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Abstract—Metarouting models routing protocols in the form
of an algebraic structure called routing algebra. It aims to help
designing or validating routing protocols. Most research work
on routing algebras have been applied to routing protocols used
in networks having a single addressing and forwarding protocol.
In this context, some of the basic algebraic structures used are
semirings. In this paper, we define a new algebraic structure for
dealing with networks containing multiple forwarding protocols,
which may induce many (and possibly nested) tunnels. We
widely generalize the semiring structure for modeling the routing
problem with automatic tunneling. We define a new model of
routing algebra with tunneling. It is defined as a semi-direct
product of two structures, the well-know shortest paths algebra
and a new proposed valid paths algebra. We show that it has a
fixed point and we prove the iterative convergence to the optimal
solution of the valid shortest paths problem.

Index Terms—Metarouting, tunneling, multilayer network,
path computation.

I. INTRODUCTION

Routing algebras for classical dynamic routing protocols
have been proposed in 1971 [1]. However, they were studied
in the context of Internet routing protocols (such as BGP) only
as 2003 [2]. The problem of automatic tunneling management
for multilayer network routing was itself only tackled since
2009 [3]. It has gotten an increasing attention due to the advent
of IPv6 and VPN deployments, where tunneling is pervasive.
In this context, leveraging routing algebras to derive properties
of multilayer networks is compelling. Our aim in this paper is
to define such an algebra and to give some properties related to
network routing with automatic tunneling. Our contributions
are summarized below:

• We present recent related work (Section II), algebraic
elements (Section III) and network model (Section IV).

• We define a routing algebra as a semiring for path
computation with tunnels (Section V).

• We show that this routing algebra is isotonic and non-
monotonic with a partial order (Section VI.A).

• We propose a fixed point for this new algebra and we
prove the iterative convergence to the optimal solution of
the valid shortest paths problem vsp (Section VI.B).

II. RELATED WORK

In [4], the authors proposed an algebraic approach called
metarouting in order to define routing protocols in a declarative

and high-level way. For example, this approach allowed to
define a “scoped” product to model the combined metric of
iBGP and eBGP. In [4], [5], [6], the authors proposed a
lexicographic product to combine several Quality of Service
metrics to obtain a single composite metric. They also showed
which properties are required to guarantee optimal global
and local solutions when using the lexicographic products.
Another so-called functional product was used in [7] to model
EIGRP non-lexical metrics. More recently, the aurhors of
[8] showed that a small set of conditions (called Sobrinho’s
conditions) is sufficient for a routing protocol to converge
to a single solution. They illustrate this result by the case
of the asynchronous Bellman-Ford algorithm. Recently, the
authors of [9] studied the problem of routing without an
important metric condition called isotonicity (see Section VI-A
for a formal definition). To preserve isotonicity (and thus
convergence), they proposed new routing protocols based on
partial order over the routing protocol metrics.

On the side of routing in multilayer networks, the authors
of [10] proposed the first distributed algorithm to compute
the shortest paths while automatically establishing tunnels. It
is widely inspired by Bellman-Ford algorithm. However, as
tunneling induces a stack of headers (and thus of protocols),
the algorithm propagates stack vectors together with distance
vectors. It allows to compute routing tables where the packets
are forwarded according to their stack vector and to the
distance to the destination. Another approach (inspired by the
Floyd-Warshall algorithm) was proposed in [11]. The subpaths
are concatenated to form a path under some conditions, the
most important one being the compatibility of their stack
vectors. In both works, the notion of valid (sub)path is crucial.
Informally, a path is valid if each node along it is able to deal
with a packet it receives having some protocol stack. Figure 1
illustrates a multilayer network with a valid and an invalid
paths. x, y, . . . are protocols (for example IPv4 and IPv6),
and nodes capabilities (encapsulation, etc.), are drawn near
each node. The notations and formal definitions are given in
Section IV.

