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ABSTRACT

A common way of partitioning graphs is through minimum cuts. One drawback of classical minimum
cut methods is that they tend to produce small groups, which is why more balanced variants such
as normalized and ratio cuts have seen more success. However, we believe that with these variants,
the balance constraints can be too restrictive for some applications like for clustering of imbalanced
datasets, while not being restrictive enough for when searching for perfectly balanced partitions.
Here, we propose a new graph cut algorithm for partitioning graphs under arbitrary size constraints.
We formulate the graph cut problem as a regularized Gromov-Wasserstein problem. We then propose
to solve it using accelerated proximal GD algorithm which has global convergence guarantees, results
in sparse solutions and only incurs an additional ratio ofO(log(n)) compared to the classical spectral
clustering algorithm but was seen to be more efficient.

1 Introduction

Clustering is an important task in the field of unsupervised machine learning. For example, in the context of computer
vision, image clustering consists in grouping images into clusters such that the images within the same clusters are
similar to each other, while those in different clusters are dissimilar. Applications are diverse and wide ranging,
including, for example, content-based image retrieval [3], image annotation [9, 5], and image indexing [6]. A popular
way of clustering an image dataset is through creating a graph from input images and partitioning it using techniques
such as spectral clustering which solves the minimum cut (min-cut) problem. This is notably the case in subspace
clustering where an self-representation matrix is learned according to the subspaces in which images lie and a graph is
built from this matrix [33, 16, 4, 26, 49].

However, in practice, algorithms associated with the min-cut problem suffer from the formation of some small groups
which leads to bad performance. As a result, other versions of min-cut were proposed that take into account the size
of the resulting groups, in order to make resulting partitions more balanced. This notion of size is variable, for example,
in the Normalized Cut (ncut) [41], size refers to the total volume of a cluster, while in the Ratio Cut (rcut) problem
[22], it refers to the cardinality of a cluster. A common method for solving the ncut and rcut problems is the spectral
clustering approach [44, 35] which is popular due to often showing good empirical performance and being somewhat
efficient.

However, there some weaknesses that apply to the spectral clustering algorithms and to most approaches tackling the
ncut and rcut problems. A first one is that, for some applications, the cluster balancing is not strict enough, meaning
that even if we include the size regularization into the min-cut problem, the groups are still not necessarily of similar
size, which is why several truly balanced clustering algorithm have been proposed in the literature [8, 7, 31]. Another
problem is that the balance constraint is too restrictive for many real world datasets, for example, a recent trend in
computer vision is to propose approaches dealing with long-tailed datasets which are datasets that contain head classes
that represent most of the overall dataset and then have tail classes that represent a small fraction of the overall dataset
[47, 51]. Some approaches propose integrating generic size constraints to the objective like in [21, 24, 50], however
these approaches directly deal with euclidean data instead of graphs.



In this paper, we propose a novel framework that can incorporate generic size constraints in a strict manner into
min-cut problem using Optimal Transport. We sum up our contributions in this work as follows:

• We formulate a problem for obtaining graph cuts that are balanced for an arbitrarily defined notion of size
instead of specifically the volume or cardinality as is traditionally done in spectral clustering. We also propose
a more general formulation of graph cuts with cluster size constraints through optimal transport. This can help
with dealing with balanced and imbalanced graphs.

• We then propose a new way to solve this constrained graph cut problem using a nonconvex accelerated
proximal gradient scheme which has global convergence guarantees for specific step sizes.

• Comprehensive experiments on real-life graphs and graphs built from image datasets using subspace clustering
are performed. Results showcase the effectiveness of the proposed method in terms of obtaining the desired
cluster sizes, clustering performance and computational efficiency.

The rest of this paper is organized as follows: Preliminaries are presented in Section 2. Some related work is discussed
in section 3. The OT-cut problem and algorithm along with their analysis and links to prior research are given in
section 4. We present experimental results and analysis in section 5. Conclusions are then given in section 6.

2 Related Work

Our work is related with balanced clustering, as the latter is a special case of it, as well as with the more generic problem
of constrained clustering, and GW based graph partitioning.

