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Convex Asset Pricing

Emy Lécuyer* V. Filipe Martins-da-Rocha�

December 31, 2022

Abstract

In order to encompass general financial frictions, we generalize the fundamental

theorem of asset pricing to convex price functionals. We identify a new arbitrage

condition, called robust no-arbitrage, that characterizes viability and generalizes the

well-known no-arbitrage condition used in models with a linear pricing.

1 Introduction

We consider a standard two-period financial markets economy under uncertainty, where

an investor purchases an optimal portfolio to allocate consumption between the two dates

and across states of nature. The trading possibilities are described by a price functional

that defines the cost of holding a portfolio after all possible trades at t = 0. An equilibrium

price functional necessarily satisfies viability in the sense that an optimal trade exists for

at least one trader with convex, continuous, and strictly increasing preferences. In their

seminal contributions, Harrison and Kreps (1979) and Kreps (1981) show that a linear price

functional is viable if, and only if, it does not allow for an arbitrage opportunity. A portfolio is

an arbitrage opportunity when it is a claim to non-negative consumption tomorrow available

for nothing or less today. The Fundamental Theorem of Asset Pricing (FTAP henceforth)

states that a linear price functional admits no arbitrage opportunities if, and only if, assets are
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linearly priced using strictly positive states prices or equivalently strictly positive stochastic

discount factors (see, for instance, Magill and Quinzii (1996) and LeRoy and Werner (2014)).

The linearity of a price functional is not consistent with frictions and transaction costs

in financial markets. If transaction costs are proportional to the volume dealt with, then

the pricing rules are sublinear (positively homogeneous and subadditive) but not necessarily

linear.1 The extension of the FTAP for sublinear pricing rules has been analyzed by Jouini

and Kallal (1995) and Luttmer (1996). Recently, Cerreia-Vioglio, Maccheroni and Marinacci

(2015) generalized the FTAP to price functionals that are positively homogeneous but not

necessarily subadditive. Positive homogeneity implies that the ratio of the order’s price to

the order’s size, the unitary price, is a constant function of the size. A proxy for the unitary

price is the temporary market impact. It represents the average price change conditioned

on the size and the nature of an order placed in the markets. Large institutions needing to

place large orders in the markets are especially attentive to this effect. To reduce their costs

associated with short-running (the cost associated with finding a counterparty immediately),

the imperfect substitution effects (the cost associated with the absence of a perfect substitute

for the traded asset), and the information effect (the cost associated with agents believing

that the asset is mispriced), they split their orders and keep secret their true size. Several

empirical studies succeeded in reconstituting the total order, called meta order, placed on the

markets by large institutions (Almgren, Thum, Hauptmann and Li (2005), Moro, Vicente,

Moyano, Gerig, Farmer, Vaglica, Lillo and Mantegna (2009), Tóth, Lemperiere, Deremble,

Lataillade, Kockelkoren and Bouchaud (2011), Bacry, Iuga, Lasnier and Lehalle (2015), and

Donier and Bonart (2015)). These studies differ significantly in many points: the analyzed

database, the way the price impact is defined and measured, the way different assets and

periods are collated together in the analysis, and how the fit is performed. Nevertheless, they

have consistently shown that the temporary price impact is approximately increasing as the

square root of the order size. We show in section 2.2 that the resulting price functional,

1A price functional is positively homogeneous if the price p(λθ) of λ ⩾ 0 units of some portfolio θ is

λp(θ). It is subadditive if p(θ + η) ⩽ p(θ) + p(η) for any pair θ, η of portfolios.
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which measures the total price paid for an order, is convex in quantity and not positively

homogeneous.

In addition to the large and well-established empirical literature that studies market

impact, several security trading models obtain a convex price functional in different settings.

The most well-known is probably Kyle (1985). In his simple one-shot trading model with a

noise trader, an insider, and a market maker trading a single risky asset, Kyle (1985) shows

that the equilibrium unitary price increases linearly in quantity. It implies a convex price

functional. Based on this model, Carvajal and Weretka (2012) and Carvajal (2018) also

obtain convex price functionals when they explicitly model the existence of market impact.

Biais, Martimort and Rochet (2000) prove the existence of a unique equilibrium with a

convex price schedule, or put more simply, with convex prices in a financial market with many

traders, an insider, and mamy market makers. In another setup, Glosten (1994) analyzes

idealized electronic limit order books. He shows that the possibility of information-motivated

trade implies convex prices in his setup. More recently, Beissner and Riedel (2019) introduced

the concept of Knight-Walras equilibrium where “the market” has imprecise probabilistic

information about states of nature and values contingent claims using a sublinear expectation

operator.

The objective of this paper is to extend the existing literature on asset pricing by no-

arbitrage and provide a new version of the FTAP that accommodates convex financial fric-

tions. We start by discussing the appropriate arbitrage concept when the price functional is

convex but not necessarily linear. The standard notion of an arbitrage opportunity is related

to the strict monotonicity of the investor’s preference relation. Formally, recall that a port-

folio η is an arbitrage opportunity at some investor’s position θ when, replacing the current

position θ by the new position θ+ η, the associated intertemporal incremental consumption

is positive, meaning that it is non-negative in any contingency (including the first period)

and strictly positive in at least one contingency (including the first period). If we replace

the property that “the associated intertemporal incremental consumption is increased” with

the weaker property that “the associated intertemporal incremental consumption belongs to

an open and convex set Γ containing the positive cone”, we then obtain the concept of a
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weak arbitrage opportunity at the position θ for the set Γ. The motivation for this definition

comes from the fact that preferences are assumed to be strictly increasing and continuous.

Indeed, if the incremented consumption is positive, then, by strict monotonicity, the investor

prefers the new position θ + η. Since his preferences are continuous, he also strictly prefers

the new position if the corresponding incremented consumption belongs to an open and

convex set close enough to the positive cone. The new consumption may decrease in some

contingencies, but it should sufficiently increase in others to get an overall compensation.

We say that a price functional is a robust no-arbitrage price when there exists a position

θ and an open and convex set Γ containing the positive cone such that there are no weak

arbitrage opportunities at the position θ for the set Γ. When the price functional is linear,

our notion of robust no-arbitrage reduces to the standard concept of no-arbitrage price.

Our first contribution is to show that a convex price functional is viable if, and only

if, it is a robust no-arbitrage price. We then generalize the FTAP by showing that a price

functional is a robust no-arbitrage price if, and only if, it is supported by strictly positive

state prices in the sense that there exists a portfolio θ⋆ such that any incremental price

p(θ) − p(θ⋆) associated with a different position θ is at least as large as the present value

(with respect to the strictly positive state prices) of the incremental payoff.

As a first step, we modeled trading opportunities by considering primitive assets and

portfolios. The market structure is then described by the price of a portfolio of primitive

assets and the associated payoff. In the financial economics literature, there is an alternative

approach. Instead of analyzing the price and the payoff of portfolios, we may directly consider

the function defining the cost at the first period to implement some random consumption

at the second period. This function is called a pricing rule and the notions of viability and

no-arbitrage can be adapted to this modeling. This approach is more general since a pricing

rule can be derived from a price functional and a payoff mapping by super-replication.

We start by analyzing the properties of a super-replication pricing rule that is derived

from a price functional. Formally, we show that the super-replication pricing rule associated

with any convex price functional is naturally convex but also monotone. If the price func-

tional is viable, then the super-replication pricing rule is also viable. Furthermore, we show
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that an abstract pricing rule is viable if, and only if, it is a robust no-arbitrage price. Then,

we extend the FTAP to pricing rules by showing that a pricing rule is a robust no-arbitrage

price if, and only if, it is supported by strictly positive state prices. Finally, we show that

when every payoff can be super-replicated (it is for example the case if there is a riskless

asset), a pricing rule is a robust no-arbitrage if, and only if, it is eventually strictly increasing.

2 The Model

We start with standard notations and definitions. Given a non-empty finite set K, we

denote by RK the set of functions x : K → R. An element x ∈ RK is also called a vector

and denoted by x = (x(k))k∈K or x = (xk)k∈K . If L is a non-empty subset of K, then 1L

denotes the vector in RK defined by 1L(k) = 1 if k ∈ L and 1L(k) = 0 if k ̸∈ L. When

L = {ℓ} is a singleton, we slightly abuse notation and prefer the notation 1ℓ. A vector

x ∈ RK is nonnegative (strictly positive) when x(k) ⩾ 0 (resp. x(k) > 0) for all k ∈ K.

The set of nonnegative (strictly positive) vectors is denoted by RK
+ (resp. RK

++). A vector A

function f : RK → R is convex when f(λx+µy) ⩽ λf(x)+µf(y) for any x, y ∈ RK and any

pair (λ, µ) ∈ R2
+ of non-negative numbers satisfying λ + µ = 1. A function f : RK → R is

sub-additive when f(x+ y) ⩽ f(x) + f(y) for every x, y ∈ RK , and positively homogeneous

when f(λx) = λf(x) for any λ > 0 and x ∈ RK .2 When f is sub-additive and positively

homogeneous, we say that f is sublinear.3

2.1 Primitives

There are two periods t ∈ {0, 1}. There is a single perishable good at each period which

can be consumed. Uncertainty is represented by a finite set Ω of states of nature that can

occur at t = 1. An agent is represented by a triple (e0, e1, U) where e0 > 0 represents the

agent’s non-financial income (such as labor income) at t = 0, e1 ∈ RΩ
++ is a random variable

2The function f is super-additive when −f is sub-additive.

3A sublinear function is necessarily convex, but the converse is not always true.
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representing future non-financial income, and U : C → R is a utility function defined on the

consumption set C := R+×RΩ
+ representing the agent’s preference relation over consumption

plans c = (c0, c1) ∈ C. We denote by A the set of triples (e0, e1, U) such that the utility

function U : C → R is strictly increasing on the interior of C, lower semi-continuous on the

interior of C, strictly quasi-concave on the interior of C, and satisfies Inada’s condition at

the origin.4 We assume that A represents the agents populating the economy.

To simplify the presentation, we consider the following notations. Without any loss of

generality, we can assume that 0 ̸∈ Ω. We let Σ := {0} ∪ Ω. Slightly abusing notations, we

identify the sets R×RΩ and RΣ and shall use the notation h = (h0, h1) to describe a vector

h ∈ RΣ, with h0 ∈ R describing quantities at the first period, and h1 ∈ RΩ describing a

random vector of quantities at the second period. We denoted by ∆ the set of probability

measures on Ω.5

2.2 Markets

Trade occurs at period t = 0 and consumption occurs in both periods t = 0 and t = 1.

