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Abstract 

A pycnodont premaxilla bearing a large incisiform tooth with an unusual crown morphology 

is described from the Paleocene (Thanetian) phosphate deposits of Morocco. This peculiar 

tooth shows a broad, fan-shaped crown with nine cusps, well adapted for benthic macroalgal 

scraping. This morph, assigned to a new species of Pycnodus (P. multicuspidatus sp. nov.), 

emphasizes the phenotypic plasticity of the group and documents an additional trophic 

specialization among Paleogene pycnodontiform fishes. In the post-K/Pg boundary marine 

ecosystem of the Ouled Abdoun Basin, P. multicuspidatus sp. nov. may have 

opportunistically replaced Maastrichtian fish taxa with a similar front dentition and feeding 

behaviour, such as the putative specialized pycnodontiforms Stephanodus and Hadrodus. 
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1. Introduction 

 

Multicuspid teeth are known in various, distantly related groups of both extinct and living 

fishes and are generally indicative of algivorous/herbivorous diets (e.g., Gibson, 2015; Davis 

et al. 2016). Despite a rich fossil record and a high ecomorphological diversity, no true 

multicuspid teeth have been clearly reported among pycnodont fishes, a widespread group 

known from the Upper Triassic to the Eocene. The anterior dentition of pycnodonts consists 

of monocuspid or slightly bifid prehensile teeth, very flattened and fully incisiform in derived 

taxa (Nursall, 1996; Poyato-Ariza & Wenz, 2002; Kriwet, 2005; Poyato-Ariza, 2005; Poyato-

Ariza & Martín-Abad, 2013). Nevertheless, Kriwet (2005: fig. 42e) figured dentary teeth of 

Nursallia with slightly incised crowns. In addition, the possible pycnodontiform genera 

Stephanodus and Hadrodus have large, broad incisiform teeth with, respectively, a 

denticulated occlusal edge (e.g., Zittel, 1888: fig. 310; Cappetta, 1972: pl. 13, figs 1–3) and a 

bicuspid crown (e.g., Leidy, 1873: pl. 19, figs. 17–20; Bell, 1986: fig. 2.4-6). 

The well-known Late Cretaceous (Maastrichtian) and Paleogene (Danian–Ypresian) 

phosphate deposits of the Ouled Abdoun Basin (Morocco) have yielded abundant and diverse 

vertebrate remains, including many marine fish taxa (Arambourg, 1952; Bardet et al. 2017). 

Among them, pycnodont fishes are well represented, with Phacodus and Eoserrasalmimus in 

the Maastrichtian, and Pycnodus and Serrasalmimus in the Paleogene (Arambourg, 1952; 

Kriwet, 2005; Vullo et al. 2017). In addition, the enigmatic genera Stephanodus and 

Hadrodus are two other possible pycnodontiforms present in the Maastrichtian beds of the 

Ouled Abdoun Basin (Arambourg, 1952, 1964). We describe here two large pycnodontid 

premaxillary teeth from the Thanetian of the Ouled Abdoun Basin. Both specimens show a 
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similar incisor-like morphology; however, while the tooth crown of the first specimen 

(tentatively referred to Pycnodus cf. praecursor) shows a non-incised occlusal margin, the 

second specimen is characterized by a multicuspid crown and is assigned to a new species 

(Pycnodus multicuspidatus sp. nov.). These two specimens illustrate the evolutionary 

transition between the typical pycnodont morphotype and a new, previously undescribed 

adaptive form. This discovery suggests that the regulatory pathways that govern tooth shape 

formation and lead to multicuspid teeth in teleostean fishes may have been present in non-

teleost actinopterygians such as pycnodontiforms. 

 

 

2. Systematic palaeontology 

 

ACTINOPTERYGII Cope, 1887 

NEOPTERYGII Regan, 1923 

PYCNODONTIFORMES Berg, 1937 

PYCNODONTIDAE Agassiz, 1833 (sensu Nursall, 1996) 

PYCNODONTINAE Agassiz, 1833 (sensu Poyato-Ariza & Wenz, 2002) 

 

Pycnodus cf. praecursor Dartevelle & Casier, 1949 

(Fig. 1a–d) 

 

Material. MHNM.KHG229, a left premaxilla with one tooth preserved, housed at the 

Muséum d’Histoire naturelle de Marrakech (MHNM). 
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Locality and horizon. Sidi Daoui area, Ouled Abdoun Basin, Province of Khouribga, 

Morocco. Upper Phosphorite Bed IIa–base of the Intercalary Bed II/I interval, Thanetian 

(Paleocene) in age (Kocsis et al. 2014). 

Description. MHNM.KHG229 is a nearly complete left premaxilla with one tooth 

preserved (mesial tooth). A second, lateral tooth, broken at its base, was originally present. 

