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Abstract

This paper investigates the theory of robustness against adversarial attacks. We focus on randomized
classifiers (i.e. classifiers that output random variables) and provide a thorough analysis of their behavior
through the lens of statistical learning theory and information theory. To this aim, we introduce a new
notion of robustness for randomized classifiers, enforcing local Lipschitzness using probability metrics.
Equipped with this definition, we make two new contributions. The first one consists in devising a new
upper bound on the adversarial generalization gap of randomized classifiers. More precisely, we devise
bounds on the generalization gap and the adversarial gap (i.e. the gap between the risk and the worst-case
risk under attack) of randomized classifiers. The second contribution presents a yet simple but efficient
noise injection method to design robust randomized classifiers. We show that our results are applicable
to a wide range of machine learning models under mild hypotheses. We further corroborate our findings
with experimental results using deep neural networks on standard image datasets, namely CIFAR-10 and
CIFAR-100. All robust models we trained models can simultaneously achieve state-of-the-art accuracy
(over 0.82 clean accuracy on CIFAR-10) and enjoy guaranteed robust accuracy bounds (0.45 against `2
adversaries with magnitude 0.5 on CIFAR-10).

1 Introduction

In the last few years, there has been a growing concern on adversarial example attacks in machine learning.
An adversarial attack refers to a small (humanly imperceptible) change of an input specifically designed to
fool a machine learning model. These attacks have recently come to light thanks to works by [5] and [50]
studying deep neural networks for image classification, although it was an existing topic in spam filter
analysis [12, 17, 31]. The vulnerability of state-of-the-art classifiers to these attacks has genuine security
implications especially for deep neural networks used in AI-driven technologies such as self-driving cars, as
repetitively demonstrated by [46, 48] and [61]. Besides security issues, this shows how little we know about
the worst-case behaviors of models the industry uses daily. It is essential for the community to understand
the very nature of this phenomenon in order to mitigate the threat.

Accordingly, a large body of works has been trying to design new models that would be less vulnerable
to the adversarial setting [18, 21, 33, 56, 58] but most of them were proven (in time) to offer only limited
protection against more sophisticated attacks [1, 6, 11, 20, 51]. Among the defense strategies, randomization
has proven effective in some contexts [13, 30, 40, 59]. Albeit these significant efforts, randomization techniques
lack theoretical arguments. In this paper, we generalize the prior results from Pinot et al. [39] by studying
a general class of randomized classifiers, including randomized neural networks, for which we demonstrate
adversarial robustness guarantees and analyze their generalization properties.
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1.1 Supervised learning for image classification in a nutshell

Let us consider the supervised classification problem with an input space X and an output space Y. In the
following, w.l.o.g. we will consider X ⊂ [−1, 1]d to be a set of images, and Y := [K] := {1, . . . ,K} a set of
labels describing them. The goal of a supervised machine learning algorithm is to design classifier that maps
any image x ∈ X to a label y ∈ Y. To do so, the learner has access to a training sample of n image-label pairs
S := {(x, y1), . . . , (xn, yn)}. Each training pair (xi, yi) is assumed to be drawn i.i.d. from a ground-truth
distribution D. To build a classifier, the usual strategy is to select a hypothesis function h : X → Y from
a pre-defined hypothesis class H to minimize the risk with respect to D. This risk minimization problem
writes

inf
h∈H
R(h) := E(x,y)∼D

[
L0/1 (h(x), y)

]
, (1)

where L0/1 represents the 0/1 loss that outputs 1 when h(x) 6= y, and zero otherwise.
In practice, the learner does not have access to the ground-truth distribution; hence it cannot estimate

the risk R(h). To find an approximate solution for Problem (1), a learning algorithm solves the empirical
risk minimization problem instead. In this case, we simply replace the risk by its empirical counterpart over
the training sample S := {(x, y1), . . . , (xn, yn)}. The empirical risk minimization problem writes

inf
h∈H
RS(h) :=

1

n

n∑
i=1

L0/1 (h(xi), yi) . (2)

Then, to evaluate how far the selected hypothesis is from the optimum, one wants to upper bound the
difference between the risk and the empirical risk of any h ∈ H. This difference is known as the generalization
gap.

1.2 Classification in the presence of an adversary

Given a hypothesis h ∈ H and a sample (x, y) ∼ D, the goal of an adversary is to find a perturbation
τ ∈ X such that the following assertions both hold. First, the perturbation is imperceptible to humans.
This means that a human cannot visually distinguish the standard example x from the adversarial example
x + τ . Second, the perturbation modifies x enough to make the classifier misclassify. More formally, the
adversary seeks a perturbation τ ∈ X such that h(x+ τ ) 6= y.

Although the notion of imperceptible modification is very natural for humans, it is genuinely hard to
formalize. Despite these difficulties, in the image classification setting, a sufficient condition to ensure that
the attack will remain undetected is to constrain the perturbation τ to have a small `p norm. This means
that for any p ∈ [1,∞], there exists a threshold αp > 0 for which any perturbation τ is imperceptible as
soon as ‖τ‖p ≤ αp. The literature on adversarial attacks for image classification usually uses either an `∞
norm akin [32] or an `2 norm akin [6] as a surrogate for imperceptibility. Other authors such as [8] and [36]
also used an `1 norm or an `0 semi-norm.

To account for adversaries possibly manipulating the input images, one needs to revisit the standard risk
minimization by incorporating the adversary in the problem. The goal becomes to minimize the worst-case
risk under αp-bounded manipulations. We call this problem the adversarial risk minimization. It writes

inf
h∈H
Radv(h;αp) := E(x,y)∼D

[
sup

τ∈Bp(αp)
L0/1 (h(x+ τ ), y)

]
, (3)

where Bp(αp) := {τ ∈ X s.t. ‖τ‖p ≤ αp}. In this new formulation, the adversary focuses on optimizing
the inner maximization, while the learner tries to get the best hypothesis from H “under attack”. By
analogy with the standard setting, given n training examples S := {(x, y1), . . . , (xn, yn)}, we want to find
an approximate solution to the adversarial risk minimization by studying its empirical counterpart, the
empirical adversarial risk minimization. This optimization problem writes

inf
h∈H
Radv
S (h;αp) :=

1

n

n∑
i=1

sup
τ∈Bp(αp)

L0/1 (h(xi + τ ), yi) . (4)
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In the presence of an adversary, two major issues appear in the empirical risk minimization. First, as recently
pointed out by [32], the adversarial generalization error (i.e. the gap between the empirical adversarial risk
and the adversarial risk) can be much larger than in the standard setting. Indeed, the adversary makes
the problem dependent on the dimension of X . Hence, in high-dimension (e.g. for images) one needs much
more samples to classify correctly as pointed out by [44] as well as [47]. Moreover, finding an approximate
solution to the adversarial risk minimization is not always sufficient. Indeed, recent works by [52] and [64]
gave theoretical evidence that training a robust model may lead to an increase of its standard risk. Hence
finding a good approximation for Problem (3) may lead to a poor solution for Problem (1). Accordingly, it
is natural to wonder whether we can find a class of models H for which we can control both the
standard and adversarial risks?

In this paper, we provide answers to the above question by conducting an in depth analysis of a special
class of models called randomized classifiers, i.e. classifiers that output random variables instead of labels.
Our main contributions summarize as follows.

1.3 Contributions

Our first contribution consists in studying randomized classifiers. By analogy with the deterministic case,
we define a notion of robustness for randomized classifiers. This definition amounts to making the classifier
locally Lipschitz with respect to the `p norm on X , and a probability metric on Y (e.g. the total varia-
tion distance or the Renyi divergence). More precisely, if we denote D the probability metric at hand, a
randomized classifier m is called (αp, ε)-robust w.r.t. D if for any x,x′ ∈ X

‖x− x′‖p ≤ αp =⇒ D(m(x),m(x′)) ≤ ε.

DenotingMD(αp, ε) the class of randomized classifiers that respect this local Lipschitz condition, we present
the following results.

1. If D is either the total variation distance or the Renyi divergence, we show that for any m ∈MD(αp, ε),
we can upper-bound the gap between the risk and the adversarial risk of m. Notably, if D is the total
variation distance, for any m ∈ MD(αp, ε) we have Radv(m;αp) − R(m) ≤ ε. Hence, ε controls the
maximal trade-off between robust and standard accuracy for locally Lipschitz randomized classifier.
We demonstrate similar results when D is the Renyi divergence showing that Radv(m;αp)−R(m) ≤
1 − O (e−ε). This means that, for the class of locally Lipschitz randomized classifiers, solving the
risk minimization problem, i.e. Problem (1), gives an approximate solution to the adversarial risk
minimization problem, i.e. Problem (3), up to an additive factor that depends on the robustness
parameter ε.

