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Abstract

Image Clustering is an important task in computer vision and machine learning
in general, and new applications are constantly appearing. A common way of
obtaining an image dataset partition is through graph cuts, which are also used as
a component in more complex clustering paradigms such as subspace clustering.
One drawback of classical min-cut algorithms is that they tend to produce small
groups, which is why more balanced variants have risen, including normalized and
ratio cuts. We believe, however, that with these variants the balance constraints
are too restrictive for some applications (long-tailed clustering), while not being
restrictive enough for others (when searching for perfectly balanced partitions),
since the constraint is not hard. Here, we propose a new graph cut algorithm for
partitioning with arbitrary size constraints. We formulate the graph cut problem
as a constrained Gromov-Wasserstein problem, and our algorithm is slower than
the classical spectral clustering algorithm by only a ratio of O(log(n)) while being
more efficient in practice. We demonstrate the performance of our approach on
several balanced and imbalanced (long-tail) datasets.

1 Introduction

Clustering is an important task in machine learning and computer vision. Intuitively, the task of image
clustering boils down to grouping images into clusters such that the images within the same clusters
are similar to each other, while those in different clusters are dissimilar. Applications are diverse
and wide ranging, including, for example, content-based image retrieval [Bhunia et al., 2020, Lee
et al., 2022, Bhunia et al., 2021], image annotation [Cheng et al., 2018, Cai et al., 2013], and image
indexing [Cao et al., 2013]. Consequently, much research has been dedicated to image clustering
[Chang et al., 2017, Ji et al., 2017, Elhamifar and Vidal, 2013, Ji et al., 2019].

A popular way of formulating the image clustering problem is through the minimum graph cut
(min-cut) problem where the graph is created based on the input images. However, in practice, the
min-cut problem suffers from the formation of some small groups which leads to bad performance.
As a result, other versions of min-cut were proposed that take into account the size of the resulting
groups, in order to make the partition more balanced. This notion of size is variable, for example,
in the Normalized Cut (ncut) problem [Shi and Malik, 2000], size refers to the total volume of a
group, while in the Ratio Cut (rcut) problem [Hagen and Kahng, 1992], it refers to the cardinality of
a group. A common method for solving the ncut and rcut problems is that of the spectral clustering
algorithm [Von Luxburg, 2007, Ng et al., 2001] which is popular due to it often showing good
empirical performance and being somewhat efficient. The spectral clustering algorithm variants are
present in many image clustering frameworks, such as for subspace clustering [Agrawal et al., 1998]
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where a spectral clustering algorithm is applied to a learned subspace affinity matrix to obtain a
partition of the points according to the subspaces in which they lie.

However, some restrictions that apply to the spectral clustering algorithms and to most approaches
tackling the ncut and rcut problems in general do exist. A first one is that the balance constraint is
not strict enough, meaning that even if we include the size regularization into the min-cut problem,
the groups are still not necessarily of similar size, which is why several truly balanced clustering
algorithm have been proposed in the literature [Chen et al., 2017, 2019, Li et al., 2018]. Another
problem is that the balance constraint is too restrictive for many real world datasets, for example,
a recent trend in computer vision is to propose approaches dealing with long-tailed datasets which
are datasets that contain head classes that represent most of the overall dataset and then have tail
classes that represent a small fraction of the overall dataset [Xu et al., 2022, Zhu et al., 2014]. Some
approaches do propose integrating generic size constraints to the objective like in [Genevay et al.,
2019, Höppner and Klawonn, 2008, Zhu et al., 2010], however these approaches directly deal with
the input images (or data in general) instead of graphs.

In this paper, we propose a novel framework that introduces generic and at the same time stricter size
constraints to the min-cut problem using Optimal Transport. To sum up, the main contributions of
this work are :

• We formulate a problem for obtaining graph cuts that are balanced for an arbitrarily defined
notion of size instead of specifically the volume or cardinality as is traditionally done in spectral
clustering. We also propose a more general formulation of graph cuts with cluster size constraints
which can help when dealing with perfectly balanced datasets and heavily imbalanced datasets
such as long-tailed datasets.

• We then propose a solution for said problem through optimal transport using an approach
reminiscent of the simplex algorithm and analyze its computational complexity. Links with
existing works are also studied.