The preserved tooth crown is wider than high (see Table 1 for measurements). It is spatulate, 

typically incisiform in shape, with a markedly convex and asymmetrical occlusal margin in 

labiolingual view. The occlusal margin is continuous, i.e. not incised. The labial face is 

convex and shows a dozen slight subvertical folds. The lingual face is concave and bears three 

wear facets. There is a high, well-developed tooth neck. The subvertical ascending 

premaxillary process is broken apically (dorsally). There is no fenestra, but a large 

mesiolingual olfactory fossa is present; this depression was forming part of the nasal capsule, 

together with the olfactory fossa of the mesethmoid. 

Remarks. Features of the premaxilla (i.e., two teeth originally present, elongated and 

almost vertical ascending process, large olfactory fossa for the nasal capsule) combined with 

the typical incisiform shape of the preserved tooth clearly indicate that MHNM.KHG229 

belongs to Pycnodontidae (Poyato-Ariza & Wenz, 2002; Kriwet, 2005). The well-developed 

olfactory fossa is similar in size, shape, and position to the pocket described in the premaxilla 

of Hadrodus marshi (Gregory, 1950: fig. 1a). By its size, MHNM.KHG229 might correspond 

to the premaxilla of Pycnodus praecursor, a large to gigantic species from the Paleocene of 

Africa (Angola, Niger) known only by isolated dentitions (Dartevelle & Casier, 1949; 

Cappetta, 1972). MHNM.KHG229 is therefore tentatively assigned to Pycnodus cf. 

praecursor. A large fragmentary prearticular dentition from Paleocene of Togo, described as 

Pycnodus variabilis var. togoensis (Stromer, 1910: fig. 2), might correspond to the same 

taxon. 
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Pycnodus multicuspidatus sp. nov. 

(Fig. 1e–h) 

 

Holotype and only known specimen. MHNM.KHG230, a fragmentary left premaxilla 

with one tooth preserved, housed at the Muséum d’Histoire naturelle de Marrakech (MHNM). 

Locality and horizon. Sidi Daoui area, Ouled Abdoun Basin, Province of Khouribga, 

Morocco. Upper Phosphorite Bed IIa–base of the Intercalary Bed II/I interval, Thanetian 

(Paleocene) in age (Kocsis et al. 2014). 

Diagnosis. Large to gigantic species of Pycnodus with incisiform premaxillary teeth 

characterized by a deeply incised, multicuspid crown showing nine triangular cusps. 

Description. MHNM.KHG230 is a fragmentary left premaxilla with one tooth 

preserved (mesial tooth). The lateral part (originally bearing a second, lateral tooth) of the 

bone is broken and worn. The labiolingually compressed, spatulate tooth crown is wider that 

high (see Table 1 for measurements). The crown is multicuspid, with seven well-defined 

cusps and a pair of poorly-defined lateral cuspules. The cusps are triangular in shape and 

equally developed, albeit slightly decreasing in size laterally. The cuspidate occlusal margin is 

markedly convex in labiolingual view. There is a well-developed, lingually inflated tooth 

neck. The mesiolingual olfactory fossa can be discerned along the poorly preserved ascending 

premaxillary process. There is no fenestra. 

Remarks. With the exception of the well-preserved tooth, MHNM.KHG230 is less 

complete and more abraded than MHNM.KHG229; although MHNM.KHG230 clearly differs 

from MHNM.KHG229 by the polycuspidation of teeth, both specimens are similar in size and 

gross morphology (Fig. 1, Table 1), indicating that they belong to distinct but closely related 

species. 
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3. Discussion 

 

3.a. Tooth shape development and evolution 

 

Several studies have argued that only simple genetic changes were required for the rise of 

multicuspid teeth in the evolution of fishes (Streelman et al. 2003; Streelman & Albertson, 

2006; Jackman et al. 2013). In their study on living African cichlids, Albertson et al. (2003a) 

found that interspecific differences in cusp number are determined by approximately one 

gene, suggesting that this character has the potential to respond to selection extremely 

quickly. A similar simple genetic basis of evolutionary novelty in the front dentition of 

pycnodontids can be assumed here, as suggested by the overall resemblance between 

specimens MHNM.KHG229 and MHNM.KHG230 as well as by the co-occurrence of the 

ancestral (MHNM.KHG229) and derived (MHNM.KHG230) morphotypes in the Thanetian 

strata of the Ouled Abdoun Basin. The peculiar tooth morphotype MHNM.KHG230 appears 

to be directly derived from the plesiomorphic monocuspid tooth morphotype 

MHNM.KHG229, and this may represent a case of punctuated equilibrium, with speciation 

between Pycnodus cf. praecursor and Pycnodus multicuspidatus sp. nov. by “budding 

cladogenesis” (Wagner, 2000). 

