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Abstract. The spatio-temporal structure of natural climate
variability has to be taken into account when unravelling
observed climatic changes and simulating future climate
change. However, based on the comparison of temperature
reconstructions and climate model simulations covering the
past 2 millennia, it has been argued that climate models are
biased. They would simulate too little temporal tempera-
ture variability and too high correlations between tempera-
ture time series from different continents. One of the pro-
posed causes is the lack of internal climate variability in cli-
mate models on centennial timescales, for instance variabil-
ity related to the Atlantic meridional overturning circulation
(AMOC).

We present a perturbed-parameter ensemble with the
iLOVECLIM Earth system model containing various lev-
els of AMOC-related internal climate variability to investi-
gate the effect on the spatio-temporal temperature variability
structure. The model ensemble shows that enhanced AMOC
variability indeed leads to more continental-scale tempera-
ture variability, but it also increases the spatio-temporal tem-
perature correlations between different continents. However,
combining the i{LOVECLIM results with CMIP5 model re-
sults and various PAGES-2k temperature field reconstruc-
tions, we show overall agreement for the magnitude of conti-
nental temperature variability in models and reconstructions,
but both the simulated and the reconstructed ranges are large.
This is even more true when considering higher-order metrics
like inter-continental temperature correlations or temperature
variability land—sea contrasts. For such metrics, uncertain-
ties in both model results and temperature reconstructions
are so large that they hamper our ability to constrain sim-

ulated spatio-temporal structure of centennial temperature
variability. As a result, we cannot determine the importance
of AMOC variability for the climatic evolution over the past
2 millennia.

1 Introduction

Comparing reconstructed and simulated past climate vari-
ability helps us to understand natural climate variability,
which is important in the light of ongoing climate change
(Braconnot et al., 2012; Deser et al., 2012). The most recent
2 millennia form an important period in this respect because
they (i) are described by what is probably the highest density
of palaeoclimate reconstructions of any past period (Ahmed
et al., 2013; PAGES2k-Consortium, 2017); (ii) are a period
with relatively weak and well-constrained external forcings,
allowing for a better investigation of unforced climate vari-
ability (Jungclaus et al., 2017); and (iii) are within a period
that is very similar to the present and future climate in terms
of mean climate, boundary conditions, and climate forcings
(except for human-induced changes) (Schmidt, 2010).
Previous studies looking at temperature temporal variabil-
ity have suggested that climate models simulate too little
regional variability on multi-decadal and longer timescales
(Laepple and Huybers, 2014; PAGES 2k-PMIP3 group,
2015). One can also compare reconstructed and simulated
climate variability in the spatio-temporal domain, as the co-
variance varies as a function of the spatial and timescales in-
vestigated (Kunz and Laepple, 2021). For instance, PAGES
2k-PMIP3 group (2015) compared the PAGES-2k tem-
perature reconstructions (Ahmed et al., 2013) for seven
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continental-scale regions with transient climate model sim-
ulations over the past 2000 years from the third Palaeocli-
mate Modelling Intercomparison Projects (PMIP3; Bracon-
not et al., 2012) and focused on the correlations between tem-
perature time series from different continental-scale regions.
Based on this analysis, PAGES 2k-PMIP3 group (2015)
found that the reconstructions show weak surface air temper-
ature covariance across continents, in contrast to relatively
strong covariance found in climate models.

Several possible causes have been put forward to explain
those model—data discrepancies in both the time and spatio-
temporal domains. The model-data mismatches could be re-
lated to the reconstructions, with proxy-specific uncertain-
ties inherent to the data that lower the reconstructed covari-
ance (Hartl-Meier et al., 2017). Other sources of uncertainty
are the model sensitivity to external forcings, such as vol-
canic eruptions and solar forcing, or the magnitude of the re-
constructed external forcings. Interestingly, it has both been
argued that the model response to external forcings is too
weak, thus explaining the lack of model variability on long
timescales (Laepple and Huybers, 2014), and that the model
response to external forcings is too strong (Anchukaitis et
al., 2010; Braconnot et al., 2012; PAGES 2k-PMIP3 group,
2015; Stoffel et al., 2015), thus explaining the large degree
of temperature covariance in the models between different
continents. Another explanation that has been put forward to
explain model-data mismatches in temperature variability is
the lack of models with sufficient internal climate variability
(Laepple and Huybers, 2014; Valdes, 2011). The idea behind
the latter is that increased internal climate variability would
increase temperature variability and potentially weaken tem-
perature covariance across continental-scale regions because
it would add “random noise” to the system. On the other
hand, modes of internal climate variability have a clear spa-
tial structure and can thus also enhance the spatio-temporal
covariance by increasing the strength of climatic teleconnec-
tions between regions (PAGES 2k-PMIP3 group, 2015).

Here, we will investigate the impact of ocean-induced
multi-decadal to multi-centennial climate variability on the
spatio-temporal covariance of the temperature evolution.
Hereby, we test if increased internal climate variability can
indeed improve the model-data comparison of temperature
variability over the last 2000 years. We will specifically in-
vestigate the impact of ocean variability driven by the At-
lantic meridional overturning circulation (AMOC). To this
end, we will present a perturbed-parameter ensemble of cli-
mate model simulations for the past 2 millennia that cover a
range from very weak to very strong multi-decadal to multi-
centennial AMOC variability. We will compare our model
results with temperature reconstructions for the past 2 millen-
nia derived with different climate field reconstruction (CFR)
methods (Neukom et al., 2019) and a subset of the CMIP5
last millennium simulations (Braconnot et al., 2012; Taylor
et al., 2012). We will focus on two different spatial scales to
investigate the inter-regional temperature coherency, namely
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inter-continental and between ocean and land. This will allow
us to investigate the role of ocean-induced climate variability
in altering spatial temperature variability coherency and to
determine which level of ocean variability yields model re-
sults that are in best agreement with proxy-based temperature
reconstructions.

We limit our analysis of reconstructed temperatures for the
past 2 millennia to the data set published by Neukom et al.
(2019), but many others exist (e.g. Ljungqvist et al., 2019;
Zhang et al., 2018; Wang et al., 2017; Moreno-Chamarro
et al., 2017; Franke et al., 2016; Luterbacher et al., 2016).
All these temperature reconstructions are affected by, among
others, the spatial distribution of the underlying records, their
temporal extent, seasonality effects and the climate response
of the various proxy types (Anchukaitis and Smerdon, 2022).
Given the goals of our study as outlined above, the temper-
ature reconstructions of Neukom et al. (2019) are the most
suited as they cover sufficiently large spatial scales and in-
clude an estimate of the methodological uncertainties.