• Comprehensive experiments on balanced and long-tailed data sets using two variants we named
OT-ncut and OT-rcut showcase the effectiveness of the proposed method compared to the most
common min-cut algorithms (that use spectral clustering) both in terms of obtaining the desired
cluster sizes as well as clustering performance. We release the code of our algorithm 1 for
reproducibility.

The rest of this paper is organized as follows : Preliminaries are presented in Section 2. Some related
work is discussed in section 3. The OT-cut problem and algorithm along with their analysis and links
to prior research are given in section 4. We present experimental results and analysis in section 5.
Conclusions are then given in section 6.

2 Related Work

Our work is related with balanced clustering, as the latter is a special case of it, as well as with the
more generic problem of constrained clustering.

Balanced Clustering A common class of constrained clustering problems is balanced clustering
where we wish to obtain a partition with clusters of the same size. For example, in [Li et al., 2018],
authors proposed to leverage the exclusive lasso on the k-means and min-cut problems to regulate
the balance degree of the clustering results. [Lin et al., 2019] proposed a simplex algorithm to
solve a minimum cost flow problem similar to k-means. In [Chen et al., 2017], authors proposed a
self-balanced min-cut algorithm for image clustering implicitly using exclusive lasso as a balance
regularizer in order to produce balanced partitions.

Constrained Clustering Some clustering approaches with generic size constraints, which can be
seen as an extension of balanced clustering, also exist. In [Zhu et al., 2010], a heuristic algorithm
to transform size constrained clustering problems into integer linear programming problems was
proposed. Authors in [Ganganath et al., 2014] introduced a modified k-means algorithm which can
be used to obtain clusters of preferred sizes. Clustering paradigms based on OT generally offer the

1https://github.com/chakib401/ot-cut
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possibility to set a target distribution for resulting partitions. [Genevay et al., 2019] proposed a deep
clustering algorithm through optimal transport with entropic regularization. In [Fettal et al., 2022],
authors proposed a way to perform biclustering which is an extension of clustering to bipartite graphs
through Optimal Transport while choosing the size of the resulting biclusters.

3 Preliminaries

In what follows, ∆n = {p ∈ Rn
+|

∑n
i=1 pi = 1} denotes the n-dimensional standard simplex.

Π(w,v) = {Z ∈ Rn×k
+ |Z1 = w,Z⊤1 = v} denotes the transportation polytope, where w ∈ ∆n

and v ∈ ∆k are the marginals of the joint distribution Z and 1 is a vector of ones, its size can be
inferred from the context. Matrices are denoted with uppercase boldface letters, and vectors with
lowercase boldface letters. For a matrix M, its i-th row is mi. Tr refers to the trace of a square
matrix. Finally, ⊗ denotes the Kronecker product.

3.1 Graph Cuts

Graph Cut Given an undirected graph G = (V, E) with an weighted adjacency matrix W ∈ Rn×n

with n = |V|, a cut is a partition of its vertices V into two disjoint subsets A and Ā. The value of a
cut is given by

cut(A) =
∑

vi∈A,vj∈Ā wij . (1)

Minimum k-cut Problem The goal of the minimum k-cut problem is to find a partition (A1, ...,Ak)
of the set of vertices V into k different groups that is minimal in some metric. Intuitively, we wish for
the edges between different subsets to have small weights, and for the edges within a subset have
large weights. Formally, it is defined as

min-cut(W, k) = minA1,...,Ak

∑k
i=1 cut(Ai). (2)

This problem can also be stated as a trace minimization problem by representing the resulting partition
A1, . . . ,Ak using an assignment matrix X such that for each row i, we have that

xij =

{
1 if vertex i is in Aj ,

0 otherwise.
(3)

This condition is equivalent to introducing two constraints which are X ∈ {0, 1}n×k and X1 = 1.
The minimum k-cut problem can then be formulated as

min-cut(W, k) = minX∈{0,1}n×k

X1=1

Tr(X⊤LX), (4)

where L = D −W refers to the graph Laplacian of the graph G and D is the diagonal matrix of
degree of W, i.e., dii =

∑
j wij .