There is a finite set J of primary assets. In this paper, we exclude any kind of portfolio

restrictions (like short sales constraints or leverage limitations). Therefore, a portfolio of

primary assets is a vector η = (ηj)j∈J ∈ RJ where ηj represents the units of asset j in

the portfolio. We do not model the microstructure of the markets. Agents may trade over

the counter or in centralized markets. They can trade with a single intermediary or split

their trade among several intermediaries or platforms. Our convention is that the vector

η ∈ RJ represents the agent’s aggregate net holdings of primary assets at the end of the

trading period t = 0. The object of study is the lowest cost, denoted by p(η), the agent

has to pay (in units of consumption) to hold the portfolio η at the end of t = 0. The value

p(η) internalizes the possible gains in splitting the trade η into several smaller trades. The

4We refer to Appendix 8.4 for a formal definition of these standard properties.

5A probability measure P on Ω is an element of RΩ
+ such that P ·1Ω = 1. The expectation under P ∈ ∆

of a random vector h1 ∈ RΩ is denoted by EP [h1] := P · h1.
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function

p : RJ → R

is called the price schedule. We analyze the decision of an agent trading only at t = 0.

Therefore, he has no initial portfolio holding inherited from un-modeled past transactions

and will liquidate all his positions at the end of period t = 1. This implies that for this

agent, p(η) is also the cost, paid at t = 0, for holding the portfolio η at the beginning of the

period t = 1.

For each possible state ω ∈ Ω at t = 1, we denote by G(η, ω) ∈ R the payoff (in units

of consumption) of the portfolio η contingent on the state ω. We interchangeably use the

notation Gω(η). Let G : RJ → RΩ be the payoff mapping defined by

∀η ∈ RJ , G(η) := (Gω(η))ω∈Ω .

Consider an agent holding the portfolio η at the beginning of period t = 1, i.e., after trading

in period t = 0 and before liquidating all his position at the end of period t = 1. If

G(η, ω) > 0, then the agent is entitled to G(η, ω) units of the consumption good in state ω.

If G(η, ω) < 0, then the agent is supposed to deliver the amount |G(η, ω)| in state ω. The

pair (p,G) is called the market structure.

Example 2.1. If dividends are proportional, there are no taxes, and every asset j is short-

lived, then

G(η, ω) =
∑
j∈J

ηjgj(ω)

where gj(ω) ∈ R is the unitary dividend of asset j. In that case, the mapping G is a linear

operator. Following Prisman (1986) and Ross (1987), we may allow for taxes by considering

the mapping

G(η, ω) =
∑
j∈J

ηjgj(ω)− T

(∑
j∈J

ηjgj(ω)

)
where T : R → R is the tax function. Observe that if T is a convex (thus progressive) tax

function, then each function Gω : RJ → R is concave.
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Example 2.2. One may also encompass the case where there are no taxes, no dividends at

t = 1 but assets are long-lived. In that situation, we have

G(η, ω) = p1(−η, ω)

where p1(·, ω) : RJ → R is the price schedule at date 1 and state ω. Observe that if p1(·, ω)
is a convex function, then Gω : RJ → R is concave.

2.3 Convex Market Structure

We assume that there is no liabilities and no gains if the agent does not trade in the

financial markets.

Assumption 2.1. We have p(0) = 0 and Gω(0) = 0 for every ω ∈ Ω.

We also impose the following convexity properties.

Assumption 2.2. The market structure (p,G) is convex in the sense that the price

schedule p : RJ → R is convex and, for every state ω, the payoff function Gω : RJ → R is

concave.6

A price schedule p : RJ → R that is convex and satisfies p(0) = 0 is called a price

functional. Convexity of p implies that the bid-ask spread of any portfolio is non-negative,

i.e., p(θ) ⩾ −p(−θ) for any portfolio θ ∈ RJ .7

Example 2.1. Assume that there is a transaction cost cj(|θj|) for trading θj units of se-

curity j. Each function cj : R+ → R+ is assumed to be convex and to satisfy cj(0) = 0.

Consider the following price functional

p(θ) =
∑
j∈J

pjθj + cj(|θj|) (1)

6See the appendix for standard definitions and properties of convex analysis.

7Indeed, convexity implies 0 = p((1/2)θ + (1/2)(−θ)) ⩽ (1/2)p(θ) + (1/2)p(−θ).
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where pj is the (cost-free) unitary price for purchasing or selling each unit of asset j. Observe

that when each function cj is linear, i.e., cj(z) = c̄jz for some c̄j > 0, then we get the standard

price functional with proportional transaction costs:

p(θ) =
∑
j∈J

pbj[θj]
+ +

∑
j∈J

paj [θj]
− (2)

where pbj := pj + c̄j and p
a
j := pj − c̄j.

8

A market structure (p,G) is said to be subadditive when the function p : RJ → R is

subadditive and each function Gω : RJ → R is superadditive. It is said to be positively

homogeneous when (p(λθ), G(λθ)) = λ(p(θ), G(θ)) for any positive scalar λ > 0 and vector

θ ∈ RJ . If the function p is subadditive and positively homogeneous, then it is said to be

sublinear. If a price schedule p : RJ → R is sublinear, then it is a price functional (i.e., p

is convex and p(0) = 0). Observe that the functions defined by (2) are sublinear.

Example 2.2. Following the discussion in the Introduction, a large and well established

empirical literature has demonstrated that the temporary market impact on unitary prices

increases approximately as the square root of the quantity traded. We claim that convexity

allows accounting for this effect of quantity on price. Indeed, assume markets are segmented

in the sense that the price schedule satisfies p(θ) =
∑

j∈J pj(θj).
9 We let puj : R → R represent

the unitary price of asset j depending on the quantity traded, that is, pj(x) = puj (x)x for

every x ∈ R. If we assume that the temporary market impact on the unitary price is exactly

the square root of the quantity traded, then we obtain the following expression for puj :
10

puj (x) =


puj + βj

√
x, if x > 0,

0, if x = 0,

pu
j
− γj

√
−x, if x < 0,

8Equivalently, we have p(θ) =
∑

j∈J pjθj+
∑

j∈J cj |θj |. In that case, the bid-ask spreads are proportional

since p(θ) + p(−θ) = 2
∑

j∈J cj |θj |.
9That is, there is no cross-price correlations or cross-impact on the total price.

10Observe that the model with proportional bid-ask spreads assumes puj (x) = puj if x > 0 and puj (x) = pu
j

if x < 0. Only the sign of x matters to determine the unitary price puj (x).
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where puj and pu
j
and price-impact coefficients βj and γj are positive for all asset j ∈ J .11 The

higher the quantity traded, the higher is the market impact on unitary price. This implies

that the more you purchase, the higher is the unitary price and the more you sell, the lower

is the unitary price. If we assume that puj ⩾ pu
j
, we can easily verify that the corresponding

price p is a price functional. We plot an example in Figure 1.

−10 10

20

x

pj(x)

Figure 1: Price functional with market impact where puj = 1.3, pu
j
= 0, 7, βj = 1/5, and

γj = 1/6.

Example 2.3. Following Beissner and Riedel (2019), consider the market structure (p,G)

with linear payoffs (i.e., the mapping G is linear) and Knightian uncertainty about state

prices. Formally, there exists a convex and compact set P ⊆ ∆ of probability measures on

Ω such that

p(θ) = max
P∈P

EP [ψG(θ)] (3)

where ψ(ω) > 0 is the price of state ω. A possible interpretation suggested by Beissner

and Riedel (2019) is that cautious financial intermediaries (market makers) have imprecise

probabilistic information about the states of the world and compute the maximal expected

present value over the set P of models to hedge Knightian uncertainty. Observe that p(θ) =

11Since we do not model the trade microstructure, there is no reason a priori to assume that the price

impact is symmetric in the sense that βj = γj .
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−minP∈P EP [ψ(−G(θ))] where −G(θ) is the contingent claim received by market makers at

t = 1. This means that market makers’ valuation of some contingent claim g1 ∈ RΩ is

V (g1) = min
P∈P

EP [ψg1].

This corresponds to Gilboa and Schmeidler (1989) maxmin expected utility model. The

approach proposed by Beissner and Riedel (2019) can be extended to other ambiguity models,

like the variational preferences of Maccheroni, Marinacci and Rustichini (2006). In that case,

the price functional takes the following form

p(θ) = max
P∈∆

(EP [ψG(θ)]− c(P )) (4)

where c : ∆ → [0,∞] is convex, lower semicontinuous function such that c(P ) = 0 for at

least one P ∈ ∆. The price functional defined by (3) is sub-linear, but the price functional

defined by (4) is neither sub-additive, nor positively homogeneous.

3 Viability

An agent (e0, e1, U) ∈ A chooses a consumption plan c = (c0, c1) ∈ C that satisfies the

flow budget constraints at t = 0 and at t = 1 for any contingency. This means that there

exists a portfolio θ ∈ RJ such that c− e ⩽ (−p(θ), G(θ)), or, equivalently,

c0 + p(θ) ⩽ e0 and c1 ⩽ G(θ) + e1.

Since the utility function U is strictly increasing, optimal consumption plans satisfy the flow

budget constraints with equality. This implies that the agent’s maximization problem is

equivalent to solving

max{v(θ) : θ ∈ Θ}

where Θ is the set of budget feasible portfolios, i.e.,

Θ := {θ ∈ RJ : p(θ) ⩽ e0 and G(θ) ⩾ −e1}

and v(θ) := U(e0 − p(θ), e1 +G(θ)) is the indirect utility.
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Remark 3.1. Since U is strictly increasing, we have the following important property: for

any budget feasible portfolio θ ∈ Θ and any incremental portfolio η ∈ RJ , if

p(θ + η) ⩽ p(θ) and G(θ + η) ⩾ G(θ), (5)

then the new portfolio θ + η is also budget feasible, i.e., θ + η ∈ Θ. Moreover, since U

is strictly increasing, we have v(θ + η) ⩾ v(θ) with a strict inequality if there is a strict

inequality in one of the inequalities in (5). This simple argument is at origin of the central

notion of arbitrage.

We recall the concept of viability introduced by Harrison and Kreps (1979) (see also

Kreps (1981)).

Definition 3.1. A market structure (p,G) is said to be viable when it is compatible with

utility maximization for at least one agent. Formally, there exists an agent (e0, e1, U) ∈ A
such that his maximization problem has a solution, i.e., there exists a portfolio θ⋆ ∈ RJ

satisfying

θ⋆ ∈ argmax{v(θ) : θ ∈ Θ}. (6)

As far as we know, all published papers dealing with viability assume that θ⋆ = 0. This

assumption is without any loss of generality if we impose the following restrictions on the

market structure.

Proposition 3.1. Consider a market structure (p,G) such that the price functional p is

subadditive and, for each state ω, the payoff function Gω is superadditive. If p is viable,

then there exists an agent who finds it optimal not to trade.