2 Methods

The work presented here is based on a perturbed-parameter
ensemble of the iILOVECLIM Earth system model, the
PAGES-2k temperature reconstructions (Neukom et al.,
2019) and a selected number of CMIP5 last millennium sim-
ulations.

2.1 The ILOVECLIM perturbed-parameter ensemble

Here, iLOVECLIM (here in version 1.1) is a code fork of the
LOVECLIM 1.2 model (Goosse et al., 2010). It consists of
a free surface-ocean general circulation model with an ap-
proximately 3° spatial resolution and 20 vertical layers. It is
coupled to a thermodynamical sea ice model and a quasi-
geostrophic model atmospheric model solved on a T21 spec-
tral grid.

We performed a 70-member perturbed-parameter en-
semble of pre-industrial control simulations with the
iLOVECLIM model. From this ensemble, we selected nine
parameter sets that yield results that are both reasonable in
comparison with present-day observations (not shown) and
cover a large range of magnitudes in multi-decadal to multi-
centennial AMOC-related ocean variability. These nine pa-
rameter sets include our default parameter set (experiment
1). Table A1 lists the values that are used for the 10 perturbed
parameters. Parameter selection was done using a Latin hy-
percube sampling (LHS). The ranges that are used in the
LHS are given in Table A2. The choice of parameters to per-
turb is based on previous research by Loutre et al. (2011)
and Shi et al. (2019) and personal experience. Note that for
some of the experiments (2-5), a limited number of param-
eters was excluded from the LHS, and we instead imposed
parameter changes based on our knowledge of the relation
between those specific parameters and changes in the AMOC
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behaviour in the model. This is specifically the case for the
parameters controlling the size of the imposed precipitation
correction between the Atlantic and the Pacific (Tables Al
and A2).

We assessed the degree of agreement with present-day ob-
servations for a selection of variables, namely the AMOC
strength at 26° N (Moat et al., 2020), the Northern Hemi-
sphere (NH) and Southern Hemisphere (SH) sea-ice extent
(Niederdrenk and Notz, 2018; Roche et al., 2012), the top-of-
the-atmosphere radiative imbalance (Schmidt et al., 2017),
and the global mean temperature (Rohde and Hausfather,
2020). Even though all ensemble members, including the de-
fault parameter set, show biases with respect to observations,
no member of the nine-member ensemble can clearly be dis-
carded as unrealistic, and we deem the perturbed-parameter
ensemble suited to investigate the role of AMOC variability
on spatio-temporal temperature variability.

Using these nine parameter sets and starting from long
pre-industrial control simulations, we performed nine cor-
responding 2000-year-long experiments covering the past 2
millennia forced with time-varying volcanic and solar forc-
ings, changes in greenhouse gas concentrations and changes
in the orbital parameters. We limit our analysis to the period
before 1850 in order to exclude the increasingly strong an-
thropogenic warming signal over the last 150 years. All other
boundary conditions are pre-industrial (Goosse et al., 2010).

2.2 PAGES-2k temperature reconstructions

Using a selection of 210 local temperature-sensitive proxies
from the PAGES-2k database (Ahmed et al., 2013), Neukom
et al. (2019) present six different climate field reconstruc-
tion (CFR) methodologies to extend the point data to a full
global coverage. In our current study we will use these six
different temperature field reconstructions to investigate the
robustness of reconstructed temperature variability and spa-
tial covariance and to compare with model results. The CFR
methods deployed by Neukom et al. (2019) range from ba-
sic proxy composites to advanced statistical techniques that
combine the Ahmed et al. (2013) proxy data set with physi-
cal constraints and forcing information from climate-model
simulations.

Here we will provide a short summary of the six differ-
ent CFR methods of Neukom et al. (2019) because of their
importance for our investigation (further details can be found
in the original publication): (1) composite plus scale (CPS) is
an index reconstruction method in which the input proxy data
are averaged into composite time series, which are in turn
scaled to the mean and standard deviation of the reconstruc-
tion target over the calibration period. (2) Principal compo-
nent regression (PCR) reduces the dimensions of both the tar-
get field and the proxy data using principal component anal-
ysis. In this approach the covariance structure of the temper-
ature grid is based on the instrumental record and assumed to
be constant for the whole reconstruction period. (3) Canoni-
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cal correlation analysis (CCA) uses singular-value decompo-
sition to separately reduce the dimensions of the instrumental
temperatures, the proxy data and the regression coefficient
matrix that describes their relationships. The main assump-
tion is that the first few leading modes of the empirical or-
thogonal function contain most of the variance in the target
climate field and the multi-proxy network. (4) GraphEM uses
the theory of Gaussian graphical models to reduce the di-
mensionality of the problem. (5) Data assimilation (DA) op-
timally combines proxy data with climate model states. Here
offline data assimilation is used. The climate model provides
an estimate of the prior that is updated on the basis of the
proxy observations and an estimate of the errors in both the
observations and the prior. (6) The analogue method (AM) is
a method that requires a pool of plausible climate fields for
which simulations from the PMIP3 project are used in this
case. In this method the spatial structure of temperature is
provided by the different climate models, while the tempo-
ral evolution is obtained from the information contained in
the proxy data. Generally one can say that three out of six
CFRs use observational information to obtain information
on the spatial correlation structure (PCR, CCA, GraphEM),
two methods base their spatial correlation structure on cli-
mate model output (DA and AM) and the sixth method does
not use any form of additional spatio-temporal information
(CPS).

Following the recommendation by Neukom et al. (2019),
we also include the multi-method mean in our analysis. All
the CFR-based temperature reconstructions include an un-
certainty estimate using a 100-member ensemble. In parts of
our analysis we use the ensemble mean, while in other parts
the uncertainty is explicitly taken into account. For compar-
ison, we also include the original continental-scale temper-
ature time series from Ahmed et al. (2013), which we will
refer to as PAGES2013 data.