Normalized Cut Problem In practice, solutions to the minimum k-cut problem do not yield
satisfactory partitions due to the formation of small groups of vertices. Consequently, versions of the
problem that take into account some notion of "size" for these groups have been proposed. The most
commonly used one is normalized cut [Shi and Malik, 2000] :

ncut(W, k) = minA1,...,Ak

∑k
i=1

cut(Ai)
vol(Ai)

, (5)

since vol(Ai) = xT
i Dxi, then this problem can also be stated as a trace minimization problem :

ncut(W, k) = min X1=1
X∈{0,1}n×k

Tr
(

X⊤LX
X⊤DX

)
. (6)

A special case of the normalized graph cut is recovered by setting D = I in problem 6. This problem
is referred to as the ratio cut problem due to the different groups being normalized by their cardinality
instead of their volumes :

rcut(W,k) = minA1,...,Ak

∑k
i=1

cut(Ai)
|Ai| , (7)

and similarly to the normalized cut, since |Ai| = xT
i xi, we can formulate the ratio cut problem as a

trace minimization problem :

rcut(W, k) = minX∈{0,1}n×k

X1=1

Tr
(

X⊤LX
X⊤X

)
. (8)
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Spectral Clustering for the Normalized & Ratio Cuts A common approach to solving the
normalized graph cut problems, spectral clustering, replaces the partition constraints on X with a
form of semi-orthogonality constraints. In the case of rcut, we have

ncut(W, k) = minX∈Rn×k

X⊤X=I

Tr
(
X⊤LX

)
. (9)

On the other hand for ncut, the partition matrix X is substituted with H = D1/2X and a semi-
orthogonality constraint is placed on this H, i.e.,

ncut(W, k) = minH∈Rn×k

H⊤H=I

Tr
(
H⊤D−1/2LD−1/2H

)
. (10)

A solution H for the ncut problem is formed by stacking the first k-eigenvectors of the symmetrically
normalized Laplacian Ls = D−1/2LD−1/2 as its columns, and then applying a clustering algorithm
such as k-means on its rows and assign the original data points accordingly [Ng et al., 2001]. The
principle is the same for the spectral rcut algorithm.

3.2 Optimal Transport

Discrete optimal transport The goal of the optimal transport problem is to find a minimal cost
transport plan X between a source probability distribution of w and a target probability distribution
v. Here we are interested in the discrete Kantorovich formulation of OT. When dealing with discrete
probability distributions, said formulation is

OT(C,w,v) ≜ minX∈Π(w,v) ⟨C,X⟩ , (11)

where C ∈ Rn×k is the cost matrix, and cij quantifies the effort needed to transport a probability
mass from wi to vj .

Discrete Gromov-Wasserstein Distance The discrete Gromov-Wasserstein (GW) distance [Mé-
moli, 2011] is an extension of optimal transport to the case where the source and target distributions
are defined on different metric spaces :

GW(M,M′,w,v) ≜ minX∈Π(w,v) ⟨L(M,M′)⊗X,X⟩ (12)

where M ∈ Rn×n and M′ ∈ Rk×k are similarity matrices defined on the source space and target
space respectively, and L : R× R→ R is a divergence measure between scalars, L(M,M′) is the
n× n× k × k tensor of all pairwise divergences between the elements of M and M′.

4 Graph Cuts with Arbitrary Size Constraints via OT

Graph Cuts via Optimal Transport As already mentioned, the good performance of the normal-
ized cut algorithm comes from the normalization by the volume of each group in the cut. However,
the size constraint is not a hard one, meaning that obtained groups are not of exactly the same volume.
This leads us to propose to replace the volume normalization by a strict balancing constraint as
follows :

min
A1,...,Ak

k∑
i=1

cut(Ai) such that vol(A1) = . . . = vol(Ak). (13)

Similarly to the ncut problem, this problem can be formulated as a trace minimization problem :

min
X∈Rn×k

Tr(X⊤LX) such that X1 = D1, X⊤1 =
1

k
1. (14)

This problem is combinatorial and thus may appear difficult to optimize. However, this is problem
can be slightly modified to become an instance of the Gromov-Wasserstein problem, to which exists
relatively efficient heuristics exist. Specifically, the volume constraint can be dropped by rather
defining X to be an element of the transportation polytope instead of being a partition matrix. The
degrees are also normalized by dividing them by their total sum and then representing them as
proportions instead of absolute quantities, yielding the following problem :

min Tr(X⊤LX) such that X ∈ Π

(
1∑
i dii

D1,
1

k
1

)
(15)
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This formulation is a special case of the Gromov-Wasserstein problem for a source space whose
similarity matrix is C = L and whose destination similarity matrix is C′ = I.

