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Introduction

Statistical methods of data analysis not only provide scientists with tools for hypothesis testing, estimation, classification, and prediction, but also give ways to quantify the uncertainty in those results. However, their uncertainty quantification is never complete, only providing lower bounds on the actual uncertainty involved [START_REF] Cox | Comment on 'Statistical modeling: The two cultures[END_REF]. That holds not only for traditional frequentist models but also for state-of-the-art Bayesian models and algorithmic models such as deep neural networks.

Sources of uncertainty that models leave unquantified include these:

• Parametric models rely on uncertain assumptions that cannot be fully checked. Simplistic hypothesis tests of assumptions are problematic since violations will not lead to rejected assumptions if the data set is too small, and yet even negligible deviations from the assumptions will be detected if the data set is big enough. Whether the assumptions are true is not what is directly important but rather how well the statistical models perform, and uncertainty about that is not quantified by the parametric models.

• Frequentist models generating p-values, confidence intervals, or predictive distributions provide probability statements only regarding hypothetical or future observations. As a result, they do not in themselves provide the epistemic probabilities about hypotheses or prediction intervals of scientific or practical interest, as has often been pointed out in the Bayesian literature. That can be remedied in part by converting their output to confidence distributions, which are probability distributions on the parameter space, or analogous distributions in the case of predictive problems [START_REF] Cox | Prediction intervals and empirical bayes confidence intervals[END_REF][START_REF] Shen | Prediction with confidence -a general framework for predictive inference[END_REF][START_REF] Tian | Methods to Compute Prediction Intervals: A Review and New Results[END_REF][START_REF] Vovk | Universal predictive systems[END_REF][START_REF] Xie | Homeostasis phenomenon in conformal prediction and predictive distribution functions[END_REF]. However, using them to make decisions maximizing expected utility [START_REF] Bickel | Confidence distributions and empirical Bayes posterior distributions unified as distributions of evidential support[END_REF] is highly controversial since uncertainty remains about whether the resulting distributions can be used the same way as Bayesian posterior distributions and posterior predictive distributions (Example 2).

• Bayesian models do not have that source of uncertainty since their posterior distributions and posterior predictive distributions are conditional on the data. However, their underlying prior distributions typically have considerable uncertainty that is not quantified by the posteriors, as is stressed by the extensive research on assessing the adequacy of Bayesian models [START_REF] García-Donato | Calibrating Bayes factor under prior predictive distributions[END_REF][START_REF] Evans | A limit result for the prior predictive applied to checking for prior-data conflict[END_REF][START_REF] Kruschke | Posterior predictive checks can and should be bayesian: Comment on gelman and shalizi, 'philosophy and the practice of bayesian statistics[END_REF][START_REF] Lau | New model diagnostics for spatiotemporal systems in epidemiology and ecology[END_REF]. Another source of unquantified uncertainty in the case of Bayesian model averaging is the extent to which their results are affected by the unrealistic assumption that exactly one Bayesian model in the average approximates the data-generating distribution (Example 3).

• Many neural networks and other algorithmic models used in machine learning can quantify 1 uncertainty in the form of classification distributions or other predictive distributions. However, the predictive distributions are not always calibrated to have guaranteed frequentist or Bayesian interpretations. Another source of unquantified uncertainty is that of the extent to which predictive distributions determined by a training data set may be successfully applied to make classifications or other predictions a new setting that has a somewhat different data-generating mechanism.

This paper addresses the problem of uncertainty left unquantified by algorithmic models and other statistical models in two complementary ways. First, a simple way to adjust reported probabilities for unquantified uncertainty is explained. Second, a way to reduce that unquantified uncertainty by adding statistical models is introduced.

Both remedies rest on the foundational concept of a statistical model that is more useful than other models, including a model representing ignorance. The context is crucial: a statistical model may be useful for achieving some goal such as adding a discovery to what counts as scientific knowledge, generating artificially intelligent predictions or robot movements, making a business decision, or deciding on a public policy. Those kinds of applications stand to benefit from fully quantified uncertainty, not merely lower bounds on uncertainty. It will be seen that the idea of a most useful model leads to very different methods than the usual idea of an approximately true model.