2. We devise an upper-bound on the generalization gap of any m inMD(αp, ε). In particular, when D is
the total variation distance, we demonstrate that for any m ∈MD(αp, ε) we have

R(m)−RS(m) ≤ O

(√
N ×K
n

)
+ ε,

where N is the external αp-covering number of the input samples. This means that, when N/n →
n→∞

0,

solving the empirical risk minimization problem, i.e. Problem (2), on MD(αp, ε) provides an approx-
imate solution to the risk minimization problem, i.e. Problem (1). Since we can also bound the gap
between the adversarial and the standard risk, we can combine the two results to bound the adversarial
generalization gap on MD(αp, ε). Note however, that this result relies on a strong assumption on X
that does not always avoid dimensionality issues. The problem of finding a subclass ofMD(αp, ε) that
provides tighter generalization bounds is an open question.

For our second contribution, we present a practical way to design this classM(αp, ε) by using a simple yet
efficient noise injection scheme. This allows us to build randomized classifiers from state-of-the-art machine
learning models, including deep neural networks. More precisely our contribution is as follows.
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1. Based on information-theoretic properties of the total variation distance and the Renyi divergence
(e.g. the data processing inequality) we design a noise injection scheme to turn a state-of-the-art
machine learning model into a robust randomized classifier. More formally, Let us denote Φ the c.d.f.
of a standard Gaussian distribution. Let us consider h a deterministic hypothesis, we show that the

randomized classifier m : x 7→ h (x+ n) with n ∼ N (0, σ2Id) is both (α2,
(α2)

2

2σ )-robust w.r.t. the Renyi
divergence and (α2, 2Φ

(
α2

2σ

)
− 1)-robust w.r.t. the total variation distance. Our results on randomized

classifiers are applicable to a wide range of machine learning models including deep neural networks.

2. We further corroborate our theoretical results with experiments using deep neural networks on standard
image datasets, namely CIFAR-10 and CIFAR-100 [26]. These models can simultaneously provide
accurate prediction (over 0.82 clean accuracy on CIFAR-10) and reasonable robustness against `2
adversarial examples (0.45 against `2 adversaries with magnitude 0.5 on CIFAR-10).

2 Related Work

Contrary to other notions such as training corruption, a.k.a. poisoning attacks [23, 24], the theoretical
study of adversarial robustness is still in its infancy. So far, empirical observations tend to show that 1)
adversarial examples on state-of-the-art models are hard to mitigate and 2) robust training methods give
poor generalization performances. Some recent works started to study the problem through the lens of
learning theory either to understand the links between robustness and accuracy or to provide bounds on the
generalization gap of current learning procedures in the adversarial setting.

2.1 Accuracy vs robustness trade-off

A first line of research [22, 49, 52] suggests that designing robust models might be inconsistent with standard
accuracy. These works argue with experiments and toy examples that robust and standard classification are
two concurrent problems. Following this line, [64] observed that the adversarial risk of any hypothesis h
decomposes as follows,

Radv(h;αp) = R(h) +Radv
>0 (h;αp), (5)

where Radv
>0 (m;αp) is the amount of risk that the adversary gets with non-null perturbations. Looking

at Equation (5), we realize that minimizing the adversarial risk is not enough to control standard accu-
racy, as one could only optimize over the second term. This indicates that adversarial risk minimization,
i.e. Problem (3), is harder to solve than the standard risk minimization, i.e. Problem (1).

While this indicates that both goals maybe difficult be achieve simultaneously, Equation (5), along with
the empirical studies from the literature do not highlight any fundamental trade-off between robustness
and accuracy. Moreover, no upper-bound on Radv

>0 (h;αp) has been demonstrated yet. Hence the questions
whether this trade-off exists and can be controlled remain open. In this paper, we provide a rigorous answer
to these questions by identifying classes MD(αp, ε) of randomized classifiers for which we can upper bound
the trade-off term Radv

>0 (m;αp) for any m ∈ MD(αp, ε). This shows that for some classes of randomized
classifiers, precision is not conflicting with robustness, since we can control the maximum loss of accuracy
that the model can suffer in the adversarial setting. It also challenges the intuitions developed by previous
works [22, 49, 52] and argues in favor of using randomized mechanisms as a defense against adversarial
attacks.

2.2 Studying adversarial generalization

To further compare the hardness of the two problems, a recent line of research began to explore the notion
of adversarial generalization gap. In this line, [44] presented some first intuitions by studying a simplified
binary classification framework where D is a mixture of multi-dimensional Gaussian distributions. In this
framework the authors show that without attacks, we only need O(1) training samples to have a small
generalization gap. But against an `∞ adversary, we need O(

√
d) training samples instead. In the discussion
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of their work, the authors present the problem of obtaining similar results without making any assumption
about the distribution as an open problem.

This issue was recently studied using the Rademacher complexity by [25, 62] and [2]. These papers
relate the adversarial generalization error of linear classifiers and one-hidden layer neural networks with the
dimension of the problem. They show that the adversarial generalization depends on the dimension of the
problem. At a first glance, the difficulty of adversarial generalization seems to contradict previous conclusions
on the link between robustness and generalization presented by [60]. But, as we will discuss in the sequel,
these results assume that the input space X can be partitioned in O(1) sub-space in which the classification
function has small variations. This assumption may not always hold when dealing with high dimensional
input spaces (e.g. images) and very sophisticated classification algorithms (e.g. deep neural networks).

Going further, it should be noted that the generalization gap measures only the difference between
empirical and theoretical risks. In practice, the empirical adversarial risk is hard to estimate, since we
cannot compute the exact solution to the inner maximization problem. The following question therefore
remains open: even if we can set up a learning procedure with a controlled generalization gap, can we
give guarantees on the standard and adversarial risks? In this paper, we start answering this question
by providing techniques that provably offer both small standard risk and reasonable robustness against
adversarial examples (see Section 1.3 for more details).

2.3 Defense against adversarial examples based on noise injection

Injecting noise into algorithms to improve train time robustness has been used for ages in detection and
signal processing tasks [7, 19, 34, 65]. It has also been extensively studied in several machine learning and
optimization fields, e.g. robust optimization [4] and data augmentation techniques [37]. Concurrently to
our work, noise injection techniques have been adopted by the adversarial defense community under the
randomized smoothing name. The idea of provable defense through noise injection was first proposed by
[28] and refined by [9, 29] and [43]. The rational behind randomized smoothing is very simple: smooth h
after training by convolution with a Gaussian measure to build a more stable classifier. Our work belongs
to the same line of research, but the nature of our results is different. While randomized smoothing focuses
on the construction of certified defenses, depending on the dataset and the classifier at hand, we study
the generalization properties of randomized mechanisms both in the standard and the adversarial setting.
Our analysis presents the fundamental properties of randomized defenses, including (but not limited to)
randomized smoothing (c.f. Section 7).

3 Definition of Risk and Robustness for Randomized classifiers

In this work, the goal is to analyze how randomized classifiers can solve the problem of classification in the
presence of an adversary. Let us start by defining what we mean by randomized classifiers.

Remark 1 (Remark on measurability) Through the paper, we assume every spaces Z to be associated
with a σ-algebra denoted A (Z). Furthermore, we denote P (Z) the set of probability distributions defined on
the measurable space (Z,A (Z)). In the following, for simplicity, we refer to A (Z) only when necessary.

Definition 1 (Probabilistic mapping) Let Z and Z ′ be two arbitrary spaces. A probabilistic mapping
from Z to Z ′ is a mapping m : Z → P (Z ′), where P (Z ′) is the space of probability measures on Z ′. When
Z = X and Z ′ = Y, m is called a randomized classifier. To get a numerical answer out of m for an input
x, we sample ŷ ∼ m(x).

Any mapping can be considered as a probabilistic mapping, whether it explicitly considers randomization
or not. In fact, any deterministic classifier can be considered as a randomized one, since it can be character-
ized by a Dirac measure. Accordingly, the definition of a randomized classifier is fully general and equally
consider classifiers with or without randomization scheme.
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3.1 Risk and adversarial risk for randomized classifiers

To analyze this new hypothesis class, we can adapt the concepts of risk and adversarial risk for a randomized
classifier. The loss function we use is the natural extension of the 0/1 loss to the randomized regime. Given
a randomized classifier m and a sample (x, y) ∼ D it writes

L0/1(m(x), y) := Eŷ∼m(x) [1 {ŷ 6= y}] . (6)

This loss function evaluates the probability of misclassification of m on a data sample (x, y) ∼ D. Accordingly,
the risk of m with respect to D writes

R(m) := E(x,y)∼D
[
L0/1(m(x), y)

]
. (7)

Finally, given m and (x, y) ∼ D, the adversary seeks a perturbation τ ∈ Bp(αp) that maximizes the
expected error of the classifier on x (i.e. Eŷ∼m(x+τ ) [1 {ŷ 6= y}]). Therefore, the adversarial risk of m under
αp-bounded perturbations writes

Radv(m;αp) := E(x,y)∼D

[
sup

τ∈Bp(αp)
L0/1(m(x+ τ ), y)

]
. (8)

By analogy with the deterministic setting, we denoteRS (m) := 1
n

∑n
i=1 L0/1 (m(xi), yi) andRadv

S (m;αp) :=
1
n

∑n
i=1 supτ∈Bp(αp) L0/1 (m(xi + τ ), yi) the empirical risks of m for a given training sample S := {(x, y1), . . . , (xn, yn)}.