Note that a ratio cut version can easily be obtained by replacing the volume constraint with

|A1| = . . . = |Ak| (16)

in problem 14, and similarly in problem 15, by setting D = I, giving rise to :

min Tr(X⊤LX) such that X ∈ Π

(
1

n
1,

1

k
1

)
(17)

Graph Cuts with Size Constraints From the previous problem, it is easy to see that target
distribution does not need to be uniform, and thus any distribution can be considered, leading to
further applications like long-tailed dataset clustering. Another observation is that any notion of size
can be considered and not only the volume or cardinality of the formed node groups. We formulate
the generic optimal transport graph cut problem as :

min
X∈Π(πs,πt)

Tr(X⊤LX) ≡ min
X∈Π(πs,πt)

⟨LX,X⟩ , (18)

where πs
i is the relative ’size’ of the element i and πt

j is the desired relative ’size’ of the group j.
Through the form that uses the Frobenius product, it is easy to see how our problem is related to the
Gromov-Wasserstein problem.

While using the Laplacian matrix makes the problem resemble the graph cut problem more closely, in
practice, we will be using a heuristic approach that consists in solving intermediate optimal transport
problems (as shown in algorithm 1). Since the Laplacian matrix L contains positive and negative
values, it harder to interpret as a cost matrix and thus making the resolution of these intermediate
problems using OT solvers unstable. Thus, during the resolution, we will be considering a cost matrix
M = −W instead of the graph Laplacian.

Transport Plans as Partition Matrices The proposed approach relies on the fact that the transport
plan X can be interpreted as a partition matrix. Fortunately, this interpretation can be made through
the concept of h-almost hard clustering [Fettal et al., 2022] :

Definition 1 (h-almost hard clustering). An h-almost hard clustering is a clustering whose partition
matrix is C ∈ Rn×k such that ∥C∥0 = n+ h and for each row c of C we have that ∥c∥0 > 0, where
∥.∥0 is the zero norm. When h = 0, we obtain a standard hard clustering with one non-zero element
per row.

The extreme points of the transportation polytope are always h-almost hard clustering (see [Peyré
et al., 2019, Fettal et al., 2022] for a proof), so we add a boundary condition to our problem in order
to always obtain a transport plan X that can be interpreted easily as a hard partition matrix :

OT-cut(W, k) ≜ min Tr(X⊤MX) such that X ∈ ext(Π
(
πs, πt

)
), (19)

where ext is the set of extreme points of its argument. Consequently we have that :

Proposition 1. A solution X to the OT-cut problem is an h-almost hard clustering with h ∈
{0, . . . , k − 1}.

The OT-ncut version is obtained by setting πs =
1∑
i dii

D1 :

OT-ncut(W, k) ≜ min Tr(X⊤MX) such that X ∈ ext
(
Π

(
1∑
i dii

D1, πt

))
(20)

while for the OT-rcut criterion, we set πs =
1
n , yielding :

OT-rcut(W, k) ≜ min Tr(X⊤MX) such that X ∈ ext
(
Π

(
1

n
1, πt

))
, (21)
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Figure 1: Evolution of Loss as function of the number of iterations.

Optimization and Complexity To solve the OT-cut problem, we propose to follow the principle of
the simplex algorithm and to visit an extreme point the transportation polytope with a better objective
value than the previous one at each iteration. We do this by introducing what basically comes down
to a variable substitution as follows :

OT-cut(W, k) ≜ min
X(k+1)∈ext(Π(πs,πt))

〈
MX(k),X(k+1)

〉
. (22)

Given a current solution X(k), we find the next solution X(k+1) by solving this optimal transport
problem :

X(k+1) ← arg OT
(
LX(k), πs, πt

)
. (23)

A resolution is possible by stating it as the earth-mover’s distance problem [Hitchcock, 1941] which
can be solved via the network simplex algorithm. The loss function is guaranteed to decrease between
consecutive iterations and it converges to a local minima in few iteration based on the initial guess
X(0), for example, in figure 1, we can see the evolution of loss function OT-rcut on MNIST, OT-rcut
on FMNIST and OT-ncut on CIFAR-10-LT (ρ = 10). The pseudocode for the optimization procedure
is presented in algorithm 1.

