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Abstract— Aiming to take full advantage of Electric 

Vehicles’ (EVs) batteries, this paper proposes a two-level 

hierarchical model predictive controller coupled with an 

innovative charging-discharging scheduler for EVs in Building 

Microgrids (BMGs). This paper provides a complete framework 

for the design of this control structure and analyses its 

performance regarding the state of charge of the EVs at 

departure time, the self-consumption rate, and the coverage 

rate, considering a residential BMG equipped with photovoltaic 

panels and static Li-ion batteries. The results and performance 

of the proposed control architecture are compared to two other 

solutions: a hierarchical predictive controller with no scheduler 

and a rule-based algorithm. A technological and economical 

study is also performed considering variables such as the 

dimension of the EV’s park, the price of energy, the cost of 

maintenance, the possibility to discharge or not into the grid, 

and the execution time of the control architecture. The 

simulation results conducted in MATLAB Simulink 

demonstrated that the proposed control structure ensures the 

full charging of all vehicles at departure time while also 

improving the self-consumption rate of the BMG with a 

relatively low stress on the needed computation capacities, even 

when considering a large fleet of vehicles. 

Keywords—Model Predictive Control, Electric Vehicles, 

Building microgrid, self-consumption, economic analysis 

I. INTRODUCTION 

ITH the fast electrification in the transportation 

sector, Electric Vehicles (EVs) play a critical role in 

meeting the environmental goals to address climate 

change [1]. However, without appropriate coordination of EV 

charging, the sharp increase of EV fleets [2] can introduce 

harmful effects on the grid stability, such as overload of 

transformers and power quality issues [3]–[5]. To adapt the 

current grid to this new paradigm, EVs in the bidirectional 

Vehicle-to-Grid (V2G) configuration have emerged as a 

promising strategy to reduce the negative effects of EV surge 

[6]–[8]. Variations on this approach also exist, such as 

Vehicle to Building [9], [10] and Vehicle to Home [11]. This 

is because V2G technology enables EVs to be employed as 

both a flexible load and an Energy Storage System (ESS) 

[12]. 

Consequently, while parked, EV’s batteries can provide 

some grid services to assist the integration of Renewable 

Energy Sources (RES) into the electrical grid that struggles 

with volatility in the power imbalance. EVs’ batteries can be 

discharged to supply the local demand and can be charged to 

avoid the injection of RES energy surplus. Particularly, since 

EVs are parked for more than 90% of their lifetime, their 

batteries can be coupled to buildings’ parking lots equipped 

with RES such as roof-top photovoltaic (PV) panels [13]. 

This grid topology – known as Building Microgrid (BMG) – 

facilitates EVs’ owners to charge their vehicles’ batteries 

with clean energy while at the same time reducing the 

drawbacks created by unpredictable RES energy generation. 

Nonetheless, the design of a Building Energy Management 

System (BEMS) is required to properly coordinate the 

charging-discharging of EVs to improve the BMG’s PV self-

consumption and assure that all EVs are completely charged 

before their departure time [3]. 

In the literature, there are many strategies to coordinate the 

charging-discharging of EVs to promote PV self-

consumption in buildings [9], [11], [14]–[16]. To assure that 

all EVs are fully charged and to maximise the PV self-

consumption, the BEMS are usually divided twofold [6], [8]: 

a central unit to optimise the BMG power flow, and a real-

time module to charge and discharge each EV according to a 

priority order [17]. However, the aleatory disconnection of 

EVs is hardly taken into account. In fact, a variety of 

algorithms incorporating machine learning and other 

prediction techniques are emerging to be added to the main 

energy management system to predict the availability of the 

EVs [15], [18]. Additionally, when dealing with large EV 

fleets, the computation burden is the main issue of power 

flow optimisation [3], [6], limiting the BMG power flow to 

be optimised only once a day. Alternatively, simple on-board 

strategies to EVs’ power allocation exist [19], but they 

consider neither prediction data nor uncertainty in EVs’ 

disconnection nor the use of another type of ESS. These 

solutions tackle complex micro-grids with a low 

computational effort, but they cannot handle their stochastic 

nature, therefore leading to non-optimal solutions. 

Aiming at maximising PV self-consumption in BMG 

under stochasticity in prediction data, a two-level Model 

Predictive Controller (MPC) empowered with a light Electric 

Vehicle Power Allocation (EVPA) module was designed. 

Contrary to many studies [6], [7], the innovation of the 

proposed controller is that no parameter needs to be tuned to 

maximise the self-consumption rate and guarantee the full 

charging of EV fleets. The capabilities and robustness of the 

proposed hierarchical controller were assessed through 

simulations in MATLAB Simulink of a real-sized residential 

BMG equipped with PV, Li-ion batteries, and an EV parking 

with 4, 20, or 40 vehicles. Furthermore, this paper quantifies 

the additional degradation rate of EVs’ batteries when they 

are discharged to supply the building energy demand and 

identifies a type of remuneration to foster EVs’ owners to 

authorise using their EVs’ batteries to promote self-

consumption in BMGs. As extension of the authors’ previous 

work [20], a sensitivity analysis on the electricity price and 

EV batteries price is conducted in order to identify the prices 

that would be economically advantageous to discharge the 

EVs batteries on behalf of the building energy demand. A 

complete economic and energetic study was led on these 

topics applied to the specific case study of the residential 

building. The results show two major conclusions: first, the 
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algorithm proposed and the suggested association of 

centralized units of control around the main MPC controller 

is efficient and behaves better than the all-in-one structure 

often presented in BEMS [6]–[8], [19]. Second, the choice of 

a residential building with intermittent solar power is not the 

most optimal one. In fact, a building where EVs park during 

the day would be much more remarkable when it comes to 

studying the interests of combining EVs to BMS. 

The remainder of this paper is structured as follows. 

Section II presents the BMG understudy and the design of the 

hierarchical MPC. Section III details the proposed EVPA 

algorithm by highlighting its interaction with the two-level 

MPC. Section IV presents the simulation results with 

discussions over the system performance, comparing three 

different control structures with each other, considering the 

total grid energy exchange, building energy cost, and final 

EV users’ interests. Finally, Section V concludes the paper 

with a discussion over the main results. 

II. HIERARCHICAL MODEL PREDICTIVE CONTROLLER 

As shown in Fig. 1, the BMG counts on static Li-ion 

batteries and a parking with up to 𝑁𝐸𝑉 EVs to supply its local 

demand as much as possible with PV energy generated 

locally. The proposed hierarchical BEMS – designed in C++ 

language – is composed of three control levels, namely: 

Economic MPC (EMPC), Tracking MPC (TMPC), and 

EVPA. Considering the prediction data of fluctuations in the 

internal power imbalance, the EMPC determines State-of-

Charge (SoC) references of stationary batteries (𝑆𝑜𝐶𝑏𝑎𝑡,𝑘
𝑟𝑒𝑓

) 

and the references for EV parking stored energy (𝐸𝐸𝑉,𝑘 
𝑟𝑒𝑓

) for 

each hour 𝑘. Therefore, the time discretization (𝑇𝑠
𝐸𝑀𝑃𝐶 ) of 

EMPC is one hour. Before optimizing its cost function (1), 

the EMPC considers the most recent data predictions 

concerning the building power imbalance, and the state of 

charge of static Li-ion batteries and of the EV parking to 

calculate optimal setpoints for each ESS. These references 

are determined through the optimisation of the cost function 

defined in (1) using Mixed Integer Linear Programming of 

CPLEX framework.  

 
𝑚𝑖𝑛

𝑆𝑜𝐶𝑟𝑒𝑓
𝑏𝑎𝑡,𝐸𝐸𝑉

𝑟𝑒𝑓
∑ |𝐸𝑔𝑟𝑖𝑑,𝑘

𝑖𝑚𝑝𝑜𝑟𝑡
| +

48ℎ

𝑘=1
|𝐸𝑔𝑟𝑖𝑑,,𝑘
𝑒𝑥𝑝𝑜𝑟𝑡

| 

s.t.: Eq.(5) – (16) 

(1) 

With this formulation, the BMG uses its ESS to maximise 

the PV self-consumption (𝜏𝑠𝑐) and coverage (𝜏𝑐) rates defined 

by (2) and illustrated in Fig. 2, avoiding importing (𝐸𝑔𝑟𝑖𝑑,𝑘
𝑖𝑚𝑝𝑜𝑟𝑡

) 

and exporting energy (𝐸𝑔𝑟𝑖𝑑,𝑘
𝑒𝑥𝑝𝑜𝑟𝑡

). It minimizes the grid energy 

exchange by defining the setpoints for the batteries SoC and 

EV energy stored for the next 48 hours. The EMPC is an 

asynchronous control unit updated every midnight or when 

the gap between the expected grid exchange calculated by the 

EMPC internal models and the real one measured by the 

smart meter is higher than a pre-defined threshold (i.e. 7%). 