Proof. Viability of p implies that there exists an agent a := (e0, e1, U) ∈ A and a portfolio

θ⋆ ∈ argmax{v(θ) : θ ∈ Θ}. Denote by c⋆ = e + (−p(θ⋆), G(θ⋆)) the associated optimal

consumption plan, i.e., c⋆0 := e0 − p(θ⋆) and c⋆1 := e1 + G(θ⋆). Inada’s conditions at the

origin implies that c⋆ belongs to the interior int(C) of C, i.e., c⋆0 > 0 and c⋆1(ω) > 0 for

every state ω. Consider the agent ã := (ẽ0, ẽ1, U) whose initial endowments are defined by
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ẽ0 := c⋆0 and ẽ1 := c⋆1. We claim that no trade is optimal for agent ã. Assume, by way of

contradiction, that there exists a portfolio θ satisfying the budget restrictions

p(θ) ⩽ ẽ0 = e0 − p(θ⋆) and 0 ⩽ G(θ) + ẽ1 = G(θ) +G(θ⋆) + e1

such that U(ẽ0 − p(θ), ẽ1 + G(θ)) > U(ẽ0, ẽ1). Sub-additivity of p and super-additivity of

each Gω imply that the portfolio θ + θ⋆ is budget feasible for agent a since we have

p(θ + θ⋆) ⩽ p(θ) + p(θ⋆) ⩽ e0 and e1 +G(θ + θ⋆) ⩾ e1 +G(θ) +G(θ⋆) ⩾ 0.

This contradicts the optimality of θ⋆ for agent a since we have

U(e0 − p(θ + θ⋆), e1 +G(θ + θ⋆)) > U(ẽ0, ẽ1) = U(e0 − p(θ⋆), e1 +G(θ⋆)).

We have thus proved that no-trade is the optimal decision for agent ã.

We do not want to assume subadditivity of the price functional since we typically want

to address non-proportional frictions as the one of Example 2.2 (see also Figure 1) and

Example 2.3. This is the reason why our concept of viability is necessarily more general

that the one considered in the literature and does not restrict attention to no-trade as the

possible optimal portfolio for an agent.

4 No-Arbitrage Conditions

Assume that a market structure (p,G) is viable. This means that there exists an agent

(e0, e1, U) and a portfolio θ⋆ ∈ RJ such that

θ⋆ ∈ argmax{U(e0 − p(θ), e1 +G(θ)) : p(θ) ⩽ e0 and e1 +G(θ) ⩾ 0}.

We let c⋆ denote the optimal consumption plan defined by c⋆0 := e0 − p(θ⋆) and c⋆1 :=

e1 +G(θ⋆). Let H := RΣ and denote by12

H+ := RΣ
+ \ {0}

12Recall that Σ = {0} ∪ Ω and the set RΣ is identified with R× RS .
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the set of positive consumption increments. Recall that U is strictly increasing in the interior

of C. This implies that U(c⋆ + h) > U(c⋆) for any h ∈ H+.13 Let’s denote by FI(θ⋆) the set

of financially feasible consumption increments from portfolio θ⋆ defined as the set of

all vectors h = (h0, h1) ∈ H such that there exists an incremental portfolio η ∈ RJ satisfying

h0 ⩽ p(θ⋆)− p(θ⋆ + η) and h1 ⩽ G(θ⋆ + η)−G(θ⋆).

The new consumption plan c⋆+h can be financed by the new portfolio θ⋆+η. The optimality

of c⋆ then implies that

FI(θ⋆) ∩H+ = ∅.

Therefore, in our context where the price schedule can be non-linear, the suitable no-arbitrage

condition associated to the assumption that preferences are strictly increasing is the following

one.

Definition 4.1. The pair (p,G) is a no-arbitrage market structure when there exists a

portfolio θ0 ∈ RJ such that

FI(θ0) ∩H+ = ∅ (7)

or, equivalently, for every portfolio increment η ∈ RJ , the conditions

G(θ0 + η) ⩾ G(θ0) and p(θ0 + η) ⩽ p(θ0)

imply

G(θ0 + η) = G(η) and p(θ0 + η) = p(θ0).

Property (7) can also be characterized by the following implications:

∀θ ∈ RJ ,
[
G(θ) > G(θ0) =⇒ p(θ) > p(θ0)

]
and

[
G(θ) = G(θ0) =⇒ p(θ) ⩾ p(θ0)

]
.

When the market structure is linear, the above definition coincides with the standard defi-

nition of no-arbitrage: for any portfolio η ∈ RJ ,

[G(η) ⩾ 0 and p(η) ⩽ 0] =⇒ [G(η) = 0 and p(η) = 0] .

13Inada’s conditions at the origin guarantee that c⋆ belongs to the interior of C.
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The no-arbitrage condition (7) is necessary for viability and is built upon the assumption

that agents have strictly increasing preferences. We introduce the following strengthening of

no-arbitrage that also exploits continuity of preferences.

Definition 4.2. The pair (p,G) is a robust no-arbitrage market structure when there

exist a portfolio θ0 and an open and convex set Γ ⊆ RΣ such that

FI(θ0) ∩ Γ = ∅ and Γ ⊇ H+. (8)

Our definition of robust no-arbitrage is motivated by the following straightforward result.

Proposition 4.1. If a market structure is viable, then it is a robust no-arbitrage market

structure.

Proof. Consider a market structure (p,G) that is viable. This means that there exist an

agent (e0, e1, U) ∈ A and an optimal portfolio θ⋆ ∈ argmax{v(θ) : θ ∈ Θ}. We claim

that the robust no-arbitrage condition (15) is satisfied for θ0 = θ⋆. Recall that v(θ) =

U(e0 − p(θ), e1 + G(θ)). We pose c⋆ = e + (−p(θ⋆), G(θ⋆)). Since U satisfies the Inada’s

condition at the origin, we must have c⋆ ∈ RΩ
++. Let Γ be the set consumption increments

that increase utility starting form c⋆:

Γ := {h ∈ RΣ : c⋆ + h ∈ RΩ
++ and U(c⋆ + h) > U(c⋆)}.

Since U is lower semi-continuous, the set Γ is open in RΣ. Since U is strictly quasi-concave,

the set Γ is convex. Since U is strictly increasing, the set Γ contains c⋆. Since c⋆ is optimal,

for any utility-improving increment h ∈ Γ, we cannot find a change of portfolio η that

finances the incremental consumption h. In other words, we must have FI(θ⋆)∩Γ = ∅. This
means that (p,G) is a robust no-arbitrage market structure.

The definition of robust no-arbitrage is the natural strengthening of the standard no-

arbitrage condition when, in addition to the strict monotonicity, we incorporate the continu-

ity property of agents’ utility function when analyzing the set of utility-improving consump-

tion increments. Comparing (7) and (15), we see that the concept of robust no-arbitrage is

15



stronger than the concept of no-arbitrage. The converse is valid when the market structure

is linear.

Proposition 4.2. A linear market structure is a no-arbtirage market structure if, and only

if it is a robust no-arbitrage market structure.

Proof. Under linearity, we know from the Fundamental Theorem of Finance (Harrison and

Kreps (1979)) that if (p,G) is a no-arbitrage market structure, then there exists a strictly

positive vector µ ∈ RΩ
++ of state prices such that p = µ · G :=

∑
ω∈Ω µ(ω)Gω.

14 Choosing

Γ := {h = (h0, h1) ∈ RΣ : h0 > −µ · h1}, we get that FI(θ0) ∩ Γ = ∅ for any θ0. Since

µ is strictly positive, we also have H ⊆ Γ. This shows that (p,G) is a robust no-arbitrage

market structure.

To illustrate the difference between these two concepts when the market structure is

non-linear, we consider a simple market model without uncertainty where agents trade a

single asset. The asset’s payoff at date 1 is linear with G(η) = η. In Figures 2 and 3, the

h0 axis represents the increments in consumption at date 0, and the h1 axis represents the

increments in consumption at date 1. In Figure 2, we illustrate the geometry of a price

functional p satisfying robust no-arbitrage at θ0 = 0. Formally, we have FI(θ0) ∩ H+ = ∅
and p′(θ0) > 0. These properties are sufficient to construct a convex and open set Γ such

that H+ ⊆ Γ and FI(θ0) ∩ Γ = ∅.

h0

h1

p(θ0)− p(θ0 + η)

η
: FI(θ0)

: H+

: Γ

Figure 2: Geometry of robust no-arbitrage

14This means that for every portfolio θ ∈ RJ , we have p(θ) =
∑

ω∈Ω µ(ω)G(θ, ω).
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In Figure 3, we represent a different market structure such that the no-arbitrage con-

dition (7) is satisfied for the portfolio θ0 = 0. The price functional satisfies p′(θ0) = 0.15

This implies that it is not possible to find an open and convex set Γ such that H+ ⊆ Γ and

FI(θ0)∩ Γ = ∅. In other words, the robust no-arbitrage condition (15) is not satisfied at the

portfolio θ0 = 0. However, this is a robust no-arbitrage market structure since condition (15)

is satisfied by another portfolio θ.16

h0

h1

p(θ0)− p(θ0 + η)

η
: FI(θ0)

: H+

Figure 3: Geometry of no-arbitrage

It is straightforward to verify if a market structure satisfies the robust no-arbitrage con-

dition (15) at some portfolio θ0, then it satisfies the no-arbitrage condition (7) at the exact

same portfolio θ0. The example represented in Figure 3, illustrate that the converse is not

always true. However, in this same example, the robust no-arbitrage condition is satisfied

for another portfolio. This turns out to be a quite general property. Indeed, we show below

that if the set of financial feasible consumption increments is closed, then the concepts of

robust no-arbitrage and no-arbitrage market structures are equivalent.

Theorem 4.1. Let (p,G) be a market structure such that the set of financial feasible con-

15Formally, we have p(η) := 0 if η ⩽ 0 and p(η) = η2 if η ⩾ 0.

16Recall that we have a robust no-arbitrage market structure when there exists at least one portfolio θ

such that condition (15) is satisfied. This is in sharp contrast with the existing literature that restrict

attention to the specific portfolio θ0 = 0.
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sumption increments17

FI := {h ∈ RΣ : ∃η ∈ RJ , h ⩽ (−p(η), G(η))}

is closed. If (p,G) is a no-arbitrage market structure, then it is also a robust no-arbitrage

market structure.

Proof. Assume that (p,G) is a no-arbitrage market structure. This means that there exists

a portfolio θ0 ∈ RJ such that

FI(θ0) ∩H+ = ∅.

To simplify the presentation, we shall assume that θ0 = 0. This implies that FI(θ0) = FI.

Observe that the lower contour set FI is convex. Let 0+ FI denote the asymptotic (or

recession) cone of FI defined as the set of all directions ξ ∈ RΣ such that

∀h ∈ FI, ∀t ⩾ 0, h+ tξ ∈ FI .

This is a closed convex cone. Moreover, we can verify that a direction ξ belongs to 0+ FI if,

and only if, there exists a sequence (hn) of vectors in FI and a decreasing sequence (λn) of

positive numbers converging to 0 such that ξ = limλnhn.