By employing a single data set (Ahmed et al., 2013) of
210 local temperature-sensitive proxies in six different CFR
methods, the data set of Neukom et al. (2019) allows for
a good description of the uncertainties caused by the CFR
methods. However, other sources of uncertainties are not (di-
rectly) sampled (e.g. spatial distribution, temporal extent,
seasonality effects and climate response Anchukaitis and
Smerdon, 2022). It is, for instance, important to remember
that the spatial distribution is strongly biased towards the
mid-latitude of the NH and that the maximum number of 210
records quickly decreases to values below 30 prior to the year
800 CE (Anchukaitis and Smerdon, 2022). The CFR methods
that are used to extend the spatially and temporally limited
point data to a fully global coverage for the past 2000 years
thus become increasingly important going further back in
time.

Clim. Past, 18, 2523-2544, 2022
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2.3 CMIP5 last millennium simulations

For further comparison we also include results from three
randomly selected single-member CMIPS last millennium
simulations (MRI-CGCM3, GISS-E2-R and MIROCS) and
the 13 members of the last millennium ensemble with CESM
(Otto-Bliesner et al., 2016). Including these CMIPS sim-
ulations allows us to put the results of the i(LOVECLIM
perturbed-parameter ensemble and the PAGES-2k recon-
structions in perspective.

2.4 Observational data sets

Three out of six CFR methods use the observational temper-
ature data set HadCRUT4-GraphEM, a data set that is based
on HadCRUT4 (Morice et al., 2012) but that was infilled us-
ing the GraphEM method to obtain a complete global cov-
erage over the calibration period over the period 1850-2000
with a resolution of 5° x 5° (Neukom et al., 2019). For fur-
ther comparison of our results with observations, we used the
ERAS observational data set (Copernicus Climate Change
Service, 2017), covering the period 1979 to 2019. To remove
the anthropogenic global warming signal, the time series are
detrended using a second-order polynomial fit. Note that the
obtained results are not sensitive to the exact definition of the
observational period.

2.5 Data processing

On all temperature time series presented here, a Butterworth
filter was applied that effectively removes all variability on
timescales smaller than 50 years. We tested the impact on
our results of the window size of the Butterworth filter and
found that our findings are robust at least within a range of
20-100 years (not shown). Leads and lags at multi-decadal
timescales are expected between the response of tempera-
tures at a given location and either temperatures at another
location or with the AMOC. We investigate the importance
of lead—lag relationships for the resulting correlation factors
by allowing leads and lags of a maximum of 100 years and
thus finding the highest possible correlation. These results
will be referred to as “lagged” in the remainder of the paper,
while “non-lagged” refers to a default lag of zero years. This
calculation is generally done per continental-scale region, ex-
cept in Fig. 3 where it is done for all grid cells. Our definition
of the continental-scale regions is shown in Fig. Al.

3 Results

The iILOVECLIM perturbed-parameter ensemble of past 2
millennia simulations allows us to investigate the effect of the
amount of ocean-driven internal climate variability on both
continental-scale temperature variability and spatial temper-
ature covariance. In the following the results for these two
aspects will be presented together with a comparison with
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the results for CMIP5 last millennium simulations, PAGES-
2k temperature reconstructions and observational data sets.

3.1 Temperature variability

The iLOVECLIM ensemble shows a wide range of tem-
perature evolutions for the eight continental-scale regions
(Fig. 1). Substantial differences between the ensemble mem-
bers are simulated for North America, the Arctic, Asia and
Europe. For those regions, the amount of variability varies
up to a factor of 3 over the ensemble, showing the large
impact of AMOC variability on continental-scale tempera-
ture variability in the NH. For South America, the Antarctic,
Africa and Australasia, the amount of temperature variability
is largely unchanged.

Overall, the amount of continental-scale temperature vari-
ability in the {LOVECLIM ensemble and the range found
over all ensemble members compares favourably with the
results of the selected CMIPS5 large millennium simulations
(Fig. 1). This is especially true for Antarctica, North Amer-
ica, Asia and Europe. For some regions, iLOVECLIM un-
derestimates variability (South America, Australasia and to a
lesser extent Africa), while for the Arctic ILOVECLIM over-
estimates variability.

When comparing the simulated results with the different
CFR-based reconstructions of continental-scale temperature
variability (including the original PAGES2013 reconstruc-
tions; Fig. 1), a complex picture emerges. The range of vari-
ability in both the i[LOVECLIM and CMIP5 model results is
in agreement with the reconstructions for some continental-
scale regions (Antarctica, South America, North America,
Asia and to some degree also Europe and Africa), while in
others either the ILOVECLIM (Australasia) or the CMIP5
(Arctic) are in better agreement.

The importance of the AMOC changes in driving tem-
peratures as simulated with /LOVECLIM differs largely
per continental-scale region. We find that for Antarctic,
South America and Australasia, the correlation between
continental-scale temperature time series and AMOC time
series is low to modest, ranging from 0.1 to 0.5 over the
ensemble (Fig. 2). For the other regions the temperature—
AMOC correlation is higher and ranges from 0.5 up to 0.9.
Moreover, it seems that for all continental-scale regions, en-
semble members with little AMOC variability (Fig. 3) tend
to have smaller temperature—AMOC correlations, and those
with higher AMOC variability tend to show higher correla-
tions. However, the relationship is far from straightforward,
and this will become more evident in the following section
when we look at the corresponding spatial temperature co-
variance structure.

https://doi.org/10.5194/cp-18-2523-2022
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Figure 1. Temperature variability (standard deviation in K) for different continental regions. Shown are the nine {LOVECLIM ensemble
members (left), results for the CMIP5 simulations (middle), ensemble means for the six different CFR-based results from the PAGES-2k
data set (right; Neukom et al., 2019) and the temperature variability based on the original PAGES-2k time series (Ahmed et al., 2013) for the
continental-scale regions for which this data are available. For North America, both the pollen-based and tree-based results are shown. For
the CESM results we show the mean of the standard deviation over the ensemble. Note the different y axes. A 50-year Butterworth filter was
applied to all results except for the original PAGES-2k time series, which are 30-year averages.
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Figure 2. Correlation of continentally averaged temperature time series with AMOC evolution in the {LOVECLIM ensemble. The different
experiments are shown in different colours, and the amount of AMOC variability (Sv) in the different experiments is shown by the marker
size. These results are lagged correlations per continental time series.
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Figure 3. For the different ensemble members, the correlation factors (left-hand maps) between grid-based temperature time series and the
AMOC anomalies (maximum overturning stream function in the North Atlantic below 500 m) are shown. These are lagged correlations on
a grid cell basis. Also shown are the time series of the AMOC (right-hand line plots with units in Sv) with the AMOC standard deviation

shown in the top left.