2.1 Balanced Clustering.

A common class of constrained clustering problems is balanced clustering where we wish to obtain a partition with
clusters of the same size. For example, [15] introduced a conscience mechanism which penalizes clusters relative to
their size, [1], then employed it to develop the Frequency Sensitive Competitive Learning (FSCL) algorithm. In [31],
authors proposed to leverage the exclusive lasso on the k-means and min-cut problems to regulate the balance degree
of the clustering results. [32] proposed a simplex algorithm to solve a minimum cost flow problem similar to k-means.
In [8], authors proposed a self-balanced min-cut algorithm for image clustering implicitly using exclusive lasso as a
balance regularizer in order to produce balanced partitions.

2.2 Constrained Clustering.

Some clustering approaches with generic size constraints, which can be seen as an extension of balanced clustering, also
exist. In [50], a heuristic algorithm to transform size constrained clustering problems into integer linear programming
problems was proposed. Authors in [20] introduced a modified k-means algorithm which can be used to obtain clusters
of preferred sizes. Clustering paradigms based on OT generally offer the possibility to set a target distribution for
resulting partitions. [21] proposed a deep clustering algorithm through optimal transport with entropic regularization. In
[28, 42, 18], authors proposed to tackle co-clustering and biclustering problems using OT demonstrating good empirical
performance.

2.3 Gomov-Wasserstein Graph Clustering.

The Gromov-Wasserstein (GW) partitioning paradigm S-GWL [46] supposes that the Gromov-Wasserstein discrepancy
can uncover the clustering structure of the observed source graph G when the target graph Gdc only contains weighted
self-connected isolated nodes, this means that its adjacency matrix is diagonal. The weights of this diagonal matrix as
well as the source and target distribution are special functions of the node degrees. Their approach uses a regularized
proximal gradient method as well as a recursive partitioning scheme and can be used in a multi-view clustering
setting. The problem with this approach is its sensitivity to the hyperparameter setting which is problematic since
it is an unsupervised method. Another approach, SpecGWL [10] generalizes spectral clustering using Gromov-
Wasserstein discrepancy and heat kernels but suffers from high computational complexity. Given a graph with n node,
its optimization procedure involves the computation of a gradient which is in O(n3 log(n)) and an eigendecompostion
O(n3) and therefore is not usable for large scale graphs.
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3 Preliminaries

In what follows, ∆n = {p ∈ Rn
+|

∑n
i=1 pi = 1} denotes the n-dimensional standard simplex. Π(w,v) = {Z ∈

Rn×k
+ |Z1 = w,Z⊤

1 = v} denotes the transportation polytope, where w ∈ ∆n and v ∈ ∆k are the marginals of
the joint distribution Z and 1 is a vector of ones, its size can be inferred from the context. Matrices are denoted with
uppercase boldface letters, and vectors with lowercase boldface letters. For a matrix M, its i-th row is mi and mij is
the j-th entry of row i. Tr refers to the trace of a square matrix.

3.1 Graph Cuts and Spectral Clustering

Minimum-cut Problem. Given an undirected graph G = (V, E) with an weighted adjacency matrix W ∈ Rn×n with
n = |V|, a cut is a partition of its vertices V into two disjoint subsets A and Ā. The value of a cut is given by

cut(A) =
∑

vi∈A,vj∈Ā

wij . (1)

The goal of the minimum k-cut problem is to find a partition (A1, ...,Ak) of the set of vertices V into k different groups
that is minimal in some metric. Intuitively, we wish for the edges between different subsets to have small weights, and
for the edges within a subset have large weights. Formally, it is defined as

min-cut(W, k) = min
A1,...,Ak

k∑
i=1

cut(Ai). (2)

This problem can also be stated as a trace minimization problem by representing the resulting partition A1, . . . ,Ak

using an assignment matrix X such that for each row i, we have that

xij =

{
1 if vertex i is in Aj ,

0 otherwise.
(3)

This condition is equivalent to introducing two constraints which are X ∈ {0, 1}n×k and X1 = 1. The minimum
k-cut problem can then be formulated as

min-cut(W, k) = min
X∈{0,1}n×k

X1=1

Tr(X⊤LX), (4)

where L = D −W refers to the graph Laplacian of the graph G and D is the diagonal matrix of degree of W, i.e.,
dii =

∑
j wij .