Recall that the negative polar cone [0+ FI]0 is the set of all µ ∈ RΣ such that µ · h ⩽ 0

for every h ∈ 0+ FI.

Lemma 4.1. The negative polar cone [0+ FI]0 contains a strictly positive vector µ ∈ RΣ
++.

Proof. Since 0 ∈ FI, the asymptotic cone 0+ FI is a subset of FI. We have assumed that

(p,G) satisfies the no-arbitrage price condition (7) for the portfolio θ0 = 0. This means

that FI∩H+ = ∅. Therefore, we get that 0+ FI ∩ H+ = ∅. Denote by ∆ the simplex of

RΣ.18 Since ∆ ⊆ H+, we deduce that the two closed convex sets 0+ FI and ∆ have an empty

17Observe that FI = FI(0). Since FI(θ0) = {(p(θ0),−G(θ0))}+FI, assuming that FI is closed is equivalent

to assuming that FI(θ0) is closed for any other portfolio θ0.

18∆ is the set of vectors h ∈ RΣ
+ such that 1Σ · h = 1.

18



intersection. Since ∆ is also compact, we can apply the Strict Convex Separation Theorem

to deduce the existence of µ ∈ RΣ, α ∈ R and ε > 0 such that

∀ξ ∈ 0+ FI, µ · ξ ⩽ α < α+ ε ⩽ µ · h, ∀h ∈ ∆.

Since 0 ∈ 0+ FI, we deduce that µ ∈ RΣ
++. Since 0+ FI is a cone, we have t(µ · ξ) ⩽ α for

every t > 0 and every ξ ∈ 0+ FI. This is sufficient to conclude that µ belongs to the negative

polar cone [0+ FI]0.

h0

h1

: FI

: H+

: 0+ FIµ

Figure 4: Geometry of no-arbitrage

Without any loss of generality, we can assume that µ ∈ ∆, that is, µ · 1Σ = 1. Since µ

is strictly positive, it belongs to ri(∆), the relative interior of the simplex ∆. This implies

that there exists ε > 0 small enough such that19

K(µ) :=
[
µ+ εB

]
∩∆ ⊆ ri(∆).

Observe that K(µ) is a compact subset of ri(∆) that contains µ in its interior relative to ∆.

19The closed unit ball is B := {h ∈ RΣ : ∥h∥ = 1}.
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(0, 1, 0)

(0, 0, 1)(1, 0, 0)

µ

: ∆

: K(µ)

Figure 5: The set K(µ) with two states of nature.

Fix arbitrary strictly positive initial endowments e = (e0, e1) ∈ RΣ
++ and consider the

utility function U : C 7−→ R defined by U(c) := V (c− e) where V : RΣ 7−→ R is defined by

V (h) := min{µ̃ · h : µ̃ ∈ K(µ)}.

The utility function U is continuous, concave and strictly increasing. Let a be the agent

(e0, e1, U). By construction, we have

U(e0 − p(θ), e1 +G(θ)) = V (−p(θ), G(θ)).

This implies that the maximization problem of the agent a admits a solution if, and only if,

the set argmax{V (h) : h ∈ FI} is non-empty.

h0

h1

∆

: FI

: 0+ FI
K(µ)
µ

{V = 0}

Figure 6: Indifference curve of V
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Lemma 4.2. The maximization problem of the agent a has a solution, i.e.,

argmax{V (h) : h ∈ FI} ≠ ∅.

Proof. Observe that V (h) ⩽ µ · h for every h ∈ FI. Let (hn) be a sequence in FI such that

limV (hn) = sup{V (h) : h ∈ FI}.

If (hn) is bounded, we get the desired result from the continuity of V and the fact that FI is

closed. Assume, by way of contradiction, that (hn) is unbounded. Passing to a subsequence

if necessary, we can assume that (∥hn∥) is an increasing sequence of positive numbers that

converges to infinite. Let ξn := (1/ ∥hn∥)hn. We have ∥ξn∥ = 1. Passing to a subsequence if

necessary, we can assume that there exists ξ ∈ RΣ such that ξ = lim ξn. By construction, we

have ξ ∈ 0+ FI and ∥ξ∥ = 1. Since the function V is continuous and positive homogeneous,

we have20

V (ξ) = limV (ξn) = limV ((1/ ∥hn∥)hn) = lim
1

∥hn∥
V (hn) ⩾ 0.

Recall from Lemma 4.1 that µ · ξ ⩽ 0. Since V (ξ) ⩾ 0, we also have that

µ · ξ = 0 and µ̃ · ξ ⩾ 0, for all µ̃ ∈ K(µ).

Since µ belongs to the relative interior ofK(µ), we deduce that ξ = 0. Indeed, since µ ∈ RΣ
++,

we can choose α > 0 small enough such that µ − αξ ∈ RΣ
++. We can also find λ > 0 such

that µ̃ := λ(µ− αξ) ∈ ∆. This implies that µ̃ ∈ K(µ). However, we have

µ̃ · ξ = λ (µ · ξ − αξ · ξ) = −λαξ · ξ < 0.

We cannot have ξ = 0 since ∥ξ∥ = 1. Therefore, the sequence (hn) is bounded.

Lemma 4.2 proves that the market structure (p,G) is viable. Applying Proposition 4.1,

we deduce that (p,G) is a robust no-arbitrage market structure.

When the set of financially feasible consumption increments is not closed, the two notions

of no-arbitrage market structure may not coincide.

20Since 0 ∈ FI, we can assume that V (hn) ⩾ 0 for every n ∈ N.
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Proposition 4.3. There exists a no-arbitrage market structure that is not a robust no-

arbitrage.

Proof. To prove this result, we consider the following market structure. There are two

primitive assets J = {a, b} and a single state of nature. The payoff mapping G : RJ → R is

given by G(θ) = Ga(θa) +Gb(θb) where the functions Ga and Gb are given by

Ga(θa) :=

θa if θa ⩽ 0,

0 if θa ⩾ 0,
and Gb(θb) := θb, for all θb ∈ R.

The mapping G is concave and satisfies G(0) = 0. Observe, moreover, that G(θ) > 0 if, and

only if,

[θa ⩾ 0 and θb > 0] or [θa < 0 and θb > −θa] . (9)

We plot the function G in Figure 7.

−10
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10−10
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0
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−20

0

θa
θb

G
(θ
)

Figure 7: The payoff mapping θ 7→ G(θ)
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The price functional is given by

p(θa, θb) :=



θ2b/(θa + θb) if (θa, θb) ∈ [0,∞)× (0,∞),

−θa + θb if (θa, θb) ∈ (−∞, 0]× [0,∞),

−θa if (θa, θb) ∈ (−∞, 0)× (−∞, 0],

0 if (θa, θb) ∈ (0,∞)× (−∞, 0).

It is straightforward to verify that the function p is a price functional (convex and p(0) =

0). We plot the function p in Figure 8.
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Figure 8: The price functional θ 7→ p(θ)

Lemma 4.3. The price functional p satisfies no-arbitrage at the portfolio θ0 = (0, 0).

Proof of Lemma 4.3. We have G(θ0) = 0 and p(θ0) = 0. Since the function p is always

non-negative, we cannot have p(θ) < 0 and G(θ) ⩾ 0. Fix an arbitrary portfolio θ such that

G(θ) > 0. We shall prove that p(θ) > 0. According to (9), we have two cases to analyze.

First, assume that θa ⩾ 0 and θb > 0. In that case, we have p(θ) = θ2b/(θa+ θb) > 0. Second,

assume that θa < 0 and θb > −θa. In that case, we have p(θ) ⩾ −θa > 0.

Lemma 4.4. The set FI of financially feasible consumption increments is not closed.
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Figure 9: The price functional θ 7→ p(θ) and the payoff mapping θ 7→ G(θ)
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Proof of Lemma 4.4. Fix an arbitrary h1 > 0 and consider the sequence (θn)n∈N defined by

θna = n and θbn = h1. For every n ∈ N, we have

G(θn) = h1 and p(θn) =
x2

n+ h1
.

For every n ∈ N, the pair (−p(θn), G(θn)) = (−h21/(n+ h1), h1) belongs to the set FI. Since

lim p(θn) = 0, we have that the pair (0, x) belongs to the closure of FI. However, the pair

(0, h1) does not belong to FI. Indeed, if we had that (0, h1) ∈ FI, then we should be able to

find a portfolio θ such that G(θ) ⩾ h1 and p(θ) ⩽ 0. However, this would contradict the fact

that p satisfies no-arbitrage at 0.

We plot in Figure 10 the set FI of financially feasible consumption increments.

h0

h1

: FI

Figure 10: The set of financially feasible consumption increments is not closed.

Lemma 4.5. The pair (p,G) is not a robust no-arbitrage market structure.

Proof of Lemma 4.5. Assume, by way of contradiction, that (p,G) is a robust no-arbitrage

market structure. We show in Proposition 5.1 that p is supported by strictly positive state

prices. This means that there exists θ1 ∈ RJ and µ > 0 such that p(θ) − p(θ1) ⩾ µ[G(θ) −
G(θ1)] for every portfolio θ ∈ RJ . We analyze three cases. First, assume that G(θ1) < 0.

Since p is always non-negative, we get the following contradiction:

−p(θ1) = p(0)− p(θ1) ⩾ µ[G(0)−G(θ1)] = −µG(θ1) > 0.
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Second, assume that G(θ1) > 0. This implies that θ1b > 0. Observe that, when θ1b > 0, the

function

θa 7→ p(θa, θ
1
b ) =


(θ1b )

2

θa + θ1b
if θa ⩾ 0,

−θa + θ1b if θa ⩽ 0,

is strictly decreasing. Therefore, for any ε > 0, we have p(θ1 + (ε, 0)) < p(θ1). Since G is

increasing, we also have G(θ1 + (ε, 0)) ⩾ G(θ1). This leads to the following contradiction:

0 > p(θ1 + (ε, 0))− p(θ1) ⩾ µ[G(θ1 + (ε, 0))−G(θ1)] ⩾ 0.

Third, assume that G(θ1) = 0. This implies either 0 > θ1a = −θ1b or (θ1a, θ
1
b ) = (0, 0). If

0 > θ1a = −θ1b then p(θ1) = 2θ1b > 0. This leads to the following contradiction

0 > −p(θ1) ⩾ µG(θ1).

If (θ1a, θ
1
b ) = (0, 0), then p(θ1) = 0 and G(θ1) = 0. This means that p(θ) ⩾ µG(θ) for every

θ ∈ RJ . In particular, for every θa > 0, we have

p((θa, 1)) ⩾ µG((θa, 1))

that is,
1

θa + 1
⩾ µ1 > 0

which is impossible. We have thus proved that p cannot be supported by strictly positive

state prices.

