
HAL Id: hal-03916826
https://hal.science/hal-03916826v1

Submitted on 31 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed Nash Equilibria in the Adversarial Examples
Game

Laurent Meunier, Meyer Scetbon, Rafaël Pinot, Jamal Atif, Yann Chevaleyre

To cite this version:
Laurent Meunier, Meyer Scetbon, Rafaël Pinot, Jamal Atif, Yann Chevaleyre. Mixed Nash Equilibria
in the Adversarial Examples Game. International Conference on Machine Learning (ICML), Aug 2021,
paris, France. �hal-03916826�

https://hal.science/hal-03916826v1
https://hal.archives-ouvertes.fr


Mixed Nash Equilibria in the Adversarial Examples Game

Laurent Meunier * 1 2 Meyer Scetbon * 3 Rafael Pinot 4 Jamal Atif 1 Yann Chevaleyre 1

Abstract
This paper tackles the problem of adversarial ex-
amples from a game theoretic point of view. We
study the open question of the existence of mixed
Nash equilibria in the zero-sum game formed by
the attacker and the classifier. While previous
works usually allow only one player to use ran-
domized strategies, we show the necessity of con-
sidering randomization for both the classifier and
the attacker. We demonstrate that this game has
no duality gap, meaning that it always admits ap-
proximate Nash equilibria. We also provide the
first optimization algorithms to learn a mixture of
a finite number of classifiers that approximately
realizes the value of this game, i.e. procedures to
build an optimally robust randomized classifier.

1. Introduction
Adversarial examples (Biggio et al., 2013; Szegedy et al.,
2014) are one of the most dizzling problems in machine
learning: state of the art classifiers are sensitive to imper-
ceptible perturbations of their inputs that make them fail.
Last years, research have concentrated on proposing new
defense methods (Cohen et al.; Madry et al., 2018; Moosavi-
Dezfooli et al., 2019) and building more and more sophis-
ticated attacks (Carlini & Wagner, 2017; Croce & Hein,
2020; Goodfellow et al., 2015; Kurakin et al., 2016). So far,
most defense strategies proved to be vulnerable to these new
attacks or are computationally intractable. This asks the
following question: can we build classifiers that are robust
against any adversarial attack?

A recent line of research argued that randomized classifiers
could help countering adversarial attacks (Dhillon et al.,
2018; Pinot et al., 2019; Wang et al., 2019; Xie et al., 2018).
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Along this line, (Pinot et al., 2020) demonstrated, using
game theory, that randomized classifiers are indeed more ro-
bust than deterministic ones against regularized adversaries.
However, the findings of these previous works depends on
the definition of considered adversary. In particular, they did
not investigate scenarios where the adversary also uses ran-
domized strategies, which is essential to account for if we
want to give a principled answer to the above question. Pre-
vious works studying adversarial examples from the scope
of game theory investigated the randomized framework (for
both the classifier and the adversary) in restricted settings
where the adversary is either parametric or has a finite num-
ber of strategies (Bose et al., 2021; Perdomo & Singer, 2019;
Rota Bulò et al., 2017). Our framework does not assume
any constraint on the definition of the adversary, making our
conclusions independent on the adversary the classifiers are
facing. More precisely, we answer the following questions.

Q1: Is it always possible to reach a Mixed Nash equilibrium
in the adversarial example game when both the adversary
and the classifier can use randomized strategies?

A1: We answer positively to this question. First we motivate
in Section 2 the necessity for using randomized strategies
both with the attacker and the classifier. Then, we extend
the work of (Pydi & Jog, 2020), by rigorously reformulat-
ing the adversarial risk as a linear optimization problem
over distributions. In fact, we cast the adversarial risk min-
imization problem as a Distributionally Robust Optimiza-
tion (DRO) (Blanchet & Murthy, 2019) problem for a well
suited cost function. This formulation naturally leads us,
in Section 3, to analyze adversarial risk minimization as
a zero-sum game. We demonstrate that, in this game, the
duality gap always equals 0, meaning that it always admits
approximate mixed Nash equilibria.

Q2: Can we design efficient algorithms to learn an optimally
robust randomized classifier?

A2: To answer this question, we focus on learning a fi-
nite mixture of classifiers. Taking inspiration from robust
optimization (Sinha et al., 2017) and subgradient meth-
ods (Boyd, 2003), we derive in Section 4 a first oracle
algorithm to optimize a finite mixture. Then, following
the line of work of (Cuturi, 2013), we introduce an entropic
regularization to effectively compute an approximation of
the optimal mixture. We validate our findings with experi-
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ments on simulated and real datasets, namely CIFAR-10 an
CIFAR-100 (Krizhevsky & Hinton, 2009).