Possible heuristics to improve the quality of the final solution would be doing multiple runs with
different initializations, or initializing the algorithm with a partition matrix obtained from a spectral-
cut algorithm projected onto the transportation polytope.
Proposition 2. For a graph with |E| edges and n nodes, the complexity of an iteration of the proposed
algorithm is

O
(
kn2 log n

)
Proof. To prove this, we note that in practice n >> k and that the complexity of the network simplex
algorithm for some graph Gemd = (Vemd,Vemd) is in O(|Vemd||Eemd| log |Eemd|) [Orlin, 1997]. In
our case, this graph has |Vemd| = n+ k (since n >> k, we can drop the k) and |Eemd| = nk. The
other operation that is performed during each iteration is the matrix multiplication MX(k) whose
complexity is in O(k|E|), in the worst case when matrix M is fully dense, we have that |E| = n2.
Note that the complexity of the spectral clustering algorithm is generally in O(kn2).

Algorithm 1: OT-cut
Input :A adjacency matrix, πs node size distribution, πt group size distribution, Ginit initial

partition matrix.
Output :G partition of the graph
X(0) ← arg OT (Ginit, π

s, πt);
while not converged do

X(k+1) ← arg OT
(
MX(k), πs, πt

)
;

end
Generate partition matrix G such that each node vi is assigned it to partition argmaxi xi;

5 Connections with Prior Works

Gromov-Wasserstein Learning for Graphs The Gromov-Wasserstein partitioning paradigm [Xu
et al., 2019] supposes that the Gromov-Wasserstein discrepancy can uncover the clustering structure
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of the observed source graph G when the target graph Gdc only contains weighted self-connected
isolated nodes, this means that its adjacency matrix is diagonal. The weights of this diagonal matrix
as well as the source and target distribution are a special function of the node degrees. Their approach
uses a regularized proximal gradient method as well as a recursive partitioning scheme and can be
used in a multi-view clustering setting.

Optimal-Transport Based Biclustering Biclustering is the extension of clustering to bipartite
graphs. Here, we recover the BCOT [Fettal et al., 2022] problem as a special case of OT-cut.
Given a bipartite adjacency matrix A, we recover their formulation through ours by considering this
anti-adjacency matrix Ā :

A =

[
0n×n B
B⊤ 0d×d

]
, Ā =

[
∞n×n L(B)
L(B)⊤ ∞d×d

]
.

Then setting πs = [v,w]⊤ and πs = [v,w]⊤ and omitting the boundary condition. All in all, we
have that

BCOT(L(B),w,v) ≡ OT-cut
(
Ā, [v,w]⊤, [w,v]⊤

)
OT Kernel k-Means In [Genevay et al., 2019], authors proposed an algorithm for k-means with
cluster size constraints and entropic regularization. By dropping the regularization and adding a
boundary constraint, one can think of the case where the adjacency matrix in our formulation is a
kernel matrix and use the same principles that were used with kernel k-means [Dhillon et al., 2004]
to optimize the OT graph cut criterion.

6 Experiments

We ran experiments on balanced and heavily imbalanced (long-tailed) datasets. We evaluated the
clustering performance of three variants of each of OT-ncut and OT-rcut algorithms against the
spectral rcut and ncut algorithms, as well as the ability of our approach to recover the desired partition
distribution.

6.1 Datasets

We perform experiments on balanced datasets and long-tailed datasets. The statistical summaries of
these datasets are available in table 1. The CIFAR-10-LT (ρ = maxi ni

mini ni
) variants, are generated using

a long-tailed imbalance sampling method that yields a dataset whose majority class is ρ times more
frequent than the minority class. Long-tailed imbalance follows an exponential decay in sample sizes
across different classes.

6.2 Metrics

The evaluation is straightforward, we adopt four popular clustering metrics when dealing with the
balanced datasets : clustering accuracy (CA), normalized mutual information (NMI), adjusted rand
index (ARI) [Hubert and Arabie, 1985], and clustering F1 score (CF1). When dealing with the
long-tailed dataset, we only use metrics that are sensitive to imbalance NMI, ARI, and CF1. When
comparing the concordance of the input cluster distribution π and the cluster distribution obtained via
one of our algorithms π̂, we use the Kullback-Leibler divergence. The concordance of two perfectly
matching distributions will be equal to zero, otherwise it will be larger .