The cornerstone of the foundation is the definition of the proportion of uncertainty quantified by a model as the probability that it is more useful than the ignorance involved in not using a statistical model. That probability always falls short of 100%, for it can be wiser to admit ignorance than to rely too heavily on a misleading statistical model.

Example 1. Wanting to test whether two population means differ, you apply a two-sample t test.

Let p t stand for the resulting p-value. That does not fully quantify the uncertainty since there is doubt about the normality assumption made in the statistical model behind the test. On one hand, researchers in the area assume the type of data studied is approximately normal. On the other hand, knowing that is largely for convenience, you judge that 10% of the uncertainty is unquantified by the model, which means there is 90% probability that simply using p t without adjustments is more useful for scientific reporting than staying ignorant about whether the two means differ. Then the confidence interval that barely excludes the null hypothesis that there is 0 difference in means should have its level adjusted from (1 -p t ) × 100% to 90% of that. Equivalently, the p-value corrected for unquantified uncertainty is

p + t = 1 -(0.9) (1 -p t ) = 0.1 + 0.9 p t .
Since that is considerably larger than p t , you calculate p Wilcox , the p-value for the same data from the Wilcoxon signed-rank test. While it does not rely on the normality assumption, it is subject to the general criticisms of null hypothesis significance testing and its potential role in the inability to replicate many conclusions reported in the scientific literature [START_REF] Hughes | Psychology in Crisis[END_REF][START_REF] Hutson | Artificial intelligence faces reproducibility crisis[END_REF][START_REF] Seibold | Statisticians, roll up your sleeves! there's a crisis to be solved[END_REF][START_REF] Bausell | The Problem with Science: The Reproducibility Crisis and what to Do about it[END_REF]. For example, the test does not consider any prior information, and p-values even inverted p-values in the form confidence intervals do not in general correspond to Bayesian credible intervals [START_REF] Morey | The fallacy of placing confidence in confidence intervals[END_REF]. As a result, you judge that the statistical model behind p Wilcox quantifies about 97% of the uncertainty. The p-value corrected for its unquantified uncertainty of 3% is

p + Wilcox = 1 -(0.97) (1 -p Wilcox ) = 0.03 + 0.97 p Wilcox .
But p Wilcox itself may be too high since it is from a nonparametric model and since the data may not be too far from normal distributions. Reasoning that more models should mean less unquantified uncertainty, you combine the two p-values by an equally weighted mixture of their confidence distributions [START_REF] Bickel | Propagating uncertainty about molecular evolution models and prior distributions to phylogenetic trees[END_REF], which are posterior distributions that encode confidence intervals without relying on a prior distribution [START_REF] Singh | Confidence distribution (CD) -distribution estimator of a parameter[END_REF][START_REF] Bityukov | Confidence distributions in statistical inference[END_REF][START_REF] Nadarajah | Confidence distributions: A review[END_REF][START_REF] Xie | Confidence distribution, the frequentist distribution estimator of a parameter: A review[END_REF][START_REF] Schweder | Confidence, Likelihood, Probability: Statistical Inference with Confidence Distributions[END_REF]. That yields a mixture p-value of p mixture = (p t + p Wilcox ) /2.

Since your reasons for doubting each of the two models are very different, you judge that the mixture model would only be inadequate if both of the individual statistical are inadequate and that whether one model is inadequate is approximately independent of whether the other model is inadequate. Then the proportion of unquantified uncertainty for the mixture model is 10% × 3% = 0.003, and the mixture p-value corrected for that much unquantified uncertainty is

p + Wilcox = 1 -(0.997) (1 -p Wilcox ) = 0.003 + 0.997 p mixture ,
which is smaller than both p + t and p + Wilcox . That agrees with the intuition that incorporating the results of sufficiently different statistical models can quantify more of the uncertainty than any single model used alone.

The example has multiple take-home messages:

• Decision makers can correct reports of p-values and other probabilistic output of statistical software for unquantified uncertainty without re-analyzing the data. Since, as will be seen, the corrected probabilities are lower probabilities, various generalizations of maximum expected utility are available for optimal actions [START_REF] Troffaes | Decision making under uncertainty using imprecise probabilities[END_REF].