2. The Adversarial Attack Problem
2.1. A Motivating Example

Consider the binary classification task illustrated in Figure 1.
We assume that all input-output pairs (X,Y ) are sampled
from a distribution P defined as follows

P (Y = ±1) = 1/2 and
⇢

P (X = 0 | Y = �1) = 1
P (X = ±1 | Y = 1) = 1/2

Given access to P, the adversary aims to maximize the ex-
pected risk, but can only move each point by at most 1
on the real line. In this context, we study two classifiers:
f1(x) = �x� 1/2 and f2(x) = x� 1/21. Both f1 and f2
have a standard risk of 1/4. In the presence of an adversary,
the risk (a.k.a. the adversarial risk) increases to 1. Here,
using a randomized classifier can make the system more
robust. Consider f where f = f1 w.p. 1/2 and f2 otherwise.
The standard risk of f remains 1/4 but its adversarial risk
is 3/4 < 1. Indeed, when attacking f , any adversary will
have to choose between moving points from 0 to 1 or to �1.
Either way, the attack only works half of the time; hence
an overall adversarial risk of 3/4. Furthermore, if f knows
the strategy the adversary uses, it can always update the
probability it gives to f1 and f2 to get a better (possibly de-
terministic) defense. For example, if the adversary chooses
to always move 0 to 1, the classifier can set f = f1 w.p. 1
to retrieve an adversarial risk of 1/2 instead of 3/4.

Now, what happens if the adversary can use randomized
strategies, meaning that for each point it can flip a coin
before deciding where to move? In this case, the adversary
could decide to move points from 0 to 1 w.p. 1/2 and to �1
otherwise. This strategy is still optimal with an adversarial
risk of 3/4 but now the classifier cannot use its knowledge
of the adversary’s strategy to lower the risk. We are in a state
where neither the adversary nor the classifier can benefit
from unilaterally changing its strategy. In the game theory
terminology, this state is called a Mixed Nash equilibrium.

2.2. General setting

Let us consider a classification task with input space X and
output space Y . Let (X , d) be a proper (i.e. closed balls are
compact) Polish (i.e. completely separable) metric space
representing the inputs space2. Let Y = {1, . . . ,K} be the
labels set, endowed with the trivial metric d0(y, y0) = 1y 6=y0 .
Then the space (X ⇥Y, d�d0) is a proper Polish space. For
any Polish space Z , we denote M1

+(Z) the Polish space

1(X,Y ) ⇠ P is misclassified by fi if and only if fi(X)Y  0
2For instance, for any norm k·k, (Rd, k·k) is a proper Polish

metric space.

of Borel probability measures on Z . Let us assume the
data is drawn from P 2 M1

+(X ⇥ Y). Let (⇥, d⇥) be a
Polish space (not necessarily proper) representing the set
of classifier parameters (for instance neural networks). We
also define a loss function: l : ⇥ ⇥ (X ⇥ Y) ! [0,1)
satisfying the following set of assumptions.
Assumption 1 (Loss function). 1) The loss function l is a
non negative Borel measurable function. 2) For all ✓ 2 ⇥,
l(✓, ·) is upper-semi continuous. 3) There exists M > 0 such
that for all ✓ 2 ⇥, (x, y) 2 X ⇥ Y , 0  l(✓, (x, y))  M .
It is usual to assume upper-semi continuity when studying
optimization over distributions (Blanchet & Murthy, 2019;
Villani, 2003). Furthermore, considering bounded (and pos-
itive) loss functions is also very common in learning the-
ory (Bartlett & Mendelson, 2002) and is not restrictive.

In the adversarial examples framework, the loss of interest is
the 0/1 loss, for whose surrogates are misunderstood (Bao
et al., 2020; Cranko et al., 2019); hence it is essential that
the 0/1 loss satisfies Assumption 1. In the binary classi-
fication setting (i.e. Y = {�1,+1}) the 0/1 loss writes
l0/1(✓, (x, y)) = 1yf✓(x)0. Then, assuming that for all ✓,
f✓(·) is continuous and for all x, f·(x) is continuous, the
0/1 loss satisfies Assumption 1. In particular, it is the case
for neural networks with continuous activation functions.

2.3. Adversarial Risk Minimization

The standard risk for a single classifier ✓ associated with
the loss l satisfying Assumption 1 writes: R(✓) :=
E(x,y)⇠P [l(✓, (x, y))]. Similarly, the adversarial risk of ✓ at
level " associated with the loss l is defined as3

R"
adv(✓) := E(x,y)⇠P

"
sup

x02X , d(x,x0)"
l(✓, (x0, y))

#
.

It is clear that R0
adv(✓) = R(✓) for all ✓. We can general-

ize these notions with distributions of classifiers. In other
terms the classifier is then randomized according to some
distribution µ 2 M1

+(⇥). A classifier is randomized if for
a given input, the output of the classifier is a probability
distribution. The standard risk of a randomized classifier µ
writes R(µ) = E✓⇠µ [R(✓)]. Similarly, the adversarial risk
of the randomized classifier µ at level " is4

R"
adv(µ) := E(x,y)⇠P

"
sup

x02X , d(x,x0)"
E✓⇠µ [l(✓, (x

0, y))]

#
.

For instance, for the 0/1 loss, the inner maximization prob-
lem, consists in maximizing the probability of misclassifi-
cation for a given couple (x, y). Note that R(�✓) = R(✓)
and R"

adv(�✓) = R"
adv(✓). In the remainder of the paper,

3For the well-posedness, see Lemma 4 in Appendix.
4This risk is also well posed (see Lemma 4 in the Appendix).
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Figure 1. Motivating example: blue distribution represents label �1 and the red one, label +1. The height of columns represents their
mass. The red and blue arrows represent the attack on the given classifier. On left: deterministic classifiers (f1 on the left, f2 in the
middle) for whose, the blue point can always be attacked. On right: a randomized classifier, where the attacker has a probability 1/2 of
failing, regardless of the attack it selects.

we study the adversarial risk minimization problems with
randomized and deterministic classifiers and denote

V"
rand := inf

µ2M1
+(⇥)

R"
adv(µ), V"

det := inf
✓2⇥

R"
adv(✓) (1)

Remark 1. We can show (see Appendix E) that the standard
risk infima are equal : V0

rand = V0
det. Hence, no randomiza-

tion is needed for minimizing the standard risk. Denoting V
this common value, we also have the following inequalities
for any " > 0, V  V"

rand  V"
det.

