N

N

Graph Cuts with Arbitrary Size Constraints Through
Optimal Transport
Chakib Fettal, Lazhar Labiod, Mohamed Nadif

» To cite this version:

Chakib Fettal, Lazhar Labiod, Mohamed Nadif. Graph Cuts with Arbitrary Size Constraints Through
Optimal Transport. 2023. hal-03917041v3

HAL Id: hal-03917041
https://hal.science/hal-03917041v3

Preprint submitted on 30 Aug 2023 (v3), last revised 4 Oct 2024 (v5)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-03917041v3
https://hal.archives-ouvertes.fr

GRAPH CUTS WITH ARBITRARY SIZE CONSTRAINTS THROUGH
OPTIMAL TRANSPORT

Chakib Fettal Lazhar Labiod Mohamed Nadif
Centre Borelli UMR 9010 Centre Borelli UMR 9010 Centre Borelli UMR 9010
Université Paris Cité Université Paris Cité Université Paris Cité
ABSTRACT

Clustering is an important task in computer vision and machine learning in general, and new applica-
tions are constantly appearing. A common way of obtaining an image dataset partition is through
graph cuts, which are also used as a component in more complex clustering paradigms such as
subspace clustering. One drawback of classical min-cut algorithms is that they tend to produce
small groups, which is why more balanced variants have risen, including normalized and ratio cuts.
We believe, however, that with these variants the balance constraints are too restrictive for some
applications (long-tailed clustering), while not being restrictive enough for others (when searching
for perfectly balanced partitions), since the constraint is not hard. Here, we propose a new graph cut
algorithm for partitioning with arbitrary size constraints. We formulate the graph cut problem as a
constrained Gromov-Wasserstein problem, and our algorithm is slower than the classical spectral clus-
tering algorithm by only a ratio of O(log(n)) while being more efficient in practice. We demonstrate
the performance of our approach on several balanced and imbalanced (long-tail) datasets.

1 Introduction

Clustering is an important task in machine learning and computer vision. Intuitively, the task of image clustering boils
down to grouping images into clusters such that the images within the same clusters are similar to each other, while
those in different clusters are dissimilar. Applications are diverse and wide ranging, including, for example, content-
based image retrieval [Bhunia et al., 2020, Lee et al., 2022, Bhunia et al., 2021], image annotation [Cheng et al., 2018,
Cai et al., 2013], and image indexing [Cao et al., 2013]. Consequently, much research has been dedicated to image
clustering [Chang et al., 2017, Ji et al., 2017, Elhamifar and Vidal, 2013, Ji et al., 2019].

A popular way of formulating the image clustering problem is through the minimum graph cut (min-cut) problem
where the graph is created based on the input images. However, in practice, the min-cut problem suffers from the
formation of some small groups which leads to bad performance. As a result, other versions of min-cut were proposed
that take into account the size of the resulting groups, in order to make the partition more balanced. This notion of
size is variable, for example, in the Normalized Cut (ncut) problem [Shi and Malik, 2000], size refers to the total
volume of a group, while in the Ratio Cut (rcut) problem [Hagen and Kahng, 1992], it refers to the cardinality of
a group. A common method for solving the ncut and rcut problems is that of the spectral clustering algorithm
[Von Luxburg, 2007, Ng et al., 2001] which is popular due to it often showing good empirical performance and being
somewhat efficient. The spectral clustering algorithm variants are present in many image clustering frameworks, such
as for subspace clustering [Agrawal et al., 1998] where a spectral clustering algorithm is applied to a learned subspace
affinity matrix to obtain a partition of the points according to the subspaces in which they lie.

However, some restrictions that apply to the spectral clustering algorithms and to most approaches tackling the ncut
and rcut problems in general do exist. A first one is that the balance constraint is not strict enough, meaning that
even if we include the size regularization into the min-cut problem, the groups are still not necessarily of similar
size, which is why several truly balanced clustering algorithm have been proposed in the literature [Chen et al., 2017,
Chen et al., 2019, Li et al., 2018]. Another problem is that the balance constraint is too restrictive for many real world
datasets, for example, a recent trend in computer vision is to propose approaches dealing with long-tailed datasets which
are datasets that contain head classes that represent most of the overall dataset and then have tail classes that represent a



small fraction of the overall dataset [Xu et al., 2022, Zhu et al., 2014]. Some approaches propose integrating generic
size constraints to the objective like in [Genevay et al., 2019, Hoppner and Klawonn, 2008, Zhu et al., 2010], however
these approaches directly deal with the input images (or data in general) instead of graphs.