Normalized k-Cut Problem. In practice, solutions to the minimum k-cut problem do not yield satisfactory partitions
due to the formation of small groups of vertices. Consequently, versions of the problem that take into account some
notion of "size" for these groups have been proposed. The most commonly used one is normalized cut [41]:

ncut(W, k) = min
A1,...,Ak

k∑
i=1

cut(Ai)

vol(Ai)
, (5)

where the volume can be conveniently written as vol(Ai) = xT
i Dxi. Another variant which is referred to as the ratio

cut problem due to the different groups being normalized by their cardinality instead of their volumes:

rcut(W,k) = min
A1,...,Ak

k∑
i=1

cut(Ai)

|Ai|
, (6)

where |Ai| = xT
i xi. This variant can be recovered from the normalized graph cut problem by replacing D with I in the

computation of the volume.

Spectral Clustering. A common approach to solving the normalized graph cut problems, spectral clustering, relaxes
the partition constraints on X and instead considers a form of semi-orthogonality constraints. In the case of rcut, we
have rcut written as a trace optimization problem:

rcut(W, k) = min
X∈Rn×k

X⊤X=I

Tr
(
X⊤LX

)
. (7)

3



On the other hand for ncut, the partition matrix X is substituted with H = D1/2X and a semi-orthogonality constraint
is placed on this H, i.e.,

ncut(W, k) = min
H∈Rn×k

H⊤H=I

Tr
(
H⊤D−1/2LD−1/2H

)
. (8)

A solution H for the ncut problem is formed by stacking the first k-eigenvectors of the symmetrically normalized
Laplacian Ls = D−1/2LD−1/2 as its columns, and then applying a clustering algorithm such as k-means on its rows
and assign the original data points accordingly [35]. The principle is the same for solving rcut but instead using the
unnormalized Laplacian.

3.2 Optimal Transport

Discrete optimal transport. The goal of the optimal transport problem is to find a minimal cost transport plan X
between a source probability distribution of w and a target probability distribution v. Here we are interested in the
discrete Kantorovich formulation of OT. When dealing with discrete probability distributions, said formulation is

OT(M,w,v) ≜ min
X∈Π(w,v)

⟨M,X⟩ , (9)

where M ∈ Rn×k is the cost matrix, and cij quantifies the effort needed to transport a probability mass from wi to vj .
Regularization can be introduced to further speed up computation of OT. Examples include entropic regularization [12]
and low-rank regularization [40].

Discrete Gromov-Wasserstein Discrepancy. The discrete Gromov-Wasserstein (GW) discrepancy [39] is an ex-
tension of optimal transport to the case where the source and target distributions are defined on different metric
spaces:

GW(M,M′,w,v) ≜ min
X∈Π(w,v)

⟨L(M,M′)⊗X,X⟩ (10)

where M ∈ Rn×n and M′ ∈ Rk×k are similarity matrices defined on the source space and target space respectively,
and L : R× R→ R is a divergence measure between scalars, L(M,M′) is the n× n× k × k tensor of all pairwise
divergences between the elements of M and M′. ⊗ denotes tensor-matrix product.

4 Proposed Methodology

In this section, we derive our OT-based constrained graph cut problem and propose a nonconvex proximal GD algorithm
with global convergence guarantees for its resolution.

4.1 Normalized Cuts via Optimal Transport

As already mentioned, the good performance of the normalized cut algorithm comes from the normalization by the
volume of each group in the cut. However, the size constraint is not a hard one, meaning that obtained groups are not of
exactly the same volume. This leads us to propose to replace the volume normalization by a strict balancing constraint
as follows:

min
A1,...,Ak

k∑
i=1

cut(Ai) s.t. vol(A1) = . . . = vol(Ak). (11)

this problem can be rewritten as the following trace minimization problem:

min Tr(X⊤LX)

subject to:
X1 = D1, (xi sums to the degree of node i)

X⊤
1 =

∑
i dii
k

1, (clusters are balanced w.r.t degrees)
∀i∥xi∥0 = 1 (a node belongs to a unique cluster.)

(12)

Here, ∥.∥0 is the zero norm that returns the number of nonzero elements in its argument. This problem may not
have feasible solutions. However, by dropping the third constraint, this problem becomes an instance of the Gromov-
Wasserstein problem which is always feasible. Specifically, the first and second constraints are equivalent to defining X
to be an element of the transportation polytope with a uniform target distribution and a source distribution consisting of
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the degrees of the nodes. These degrees can be represented as proportions instead of absolute quantities by dividing
them over their sum, yielding the following problem:

min
X∈Π

(
1∑
i dii

D1, 1k1
) Tr(X⊤LX) (13)