2.4. Distributional Formulation of the Adversarial Risk

To account for the possible randomness of the adversary, we
rewrite the adversarial attack problem as a convex optimiza-
tion problem over distributions. Let us first introduce the
set of adversarial distributions.

Definition 1 (Set of adversarial distributions). Let P be a
Borel probability distribution on X ⇥ Y and " > 0. We
define the set of adversarial distributions as

A"(P) :=
�
Q 2 M+

1 (X ⇥ Y) | 9� 2 M+
1

�
(X ⇥ Y)2

�
,

d(x, x0)  ", y = y0 �-a.s., ⇧1]� = P, ⇧2]� = Q}

where ⇧i denotes the projection on the i-th component, and
g] the push-forward measure by a measurable function g.

An attacker that can move the initial distribution P any-
where in A"(P) is not applying a point-wise deterministic
perturbation as considered in the standard adversarial risk.
In other words, for a point (x, y) ⇠ P, the attacker could
choose a distribution q(· | (x, y)) whose support is included
in {(x0, y0) | d(x, x0)  ✏, y = y0} from which he will sam-
ple the adversarial attack. In this sense, we say the attacker
is allowed to be randomized.

Link with DRO. Adversarial examples have been studied
in the light of DRO by former works (Sinha et al., 2017; Tu
et al., 2018), but an exact reformulation of the adversarial
risk as a DRO problem has not been made yet. When (Z, d)
is a Polish space and c : Z2 ! R+ [ {+1} is a lower

semi-continuous function, for P,Q 2 M+
1 (Z) , the primal

Optimal Transport problem is defined as

Wc(P,Q) := inf
�2�P,Q

Z

Z2

c(z, z0)d�(z, z0)

with �P,Q :=
�
� 2 M+

1 (Z2) | ⇧1]� = P, ⇧2]� = Q
 

.
When ⌘ > 0 and for P 2 M+

1 (Z), the associated Wasser-
stein uncertainty set is defined as:

Bc(P, ⌘) :=
�
Q 2 M+

1 (Z) | Wc(P,Q)  ⌘
 

A DRO problem is a linear optimization problem over
Wasserstein uncertainty sets supQ2Bc(P,⌘)

R
g(z)dQ(z) for

some upper semi-continuous function g (Yue et al., 2020).
For an arbitrary " > 0, we define the cost c" as follows

c"((x, y), (x
0, y0)) :=

⇢
0 if d(x, x0)  " and y = y0

+1 otherwise.

This cost is lower semi-continuous and penalizes to infin-
ity perturbations that change the label or move the input
by a distance greater than ". As Proposition 1 shows, the
Wasserstein ball associated with c" is equal to A"(P).
Proposition 1. Let P be a Borel probability distribution on
X ⇥ Y and " > 0 and ⌘ � 0, then Bc"(P, ⌘) = A"(P).
Moreover, A"(P) is convex and compact for the weak topol-
ogy of M+

1 (X ⇥ Y).

Thanks to this result, we can reformulate the adversarial risk
as the value of a convex problem over A"(P).
Proposition 2. Let P be a Borel probability distribution on
X ⇥ Y and µ a Borel probability distribution on ⇥. Let
l : ⇥ ⇥ (X ⇥ Y) ! [0,1) satisfying Assumption 1. Let
" > 0. Then:

R"
adv(µ) = sup

Q2A"(P)
E(x0,y0)⇠Q,✓⇠µ [l(✓, (x

0, y0))] . (2)

The supremum is attained. Moreover Q⇤ 2 A"(P)
is an optimum of Problem (2) if and only if there ex-
ists �⇤ 2 M+

1

�
(X ⇥ Y)2

�
such that: ⇧1]�⇤ = P,

⇧2]�⇤ = Q⇤, d(x, x0)  ", y = y0 and l(x0, y0) =
supu2X ,d(x,u)" l(u, y) �

⇤-almost surely.
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The adversarial attack problem is a DRO problem for the
cost c". Proposition 2 means that, against a fixed classifier
µ, the randomized attacker that can move the distribution in
A"(P) has exactly the same power as an attacker that moves
every single point x in the ball of radius ". By Proposition 2,
we also deduce that the adversarial risk can be casted as a
linear optimization problem over distributions.
Remark 2. In a recent work, (Pydi & Jog, 2020) proposed
a similar adversary using Markov kernels but left as an open
question the link with the classical adversarial risk, due to
measurability issues. Proposition 2 solves these issues. The
result is similar to (Blanchet & Murthy, 2019). Although
we believe its proof might be extended for infinite valued
costs, (Blanchet & Murthy, 2019) did not treat that case. We
provide an alternative proof in this special case.