The errors in the EMPC’s prediction states can come from 

either stochasticity in the power imbalance, imprecisions in 

the ESS’s internal model, or unexpected EVs disconnection. 

The horizon of the EMPC is 48 hours ahead to consider the 

daily PV power fluctuations and avoid depleting the static Li-

ion battery. Since the Li-ion batteries were sized to be 

completed charged and discharged during a day to avoid 

wasting energy due to self-discharging [21], the daily 

optimization of (1) will prevent the BMG from ending the 

day with static batteries completely discharged. 

 𝜏𝑠𝑐 = 1 −
∑|𝐸𝑔𝑟𝑖𝑑,𝑘

𝑖𝑚𝑝𝑜𝑟𝑡
|

∑𝐸𝑝𝑣
; 𝜏𝑐 = 1 −

∑|𝐸𝑔𝑟𝑖𝑑,,𝑘
𝑒𝑥𝑝𝑜𝑟𝑡

|

∑ 𝐸𝑐𝑜𝑛𝑠
 (2) 

 
Fig. 2: Definition of self-consumption and coverage rate for a building 

microgrid. 

Meanwhile, TMPC follows 𝑆𝑜𝐶𝑏𝑎𝑡
𝑟𝑒𝑓

 and 𝐸𝐸𝑉 
𝑟𝑒𝑓

 determined 

by the EMPC. It calculates the power references for batteries 

(𝑃𝐵𝐴𝑇
𝑐ℎ  and 𝑃𝐵𝐴𝑇

𝑑𝑖𝑠 ) and for the entire EV parking (𝑃𝐸𝑉𝑠
𝑐ℎ  and 

𝑃𝐸𝑉𝑠
𝑑𝑖𝑠 ) based on the updated prediction data and SoC 

measurements. Therefore, every hour, TMPC minimizes the 

error between the actual energy stored in ESSs and the EMPC 

setpoints, as defined in (4). The tracking of the stored energy 

in the EV parking and the SoC of Li-ion batteries is 

implemented within a horizon of 6 hours ahead to reduce the 

required computation time, while considering reliable 

prediction data of the building power imbalance (𝑃𝑃𝑉 − 𝑃𝑐𝑜𝑛𝑠). 

Therefore, before optimising (3), TMPC updates the SoC of 

Li-ion Batteries, the energy stored in the EV park with last 

data measurements. Additionally, the cost function expressed 

in (4) is normalised to make the error of each reference 

tracking between 0 and 1 by dividing each tracking error by 

its maximum values (𝐸𝐸𝑉,𝑘
𝑚𝑎𝑥and 𝑆𝑜𝐶𝑏𝑎𝑡

𝑚𝑎𝑥). This normalization 

is important to make it independent of manually adjustable 

parameters, as in [6]. Additionally, aiming to give more 

importance to the instantaneous references than the upcoming 

references, the quadratic errors are multiplied by the term 

(𝑁ℎ
𝑇𝑀𝑃𝐶 − 𝑘 − 1)2, where 𝑁ℎ is the TMPC horizon and 𝑘 is 

the time within the horizon window. 
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Fig. 1: Hierarchical building energy management system. 



 



𝑚𝑖𝑛
𝑃𝐵𝐴𝑇
𝑐ℎ,𝑑𝑖𝑠,𝑃𝐸𝑉𝑠

𝑐ℎ,𝑑𝑖𝑠
∑ (

𝑁ℎ − 𝑘 − 1

𝑆𝑜𝐶𝑏𝑎𝑡
𝑚𝑎𝑥 )

2

(𝑆𝑜𝐶𝑏𝑎𝑡
𝑟𝑒𝑓
− 𝑆𝑜𝐶𝑏𝑎𝑡,𝑘)

22

⏟                        
𝐿𝑖−𝑖𝑜𝑛 𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠 𝑆𝑜𝐶 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔

𝑁ℎ=6ℎ

𝑘=1

+ (
𝑁ℎ − 𝑘 − 1

𝐸𝐸𝑉,𝑘
𝑚𝑎𝑥 )

2

( 𝐸𝐸𝑉
𝑟𝑒𝑓
− 𝐸𝐸𝑉,𝑘)

2

⏟                    
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑆𝑜𝐶 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔

 

s.t.: Eq.(5) – (16) 

(4) 

Both MPC objective functions have the same constraints 

to keep the safe operation of ESSs and respect the grid code 

for small prosumers in France [22]. In the first place, both 

MPCs must assure the energy balance by considering the 

equality constraint defined in (5), in which 𝑇𝑠  is the time 

discretisation of the MPCs. The energy exchange between the 

external grid and the BMG has to be lower than the maximum 

supported by the infrastructure (𝐸𝑔𝑟𝑖𝑑
𝑚𝑎𝑥) . This limitation is 

modelled through the constraint expressed in (6). 

Furthermore, the charging and discharging of EV parking are 

limited by the maximum power rate of the aggregation of EVs 

( 𝑃𝐸𝑉
𝑚𝑎𝑥𝐶ℎ  and 𝑃𝐸𝑉

𝑚𝑎𝑥𝐷𝑖𝑠 ), as defined in (7) and (8). The 

maximum power rate of EV parking is a variable that is 

updated by the EVPA module every hour. 

To avoid taking advantages from fluctuations of electricity 

price, stationary batteries can be charged only with PV power 

surplus (𝑃𝑐𝑜𝑛𝑠 ≤ 𝑃𝑝𝑣) as specified in (9). Meanwhile, they can 

only be discharged to supply the local power demand (𝑃𝑐𝑜𝑛𝑠) 
or charge EVs (𝑃𝐸𝑉,𝑘

𝑐ℎ ), as expressed in (10). Additionally, the 

power setpoint of Li-ion batteries are limited to their 

maximum power rate (𝑃𝑏𝑎𝑡
𝑚𝑎𝑥𝐷𝑖𝑠  and 𝑃𝑏𝑎𝑡

𝑚𝑎𝑥𝐶ℎ ) specified in 

their datasheet. The Boolean variables 𝛿𝐸𝑉
𝑐ℎ  or 𝛿𝑏𝑎𝑡

𝑐ℎ  (i.e. 𝛿𝐸𝑉
𝑑𝑖𝑠 

or 𝛿𝑏𝑎𝑡
𝑑𝑖𝑠 ) are worth 1 when the ESS is charging (i.e. 

discharging); and 0 otherwise. Therefore, equation (11) 

avoids the controller charging and discharging each ESS 

simultaneously.  