In this paper, we propose a novel framework that introduces generic and at the same time stricter size constraints to the
min-cut problem using Optimal Transport. To sum up, the main contributions of this work are :

* We formulate a problem for obtaining graph cuts that are balanced for an arbitrarily defined notion of size
instead of specifically the volume or cardinality as is traditionally done in spectral clustering. We also propose
a more general formulation of graph cuts with cluster size constraints which can help when dealing with
perfectly balanced datasets and heavily imbalanced datasets such as long-tailed datasets which follow an
exponential decay in sample sizes across different classes.

* We then propose a solution for said problem through optimal transport using an approach reminiscent of the
simplex algorithm and analyze its computational complexity. Links with existing works are also studied.

» Comprehensive experiments on balanced and long-tailed data sets using two variants we named 0T-ncut
and 0T-rcut showcase the effectiveness of the proposed method compared to the most common min-cut
algorithms (that use spectral clustering) both in terms of obtaining the desired cluster sizes as well as clustering
performance. We release the code of our algorithm ! for reproducibility.

The rest of this paper is organized as follows : Preliminaries are presented in Section 2. Some related work is discussed
in section 3. The 0T-cut problem and algorithm along with their analysis and links to prior research are given in
section 4. We present experimental results and analysis in section 5. Conclusions are then given in section 6.

2 Related Work

Our work is related with balanced clustering, as the latter is a special case of it, as well as with the more generic problem
of constrained clustering.

Balanced Clustering. A common class of constrained clustering problems is balanced clustering where we wish to
obtain a partition with clusters of the same size. For example, [DeSieno, 1988] introduced a conscience mechanism
which penalizes clusters relative to their size, [Ahalt et al., 1990], then employed it to develop the Frequency Sensitive
Competitive Learning (FSCL) algorithm. In [Li et al., 2018], authors proposed to leverage the exclusive lasso on the
k-means and min-cut problems to regulate the balance degree of the clustering results. [Lin et al., 2019] proposed a
simplex algorithm to solve a minimum cost flow problem similar to k-means. In [Chen et al., 2017], authors proposed a
self-balanced min-cut algorithm for image clustering implicitly using exclusive lasso as a balance regularizer in order to
produce balanced partitions.

Constrained Clustering. Some clustering approaches with generic size constraints, which can be seen as an extension
of balanced clustering, also exist. In [Zhu et al., 2010], a heuristic algorithm to transform size constrained clustering
problems into integer linear programming problems was proposed. Authors in [Ganganath et al., 2014] introduced a
modified k-means algorithm which can be used to obtain clusters of preferred sizes. Clustering paradigms based on OT
generally offer the possibility to set a target distribution for resulting partitions. [Genevay et al., 2019] proposed a deep
clustering algorithm through optimal transport with entropic regularization. In [Fettal et al., 2022], authors proposed a
way to perform biclustering which is an extension of clustering to bipartite graphs through Optimal Transport while
choosing the size of the resulting biclusters.

3 Preliminaries

In what follows, A™ = {p € R[> | p; = 1} denotes the n-dimensional standard simplex. II(w,v) = {Z €

RiXﬂZl = w,Z"1 = v} denotes the transportation polytope, where w € A™ and v € AF are the marginals of
the joint distribution Z and 1 is a vector of ones, its size can be inferred from the context. Matrices are denoted with
uppercase boldface letters, and vectors with lowercase boldface letters. For a matrix M, its ¢-th row is m;. Tr refers
to the trace of a square matrix. ||.||o is the zero norm that returns the number of nonzero elements in its argument. ®
denotes tensor-matrix product.

"https://github.com/chakib401/ot-cut/
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3.1 Graph Cuts

Graph Cut. Given an undirected graph G = (V, £) with an weighted adjacency matrix W € R™*" with n = |V|, a
cut is a partition of its vertices ) into two disjoint subsets .4 and .A. The value of a cut is given by

cut(A) = Z W5 (1)

Ui€A7’LJj cA

Minimum k-cut Problem. The goal of the minimum k-cut problem is to find a partition (A1, ..., A) of the set of
vertices V into k different groups that is minimal in some metric. Intuitively, we wish for the edges between different
subsets to have small weights, and for the edges within a subset have large weights. Formally, it is defined as

k
min-cut(W, k) = min cut(A;). 2
(W, k) AA; (Ai) @)
This problem can also be stated as a trace minimization problem by representing the resulting partition A;, ..., Ag

using an assignment matrix X such that for each row ¢, we have that

T = {1 if vertex 4 is in A;, 5

0 otherwise.