The pair (p,G) is a no-arbitrage market structure (Lemma 4.3) that is not a robust

no-arbitrage market structure (Lemma 4.5).

5 Fundamental Theorem of Finance

In the line of the standard Fundamental Theorem of Finance in frictionless models, we

would like to identify a tractable and simple characterization of robust no-arbitrage by means

of positive state-prices. This is the purpose of the following definition.
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Definition 5.1. A market structure (p,G) is supported by strictly positive state prices

when there exists a strictly positive vector µ ∈ RΩ
++ and a portfolio θ0 ∈ RJ such that

p(θ)− p(θ0) ⩾ µ ·
[
G(θ)−G(θ0)

]
, for all θ ∈ RJ . (10)

Remark 5.1. Assume there is a frictionless riskless market in the sense that there exists a

riskless asset j0 ∈ J satisfying the following properties: for every portfolio θ ∈ RJ and holding

λ ∈ R, we have G(θ + λ1j0) = G(θ) + λ and p(θ + λ1j0) = p(θ) + λ/(1 + r) where r > −1

is the riskless interest rate. For any vector µ of strictly positive state prices supporting the

price functional p, we must have
∑

ω∈Ω µ(ω) = 1/(1 + r) and the vector ((1 + r)µ(ω))ω∈Ω

can be interpreted as a probability measure.

Choosing θ = θ0 + tη for any t > 0 and incremental portfolio η ∈ RJ , we get that

Equation (10) is equivalent to

1

t

[
p(θ0 + tη)− p(θ0)

]
⩾ µ · 1

t

[
G(θ0 + tη)−G(θ0)

]
, for all t > 0 and η ∈ RJ .

The LHS increases as t increases, while the RHS decreases as t increases. Therefore, Equa-

tion (10) is equivalent to

p′(θ0; η) ⩾ µ ·G′(θ0; η), for all η ∈ RJ , (11)

where p′(θ0; η) is the derivative of p at θ0 in the direction η and G′(θ0; η) is the vector

(G′
ω(θ

0; η))ω∈Ω of directional derivatives.21 If p and G are differentiable at θ0, then we

necessarily have

∇p(θ0) = µ · ∇G(θ0) (12)

where ∇p(θ0) is the gradient of p at θ0 and ∇G(θ0) is the vector of gradients (∇Gω(θ
0))ω∈Ω.

In particular, if the mapping

η 7→ (∇Gω(θ
0) · η)ω∈Ω

21We refer to Appendix 8.2 for the definition and straightforward properties of the directional derivatives

of a convex (ir concave) function.
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from RJ to RΩ is surjective, then there exists at most one vector µ of state prices satisfying

the asset pricing equation (12).

If a price functional p satisfies the asset pricing inequality (10), then

(p0+)(η) ⩾ p′(θ0; η) ⩾ µ ·G′(θ0; η) ⩾ µ · (G0+)(η), for all η ∈ RJ

where (p0+)(η) is the recession function of p at η and G0+(η) is the vector of recession

functions (G0+(η, ω))ω∈Ω.
22 If p is sub-additive and G(·, ω) is super-additive for every ω,

then p0+ = p and G0+ = G. In that case, p is supported by strictly positive state prices if,

and only if,

p(η) ⩾ µ ·G(η), for all η ∈ RJ .

The above property is consistent with Proposition 3.1 since it does not depend on a specific

portfolio θ0. Moreover, if there are no frictions in the sense that p and G are linear, then

(10) is equivalent to the standard fundamental asset pricing equation

p(η) = µ ·G(η), for all η ∈ RJ .

When the market structure is convex, the existence of strictly positive supporting state

prices is a necessary condition for robust no-arbitrage.

Proposition 5.1. A robust no-arbitrage market structure is supported by strictly positive

state prices.

Proof. Consider a robust no-arbitrage market structure (p,G). There exists a portfolio θ0

and an open and convex set Γ of RΣ such that FI(θ0)∩Γ = ∅ and Γ contains H+. Since p is

convex, the set FI(θ0) is convex. Applying the standard Convex Separation Theorem, there

exists a non-zero (ξ0, ξ1) ∈ R× RΩ such that

ξ0x0 + ξ1 · x1 ⩽ ξ0γ0 + ξ1 · γ1,

22We refer to Appendix 8.2 for the definition and straightforward properties of the recession function of

a convex function.
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for all x = (x0, x1) ∈ A and all γ = (γ0, γ1) ∈ Γ. Choosing x = (0, 0), we derive that ξ0 ⩾ 0

and ξ1 ⩾ 0. Actually, since Γ is open and contains H+, we deduce that ξ0 > 0 and ξ1 ≫ 0.

Fix now an arbitrary η ∈ RJ . Choosing x0 = p(θ0)− p(θ0 + η) and x1 = G(θ0 + η)−G(θ0),

we deduce that

p(θ0 + η)− p(θ0) ⩾ µ · [G(θ0 + η)−G(θ0)]

where µ := (1/ξ0)ξ1.

Once we have strictly positive supporting state prices, we can follow standard argument

to get viability.

Proposition 5.2. If a market structure is supported by strictly positive state prices, then

it is viable.

Proof. Let (p,G) be a market structure satisfying (10). Fix an arbitrary strictly concave,

strictly increasing and differentiable function u : [0,∞) → R such that

lim
x→0

u(x)− u(0)

x
= ∞ and lim

x→∞
u′(x) = 0.

We can take, for instance, u(x) :=
√
x. Fix an arbitrary β ∈ (0, 1) and an arbitrary strictly

positive vector P ∈ RΩ
++ satisfying

∑
ω∈Ω P (ω) = 1 (i.e., P is a probability measure on Ω

with full support). Choose e0 > max{0, p(θ0)} and e1 ≫ 0 such that

βP (ω)u′(c⋆1(ω))

u′(c⋆0)
= µ(ω), for all ω ∈ Ω (13)

where

c⋆0 := e0 − p(θ0) > 0 and c⋆1 := e1 +G(θ0) ≫ 0.

The existence of e1 ≫ 0 satisfying the above conditions follows from the fact u′ : (0,∞) →
(0,∞) is a one-to-one function. We pose

U(c0, c1) := u(c0) + β
∑
ω∈Ω

P (ω)u(c1(ω)).
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Observe that θ0 ∈ Θ. We claim that θ0 is optimal. Indeed, let θ ∈ Θ. By concavity of u, we

have

v(θ)− v(θ0) ⩽ u′(c⋆0)
[
−p(θ) + p(θ0)

]
+ β

∑
ω∈Ω

P (ω)u′(c⋆1(ω))
[
G(θ, ω)−G(θ0, ω)

]
.

Inequality (10) combined with (13) then implies the desired result.

Combining the above results, we get the following general version of the Fundamental

Theorem of Finance.

Theorem 5.1. For any market structure (p, g), the following properties are equivalent:

(i) (P,G) is viable;

(ii) (p, g) is a robust no-arbitrage market structure;

(iii) (p,G) is supported by strictly positive state prices.

6 Viability and the Law of One Price

In this section, we show that without any loss of generality, we can assume that a viable

market structure satisfies the standard law of one price as defined below.

Definition 6.1. Amarket structure (p,G) satisfies the law of one price when two portfolios

having the same payoff also have the same cost: for any θ, η ∈ RJ , the condition G(η) = G(θ)

implies p(η) = p(θ).

Recall that the agent’s maximization problem consists in finding a portfolio θ⋆ ∈ Θ(p)

such that

θ⋆ ∈ argmax{v(θ|p) : θ ∈ Θ(p)}.

If θ ∈ Θ(p), then, by strict monotonicity of preferences, the agent prefers any portfolio η

satisfying G(η) ⩾ G(θ) and p(η) < p(θ). This naturally leads to the following definition

∀θ ∈ RJ , p̃(θ) := inf{p(η) : η ∈ RJ and G(η) ⩾ G(θ)}.
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The function p̃ may a priori take the value −∞. Nonetheless, it is still convex in the sense

that its epigraph {(θ, µ) ∈ RJ × R : p̃(θ) ⩽ µ} is a convex subset of RJ × R.

Since p never takes the value +∞, convexity of p implies that either p̃(RJ) ⊆ R or

p̃(RJ) = {−∞}. We then obtain the following result.

Proposition 6.1. If the market structure (p,G) is viable, then the associated market struc-

ture (p̃, G) satisfies the law of one price.

Proof. Assume that the market structure (p,G) is viable. This means that there exists an

optimal portfolio θ⋆ ∈ argmax{v(θ|p) : θ ∈ Θ(p)}. Observe that we must have p̃(θ⋆) = p(θ⋆)

by optimality of θ⋆. This implies that p̃(θ⋆) > −∞. We then deduce that p̃(RJ) ⊆ R. Since

we already know that p̃ is convex, we conclude that p̃ is a price functional. To prove that

p̃ satisfies the law of one price, we fix two portfolios θ, θ′ ∈ RJ satisfying G(θ) = G(θ′).

Observe that for any η ∈ RJ , the conditions G(η) ⩾ G(θ) and G(η) ⩾ G(θ′) are equivalent.

We then get that p̃(θ) = p̃(θ′).

Actually, a solution to the agent’s problem for the market structure (p,G) is also a

solution to the agent’s problem under the associated market structure (p̃, G).

Proposition 6.2. If the market structure (p,G) is viable, then the associated market struc-

ture (p̃, G) is also viable. More precisely, if θ⋆ solves the agent’s maximization problem for

the market structure (p,G), then the same portfolio solves the agent’s maximization problem

for the associated market structure (p̃, G), i.e.,

argmax{v(θ|p) : θ ∈ Θ(p)} ⊆ argmax{v(θ|p̃) : θ ∈ Θ(p̃)}.

Moreover, we have p(θ⋆) = p̃(θ⋆).

Proof. Let θ⋆ ∈ argmax{v(θ|p) : θ ∈ Θ(p)}. Since p̃ ⩽ p, we have Θ(p) ⊆ Θ(p̃) and

v(θ|p) ⩽ v(θ|p̃) for any θ ∈ Θ(p). In particular, we have θ⋆ ∈ Θ(p̃). To prove that θ⋆ ∈
argmax{v(θ|p̃) : θ ∈ Θ(p̃)}, we fix an arbitrary θ ∈ Θ(p̃) and show that v(θ|p̃) ⩽ v(θ⋆|p̃).
Actually, we have v(θ|p̃) ⩽ v(θ⋆|p). Indeed, fix an arbitrarily small ε > 0. Continuity of U
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implies that there exists η ∈ RJ with G(η) ⩾ G(θ) such that

v(θ|p̃)− ε ⩽ U(e0 − p(η), e1 +G(θ)) ⩽ v(η|p) ⩽ v(θ⋆|p).