3.2 Spatial temperature covariance
Inter-continental temperature correlations

The amount and characteristics of AMOC variability in a
simulation not only impacts temperature variability on a site-
by-site basis but also strongly shapes the spatial tempera-
ture covariance structure. The different AMOC time series
(Fig. 3) show multi-decadal to multi-centennial AMOC vari-
ability in all simulations. However, the magnitude ranges
from under 3 Sv in experiment 1 to up to 10Sv in experi-
ment 7. Moreover, these results show that both the ampli-
tude of the AMOC variations important and the dominant fre-
quency are important. For instance, in ensemble members 3
and 6, we find strong but short-lived variations in the AMOC
that only correlate with temperature variations in the northern
North Atlantic. In contrast, longer-lived AMOC variations as
found in, for instance, ensemble members 2, 4 and 7, impact
temperatures throughout the Northern Hemisphere. An in-
depth discussion on the underlying mechanisms is not within
the scope of this paper, but various AMOC modes have
been described previously for the [LOVECLIM model (e.g.
Friedrich et al., 2010; Goosse and Renssen, 2004; Kessler et
al., 2020; Kim et al., 2021).

Because of the differences in the temperature fingerprint
of the AMOC variations between the ensemble members, we
also find differences in the way inter-continental temperature
correlations are affected. For a total of 7 out of all 28 possi-
ble temperature correlations between our continental regions,

Clim. Past, 18, 2523—-2544, 2022

we find a significant (p < 0.05) relationship with the amount
of AMOC variability (Fig. 4), encompassing combinations
of all continental-scale regions except Antarctica and South
America. We note that there can be two different reasons for
anon-significant relationship between AMOC variability and
a given inter-continental temperature correlation, namely be-
cause both continents are not sufficiently affected by AMOC
variability or because both continents are always strongly
correlated to AMOC variability, regardless of whether this
AMOC variability is strong or weak. We further note that all
significant relationships are positive relationships, meaning
that an increase in AMOC variability leads to a higher de-
gree of spatial coherency between continental-scale regions.
Given that the impact of AMOC variability is mostly limited
to the Northern Hemisphere (Fig. 3), one could expect inter-
continental temperature correlations between continents on
both hemispheres to decrease with stronger AMOC variabil-
ity (a negative slope in Fig. 4); however, we do not find any
such relationships (neither significant nor non-significant).
Combining all inter-continental relationships creates an
overview of the degree to which the temperature evo-
lutions for the different continental-scale regions are re-
lated to one another (Fig. 5, constructed following the ap-
proach of PAGES 2k-PMIP3 group, 2015). Overall we find
that the characteristics of AMOC-induced temperature vari-
ability impacts the inter-continental temperature covariance
structure. We use two members of the full [LOVECLIM
perturbed-parameter ensemble to illustrate the range of pos-
sible solutions, while the results for all nine members of

https://doi.org/10.5194/cp-18-2523-2022
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Figure 5. Inter-continental temperature correlations for

iLOVECLIM ensemble members 1 and 2 and for the CMIP5
last millennium simulations. For the CESM results ensemble
mean values were first calculated per grid cell before calculat-
ing the inter-continental correlations. The {LOVECLIM results
shown here are lagged correlations. See Fig. A2 for the results
of all /[LOVECLIM ensemble members, and see Fig. A3 for the
non-lagged correlations.

the I[LOVECLIM ensemble can be found in Fig. A2. Exam-
ples of clear changes in intercontinental correlations are be-
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tween the Arctic and Africa, Africa and Europe, and Asia
and North America. For some other regions, the correlations
remain mostly low (Antarctic, South America and Australa-
sia), while between other regions the correlations are always
relatively high (North America with Europe; North Amer-
ica with the Arctic; and between Europe, Africa, and Asia).
Whether or not we optimize the correlations by considering
possible lead—lag relationships does not lead to large changes
(compare Figs. A2 and A3). The four CMIP5 last millen-
nium simulations that are used for comparison in our analysis
highlight that for different climate models the strength of the
inter-continental temperature correlations also ranges from
low overall (MRI-CGCM3) to high overall (MIROC-ESM).
Taking the CMIP5 simulations into consideration it appears
that the inter-continental temperature correlations that are al-
ways low or relatively high over the [LOVECLIM ensemble
are not a robust feature of climate models in general.

The inter-continental temperature correlations based on
the temperature reconstructions yields widely varying results
for the different CFR methods (Fig. 6), a range that is not
unlike the results obtained for the climate models. The CFR
methods that use climate model input to generate the field re-
constructions (see method section) generally show high inter-
continental temperature correlations (AM and DA), while the
CFR methods that use observational constraints to gener-
ate field reconstructions show relatively low inter-continental
temperature correlations (CCA, PCR and GraphEM). The
CFR method that is used to extend the point data to a full
global coverage thus has a large impact on the resulting
spatio-temporal temperature covariance structure. Not apply-
ing a CFR method but using the original PAGES2013 tem-
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Figure 6. Reconstruction-based inter-regional temperature corre-
lations. Shown are the PAGES-2k results for the individual CFR
methods (Neukom et al., 2019), two different ways to calculate
the multi-method and multi-ensemble mean, and the results based
on the original PAGES-2k temperature time series (Ahmed et al.,
2013). The top six panels show the results in which individual inter-
regional temperature correlations are calculated for every ensemble
member, after which the results are averaged for a single CFR. The
multi-method mean of those results is shown on the left panel in
the third row. Another method is to calculate ensemble mean tem-
perature time series for every grid cell, then regional averages and
finally inter-regional temperature correlations. The corresponding
multi-method mean is shown here in the right panel in the third row,
while the corresponding results for the individual CFRs are shown
in Fig. A4. Note that these results are non-lagged correlations and
that partially different continental-scale regions are shown for the
results based on the original PAGES-2k temperature time series.

perature time series for the different continental-scale regions
(Fig. 6) results in lower correlations than those found in the
results based on any model or CFR.

