GO:0009411: response to UV
GO:1901214: regulation of neuron death
GO:0043549: regulation of kinase activity
GO:0006979: response to oxidative stress
GO:0010564: regulation of cell cycle process
GO:2001233: regulation of apoptotic signaling pathway
GO:0031667: response to nutrient levels
GO:0071417: cellular response to organonitrogen compound
GO:0006974: cellular response to DNA damage stimulus

GO:0032204: regulation of telomere maintenance
GO:0048732: gland development
GO:0071363: cellular response to growth factor stimulus
GO:0014070: response to organic cyclic compound
GO:0010638: positive regulation of organelle organization
GO:0048145: regulation of fibroblast proliferation
GO:0010817: regulation of hormone levels
GO:0010942: positive regulation of cell death
GO:0006979: response to oxidative stress
GO:0043086: negative regulation of catalytic activity
GO:0001934: positive regulation of protein phosphorylation
GO:0007346: regulation of mitotic cell cycle
GO:0007568: aging
GO:0048660: regulation of smooth muscle cell proliferation
GO:2001233: regulation of apoptotic signaling pathway
GO:0062012: regulation of small molecule metabolic process
GO:0048638: regulation of developmental growth

GO:0008630: intrinsic apoptotic signaling pathway in response
 to DNA damage

GO:1901653: cellular response to peptide
GO:0006974: cellular response to DNA damage stimulus
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