This formulation is a special case of the Gromov-Wasserstein problem for a source space whose similarity matrix in the
initial space is M = −L and whose similarity matrix in the destination space is M′ = −I. Note that a ratio cut version
can be obtained by replacing the volume constraint with

|A1| = . . . = |Ak| (14)

in problem 11, and similarly in problem 13, by substituting the identity matrixI for the degree matrix D, giving rise to:

min
X∈Π( 1

n1,
1
k1)

Tr(X⊤LX) (15)

4.2 Graph Cuts with Arbitrary Size Constraints

From the previous problem, it is easy to see that target distribution does not need to be uniform, and as such, any
distribution can be considered, leading to further applications like imbalanced dataset clustering. Another observation
is that any notion of size can be considered and not only the volume or cardinality of the formed node groups. We
formulate an initial version of the generic optimal transport graph cut problem as:

min
X∈Π(πs,πt)

Tr(X⊤LX) ≡ min
X∈Π(πs,πt)

⟨LX,X⟩ , (16)

where πs
i is the relative ’size’ of the element i and πt

j is the desired relative ’size’ of the group j. Through the form that
uses the Frobenius product, it is easy to see how our problem is related to the Gromov-Wasserstein problem. These
size parameters can either be set using domain knowledge by the expert using our algorithm or by trying mutliple
random guesses and then selecting the best one via internal clustering quality metrics such as Davies-Bouldin index [13].
Another way would be to consider the cluster distribution generated by another algorithm such as spectral clustering.

4.3 Regularization for Sparse Solutions

We wish to obtain sparse solutions in order to easily interpret them as partition matrices of the input graph. We do
so by aiming to find solutions over the extreme points of the transportation polytope which are matrices that have at
most n+ k − 1 non-zero entries [38]. We do so by introducing a regularization term to problem 16. Consequently, we
consider the following problem which we coin OT-cut:

OT-cut(X, πs, πt) ≡ min
X∈Π(πs,πt)

Tr(X⊤LX) − λ∥X∥2 (17)

where λ ∈ R+ is the regularization trade-off parameter. It should be noted that our regularizer is concave. We also
define two special cases of this problem, which are based on the ncut and rcut problems. The first one which we
call OT-ncut is obtained by fixing the hyper-parameter πs =

1∑
i dii

D1 while the second one OT-rcut is obtained by
substituting the D in the previous formula with I and forcing the target to be uniform. Figure 1 shows the evolution of
the objective on different datasets.

4.4 Optimization, Convergence and Complexity

We wish to solve problem 17 which is nonconvex, but algorithms with convergence guarantees exist for problems of
this form. Specifically, we will be using a nonconvex proximal gradient descent based on [30]. The pseudocode is given
in algorithm 1.

Proposition 1. For step size α = 1
2λ , the iterates X(t) generated by the nonconvex PGD algorithm for our problem are

all extreme points of the transporation polytope, and as such, have at most n+ k − 1 nonzero entries.

Proof. Problem 17 can be equivalently stated by writing the constraint as a term in the loss function:

min
X

Tr(X⊤LX)︸ ︷︷ ︸
f(X)

+ IΠ(πs,πt)(X)− λ∥X∥2︸ ︷︷ ︸
g(X)

(18)
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where IC is the characteristic function of set C i.e.

IC =

{
0, if X ∈ C,
+∞, if X ̸∈ C.

Since we use a proximal descent scheme, we show how to compute the proximal operator for our loss function:

proxαg
(
X(t) − α∇f(X(t))

)
= proxαg

(
X(t) − α∇Tr

(
X(t)LX(t)

))
= proxα(IΠ(πs,πt)−α∥.∥2)

(
(I− 2αL)X(t)

)
= argmin

Z∈Π(πs,πt)

1

2α

∥∥∥Z− (I− 2αL)X(t)
∥∥∥2 − λ ∥Z∥2

= argmin
Z∈Π(πs,πt)

1

2α
∥Z∥2 + 1

2α

∥∥∥(I− 2αL)X(t)
∥∥∥2 − 1

α
Tr

(
Z⊤(I− 2αL)X(t)

)
− λ ∥Z∥2 .

We assumed that α = 1
2λ , by substituting for λ into the previous formula and dropping the constant term, we obtain:

argmin
Z∈Π(πs,πt)

Tr
(
Z⊤(2αL− I)X(t)

)
= argmin

Z∈Π(πs,πt)

〈
Z, (2αL− I)X(t)

〉
.

This is the classical OT problem. Its resolution is possible by stating it as the earth-mover’s distance (EMD) linear
program [23] and using the network simplex algorithm.