The CFRs include an estimate of the uncertainty by means
of an 100-member ensemble (Neukom et al., 2019). We
find that the inter-continental correlations are impacted by
how we take this uncertainty into account. We show this
by comparing two different ways to compute the multi-
method-mean (Fig. 6). One can either calculate the inter-
continental correlation for every individual ensemble mem-
ber before calculating the ensemble mean inter-continental
correlations (Fig. 6) or calculate the ensemble mean tem-
perature time series per grid cell and based on that calculate
the inter-continental correlations (Fig. A4). In the latter ap-

Clim. Past, 18, 2523—-2544, 2022

P. Bakker et al.: Climate variability in the past 2000 years

proach one averages out some variability before calculating
the inter-continental correlations, leading to overall higher
multi-method mean results.

The low inter-continental correlations between the original
PAGES2013 temperature time series possibly result from the
subsampling of a small number of sites per continental-scale
region. We test this using the {LOVECLIM ensemble by ran-
domly picking a small number of sites per region and calcu-
late the correlations based on that. We find that depending on
the sites that are randomly picked, the inter-continental cor-
relations are at best similar to those based on the full-region
data but can also be much lower (Fig. AS). The lower-end
results for some perturbed-parameter ensemble members ap-
proach the original PAGES2013-based inter-continental cor-
relations (Fig. 6).

Land—sea contrast in temperature variability

Another way to compare reconstructed and simulated spatio-
temporal temperature correlations is using the differences in
temperature variability between land and ocean at a given
latitude. Before studying simulated and reconstructed long-
term (> 50 years) land—sea temperature variability ratios
over the past 2 millennia, we first investigate how well cli-
mate models and the PAGES-based CFR compare with ob-
servational data sets for the period 1850-2000 (Fig. 7). Note
that in contrast with all other analyses presented in this pa-
per, for this comparison with more recent observations the
time series are too short to use 50-year smoothed data, and
instead we use annual mean temperature time series. How-
ever, the anthropogenic global warming signal is removed
by detrending the time series using a second-order polyno-
mial fit. The [LOVECLIM ensemble shows land—sea tem-
perature variability ratios close to 1 for nearly all latitudes.
The exceptions are the high latitudes in both hemispheres
at which ocean temperature variability dominates and the
NH mid-latitudes where continental temperature variabil-
ity is larger. The spread over the iLOVECLIM perturbed-
parameter ensemble is relatively small. For the mid-to-high
latitudes of both hemispheres the CMIPS simulations and the
iLOVECLIM are in reasonable agreement; however, for the
latitudes roughly between 40 and 10° in both hemispheres,
the CMIP5 simulations suggest much more temperature vari-
ability over land than over the oceans, with values up to a ra-
tio of 2 to 3. The two observational data sets that we show
here for validation, ERAS and HadCrut4_GraphEM, gen-
erally show land—sea temperature variability ratios close to
unity. This is not unlike the {LOVECLIM ensemble, but quite
different from the CMIPS5 results for the latitudes between 40
and 10°. MIROC-ESM differs from the other models and the
observational data sets, with land—sea temperature variability
ratio values of around 2 in the low latitudes. It is notable that
both observational data sets are also rather different in many
places. One possible cause of these differences could be the
fact that both observational products cover a different period
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Figure 7. Zonally averaged contrast in land—ocean temperature
variability as a function of latitude over the observational period
(> 1850). Atmospheric 2 m temperatures over the oceans are used
to calculate ocean temperature variability. Results are shown for the
nine-member perturbed-parameter /LOVECLIM ensemble (num-
bers 1 to 9 in a), for four different CMIP5 last millennium simu-
lations (a) and the results for the six different CFR methods (b).
For comparison, in both panels results are shown for the ERAS and
HadCrut4 observational data sets. Note that the ERAS data set cov-
ers only the period 1979 to 2019. Shading shows the 1o range of all
CESM and CFR ensemble members in panels (a) and (b) respec-
tively. Note that the y-axis scale in the right-hand panel is non-linear
with, for instance, 1/1.5 or 1/2, meaning that there is 50 % or 100 %
more variability over the ocean than there is over the continents.

in time (1850-2000 versus 1979-2019). However, we find
that this has only a minor impact (Fig. A6). The cause for the
differences should thus be sought in underlying methodolog-
ical differences of both observational products.

The PAGES-2k CFR methods also show many latitudes
with land—sea temperature variability ratios close to unity
(Fig. 7), in line with the observations and the {LOVECLIM
ensemble. However, there is a substantial spread amongst
the different CFR methods and there is a large bias in the
latitude band from 30 to 70° N in which the CFR methods
show substantially more temperature variability over the con-
tinents than over the oceans. Even though both models and
most CFR methods are constructed using observational in-
formation, this validation shows that this does not guarantee
a good agreement for higher-order metrics like land—sea tem-
perature variability ratios.
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Figure 8. Simulated (a) and reconstructed (b) zonally averaged
contrast in land—ocean temperature variability as a function of lat-
itude. Atmospheric 2m temperatures over the oceans are used to
calculate simulated ocean temperature variability. In (a) results are
shown for the nine-member perturbed-parameter iLOVECLIM en-
semble (numbers) and for four different CMIP5 simulations for the
last 1000 years. Grey shading shows the 1o range of all CESM en-
semble members. Panel (b) shows the 100-member 1o range for all
six different CFR methods. Note that the y-axis scale is non-linear,
with for instance 1/1.5 or 1/2, meaning that there is 50 % or 100 %
more variability over the ocean than there is over the continents.
The corresponding temperature variability over the continents and
the oceans can be found in Figs. A7 (model results) and A9 (recon-
structions). The corresponding figure showing the simulated results
when using SSTs instead of atmospheric 2 m temperatures over the
ocean can be found in Fig. AS8.

Now we turn again to variability on longer, multi-decadal
to multi-centennial, timescales (Fig. 8). The iLOVECLIM
ensemble shows results for the past 2000 years that are
largely comparable with the observational period, except for
much smaller land—sea temperature variability ratios for the
mid-to-high latitudes of the NH. In that region, the model
simulates a large impact of the amount of AMOC variabil-
ity, resulting in ratios that range between 50 % more ocean
variability than land variability and up to 250 % more ocean
variability. The different CMIP5 last millennium simulations
are overall in good agreement with each other, and they show
results that are in line with CMIPS results for the observa-
tional period. The main difference being, in line with the
iLOVECLIM ensemble, smaller ratios for the high latitudes
of both hemispheres, indicating increased ocean temperature
variability relative to land variability on these timescales.