(𝑃𝑏𝑎𝑡,𝑘
𝑐ℎ + 𝑃𝑏𝑎𝑡,𝑘

𝑑𝑖𝑠 + 𝑃𝐸𝑉𝑝𝑎𝑟𝑘,𝑘
𝑐ℎ + 𝑃𝐸𝑉𝑝𝑎𝑟𝑘,𝑘

𝑑𝑖𝑠 + 𝑃𝑃𝑉 − 𝑃𝑐𝑜𝑛𝑠)

∙ 𝑇𝑠 = 𝐸𝑔𝑟𝑖𝑑,𝑘
𝑖𝑚𝑝𝑜𝑟𝑡

+ 𝐸𝑔𝑟𝑖𝑑,𝑘
𝑒𝑥𝑝𝑜𝑟𝑡

 
(5) 

|𝐸𝑔𝑟𝑖𝑑,𝑘
𝑖𝑚𝑝𝑜𝑟𝑡

| ≤  𝐸𝑔𝑟𝑖𝑑
𝑚𝑎𝑥; |𝐸𝑔𝑟𝑖𝑑,𝑘

𝑒𝑥𝑝𝑜𝑟𝑡
| ≤  𝐸𝑔𝑟𝑖𝑑

𝑚𝑎𝑥 (6) 

𝑃𝐸𝑉,𝑘
𝑚𝑎𝑥𝐶ℎ𝛿𝐸𝑉,𝑘

𝑐ℎ ≤ 𝑃𝐸𝑉𝑝𝑎𝑟𝑘,𝑘
𝑐ℎ ≤ 0   (7) 

0 ≤ 𝑃𝐸𝑉𝑝𝑎𝑟𝑘,𝑘
𝑑𝑖𝑠 ≤ 𝑃𝐸𝑉,𝑘

𝑚𝑎𝑥𝐷𝑖𝑠𝛿𝐸𝑉,𝑘
𝑑𝑖𝑠  (8) 

min(𝑃𝑏𝑎𝑡
𝑚𝑎𝑥𝐶ℎ ∙ 𝛿𝑏𝑎𝑡,𝑘

𝑐ℎ ; −𝑃𝑝𝑣 + 𝑃𝑐𝑜𝑛𝑠) ≤ 𝑃𝑏𝑎𝑡,𝑘
𝑐ℎ ≤ 0 (9) 

0 ≤ 𝑃𝑏𝑎𝑡,𝑘
𝑐ℎ ≤ min(𝑃𝑏𝑎𝑡

𝑚𝑎𝑥𝐷𝑖𝑠 ∙ 𝛿𝑏𝑎𝑡,𝑘
𝑑𝑖𝑠 ; 𝑃𝑝𝑣 − 𝑃𝑐𝑜𝑛𝑠 − 𝑃𝐸𝑉,𝑘

𝑐ℎ ) (10) 

0 ≤ 𝛿𝐸𝑉,𝑘
𝑐ℎ + 𝛿𝐸𝑉,𝑘

𝑑𝑖𝑠 ≤ 1; 0 ≤ 𝛿𝑏𝑎𝑡,𝑘
𝑐ℎ + 𝛿𝑏𝑎𝑡,𝑘

𝑑𝑖𝑠 ≤ 1 (11) 

The link between battery power and its SoC is defined by 

the linear equation (12), where the 𝑄𝑛𝑜𝑚
𝑏𝑎𝑡  is the batteries 

nominal capacity in Ah, 𝑣𝑛𝑜𝑚
𝑏𝑎𝑡  is the batteries nominal 

voltage, and 𝜂𝑐ℎ
𝑏𝑎𝑡 and 𝜂𝑑𝑖𝑠

𝑏𝑎𝑡 are the Li-ion batteries efficiency 

when the batteries are charging or discharging, respectively. 

Remarkably, as in [7], to reduce computation burden, the 

two MPCs in cascade estimate the total energy stored in the 

aggregation of EVs (𝐸𝐸𝑉,𝑘 ) rather than individual EVs. 

Therefore, only two inequalities constraints are embedded in 

the MPCs formulation to limit the EV parking SoC, as 

expressed in (13). In this equation, 𝑄𝐸𝑉
𝑛𝑜𝑚  is the nominal 

capacity of an EV, �̅�𝐸𝑉,𝑘  is the average voltage of EVs 

connected at instant 𝑘 , and 𝜂𝑑𝑖𝑠  and 𝜂𝑐ℎ  are the batteries 

discharging and charging efficiency.  

𝐸𝐸𝑉,𝑘
𝑚𝑖𝑛  = 𝑄𝐸𝑉

𝑛𝑜𝑚 ∙ 𝑆𝑜𝐶𝐸𝑉
𝑚𝑖𝑛 ∙ 𝑛𝐸𝑉,𝑘 ≤ 

𝐸𝐸𝑉,𝑘 −
𝜂𝑐ℎ∙𝑇𝑠

�̅�𝐸𝑉,𝑘
𝑃𝐸𝑉,𝑘
𝑐ℎ −

𝑇𝑠

�̅�𝐸𝑉,𝑘∙𝜂𝑑𝑖𝑠
𝑃𝐸𝑉,𝑘
𝑑𝑖𝑠 + 𝐸𝑘

𝑎𝑟𝑟 − 𝐸𝑘
𝑑𝑒𝑝

  

≤ 𝑄𝐸𝑉
𝑛𝑜𝑚 ∙ 𝑆𝑜𝐶𝐸𝑉

𝑚𝑎𝑥 ∙ 𝑛𝐸𝑉,𝑘 = 𝐸𝐸𝑉,𝑘
𝑚𝑎𝑥  

(13) 

To assure that all EVs are charged with the request SoC 

(𝑆𝑜𝐶𝑡𝑎𝑟𝑔𝑒𝑡 = 80%) before their scheduled departure, EMPC 

and TMPC modify their SoC boundaries ( 𝑆𝑜𝐶𝐸𝑉
𝑚𝑖𝑛  and 

𝑆𝑜𝐶𝐸𝑉
𝑚𝑎𝑥) to force both to be 80% when any EV is planning 

to disconnect to the BMG. In other words, the maximum 

boundary (𝑆𝑜𝐶𝐸𝑉
𝑚𝑎𝑥 ) is always equal to 80%, whereas the 

minimum boundary (𝑆𝑜𝐶𝐸𝑉
𝑚𝑖𝑛) is adjusted following equation 

(14), where 𝑛𝑘
𝑑𝑒𝑝

 is the number of EVs that are going to 

disconnect at hour 𝑘.  

𝑆𝑜𝐶𝐸𝑉
𝑚𝑖𝑛 = {

20%, 𝑖𝑓 𝑛𝑘
𝑑𝑒𝑝

= 0

𝑆𝑜𝐶𝐸𝑉
𝑚𝑎𝑥 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (14) 

Notably, in equation (13), the stochastic arrival and 

departure of EVs are considered through the variables 𝐸𝑘
𝑎𝑟𝑟  

and 𝐸𝑘
𝑑𝑒𝑝

, representing the energy arrived with new EVs 

connection (𝐸𝑘
𝑎𝑟𝑟) and the energy departure with EVs when 

they are disconnected (𝐸𝑘
𝑑𝑒𝑝

). Calculated through equations 

(15) and (16), 𝐸𝑘
𝑎𝑟𝑟  and 𝐸𝑘

𝑑𝑒𝑝
 are estimated based on the total 

number of EVs plugged (𝑛𝐸𝑉,𝑘), EVs departures (𝑛𝑘
𝑑𝑒𝑝

) and 

EVs arrivals (𝑛𝑘
𝑎𝑟𝑟). 

𝐸𝑘
𝑎𝑟𝑟 = 𝑛𝑘

𝑎𝑟𝑟 ∙ 𝑄𝐸𝑉
𝑛𝑜𝑚 ∙ 𝑆𝑜�̂�𝐸𝑉𝑠,𝑘

𝑎𝑟𝑟  (15) 

𝐸𝑘
𝑑𝑒𝑝

= 𝑛𝑘
𝑑𝑒𝑝

∙ 𝐸𝐸𝑉,𝑘 𝑛𝐸𝑉,𝑘⁄  (16) 

These three values can be easily calculated using a simple 

EV schedule table based only on the current number of EVs 

connected, the next EV connection, and the disconnection 

time inputted by EVs’ owners. Nevertheless, this mechanism 

can be improved by including an analysis of EV’s behaviour, 

as proposed in [23]. The EV arrival energy formulation 

(equation (15)) considers that all EVs have the same nominal 

capacity (𝑄𝐸𝑉
𝑛𝑜𝑚). The SoC of future EVs arrivals (𝑆𝑜�̂�𝐸𝑉𝑠,𝑘

𝑎𝑟𝑟 ) 

are estimated through the average SoC of all past EV 

connections. On the other hand, the total energy lost due to 

EV departures (𝐸𝑘
𝑑𝑒𝑝

) corresponds to a proportion of the 

average charge of all EVs. This assumption is reasonable 

because the EVPA algorithm, detailed in section III, assures 

almost equitable SoC among all EVs. 