3. Nash Equilibria in the Adversarial Game
3.1. Adversarial Attacks as a Zero-Sum Game

Thanks to Proposition 2, the adversarial risk minimization
problem can be seen as a two-player zero-sum game that
writes as follows,

inf
µ2M1

+(⇥)
sup

Q2A"(P)
E(x,y)⇠Q,✓⇠µ [l(✓, (x, y))] . (3)

In this game the classifier objective is to find the best dis-
tribution µ 2 M+

1 (⇥) while the adversary is manipulating
the data distribution. For the classifier, solving the infimum
problem in Equation (3) simply amounts to solving the ad-
versarial risk minimization problem – Problem (1), whether
the classifier is randomized or not. Then, given a random-
ized classifier µ 2 M+

1 (⇥), the goal of the attacker is to
find a new data-set distribution Q in the set of adversarial
distributions A"(P) that maximizes the risk of µ. More
formally, the adversary looks for

Q 2 argmax
Q2A"(P)

E(x,y)⇠Q,✓⇠µ [l(✓, (x, y))] .

In the game theoretic terminology, Q is also called the best
response of the attacker to the classifier µ.
Remark 3. Note that for a given classifier µ there always
exists a “deterministic” best response, i.e. every single
point (x, y) is mapped to another single point T (x, y). Let
T : X ⇥ Y ! X be defined such that for all (x, y) 2
X ⇥ Y , l(T (x, y), y) = supx0, d(x,x0)" l(x

0, y). Thanks
to (Bertsekas & Shreve, 2004, Proposition 7.50), (T, id)
is P-measurable. Moreover, we get that Q = (T, id)]P
belongs to the best response to µ. Therefore, T is the optimal

“deterministic” attack against the classifier µ.

3.2. Dual Formulation of the Game

Every zero sum game has a dual formulation that allows a
deeper understanding of the framework. Here, from Propo-

sition 2, we can define the dual problem of adversarial risk
minimization for randomized classifiers. This dual problem
also characterizes a two-player zero-sum game that writes
as follows,

sup
Q2A"(P)

inf
µ2M1

+(⇥)
E(x,y)⇠Q,✓⇠µ [l(✓, (x, y))] . (4)

In this dual game problem, the adversary plays first and
seeks an adversarial distribution that has the highest possible
risk when faced with an arbitrary classifier. This means that
it has to select an adversarial perturbation for every input
x, without seeing the classifier first. In this case, as pointed
out by the motivating example in Section 2.1, the attack can
(and should) be randomized to ensure maximal harm against
several classifiers. Then, given an adversarial distribution,
the classifier objective is to find the best possible classifier
on this distribution. Let us denote D" the value of the dual
problem. Since the weak duality is always satisfied, we get

D"  V"
rand  V"

det. (5)

Inequalities in Equation (5) mean that the lowest risk the
classifier can get (regardless of the game we look at) is
D". In particular, this means that the primal version of the
game, i.e. the adversarial risk minimization problem, will
always have a value greater or equal to D". As we discussed
in Section 2.1, this lower bound may not be attained by a
deterministic classifier. As we will demonstrate in the next
section, optimizing over randomized classifiers allows to
approach D" arbitrary closely.

Remark 4. Note that, we can always define the dual prob-
lem when the classifier is deterministic,

sup
Q2A"(P)

inf
✓2⇥

E(x,y)⇠Q [l(✓, (x, y))] .

Furthermore, we can demonstrate that the dual problems
for deterministic and randomized classifiers have the same
value 5; hence the inequalities in Equation (5).

3.3. Nash Equilibria for Randomized Strategies

In the adversarial examples game, a Nash equilibrium is a
couple (µ⇤,Q⇤) 2 M1

+(⇥)⇥A"(P) where both the classi-
fier and the attacker have no incentive to deviate unilaterally
from their strategies µ⇤ and Q⇤. More formally, (µ⇤,Q⇤)
is a Nash equilibrium of the adversarial examples game if
(µ⇤,Q⇤) is a saddle point of the objective function

(µ,Q) 7! E(x,y)⇠Q,✓⇠µ [l(✓, (x, y))] .

Alternatively, we can say that (µ⇤,Q⇤) is a Nash equilibrium
if and only if µ⇤ solves the adversarial risk minimization
problem – Problem (1), Q⇤ the dual problem – Problem (6),

5See Appendix E for more details
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and D" = V"
rand. In our problem, Q⇤ always exists but it

might not be the case for µ⇤. Then for any � > 0, we say that
(µ�,Q⇤) is a �-approximate Nash equilibrium if Q⇤ solves
the dual problem and µ� satisfies D" � R"

adv(µ�)� �.

We now state our main result: the existence of approximate
Nash equilibria in the adversarial examples game when both
the classifier and the adversary can use randomized strate-
gies. More precisely, we demonstrate that the duality gap
between the adversary and the classifier problems is zero,
which gives as a corollary the existence of Nash equilibria.