This condition is equivalent to introducing two constraints which are X € {0, 1}"** and X1 = 1. The minimum k-cut
problem can then be formulated as

min-cut(W, k) =  min Tr(X LX), (€))
Xe{o,1}*k
X1=1

where L = D — W refers to the graph Laplacian of the graph G and D is the diagonal matrix of degree of W, i.e.,
dii = wij.
i j Vg

Normalized Cut Problem. In practice, solutions to the minimum k-cut problem do not yield satisfactory partitions due
to the formation of small groups of vertices. Consequently, versions of the problem that take into account some notion
of "size" for these groups have been proposed. The most commonly used one is normalized cut [Shi and Malik, 2000] :

~ cut(A;)
t(W, k) = i ! 5
ncut(W, k) Af,n..lflAk;vol(Ai)’ o)
since vol(A4;) = szDxi, then this problem can also be stated as a trace minimization problem :
. XTLX
ncut(W, k) = Jnin Tr (XTDX) , (6)

Xe{0,1}nxk

where the ratio can be taken as either right or left multiplication of the numerator by the inverse of the denominator, this
equivalence is due to the fact that we use the trace operator and that the denominator is a diagonal matrix. A special
case of the normalized graph cut is recovered by setting D = I in problem 6. This problem is referred to as the ratio cut
problem due to the different groups being normalized by their cardinality instead of their volumes :

k
reut(W,k) = min, 3 C“tﬁi), )

=1

and similarly to the normalized cut, since |A4;| = x7'x;, we can formulate the ratio cut problem as a trace minimization
problem :

XTLX
rcut(W,k) =  min Tr | —=— ). 8
(W.5) Xe{0,1}m % ( XTX ) ®)
X1=1



Spectral Clustering for the Normalized & Ratio Cuts. A common approach to solving the normalized graph cut
problems, spectral clustering, replaces the partition constraints on X with a form of semi-orthogonality constraints. In
the case of rcut, we have
ncut(W,k) = min  Tr (X'LX). )
XeR™ Xk
XTX=I
On the other hand for ncut, the partition matrix X is substituted with H = D'/2X and a semi-orthogonality constraint
is placed on this H, i.e.,
ncut(W,k) = min  Tr (HTD*/?LD*WH). (10)
HER™**
H H=I
A solution H for the ncut problem is formed by stacking the first k-eigenvectors of the symmetrically normalized
Laplacian L, = D~Y/2LD~'/2 as its columns, and then applying a clustering algorithm such as k-means on its
rows and assign the original data points accordingly [Ng et al., 2001]. The principle is the same for the spectral rcut
algorithm.

3.2 Optimal Transport

Discrete optimal transport. The goal of the optimal transport problem is to find a minimal cost transport plan X
between a source probability distribution of w and a target probability distribution v. Here we are interested in the
discrete Kantorovich formulation of OT. When dealing with discrete probability distributions, said formulation is

0T(M, w,v) = i (MLX), (11)

where M € R™** is the cost matrix, and ¢;; quantifies the effort needed to transport a probability mass from w; to v;.

Discrete Gromov-Wasserstein Discrepancy. The generic discrete Gromov-Wasserstein (GW) discrepancy
[Peyré et al., 2016] is an extension of optimal transport to the case where the source and target distributions are
defined on different metric spaces :

GW(M,M', w,v) = . rlgll(in : (L(M,M') ® X, X) (12)
ell(w,v

where M € R™*" and M’ € R**¥ are similarity matrices defined on the source space and target space respectively,
and L : R x R — R is a divergence measure between scalars, L(M, M) is the n x n X k x k tensor of all pairwise
divergences between the elements of M and M.

Gromov-Wasserstein Learning for Graphs. The Gromov-Wasserstein partitioning paradigm S-GWL
[Xu et al., 2019] supposes that the Gromov-Wasserstein discrepancy can uncover the clustering structure of the observed
source graph G when the target graph G,. only contains weighted self-connected isolated nodes, this means that its
adjacency matrix is diagonal. The weights of this diagonal matrix as well as the source and target distribution are
a special function of the node degrees. Their approach uses a regularized proximal gradient method as well as a
recursive partitioning scheme and can be used in a multi-view clustering setting. The problem with this approach
is that it is extremely sensitive the hyperparameter setting which is problematic since it is an unsupervised method.
Another approach, SpecGWL, introduced in [Chowdhury and Needham, 2021] which generalizes spectral clustering
using Gromov-Wasserstein discrepancy and heat kernels but suffers from very high computational complexity since,
given a graph with n node, its optimization procedure involves the computation a gradient which is in O(n3 log(n))
and an eigendecompostion O(n?) and therefore is not usable for large scale graphs.

4 Graph Cuts with Size Constraints via OT

In this section, we derive our optimal transport-based constrained graph cut problem and propose a simple iterative
algorithm for its resolution.

4.1 Graph Cuts via Optimal Transport

As already mentioned, the good performance of the normalized cut algorithm comes from the normalization by the
volume of each group in the cut. However, the size constraint is not a hard one, meaning that obtained groups are not of



exactly the same volume. This leads us to propose to replace the volume normalization by a strict balancing constraint
as follows :

k
. (A
a2 () (13)
such that  vol(A;) = ... = vol(Ay).