3.2 Robustness for randomized classifiers

We could define the notion of robustness for a randomized classifier depending on whether it misclassifies
any test sample (x, y) ∼ D. But in practice, neither the adversary nor the model provider have access to the
ground-truth distribution D. Furthermore, in real-world scenarios, one wants to check before its deployment
that the model is robust. Therefore, it is required for the classifier to be stable on the regions of the space
where it already classifies correctly. Formally a (deterministic) classifier c : X → Y is called robust if for any
(x, y) ∼ D such that c(x) = y, and for any τ ∈ X one has

‖τ‖p ≤ αp =⇒ c(x) = c(x+ τ ). (9)

By analogy with this notion, we define robustness for a randomized classifier as follows.

Definition 2 (Robustness for a randomized classifier) A randomized classifier m : X → P(Y) is
called (αp, ε)-robust w.r.t. D if for any x, τ ∈ X , one has

‖τ‖p ≤ αp =⇒ D (m(x),m(x+ τ )) ≤ ε .

Where D is a metric/divergence between two probability measures. Given such a metric/divergence D, we
denote MD(αp, ε) the set of all randomized classifiers that are (αp, ε)-robust w.r.t. D.

Note that we did not add the constraint that m classifies well on (x, y) ∼ D, since it is already encompassed
in the probability distribution itself. If the two probabilities m(x) and m(x + τ ) are close, and if m(x)
outputs y with high probability, then it will be the same for m(x + τ ). This formulation naturally raises
the question of the choice of the metric D. Any choice of metric/divergence will instantiate a notion of
adversarial robustness, and it should be carefully selected. In the present work, we focus our study on the
total variation distance and the Renyi divergence. The question whether these metrics/divergences are more
appropriate than others remains open but these two divergences are sufficiently general to cover a wide range
of other definitions (see Appendix A for more details). Furthermore, these notions of distance comply with
both a theoretical analysis (Section 5) and practical considerations (Section 8).
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3.3 Divergence and metrics between probability measures.

Let us now recall the definition of total variation distance and Renyi divergence. Let Z be an arbitrary
space, and ρ, ρ′ be two measures in P(Z)1. The total variation distance between ρ and ρ′ is

DTV (ρ, ρ′) := sup
Z⊂A(Z)

|ρ(Z)− ρ′(Z)| , (10)

where A(Z) is the σ-algebra associated with the set of measures P(Z). The total variation distance is
one of the most commonly used probability metrics. It admits several very simple interpretations, and is
a very useful tool in many mathematical fields such as probability theory, Bayesian statistics or optimal
transport [38, 42, 57]. In optimal transport, it can be rewritten as the solution of the Monge-Kantorovich
problem with the cost function cost(z, z′) = 1 {z 6= z′},

DTV (ρ, ρ′) = inf

∫
Z2

1 {z 6= z′} dπ(z, z′) , (11)

where the infimum is taken over all joint probability measures π in P (Z × Z) with marginals ρ and ρ′.
According to this interpretation, it seems quite natural to consider the total variation distance as a relaxation
of the trivial distance on [0, 1] (for deterministic classifiers).

Let us now suppose that ρ and ρ′ admit probability density functions g and g′ according to a third
measure ν. Then the Renyi divergence of order β between ρ and ρ′ writes

Dβ (ρ, ρ′) :=
1

β − 1
log

∫
Y
g′(y)

(
g(y)

g′(y)

)β
dν(y) . (12)

The Renyi divergence [41] is a generalized divergence defined for any β on the interval [1,∞]. It equals
the Kullback-Leibler divergence when β → 1, and the maximum divergence when β → ∞. It also has the
property of being non-decreasing with respect to β. This divergence is very common in machine learning
and Information theory [55], especially in its Kullback-Leibler form as it is widely used as the loss function,
i.e. cross entropy, of classification algorithms. In the remaining, we denoteMβ (αp, ε) the set of (αp, ε)-robust
classifiers w.r.t. Dβ .

Let us now give some properties of these divergences that will be useful for our analysis. First we recall
the probability preservation property of the Renyi divergence, first presented by [27].

Proposition 1 ([27]) Let ρ and ρ′ be two measures in P(Z). Then for any Z ∈ A(Z), the following holds,

ρ(Z) ≤ (exp (Dβ(ρ, ρ′)) ρ′(Z))
β−1
β .

Now thanks to previous works by [16] and [53], we also get the following results relating the total variation
distance and the Renyi divergence.

Proposition 2 (Inequality between total variation and Renyi divergence) Let ρ and ρ′ be two mea-
sures in P(Z), and β ≥ 1. Then the following holds,

DTV (ρ, ρ′) ≤ min

3

2

(√
1 +

4Dβ(ρ, ρ′)

9
− 1

)1/2

,
exp (Dβ(ρ, ρ′) + 1)− 1

exp (Dβ(ρ, ρ′) + 1) + 1

 .

Proof 1 Thanks to [16], one has

D1(ρ, ρ′) ≥ 2DTV (ρ, ρ′)2 +
4DTV (ρ, ρ′)4

9
.

1Recall from Definition 1 that P(Z) is the set of probability measures on Z
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From which it follows that

DTV (ρ, ρ′) ≤ 3

2

(√
1 +

4D1(ρ, ρ′)

9
− 1

)1/2

.

Moreover, using inequality from [53], one gets

D1(ρ, ρ′) + 1 ≥ log

(
1 +DTV (ρ, ρ′)

1−DTV (ρ, ρ′)

)
.

This inequality leads to the following

exp(D1(ρ, ρ′) + 1)− 1

exp(D1(ρ, ρ′) + 1) + 1
≥ DTV (ρ, ρ′).

By combining the above inequalities and by monotony of Renyi divergence regarding β, one obtains the
expected result.

From now on, we denote MTV (α, ε) and Mβ (α, ε) the set of (α, ε)-robust classifiers respectively for
DTV and Dβ . The next section gives bounds on the generalization gap in the standard and the adversarial
settings for these specific hypothesis classes.

4 Risks’ gap and Generalization gap for randomized classifiers

As discussed in Section 2.1, we can always decompose the adversarial risk of a classifier Radv(m;αp) in two
terms. First the standard risk R(m) and second the amount of risk the adversary creates with non-zero
perturbations Radv

>0 (m;αp). Hence minimizing R(m) can give poor values for Radv(m;αp) and vice-versa. In
this section, we upper-bound the risks’ gap Radv

>0 (m;αp), i.e. the gap between the risk and the adversarial
risk of a robust classifier.

4.1 Risks’ gap for robust classifiers w.r.t. DTV

First, let us consider m ∈ MTV (αp, ε). We can control the loss of accuracy under attack of this classifier
with the robustness parameter ε.

Theorem 1 (Risk’s gap for robust classifiers w.r.t DTV ) Let m ∈MTV (αp, ε) . Then we have

Radv(m;αp) ≤ R(m) + ε .

Proof 2 Let m be an (αp, ε)-robust classifier w.r.t. DTV , (x, y) ∼ D and τ ∈ X such that ‖τ‖p ≤ αp. By
definition of the 0/1 loss we have

L0/1 (m(x+ τ ), y) = Eŷ∼m(x+τ ) [1 {ŷ 6= y}] .

Furthermore, by definition of the total variation distance we have

Eŷ∼m(x+τ ) [1 {ŷ 6= y}]− Eŷ∼m(x) [1 {ŷ 6= y}] ≤ DTV (m(x),m(x+ τ )).

Since m ∈MTV (αp, ε), the above amounts to write

L0/1 (m(x+ τ ), y)− L0/1 (m(x), y) ≤ ε.

Finally, this holds for any (x, y) ∼ D and any αp bounded perturbation τ , then we get

E(x,y)∼D

[
sup

τ∈Bp(αp)
L0/1 (m(x+ τ ), y)

]
− E(x,y)∼D

[
L0/1 (m(x), y)

]
≤ ε.

The above inequality concludes the proof.
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This result means that if we can design a class MTV (αp, ε) with small enough ε, then minimizing the risk
of m ∈MTV (αp, ε) is also sufficient to control the adversarial risk. It is relatively easy to obtain, but it has
an interesting consequence on the understanding we have of the trade-off between robustness and accuracy.
It says that there exists some classes of randomized classifiers for which robustness and standard accuracy
may not be at odds, since we can upper-bound the maximal loss of accuracy the model may suffer under
attack. This questions previous intuitions developed on deterministic classifiers by [22, 49, 52] and [64] and
advocates for the use of randomization schemes as defenses against adversarial attacks. Note, however, that
we did not evade the trade-off between robustness and accuracy, we only showed that with certain hypothesis
classes it can be controlled.