Theorem 1. Let P 2 M1
+(X ⇥ Y). Let " > 0. Let l :

⇥ ⇥ (X ⇥ Y) ! [0,1) satisfying Assumption 1. Then
strong duality always holds in the randomized setting:

inf
µ2M+

1 (⇥)
max

Q2A"(P)
E✓⇠µ,(x,y)⇠Q [l(✓, (x, y))] (6)

= max
Q2A"(P)

inf
µ2M+

1 (⇥)
E✓⇠µ,(x,y)⇠Q [l(✓, (x, y))]

The supremum is always attained. If ⇥ is a compact set, and
for all (x, y) 2 X ⇥Y , l(·, (x, y)) is lower semi-continuous,
the infimum is also attained.

Corollary 1. Under Assumption 1, for any � > 0, there ex-
ists a �-approximate Nash-Equibilrium (µ�,Q⇤). Moreover,
if the infimum is attained, there exists a Nash equilibrium
(µ⇤,Q⇤) to the adversarial examples game.

Theorem 1 shows that D" = V"
rand. From a game theoretic

perspective, this means that the minimal adversarial risk for
a randomized classifier against any attack (primal problem)
is the same as the maximal risk an adversary can get by
using an attack strategy that is oblivious to the classifier it
faces (dual problem). This suggests that playing random-
ized strategies for the classifier could substantially improve
robustness to adversarial examples. In the next section, we
will design an algorithm that efficiently learn a randomized
classifier and show improved adversarial robustness over
classical deterministic defenses.

Remark 5. Theorem 1 remains true if one replaces
A"(P) with any other Wasserstein compact uncertainty sets
(see (Yue et al., 2020) for conditions of compactness).

4. Finding the Optimal Classifiers
4.1. An Entropic Regularization

Let {(xi, yi)}Ni=1 samples independently drawn from P and
denote bP := 1

N

PN
i=1 �(xi,yi) the associated empirical dis-

tribution. One can show the adversarial empirical risk mini-
mization can be casted as:

bR",⇤
adv := inf

µ2M+
1 (⇥)

NX

i=1

sup
Qi2�i,"

E(x,y)⇠Qi,✓⇠µ [l(✓, (x, y))]

where �i," is defined as :

�i," :=
n
Qi |

Z
dQi =

1

N
,

Z
c"((xi, yi), ·)dQi = 0

o
.

More details on this decomposition are given in Appendix E.
In the following, we regularize the above objective by
adding an entropic term to each inner supremum problem.
Let ↵ := (↵i)Ni=1 2 RN

+ such that for all i 2 {1, . . . , N},
and let us consider the following optimization problem:

bR",⇤
adv,↵ := inf

µ2M+
1 (⇥)

NX

i=1

sup
Qi2�i,"

EQi,µ [l(✓, (x, y))]

� ↵iKL
✓
Qi

���
���
1

N
U(xi,yi)

◆

where U(x,y) is an arbitrary distribution of support equal to:

S(")
(x,y) :=

n
(x0, y0) : s.t. c"((x, y), (x0, y0)) = 0

o
,

and for all Q,U 2 M+(X ⇥ Y),

KL(Q||U) :=
⇢ R

log(dQdU )dQ+ |U|� |Q| if Q ⌧ U
+1 otherwise.

Note that when ↵ = 0, we recover the problem of inter-
est bR",⇤

adv,↵ = bR",⇤
adv. Moreover, we show the regularized

supremum tends to the standard supremum when ↵ ! 0.
Proposition 3. For µ 2 M+

1 (⇥), one has

lim
↵i!0

sup
Qi2�i,"

EQi,µ [l(✓, (x, y))]� ↵iKL
✓
Q
���
���
1

N
U(xi,yi)

◆

= sup
Qi2�i,"

E(x,y)⇠Qi,✓⇠µ [l(✓, (x, y))] .

By adding an entropic term to the objective, we obtain an
explicit formulation of the supremum involved in the sum:
as soon as ↵ > 0 (which means that each ↵i > 0), each
sub-problem becomes just the Fenchel-Legendre transform
of KL(·|U(xi,yi)/N) which has the following closed form:

sup
Qi2�i,"

EQi,µ [l(✓, (x, y))]� ↵iKL
✓
Qi||

1

N
U(xi,yi)

◆

=
↵i

N
log

✓Z

X⇥Y
exp

✓
E✓⇠µ [l(✓, (x, y))]

↵i

◆
dU(xi,yi)

◆
.

Finally, we end up with the following problem:

inf
µ2M+

1 (⇥)

NX

i=1

↵i

N
log

✓Z
exp

Eµ [l(✓, (x, y))]

↵i
dU(xi,yi)

◆
.

In order to solve the above problem, one needs to compute
the integral involved in the objective. To do so, we estimate
it by randomly sampling mi � 1 samples (u(i)

1 , . . . , u(i)
mi) 2



Mixed Nash Equilibria in the Adversarial Examples Game

(X⇥Y)mi from U(xi,yi) for all i 2 {1, . . . , N} which leads
to the following optimization problem

inf
µ2M+

1 (⇥)

NX

i=1

↵i

N
log

0

@ 1

mi

miX

j=1

exp
Eµ

h
l(✓, u(i)

j )
i

↵i

1

A (7)

denoted bR",m
adv,↵ where m := (mi)Ni=1 in the following.