The PAGES CFR-based land—sea temperature variability
ratios for the past 2 millennia are again largely comparable
with the CFR-based results for the observational period. The
main difference is higher ratios in the DA method for the
mid-latitudes of the SH and higher ratios in both the DA-
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method and the GraphEM method for the mid-latitudes of
the NH, meaning that in both cases land temperature vari-
ability has increased relative to ocean variability. Comparing
Figs. A7 and A9, it appears that the PAGES CFR-based land—
sea temperature variability ratios for the past 2 millennia are
biased high for the mid-latitudes of the NH because they
underestimate temperature variability over the mid-latitude
oceans.

Because of the similarities for all data sets between the
results for the observational period and the past 2 millen-
nia, we still face a large discrepancy between the differ-
ent model results, between models and the reconstructions,
and between the different reconstruction-based CFR meth-
ods (Fig. 8). The main differences are ratios larger than unity
for the CMIPS models at all latitudes equatorward of 40°,
where the ILOVECLIM ensemble and the PAGES-2k results
suggest values close to unity, except for values smaller than
one in the reconstruction close to the Equator. For the mid-
to-high latitudes of the SH the models agree quite well with
each other, with more variability in the ocean than over land,
while the reconstructed ratios are close to unity. The main
discrepancy is found in the mid-latitudes of the NH. There
the iILOVECLIM ensemble shows much more variability in
the ocean (which increases with stronger AMOC variability),
the CMIPS results suggest land—sea temperature variability
ratios close to or just below unity, and the CFR-based results
show much stronger variability over the continents than over
the oceans.

It is important to note that these land—sea temperature vari-
ability ratios only give information on relative differences
between temperature variability over land and oceans. If we
look at the individual terms, we see, for instance, that the
iILOVECLIM ensemble simulates more variability over both
the continents and the ocean for the mid-to-high latitudes of
the NH compared to the CMIP5 simulations (Fig. A7). On
the other hand, the i(LOVECLIM ensemble simulates too lit-
tle variability over both the tropical oceans and continents
(Fig. A7), leading to land—sea temperature variability ratios
in the tropics that are very comparable to those simulated by
the CMIPS5 models (close to unity) but for the wrong reasons.
The lack of tropical climate variability in iLOVECLIM is a
known bias in the model (Goosse et al., 2010).

4 Discussion and conclusion

We have presented a perturbed-parameter ensemble of the
iILOVECLIM Earth system model that is designed in or-
der to have a large spread in simulated AMOC behaviour
in terms of magnitude and frequency of centennial AMOC
fluctuations. Combined with the PAGES-2k temperature re-
constructions (Neukom et al., 2019) and a selected number
of CMIPS5 last millennium simulations, this allows us to dis-
cuss the potential importance of AMOC variability in driv-
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ing centennial-scale temporal and spatio-temporal tempera-
ture variability over the past 2 millennia.

In the .LOVECLIM ensemble, the AMOC plays an im-
portant role in driving centennial temporal temperature vari-
ability; however, the spatial extent of this impact differs
strongly, from a regional northern North Atlantic impact to a
hemisphere-wide impact. Previous work has also shown cli-
mate models in which the AMOC is an important driver of
centennial climate variability (e.g. Knight et al., 2005).

Previous studies looking at temperature variability in the
time domain have suggested that climate models simulate
too little variability on multi-decadal and longer timescales
compared to proxy-based reconstructions (Laepple and Huy-
bers, 2014; PAGES 2k-PMIP3 group, 2015). Comparing
the iILOVECLIM ensemble and CMIP5 simulations for the
past 2 millennia with the PAGES-2k continental-scale tem-
perature reconstructions, we do not find such a model-
data mismatch on the multi-decadal to multi-centennial
timescales. Given the spread in both reconstructed and sim-
ulated continental-scale temperature variability, we find that
model and data results either overlap or that the models sug-
gest slightly more variability. From our results, and given the
large uncertainty in reconstructed continental-scale tempera-
ture variability, it is not clear if increased AMOC variability
would lead to a better model-data comparison in terms of
continental-scale temporal temperature variability.

Increasing the strength of internal modes of climate vari-
ability like those related to the AMOC, not only increases
temperature variability at a given site but can also change
the temperature correlations between different continental-
scale regions. We find that for 7 out of the total of 28 possi-
ble inter-continental temperature correlations there is a pos-
itive correlation with the magnitude of AMOC variability.
None of the inter-continental temperature correlations show
a significantly negative correlation with the magnitude of
AMOC variability. This happens regardless of whether we
correct for possible lead—lag relationships within the sys-
tem. This implies that, in line with previous suggestions
(PAGES 2k-PMIP3 group, 2015), enhanced internal climate
variability, in our case driven by the AMOC, leads to an
enhancement in the spatio-temporal temperature covariance
by increasing the strength of climatic teleconnections be-
tween regions. Previous studies have suggested that mod-
els simulate too high inter-continental temperature correla-
tions (PAGES 2k-PMIP3 group, 2015), and our results sug-
gest that enhanced AMOC-related climate variability will
not resolve such a model-data discrepancy. Mechanisms of
centennial climate variability that have a more local impact
could possibly lead to a decrease in the simulated spatio-
temporal temperature covariance structure or a mixture of
various large-scale modes of variability. However, compar-
ing the inter-continental temperature correlations based on
the iLOVECLIM ensemble, the CMIP5 models, the differ-
ent CFRs and the original PAGES2013 reconstructions, we
conclude that the spread in the results based on both mod-
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els and reconstructions is so large that we cannot confirm the
previously suggested model-data mismatch in terms of inter-
continental temperature correlations.