Similarly to the ncut problem, this problem can be formulated as a trace minimization problem :

min Tr(X "LX).
X1=D1, XTi1=Zidii1  v,|x;]o=1 (14)

This problem is hard and may not have feasible solutions. However, this problem can be slightly modified to become an
instance of the Gromov-Wasserstein problem, to which relatively efficient heuristics exist. Specifically, the volume
constraint can be implicitly satisfied by defining X to be an element of the transportation polytope with a uniform target
distribution instead of being a partition matrix. The degrees are also normalized by dividing them by their total sum and
then representing them as proportions instead of absolute quantities, yielding the following problem :

min Tr(X "LX)
1 1 (15)
Xell(x4—D1,41)
This formulation is a special case of the Gromov-Wasserstein problem for a source space whose similarity matrix in the
initial space is M = L and whose similarity matrix in the destination space is M’ = 1. Note that a ratio cut version can
easily be obtained by replacing the volume constraint with

A1 = ... = |Ag] (16)
in problem 14, and similarly in problem 15, by setting D = I, giving rise to :

min Tr(X"LX
Xer(11,41) ( ) (17)

4.2 Graph Cuts with Size Constraints

From the previous problem, it is easy to see that target distribution does not need to be uniform, and as such, any
distribution can be considered, leading to further applications like long-tailed dataset clustering. Another observation
is that any notion of size can be considered and not only the volume or cardinality of the formed node groups. We
formulate an initial version of the generic optimal transport graph cut problem as :

. T _ .

e L as)
where 7 is the relative "size’ of the element 7 and 7', is the desired relative "size’ of the group j. Through the form that
uses the Frobenius product, it is easy to see how our problem is related to the Gromov-Wasserstein problem. These size
parameters can either be set using domain knowledge by the expert using our algorithm or by trying multiple guesses and
selecting the best one via internal clustering quality metrics such as Davies-Bouldin index [Davies and Bouldin, 1979],
Silhouette score [Rousseeuw, 1987], etc.

4.3 Transport Plans as Partition Matrices

The proposed approach relies on the fact that the transport plan X can be interpreted as a partition matrix. Fortunately,
this interpretation can be made through the concept of h-almost hard clustering [Fettal et al., 2022] :

Definition 1 (h-almost hard clustering). An h-almost hard clustering is a clustering whose partition matrix is @ € R**F
such that | ® |lo = n + h and for each row ¢ of ® we have that |ic|lo > 0. When h = 0, we obtain a standard hard
clustering with one non-zero element per row.

The extreme points of the transportation polytope are always h-almost hard clustering (see [Peyré et al., 2019,
Fettal et al., 2022] for a proof), so we add a boundary condition to our problem in order to always obtain a trans-
port plan X that can be interpreted easily as a hard partition matrix :

1L ) & i, TKTLX) ®

where ezt is the set of extreme points of its argument. Consequently we have that :



Proposition 1. A solution X to the 0T-cut problem is an h-almost hard clustering with h € {0,...,k — 1}.

We can obtain a size constrained variant of the ncut problem by setting 7% = ﬁDl :

[I>

min Tr(X "LX).
Xcext (H <7Zri1dii D1,7rt) )
Analogously, the variant of the rcut problem is obtained by setting 7w° = %1, yielding :

0T-rcut(L, %) £ min Tr(X TLX),
T Xeexs(T(11,7t)) ( ) @D

0T-ncut(L, %) 20)

4.4 Optimization and Complexity

Problem 19 is nonconvex due to the boundary constraint. We propose to use proximal gradient descent with constant
stepsize to search for a stationary point. We add an 12-norm regularizer to simplify the update rule obtained with the
proximal gradient method. The resulting update rule is :

XD .= arg 0T ((L ~ DX, 75, 7rt> . (22)

Note that when using the symmetrically normalized Laplacian matrix Ly,,, we have that W,,,, = I — Ly, and the
update rule becomes :

X .= arg 0T (—Wsme(t), 75, 7rt> . (23)
The resolution of this problem is possible by stating it as the earth-mover’s distance (EMD) linear program

[Hitchcock, 1941] which can be solved via the network simplex algorithm. This algorithm has been empirically
observed to converge to some stationary point in few iteration based on the initial guess X(9). To illustrate this, in figure
1, we can report the evolution of loss function OT-rcut on MNIST, OT-rcut on FMNIST and OT-ncut on CIFAR-10
(p = 10). The pseudocode for the optimization procedure is presented in algorithm 1. Similarly to the algorithm
proposed in [Peyré et al., 2016] for solving the GW problem with an arbitrary loss and cost matrices, there are no
convergence guarantees. Possible heuristics to improve the quality of the final solution would be doing multiple runs
with different initializations, or initializing the algorithm with a partition matrix obtained from a spectral-cut algorithm
projected onto the transportation polytope.