Since this inequality is valid for any ε > 0, we deduce that v(θ|p̃) ⩽ v(θ⋆|p). Since p̃ ⩽ p, we

also have v(θ⋆|p) ⩽ v(θ⋆|p̃). We have thus proved that

∀θ ∈ Θ(p̃), v(θ|p̃) ⩽ v(θ⋆|p) ⩽ v(θ⋆|p̃)

which implies that θ⋆ is optimal under the price function p̃. Moreover, replacing θ by θ⋆ in

the above inequality, we deduce that v(θ⋆|p̃) = v(θ⋆|p), and therefore p̃(θ⋆) = p(θ⋆).

Combining Proposition 6.1 and Proposition 6.2, we obtain the following result.

Corollary 6.1. If a market structure (p,G) is viable, then the associated market structure

(p̃, G) is also viable and satisfies the law of one price.

7 Super-Replication and Pricing Rules

Instead of analyzing the agent’s decision problem in terms of portfolios of primitive assets,

we may focus directly on the cost at t = 0 to implement a specific consumption at t = 1.

Formally, what is the amount of resources the agent should spend at t = 0 in order to

implement a specific random consumption plan c1 at t = 1 by trading portfolios? A natural

answer is to look for the cheapest portfolio θ satisfying G(θ) ⩾ c1 − e1. This leads to the

notion of super replication price defined below.

7.1 Super-Replication Price

The set of payoffs (vectors in RΩ) which can be super replicated by trading portfolios

is

XG := {x ∈ RΩ : ∃θ ∈ RJ such that x ⩽ G(θ)}.

The set XG satisfies free-disposal in the sense that XG −RΩ
+ ⊆ XG. Concavity of G implies

that XG is convex.
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Remark 7.1. We say that there exists a riskless asset when R1Ω := {λ1Ω : λ ∈ R} belongs

to the marketed set Im(G) := {x ∈ RΩ : ∃θ ∈ RJ , x = G(θ)} defined as the set of payoffs

which can be exactly obtained by trading portfolios.23 When there exists a riskless asset, we

have XG = RΩ.

Definition 7.1. The super-replication price associated to the market structure (p,G) is

the function πp : XG → R ∪ {−∞} defined by

∀x ∈ XG, πp(x) := inf{p(θ) : θ ∈ RJ and x ⩽ G(θ)}. (14)

We start by analyzing straightforward properties. Observe first that a super-replication

price πp may take a priori the value −∞.24 Nonetheless, convexity of the super-replication

price follows from the convexity of the price functional.

Proposition 7.1. The super-replication price is convex.

Proof. Fix a market structure (p,G). To prove that the super-replication price πp : XG →
R ∪ {−∞} is a convex function, we show that epi(πp) is a convex subset of RΩ. We have

epi(πp) = {(x, µ) ∈ Φ× R : µ ⩾ πp(x)}.

Let ((x, µ), (x′, µ′)) ∈ epi(πp)× epi(πp), then there exist θ ∈ RJ such that G(θ) ⩾ πp(x) and

p(θ) ⩽ µ and θ′ ∈ RJ such that G(θ′) ⩾ πp(x′) and p(θ′) ⩽ µ′. Convexity of p implies that

for all λ ∈ (0, 1),

p(λθ + (1− λ)θ′) ⩽ λp(θ) + (1− λ)p(θ′) ⩽ λµ+ (1− λ)µ′.

Since G(λθ + (1− λ)θ′) ⩾ λµ+ (1− λ)µ′, we have

πp(λx+ (1− λ)x′) ⩽ p(λθ + (1− λ)θ′) ⩽ λµ+ (1− λ)µ′.

Hence epi(πp) is a convex subset of RΩ.

23This property is satisfied, for instance, if there is a primitive asset j0 ∈ J such that G(λ1j0) = λ1Ω.

24We show in Section 7.2 that if (p,G) is a viable price functional, then the super-replication price πp

only takes finite values.
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As a direct consequence of the definition, we get that πp is increasing.

Proposition 7.2. The super-replication price is an increasing function.25

Proof. Fix a price functional p : RJ → R. Let x, y be two payoffs in XG such that x ⩾ y.

Fix an arbitrary portfolio θ ∈ RJ such that G(θ) ⩾ x. We also have G(θ) ⩾ y and we

deduce that πp(y) ⩽ p(θ). We have thus proved that πp(y) is a lower bound of the set

{p(θ) : G(θ) ⩾ x}. This implies that πp(y) ⩽ πp(x).

The super-replication price associated with a market structure (p,G) coincides with the

super-replication price associated with the market structure (p̃, G).

Lemma 7.1. Given a market structure (p,G), replacing the price functional p by its associated

function p̃ leads to the same super-replication price, i.e., πp = πp̃.

Proof. Since p̃ ⩽ p, we have πp̃ ⩽ πp. To prove the converse inequality, we fix x ∈ XG and

start by analyzing the case where πp̃(x) ∈ R. Fix some arbitrary ε > 0. By definition of

πp̃(x), there must exist θ ∈ RJ with G(θ) ⩾ x such that πp̃(x) + ε ⩾ πp̃(θ). By definition of

p̃(θ), there exists η ∈ RJ with G(η) ⩾ G(θ) such that p̃(θ) + ε ⩾ p(η).We have thus proved

that πp̃(x)+2ε ⩾ p(η) where G(η) ⩾ x. It then follows that πp̃(x)+2ε ⩾ πp(x). Since this is

true for any ε > 0, passing to the limit when ε tends to zero, we get the desired result. Now,

we analyze the case where πp̃(x) = −∞. Fix an arbitrary M > 0. There must exist θ ∈ RJ

with G(θ) ⩾ x such that p̃(θ) ⩽ −M . By definition of p̃(θ), there must exist η ∈ RJ with

G(η) ⩾ G(θ) such that p̃(θ) ⩽ p(η) ⩽ −M/2. We have thus proved that for any M > 0,

there exists η ∈ RJ such that G(η) ⩾ x and p(η) ⩽ −M/2. This necessarily implies that

πp(x) = −∞.

Remark 7.2. By definition, a price functional p satisfies p(0) = 0. This property implies that

πp(0) ⩽ 0. However, we do not necessarily have πp(0) = 0, even if (p,G) is a no-arbitrage

market structure. Indeed, consider the following illustrative example. There is a single state

25A function π : XG → R ∪ {−∞} is increasing when π(x) ⩾ π(y), for any x ∈ XG and any y ⩽ x. We

take the standard convention that −∞+ z = −∞ for any z ∈ R ∪ {−∞}.
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of nature and a single asset. The mapping G : R → R is linear and satisfies G(θ) = θ, for

any θ ∈ R. Consider the price functional p : R → R defined by p(θ) := |θ − ξ| − ξ for some

exogenous ξ > 0. The pair (p,G) is a robust no-arbitrage market structure since we have

p(θ0 + η)− p(θ0) ⩾ η for any η ⩾ 0 and any θ0 ⩾ ξ. Moreover, we have

πp(θ) =

−ξ if θ ⩽ ξ,

θ − 2ξ if θ > ξ.

In particular, we have πp(0) = −ξ < 0 and the bid-ask spread is not necessarily non-negative

since πp(2ξ) = 0 < −πp(−2ξ) = ξ.

We say that a market structure is complete when Im(G) = RΩ.26 If a market structure

is complete and satisfies the law of one price, we can follow Cerreia-Vioglio, Maccheroni and

Marinacci (2015) and consider the replication pricing rule π̃p : RΩ → R associated with

the price functional p defined by π̃p(x) := p(θ) for any portfolio θ satisfying G(θ) = x.27

It turns out that the super-replication price πp corresponds to an inf-convolution of the

replication pricing rule π̃p.

Proposition 7.3. Assume the market structure (p,G) is complete and satisfies the law of

one price. The super-replication price πp associated with p satisfies

πp(x) = inf{π̃p(z) : z ∈ RΩ, x ⩽ z}.

Proof. Fix z ∈ RΩ such that x ⩽ z. Since the market structure is complete, there exists a

portfolio θ ∈ RJ such that z = G(θ). By definition of π̃p, we have π̃p(z) = p(θ). This implies

that πp(x) ⩽ π̃p(z) and we proved that

πp(x) ⩽ ρ(x) := inf{π̃p(z) : z ∈ RΩ and x ⩽ z}.

Reciprocally, let θ ∈ RJ such that G(θ) ⩾ x. By posing z := G(θ), we get that p(θ) = π̃p(z),

and consequently, ρ(x) ⩽ p(θ). We have thus proved that ρ(x) is a lower bound of the set

{p(θ) : x ⩽ G(θ)}. This, in turn, implies that ρ(x) ⩽ πp(x).

26Recall that Im(G) := {x ∈ RΩ : ∃θ ∈ RJ , x = G(θ)}.
27The law of one price guarantees that π̃p is well-defined.
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Viability of the market structure (p,G) is a sufficient condition to guarantee that the

super-replication price only take real values.

Proposition 7.4. If the market structure (p,G) is viable, then the super-replication price

πp is a function from XG to R.

Proof. Assume that the market structure (p,G) is viable. There exists an optimal portfolio

θ⋆ ∈ argmax{v(θ|p) : θ ∈ Θ(p)}. Denote by c⋆ the associated optimal consumption plan

defined by c⋆0 := e0 − p(θ⋆) and c⋆1 := e1 +G(θ⋆). Recall that Inada’s conditions at the origin

imply that c⋆ ∈ RΣ
++. Assume, by way of contradiction, that there exists x0 ∈ XG such that

π(x0) = −∞. This means that there exists a sequence θ0,n ∈ RJ such that x0 ⩽ G(θ0,n)

and lim p(θ0,n) = −∞. Fix some arbitrary α ∈ (0, 1) and consider the alternative portfolio

θn := (1 − α)θ⋆ + αθ0,n. Concavity of G implies that G(θn) ⩾ (1 − α)G(θ⋆) + αx0, and

convexity of p implies that p(θn) ⩽ (1− α)p(θ⋆) + αp(θ0,n). Denote by cn the consumption

plan implemented by θn, i.e., cn0 := e0 − p(θn) and cn1 = e1 + G(θn). Observe that cn1 ⩾

(1− α)c⋆1 + α(e1 + x0). Choosing α > 0 small enough, we have cn1 ∈ RΩ
+. Since lim cn0 = ∞,

we can use the continuity of U to find α > 0 close enough to 0 and n large enough such that

U(cn) > U(c⋆): contradiction.

7.2 General Pricing Rules and Viability

Inspired by the analysis of the super-replication price πp : XG → R∪{−∞} derived from

the market structure (p,G), we consider a general formulation described by a pair (π,X)

where X ⊆ RΩ represents the set of attainable payoffs and π : X → R is a function which

associates a cost π(x) to every attainable payoffs x ∈ X. We impose the following structural

assumptions.