Whether multicuspid teeth have arisen during fish evolution either by concrescence, or 

by differentiation of tooth germs, is still debated (Trapani et al. 2005; Jernvall & Thesleff, 

2012; Jackman et al. 2013). However, this mainly concerns teleost taxa with numerous 

minute, closely-spaced teeth (Trapani et al. 2005; Jackman et al. 2013). In the fossil record, 

the oldest evidence of similar increase in cusp number (from mono- or bicuspid to 
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multicuspid small incisiform teeth) is known between two Late Triassic non-teleostean 

neopterygians, i.e. the dapediids Sargodon (Tintori, 1983, 1998) and Hemicalypterus (Gibson, 

2015, 2016). 

In pycnodontiform fishes, the number of premaxillary and dentary teeth never exceeds 

three and five, respectively (Poyato-Ariza & Wenz, 2002). In Pycnodus and other derived 

pycnodontids, these bones bear two monocuspid incisiform teeth (Nursall, 1996; Poyato-

Ariza & Wenz, 2002), except Polazzodus, Sylvienodus, and Tergestinia, which have a 

premaxilla bearing a single tooth (Capasso, 2000; Poyato-Ariza, 2010, 2013). Therefore, it is 

obvious that the nine-cusped tooth of Pycnodus multicuspidatus sp. nov. described here arose 

from complex folding of a single tooth germ (Differentiation Theory) rather than from early 

fusion of several tooth germs (Concrescence Theory). This interpretation is clearly supported 

by the equally-sized premaxillary tooth MHNM.KHG229, which shows a similar overall 

morphology and differs only by its simple, non-incised crown contour (ancestral condition).  

During the development of mammalian teeth, the folding of the enamel epithelium 

leading to the formation of multicuspid crowns is regulated by signaling centers called 

secondary enamel knots (Jernvall et al. 1994; Vaatokari et al. 1996). The presence of enamel 

knot-like signaling centers controlling the cusp number in teleostean fishes has been 

suggested by several authors (Streelman et al. 2003; Jernvall & Thesleff, 2012; Fraser et al. 

2008, 2013; Atukorala & Franz-Odendaal, 2014; Debiais-Thibaud et al. 2015). Recently, 

Smith et al. (2015) showed that the development genes shh and bmp4 operating in the 

dentition of teleosts are similarly expressed in the dentition of the basal actinopterygian 

Polyodon, thus extending this conserved developmental pattern within the Actinopterygii. 

Therefore, the evolutionary transition observed between the monocuspid pycnodont tooth 

MHNM.KHG229 and the multicuspid pycnodont tooth MHNM.KHG230 may be explained 

by minor genetic changes leading to the formation of secondary enamel knot-like structures in 
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the derived form, as for the difference in cusp number observed today between the adult teeth 

of two closely related species of cichlid fishes, i.e. Metriaclima zebra and Labeotropheus 

fuelleborni (Albertson et al. 2003a,b; Streelman et al. 2003). The symmetrical formation of 

four lateral cusps on each side of the central cusp of MHNM.KHG230 could be compared 

with that of the tricuspid teeth of Labeotropheus fuelleborni, which is due to the uniform 

development of secondary enamel knots (and thus lateral cusps) on both the mesial and distal 

sides of the central cusp (Streelman et al. 2003). 

 

3.b. Feeding habits and palaeoecological implications 

 

The large size of MHNM.KHG230 contrasts with the diminutive size characterizing the 

multicuspid teeth of many modern fish taxa (Jernvall & Thesleff, 2012). However, the dental 

morphology observed in MHNM.KHG230 is strikingly similar to that observed in modern 

algivorous/herbivorous forms, such the characids Hemigrammus, Hyphessobrycon and 

Phycocharax (Lima et al. 2009; Ohara et al. 2017a,b), the acanthurid Acanthurus nigrofuscus 

(Fishelson & Delarea, 2013), the sparid Crenidens (Fishelson et al. 2014), the terapontid 

Helotes (Davis et al. 2016) and the cichlid Labeotropheus (Fraser et al. 2008). Interestingly, a 

similar tooth morphology is also found in various groups of herbivorous reptiles, such as 

pareiasaurs (e.g., Jalil and Janvier, 2005; Tsuji, 2013), ankylosaurian dinosaurs (Ősi et al. 