• Statisticians and scientists can reduce the unquantified uncertainty by adding statistical models and using a mixture of their confidence distributions, Bayesian posterior distributions, or predictive distributions.

-By implication, confidence intervals, credible intervals, and predictive intervals can also be performed by determining intervals that achieve 95% uncertainty-corrected probability, after applying the mixture in the case of multiple models. A user-friendly web app can assist with the calculations [START_REF] Bickel | Propagating uncertainty about molecular evolution models and prior distributions to phylogenetic trees[END_REF].

• The potential reduction of the uncertainty-corrected p-value as the number of models increases is relevant to recent discussion about modifying levels of statistical significance [START_REF] Benjamin | Redefine statistical significance[END_REF]. Perhaps the level should be less stringent if a wider range of models is used.

The basic concepts underlying this approach are defined in the next section. Then the next two sections construct the two proposed remedies on that foundation.

Preliminary definitions

For each sample, denoted by data, in a set X of possible samples of observations, an evidential support distribution is a probability distribution P (•; data) on a measure space (Ξ, F). Let U be a random variable or random element distributed according to P (•; data); in short, U ∼ P (•; data).

For most applications, the value of U is the value of a parameter of interest or the predicted value of a future observation, but it may also be a vector of such values. For each U ∈ F , the probability of the hypothesis or prediction that U ∈ U is then P (U; data). as the total evidential model, a set P of possible evidential models. For the observed data ∈ X , the set of evidential support distributions defined by P (data) = {P (•; data) : P ∈ P} is called the total evidential support distribution given (data, P), the total body of evidence. For any U ∈ F, the evidential sufficiency is the lower probability that quantifies the extent to which (data, P) constitutes enough evidence to conclude or predict that U ∈ U:

S P (U; data) = inf {P (U; data) : P ∈ P} .
While general, those definitions were originally applied to molecular evolution [8, Appendix A].

Consider the evidential model space, a finite set Ω of total evidential models that is ordered such that Ω has a unique member that is most useful for some purpose. Since which of the models is most useful is unknown, it is represented by a random model, specifically P Ω , of probability distribution pr (•; data) for any data ∈ X .

Let P (Ω,pr) denote the (Ω, pr)-induced total evidential model, the total evidential model having the (Ω, pr)-induced total evidential support distribution, that of P (Ω,pr) (data), the set of all mixture distributions of the form P∈Ω pr (P; data) P P for any data ∈ X , including a mixture distribution for every P P ∈ P for each P in the summation. For any U ∈ U, the evidential sufficiency S P (Ω,pr) (U; data) is called the (Ω, pr)-induced evidential sufficiency. As will be seen in Example 3, Bayesian model averaging is a special case.

How to propagate unquantified uncertainty

Suppose the data set is analyzed using only a single evidential model, denoted by P 1 (•; •). Since P 1 = {P 1 (•; •)}, the corresponding total evidential model, has only one member, it fails to account for uncertainty about all the model assumptions. That is true even if P 1 (•; data) is the posterior distribution from Bayesian model averaging or a hierarchical Bayesian model, for there is always uncertainty about the prior distribution over the averaged models in the first case and about the hyperprior distribution over the hyperparameters in the second case.

To represent unquantified uncertainty about the model assumptions behind {P 1 (•; •)} , let P 0 denote the vacuous evidential model, the total evidential model such that the total evidential support distribution P 0 (data) is V, set of all probability distributions on (Ξ, F), for any data ∈ X . That model is "vacuous" in the sense that it represents complete ignorance about U : for any non-empty U ∈ F other than U = Ξ, it does not rule out any probability of the hypothesis or prediction that U ∈ U; the probability could be any number 0 and 1.

The proportion of unquantified uncertainty given (data, P 1 ) is the proportion ε (data) of the uncertainty that remains unquantified by the total evidential support distribution P 1 (data) = {P 1 (•; data)}. That proportion is defined as the probability that P 1 is inadequate [START_REF] Bickel | Phylogenetic Trees and Molecular Evolution: A Hands-on Introduction with Uncertainty Quantification Corrected[END_REF] in the sense that it is less useful than P 0 according to the ordering of the evidential model space {P 0 , P 1 }. That is the probability that P Ω is P 0 rather than P 1 : ε (data) = pr (P Ω = P 0 ; data) .