6.3 Experimental settings

We compare two variants of our algorithm, namely, the OT-ncut and OT-rcut implemented via the
Python optimal transport package (POT) [Flamary et al., 2021] to the spectral clustering variants
SC-ncut and SC-rcut which were based on the implementation of the spectral clustering in the
Scikit-Learn package [Pedregosa et al., 2011]. For each image dataset represented in matrix form as
Y, we use subspace Least Squares Regression Subspace Clustering (LSR) [Lu et al., 2012] to create
the graph, we get A = YY⊤ (

YY⊤ + I
)−1

. Note that all experiments are run five times. In the
results tables, base OT-cuts variants use random initialization. The variants that end with * use the
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Table 1: Characteristics of the datasets. The balance score is the ratio of the number of occurrences
of the most frequent class over that of the least frequent class.

Dataset #Images Dimension #Classes Balance

MNIST [Deng, 2012] 60,000 784 10 1.0
Fashion-MNIST [Xiao et al., 2017] 60,000 334 10 1.0
KMNIST [Clanuwat et al., 2018] 60,000 784 10 1.0
CIFAR-10 [Krizhevsky et al., 2009] 50,000 1024 10 1.0

CIFAR-10-LT (ρ = 5) 25,423 1024 10 5.0
CIFAR-10-LT (ρ = 10) 20,431 1024 10 10.0
CIFAR-10-LT (ρ = 20) 17,023 1024 10 20.0
CIFAR-10-LT (ρ = 100) [Cao et al., 2019] 12,406 1024 10 100.0
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Figure 2: Training times of OT-ncut in seconds (log scale)
over subsets of different sizes of MNIST.

Figure 3: OT-rcut clusters on a toy
dataset (RBF kernel with γ = 3).

ground truth target distribution. Finally, for variants ending in SC , we choose the initial transport plan
X(0) by first obtaining a partition matrix through the corresponding spectral clustering algorithm, i.e.,
spectral ncut (SC-ncut) for OT-ncut and spectral rcut (SC-rcut) to OT-rcut. We perform 10 iterations
of our algorithm to fine-tune the initial guesses of spectral cuts and perform 20 iterations when using
random initialization.

6.4 Results

The results on the two dataset types are presented in what follows. We emphasize that the most
important metric to see is the relative difference instead of the absolute value of the metrics since the
goal is not to learn a better graph over the dataset but rather to get a better cut over said graph.

Performance on balanced datasets For balanced datasets, the results are reported in table 3. One
of our two approaches yields the best results in all 16 cases. Furthermore, each one of them improves
over the results of their spectral counterpart, exceeding them in 31 out of 32 cases. Notably, our
OT-rcut variant achieves a significant improvement over the spectral ratio cut algorithm. In figure 1,
we see the results of OT-rcut on a toy dataset (two circles) using an RBF kernel.

Table 2: Image clustering performance on the imbalanced (long-tail) datasets. Values are the averages
over five runs. Standard deviations were not reported due to being negligible (≤ 0.1).

CIFAR-10-LT (ρ = 5) CIFAR-10-LT (ρ = 10) CIFAR-10-LT (ρ = 20) CIFAR-10-LT (ρ = 100)

NMI ARI CF1 NMI ARI CF1 NMI ARI CF1 NMI ARI CF1

rcut 0.1 -0.0 3.3 0.1 -0.0 4.0 0.1 -0.0 4.6 0.1 -0.0 5.8
OT-rcut 11.6 7.3 20.7 12.1 7.8 19.8 11.4 7.5 17.9 9.8 5.7 13.7
OT-rcutSC 11.1 6.4 20.8 10.6 6.5 18.7 11.3 7.4 17.1 9.8 5.8 13.7
OT-rcut∗SC 11.2 6.1 19.5 10.5 5.4 16.6 10.8 5.4 14.6 11.6 5.6 14.3

ncut 10.2 5.6 19.1 10.5 6.2 18.0 10.6 5.8 16.4 12.7 6.8 14.6
OT-ncut 12.0 8.3 21.3 10.1 7.3 18.9 10.6 7.9 17.3 8.4 6.9 13.8
OT-ncutSC 10.8 7.5 20.7 10.8 7.5 18.6 10.5 7.8 16.2 10.4 8.3 14.8
OT-ncut∗SC 10.4 5.9 20.4 10.4 5.6 18.0 10.6 5.7 16.4 10.9 5.6 13.1
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Table 3: Clustering performance on balanced image datasets. Values are the averages over five runs.
Standard deviations were not reported due to being negligible (≤ 0.1). OT-rcut* has the same
results since the ground truth sizes are uniform, similarly, OT-rcutSC has the also same results due to
SC-rcut returning a bad guess that is equivalent to a random initialization.