4.2 Risks’ gap for robust classifiers w.r.t. Dβ

We now extend the previous results the Renyi divergence. We show that, for any randomized classifier in
Mβ (αp, ε), we can bound the gap between the risk and the adversarial risk of m. Using the Renyi divergence,
the factor that controls the classifier’s loss of accuracy under attack can be either multiplicative or additive,
and depends both on the robustness parameter ε and on the divergence parameter β.

Theorem 2 (Multiplicative risks’ gap for Renyi-robust classifiers) Let m ∈ Mβ (αp, ε). Then we
have

Radv(m;αp) ≤ (eεR(m))
β−1
β .

Proof 3 Let m be an (αp, ε)-robust classifier w.r.t. Dβ, (x, y) ∼ D and τ ∈ X such that ‖τ‖p ≤ αp. With
the same reasoning as above, and with Proposition 1, we get

L0/1 (m(x+ τ ), y) = Eŷ∼m(x+τ ) [1 {ŷ 6= y}]
= Pŷ∼m(x+τ ) [ŷ 6= y]

≤
(
eDβ(m(x+τ ),m(x))Pŷ∼m(x) [ŷ 6= y]

) β−1
β

(Prop. 1)

=
(
eDβ(m(x+τ ),m(x))Eŷ∼m(x) [1 {ŷ 6= y}]

) β−1
β

≤
(
eεL0/1 (m(x), y)

) β−1
β .

Since this holds for any (x, y) ∼ D and any αp bounded perturbation τ , we get

Radv(m;αp) = E(x,y)∼D

[
sup

τ∈Bp(αp)
L0/1 (m(x+ τ ), y)

]
≤ E(x,y)∼D

[
e
β−1
β εL0/1 (m(x), y)

β−1
β

]
≤ e

β−1
β εE(x,y)∼D

[
L0/1 (m(x), y)

β−1
β

]
.

Finally, using the Jensen inequality, one gets

≤ e
β−1
β εE(x,y)∼D

[
L0/1 (m(x), y)

] β−1
β = (eεR(m))

β−1
β .

The above inequality concludes the proof.

This first result gives a multiplicative bound on the gap between the standard and adversarial risks. This
means that if we can design a class Mβ (αp, ε) with small enough ε, and big enough β, then minimizing the
risk of any m ∈Mβ (αp, ε) is sufficient to also minimize the adversarial risk of m. Nevertheless, multiplicative
factors are not easy to analyze.
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Remark 2 More general bounds can be computed if we assume that for every randomized classifier m there
exists a convex function f such that for all x and τ with ‖τ‖p ≤ αp, we have m(x)(Z) ≤ f(m(x+τ )(Z)) for
all measurable sets Z. In this case, we get Radv(m;αp) ≤ f (R(m)). This has a close link with randomized
smoothing [9] and f -differential privacy [14] where both try to fit the best possible f using Neyman-Pearson
lemma.

The following result provides an additive counterpart to Theorem 2. It gives a control over the loss of
accuracy under attack with respect to the robustness parameter ε and the Shannon entropy of m.

Theorem 3 (Additive risks’ gap for Renyi-robust classifiers) Let m ∈Mβ (αp, ε), then we have

Radv(m;αp)−R(m) ≤ 1− e−εEx∼D|X
[
e−H(m(x))

]
where H is the Shannon entropy ( i.e. for any ρ ∈ P (Y) , H(ρ) = −

∑
k∈Y

ρk log(ρk)) and D|X is the marginal

distribution of D for X .

Proof 4 Let m ∈Mβ (αp, ε), then

Radv(m;αp)−R(m)

= E(x,y)∼D

[
sup

τ∈Bp(αp)
L0/1 (m(x+ τ ), y)− L0/1 (m(x), y)

]
.

By definition of the 0/1 loss, this amounts to write

= E(x,y)∼D

[
sup

τ∈Bp(αp)
Eŷadv∼m(x+τ ),ŷ∼m(x) [1 (ŷadv 6= y)− 1 (ŷ 6= y)]

]

≤ E(x,y)∼D

[
sup

τ∈Bp(αp)
Eŷadv∼m(x+τ ),ŷ∼m(x) [1 (ŷadv 6= ŷ)]

]

= E(x,y)∼D

[
sup

τ∈Bp(αp)
Pŷadv∼m(x+τ ),ŷ∼m(x) [ŷadv 6= ŷ]

]

= E(x,y)∼D

[
sup

τ∈Bp(αp)
1− Pŷadv∼m(x+τ ),ŷ∼m(x) [ŷadv = ŷ]

]

= E(x,y)∼D

[
sup

τ∈Bp(αp)
1−

K∑
i=1

m(x)i ×m(x+ τ )i

]
.

Now, note that for any (x, y) ∼ D and τ ∈ X , by definition of a probability vector in P (Y), and thanks to
Jensen inequality we can write

K∑
i=1

m(x)i ×m(x+ τ )i ≥ exp

(
K∑
i=1

m(x)i log m(x+ τ )i

)
.

Then by definition of the entropy and the Kullback Leibler divergence we have

exp

(
K∑
i=1

m(x)i log m(x+ τ )i

)
= exp

(
−D1 (m(x),m(x+ τ ))−H (m(x))

)
.

Finally, by combining the above inequalities and since m ∈Mβ (αp, ε) we get

E(x,y)∼D

[
sup

τ∈Bp(αp)
Pŷadv∼m(x+τ ),ŷ∼m(x)(ŷadv 6= ŷ)

]
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≤ E(x,y)∼D

[
sup

τ∈Bp(αp)
1− e−D1(m(x),m(x+τ ))−H(m(x))

]
≤ E(x,y)∼D

[
1− e−ε−H(m(x))

]
= 1− e−εEx∼D|X

[
e−H(m(x))

]
.

The above inequality concludes the proof.

This result is interesting because it relates the accuracy of m with the bound we obtain. In words,
when m(x) has large entropy (i.e. H(m(x)) → log(K)) the output distribution tends towards the uniform
distribution; hence ε→ 0. This means that the classifier is very robust but also completely inaccurate, since
it outputs classes uniformly at random. On the opposite, if H(m(x))→ 0, then ε→∞. The classifier may
be accurate, but it is not robust anymore (at least according to our definition). Hence we need to find a
classifier that achieves a trade-off between robustness and accuracy.

5 Standard Generalization gap

In this section we devise generalization gap bounds for randomized classifiers when they are robust according
either to the total variation distance or the Renyi divergence. To do so, we upper-bound the Rademacher
complexity of the loss space for TV-robust classifiers

LMTV (αp,ε) := {(x, y) 7→ L0/1(h(x), y) | m ∈MTV (αp, ε)}.

The empirical Rademacher complexity, first introduced by [3], is one of the standard measures of generaliza-
tion gap. It is particularly useful to obtain quality bounds for complex classes such as neural networks since
it does not depend on the number of parameters in the network contrary to combinatorial notions such as
the VC dimension.

Definition 3 (Rademacher complexity) For any class of real-valued functions F := {(x, y) 7→ R}, given
a training sample S = {(x, y1), . . . , (xn, yn)}, the empirical Rademacher complexity of F is defined as

RS(F) :=
1

n
Eri

[
sup
f∈F

n∑
i=1

rif(xi, yi)

]
,

where ri are i.i.d. drawn from a Rademacher measure ( i.e. P(ri = 1) = P(ri = −1) = 1
2).

The empirical Rademacher complexity measures the uniform convergence rate of the empirical risk to-
wards the risk on the function class F as demonstrated by [35]. Thanks to this notion of complexity, we can
bound with high probability the generalization gap of any hypothesis m in a class M.

Theorem 4 ([35]) LetM be a class of possibly randomized classifiers and LM := {Lm : (x, y) 7→ L0/1 (m(x), y) |
m ∈M}. Then for any δ ∈ (0, 1), with probability at least 1−δ, the following holds for any m ∈MTV (αp, ε),

R (m)−RS (m) ≤ 2RS(LM) + 3

√
ln(2/δ)

2n
.

5.1 Generalization error for robust classifiers

Accordingly, we want to upper bound the empirical Rademacher complexity of LMTV (αp,ε), which motivates
the following definition.

Definition 4 (α-covering and external covering number) Let us consider (X , ‖.‖p) a vector space equipped
with the `p norm, B ⊂ X and α ≥ 0. Then

11



• C = {c, . . . , cm} is an α-covering of B for the `p norm if for any x ∈ B there exists ci ∈ C such that
‖x− ci‖p ≤ α.

• The external covering number of B writes N
(
B, ‖.‖p, α

)
. It is the minimal number of points one needs

to build an α-covering of B for the `p norm.

The covering number is a well-known measure that is often used in statistical learning theory [45] and
asymptotic statistics [54] to evaluate the complexity of a set of functions. Here we use it to evaluate
the number of `p balls we need to cover the training samples, which gives us the following bound on the
Rademacher complexity of LMTV (αp,ε).