Then P ({P0,P1},pr) is the ({P 0 , P 1 } , pr)-induced total evidential model, the one having the total evidential support distribution P ({P0,P1},pr) (data) = {ε (data) P 0 + (1 -ε (data)) P 1 (•; data) : P 0 ∈ V} for the observed data ∈ X . Using that set of mixture distributions is mathematically equivalent to what is known in the imprecise probability literature [8, Section 7.3] as "discounting" according to an "ε-contamination model" [2, §4.7], a "linear-vacuous model" [31, §2.9.2], or a "distortion model" [START_REF] Alonso-Martín | Distortion models for estimating human error probabilities[END_REF].

However, the scientific meaning is completely different, for ε (data) is not the probability that a model is in some way true. Seeing that no model is exactly true, it is often hoped that approximate truth or an absolute concept of adequacy might serve as a substitute for model truth. Unfortunately, that is problematic, for both of the models might be approximately true, or both might be adequate, which would mean they cannot be treated as mutually exclusive [START_REF] Davies | Data Analysis and Approximate Models: Model Choice, Location-Scale, Analysis of Variance, Nonparametric Regression and Image Analysis[END_REF], as is required for linear-vacuous models. That calls for the interpretation that P 0 is more useful than P 1 with probability ε (data) and that P 1 is more useful than P 0 with probability 1 -ε (data), called the proportion of quantified uncertainty. That is accomplished by ordering in the evidential model space {P 0 , P 1 } such that either P 0 is more useful than P 1 or P 1 is more useful than P 0 , without any need for approximate model truth or adequacy in a non-comparative sense.

Lemma 1. For any U ∈ F, the evidential sufficiency for concluding or predicting that U ∈ U is S P ({P 0 ,P 1 },pr) (U; data) = (1 -ε (data)) P 1 (U; data) .

Proof. By the definition of evidential sufficiency, S P ({P 0 ,P 1 },pr) (U; data) = inf P (U; data) : P ∈ P ({P0,P1},pr) = inf {ε (data) P 0 (U) + (1 -ε (data)) P 1 (U; data) :

P 0 ∈ V} = inf {ε (data) p + (1 -ε (data)) P 1 (U; data) : p ∈ [0, 1]} .
In that simple way, each probability according to a model is diminished to the extent that it fails to quantify the relevant uncertainty.

Example 2. Let µ ± 1.96 σ be an observed 95% confidence interval according to a single evidential model, one such that the approximate confidence distribution P 1 (•; data) [START_REF] Bickel | Confidence intervals, significance values, maximum likelihood estimates, etc. sharpened into Occam's razors[END_REF] yields P 1 ( µ ± 1.96 σ; data) = 95%. The probability ε (data) that the vacuous evidential model would be more useful is chosen to reflect not only problems with the model assumptions but also general reasons confidence levels may fail as approximate epistemic probabilities even were the model assumptions true [START_REF] Morey | The fallacy of placing confidence in confidence intervals[END_REF]: If that proportion of unquantified uncertainty is judged to be ε (data) = 10%, then the corrected level of the confidence interval is

ε (data) = pr (P Ω = P 0 ; data) = 1 -pr (P Ω = P 1 ; data)
S P ({P 0 ,P 1 },pr) ( µ ± 1.96 σ; data) = 90%×95% = 86%.
That would be the value to report or otherwise use as the guaranteed probability that the value of the parameter of interest is in the observed confidence interval µ ± 1.96 σ. The proportion of unquantified uncertainty could be much higher in situations of extreme uncertainty such as those estimating how many millions of years ago DNA sequences from different species may have diverged from a hypothesized common ancestor [START_REF] Bickel | Phylogenetic Trees and Molecular Evolution: A Hands-on Introduction with Uncertainty Quantification Corrected[END_REF]Example 2].