MNIST FMNIST KMNIST CIFAR 10

ACC NMI ARI CF1 ACC NMI ARI CF1 ACC NMI ARI CF1 ACC NMI ARI CF1

SC-ncut 40.2 34.7 17.6 37.6 53.4 53.2 36.5 51.6 37.3 30.4 19.8 35.2 22.2 10.1 5.6 21.5
OT-ncutSC 48.2 36.4 27.1 48.2 47.8 51.0 35.5 47.0 43.6 33.2 24.2 42.8 21.5 11.5 6.4 21.3
OT-ncut∗SC 41.5 35.5 25.0 41.1 56.3 53.0 40.7 56.0 44.7 33.6 24.2 44.5 23.0 10.8 5.8 23.0
SC-rcut 11.2 0.0 -0.0 2.0 10.0 0.0 0.0 1.8 10.0 0.0 0.0 1.8 10.0 0.0 0.0 1.8
OT-rcut 38.3 32.3 20.7 38.2 54.3 53.9 39.0 54.3 41.6 33.1 22.3 41.6 23.8 11.7 6.4 23.8
OT-rcutSC Same results as OT-rcut
OT-rcut∗SC Same results as OT-rcut

Table 4: The Kullback-Leibler divergence between the desired input target distribution and the one
obtained using OT-cut variants.

OT-ncut* OT-ncut OT-rcut* OT-rcut

MNIST 3.00e-09 2.30e-09 0.0 0.0
FMNIST 1.70e-09 2.60e-09 0.0 0.0
KMNIST 2.50e-09 4.10e-09 0.0 0.0
CIFAR-10 3.70e-09 3.10e-09 0.0 0.0

CIFAR-10-LT (ρ = 5) 0.0 2.53e-07 1.62e-08 0.0
CIFAR-10-LT (ρ = 10) 1.48e-08 6.70e-09 1.08e-08 0.0
CIFAR-10-LT (ρ = 20) 7.00e-09 1.26e-08 7.07e-08 0.0
CIFAR-10-LT (ρ = 100) 8.62e-08 5.14e-08 7.80e-08 0.0

Performance on long-tailed datasets Table 2 presents the results obtained on the long-tailed
datasets. In all cases, OT-ncut and OT-rcut outperform their spectral clustering counterparts, yielding
the best performance in 11 out of 12 cases. Notably, the improvement of OT-rcut over SC-rcut is
particularly significant, consistent with the findings in the balanced case.

Concordance of the Desired & Resulting Cluster Sizes To evaluate our algorithm’s ability to
produce a partition with the desired group size distribution, we use the Kullback-Leibler (KL)
divergence metric. Specifically, we compare the distribution obtained by our OT-rcut and OT-ncut
variants against the target distribution specified as a hyperparameter (π). Table 4 presents the
KL divergence values for both variants on various datasets. Our approaches achieve near-perfect
performance on most datasets. Notably, OT-rcut is able to fully recover the desired group sizes.

Running Time As Figure 2 shows, OT-cut with random initialization is more scalable than the spec-
tral ncut algorithm, significantly outspeeding it on all subsets of MNIST despite being theoretically
more complex. This is due to the fact that our algorithm needs few iterations to converge.

7 Conclusion

In this paper we proposed a new graph cut algorithm for partitioning with arbitrary size constraints
through optimal transport. This approach generalizes the concept of the normalized and ratio cut
to arbitrary size distributions and this for any notion of size. The proposed algorithm works well
when used in conjunction with a classical spectral graph cut algorithm as a post-processing step
to obtain some desired distribution. Experiments on balanced and imbalanced datasets showed the
effectiveness of our approach both in terms of clustering performance, computational speed, as well
as its ability to recover partitions that almost perfectly match the desired ones.
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