Theorem 5 (Rademacher complexity for TV-robust classifiers) Let LMTV (αp,ε) be the loss function
class associated with MTV (αp, ε). Then, for any S := {(x, y1), . . . , (xn, yn)}, the following holds,

RS
(
LMTV (αp,ε)

)
≤

√
N ×K
n

+ ε.

Where N = N
(
{x, . . . ,xn}, ‖.‖p, αp

)
is the αp-external covering number of the inputs {x, . . . ,xn} for

the `p norm.

Proof 5 Let us denote S := {(x, y1), . . . , (xn, yn)} and N = N
(
{x, . . . ,xn}, ‖.‖p, αp

)
. By definition of a

covering number, there exists C = {c, . . . , cN} an αp-covering of {x, . . .xn} for the `p norm. Furthermore,
for j ∈ {1, . . . , N} and y ∈ {1, . . . ,K}, we define

Ey,j =

{
i ∈ {1, . . . , n} s.t. yi = y and argmin

l∈{1,...,N}
‖xi − cl‖ = j

}
.

We also denote Ej = ∪
y∈[K]

Ey,j. Finally, we denote Lm : (x, y) 7→ L0/1 (m(x), y). Then, by definition of the

empirical Rademacher complexity, we can write

RS
(
LMTV (αp,ε)

)
=

1

n
Eri

[
sup

m∈MTV (αp,ε)

n∑
i=1

riLm(xi, yi)

]
.

Then we can use Ej to write

RS
(
LMTV (αp,ε)

)
=

1

n
Eri

 sup
m∈MTV (αp,ε)

N∑
j=1

∑
i∈Ej

riLm(xi, yi)

 .
Furthermore for any m ∈ MTV (αp, ε) and i ∈ Ej, there exists εi ∈ [−ε, ε] such that: Lm(xi, yi) =
Lm(cj , yi) + εi. Then we have

RS
(
LMTV (αp,ε)

)
≤ 1

n
Eri

 sup
m∈MTV (αp,ε)

N∑
j=1

∑
i∈Ej

riLm(cj , yi)


+

1

n
Eri

 sup
εi∈[−ε,ε]

N∑
j=1

∑
i∈Ej

riεi

 .
Let us start by studying the second term. We have

1

n
Eri

 sup
εi∈[−ε,ε]

N∑
j=1

∑
i∈Ej

riεi

 =
1

n
Eri

[
sup

εi∈[−ε,ε]

n∑
i=1

riεi

]
=

1

n

n∑
i=1

ε = ε.
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Now looking at the first term. Since Lm(x, y) ∈ [0, 1] for all (x, y) we have

1

n
Eri

 sup
m∈MTV (αp,ε)

N∑
j=1

∑
i∈Ej

riLm(cj , yi)

 =
1

n
Eri

 sup
m∈MTV (αp,ε)

N∑
j=1

K∑
y=1

Lm(cj , y)
∑
i∈Ey,j

ri


≤ 1

n
Eri

 N∑
j=1

K∑
y=1

∣∣∣∣∣∣
∑
i∈Ey,j

ri

∣∣∣∣∣∣
 .

Finally using the Khintchine inequality and the Cauchy Schartz inequality we get

1

n
Eri

 N∑
j=1

K∑
y=1

∣∣∣∣∣∣
∑
i∈Ey,j

ri

∣∣∣∣∣∣
 ≤ 1

n

N∑
j=1

K∑
y=1

√
|Ey,j | (Khintchine)

≤ 1

n

√
N ×K

√√√√ N∑
j=1

K∑
y=1

|Ey,j | (Cauchy)

=

√
N ×K
n

.

By combining the upper-bounds we have for each term, we get the expected result,

RS
(
LMTV (αp,ε)

)
≤
√
N ×K
n

+ ε.

The above result means that, if we can cover the n training samples with O(1) balls, then we can bound

the generalization gap of any randomized classifier m ∈MTV (αp, ε) by O
(

1√
n

)
+ ε. Furthermore, a natural

corollary of Theorem 5 bounds the Rademacher complexity of the class LMβ(αp,ε).

Corollary 1 Let LMβ(αp,ε) be the loss function class associated with Mβ (αp, ε). Then, for any S :=
{(x, y1), . . . , (xn, yn)}, the following holds,

RS
(
LMβ(αp,ε)

)
≤

√
N ×K
n

+ min

3

2

√1 +
4ε

9
− 1

1/2

,
eε+1 − 1

eε+1 + 1

 .

Where N = N
(
{x, . . . ,xn}, ‖.‖p, αp

)
is the αp-external covering number of the inputs {x, . . . ,xn} for

the `p norm.

Proof 6 This corollary is an immediate consequence of Theorem 5 and Proposition 2.

Thanks to Theorems 4 and 5 and Corollary 1, one can easily bound the generalization gap of robust ran-
domized classifiers.

5.2 Discussion and dimensionality issues

[60] previously studied generalization bounds for learning algorithms based on their robustness. Although we
use very different proof techniques, their results and ours are similar. More precisely, both analyses conclude
that robust models generalize well if the training samples have a small covering number. Note, however,
that we base our formulation on an adaptive partition of the samples, while the initial paper from [60] only
focuses on a fixed partition of the input space. The interested reader can refer to the discussion section
in [60] for more details.
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These findings seem to contradict the current line of works on the hardness of generalization in the
adversarial setting. In fact, if the ground truth distribution is sufficiently concentrated (e.g. lies in a low
dimensional subspace of x), a small number of balls can cover S with high probability; hence N = O(1).
This means that we can learn robust classifiers with the same sample complexity as in the standard setting.
But if the ground truth distribution is not concentrated enough, the training samples will be far one from
another; hence forcing the covering number to be large. In the worse case scenario, we need to cover the

whole space [0, 1]d giving a covering number N = O
(

1
(αp)d

)
which is exponential in the dimension of the

problem.

Therefore, in the worst-case scenario, our bound is in O
(

1
(αp)d

√
n

)
+ ε. When αp is small and the

dimension of the problem is high, this bound is too large to give any meaningful insight on the generalization
gap of the problem. Therefore, we still need to tighten our analysis to show that robust learning for
randomized classifiers is possible in high dimensional spaces.

Remark 3 Note that, we provided a very general result for randomized classifiers under the only assumption
that they are robust w.r.t. the total variation distance. Our result applies to any class of classifiers and not
only linear classifiers or one-hidden layer neural networks. To build a finer analysis, and to evade the curse
of dimensionality, we should consider designing specific sub-classes M ⊂MTV (αp, ε) and adapt the proofs
to make the term N smaller in the worst-case scenario.

6 Building robust randomized classifiers

In this section we present a simple yet efficient way to transform a non-robust, non-randomized classifier
into a robust randomized classifier. To do so, we use a key property of both the Renyi divergence and the
total variation distance called the Data processing inequality. It is a well-known result from information
theory which states that “post-processing cannot increase information”. The data processing inequality is as
follows.

Theorem 6 ([10]) Let us consider two arbitrary spaces Z,Z ′, ρ, ρ′ ∈ P (Z) and D ∈ {DTV , Dβ}. Then
for any ψ : Z → Z ′ we have

D (ψ#ρ, ψ#ρ′) ≤ D (ρ, ρ′) ,

where ψ#ρ denotes the pushforward of distiburtion ρ by ψ.

In the context of robustness to adversarial examples, we use the data processing inequality to ease the
design of robust randomized classifiers. In particular, let us suppose that we can build a randomized pre-
processing p : X → P (X ) such that for any x ∈ X and any αp-bounded perturbation τ , we have

D (p(x), p(x+ τ )) ≤ ε, with D ∈ {DTV , Dβ}. (13)

Then, thanks to the data processing inequality, we can take any deterministic classifier h to build an (αp, ε)
robust classifier w.r.t D defined as m : x 7→ h#p(x). This considerably simplifies the problem of building
a class of robust models. Therefore, we want to build p a randomized pre-processing for which we can
control the Renyi divergence and/or total variation distance between two inputs. To do this, we analyze
the simple procedure of injecting random noise directly on the image before sending it to a classifier. Since
the Renyi divergence and the total variation distances are particularly well suited to the study of Gaussian
distributions, we first use this type of noise injection. More precisely, in this section, we focus on a mapping
that writes as follows.

p : x 7→ N (x, Σ) , (14)

for some given non-degenerate covariance matrix Σ ∈ Md×d(R). We refer the interested reader to [39] for
more general classes of noise, namely exponential families. Let us now evaluate the maximal variation of
Gaussian pre-processing p when applied to an image x ∈ X with and without perturbation.
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Lemma 1 Let β > 1, x, τ ∈ X and Σ ∈ Md×d(R) a non-degenerate covariance matrix. Let ρ = N (x, Σ)

and ρ′ = N (x+ τ , Σ), then Dβ(ρ, ρ′) = β
2 ‖τ‖

2
Σ−1 .