Definition 7.2. Fix a nonempty set X ⊆ RΩ and a function π : X → R. The pair (π,X)

is called a pricing rule when X is a convex and comprehensive set, and π is increasing and

convex.28

28The set X is comprehensive means that X − RΩ ⊆ X. In other words, if a payoff is attainable, then
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It follows from Proposition 7.4 that if the market structure (p,G) is viable, then the pair

(πp, XG) is a pricing rule. The definition of viability stated for the market structure (p,G)

can be extended to pricing rules.

Definition 7.3. A pricing rule (π,X) is said to be viable when there exists an agent

(e0, e1, U) ∈ A and an attainable payoff x⋆ ∈ X satisfying

x⋆ ∈ argmax{U(e0 − π(x), e1 + x) : x ∈ X(π)},

where X(π) is the set of all attainable payoffs x ∈ X satisfying the flow budget constraints:

π(x) ⩽ e0 and x ⩾ −e1.

Viability of the super-replication pricing (πp, XG) follows from the viability of the market

structure (p,G).

Proposition 7.5. If a market structure (p,G) is viable, then the super-replication pricing

rule (πp, XG) is also viable. More precisely, if θ⋆ is optimal for (p,G), i.e.,

θ⋆ ∈ argmax{U(e0 − p(θ), e1 +G(θ)) : θ ∈ Θ(p)},

then the associated payoff G(θ⋆) is optimal for (πp, XG) , i.e.,

G(θ⋆) ∈ argmax{U(e0 − π(x), e1 + x) : x ∈ X(πp)}.

Proof. Fix a viable market structure (p,G). Let θ⋆ ∈ argmax{v(θ|p) : θ ∈ Θ(p)} be

an optimal portfolio for some agent (e0, e1, U) ∈ A. Let x⋆ := G(θ⋆). We shall prove

that πp(x⋆) = p(θ⋆). By construction, we have πp(G(θ⋆)) ⩽ p(θ⋆). Assume, by way of

contradiction, that πp(G(θ⋆)) < p(θ⋆). Then p(θ⋆) is not a lower bound of the set {p(θ) : θ ∈
RJ and G(θ⋆) ⩽ G(θ)}. Therefore, there exists θ ∈ RJ such that G(θ) ⩾ G(θ⋆) and

p(θ) < p(θ⋆). This contradicts the optimality of θ⋆. Hence, πp(x⋆) = p(θ⋆).

Fix an arbitrary payoff x ∈ XG satisfying the budget restrictions: πp(x) ⩽ e0 and x ⩾

−e1. We first assume that πp(x) < e0. Choose ε > 0 small enough such that πp(x) + ε ⩽ e0.

any lower payoff is also attainable. The function π is increasing means that for every x ∈ X, if y ⩽ x, then

π(y) ⩽ π(x).
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By definition of πp(x), there must exist some portfolio θ ∈ RJ with x ⩽ G(θ) such that

p(θ) ⩽ π(x) + ε. It then follows that θ ∈ Θ(p). Since θ⋆ is optimal, we deduce that

U(e0 − p(θ), e1 +G(θ)) ⩽ U(e0 − p(θ⋆), e1 +G(θ⋆)) = U(e0 − π(x⋆), e1 + x⋆).

This implies that

U(e0 − π(x)− ε, e1 + x) ⩽ U(e0 − π(x⋆), e1 + x⋆).

Passing to the limit when ε tends to zero, we get the desired result.

We now assume that πp(x) = e0. Convexity of πp implies that for any λ ∈ [0, 1), we have

πp(λx) ⩽ λπp(x) + (1− λ)πp(0) ⩽ λπp(x) < e0.

We can then apply the previous argument to show that

U(e0 − πp(λx), e1 + λx) ⩽ U(e0 − πp(x⋆), e1 + x⋆).

Passing to the limit when λ tends to 1, we get the desired result.

7.3 No-Arbitrage and Monotonicity

We can adapt the concepts of no-arbitrage and robust no-arbitrage to pricing rule. For

a given payoff x0 ∈ X, we denote by FI(x0) the set of financially feasible consumption

increments defined as the set of all vectors (v0, v1) ∈ R× RΩ such that there exists another

attainable payoff x ∈ X satisfying

v0 ⩽ π(x0)− π(x) and v1 ⩽ x− x0.

If a consumption plan (c0, c1) ∈ C is financed by the payoff x0 in the sense that c0+π(x
0) ⩽ e0

and c1 ⩽ e1 + x0, then the alternative consumption plan (c0 + v0, c1 + v1) can be financed by

the alternative payoff x.

Definition 7.4. A pricing rule (π,X) satisfies no-arbitrage when there exists an attainable

payoff x0 ∈ X such that

FI(x0) ∩H+ = ∅,
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or, equivalently, for every alternative attainable payoff x ∈ X, the following property is

satisfied [
x ⩾ x0 and π(x) ⩽ π(x0)

]
=⇒ x = x0.

The pricing rule (π,X) satisfies robust no-arbitrage when there exist an attainable payoff

x0 ∈ X and an open and convex set Γ ⊆ RΣ such that

FI(x0) ∩ Γ = ∅ and Γ ⊇ H+. (15)

When dealing with pricing rules, the concepts of no-arbitrage and robust no-arbitrage

coincide if X is closed.

Proposition 7.6. Consider a closed pricing rule (π,X) in the sense that X is closed and

π is lower semicontinuous on X. The pricing rule (π,X) satisfies no-arbitrage if, and only

if, it satisfies robust no-arbitrage.

If all payoffs are attainable, i.e., X = RΩ, then the pricing rule (π,X) is continuous

since π is convex. Recall that if a market structure (p,G) admits a riskless asset, then the

super-replication pricing rule (πp, XG) is closed since XG = RΩ.

Proof of Proposition 7.6. This result follows directly from the arguments in Proposition 4.1

if we show that the set

FI = {v = (v0, v1) ∈ RΣ : ∃x ∈ X, v0 ⩽ −π(x) and v1 ⩽ x}

is closed. Let (vn) be a sequence in FI that converges to v. There exists a sequence (xn) of

attainable payoffs xn ∈ X such that vn ⩽ (−π(xn), xn). Since X is comprehensive, we have

vn1 ∈ X. Since π is increasing, we have vn0 ⩽ −π(vn1 ). In other words, we can assume, without

any loss of generality, that xn = vn1 . Since (vn) converges to v, we have (vn1 ) converges to

v1 and (vn0 ) converges to v0. Since X is closed, we deduce that v1 ∈ X. Since π is lower

semicontinuous, we have v0 ⩽ −π(v1). This proves that v ∈ FI.

Making straightforward adjustments to the proofs of Proposition 4.1, Proposition 5.1 and

Proposition 5.2, we derive the following equivalence results.
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Corollary 7.1. For any pricing rule (π,X), the following properties are equivalent:

(i) (π,X) is viable;

(ii) (π,X) satisfies robust no-arbitrage;

(iii) (π,X) is supported by strictly positive state prices in the sense that there exists

a payoff x0 ∈ X and a vector µ ∈ RΩ
++ of strictly positive state prices such that

π(x)− π(x0) ⩾ µ · (x− x0)

for all payoffs x ∈ X.

We propose to characterize no-arbitrage and robust no-arbitrage when X = RΩ by

strengthening monotonicity.

Definition 7.5. A function π : X → R is eventually strictly increasing when, for any

asymptotic direction y ∈ 0+X, we have

y > 0 =⇒ (π0+)(y) > 0.

The above property can be expressed in two different (but equivalent) ways. Recall that

for any x ∈ X, we have

(π0+)(y) = lim
λ→∞

π(x+ λy)− π(x)

λ
.

We then deduce that π is eventually strictly increasing if, and only if, for every y ∈ 0+X

and for every x ∈ X, we have

y > 0 =⇒ ∃λ⋆ > 0, π(x+ λ⋆y) > π(x).

Since the function λ 7→ π(x + λy) is convex, we also have that it is strictly increasing on

[λ⋆,∞). Recall moreover that

(π0+)(y) = sup{π(x+ y)− π(x) : x ∈ RΩ}.

This implies that π is eventually strictly increasing if, and only if, for all y ∈ 0+X, we have

y > 0 =⇒ ∃x ∈ RΩ, π(x+ y) > π(x).
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It turns out that eventual strict monotonicity characterizes robust no-arbitrage when X

is closed.

Theorem 7.1. If a pricing rule (π,X) satisfies robust no-arbitrage price, then it is eventually

strictly increasing. The converse is valid if (π,X) is closed.

Proof. Fix a pricing rule (π,X). We first assume that (π,X) satisfies robust no-arbitrage.

It follows from Corollary 7.1 that there exist a payoff x0 ∈ X and a strictly positive vector

µ ∈ RΩ
++ satisfying

π(x)− π(x0) ⩾ µ · (x− x0), for all x ∈ X.

Fix an arbitrary y ∈ 0+X with y > 0. For any λ > 0, we have

π(x0 + λy)− π(x0) ⩾ λµ · y.

Passing to the limit when λ tends to infinite, we get that (π0+)(y) ⩾ µ · y. Since y > 0 and

µ≫ 0, we deduce the desired result: (π0+)(y) > 0.

Now, we assume that (π,X) is eventually strictly increasing and closed. To prove that

(π,X) satisfies robust no-arbitrage, it is sufficient to show that (π,X) is viable. Fix an

arbitrary agent (e0, e1, U) ∈ A. Let (xn)n∈N be a sequence of payoffs such that xn ∈ X(π)

for each n and

limπ(xn) = sup{U(e0 − π(x), e1 + x) : x ∈ X(π)},

where we recall thatX(π) is the set of all payoffs x ∈ X satisfying the flow budget constraints:

π(x) ⩽ e0 and x ⩾ −e1. We claim that the sequence (xn)n∈N is bounded. Assume, by way

of contradiction, that lim ∥xn∥ = ∞. We pose

yn :=
1

∥xn∥
xn.

Observe that ∥yn∥ = 1 for each n. Passing to a subsequence if necessary, we can assume

that (yn)n∈N converges to some y. By construction, y ∈ 0+X. Recall that yn ⩾ −e1 for

each n. Passing to the limit, we deduce that y ⩾ 0. Since ∥y∥ = 1, we actually have that

y > 0. Moreover, xn ∈ Γ := {x ∈ RΩ : π(x) ⩽ e0}. We then deduce that y belongs to the
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recession cone 0+Γ. If follows from Proposition 8.2 that y belongs to the recession cone of

π, i.e., (π0+)(y) ⩽ 0. This contradicts the fact that (π,X) is eventually strictly increasing.

We have thus proved that the sequence (xn)n∈N is bounded. Passing to a subsequence

if necessary, we can assume that there exists x⋆ ∈ RΩ such that limxn = x⋆. Since X is

closed, we have x⋆ ∈ X. Lower semicontinuity of the function π and continuity of the utility

function U imply that x⋆ solves the agent’s maximization problem. In particular, (π,X) is

viable.