2017), the extinct crocodyliform Simosuchus (Kley et al. 2010), and the algae-eating 

Galápagos marine iguana Amblyrhynchus (Melstrom, 2017). Among mammals, similar fan-

shaped multicuspid incisors are present in an extinct macroscelidid tentatively referred to 

Miorhynchocyon gariepensis (Senut, 2003) and in some hyracoids (De Blieux & Simons, 

2002). 
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Although the vomerine and prearticular dentitions of Pycnodus multicuspidatus sp. 

nov. still remain unknown and may have had a crushing function, all these morphological 

similarities clearly indicate that at least one pycnodontine species have evolved an anterior 

dentition well suited for benthic macroalgal scraping. Pycnodus multicuspidatus sp. nov. was 

likely able to feed on the heavily calcified macroalga Halimeda, a chlorophyte abounding in 

the shallow marine ramp facies of the Paleogene formations of the central High Atlas 

(Dragastan & Herbig, 2007).  

The multicuspid incisiform teeth of Pycnodus multicuspidatus sp. nov. are rather 

similar to those of the front dentition of Stephanodus splendens and Hadrodus belinkoi, two 

putative pycnodontiform taxa occurring in the underlying Maastrichtian strata of the Ouled 

Abdoun Basin (Arambourg, 1952, 1964). However, the incisiform teeth of Stephanodus and 

Hadrodus can be easily distinguished from those of Pycnodus multicuspidatus sp. nov. The 

incisiform teeth of Stephanodus have a lower crown with a rectilinear or slightly concave 

occlusal margin showing numerous (up to 14), smaller cuspules (Zittel, 1888: fig. 310; White, 

1934: pl. 10, fig. 11; Cappetta, 1972: pl. 13, fig. 1–3). The incisiform teeth of Hadrodus are 

usually bifid, with a crown showing two well-separated and well-developed cusps sometimes 

flanked by one or two additional cuspules in dentary teeth (Arambourg, 1964; Bell, 1986). As 

suggested by the heterodonty observed between premaxillary and dentary teeth of Hadrodus 

hewletti (Bell, 1986: fig. 2.4–6), teeth of Hadrodus belinkoi and Stephanodus splendens may 

correspond, respectively, to premaxillary and dentary teeth of the same species (with large 

hook-shaped branchial teeth originally described under the name Ancistrodon libycus; Dames, 

1883; Arambourg, 1952). A complete systematic revision of this group of putative 

pycnodonts is clearly needed but is beyond the scope of this paper; therefore, pending further 

investigation, Hadrodus belinkoi and Stephanodus splendens are considered here as two 

distinct taxa. 
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In the Paleocene epicontinental seas of Morocco, Pycnodus multicuspidatus sp. nov. 

may have occupied, by opportunistic replacement, the trophic niche filled by Stephanodus and 

Hadrodus before the K/Pg boundary and vacated by the end-Cretaceous extinction of these 

two taxa (Fig. 2). This case of parallelism emphasizes the high morphological plasticity of 

pycnodont fishes and their ability to adapt to sudden palaeoenvironmental and 

palaeoecological changes (Poyato-Ariza, 2005). Pycnodont fishes appear to have been 

trophically diverse in the Ouled Abdoun Basin ecosystem during the Paleogene, with 

generalist, shell-crushing forms (Pycnodus spp., including P. cf. praecursor), a macroalgal 

scraper (Pycnodus multicuspidatus sp. nov.), and a predatory, flesh-eating form 

(Serrasalmimus secans). 
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photographs of the specimens.  
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Table 1. Measurements (in mm) of specimens MHNM.KHG229 and MHNM.KHG230. 

 MHNM.KHG229, left 

premaxilla of Pycnodus cf. 

praecursor 

MHNM.KHG230, left 

premaxilla of Pycnodus 

multicuspidatus sp. nov. 

Total height (as preserved) 50.9 38.1 

Tooth width 15.7 16.6 

Tooth height (crown, 

without tooth neck) 

10.4 10.1 

Tooth height (including 

tooth neck) 

17.8 14.6 

Tooth thickness 6.3 6.2 
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Fig. 1. Left premaxillae of Pycnodus cf. praecursor (MHNM.KHG229) (a–d) and P. 

multicuspidatus sp. nov. (holotype MHNM.KHG230) (e–h) from the Paleocene of the Ouled 

Abdoun Basin, Morocco, in labial (a, e), lingual (b, f), mesial (c, g), and ventral (occlusal) (d, 

h) views. Abbreviations: ap – ascending process; blt – base of the (missing) lateral tooth; cs – 

cusps; of – olfactory fossa; tc – tooth crown; tn – tooth neck. Scale bar: 10 mm. 
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Fig. 2. End-Cretaceous extinction of the macroalgal scrapers Stephanodus and Hadrodus 

(?Pycnodontiformes) followed by opportunistic refilling of vacated ecospace by the Paleocene 

pycnodontid Pycnodus multicuspidatus sp. nov. 