Proof 7 Let β > 1. Let us denote g and g′ respectively the probability density functions of ρ and ρ′ with
respect to the Lebesgue measure. We also set x′ = x+ τ for readability. Then we have

Dβ(ρ, ρ′) =
1

β − 1
logEz∼ρ′

[(
g(z)

g′(z)

)β]

=
1

β − 1
logEz∼ρ′

[
exp

(β
2

(
(z − x′)ᵀΣ−1(z − x′)− (z − x)ᵀΣ−1(z − x)

))]
.

By change of variable we get

=
1

β − 1
logEz∼N (0,Σ)

[
exp

(
β

2

(
zᵀΣ−1z − (z + τ )ᵀΣ−1(z + τ )

))]
=

1

β − 1
logEz∼N (0,Σ)

[
exp

(
β

2

(
−2zᵀΣ−1τ − ‖τ‖2Σ−1

))]

=
1

β − 1
log

∫
Rd

exp
(
− 1

2z
ᵀΣ−1z − β

2 2zᵀΣ−1τ − β
2 ‖τ‖

2
Σ−1

)
(2π)d det(Σ)

d/2
dz .

Furthermore, for any z ∈ Rd, we have

− 1

2
zᵀΣ−1z − β

2
2zᵀΣ−1τ − β

2
‖τ‖2Σ−1

=− 1

2
(z + βτ )ᵀΣ−1(z + βτ ) +

β2 − β
2
‖τ‖2Σ−1 .

Then we can re-write the Renyi divergence as follows

Dβ(ρ, ρ′) =
1

β − 1
logEz∼N (−βτ ,Σ)

[
exp

(
β2 − β

2
‖τ‖2Σ−1

)]
=

1

β − 1
log

(
exp

(
β2 − β

2
‖τ‖2Σ−1

))
=
β

2
‖τ‖2Σ−1 .

This concludes the proof.

Thanks to the above lemma, we know how to evaluate the level of Renyi-robustness that a Gaussian
noise pre-processing brings to a classifier. Now that we have this result, thanks to Proposition 2, we can also
upper-bound the total variation distance between N (x, Σ) and N (x+ τ , Σ). But this bound is not always
tight. Besides, we can directly evaluate the total variation distance between two Gaussian distributions as
follows.

Lemma 2 Let x,x′ ∈ X and Σ ∈ Md×d(R) a non-degenerate covariance matrix. Let ρ = N (x, Σ) and

ρ′ = N (x+ τ , Σ), then DTV (ρ, ρ′) = 2Φ(
‖τ‖Σ−1

2 )− 1 with Φ the cumulative density function of the standard
Gaussian distribution.

Proof 8 Let us denote g and g′ respectively the probability density functions of ρ and ρ′ with respect to the
Lebesgue measure. Furthermore, we denote x′ = x + τ . Then by definition of the total variation distance,
we have DTV (ρ, ρ) = ρ(Z)− ρ′(Z) with Z = {z s.t. g(z) ≥ g′(z)}. In our case g(z) ≥ g′(z) is equivalent to

(z − x′)ᵀΣ−1(z − x′)− (z − x)ᵀΣ−1(z − x) ≥ 0.
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Then with the same simplification as above, we have

ρ(Z) = Pz∼N (x,Σ)

(
(z − x′)ᵀΣ−1(z − x′)− (z − x)ᵀΣ−1(z − x) ≥ 0

)
= Pz∼N (0,Σ)

(
(z − τ )ᵀΣ−1(z − τ )− zᵀΣ−1z ≥ 0

)
= Pz∼N (0,Σ)

(
−2zᵀΣ−1τ + ‖τ‖2Σ−1 ≥ 0

)
= Pz∼N (0,Id)

(
zᵀΣ−1/2τ ≤ 1

2
‖τ‖2Σ−1

)
.

Furthermore, if z ∼ N (0, Id) then zᵀΣ−1/2τ ∼ N (0, ‖τ‖2Σ−1); hence we also have zᵀΣ−1/2τ
‖τ‖Σ−1

∼ N (0, 1).

Accordingly we get

ρ(Z) = Pz∼N (0,1)

(
z ≤ 1

2
‖τ‖Σ−1

)
= Φ

(
1

2
‖τ‖Σ−1

)
.

By symmetry we get that ρ′(A) = 1− ρ(A) = 1− Φ
(
1
2‖τ‖Σ−1

)
. We then get

DTV (µ, ν) = 2Φ

(
‖τ‖Σ−1

2

)
− 1

which concludes the proof.

Note that both bounds increase with the Mahalanobis norm of τ . Furthermore, we see that the greater
the entropy of the Gaussian noise we inject, the smaller the distance between distributions. If we simplify
the covariance matrix by setting Σ = σ2Id, it means that we can build more or less robust randomized
classifiers against `2 adversaries, depending on σ.

Theorem 7 (Robustness of Gaussian pre-processing) Let us consider c : X → Y a deterministic clas-
sifier, σ > 0 and p : x 7→ N (x, σ2Id) a pre-processing probabilistic mapping. Then the randomized classifier
m := c#p is

• (α2,
(α2)

2β
2σ )-robust w.r.t. Dβ against `2 adversaries.

• (α2, 2Φ
(
α2

2σ

)
− 1)-robust w.r.t. DTV against `2 adversaries.

Proof 9 Let x, τ ∈ X such that ‖τ‖2 ≤ α2. Thanks to Lemma 1 we have

Dβ(p(x), p(x+ τ )) =
β

2
‖τ‖2Σ−1 =

β

2σ2
‖τ‖22 ≤

β(α2)2

2σ2
.

Similarly, thanks to Lemma 2, we get

DTV (p(x), p(x+ τ )) = 2Φ

(
‖τ‖Σ−1

2

)
− 1 ≤ 2Φ

(α2

2σ

)
− 1.

Finally, from the data processing inequality, i.e. Theorem 6, we get both

Dβ(m(x),m(x+ τ )) ≤ β(α2)2

2σ2
,

and

DTV (m(x),m(x+ τ )) ≤ 2Φ
(α2

2σ

)
− 1.

The above inequalities conclude the proof.

Theorem 7 means that we can build simple noise injection schemes as pre-processing of state-of-the-art
image classification models and keep track of the maximal loss of accuracy under attack of the resulting
randomized classifier. These results also highlight the profound link between randomized classifiers and
randomized smoothing as presented by [9]. Even though our findings are of different nature, both techniques
use the same base mechanism (Gaussian noise injection). Therefore, Gaussian pre-processing is a princi-
pled defense method that can be analyzed through several standpoints, including certified robustness and
statistical learning theory.
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7 Discussion: Mode preservation and Randomized Smoothing

Even though randomized classifiers have some interesting properties regarding generalization error, we can
also study them through the prism of deterministic robustness. Let us for example consider the classifier
that outputs the class with the highest probability for m(x), a.k.a. the mode of m(x). It writes

hrob : x 7→ argmax
k∈[K]

m(x)k (15)

Then checking whether hrob is robust boils down to demonstrating that the mode of m(x) does not
change under perturbation. It turns out that DTV robust classifiers have this property. We call it the mode
preservation property of MTV (αp, ε).

Proposition 3 (Mode preservation for DTV -robust classifiers) Let m ∈MTV (αp, ε) be a robust ran-
domized classifier and x ∈ X such that m(x)(1) ≥ m(x)(2) + 2ε. Then, for any τ ∈ X , the following holds,

‖τ‖p ≤ αp =⇒ hrob(x) = hrob(x+ τ ) .

Proof 10 Let x, τ ∈ X such that ‖τ‖p ≤ αp and m ∈MTV (αp, ε) such that

m(x)(1) ≥ m(x)(2) + 2ε.

By definition of MTV (αp, ε), we have that

DTV (m(x),m(x+ τ )) ≤ ε.

Then, for all k ∈ {1, . . . ,K} we have

m(x)k − ε ≤ m(x+ τ )k ≤ m(x)k + ε .

Let us denote k∗ the index of the biggest value in m(x), i.e. m(x)k∗ = m(x)(1). For any k ∈ {1, . . . ,K} with
k 6= k∗, we have m(x)k∗ ≥ m(x)k + 2ε. Finally, for any k 6= k∗, we get

m(x+ τ )k∗ ≥ m(x)k∗ − ε ≥ m(x)k + ε ≥ m(x+ τ )k.

Then, argmax
k∈[K]

m(x)k = argmax
k∈[K]

m(x+ τ )k. This concludes the proof.

Similarly, we can demonstrate a mode preservation property for robust classifiers w.r.t. the Renyi divergence.

Proposition 4 (Mode preservation for Renyi-robust classifiers) Let m ∈Mβ (αp, ε) be a robust ran-

domized classifier and x ∈ X such that
(
m(x)(1)

) β
β−1 ≥ exp

(
(2− 1

β )ε
) (

m(x)(2)
) β−1

β . Then, for any τ ∈ X ,

the following holds,
‖τ‖p ≤ αp =⇒ hrob(x) = hrob(x+ τ ),

where hrob(x) := argmax
k∈[K]

m(x)k.