Now we aim at controlling the error made with our approxi-
mations. We decompose the error into two terms

| bR",m
adv,↵ � bR",⇤

adv|  | bR",⇤
adv,↵ � bR",m

adv,↵|+ | bR",⇤
adv,↵ � bR",⇤

adv|

where the first one corresponds to the statistical error made
by our estimation of the integral, and the second to the ap-
proximation error made by the entropic regularization of
the objective. First, we show a control of the statistical er-
ror using Rademacher complexities (Bartlett & Mendelson,
2002).
Proposition 4. Let m � 1 and ↵ > 0 and denote ↵ :=
(↵, . . . ,↵) 2 RN and m := (m, . . . ,m) 2 RN . Then by
denoting M̃ = max(M, 1), we have with a probability of
at least 1� �

| bR",⇤
adv,↵ � bR",m

adv,↵| 
2eM/↵

N

NX

i=1

Ri + 6M̃eM/↵

s
log( 4� )

2mN

where Ri :=
1
mE�

h
sup✓2⇥

Pm
j=1 �j l(✓, u

(i)
j )
i

and � :=

(�1, . . . ,�m) with �i i.i.d. sampled as P[�i = ±1] = 1/2.

We deduce from the above Proposition that in the particular
case where ⇥ is finite such that |⇥| = L, with probability
of at least 1� �

| bR",⇤
adv,↵ � bR",m

adv,↵| 2 O
 
MeM/↵

r
log(L)

m

!
.

This case is of particular interest when one wants to learn
the optimal mixture of some given classifiers in order to min-
imize the adversarial risk. In the following proposition, we
control the approximation error made by adding an entropic
term to the objective.
Proposition 5. Denote for � > 0, (x, y) 2 X ⇥ Y and
µ 2 M+

1 (⇥), A(x,y)
�,µ := {u| sup

v2S(")
(x,y)

Eµ[l(✓, v)] 
Eµ[l(✓, u)] + �}. If there exists C� such that for all
(x, y) 2 X ⇥ Y and µ 2 M+

1 (⇥), U(x,y)

⇣
A(x,y)

�,µ

⌘
� C�

then we have

| bR",⇤
adv,↵ � bR",⇤

adv|  2↵| log(C�)|+ �.

The assumption made in the above Proposition states that
for any given random classifier µ, and any given point (x, y),
the set of �-optimal attacks at this point has at least a certain

amount of mass depending on the � chosen. This assump-
tion is always met when � is sufficiently large. However
in order to obtain a tight control of the error, a trade-off
exists between � and the smallest amount of mass C� of
�-optimal attacks.

Now that we have shown that solving (7) allows to obtain
an approximation of the true solution bR",⇤

adv , we next aim at
deriving an algorithm to compute it.

4.2. Proposed Algorithms

From now on, we focus on finite class of classifiers. Let
⇥ = {✓1, . . . , ✓L}, we aim to learn the optimal mixture
of classifiers in this case. The adversarial empirical risk is
therefore defined as:

bR"
adv(�) =

NX

i=1

sup
Qi2�i,"

E(x,y)⇠Qi

"
LX

k=1

�kl(✓k, (x, y))

#

for � 2 �L := {� 2 RL
+ s.t.

PL
i=1 �i = 1}, the prob-

ability simplex of RL. One can notice that bR"
adv(·) is a

continuous convex function, hence min�2�L R"
adv(�) is at-

tained for a certain �⇤. Then there exists a non-approximate
Nash equilibrium (�⇤,Q⇤) in the adversarial game when ⇥
is finite. Here, we present two algorithms to learn the opti-
mal mixture of the adversarial risk minimization problem.

Algorithm 1 Oracle-based Algorithm
�0 = 1L

L ;T ; ⌘ = 2
M

p
LT

for t = 1, . . . , T do
Q̃ s.t. 9Q⇤ 2 A"(P) best response to �t�1 and for all k 2 [L],
|EQ̃(l(✓k, (x, y)))� EQ⇤(l(✓k, (x, y)))|  �

gt =
�
EQ̃(l(✓1, (x, y)), . . . ,EQ̃(l(✓L, (x, y))

�T

�t = ⇧�L (�t�1 � ⌘gt)
end

An Entropic Relaxation. Using the results from Sec-
tion 4.1, adding an entropic term to the objective allows
to have a simple reformulation of the problem, as follows:

inf
�2�L

NX

i=1

"i
N

log

0

@ 1

mi

miX

j=1

exp

 PL
k=1 �kl(✓k, u

(i)
j )

"i

!1

A

Note that in �, the objective is convex and smooth. One can
apply the accelerated PGD (Beck & Teboulle, 2009; Tseng,
2008) which enjoys an optimal convergence rate for first
order methods of O(T�2) for T iterations.