III. ELECTRIC VEHICLE POWER ALLOCATION ALGORITHM 

The EVPA operates in synchronism with the TMPC and 

it works as a router of energy to assure that all EVs are 

charged up to 𝑆𝑜𝐶 = 80% before their departure time using 

as much as possible renewable energy. In this paper, the 

𝑆𝑜𝐶𝑘+1
𝑏𝑎𝑡 = 𝑆𝑜𝐶𝑘

𝑏𝑎𝑡 +
𝜂𝑐ℎ
𝑏𝑎𝑡𝑇𝑠

𝑣𝑛𝑜𝑚
𝑏𝑎𝑡 ∙ 𝑄𝑛𝑜𝑚

𝑏𝑎𝑡
∙ 𝑃𝑏𝑎𝑡,𝑘

𝑐ℎ

+
𝑇𝑠

𝑣𝑛𝑜𝑚
𝑏𝑎𝑡 ∙ 𝑄𝑛𝑜𝑚

𝑏𝑎𝑡 𝜂𝑑𝑖𝑠
𝑏𝑎𝑡

∙ 𝑃𝑏𝑎𝑡,𝑘
𝑑𝑖𝑠  

(12) 



 



target SoC was setup as 80%, but the control architecture can 

operate with other values of SoC. Based on equation (13), 

neither EMPC nor TMPC have any information about the 

energy stored in each EV, but only the total energy of the 

entire EV parking, named 𝐸𝐸𝑉 . Due to the incomplete 

information about the SoC of each EV, the full charging of 

individual EVs cannot be guaranteed with only the 

Hierarchical MPC (HMPC) power assignation, especially 

when EVs connect at a different time or with different SoC. 

To tackle this problem without raising the computation 

cost, HMPC operates synchronously with EVPA algorithm. 

This light adjunct module determines hourly the portion of 

EV parking power reference calculated by HMPC (𝑃𝐸𝑉
𝑟𝑒𝑓

=

𝑃𝐸𝑉
𝑐ℎ + 𝑃𝐸𝑉

𝑑𝑖𝑠) that must be assigned to each EV. It also updates 

the maximum charging (𝑃𝐸𝑉
𝑚𝑎𝑥𝐶ℎ) and discharging (𝑃𝐸𝑉

𝑚𝑎𝑥𝐷𝑖𝑠) 

power rate of equations (7) and (8) for the next periods. The 

sharing of these two variables among the hierarchical control 

layers avoids losing performance because adjusting the 

power boundaries according to the real EV parking capacity 

prevents HMPC from charging EVs that are already fully 

charged or discharging EVs that are already empty. 

The EVPA algorithm shares the EV parking power 

reference (𝑃𝐸𝑉
𝑟𝑒𝑓

) among each plugged EVs identified by an 

ID number based only on three input values: the current SoC 

of each EV (𝑆𝑜𝐶𝐸𝑉𝐼𝐷), the user’s input departure time (𝑡𝐸𝑉𝐼𝐷
𝑑𝑒𝑝

), 

and the EV discharging authorisation (𝛿𝐸𝑉𝐼𝐷
𝑑𝑖𝑠𝐴 ). If the EV’s 

owner has authorised the EV’s discharging, 𝛿𝐸𝑉𝐼𝐷
𝑑𝑖𝑠𝐴  is worth 1; 

otherwise, it is equal to 0. 

As shown in Fig. 3, the EVPA algorithm is a recursive 

algorithm composed of four steps. The first step – named 

Measurement – processes the three-input data mentioned 

above to calculate all necessary variables for the next step. 

Using the user’s input departure time (𝑡𝐸𝑉𝐼𝐷
𝑑𝑒𝑝

), the minimum 

time to charge the 𝐸𝑉𝐼𝐷 up to 𝑆𝑜𝐶𝐸𝑉𝐼𝐷
𝑚𝑎𝑥 = 80% (𝑡𝐸𝑉𝐼𝐷

𝑚𝑖𝑛𝐶ℎ𝑎𝑟𝑔𝑒
) 

can be calculated through (17). This formulation considers 

that each 𝐸𝑉𝐼𝐷 will be charged with its maximum charging 

power rate (𝑃𝐸𝑉𝐼𝐷
𝑚𝑎𝑥𝐶ℎ ) during the smallest sample time of 

HMPC, i.e. TMPC sample time (𝑇𝑠 = 1ℎ ). Similarly, the 

remain time in which 𝐸𝑉𝐼𝐷 will stay connected to the BMG 

( 𝑡𝐸𝑉𝐼𝐷
𝑐𝑜𝑛 ) is calculated through (18), where 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡  is the 

current time. 

𝑡𝐸𝑉𝐼𝐷
𝑚𝑖𝑛𝐶ℎ𝑎𝑟𝑔𝑒

= 𝑐𝑒𝑖𝑙 (
𝑆𝑜𝐶𝐸𝑉𝐼𝐷

𝑚𝑎𝑥 − 𝑆𝑜𝐶𝐸𝑉𝐼𝐷

|𝑃𝑝𝑒𝑣𝐼𝐷
𝑚𝑎𝑥𝐶ℎ| ∙

𝜂𝑐ℎ ∙ 𝑇𝑠
𝑣𝐸𝑉𝐼𝐷

) (17) 

𝑡𝐸𝑉𝐼𝐷
𝑐𝑜𝑛 = 𝑡𝐸𝑉𝐼𝐷

𝑑𝑒𝑝
− 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (18) 

In the second step, named Power Allocation, the power 

reference determined by HMPC (𝑃𝐸𝑉,𝑘
𝑟𝑒𝑓

) is shared among all 

EVs plugged at instant 𝑘 following (19) if charging (𝑃𝐸𝑉,𝑘
𝑐ℎ ≠

0), and (20) if discharging (𝑃𝐸𝑉,𝑘
𝑑𝑖𝑠 ≠ 0). In these equations, 

𝜔𝐼𝐷
𝑐ℎ and 𝜔𝐼𝐷

𝑑𝑖𝑠 are the power-sharing weights to determine the 

power reference for each plugged EV (𝑃𝐸𝑉𝐼𝐷,𝑘
𝑐ℎ  or 𝑃𝐸𝑉𝐼𝐷,𝑘

𝑑𝑖𝑠 ). 

Remarkably, the equations (19) and (20) limit the power-

sharing according to the charging-discharging maximum 

power rate of each EV (𝑃𝐸𝑉𝐼𝐷
𝑚𝑎𝑥𝐶ℎ and 𝑃𝐸𝑉𝐼𝐷

𝑚𝑎𝑥𝐷𝑖𝑠). Additionally, 

by embedding the second term in equations (19) and (20), the 

EV power assignation is limited to the maximum and 

minimum SoC (𝑆𝑜𝐶𝐸𝑉𝐼𝐷
𝑚𝑎𝑥  and 𝑆𝑜𝐶𝐸𝑉𝐼𝐷

𝑚𝑖𝑛 ) of each EV. 

𝑃𝐸𝑉𝐼𝐷
𝑐ℎ = max (𝑃𝐸𝑉𝐼𝐷

𝑚𝑎𝑥𝐶ℎ;
𝑆𝑜𝐶𝐸𝑉𝐼𝐷,𝑘 − 𝑆𝑜𝐶𝐸𝑉𝐼𝐷

𝑚𝑎𝑥

𝜂𝑐ℎ ∙ 𝑇𝑠 𝑣𝐸𝑉𝐼𝐷⁄
;𝜔𝐼𝐷

𝑐ℎ ∙ 𝑃𝐸𝑉,𝑘
𝑐ℎ ) (19) 

𝑃𝐸𝑉𝐼𝐷
𝑑𝑖𝑠 = min (𝑃𝐸𝑉𝐼𝐷

𝑚𝑎𝑥𝐷𝑖𝑠;
𝑆𝑜𝐶𝐸𝑉𝐼𝐷,𝑘 − 𝑆𝑜𝐶𝐸𝑉𝐼𝐷

𝑚𝑖𝑛

𝑇𝑠 (𝜂𝑑𝑖𝑠𝑣𝐸𝑉𝐼𝐷)⁄
;𝜔𝐼𝐷

𝑑𝑖𝑠 ∙ 𝑃𝐸𝑉,𝑘
𝑑𝑖𝑠 ) (20) 

Δ𝑡𝐸𝑉𝐼𝐷
𝑐ℎ = 𝑡𝐸𝑉𝐼𝐷

𝑐𝑜𝑛 − 𝑡𝐸𝑉𝐼𝐷
𝑚𝑖𝑛𝐶ℎ𝑎𝑟𝑔𝑒

 (21) 