Proof 11 Let x, τ ∈ X such that ‖τ‖p ≤ αp and m ∈Mβ (αp, ε) such that

(
m(x)(1)

) β
β−1 ≥ exp

(
(2− 1

β
)ε

)(
m(x)(2)

) β−1
β .

Then by definition of Mβ (αp, ε), we have

Dβ(m(x),m(x+ τ )) ≤ ε.
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Furthermore, by using Proposition 1, for any k ∈ {1, . . . ,K} we have

(∗) m(x)k ≤ (exp(ε) m(x+ τ )k)
β−1
β and (∗∗) m(x+ τ )k ≤ (exp(ε) m(x)k)

β−1
β .

Let us denote k∗ the index such that m(x)k∗ = m(x)(1). Then using (∗) we get

m(x+ τ )k∗ ≥ exp(−ε)(m(x)k∗)
β
β−1 .

Furthermore for any k ∈ {1, . . . ,K} where k 6= k∗, we can use the assumption we made on m to get

exp(−ε)(m(x)k∗)
β
β−1 ≥ exp

(
β − 1

β
ε

)
(m(x)k)

β−1
β .

Finally, using (∗∗) we have

exp

(
β − 1

β
ε

)
(m(x)k)

β−1
β ≥ m(x+ τ )k.

The above gives us argmax
k∈[K]

m(x)k = argmax
k∈[K]

m(x+ τ )k. This concludes the proof.

Coming back to the decomposition in Equation (5), with the above result, we can bound the risk the
adversary induces with non-zero perturbations by the mass of points on which the classifier hrob gives the
good response but based on a low probability of success, i.e. with small confidence

Radv
>0 (m) ≤ P(x,y)∼D

[
hrob(x) = y and m(x)(1) < m(x)(2) + 2ε

]
. (16)

This means that the only points on which the adversary may induce misclassification are the points on
which m already has a high risk. Once more, this says something fundamental about the behavior of robust
randomized classifiers. On undefended models, the adversary could change the decision on any point it
wanted; now it is limited to changing points on which the classifier is already inaccurate. This considerably
mitigates the threat model we should consider. Furthermore, for any deterministic classifier designed as
in Equation (15), we can also bound the maximal loss of accuracy under attack the classifier may suffer.
This bound may, however, be harder to evaluate since it now depends on both the classifier and the dataset
distribution. The classifier we define in Equation (15) and the mode preservation property of m are closely
related to provable defenses based on randomized smoothing. The core idea of randomized smoothing is to
take a hypothesis h and to build a robust classifier that writes

crob : x 7→ argmax
k∈[K]

Pz∼N (0,σ2I) [h(x+ z) = k] . (17)

From a probabilistic point of view, for any input x, randomized smoothing amounts to output the most
probable class of the probability measure m(x) := h#N

(
x, σ2I

)
. Hence, randomized smoothing uses the

mode preservation property of m to build a provably robust (deterministic) classifier. Therefore, the above
results (Proposition 3 and Equation 16) also hold for provable defenses based on randomized smoothing.
Studying randomized smoothing from our point of view could give an interesting new perspective on that
method. So far no results have been published on the generalisation gap of this defense in the adversarial
setting. We could devise generalization bounds by similarity with our analysis. Furthermore, the probabilistic
interpretation stresses that randomized smoothing is somewhat restrictive since it only considers probability
measures which are the expectation on a simple noise injection scheme. The mode preservation property
explains the behavior of randomized smoothing, but also presents fundamental properties of randomized
defenses that could be used to construct more general defense schemes.

8 Numerical validations: Gaussian Noise and `2 adversary

To illustrate our findings, we train randomized neural networks with Gaussian pre-processing during training
and inference on CIFAR-10 and CIFAR-100. Based on this randomized classifier, we study the impact
of randomization on the standard accuracy of the network, and observe the theoretical trade-off between
accuracy and robustness.
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8.1 Architecture and training procedure

All the neural networks we use in this section are WideResNets [63] with 28 layers, a widen factor of 10, a
dropout factor of 0.3 and LeakyRelu activation with a 0.1 slope. To train an undefended standard classifier
we use the following hyper-parameters.

• Number of Epochs: 200

• Batch size: 400

• Loss function: Cross Entropy Loss

• Optimizer : Stochastic gradient descent algorithm with momentum 0.9, weight decay of 2× 10−4 and
a learning rate that decreases during the training as follows:

lr =


0.1 if 0 ≤ epoch < 60
0.02 if 60 ≤ epoch < 120
0.004 if 120 ≤ epoch < 160
0.0008 if 160 ≤ epoch < 200.

To transform these standard networks into randomized classifiers, we inject noise drawn from Gaussian
distributions, each with various standard deviations directly on the image before passing it through the
network. Both during training and test, for computational efficiency, we evaluate the performance of the the
algorithm over a single run for every images; hence no Monte Carlo estimator is used. However, in practice,
the test-time accuracy is stable when evaluated over the entire test dataset.

8.2 Results

Figures 1 and 2 show the accuracy and the minimum level of accuracy under attack of our randomized neural
network for several levels of injected noise. We can see (Figure 1) that the precision decreases as the noise
intensity grows. In that sense, the noise must be calibrated to preserve both accuracy and robustness against
adversarial attacks. This is to be expected, because the greater the entropy of the classifier, the less precise
it gets.

Figure 1: Impact of the standard deviation of the Gausian noise on accuracy in a randomized model on
CIFAR-10 and CIFAR-100 dataset.
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Furthermore, when injecting Gaussian noise as a defense mechanism, the resulting randomized network m

is both (α2,
(α2)

2

2σ )-robust w.r.t. D1 and (α2, 2Φ
(
α2

2σ

)
−1)-robust w.r.t. DTV against `2 adversaries. Therefore

thanks to Theorems 1 and 3 we have that

Radv(m;α2)−R(m) ≤ 2Φ
(α2

2σ

)
− 1, and (18)

Radv(m;α2)−R(m) ≤ 1− e−
(α2)2

2σ Ex∼D|X
[
e−H(m(x))

]
. (19)

Figure 2: Guaranteed accuracy of different randomized models with Gaussian noise given the `2 norm of the
adversarial perturbations.

Figure 2 illustrates the theoretical lower bound on accuracy under attack (based on the minimum gap
between Equations (18) and (19)) for different standard deviations. The term in entropy has been estimated
using a Monte Carlo method with 104 simulations. The trade-off between accuracy and robustness appears
with respect to the noise intensity. With small noises, the accuracy is high, but the guaranteed accuracy
drops fast with respect to the magnitude of the adversarial perturbation. Conversely, with bigger noises, the
accuracy is lower but decreases slowly with respect to the magnitude of the adversarial perturbation. Overall,
we get strong accuracy guarantees against small adversarial perturbations, but when the perturbation is
bigger than 0.5 on CIFAR-10 (resp. 0.3 on CIFAR-100, the guarantees are still not sufficient).

9 Lesson learned and future work

This paper brings new contributions to the theory of robustness to adversarial attacks. We provided an in
depth analysis of randomized classifier, demonstrating their interest to defend against adversarial attacks. We
first defined a notion of robustness for randomized classifiers using probability metrics/divergences, namely
the total variation distance and the Renyi divergence. Second, we demonstrated that when a randomized
classifier complies with this definition of robustness, we can bound their loss of accuracy under attack.
We also studied the generalization properties of this class of functions and gave results indicating that
robust randomized classifiers can generalize. Finally, we showed that randomized classifiers have a mode
preservation property. This presents a fundamental property of randomized defenses that can be used to
explain randomized smoothing from a probabilistic point of view. To support our theoretical findings we
presented a simple yet efficient scheme for building robust randomized classifiers. We show that Gaussian
noise injection can provide principled robustness against `2 adversarial attacks. We ran a set of experiments
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on CIFAR-10 and CIFAR-100 using Gaussian noise injection with advanced neural network architectures to
build accurate models with controlled loss of accuracy under attack.

Future work will focus on studying the combination of randomization with more sophisticated defenses
and on devising new tight bounds on the adversarial generalization and the adversarial risk gap of randomized
classifiers. Based on the connections we established we randomized smoothing in Section 7, we will also aim at
devising bounds on the gap between the standard and adversarial risks for this defense. Another interesting
direction would be to show that the classifiers based on randomized smoothing have a generalization gap
similar to the classes of randomized classifiers we studied.
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A Discussion on the metric/divergence one should consider

As mentioned earlier in this paper, the choice of the metric/divergence is crucial as it characterizes the
notion of adversarial robustness we are examining. We focus on the total variation distance and Renyi
divergence, but the question of whether these metrics/divergences are more appropriate than others remains
open. It should be noted, however, that our definition of robustness is monotonous depending on the
metric/divergence we use.

Proposition 5 (Monotonicity of the robustness) Let m be a randomized classifier, and let D and D′

be two divergences/metrics on P(Y). If there exists a non decreasing function f : R→ R such that ∀ρ, ρ′ ∈
P(Y), D(ρ, ρ′) ≤ f(D′(ρ, ρ′)), then the following assertion holds.

m is (αp, ε)-robust w.r.t. D′ =⇒ m is (αp, f(ε))-robust w.r.t. D.