A First Oracle Algorithm. Indepedently from the entropic
regularization,we present an oracle-based algorithm inspired
from (Sinha et al., 2017) and the convergence of projected
sub-gradient methods (Boyd, 2003). The computation of
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Figure 2. On left, 40 data samples with their set of possible attacks represented in shadow and the optimal randomized classifier, with a
color gradient representing the probability of the classifier. In the middle, convergence of the oracle (↵ = 0) and regularized algorithm for
different values of regularization parameters. On right, in-sample and out-sample risk for randomized and deterministic minimum risk in
function of the perturbation size ". In the latter case, the randomized classifier is optimized with oracle Algorithm 1.

the inner supremum problem is usually NP-hard 6, but one
may assume the existence of an approximate oracle to this
supremum. The algorithm is presented in Algorithm 1. We
get the following guarantee for this algorithm.
Proposition 6. Let l : ⇥ ⇥ (X ⇥ Y) ! [0,1) satisfying
Assumption 1. Then, Algorithm 1 satisfies:

min
t2[T ]

bR"
adv(�t)� bR",⇤

adv  2� +
2M

p
Lp

T

The main drawback of the above algorithm is that one needs
to have access to an oracle to guarantee the convergence
of the proposed algorithm. In the following we present its
regularized version in order to approximate the solution and
propose a simple algorithm to solve it.

4.3. A General Heuristic Algorithm

So far, our algorithms are not easily practicable in the case
of deep learning. Adversarial examples are known to be
easily transferrable from one model to another (Papernot
et al., 2016; Tramèr et al., 2017). So we aim at learning
diverse models. To this end, and support our theoretical
claims, we propose an heuristic algorithm (see Algorithm 2)
to train a robust mixture of L classifiers. We alternatively
train these classifiers with adversarial examples against the
current mixture and update the probabilities of the mixture
according to the algorithms we proposed in Section 4.2.
More details on this algorithm are available in Appendix D.

5. Experiments
5.1. Synthetic Dataset

To illustrate our theoretical findings, we start by testing
our learning algorithm on the following synthetic two-
dimensional problem. Let us consider the distribution P de-
fined as P (Y = ±1) = 1/2, P (X | Y = �1) = N (0, I2)

6See Appendix E for details.

Algorithm 2 Adversarial Training for Mixtures
L: number of models, T : number of iterations,
T✓: number of updates for the models ✓,
T�: number of updates for the mixture �,
�0 = (�1

0, . . .�
L
0 ), ✓0 = (✓10, . . . ✓

L
0 )

for t = 1, . . . , T do
Let Bt be a batch of data.
if t mod (T✓L+ 1) 6= 0 then

k sampled uniformly in {1, . . . , L}
B̃t  Attack of images in Bt for the model (�t,✓t)
✓tk  Update ✓t�1

k with B̃t for fixed �t with a SGD step
else

�t  Update �t�1 on Bt for fixed ✓t with oracle-based
or regularized algorithm with T� iterations.

end
end

and P (X | Y = 1) = 1
2 [N ((�3, 0), I2) +N ((3, 0), I2)].

We sample 1000 training points from this distribution and
randomly generate 10 linear classifiers that achieves a stan-
dard training risk lower than 0.4. To simulate an adversary
with budget " in `2 norm, we proceed as follows. For every
sample (x, y) ⇠ P we generate 1000 points uniformly at
random in the ball of radius " and select the one maximizing
the risk for the 0/1 loss. Figure 2 (left) illustrates the type
of mixture we get after convergence of our algorithms. Note
that in this toy problem, we are likely to find the optimal
adversary with this sampling strategy if we sample enough
attack points.

To evaluate the convergence of our algorithms, we compute
the adversarial risk of our mixture for each iteration of both
the oracle and regularized algorithms. Figure 2 illustrates
the convergence of the algorithms w.r.t the regularization
parameter. We observe that the risk for both algorithms
converge. Moreover, they converge towards the oracle mini-
mizer when the regularization parameter ↵ goes to 0.

Finally, to demonstrate the improvement randomized tech-
niques offer against deterministic defenses, we plot in Fig-
ure 2 (right) the minimum adversarial risk for both random-
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Models Acc. APGDCE APGDDLR Rob. Acc.
1 81.9% 47.6% 47.7% 45.6%
2 81.9% 49.0% 49.6% 47.0%
3 81.7% 49.0% 49.3% 46.9%
4 82.6% 49.7% 49.8% 47.2%

Adversarial Training, CIFAR-10 dataset results

Models Acc. APGDCE APGDDLR Rob. Acc.
1 79.6% 50.9% 48.9% 48.3%
2 80.3% 52.3% 51.2% 50.2%
3 80.7% 52.8% 51.7% 50.7%
4 80.9% 53.0% 51.8% 50.8%

TRADES, CIFAR-10 dataset results

Models Acc. APGDCE APGDDLR Rob. Acc.
1 55.2% 24.1% 23.8% 22.5%
2 55.2% 25.3% 26.1% 23.6%
3 55.4% 25.7% 26.8% 24.2%
4 55.3% 26.0% 27.5% 24.5%

Adversarial Training, CIFAR-100 dataset results

Figure 3. Upper plots: Adversarial Training, CIFAR-10 dataset results. Middle plots: TRADES, CIFAR-10 dataset results. Bottom plots:
CIFAR-100 dataset results. On left: Comparison of our algorithm with a standard adversarial training (one model). We reported the
results for the model with the best robust accuracy obtained over two independent runs because adversarial training might be unstable.
Standard and Robust accuracy (respectively in the middle and on right) on CIFAR-10 test images in function of the number of epochs per
classifier with 1 to 3 ResNet18 models. The performed attack is PGD with 20 iterations and " = 8/255.

ized and deterministic classifiers w.r.t. ". The adversarial
risk is strictly better for randomized classifier whenever the
adversarial budget " is bigger than 2. This illustration vali-
dates our analysis of Theorem 1, and motivates a in depth
study of a more challenging framework, namely image clas-
sification with neural networks.