Proof. We formulate the [5-norm regularized OT-cut problem as
min Tr(X LX) 4 o (r(rs ety (X) — [|X]?
F(X) 9(X)
where I¢ is the indicator function of set C. The proximal gradient update rule with respect to this problem is:

X+ = prox,, (X(t) - )\Vf(X(t)))

= prox,, (X - AV Tr (XLX®))
— _ ®
= prox)\(Im(H("Smt))_l“”z) ((I 2AL)X )

)z @)

1
= argmin = — HZ — (I—2\L)X®
Zeext(II(mws,wt)) 2)

= argmin Lz L@ awxo|
Zeext(Tl(ms mwt)) 2A 2\

1
-5 (ZT(I - 2)\L)X(t)) —|zZ|?,
then by setting A = 3 :
XD .= argmin  Tr (ZT(L - I)X(t)) ,
Zeext(II(ms,mwt))
:=  argmin <Z, (L — I)X(t)> ,

Zecext(II(ms,mt))
here, we can drop the boundary constraint as the solution is guaranteed to be an extreme point of the transportation
polytope. This results in the classical OT problem with cost matrix (L — I)X(t) and marginals 7* and 7®. O

(25)



(a) OT-rcut on MNIST (b) OT-rcut on FMNIST (c) OT-ncut on CIFAR-10 (p=10)

Figure 1: Evolution of loss as function of the number of iterations.

Proposition 2. For a graph with |E| edges and n nodes, the complexity of an iteration of the proposed algorithm is
O (kn2 log n)

Proof. We note that in practice n >> k and that the complexity of the network simplex algorithm for some graph
Gevp = Veup, Vemp) isin O(|Verpl||Errp|log |Eearp|) [Orlin, 1997]. In our case, this graph has |Veyp| =
n + k (since n >> k, we can drop the k) and |Egprrp| = nk. The other operation that is performed during each
iteration is the matrix multiplication (L — I)X®) whose complexity is in O(k|€|), in the worst case when matrix L is
fully dense, we have that |£| = n?. Note that the complexity of the spectral clustering algorithm is in O(kn?). O

Algorithm 1: Proximal Gradient Descent for OT-cut

Input :L Laplacian matrix,
7t® node size distribution,
7t cluster size distribution,
G ¢ initial partition matrix,
maxIter maximum number of iterations.
Output : G partition of the graph.
X(O) = arg 0T (Ginita ﬂ.s’ ﬂ.t)’
while ¢ < maxlIter do
| XD = arg 0T (L — )X ®), %, wt);
end
Generate partition matrix G such that each node v; is assigned it to partition arg max; x;;

5 Links to Prior Works
In this section we discuss how our approach generalizes and can used in conjunction with other approaches.

Optimal-Transport Based Biclustering Biclustering is the extension of clustering to bipartite graphs. Here, we
recover the BCOT [Fettal et al., 2022] problem as a special case of 0T-cut. Given a bipartite adjacency matrix A :

0, x; B
A — nxn
[BT 0d><d:| ’

we recover their formulation through ours by considering this anti-adjacency matrix A :

A=l <2

Then setting 7° = [v,w] and 7v* = [v, w] " and omitting the boundary condition. All in all, we have that
BCOT(L(B),w,v) = 0T-cut (A, [v,w]", [w,v]")

OT Kernel k-Means. In [Genevay et al., 2019], authors proposed an algorithm for k-means with cluster size con-

straints and entropic regularization. By dropping the regularization and adding a boundary constraint, one can think of

the case where the adjacency matrix in our formulation is a kernel matrix and use the same principles that were used
with kernel k-means [Dhillon et al., 2004] to optimize the OT graph cut criterion.



Table 1: Characteristics of the datasets from which we construct the graphs. The balance score p is the ratio of the
number of occurrences of the most frequent class over that of the least frequent class.

Dataset #lmages #Classes Balance
MNIST 60,000 10 1.0
FMNIST 60,000 10 1.0
KMNIST 60,000 10 1.0
CIFAR-10 50,000 10 1.0
CIFAR-10 (p = 5) 25,423 10 5.0
CIFAR-10 (p = 10) 20,431 10 10.0
CIFAR-10 (p = 20) 17,023 10 20.0
CIFAR-10 (p = 100) 12,406 10 100.0

Table 2: Image clustering performance on the imbalanced (long-tail) datasets. Values are the averages over five runs.
Standard deviations were not reported due to being negligible (< 0.1). Best results are highlighted in bold font.