𝜔𝐼𝐷
𝑑𝑖𝑠 =

Δ𝑡𝐸𝑉𝐼𝐷
𝑐ℎ

∑ Δ𝑡𝐸𝑉𝐼𝐷
𝑐ℎ

𝐼𝐷
∙ 𝛿𝐸𝑉𝐼𝐷
𝑑𝑖𝑠𝐴 ∙ 𝛿𝐸𝑉𝐼𝐷

𝑎𝑣𝑎 ; 𝜔𝐼𝐷
𝑐ℎ =

1 Δ𝑡𝐸𝑉𝐼𝐷
𝑐ℎ⁄

∑ 1 Δ𝑡𝐸𝑉𝐼𝐷
𝑐ℎ⁄𝐼𝐷

∙ 𝛿𝐸𝑉𝐼𝐷
𝑎𝑣𝑎  (22) 

Using the margin time (Δ𝑡𝐸𝑉𝐼𝐷
𝑐ℎ ) defined by (21), the 

power-sharing weights (𝜔𝐼𝐷
𝑐ℎ  and 𝜔𝐼𝐷

𝑑𝑖𝑠 ) are determined, as 

expressed in (22). The Boolean variable 𝛿𝐸𝑉𝐼𝐷
𝑎𝑣𝑎  is equal to 1 

when the 𝐸𝑉𝐼𝐷 is waiting for a power reference assignation, 

and it is equal to 0 when a power reference has already been 

attributed to it. Since in the first iteration, no EV received a 

power reference, 𝛿𝐸𝑉𝐼𝐷
𝑎𝑣𝑎  equals 1 for all plugged 𝐸𝑉𝐼𝐷. Based 

on equations (19), when the EV parking is charging, EV 

power references (𝑃𝐸𝑉𝐼𝐷,𝑘
𝑐ℎ ) will be more important for EVs 

that have a small margin time Δ𝑡𝐸𝑉𝐼𝐷
𝑐ℎ . Conversely, according 

to (20), when discharging, EV power references (𝑃𝐸𝑉𝐼𝐷,𝑘
𝑑𝑖𝑠 ) will 

be more intense for EVs that have a large margin time Δ𝑡𝐸𝑉𝐼𝐷
𝑐ℎ . 

Once determined the fraction of power that needs to be 

allocated to each plugged EV, the next step of the EVPA 

algorithm depends on the accuracy of the power-sharing 

weight of the previous step. As expressed in (23), if the 

HMPC power reference is completely allocated, the 

Boundaries Definition state is implemented; otherwise, the 

Retry state is executed. Based on equations (19) and (20), the 

Retry is executed if there would be EVs fully charged or fully 

discharged, or if the shared power would be limited by the 

power rate boundaries (𝑃𝑝𝑒𝑣𝐼𝐷
𝑚𝑎𝑥𝐶ℎ and 𝑃𝑝𝑒𝑣𝐼𝐷

𝑚𝑎𝑥𝐷𝑖𝑠). 

𝑃𝐸𝑉,𝑘
𝑟𝑒𝑓

≠ ∑(𝑃𝐸𝑉𝐼𝐷,𝑘
𝑐ℎ + 𝑃𝐸𝑉𝐼𝐷,𝑘

𝑑𝑖𝑠 )

𝑁𝑃𝐸𝑉

𝐼𝐷=1

= {

True ⇒ 𝑅𝑒𝑡𝑟𝑦              

False ⇒
𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠
𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛

 (23) 

Therefore, in the Retry state, the EVs that would be fully 

charged or fully discharged by applying the power reference 

calculated in the previous step (𝑃𝐸𝑉𝐼𝐷 
𝑟𝑒𝑓

 through (19) and (20)) 

are identified by setting the Boolean Variable 𝛿𝐸𝑉𝐼𝐷
𝑎𝑣𝑎 to one, 

whereas all other EVs are identified to 𝛿𝐸𝑉𝐼𝐷
𝑎𝑣𝑎 = 0 . 

Power Allocation

Eq. (20) – (  ), check Eq. (24)

Retry

Update            and  Eq. (25)

     

Boundaries Definition

Eq. (26) – (  )

Power

Allocation 

OK

Power

Allocation 

Failed

and

Allocation OK

,

,,

END

, , 

START

Measurement

Eq. (18) and (19)

 
Fig. 3: Summary of the EVPA module algorithm 

 



 



Additionally, the power to be reallocated is the difference 

between the initial power reference calculated by HMPC 

(𝑃𝐸𝑉,𝑘
𝑟𝑒𝑓

) and the shared power that has already been well 

allocated, as expressed in (24). Subsequently, the Power 

Allocation step is reimplemented. This process is repeated 
until the condition of equation (23) is satisfied, or the number 

of retries surpasses a maximum threshold (𝑁𝑟𝑒𝑡𝑟𝑦
𝑚𝑎𝑥 ).  

𝑃𝐸𝑉,𝑘
𝑟𝑒𝑓

= 𝑃𝐸𝑉,𝑘
𝑟𝑒𝑓

−∑(𝑃𝐸𝑉𝐼𝐷
𝑐ℎ + 𝑃𝐸𝑉𝐼𝐷

𝑑𝑖𝑠 )

𝐼𝐷

∙ (1 − 𝛿𝐸𝑉𝐼𝐷
𝑎𝑣𝑎 ) (24) 

Afterwards, the fourth and last step – named Power 

Boundaries Definition – is executed. In this step, the HMPC 

power boundaries for EV charging and discharging (𝑃𝐸𝑉
𝑚𝑎𝑥𝐶ℎ 

and 𝑃𝐸𝑉
𝑚𝑎𝑥𝐷𝑖𝑠 ) are calculated based on the estimated future 

SoC (𝑆𝑜𝐶𝐸𝑉𝐼𝐷,𝑘+1) and the power reference calculated in the 

Power Allocation step (𝑃𝐸𝑉𝐼𝐷
𝑑𝑖𝑠  and 𝑃𝐸𝑉𝐼𝐷

𝑐ℎ ). First, the future 

SoC at 𝑘 + 1 of each plugged EV is calculated through (25). 

Afterwards, the EV power boundaries are calculated using 

equations (26) and (27) and transmitted to HMPC. 

Remarkably, the EV power boundaries (𝑃𝐸𝑉
𝑚𝑎𝑥𝐶ℎ  and 

𝑃𝐸𝑉
𝑚𝑎𝑥𝐷𝑖𝑠) are the sum of maximum power rate that each EV 

can support for the next hours. 

𝑆𝑜𝐶𝐸𝑉𝐼𝐷,𝑘+1 = 𝑆𝑜𝐶𝐸𝑉,𝑘 − 𝑃𝐸𝑉𝐼𝐷
𝑑𝑖𝑠

𝑇𝑠
𝑇𝑀𝑃𝐶

𝑣𝐸𝑉𝐼𝐷𝜂𝑑𝑖𝑠
− 𝑃𝐸𝑉𝐼𝐷

𝑐ℎ
𝜂𝑐ℎ𝑇𝑠

𝑇𝑀𝑃𝐶

𝑣𝐸𝑉𝐼𝐷
 (25) 

𝑃𝐸𝑉,𝑘+1
𝑚𝑎𝑥𝐶ℎ =∑max(𝑃𝐸𝑉𝐼𝐷

𝑚𝑖𝑛 ;
𝑆𝑜𝐶𝐸𝑉𝐼𝐷,𝑘+1 − 𝑆𝑜𝐶𝐸𝑉𝐼𝐷

𝑚𝑎𝑥

𝜂𝑐ℎ ∙ 𝑇𝑠 𝑣𝐸𝑉𝐼𝐷⁄
)

𝐼𝐷

 (26) 

𝑃𝐸𝑉,𝑘+1
𝑚𝑎𝑥𝐷𝑖𝑠 =∑min(𝑃𝐸𝑉𝐼𝐷

𝑚𝑎𝑥;
𝑆𝑜𝐶𝐸𝑉𝐼𝐷,𝑘+1 − 𝑆𝑜𝐶𝐸𝑉𝐼𝐷

𝑚𝑖𝑛

𝑇𝑠 (𝜂𝑑𝑖𝑠𝑣𝐸𝑉𝐼𝐷)⁄
) ∙ 𝛿𝐸𝑉𝐼𝐷

𝑑𝑖𝑠𝐴

𝐼𝐷

 (27) 

IV. RESULTS 

To evaluate the performance of the proposed HMPC 

coupled with the EVPA algorithm, a real-sized residential 

BMG with technical specifications shown in Table 1 was 

simulated. The PV power generation was modelled using real 

solar profiles [24]. Similarly, the building’s power 

consumption refers to a medium-sized residential building 

scaled from [25]. The simulations were conducted to assess 

three aspects: the potential of the hierarchical BEMS in 

maximising PV self-consumption using EV parking batteries, 

the impact of the size of EV parking, and the economic 

advantages of discharging EVs to supply the building 

demand. These three main points are investigated in Sections 

A, B and C, respectively. An additional sensitivity analysis 

of the electricity price is provided in Section D to consider 

the electricity price and EV batteries price evolution. 