5.2. CIFAR Datasets

Experimental Setup. We now implement our heuristic al-
gorithm (Alg. 2) on CIFAR-10 and CIFAR-100 datasets
for both Adversarial Traning (Madry et al., 2018) and
TRADES (Zhang et al., 2019) loss. To evaluate the perfor-
mance of Algorithm 2, we trained from 1 to 4 ResNet18 (He
et al., 2016) models on 200 epochs per model7. We study

7L⇥ 200 epochs in total, where L is the number of models.

the robustness with regards to `1 norm and fixed adversarial
budget " = 8/255. The attack we used in the inner maxi-
mization of the training is an adapted (adaptative) version of
PGD for mixtures of classifiers with 10 steps. Note that for
one single model, Algorithm 2 exactly corresponds to adver-
sarial training (Madry et al., 2018) or TRADES. For each
of our setups, we made two independent runs and select
the best one. The training time of our algorithm is around
four times longer than a standard Adversarial Training (with
PGD 10 iter.) with two models, eight times with three mod-
els and twelve times with four models. We trained our
models with a batch of size 1024 on 8 Nvidia V100 GPUs.
We give more details on implementation in Appendix D.

Evaluation Protocol. At each epoch, we evaluate the cur-
rent mixture on test data against PGD attack with 20 itera-
tions. To select our model and avoid overfitting (Rice et al.,
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2020), we kept the most robust against this PGD attack. To
make a final evaluation of our mixture of models, we used
an adapted version of AutoPGD untargeted attacks (Croce
& Hein, 2020) for randomized classifiers with both Cross-
Entropy (CE) and Difference of Logits Ratio (DLR) loss.
For both attacks, we made 100 iterations and 5 restarts.

Results. The results are presented in Figure 3. We remark
our algorithm outperforms a standard adversarial training
in all the cases by more 1% on CIFAR-10 and CIFAR-100,
without additional loss of standard accuracy as it is attested
by the left figures. On TRADES, the gain is even more
important by more than 2% in robust accuracy. Moreover, it
seems our algorithm, by adding more and more models, re-
duces the overfitting of adversarial training. It also appears
that robustness increases as the number of models increases.
So far, experiments are computationally very costful and it
is difficult to raise precise conclusions. Further, hyperpa-
rameter tuning (Gowal et al., 2020) such as architecture,
unlabeled data (Carmon et al., 2019) or activation function
may still increase the results.

6. Related Work and Discussions
Distributionally Robust Optimization. Several recent
works (Lee & Raginsky, 2018; Sinha et al., 2017; Tu et al.,
2018) studied the problem of adversarial examples through
the scope of distributionally robust optimization. In these
frameworks, the set of adversarial distributions is defined
using an `p Wasserstein ball (the adversary is allowed to
have an average perturbation of at most " in `p norm). This
however does not match the usual adversarial attack prob-
lem, where the adversary cannot move any point by more
than ". In the present work, we introduce a cost function
allowing us to cast the adversarial example problem as a
DRO one, without changing the adversary constraints.

Optimal Transport (OT). Bhagoji et al. (2019) and Pydi
& Jog (2020) investigated classifier-agnostic lower bounds
on the adversarial risk of any deterministic classifier using
OT. These works only evaluate lower bounds on the primal
deterministic formulation of the problem, while we study
the existence of mixed Nash equilibria. Note that Pydi &
Jog (2020) started to investigate a way to formalize the
adversary using Markov kernels, but did not investigate the
impact of randomized strategies on the game. We extended
this work by rigorously reformulating the adversarial risk
as a linear optimization problem over distributions and we
study this problem from a game theoretic point of view.

Game Theory. Adversarial examples have been studied un-
der the notions of Stackelberg game in (Brückner & Schef-
fer, 2011), and zero-sum game in (Bose et al., 2021; Per-
domo & Singer, 2019; Rota Bulò et al., 2017). These works
considered restricted settings (convex loss, parametric ad-

versaries, etc.) that do not comply with the nature of the
problem. Indeed, we prove in Appendix C.3 that when
the loss is convex and the set ⇥ is convex, the duality gap
is zero for deterministic classifiers. However, it has been
proven that no convex loss can be a good surrogate for the
0/1 loss in the adversarial setting (Bao et al., 2020; Cranko
et al., 2019), narrowing the scope of this result. If one can
show that for sufficiently separated conditional distributions,
an optimal deterministic classifier always exists (see Ap-
pendix E for a clear statement), necessary and sufficient
conditions for the need of randomization are still to be es-
tablished. (Pinot et al., 2020) studied partly this question
for regularized deterministic adversaries, leaving the gen-
eral setting of randomized adversaries and mixed equilibria
unanswered, which is the very scope of this paper.
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