CIFAR-10 (p =5) CIFAR-10 (p = 10) CIFAR-10(p = 20) CIFAR-10 (p = 100)
NMI ARI CFI NMI ARI CFlI NMI ARI CFlI NMI ARI CFl

SC-rcut 0.1 -00 33 01 -00 40 0.1 -00 46 0.1 -0.0 5.8
OT-rcut 116 73 207 121 7.8 198 114 75 179 98 5.7 13.7
OT-rcutge 11.1 64 208 106 65 187 113 74 17.1 98 5.8 13.7
OT-rcuty~ 112 6.1 195 105 54 166 108 54 146 116 56 14.3

SC-ncut 102 56 191 105 62 180 106 58 164 127 6.8 14.6
OT-ncut 120 83 213 101 73 189 106 79 173 84 69 13.8
OT-ncutgc 108 7.5 207 108 7.5 186 105 7.8 162 104 83 14.8
OT-ncuty, 104 59 204 104 56 180 106 57 164 109 5.6 13.1

6 Experiments

We ran experiments on balanced and heavily imbalanced (long-tailed) datasets. We evaluated the clustering performance
of three variants of each of 0T-ncut and 0T-rcut algorithms against the spectral rcut and ncut algorithms, as well
as the ability of our approach to recover the desired partition distribution. We had initially also considered S-GWL as a
baseline but its empirical performance was very poor, specifically, it consistently resulted in assigning all the nodes to
a single cluster. Another OT-based approach is SpecGWL which was not considered due to its log-cubic complexity
which makes it unusable for the datasets we considered. See the supplementary material for more information and
additional experiments.

6.1 Benchmark Datasets

We perform experiments on balanced datasets and long-tailed datasets, namey, MNIST [Deng, 2012], FMNIST

[Xiao et al., 2017], KMNIST [Clanuwat et al., 2018], CIFAR-10 [Krizhevsky et al., 2009] and unbalanced variants of

CIFAR-10 [Cao et al., 2019]. The statistical summaries of these datasets are available in table 5. The CIFAR-10
max; M

(p = T =) variants, are generated using a long-tailed imbalance sampling method that yields a dataset whose
majority class is p times more frequent than the minority class following the procedure described in [Cao et al., 2019].

6.2 Performance Metrics

The evaluation is straightforward, we adopt four popular clustering metrics when dealing with the balanced datasets :
clustering accuracy (CA), clustering F1 score (CF1), normalized mutual information (NMI), and adjusted rand index
(ARI) [Hubert and Arabie, 1985]; multiplied by 100. CA and CF1 are computed by solving a linear assignment problem
[Crouse, 2016]. When dealing with the long-tailed dataset, we only use metrics that are sensitive to imbalance NMI,
ARI, and CF1. When comparing the concordance of the input cluster distribution 7 and the cluster distribution obtained
via one of our algorithms 7r, we use the Kullback-Leibler divergence [Kullback and Leibler, 1951]. The concordance
of two perfectly matching distributions will be equal to zero, otherwise it will be larger.



Table 3: Clustering performance on balanced image datasets. Values are the averages over five runs. Standard deviations
were not reported due to being negligible (< 0.1). Best results are highlighted in bold font. OT-rcut* has the same
results since the ground truth sizes are uniform, similarly, OT-rcutg¢ also has the same results due to SC-rcut returning
a bad guess that is equivalent to a random initialization.
MNIST FMNIST KMNIST CIFAR 10
ACC NMI ARI CF1 ACC NMI ARI CF1 ACC NMI ARI CFl ACC NMI ARI CF1

SC-ncut 402 347 176 376 534 532 365 516 373 304 198 352 222 101 56 215
OT-ncutsc 482 364 27.1 482 478 51.0 355 470 436 332 242 428 215 115 64 213
OT-ncutg, 415 355 250 41.1 563 530 40.7 560 447 336 242 445 230 108 58 23.0

SC-rcut 11.2 0.0 -0.0 20 10.0 0.0 0.0 1.8 10.0 0.0 0.0 1.8 10.0 0.0 0.0 1.8
OT-rcut 383 323 207 382 543 539 39.0 543 41.6 331 223 416 238 11.7 64 238
OT-rcutge Same results as OT-rcut
OT-reuty Same results as OT-rcut

Table 4: The Kullback-Leibler divergence between the imposed target distribution and the one obtained using 0T-cut
variants.