How to reduce unquantified uncertainty

Since propagating unquantified uncertainty to probabilities of hypotheses or predictions requires multiplying them by the proportion of quantified uncertainty, the resulting inferences and decisions can be very conservative. Intuitively, more efforts at modeling may reduce that conservatism by quantifying more of the uncertainty. One way to do that is to specify more models.

Suppose the data set is analyzed using m max evidential models, denoted by P 1 (•; •), ..., P mmax (•; •). Rather than putting them together as members of a single total evidential model, let each be the sole member of its own total evidential model:

P Ω = {P m (•; •)} for m = 1, . . . , m max .
Then the evidential model space is Ω = {{P 1 (•; •)} , . . . , {P mmax (•; •)}}. It follows that P (Ω ,pr) , the (Ω , pr)-induced total evidential model, has the (Ω , pr)-induced total evidential support distribution

P (Ω ,pr) (data) = mmax m=1 pr (M = m; data) P m (•; data) ,
a set of a single evidential support distribution, for the observed data ∈ X .

Example 3. Consider the special case in which there are m max Bayesian models P 1 (•; •), ..., P mmax (•; •), each having its own prior distribution, and a prior distribution over the models. Exactly one of the Bayesian models is the true (data-generating) model. Then, ordering the evidential model space Ω Bayes such that the most useful model is the true model, we have pr (•| data) as the posterior distribution over the Bayesian models. The Ω Bayes , pr -induced total evidential model is a set consisting of a single Bayesian model, the one having the posterior-averaged posterior distribution as its total evidential support distribution for the observed data ∈ X . The truth assumption is crucial since it cannot be simplistically replaced by approximate truth or model adequacy, for more than one Bayesian model may be approximately true or adequate [START_REF] Davies | Data Analysis and Approximate Models: Model Choice, Location-Scale, Analysis of Variance, Nonparametric Regression and Image Analysis[END_REF]. Since none of the models is ever true, Bayesian model averaging tends to converge too quickly to a single model [START_REF] Cerquides | Robust Bayesian linear classifier ensembles[END_REF][START_REF] Le | A Bayes Interpretation of Stacking for M-Complete and M-Open Settings[END_REF][START_REF] Yao | Using Stacking to Average Bayesian Predictive Distributions (with Discussion)[END_REF][START_REF] Bickel | Propagating uncertainty about molecular evolution models and prior distributions to phylogenetic trees[END_REF].

In the Bayesian literature, the case of Example 3 is called "m-closed" and the case in which there is no data-generating model is called "m-open" [START_REF] Bernardo | Bayesian Theory[END_REF][START_REF] Yao | Using Stacking to Average Bayesian Predictive Distributions (with Discussion)[END_REF]. The following approach may be considered "m-clopen" since it relies on m max evidential models but without assuming any of them generated the data and with the addition of P 0 , the vacuous evidential model. Built on the foundation of model adequacy for a purpose, it may also be called adequate model averaging.

That approach starts with the evidential model space Ω † = P 0 , P (Ω ,pr) . Let ε † (data) denote the probability that P 0 is more useful than P (Ω ,pr) , leaving 1 -ε † (data) as the probability that it is less useful. The probability distribution with those two probabilities is written as pr † .

As in the m max = 1 case, the mixture probability is discounted to the degree that its models fail to quantify the relevant uncertainty: Lemma 2. Given any U ∈ F, the Ω † , pr † -induced total evidential support distribution is Once the m max evidential models and the values of pr (M = m | data) for m = 1, . . . , m max are specified, to determine the Ω † , pr † -induced total evidential support distribution and the Ω † , pr †induced evidential sufficiency, we also need to specify the value of ε † (data). One way to do that is to compare each evidential model to the vacuous evidential model, as follows.