Our comparison of reconstructed and simulated land—sea
ratios in terms of temperature variability revealed large dif-
ferences: between the [LOVECLIM results and the CMIP5
results, between the various CMIP5 simulations, and be-
tween the CFRs. As a result, we conclude that available tem-
perature reconstructions of the past 2 millennia are very un-
certain and do currently not provide constraints on model re-
sults. Part of the reason why the reconstructed land—sea ra-
tios are so uncertain is possibly because they are based on
continental temperature proxies and not directly on sea sur-
face temperature (SST) proxies. As a result, the CFR meth-
ods play a large role extrapolating continental atmospheric
temperature onto neighbouring ocean regions. Acknowledg-
ing that the temperature reconstructions reflect atmospheric
temperatures over the ocean rather than SSTs did improve the
model—data comparison in our analysis, but large biases re-
main (Figs. A7 and A8). One can also compare the simulated
SSTs and the CFR-based “ocean temperatures” with a data
set of actual SST reconstructions over the past 2 millennia
(McGregor et al., 2015). However, we find that the amount of
reconstructed local SST variability (McGregor et al., 2015)
is roughly an order of magnitude larger than the variability
in iLOVECLIM, CMIPS or the CFR-based temperature es-
timates (Figs. A10 and A11). Note that the SST reconstruc-
tions are a collection of individual records (not a CFR), so
this comparison is done on a site-by-site basis. In fact, com-
pared to the large discrepancy with the SST reconstructions,
the [LOVECLIM and the CFR-based temperature estimates
are in much better agreement with each other (Fig. A12). The
mismatch we find with the SST reconstructions of McGregor
et al. (2015) seems relevant because some previous indica-
tions of model-data mismatches in terms of long-term tem-
perature variability were based on similar SST reconstruc-
tions (Laepple and Huybers, 2014). More in-depth studies
are need to understand and resolve, on the one hand, the
differences between reconstructed point-based temperature
variability and, on the other hand, temperature variability in
coarse-resolution products (2-5° in this study), like model
results and CFR-based reconstructions. Our findings suggest
that increasing AMOC-related climate variability does not
significantly improve the model-data comparison of multi-
decadal to multi-centennial local ocean temperature variabil-

ity.
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CFR-based reconstructions are in reasonable agreement
with each other for first-order variables like continental-
scale temperature time series and variability. However, for
higher-order metrics like inter-continental temperature cor-
relations or land—sea contrast, the differences between the
various CFR methods is substantially increased. The uncer-
tainty in these CFR-based higher-order metrics is even larger
when taking into account the uncertainty within the individ-
ual CFR methods given by the 100 ensemble members (com-
pare, for instance, the inter-continental temperature correla-
tions in Figs. A3 and 6). Neukom et al. (2019) suggest us-
ing only the multi-method mean over the six CFR methods,
but by doing so it would remain unclear how large the un-
certainty of the resulting spatio-temporal temperature recon-
structions is, hampering the model-data comparison.

Despite the fact that over 500 reconstructed temperature
time series cover the past 2 millennia with relatively small
age uncertainties (Ahmed et al., 2013; PAGES 2k-PMIP3
group, 2015), uncertainties in the resulting CFRs remain
relatively large. This, in combination with the relatively
small magnitude multi-decadal to multi-centennial temper-
ature variations on the continental scale (for most regions
the standard deviation is below 0.2 K), leads to unfavourable
signal-to-noise ratios and continuing difficulty to constrain
climate model simulations using temperature reconstructions
of the past 2 millennia.

AMOC variability is often thought to be a prominent
player in driving multi-decadal to multi-centennial climate
change. Indeed, our iLOVECLIM perturbed-parameter en-
semble shows a large impact of AMOC variability on
both continental-scale temperature variability and the spatio-
temporal temperature correlations between the various con-
tinents. However, comparing the {LOVECLIM results with
the PAGES-2k continental-scale temperature reconstructions
and a selection of CMIP5 last millennium simulations, re-
veals that uncertainties in both model results and tempera-
ture reconstructions hamper our ability to determine the im-
portance of AMOC variability for the climatic evolution over
the past 2 millennia from such large-scale diagnostics as the
one applied here. It thus remains unclear which magnitude
of AMOC variability would lead to a better agreement be-
tween simulated and reconstructed temperatures for the past
2 millennia.
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Figure A1. Definition of the continental-scale regions that are used in the analysis. Shown here is the {LOVECLIM grid.
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Figure A2. Inter-continental temperature correlations for all ensemble members. Panel (a) is the default simulation. Also indicated per
experiment is the magnitude of AMOC variability (standard deviation in Sv) using the size of the red dot in the upper-right corner. These
values are lagged correlations. See Fig. A3 for the results of the non-lagged correlations.
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Figure A3. Inter-continental temperature correlations for all {LOVECLIM ensemble members.

Panel (a) is the default simulation. Also

indicated per experiment is the magnitude of AMOC variability (standard deviation in Sv) using the size of the red dot in the upper-right

corner. In contrast to Fig. 5, the values shown here are non-lagged correlations.
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Figure A4. PAGES-2k (Neukom et al., 2019) inter-regional temperature correlations for the individual CFR methods. In contrast to Fig. 6,
ensemble mean temperature time series per grid cell are used here as the basis to calculate inter-regional temperature correlations for the
different CFRs. The multi-method mean is shown in (g). Note that these results are non-lagged correlations.
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Figure A5. Inter-continental temperature correlations for all [LOVECLIM ensemble members based on a subsampling of all grid cells.
We randomly pick 10 locations per continental region on which we base the continental-scale average temperature evolution. We do this a
total of 30 times and here show the resulting maximum (lower-left corner) and minimum (upper-right corner) inter-continental temperature
correlations. Panel (a) is the default simulation. The values shown here are lagged correlations.
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Figure A6. Zonally averaged contrast in observed land—ocean temperature variability as a function of latitude for different observational
periods. The full observational period for HadCrut4 (red) is 1850-2013 and is 1979-2019 for ERAS (dark blue). Shown for comparison are
the result for HadCrut4 (orange) and ERAS (light blue) when only the period of overlap is used in the calculations (1979-2013). Note that