OT-ncut* OT-ncut OT-rcut* OT-rcut

MNIST 3.0e-09  2.3e-09 0.0 0.0
FMNIST 1.7e-09  2.6e-09 0.0 0.0
KMNIST 2.5e-09  4.1e-09 0.0 0.0
CIFAR-10 3.7e-09  3.1e-09 0.0 0.0
CIFAR-10 (p=b) 0.0 2.5e-7 1.6e-8 0.0

CIFAR-10 (p=10) 1.4e-8 6.7¢-9 1.1e-8 0.0
CIFAR-10 (p=20) 7.0e-9 1.2e-8 7.1e-8 0.0
CIFAR-10 (p=100) 8.6e-8 5.1e-8 7.8e-8 0.0

6.3 Experimental settings

We compare two variants of our algorithm, namely, the 0T-ncut and 0T-rcut implemented via the Python optimal
transport package (POT) [Flamary et al., 2021] to the spectral clustering variants SC-ncut and SC-rcut which were
based on the implementation of the spectral clustering in the Scikit-Learn package [Pedregosa et al., 2011]. For each
image dataset represented in matrix form as Y, we use subspace Least Squares Regression Subspace Clustering (LSR)

[Lu et al., 2012] to create the graph, we get A =YY " (YY" +1) ~! Note that all experiments are run five times. In
the results tables, base 0T-cuts variants use random initialization. The variants that end with * use the ground truth
target distribution. Finally, for variants ending in g¢, we choose the initial transport plan X () by first obtaining a
partition matrix through the corresponding spectral clustering algorithm, i.e., spectral ncut (SC-ncut) for OT-ncut and
spectral rcut (SC-rcut) to OT-rcut. We perform 10 iterations of our algorithm to fine-tune the initial guesses of spectral
cuts and perform 20 iterations when using random initialization. All experiments were performed on a 64gb RAM
machine with a 12th Gen Intel(R) Core(TM) 19-12950HX (24 CPUs) processor with a frequency of 2.3GHz.

6.4 Experimental Results

We emphasize the fact that the most important quality metric is the relative difference instead of the absolute value of
the metrics as our objective is not to learn a better graph over the dataset but rather to get a better cut over the chosen
graph.

Performance on balanced datasets. For balanced datasets, the results are reported in table 3. One of our two
approaches yields the best results in all 16 cases. Furthermore, each one of them improves over the results of their
spectral counterpart, exceeding them in 31 out of 32 cases. Notably, our OT-rcut variant achieves a significant
improvement over the spectral ratio cut algorithm.

Performance on long-tailed datasets. Table 2 presents the results obtained on the long-tailed datasets. In all cases,
0T-ncut and 0T-rcut outperform their spectral clustering counterparts, yielding the best performance in 11 out of 12
cases. Notably, the improvement of 0T-rcut over SC-rcut is particularly significant, consistent with the findings in the
balanced case.
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Figure 2: Training times of OT-ncut in seconds (log scale) over subsets of different sizes of MNIST.

Concordance of the Desired & Resulting Cluster Sizes. To evaluate our algorithm’s ability to produce a partition
with the desired group size distribution, we use the Kullback-Leibler (KL) divergence metric. Specifically, we compare
the distribution obtained by our OT-rcut and OT-ncut variants against the target distribution specified as a hyperparameter
(7?). Table 4 presents the KL divergences for both variants on various datasets. Our approaches achieve near-perfect
performance on most datasets. Notably, OT-rcut is able to fully recover the desired group sizes.

Running Time. As shown in figure 2, OT-ncut with random initialization is more efficient than the spectral ncut
algorithm, significantly outspeeding it on all subsets of MNIST despite being theoretically more complex. This is due
to the fact that our algorithm needs few iterations to converge. Regularization can be introduced to further speed up our
algorithms such as low-rank [Scetbon and marco cuturi, 2022] and entropic [Cuturi, 2013] regularizations .

7 Conclusion

In this paper we proposed a new graph cut algorithm for partitioning with arbitrary size constraints through optimal
transport. This approach generalizes the concept of the normalized and ratio cut to arbitrary size distributions and this
for any notion of size. The proposed algorithm works well when used in conjunction with a classical spectral graph
cut algorithm as a post-processing step to obtain some desired distribution. Experiments on balanced and imbalanced
datasets showed the superiority of our approach both in terms of clustering performance and empirical speed compared
to spectral clustering, as well as its ability to recover partitions that almost perfectly match the desired ones which is
valuable for practical problems where we wish to obtain constrained and balanced clusterings.
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A Additional Experiments

In what follows, we report additional results on toy datasets, citation networks as well as benchmark from other OT/GW
graph clustering approaches.

A.1 On Toy Datasets

[ad
L I
AT
% ’o,..' ‘.*
DR %
% KL

(a) Partition generated by OT-ncut with spectral clustering (b) Partition generated by OT-rcut with random initialization
partition as its initialization on a toy dataset (k-NN graph on a toy dataset (RBF kernel with v = 3).
with £ = 10).

Our algorithm deals with a graph cut-like criterion which means that it should partition a dataset according to its
connectivity. This means that it should work on datasets on which metric clustering approaches such as k-means fail.
Two toy examples are given in figures 3a and 3b.