Proposition 2. Algorithm 1 globally converges for step size α < 1
s where s is the smoothness constant of Tr(X⊤LX).

Proof. Here, we have that f is proper and s-smooth i.e. ∇f is s-Lipschitz. g is proper and lower semi-continuous.
Additionally, f + g is coercive. Then, according to [30], nonconvex accelerated proximal GD globally converges for
α < 1

s .

Proposition 3. For a graph with n nodes, the complexity of an iteration of the proposed algorithm is O
(
kn2 log n

)
.

Proof. We note that in practice n >> k and that the complexity of the network simplex algorithm for some graph
GEMD = (VEMD,VEMD) is in O(|VEMD||EEMD| log |EEMD|) [36]. In our case, this graph has |VEMD| = n+ k
(since n >> k, we can drop the k) and |EEMD| = nk. The other operation that is performed during each iteration is
the matrix multiplication whose complexity is in O(k|E|) where |E| is the number of edges in the original graph. In the
worst case when matrix L is fully dense, we have that |E| = n2.

Algorithm 1: Nonconvex Accelerated PGD for OT-cut
Data: A Adjacency matrix, πs node size distribution, πt cluster size distribution, Ginit initial partition matrix,

α = 1
2λ < 1

s step size, maxIter maximum number of iterations.
Result: G partition of the graph.
Construct Laplacian matrix L from the adjacency matrix A;
X(0) ← arg OT (Ginit,π

s,πt);
Z(1) ← X(0),X(1) ← X(0);
c0 ← 0, c1 ← 1;
while maxIter not reached do

Y(t) = X(t) + ct−1

ct
(Z(t) −X(t)) + ct−1−1

ct
(X(t) −X(t−1));

Z(t+1) := arg OT
(
(2αL− I)Y(t),πs,πt

)
;

V(t+1) := arg OT
(
(2αL− I)X(t),πs,πt

)
;

ct+1 = (
√
4c2t + 1 + 1)/2;

X(t+1) =

{
Z(t+1), if loss

(
Z(t+1)

)
< loss

(
V(t+1)

)
V(t+1), otherwise.

;

Generate partition matrix G by assigning each node i to the (argmaxi xi)-th partition.;

5 Experiments

We evaluated the clustering performance of our two variants OT-ncut and OT-rcut algorithms against the spectral
clustering algorithm and state-of-the-art OT-based graph clustering approaches.
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Table 1: Dataset Statistics. The balance ratio is the ratio of the most frequent class over the least frequent one.

Type Dataset Nodes Graph & Edges Sparsity Clusters Balance Ratio

Graphs
Built
From

Images

LRSC (100,000,000) 0.0%

MNIST 10,000 LSR (100,000,000) 0.0% 10 1.272

ENSC (785,744) 99.2%

LRSC (100,000,000) 0.0%

Fashion-MNIST 10,000 LSR (100,000,000) 0.0% 10 1.0

ENSC (458,390) 99.5%

LSR (100,000,000) 0.0%

KMNIST 10,000 LRSC (100,000,000) 0.0% 10 1.0

ENSC (817,124) 99.2%

Naturally
Occuring
Graphs

ACM 3,025 2,210,761 75.8% 3 1.099

DBLP 4,057 6,772,278 58.9% 4 1.607

Village 1,991 16,800 99.6% 12 3.792

EU-Email 1,005 32,770 96.8% 42 109.0

Table 2: Average (±sd) clustering performance and running times on the graph built from images. The best performance
is highlighted in bold, the lowest (highest) runtime is highlighted in blue (red).

MNIST Fashion-MNIST KMNIST
Graph Method ARI Time ARI Time ARI Time

Spectral 0.4134 ±0.0003 10.28 0.1742 ±0.0003 10.51 0.4067 ±0.0 9.83
S-GWL 0.0488 ±0.0 7.88 0.0188 ±0.0 7.84 0.0560 ±0.0 7.98

LRSC SpecGWL 0.0248 ±0.0 453.19 0.0111 ±0.0 397.19 0.0145 ±0.0 383.23
OT-rcut 0.4516 ±0.0273 5.58 0.2231 ±0.0051 5.82 0.4157 ±0.0154 6.15
OT-ncut 0.4751 ±0.0383 6.12 0.2291 ±0.0148 6.11 0.3832 ±0.0279 5.88