the y-axis scale in the right-hand panel is non-linear, with for instance 1/1.5 or 1/2, meaning that there is 50 % or 100 % more variability
over the ocean than there is over the continents.
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Figure A7. Simulated zonally averaged contrast in land—ocean temperature variability as a function of latitude. Depicted are continental
variability (a), ocean variability (b) and the ratio of continental over ocean variability (¢). Atmospheric 2 m temperatures over the oceans
are used to calculate simulated ocean temperature variability. Results are shown for the nine-member perturbed-parameter {LOVECLIM
ensemble (colours) and for three different CMIP5 simulations for the last 1000 years. Grey shading shows the 1o range of all CESM
ensemble members. Note that the y-axis scale in (¢) is non-linear, with for instance 1/1.5 or 1/2, meaning that there is 50 % or 100 % more
variability over the ocean than there is over the continents.
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Figure A8. Simulated zonally averaged contrast in land—ocean temperature variability as a function of latitude. Depicted are continental
variability (a), ocean variability (b) and the ratio of continental over ocean variability (c¢). SSTs are used to calculate ocean temperature
variability. Results are shown for the nine-member perturbed-parameter [LOVECLIM ensemble (colours) and for three different CMIP5
simulations for the last 1000 years. Grey shading shows the 1o range of all CESM ensemble members. Note that the y-axis scale in (c)
is non-linear, with for instance 1/1.5 or 1/2, meaning that there is 50 % or 100 % more variability over the ocean than there is over the

continents.
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Figure A9. Reconstructed zonally averaged contrast in land—ocean temperature variability as a function of latitude. Depicted are continental
variability (a), ocean variability (b) and the ratio of continental over ocean variability (c). Results show for all six different CFR methods the
100-member 1o range. Note that the y-axis scale is non-linear, with for instance 1/1.5 or 1/2, meaning that there is 50 % or 100 % more
variability over the ocean than there is over the continents.
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Figure A10. Local Ocean2K (McGregor et al., 2015) SST variability versus PAGES-2k data (Neukom et al., 2019) temperature variability
at the same sites for the different CFR methods.

ILOVECLIM vs Ocean2K temperature variability

Ocean2K temp SD

Ocean2K temp SD

1 2 3
n L5 0 L5 0 1549
wy oW w
(=8 (=8 (=8
£ 1.0 £ 1.0 £ 1.0
] 3z 3z
s . = o = g5
2 0.5 . . 2 0.5 L . 3 0.5 .

% .
N Tl . 2 ol ol per ‘ N e e L .
g 0014 : . ; g 0.0 : . ; g 0014 : ; ;
= 0.0 0.5 1.0 15 = 0.0 0.5 1.0 15 = 0.0 0.5 1.0 15
Ocean2K temp SD Ocean2K temp SD Ocean2K temp SD

4 5 6
a 15 o 15 a 15
wy w wy
[=N o o
£ 101 E 101 E 101
2 2 2
= i = B = i
3 0.5 L . = 0.5 3 0.5 .
% 0ol Ea e - B % ool —Temae . . % ol —Hadtee o .
= 0.0 0.5 1.0 15 = 0.0 05 1.0 15 = 0.0 0.5 1.0 15

OceanzZK temp sSD OceanzK temp sSD Oceanzk temp sSD

7 8 9
a 154 a 151 o 15
@ @ @
o o (=8
E 1.0 £ 107 £ 107
=] =1 =1
= = =
Z 051 Zos5{ . < Z 05+
[w] . ] ”»n ] [w] " . .
%DO- PFal o® e ¢ %00_ L & P * %DU- Boap aor s .

. T T T T . T T T T N T T T T

= 0.0 0.5 1.0 15 = 0.0 0.5 1.0 15 = 0.0 0.5 1.0 15

Ocean2K temp SD

Figure A11. Local Ocean2K (McGregor et al., 2015) SST variability versus simulated i{LOVECLIM SST variability at the same sites for the
iLOVECLIM ensemble members.
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Figure A12. Local temperature variability in the PAGES-2k data set (Neukom et al., 2019) versus simulated {LOVECLIM SST variability
at Ocean2K locations. For the PAGES-2k data set the six different CFR methods are shown in the individual panels. The vertical bars in the
panels shows the range of simulated /[LOVECLIM variability over all ensemble members.

Table A1. For the individual experiments of the perturbed-parameter ensemble of {LOVECLIM, the values of the 10 perturbed parameters
are given. Note that experiment 1 is the default. More information on the parameters is given in Table A2.

Exp. corAC corAS  corAN ampwir expir relhmax evfac albcoef albice avkb
1 —-0.25 —-0.085 —0.085 1.0 0.4 0.83 1.0 0.95 044 1.50x 107
2 —-0.1 —-0.136 —0.085 1.0 0.4 0.83 1.0 0.95 044 1.50x 107
3 —0.1 —0.136 —0.085 051 052 0.68  0.98 0.92 041 8.53x107°
4 —-0.1 -0.136 —0.085 085 0.22 08 055 0.98 043 853x107°
5 —-0.1 —-0.136 —0.085 0.77  0.29 082  0.56 0.92 0.38 1.8x 107
6 —0.25 —0.11 —0.11 051  0.52 0.68  0.98 0.92 041 8.53x107°
7 —-0.25 —0.09 —0.09 059 0.24 0.86  0.97 1.03 041 1.01x107
8 —0.25 —0.04 —0.04 0.74 0.32 0.8 094 1 042 3.97x10°°
9 —0.25 —0.09 —0.09 055 041 0.88  0.51 0.94 04 1.1x 1076
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Table A2. Meaning of the 10 parameters that are in used to construct the perturbed-parameter ensemble. Also given are the minimum and

P. Bakker et al.: Climate variability in the past 2000 years

maximum values that are used in the LHS procedure.

Parameter min max  Description

corAC - —  Precipitation correction in the Arctic (Sv). Water moved from the Arctic to the Pacific.
Note: not part of the LHS, fixed values used.

corAS —0.1275 0  Precipitation corrections in the South Atlantic (Sv). Water moved from the South
Atlantic to the Pacific.
Note: in experiments 2—5 this parameter is not part of the LHS, and instead fixed
values are used.

corAN —0.1275 0  Precipitation corrections in the North Atlantic (Sv). Water moved from the North
Atlantic to the Pacific.
Note: in experiments 2-5 this parameter is not part of the LHS, and instead fixed
values are used.

ampwir 0.5 1.5  Scaling coefficient for the longwave radiation scheme

expir 0.2 0.6  Exponent for the longwave radiation scheme

relhmax 0.5 0.9  Precipitation also occurs if the total precipitable water below 500 hPa is above this
relevant threshold.

evfac 0.5 1 Maximum evaporation factor over land.

albcoef 0.9 1.1 Multiplied factor for the albedo of the ocean in iLOVECLIM

albice 0.38 0.46  Albedo of sea ice and snow.

avkb 1x1070 25x107 Scaling factor for the minimum vertical diffusion coefficient in the ocean at all depths
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