A.2  On Citation Networks

We added extra experiments on three widely used citation networks [1]. Their summary statistics are reported in table
1. Results are reported in table 6. We also added S-GWL [2] as a baseline but it consistently collapsed (see its AMI
and ARI). We believe that this is due to the fact that their algorithm is very sensitive to its hyperparameters as well
as the fact that they used Kullback-Leibler regularization which leads to coupling matrices being dense. Considering
similar regularization also lead to poor results for our approach. SpecGWL [3] was not considered due to its prohibitive
computational complexity of O(n?log(n) in each iteration of its optimization scheme, which makes not viable in
practice. Our approach outperforms all others on all three datasets.

Table 5: Summary statistics of the citation networks [1].
Dataset  #Nodes #Classes Balance (p)

Cora 2708 7 4.5
CiteSeer 3327 6 2.7
PubMed 19717 3 1.9

A.3 On the S-GWL Benchmarks

We compare our approach to S-GWL on the datasets which were used in the original paper for the single graph partition
task since the authors provided the parameters for it. Our variant has the best results over EU-email while the spectral
clustering while ncut has the best results over Indian-village. A variant of our approach does outperform S-GWL over
both datasets. We believe that when taking all experiments into consideration (image datasets + cora, citeseer, pubmed
+ these two datasets) that our approach (as in one of its variants) gives the best overall results. Note that overly precise
parameter setting of S-GWL makes it not very practical for unsupervised learning. In the conclusion of the S-GWL
paper, it is written that "it should be noted that our S-GWL method is sensitive to its hyperparameters.".
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Table 6: Results on the citation networks. We see that our OT variants consistently outperform the baselines.

Cora CiteSeer PubMed
AMI ARI CF1 AMI ARI CF1 AMI ARI CF1
S-GWL 0.0z00  0.0z0.0 0.0z00 0.0z00 0.0z00 0.0z00 0.0z00 0.0x00 0.0x00
SC-ncut 3.6:03 0.2+01 10.9x00 1.2+02 04201 11.3z07 0.5200 0.2z00 19.6200
SC-rcut 0.8200 -0.4x00 7.5x00 1.2z00 0.3z01 10.1z03 0.5z00 0.2:00 19.620.0

OT-ncut(r)* 4.0z01 2.2x08 21.6x24 1.0:01 09202 21.6209 1.3+10 1.8213 38.2x19
OT-ncut* 26202 1.6203 21.2+11 0.7x02 0.6202 20.0z00 1.2202 1.9:02 39.910.3
OT-ncut(r) 3.8:06 2.0:03 22.0z01 1.1x00 009200 21.6x02 0.8202 1.0z02 36.6206
OT-ncut 5.8:010 3.7x00 25.1:07 1.3:03 1.0203 21.1+1.1 0.1z00 0.1x00 34.8200
OT-rcut(r)* 1.1z01  1.1z07 182200 0.4x01 03201 19.7x07 03200 0.4200 36.0+0.1
OT-rcut* 1.1x02 -0.2+00 16.0+04 0.5:00 0.4200 20.0z04 0.1z00 0.2x00 35.2z00
OT-rcut(r) 1.1x02  0.5:01 18.1x00 0.5:00 0.4200 19.7:02 0.1x00 0.2x00 34.7:0.1

OT-rcut 1.9+02 12201  20.5£13 0.8200 0.6200 20.7x01 0.1z00 0.1x00 33.8z00
EU-EMAIL Indian-Village
AMI ARI CF1 AMI ARI CF1
S-GWL 449600 24.90:00 35.33z00 72.08+00 53.33100 67.39:00
SC-rcut 0.3820.0 -0.02+0.0 5.52+005  75.52+796 50.53+14.85 57.01+11.98

SC-ncut 41.161366  8.66+2.61 27.3z16 91.54:14  85.55:4.04 95.48:2.3

OT-rcut(r)*  40.02z077 26.41+2.11 25.34+176 60.97+507  45.3+6.64 54.76+7.92
OT-rcut* 39.41+176  25.08+1.9  25.92:1.14 64.18+332  52.67:337  60.74+7.11
OT-rcut(r) 46.71+1.04 27.17:088 38.1x039  62.5:327  46.46+45 60.48:+4.66
OT-rcut 46.39:065 26.63:036 38.09:068 72.97x202 62.65:323  72.38+355
OT-ncut(r)* 37.93z073 19.69%2.17  30.62096  58.55+268  38.0+3.38 52.41+3.96
OT-ncut* 38.37+195 20.01+193 30.17+1.76  68.18+2.95 50.2+4.38 70.75+3.3

OT-ncut(r) 37.31x0901  11.1:022 31.62093  62.76x463 42331517  60.59+2.65
OT-ncut 37.62+187 11.44+091 31.05:189 66.362082 48.63:1.66  70.54+0381
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