TABLE 1: TECHNICAL SPECIFICATION OF THE  BUILDING MICROGRID. 

Component Technical Description 

Photovoltaic panels Annual energy generation: 131 MWh (100 kWc) 

Building load Annual energy consumption:307 MWh 

Li-ion batteries Nominal capacity: 167 Ah 
Maximum power rate: 60 kW 

EV parking (Zoe of 

Renault®) 

Maximum power rate: 7 kW (slow mode) 

Nominal capacity (𝑄𝐸𝑉
𝑛𝑜𝑚): 130 Ah 

Grid limit power 100 kWh 

A. Performance of the hierarchical EMS  

To assess the performance of the proposed controller in 

exploiting the EV’s batteries to increase the PV self-

consumption, the proposed EVPA was confronted with two 

types of controllers: a classical MPC in which each EV is 

treated independently (similar to the controller in [6]), and the 

uncontrolled strategy. The uncontrolled approach charges 

EVs with their maximum power rate as soon as they are 

plugged into the BMG. On the other hand, the classical 

HMPC is also composed of EMPC and TMPC, but it 

optimises the cost function defined in (28) rather than (1). In 

this formulation, the self-consumption and the charging of 

EVs are weighted through the variable 𝜔𝑘, which is higher 

when the EV departure is imminent (less than 3 hours from 

the programming departure). Since the classical HMPC does 

not contain the EVPA algorithm that considers the 

aggregation of EV park, it requires two inequality constraints 

(similar to equation (13)) per EV charging station. 

𝑚𝑖𝑛
𝑆𝑜𝐶𝑟𝑒𝑓

𝑏𝑎𝑡,𝐸𝐸𝑉
𝑟𝑒𝑓
∑

(|𝐸𝑔𝑟𝑖𝑑,𝑘
𝑖𝑚𝑝𝑜𝑟𝑡

| + |𝐸𝑔𝑟𝑖𝑑,,𝑘
𝑒𝑥𝑝𝑜𝑟𝑡

|)

max(𝑚𝑎𝑥(𝑃𝑐𝑜𝑛𝑠
[𝑘,𝑘+48]

) ,𝑚𝑎𝑥(𝑃𝑝𝑣
[𝑘,𝑘+48]

))

48

𝑘=1
   

+ 𝜔𝑘 ∙ (𝑆𝑂𝐶𝑝𝑒𝑣
𝑡𝑎𝑟𝑔𝑒𝑡,𝑘

− 𝑆𝑜𝐶𝑝𝑒𝑣,𝑘) 

s.t.: Eq. (5) – (12) and Eq. (13) for each EV 

(28) 

Since the objective is to charge EV’s batteries as much as 

possible from renewable energy, the metrics of comparison 

are the building self-consumption rate, coverage rate 

(equation (2)), and the number of EVs completed charged. 

Additionally, to verify the limitations on the real 

implementations, the execution time of each is compared. 

The performance of these three control strategies was 

assessed under an ideal and a realistic scenario. In the ideal 

scenario, all EVs connect to the BMG as specified in their 

schedule table. Furthermore, there is no error in the power 

imbalance prediction data, and all EVs arrive every day with 

SoC=40%. 

On the contrary, the realistic scenario includes 

inaccuracies in the power imbalance, the energy that EV 

batteries have stored when they plug into the BMG, and the 

planned departure and arrival time. The error introduced into 

the two day-ahead power imbalance prediction data follows 

equation (29), where 𝑔  and Δ  are calculated through 

equations (30) and (31), respectively. The variable 𝜗  is a 

standard Gaussian random variable of mean 0 and standard 

deviation 1, whereas the factor 𝜌 is a uniformly distributed 

random variable in the interval of [0, 𝑟(𝑘)], where 𝑟(𝑘) is a 

non-linear function that depends on the instant 𝑘  and it is 

defined as shown in the left graph in Fig. 4. Consequently, 

the gain 𝑔 have a shape as shown in the right graph in Fig. 4. 

Additionally, the real prediction data is shifted in time 

randomly up to ten times 𝑟(𝑘), i.e. up to 6 hours. The random 

variable 𝑟(𝑘) was defined as shown in Fig. 4 to mimic the 

rising of prediction error along the MPC horizon. As a result, 

the error in the amplitude of the signal increases over time, 

detaining 0% of errors at the current time and attaining up to 

60% of errors 48 hours ahead. It is important to remark that 

the same two day-ahead prediction data errors are introduced 

in both EMPC and TMPC layers. The comparison between 

the real and the predicted two day-ahead power imbalance at 

instant 𝑘 = 0 is shown in Fig. 5. 

𝑃𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑,𝑘 = 𝑔 ∙ 𝑃𝑟𝑒𝑎𝑙,𝑘+𝛥,   ∀𝑘 ∈ [1,48] (29) 

𝑔 = 1 + 𝑠𝑖𝑔𝑛(𝜗) ∙ 𝜌𝑘  (30) 

𝛥 =  𝑓𝑙𝑜𝑜𝑟(10 ∙ 𝜌𝑘 ∙ 𝑠𝑖𝑔𝑛(𝜗)) (31) 

Additionally, the noise in the initial EV SoC follows a 

Gaussian distribution of a standard deviation of 5% and a 

mean that depends on the user behaviour. Four types of users 



 



were considered. Consequently, four mean values were used, 

namely 30%, 40%, 50%, and 60. Finally, the noise in the 

departure and arrival times has also a Gaussian distribution 

around typical values bounded by a maximum variation of 4 

hours. 

The 30-days simulation results in Table 2 show that the 

proposed hierarchical MPC coupled with EVPA in the 

realistic scenario assured the self-consumption and coverage 

rate 7 percent point (p.p.) higher than the uncontrolled 

strategy. Compared to the classical HMPC, the proposed 

HMPC coupled with EVPA can assure a self-consumption 

and a coverage rate up to 1 p.p. higher. 

Thanks to the periodic optimisations of TMPC and of 

EMPC explained in section II, the classical and the proposed 

HMPC proved robust against power imbalance prediction 

data, reducing by only 1 p.p. the annual self-consumption. 

Compared to the classical HMPC, the proposed one 

demonstrated more robustness because it could also keep the 

same values of coverage rate, while the classical one reduced 

it by 2 p.p. 

Furthermore, Fig. 6 shows that both classical HMPC and 

HMPC with EVPA can guarantee that all EVs are charged 

closed to the target SoC (i.e. 80%). However, the HMPC 

coupled with EVPA could charge all EVs to SoC over 79%, 

while the classical HMPC charged some EVs to only 76% 

This is because the classical HMPC depends on weight 

factors in the cost function (variable 𝜔  in equation (28)), 

while the proposed HMPC guarantees the EV charging by 

changing an inequalities constraint (equation (14)). 

According to Table 2, even though the uncontrolled approach 

charged all EVs to SoC=80%, less than 3% were provided by 

PVs, compared to more than 12% with the proposed EVPA 

and 6% with the classical HMPC. This result highlights the 

main goal and main interest of the proposed control structure: 

the algorithm manages to increase radically the self-

consumption of the building while maintaining a satisfying 

SoC of the EVs at departure time. 

  

Fig. 6: Distribution of the state-of-charge of four electric vehicles just before 

disconnecting from the building microgrid. 