The proof straightforwardly comes from the definition of robustness.

Proof 12 Let us consider m a randomized classifier (αp, ε)-robust w.r.t. D′. Then for any x ∼ D, and
τ s.t. ‖τ‖p ≤ αp, since f is non decreasing, we have

D(m(x),m(x+ τ )) ≤ f (D′(m(x),m(x+ τ ))) ≤ f (ε) .

Then m is (αp, f(ε))-robust w.r.t. D which concludes the proof.

The above result suggests that the different notions of robustness we might conceive are more related
than they appear. Here are some of the most classical divergences used in machine learning. Let ρ, ρ′, ν
three measures in P(Y). We denotes g and g′ the probability density functions of ρ and ρ′ with respect to
ν. Then we can define the Wasserstein distance as follows

DW (ρ, ρ′) := inf

∫
Y2

dist (y, y′) dπ(y, y′), (20)

where dist is some ground distance on Y, and the infimum is taken over all joint distributions π in P (Y × Y)
with marginals ρ and ρ′.

Remark 4 In transportation theory, the Wasserstein distance is solution of the Monge-Kantorovich problem
with the cost function c(y, y′) = dist(y, y′). Then, the definitions of total variation and Wasserstein distance
match when we use the trivial distance dist(y, y′) = 1{y 6= y′}.

We also define respectively the Hellinger distance and the Separation distance as follows.

DH(ρ, ρ′) :=

[∫
Y

(√
g −

√
g′
)2
dν

]1/2
. (21)

DS(ρ, ρ′) := sup
y∈Y

(
1− g(y)

g′(y)

)
. (22)

If we take any of the above metrics/divergences to instantiate a notion of adversarial robustness we might
get very different semantics for them. However, we can show that any of these definitions can be covered –
with respect to Proposition 5 – either by the Renyi or the total variation robustness. Figure 3 summarizes
the links we can make between all these different definitions of robustness, and Propositions 6 and 7 present
the associated results. We can see that the total variation distance and the Renyi divergence are both central
since they can cover any of the other robustness notions. This does not mean that they are more appropriate
than the others, but at least they are general enough to cover a wide range of possible definitions.

Proposition 6 Let m be a randomized classifier. If m is (αp, ε)-robust w.r.t. DTV then the following
assertions hold.
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Figure 3: Summary of the relations between the different robustness notions from Propositions 6 and 7.

• m is (αp, ε× diam (Y))-robust w.r.t. DW , where diam (Y) := max
y,y′∈Y

dist(y, y′).

• m is
(
αp,
√

2ε
)
-robust w.r.t. DH .

Proof 13 Let us consider ρ and ρ′ ∈ P (Y). Thanks to [15] we have

• DW (ρ, ρ′) ≤ diam(Y)DTV (ρ, ρ′).

• DH(ρ, ρ′) ≤
√

2DTV (ρ, ρ′).

Hence, by using Proposition 5 respectively with f : x 7→ diam(Y)x and f : x 7→
√

2x we get the expected
results.

Proposition 7 Let m be a randomized classifier. If m is (αp, ε)-robust w.r.t. Dβ then the following asser-
tions hold.

• m is (αp, ε
′)-robust w.r.t. DTV with ε′ = min

(
3
2

(√
1 + 4ε

9 − 1
)1/2

, exp(ε+1)−1
exp(ε+1)+1

)
.

• m is (αp,
√
ε)-robust w.r.t. DH .

• If β =∞, then m is (αp, ε) robust w.r.t. DS.

Proof 14 1) First, let us suppose that β ≥ 1. Thanks to Proposition 2 and to [15], for any ρ, ρ′ ∈ P (Y) we
have

• DH(ρ, ρ′) ≤
√
D1(ρ, ρ′) ≤

√
Dβ(ρ, ρ′) (see [15]).

• DTV (ρ, ρ′) ≤ min

(
3
2

(√
1 +

4Dβ(ρ,ρ′)
9 − 1

)1/2

,
exp(Dβ(ρ,ρ′)+1)−1
exp(Dβ(ρ,ρ′)+1)+1

)
(Prop. 2).
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Hence, by using Proposition 5, as above, we get the expected results.
2) Now let us suppose that β =∞. By definition of the supremum divergence, we have

D∞(ρ, ρ′) = sup
B⊂Y

∣∣∣∣ln ρ(B)

ρ′(B)

∣∣∣∣ .
Furthermore, note that the function x 7→ 1− x− |ln(x)| is negative on R, therefore for any y ∈ Y one has

1− ρ(y)

ρ′(y)
≤
∣∣∣∣ln ρ(y)

ρ′(y)

∣∣∣∣ .
Since the above inequality is true for any y ∈ Y, we have

DS (ρ, ρ′) = sup
y∈Y

(
1− ρ(y)

ρ′(y)

)
≤ sup
y∈Y

∣∣∣∣ln ρ(y)

ρ′(y)

∣∣∣∣ ≤ sup
B⊂Y

∣∣∣∣ln ρ(B)

ρ′(B)

∣∣∣∣ = D∞(ρ, ρ′).

Finally, by using Proposition 5 with f : x 7→ x we get the expected results.
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attacks against machine learning at test time. In Joint European conference on machine learning and
knowledge discovery in databases, pages 387–402. Springer, 2013.

[6] N. Carlini and D. Wagner. Adversarial examples are not easily detected: Bypassing ten detection
methods. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pages 3–14,
2017.

[7] F. Chapeau-Blondeau and D. Rousseau. Noise-enhanced performance for an optimal bayesian estimator.
IEEE Transactions on Signal Processing, 52(5):1327–1334, 2004.

[8] P.-Y. Chen, Y. Sharma, H. Zhang, J. Yi, and C.-J. Hsieh. Ead: Elastic-net attacks to deep neural
networks via adversarial examples. In AAAI, 2018.

[9] J. M. Cohen, E. Rosenfeld, and J. Z. Kolter. Certified adversarial robustness via randomized smoothing.
In International Conference on Machine Learning, 2019.

[10] T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley & Sons, 2012.

[11] F. Croce and M. Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse
parameter-free attacks. In International Conference on Machine Learning, 2020.

[12] N. Dalvi, P. Domingos, S. Sanghai, and D. Verma. Adversarial classification. In Proceedings of the tenth
ACM SIGKDD international conference on Knowledge discovery and data mining, pages 99–108, 2004.

[13] G. S. Dhillon, K. Azizzadenesheli, J. D. Bernstein, J. Kossaifi, A. Khanna, Z. C. Lipton, and A. Anand-
kumar. Stochastic activation pruning for robust adversarial defense. In International Conference on
Learning Representations, 2018.

[14] J. Dong, A. Roth, and W. J. Su. Gaussian differential privacy. arXiv preprint arXiv:1905.02383, 2019.

[15] A. L. Gibbs and F. E. Su. On choosing and bounding probability metrics. International Statistical
Review / Revue Internationale de Statistique, 70(3):419–435, 2002.

[16] G. L. Gilardoni. On pinsker’s and vajda’s type inequalities for csiszár’sf -divergences. IEEE Transactions
on Information Theory, 56(11):5377–5386, 2010.

[17] A. Globerson and S. Roweis. Nightmare at test time: robust learning by feature deletion. In Proceedings
of the 23rd international conference on Machine learning, pages 353–360, 2006.

[18] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In Interna-
tional Conference on Learning Representations, 2015.

25



[19] Y. Grandvalet, S. Canu, and S. Boucheron. Noise injection: Theoretical prospects. Neural Computation,
9(5):1093–1108, 1997.

[20] W. He, J. Wei, X. Chen, N. Carlini, and D. Song. Adversarial example defense: Ensembles of weak
defenses are not strong. In 11th {USENIX} Workshop on Offensive Technologies ({WOOT} 17), 2017.

[21] S. Hu, T. Yu, C. Guo, W.-L. Chao, and K. Q. Weinberger. A new defense against adversarial images:
Turning a weakness into a strength. In Advances in Neural Information Processing Systems, pages
1635–1646, 2019.

[22] S. Jetley, N. A. Lord, and P. H. Torr. With friends like these, who needs adversaries? In Proceed-
ings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18, page
10772–10782, Red Hook, NY, USA, 2018. Curran Associates Inc.

[23] M. Kearns and M. Li. Learning in the presence of malicious errors. SIAM Journal on Computing,
22(4):807–837, 1993.

[24] M. J. Kearns, R. E. Schapire, and L. M. Sellie. Toward efficient agnostic learning. Machine Learning,
17(2-3):115–141, 1994.

[25] J. Khim and P.-L. Loh. Adversarial risk bounds for binary classification via function transformation.
arXiv preprint arXiv:1810.09519, 2, 2018.

[26] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Technical report,
Citeseer, 2009.
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