Spectral 0.311 ±0.0002 8.82 0.1486 ±0.0001 10.19 0.3631 ±0.0001 9.72
S-GWL 0.0628 ±0.0 8.2 0.0357 ±0.0 7.93 0.0593 ±0.0 8.01

LSR SpecGWL 0.1127 ±0.0 454.06 0.0341 ±0.0 454.26 0.0267 ±0.0 407.55
OT-rcut 0.3723 ±0.0377 6.23 0.1771 ±0.0164 6.61 0.4335 ±0.0105 6.01
OT-ncut 0.3458 ±0.0267 5.77 0.1915 ±0.0131 5.72 0.4301 ±0.0075 5.87

Spectral 0.1206 ±0.0001 13.28 0.1164 ±0.0 12.62 0.4321 ±0.0007 13.6
S-GWL 0.0798 ±0.0 8.05 0.0362 ±0.0 7.85 0.0422 ±0.0 7.96

ENSC SpecGWL 0.5444 ±0.0 268.12 0.1082 ±0.0 288.75 0.4020 ±0.0 287.06
OT-rcut 0.4228 ±0.0694 5.47 0.2113 ±0.0257 6.18 0.2924 ±0.0589 6.27
OT-ncut 0.3882 ±0.0718 5.68 0.2251 ±0.0191 5.77 0.2771 ±0.0226 5.83

Table 3: Average (±sd) clustering performance and running times on the graph datasets. Same legend as for Table 2.

EU-Email Village ACM DBLP
Method ARI Time ARI Time ARI Time ARI Time

Spectral 0.2445 ±0.0133 1.13 0.3892 ±0.1934 0.76 0.1599 ±0.003 1.83 0.0039 ±0.0053 16.49
S-GWL 0.2684 ±0.0 2.11 0.5333 ±0.0 4.26 0.1873 ±0.0 2.09 0.0 ±0.0 18.42
SpecGWL 0.1125 ±0.0 0.59 0.5887 ±0.0 0.89 0.008 ±0.0 4.65 0.2891 ±0.0 13.66
OT-rcut 0.2629 ±0.0096 0.22 0.5969 ±0.0505 0.27 0.2643 ±0.0249 0.69 0.3119 ±0.0279 1.45
OT-ncut 0.2687 ±0.0094 0.20 0.4819 ±0.0369 0.30 0.2167 ±0.045 0.77 0.1721 ±0.0674 1.33
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Figure 1: Evolution of the objective as function of the number of iterations.

Table 4: Faithfulness to the constraints: KL divergence between the desired and the resulting cluster distributions. A
value of zero reflects a perfect match between the constraint and the result.

Dataset Graph OT-rcut OT-ncut

LRSC 0.0 ±0.0 0.0001 ±0.0001

MNIST LSR 0.0 ±0.0 0.0001 ±0.0001

ENSC 0.0 ±0.0 0.0 ±0.0

LRSC 0.0 ±0.0 0.0001 ±0.0001

Fashion-MNIST LSR 0.0 ±0.0 0.0001 ±0.0001

ENSC 0.0 ±0.0 0.0 ±0.0

Dataset Graph OT-rcut OT-ncut

LRSC 0.0 ±0.0 0.0 ±0.0

KMNIST LSR 0.0 ±0.0 0.0001 ±0.0001

ENSC 0.0 ±0.0 0.0 ±0.0

ACM 0.0 ±0.0 0.0 ±0.0

DBLP 0.0 ±0.0 0.00.0 ±0.0021

Village 0.0 ±0.0 0.0011 ±0.0027

EU-Email 0.0 ±0.0 0.0004 ±0.0007

5.1 Datasets

We perform experiments on graphs constructed from image datasets, namely, MNIST [14], Fashion-MNIST [45] and
KMNIST [11]. We generate these graphs using three subspace clustering approaches: low-rank subspace clustering
(LRSC) [43], least-square regression subspace clustering (LSR) [33] and elastic net subspace clustering (ENSC) [48].
We also consider four graph datasets: DBLP, a co-term citation network; and ACM, a co-author citation networks [17].
EU-Email an email network from a large European research institution [29]. Indian-Village describes interactions
among villagers in Indian villages [2]. The statistical summaries of these datasets are available in Table 1.