With the aim of verifying the differences in the charging 

and discharging of ESSs when employing each control 

strategy, the power flow during three sample days were 

analysed (Fig. 7). By convention, in the graphs in Fig. 7, the 

charging of ESSs is negative, while the discharging is 

positive. Additionally, the raw net power imbalance is the 

difference between the power consumption and the PV power 

generation. Therefore, it is negative when there is energy 

surplus, and negative otherwise. Therefore, to reduce the grid 

energy exchange, it is necessary to charge the Li-ion batteries 

and EVs preferably when there is energy surplus (negative 

raw energy imbalance). In the opposite case, ESSs should be 

discharged to supply the building energy deficit (positive raw 

energy imbalance). Consequently, to maximise the coverage 

and self-consumption rates, it is needed to maximize the 

overlap of raw energy imbalance and the energy bars of ESSs. 

Following this reasoning, the power flow shown in Fig. 

7b and Fig. 7c for the realistic scenario proves that the 

classical HMPC and the HMPC with EVPA charge and 

discharge EV’s batteries to avoid energy injection and to 

reduce electricity purchase, contrary to the uncontrolled 

strategy in Fig. 7a. Furthermore, both control strategies could 

charge the EVs to the target SoC (SoC ≥ 80%) before their 

departure time (SoC equals to zero.). Since the SoC of EVs 

shown in Fig. 7 are the SoC measurements from the point of 

view of the BEMS, when an EV leaves the BMG, their SoC 

is measured as zero. 

By observing the power flow in Fig. 7, it is also possible 

to note that the building storage is sometimes used to charge 

EVs (indicated by black arrows). Particularly, the classical 

HMPC sometimes discharges some EVs to charge others 

(indicated by red arrows in Fig. 7b). However, charging an 

EV with energy coming from another EV is not optimal due 

to charging/discharging losses. Therefore, this does not result 

TABLE 2: 30-DAYS SIMULATION RESULTS TO EVALUATE THE PERFORMANCE OF DIFFERENT CONTROL STRATEGIES 

Metrics Uncontrolled HMPC with EVPA Classical HMPC 

Ideala Realisticb Ideala Realisticb Ideala Realisticb 

Self-consumption (%) 56.6 50.7 58.6 57.8 57.3 56.4 

Coverage rate (%) 40.0 36.6 43.7 43.7 41.3 43.8 

Discharge EVs (%) 0.0 0.0 21.0 23.5 8.9 8.5 

Charge EVs from PVs (%) 2.6 4.6 12.3 16.4 6.7 9.2 

Charge EVs from building storage (%) 30.8 26.1 15.1 14.4 22.3 19.8 

Charge EVs from grid (%) 66.6 69.3 51.6 45.7 62.29 62.5 
Obs: Building microgrid with 4 Electric Vehicles and Li-Ion batteries; a Without data prediction error; b With data prediction error; 
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Fig. 4: Distribution of the time-variant random factors to emulate the error 

in the two day-ahead prediction data. 

 
Fig. 5: Prediction data with and without error along the Economic Model 

Predictive Control horizon of 48 hours 

 



 



in better use of energy storage systems, since the self-

consumption and coverage rates of classical HMPC were 

lower than the proposed HMPC with the EVPA. To improve 

the classical HMPC, it would be recommended to include 

additional constraints to impede the controller to charge an 

EV with energy coming from another EV. This will certainly 

increase the complexity of the HMPC design. Moreover, 

large number of inequality constraints and control variables 

requires more time to the CPLEX solver to find the best 

solution.  

Fig. 7 also reveals that EVs can reduce grid energy 

exchange more actively during weekends than weekdays. 

This is because EVs stay plugged for longer periods, enabling 

the controller to discharge EVs without compromising their 

fully charging. Conversely, during weekdays, EVs are 

plugged mostly during non-business hours, which is mostly 

between 5 PM to 8 AM. Consequently, EVs are connected to 

the BMG during periods of energy deficit (positive) and 

disconnected from the BMG when there is an energy surplus 

(negative). Hence, the BMG usually must purchase electricity 

from the grid to charge EVs. This behaviour is the result of a 

poor adequation of the PV power production and the EVs’ 

storage availability. In fact, the performance of the three 

algorithms studied is comparatively impacted. According to 

Table 2, the HMPC with EVPA can charge the EV batteries 

using less grid energy than the other two control strategies. 

However, neither strategy can charge their EVs using only 

renewable energy. They need to import from the external grid 

at least 46% of the EVs energy demand, even though the 

BMG has a surplus of energy (self-consumption is not 

100%). Owing to the BMG sizing, the building storage is not 

large enough to store all PV surplus to charge EVs during the 

night. The percentage of charging EV with renewable energy 

would be more important with a larger stationary battery. 

However, this would drastically increase the installation cost 

of the BMG. 

B. Impact of the size of electric vehicle size 

It is important to highlight that these conclusions were 

drawn from the simulation of the BMG with four EVs. To 

verify the impact of the EV parking size, scenarios with 0, 20, 

and 40 EVs were also evaluated by running the BMG with 

the proposed HMPC with EVPA for one year. As shown in 

Table 3, with the enlargement of EV parking, the charging of 

EVs with energy coming directly from PV panels is limited 

to 6 MWh/year. Likewise, with more EVs, the Li-ion battery 

pack is discharged more frequently to charge the EV’s 

batteries, but they are limited to discharge up to 7 MWh/year. 

For this reason, the total energy imported from the main grid 

tends to increase, and the coverage rate tends to decrease with 

the enlargement of EV parking. Following the same 

reasoning, the self-consumption rate can be increased by up 

to 3 p.p. compared to the case with only batteries (column “0 

EV”), but it is limited to around 72%. These results reveal 

that there is an optimal number of EVs that a BMG can have 

connected to increase the annual self-consumption rate 

without reducing drastically the coverage rate. 

This saturation is due to the raw net power imbalance and 

the connection profile of EVs disposal. To increase the 

charging of EVs from renewable energy, the total energy used 

to charge PEVs in each daily connection must be matched by 

the daily surplus of energy. However, as shown in , 

depending on the raw net power imbalance, complete EV 

load matching is impossible. 

To highlight the effects of the EV park size in the 

algorithm computation cost, the execution time of the EMPC 

optimization when using the classical HMPC architecture and 

the proposed HMPC with EVPA were compared. The 

execution time of the two methods were measured using an 

Intel Core i5-6200U CPU at 2.30 GHz. According to Fig. 9, 

the execution time of the classical HMPC rises exponentially 

with the number of EVs, while the EVPA keeps a similar 

algorithm complexity independently of the number of EV 

charging stations. This result indicates that the proposed 

HMPC with EVPA can be adapted to larger scales of 

applications, potentially plug-and-play, without any heavy 

modification of the hardware specifications, at least when it 

comes to computational power.  

TABLE 3: ONE-YEAR SIMULATIONS WITH A DIFFERENT NUMBER OF 

ELECTRIC VEHICLES USING THE HIERARCHICAL MPC WITH EVPA.  

Metrics 0 

EVb 

4 

EVb 

20 

EVb 

40 

EVb 

Self-consumption (%) 69 71 72 72 

Coverage rate (%) 29 30 28 25 

Grid energy importa 217 234 314 416 

Grid energy injectiona 41 38 37 37 

Energy to charge EVsa 

- from grida 

- from PV panelsa 
- from batteriesa 

0 

0 

0 
0 

27 

19 

4 
4 

127 

114 

6 
7 

249 

237 

6 
6 

Energy discharged from EVsa 0 5.4 18.3 32.7 
a Annual values in MWh  bWith Li-ion batteries 

 

 

 

  
Fig. 7: Sample days of the power flow with the three control strategies with 

4 electric vehicles with data prediction errors. 

 



 



 
Fig. 8: Visualisation of the effects of the disposal of raw net power imbalance 
and the connection profile of plug-in vehicles on the charging of electric 

vehicles batteries with renewable energy. 

 
Fig. 9: Comparison of execution time when employing or not the EVPA.  

C. Technical-economic analysis of discharging electric 

vehicles’ batteries 

To evaluate the economic advantages of discharging EV 

batteries to support the BMG energy needs, the case where 4 

EVs can be discharged was compared to the case where they 

cannot be discharged. These two scenarios were also 

confronted with the case where only batteries are installed 

(named ‘0 EV’) to verify the consequences of having or not 

EV parking. The graphs in Fig. 10 show some metrics 

obtained after a one-year simulation, including the battery 

degradation, the additional income offered by the French 

government, self-consumption rate, coverage rate, and 

electricity cost.  