P (Ω † ,pr † ) = ε † (data) P 0 (•) + 1 -ε † (data)
For each m = 1, . . . , m max and a probability distribution pr m on {0, m}, consider P ({P0,Pm },pr m ) , the ({P 0 , P m } , pr m )-induced total evidential model. Then, for any U ∈ F, the ({P 0 , P m } , pr m )-induced evidential sufficiency of the hypothesis or prediction that U ∈ U is, by Lemma 1,

S P ({P 0 ,Pm },pr m ) (U; data) = (1 -ε m (data)) P m (U; data) , (1) 
where ε m (data) = pr m (P Ω = P 0 ; data), for the observed data ∈ X . As seen in Example 2, ε m (data) is the proportion of unquantified uncertainty, the probability that the vacuous evidential model is more useful than {P m }, according to pr m . Now we can obtain a lower bound for ε † (data) as a functions of ε 1 (data) , . . . , ε mmax (data), which may be easier to specify or elicit from an expert or community. Indeed, each of those proportions of unquantified uncertainty is simply the probability that the corresponding evidential model is less useful than no model.

Theorem 1. Let χ † be a random variable such that χ † = 1 if P (Ω ,pr) is adequate in the sense of being more useful than P 0 ; otherwise, χ † = 0. Similarly, for m = 1, . . . , m max , let χ m = 1 if P m is adequate in the sense of being more useful than P 0 ; otherwise, χ m = 0. If the χ m are not negatively dependent and if

χ 1 = • • • = χ mmax = 0 =⇒ χ † = 0, (2) 
then, for any data ∈ X , the proportions of unquantified uncertainty satisfy ε † (data) ≥ Figure 1 shows the potential effect of increasing the number of models on the proportion of unquantified uncertainty.

Figure 1: Lower bounds on ε † (data), the proportion of unquantified uncertainty (left plots) and upper bounds on 1 -ε † (data), the proportion of quantified uncertainty, which is the probability that the mixture of all the specified models is more useful than no model (right plots). From top to bottom, 1 -(data) = 50%, 75%, 90% is each model's probability that it, when used alone, would be more useful than no model or, more technically, the vacuous evidential model.

  The main Bayesian examples of P (•; data) are a posterior distribution of a parameter of interest and a posterior predictive distribution of a future observation. Non-Bayesian examples of P (•; data) include approximate confidence distributions of a parameter of interest and a neural network's predictive distribution of a future observation. The function (U, data) → P (U; data) on the Cartesian product F × X is known as an evidential model. Some of the uncertainty about the evidential model may be encoded
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  = m; data) P m (•; data) : P 0 ∈ V , and the Ω † , pr † -induced evidential sufficiency of the hypothesis or prediction that U ∈ U isS P (Ω † ,pr † ) (U; data) = 1 -ε † (data) mmax m=1 pr (M = m | data) P m (U; data)for the observed data ∈ X .Proof. By the definition of an induced total support distribution,P (Ω † ,pr † ) (data) = pr † (P 0 ) P 0 + pr † P (Ω ,pr) mmax m=1 pr (M = m; data) P m (•; data) : P 0 ∈ V .By the definition of an induced evidential sufficiency, S P (Ω † ,pr † ) (U; data) = inf P (U; data) :P ∈ P (Ω † ,pr † ) = inf ε † (data) P 0 (U) + 1 -ε † (data)mmax m=1 pr (M = m; data) P m (U; data) : P 0 ∈ V = inf ε † (data) p + mmax m=1 pr (M = m; data) P m (U; data) : p ∈ [0, 1] = 0 + 1 -ε † (data) mmax m=1 pr (M = m; data) P m (U; data) .

Corollary 1 .

 1 By the definitions of ε † (data) and ε m (data), they are pr † χ † = 0; data and pr m (χ m = 0; data), respectively. By condition[START_REF]Introduction to Imprecise Probabilities[END_REF] and the lack of a negative dependence,ε † (data) = pr † χ † = 0; data ≥ Prob (χ 1 = • • • = χ mmax = 0; data) ≥ mmax m=1 pr m (χ m = 0; data) .For the case in which each of the evidential models has an equal probability of being more useful than no model, the proportion of unquantified uncertainty and the most-useful probabilities simplify even further. Assume the conditions of Theorem 1, and consider any data ∈ X . If there is a positive real number (data) equal to ε m (data) for all m = 1, . . . , m max , then the proportions of unquantified uncertainty satisfy ε † (data) ≥ ( (data))mmax .

  

  

  

Acknowledgments

This research was supported by the University of North Carolina at Greensboro.