5.2 Performance Metrics

We adopt Adjusted Rand Index (ARI) [25] to evaluate clustering performance. It takes values between 1 and -0.5; larger
values signify better performance. To evaluate the concordance of the desired and the obtained cluster distributions, we
use the Kullback-Leibler (KL) divergence [27]. The KL divergence between two perfectly matching distributions will
be equal to zero. Otherwise, it would be greater than zero. Smaller KL values signify better concordance.

5.3 Experimental settings

Our two variants, OT-ncut and OT-rcut are implemented via the Python optimal transport package (POT) [19]. We
use random initialization and use uniform target distributions unless explicitly stated otherwise. We also set α = 2 and
the maximum number of iterations to 30. We also use normalized laplacian matrices. For the comparative approaches,
we use the Scikit-Learn[37] implementation of spectral clustering. For OT-based methods, S-GWL [46] and SpecGWL
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Figure 3: Neményi post-hoc rank test results. OT-rcut and OT-ncut outperform the comparative approaches in a
statistically significant manner while having comparable performance.

[10], we use their official implementations as they are open source. All experiments were run five times and were
performed on a 64gb RAM machine with a 12th Gen Intel(R) Core(TM) i9-12950HX (24 CPUs) processor with a
frequency of 2.3GHz.

5.4 Experimental Results

(a) OT-ncut on a a graph
built using a k-nn graph.

(b) OT-rcut on a graph
built using RBF kernel.

Figure 2: OT-ncut and OT-rcut results on toy
datasets.

Toy Examples. Our algorithm deals with a graph cut-like criterion
which means that it should partition a dataset according to its con-
nectivity. This means that it should work on datasets on which metric
clustering approaches such as k-means fail. Two toy examples are
given in Figure 2a and Figure 2b.

Clustering Performance. Table 3 shows the clustering perfor-
mance on the graph datasets. In all cases, one of our two variants
has the best results in terms of ARI. Table 3 presents the clustering
performance on the graph datasets. In all cases, one of our two vari-
ants has the best results in terms of ARI. Table 2 describes results
obtained on image graph datasets. One of our two variants gives
the best results on all three datasets with the graphs generated by
LRSC and LSR. On the graphs generated by ENSC, the best result
is obtained only on Fashion-MNIST while SpecGWL has the best
results on MNIST. Spectral clustering gives the best performance on KMNIST. Note that better results can also be
obtained with our variants by trading-off some computational efficiency. Specifically, this can be done by using several
different initializations and taking the one that leads to minimizing the objective the most.

Statistical Significance Testing Figure 3 shows the performance ranks of the different methods averaged over all
the runs on the datasets we considered in terms of ARI. The Neményi post-hoc rank test [34] shows that OT-rcut and
OT-ncut perform similarly and outperform the other approaches for a confidence level of 95%. Other approaches
perform similarly.

Concordance of the Desired & Resulting Cluster Sizes. To evaluate our algorithm’s ability to produce a partition
with the desired group size distribution, we use the KL divergence metric. Specifically, we compare the distribution
obtained by our OT-rcut and OT-ncut variants against the target distribution specified as a hyperparameter (πt). Table 4
presents the KL divergences for both variants on various datasets. Predictably, our approaches achieve near-perfect
performance on most datasets. Notably, OT-rcut is always able to perfectly recover the desired group sizes. This has
to do with the fact that, up to a constant, all the entries in the solutions to the rcut problem are integers. This is not
necessarily the case for ncut but the KL divergence is still very small due to the sparsity of the solutions.

Running Times. As shown in Table 3 and Table 2, OT-ncut and OT-rcut are the fastest in terms of execution times
compared to other approaches on all datasets. As the graphs got larger, SpecGWL consistently had the largest runtimes.
The difference is greater on larger datasets especially when they are represented as sparse matrices due to the fact
that matrix multiplication is faster with sparse representations. Smaller execution times can also be obtained with our
approaches by using sparse representations of the solutions.
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6 Conclusion

In this paper we proposed a new graph cut algorithm for partitioning with arbitrary size constraints through optimal
transport. This approach generalizes the concept of the normalized and ratio cut to arbitrary size distributions and this
for any notion of size. We derived an algorithm that results in sparse solutions and has global convergence guarantees.
Experiments on balanced and imbalanced datasets showed the superiority of our approach both in terms of clustering
performance and empirical execution times compared to spectral clustering and other OT-based graph clustering
approaches. They also demonstrated our approach’s ability to recover partitions that match the desired ones which is
valuable for practical problems where we wish to obtain balanced or constrained partitions.
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