The battery degradation cost considers a capital cost of 

500 €/kWh [26] with end-of-life when it loses 20% of its 

nominal capacity [27]. The battery capacity loss was 

estimated using the model of a Li-ion battery that exists in the 

SimPowerSystem library in Matlab Simulink. This model 

considers the current intensity, the depth of discharge, and 

temperature to emulate the battery capacity loss [28]. 

On the other hand, the additional income is calculated 

based on the French energy policy [29] to financially 

encourage self-consumption in small prosumers. This policy 

is based on a reward-penalty mechanism to favour the 

internal load match and avoid grid energy injection. It 

provides a higher additional income for small annual 

maximum power injected and an elevated annual self-

consumption rate. 

According to the results shown in Fig. 10, from the point 

of view of the BMG, the discharging of EVs implies a 

reduction in the annual electricity bill of 1 9 €/year. In this 

study, a time-of-used tariff of 0.09 €/kWh was used. 

Although the annual self-consumption rate was higher when 

allowing the EV discharging, the additional income was 

lower due to the increase in the maximum power injection. 

By comparing the degradation cost of batteries, the 

discharging of EV parking reduces the use of the building 

batteries pack, decreasing its degradation cost by 114 €/year. 

This is because the load shaving implemented by stationary 

batteries is partially covered by EV charging and discharging. 

Therefore, the total savings when allowing the EV 

discharging – being equal to the sum of electricity (ℂ𝑒𝑙𝑒𝑐) and 

battery degradation costs (ℂ𝑒𝑙𝑒𝑐) minus the additional income 

(ℂ𝑠𝑐) (equation (32)) – are  8  €/year. Compared to the total 

BMG expenses (more than 21587 €/year), these savings are 

minimal. Due to the power imbalance profile, EV schedule 

time and sizing of the battery pack, EVs can be rarely 

discharged. According to Table 1 and Table 3, EV 

discharging represents less than 2% of annual building 

energy consumption for 4 EVs. 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 =  ℂ𝑒𝑙𝑒𝑐 + ℂ𝑏𝑎𝑡 − ℂ𝑠𝑐  (32) 

 
Fig. 11: Comparison of the level of degradation of batteries when electric 

vehicles are allowed and not allowed to be discharged. 

From the perspective of the EV’s owners, the discharging 

of their EV’s batteries increases the degradation rate of EV’s 

batteries. As shown in Fig. 11, the average capacity of EV’s 

batteries (𝑄) at the end of the year is smaller when allowing 

discharging them than not allowing it. According to the 

website of Renault, the current price of batteries of Renault 

Zoe® costs on average 8100 € depending on the country. 

Taking this value to estimate the equivalent cost of 

discharging the EV’s batteries, the additional loss of 

batteries’ capacity of 115 mAh/year means  4.5  €/year (or 

0.0 5 €/kWh) for each EV’s owner.  

Considering the hypothesis that the BMG would refund 

the degradation provoked by the additional degradation cost 

of EV batteries, the BMG profit would be only about 143.72 

€/year. Therefore, the differences between both sides when 

allowing or not discharging EV batteries are small compared 

to the annual building expenses. From the perspective of EV 

users, discharging their EV batteries may be a disadvantage 

because their batteries would be degraded faster than in 

normal operating conditions without contributing 

substantially to the performance of the BMG or the use of 

renewable energy. Fig. 10 also illustrates that having EV 

parking installed in the BMG increases the electricity 

expenses on average of 1516.50 €/year. This is because, 

despite all, EVs are still a load that consumes energy. With 

the sizing of the BMG and the connection profile of EVs, the 

 
Fig. 10: Key performance indicators when four EVs are allowed (4 EVa) 

and not allowed (4 EVna) to be discharged, and when no EV exists (0 EV). 

 



 



BMG must purchase electricity to charge its EVs, which 

increases the total electricity costs by 8%. 

D. Electricity price sensitivity study 

To extrapolate the study to other scenarios, a sensitivity 

analysis on the electricity price and EV battery cost was 

conducted. Knowing that the EV discharging is profitable, if 

the additional EV battery degradation cost provoked by the 

discharging is less than the total BMG cost (equation (32)), it 

is possible to define the condition of profitability (equation 

(33)). Since the objective is to evaluate the impact of 

electricity price and EV battery cost variations on the BMG 

profitability, these two terms are multiplied by an unknown 

factor, namely 𝛼𝑒𝑙𝑒𝑐  for the electricity price and 𝛼𝐸𝑉 for the 

EV battery cost.  

𝛼𝐸𝑉 ∙ (ℂ𝑒𝑙𝑒𝑐
𝑎 − ℂ𝑒𝑙𝑒𝑐

𝑛𝑎 )
< 𝛼𝑒𝑙𝑒𝑐 ∙ (ℂ𝑒𝑙𝑒𝑐

𝑎 − ℂ𝑒𝑙𝑒𝑐
𝑛𝑎 ) + (ℂ𝑏𝑎𝑡

𝑎

− ℂ𝑒𝑙𝑒𝑐
𝑛𝑎 ) − (ℂ𝑠𝑐

𝑎 − ℂ𝑠𝑐
𝑛𝑎) 

(33) 

To better visualize the condition of profitability, Fig. 12 

shows the combination of the gain in the electricity price and 

gain in the EV batteries cost that makes discharging EV 

batteries advantageous. As concluded previously, the EV 

discharging is profitable, but it is not attractive due to the low 

margin of benefit. However, as shown in Fig. 12, if the 

electricity price increases and the EV batteries decreases, the 

discharging can be more economically advantageous. 

 
Fig. 12: Economic analysis of the electricity price and EV battery cost to 

verify the profitability of discharging EVs batteries. 

V. CONCLUSION 

The proposed hierarchical control structure has proved 

effective in fully charging EVs before their departure time 

while promoting PV self-consumption. The proposed BEMS 

increased up to 7 percent point the annual self-consumption 

compared to the uncontrolled strategy, and up to 1 percent 

point than the classical HMPC. Besides reducing the 

execution time compared to the classical HMPC, the EVPA 

guaranteed EV’s state-of-charge over 78% even when 

subjected to data prediction inaccuracies. Nonetheless, due to 

the raw net power imbalance, sizing of battery packs, and the 

daily connection and disconnection profiles of electric 

vehicles, the charging of electric vehicles from renewable 

energy (6 MWh from batteries and 6 MWh from PVs) is 

saturated to 9% of annual photovoltaic energy generation 

(131 MWh/year). Consequently, with the enlargement of EV 

parking, the annual self-consumption rate is saturated to 72%. 

Electric vehicle parking also results in a considerable 

increase in electricity expenses, increasing the purchased 

energy by about 8% of the annual building consumption with 

4 EVs, and 91% with 40 EVs. Additionally, the economic 

advantages of discharging EVs to promote self-consumption 

represents only 1.3% of the annual building expenses. From 

the point of view of EV’s owners, the monetary reward may 

not be enough to encourage them to authorise the discharge 

since their batteries would be degraded faster without 

substantial impact on the use of renewables. However, the 

economic sensitivity analysis indicates that the increase in the 

electricity price and the reduction of EV batteries cost could 

make the EV discharge more attractive. These results have to 

be mitigated by the choice of the case of study.  

As future work, the estimation of the number of plugged 

EVs could be improved by analysing the user daily 

behaviour. This would improve the flexibility of the whole 

hierarchical controller since the users would not need to 

schedule their arrival and departure time. Additionally, it is 

needed to extrapolate the analysis conducted in simulation to 

real systems. Further investigation is required to deal with 

possible concerns related to communication latency, 

limitations in the computation resources, noise 

measurements, and resilience against faults. It is therefore 

vital that future research considers all the economic and 

technical peculiarities of real applications to make possible 

the integration of renewable energy sources in the building 

environment in the foreseeable future. More specifically, 

future works will focus on the installation of photovoltaic 

panels, batteries and electric vehicle in the ESTIA’s building. 

This adequation of the storage availability and the renewable 

energy source production appears crucial when deciding if a 

building will profit from EV charging stations installation. 

The results presented in this article are to be implemented on 

a real building microgrid using hardware in the loop tools, 

with special care given to each of the comparison points 

depicted in this article.  
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