Combining Theorem 5.1, Proposition 7.5 and Theorem 7.1, we get the following result.

Corollary 7.2. Consider a market structure (p,G), the associated super-replication pricing

rule (πp, XG) and an arbitrary pricing rule (π,X). The following properties are satisfied:

(i) (p,G) is viable ⇐⇒ (p,G) satisfies robust no-arbitrage ⇐⇒ (p,G) is supported by

strictly positive states prices.

(ii) (π,X) is viable ⇐⇒ (π,X) satisfies robust no-arbitrage ⇐⇒ (π,X) is supported by

strictly positive states prices. If (π,X) is closed, then all these properties are equivalent

to (π,X) is eventually strictly increasing.

(iii) If (p,G) is viable, then (πp, XG) is viable.

(iv) If (p,G) satisfies robust no-arbitrage, then (πp, XG) satisfies robust no-arbitrage.

(v) Assume that XG = RΩ. The super-replication pricing rule (πp, XG) is viable if, and

only if, it is eventually strictly increasing.

When XG = RΩ, we have the converse of properties (iii) and (iv) if we replace p by the

associated p̃ where we recall that p̃(θ) = inf{p(θ + η) : η ∈ Ker(G)}.

Proposition 7.7. Fix a market structure (p,G) such that XG = RΩ. If (πp, XG) is an even-

tually strictly increasing pricing rule, then (p̃, G) is a robust no-arbitrage market structure.

Equivalently, if (πp, XG) is a viable pricing rule, then (p̃, G) is viable.
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Proof. Fix a market structure (p,G) such that XG = RΩ. Recall that the super-replication

price πp : RΩ → R ∪ {−∞} is defined by

πp(x) := inf{p(θ) : θ ∈ RJ and G(θ) ⩾ x}.

We assume that (πp,RΩ) is a pricing rule (i.e., πp(RΩ) ⊆ R) and eventually strictly increasing.

It follows from Lemma 7.1 that

πp(x) = inf{p̃(θ) : x ⩽ G(θ)}.

In particular, we have p̃(θ) ̸= −∞ for all θ and p̃ is a price functional. To prove that (p̃, G)

is a robust no-arbitrage market structure, we fix a portfolio θ0 ∈ RJ and let η ∈ RJ be such

that

p̃′(θ; η) ⩽ 0 and G(η) ⩾ 0.

We let y := G(η) and claim that y = 0. To prove this, we fix an arbitrary payoff x ∈ RΩ

and let θ ∈ RJ be a portfolio satisfying G(θ) ⩾ x. We have

πp(x+ y) ⩽ p̃(θ + η) ⩽ p̃(θ)

where the first inequality follows from the definition of πp(x+ y) and the second inequality

follows from the property: p̃′(θ; η) ⩽ 0. Since πp(x + y) ⩽ p̃(θ) for any θ ∈ RJ satisfying

G(θ) ⩾ x, we deduce that πp(x + y) ⩽ πp(x). This inequality is valid for any x ∈ RΩ. We

then deduce that ([πp]0+)(y) ⩽ 0. Since (πp,RΩ) is eventually strictly increasing, we must

have y = G(η) = 0. Since (p̃, G) satisfies the law of one price, we deduce that p̃′(θ; η) = 0.

8 Appendix

Fix some arbitrary integer n ∈ N. We recall the properties of convex functions f : X → R

defined on a nonempty and convex setX ⊆ Rn. We follow the notations of Rockafellar (1970).
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8.1 Recession Cone

Fix some non-empty convex set C ⊆ Rn. A vector v ∈ Rn is a direction of recession

of C when

∀c ∈ C, ∀λ ⩾ 0, c+ λv ∈ C.

The set of all directions of recession of C is a convex cone containing the origin, called the

recession cone of C, and is denoted by 0+C. Convexity of C implies that

0+C = {v ∈ Rn : C + v ⊆ C}.

If C is a non-empty convex and closed subset of Rn, then 0+C is also closed. Moreover, we

have

0+C = {v ∈ Rn : ∃c0 ∈ C, ∀λ ⩾ 0, c0 + λv ∈ C}

and v is a direction of recession if, and only if, there exists a sequence (cn)n∈N of C and a

decreasing sequence (λn)n∈N converging to 0 such that

v = limλncn.

A non-empty closed convex set is bounded if, and only if, its recession cone consists of the

zero vector alone.

The vector v ∈ Rn is a direction in which the set C is linear when c + λv ∈ C for

every c ∈ C and every λ ∈ R. The set of all directions in which C is linear is called the

lineality space of C and is denoted by Li(C). We have

Li(C) = 0+C ∩ (−0+C).

8.2 Convex Functions with Finite Values

Fix a convex function f : X → R where X is a non-empty convex subset of Rn. The

function f is necessarily continuous on the interior int(C) of C. The convex function f is

said closed when X is closed and f is lower semi-continuous on X.29

29Observe that when X = Rn, then any convex function f : X → R is closed.
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Given a vector x ∈ Rn and a direction v ∈ 0+X, the function

λ 7−→ f(x+ λv)− f(x)

λ

is increasing and we pose

f ′(x; v) := inf
λ>0

f(x+ λv)− f(x)

λ
= lim

λ↓0

f(x+ λv)− f(x)

λ
.

The number f ′(x; v) is called the derivative of f at x in the direction v. The function

v 7→ f ′(x; v) is convex and positively homogeneous.

The recession function f0+ : 0+(X) → R ∪ {∞} is defined by

(f0+)(v) := sup{f(x+ v)− f(x) : x ∈ Rn}.

The function f0+ is positively homogeneous and convex. Moreover, it satisfies

(f0+)(v) = sup
λ>0

f(x+ λv)− f(x)

λ
= lim

λ↑∞

f(x+ λv)− f(x)

λ

for any x ∈ 0+(X). We also have that

f ′(x, v) ⩽
f(x+ λv)− f(x)

λ
⩽ f0+(v)

for any λ > 0.

Remark 8.1. If X = 0+X and f is subadditive, then f0+ = f .30 Indeed, by subadditivity,

we have f(x+ v)− f(x) ⩽ f(v) with an equality when x = 0.

The following proposition corresponds to Theorem 8.6 in Rockafellar (1970).

Proposition 8.1. Let f : X → R be a closed convex function defined on a nonempty closed

convex set X ⊆ Rn. The following properties are equivalent: for every direction of recession

v ∈ 0+X,

(i) (f0+)(v) ⩽ 0;

30Recall that f is subadditive when X + X ⊂ X (this last property is equivalent to X = 0+(X)) and

f(x+ y) ⩽ f(x) + f(y) for every x, y ∈ X.
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(ii) for every x ∈ Rn, the function λ 7→ f(x+ λv) is non-increasing on R;

(iii) there exists x ∈ Rn such that function λ 7→ f(x+ λv) is non-increasing on R.

The set of all vectors v such that (f0+)(v) ⩽ 0 is called the recession cone of f . This is

a convex closed cone containing 0. A vector in the recession cone of f is called a direction

in which f recedes.

The following proposition corresponds to Corollary 8.6.1 in Rockafellar (1970).

Proposition 8.2. Let f : X → R be a closed convex function defined on a nonempty closed

convex set X ⊆ Rn. The following properties are equivalent: for every direction of recession

v ∈ 0+X,

(i) for every x ∈ Rn, the function λ 7→ f(x+ λv) is constant;

(ii) there exists x ∈ Rn and α ∈ R such that f(x+ λv) ⩽ α for every λ ∈ R;

(iii) (f0+)(v) ⩽ 0 and (f0+)(−v) ⩽ 0.

The set of vectors v such that (f0+)(v) ⩽ 0 and (f0+)(−v) ⩽ 0 is the largest linear

subspace contained in the recession cone of f . It is called the constancy space of f and

vectors in this space are called directions in which f is constant.

The following proposition corresponds to Theorem 8.7 in Rockafellar (1970).

Proposition 8.3. Let f : X → R be a closed convex function defined on a nonempty closed

convex set X ⊆ Rn. All the non-empty level sets of the form {x ∈ Rn : f(x) ⩽ α} with

α ∈ R, have the same recession cone and the same lineality space, namely the recession cone

and the constancy cone of f , respectively.

The following proposition corresponds to Corollary 8.6.1 in Rockafellar (1970).

Proposition 8.4. Let f : X → R be a convex function defined on a nonempty convex set

X ⊆ Rn. If it is bounded on an affine set, then it is constant on this set.
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8.3 Convex Functions with Infinite Values

Fix a convex function f : X → R∪ {−∞} where X is a non-empty convex subset of Rn.

The epigraph of the function f is the set

{(x, γ) ∈ X × R : f(x) ⩽ γ}.

We say that the function f is convex when its epigraph is a convex subset of X × R.

We can verify that f is convex if, and only if, f(αx + (1 − α)y) ⩽ αf(x) + (1 − α)f(y)

for every x, y ∈ X and α ∈ (0, 1), where we take the convention that α(−∞) = −∞ and

−∞+ γ = −∞ for any α > 0 and γ ∈ R.

Lemma 8.1. If f : X → R ∪ {−∞} is a convex function defined on a nonempty linear

subspace X ⊆ Rn, then either f(Rn) ⊆ R or f(Rn) = {−∞}.

Proof. Assume that there exists x0 ∈ X such that f(x0) = −∞. Fix an arbitrary x ∈ X

and let x1 := 2x− x0. Convexity implies that

f(x) ⩽ (1/2)f(x0) + (1/2)f(x1) ⩽ −∞.

We have thus proved that f(x) = −∞ for every x ∈ X.

8.4 Utility Functions

Recall that an agent’s consumption set is C := R+ × RΩ
+. The interior of C, denoted by

int(C), is the set R++×RΩ
++ of all strictly positive vectors. Fix a utility function U : C → R.

It is strictly increasing when for any consumption plans c̃, c ∈ C,

c̃ > c =⇒ U(c̃) > U(c)

with the standard convention that c̃ > c means c̃ ⩾ c and c̃ ̸= c. The function U satisfies

Inada’s condition at the origin when, for any c ∈ C,

lim
ε→0

U(ε, c1)− U(0, c1)

ε
= ∞
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and for any ω ∈ Ω,

lim
ε→0

U(c0, (ε, c1(−ω)))− U(c0, (0, c1(−ω)))
ε

= ∞

where (x, c1(−ω)) is the vector (y(s))s∈Ω defined by y(ω) := x and y(s) = c1(s) for any s ̸= ω.

The function U is lower semi-continuous on the interior of C when, for any possible utility

level u ∈ R, the strict upper contour set {x ∈ int(C) : U(x) > u} is open in int(C). The

function U is strictly quasi-concave on the interior of C when, for any consumption

bundles c, c̃ ∈ int(C) and for any α ∈ (0, 1), we have U(αc+ (1− α)c̃) > min{U(c), U(c̃)}.
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