In order to define these new structures, we aim to construct
two operations on the valid shortest paths set. The first
operation is used to concatenate valid shortest paths and the
second one is used to choose between them. The concatenation



operation must make possible to calculate the weight sum of
a path under the condition of preserving its validity. However,
the second operation must keep all valid paths, and in equality
cases, i.e., valid paths having the same protocol stack (tunnel),
must keep the shortest one. The proposed algebraic structures
can be used to prove some convergence properties of the stack-
vector algorithm proposed in [10].

III. ALGEBRAIC FOUNDATIONS

We use the same algebraic structures as the ones defined in
[12], [6].

Definition 1. A semiring is a structure SM = (S,⊕,⊗, 0, 1)
where:

• ⊕ and ⊗ are associative binary operations over S
• ⊕ is commutative
• 0 is an identity element for ⊕ and an annihilator for ⊗
• 1 is an identity for ⊗
• ⊗ is left and right distributive on ⊕

The generalized shortest paths problem is modeled by the
semiring, SMsp = (N∞,min,+,+∞, 0).
In the idempotent semiring (⊕ is idempotent) the relation ≤⊕
is a partial order over S if:

(a ≤⊕ b) ≡ (a = a⊕ b)

(a <⊕ b) ≡ (a = a⊕ b ̸= b)

This order is total if the operation ⊕ is selective.

Definition 2. Given a semiring (S,⊕,⊗, 0, 1), the semiring
of n× n matrix is

(
Mn(S),⊕,⊗,N, I

)
, where:

• all the elements of the matrix N are equals to 0

• Ii,j =

{
1 if (i = j)
0 otherwise

And for any two matrices X,Y ∈ Mn(S), the two operations
⊕ and ⊗ are defined as follow:

• (X⊕Y)i,j = Xi,j ⊕Yi,j

• (X⊗Y)i,j =

n⊕
k=1

Xi,k ⊗Yk,j

Given a semiring (S,⊕,⊗, 0, 1) and a directed graph
G = (V, E) with n nodes. We can define a weight function
over the links of G, ω : E → S and we denote by ωij the
weight of the link eij = vivj .

Let A ∈ Mn(S) the n × n weighted adjacency matrix of
G such that,

Ai,j =

{
ωi,j if ei,j ∈ E
0 otherwise

For a path p = v
0
, v

1
, v

2
, ..., v

k−1
, v

k
, the weight ω(p) is,

ω(p) = A0,1 ⊗A1,2 ⊗ ...⊗A
k−1,k

= ω0,1 ⊗ ω1,2 ⊗ ...⊗ ω
k−1,k =

k−1⊗
i=0

ωi,i+1

We define recursively the power of a matrix A ∈ Mn(S) with,

Ak =

{
I if k = 0
A⊗Ak−1 otherwise

Let Pk
i,j

be the set of all paths from node vi to node vj of
size k. We denote by P(k)

i,j
the set of all paths form vi to vj of

size at most k. We define the weight of an optimal path form
vi to vj of size at most k as follows,

A
(k)
i,j = ω

(k)
i,j =

⊕
p∈P(k)

i,j

ω(p)

Where:
A(k) =

⊕
p∈P(k)

ω(p)

The global optimal solution for the generalized path problem
consists in finding (if it any) the matrix A∗ defined as:

A∗ =
⊕
k≥0

A(k) =
⊕

p∈P(k)

ω(p)

IV. MULTILAYER NETWORK MODEL

We use the same model, definitions and notations as in [10].

Definition 3. A multilayer network is modeled by 4-tuple
N = (G,A,F , ω) where:

• G = (V, E) is a directed graph modeling the network
topology. The set of nodes V models the routers and the
set of links E models the physical links. The number of
nodes (resp. links) is denoted by |V| = n (resp. |E| = m.)

• A = {x, y, . . . } is the set of protocols available in the
network (not necessarily at each router). The number of
protocols is denoted by |A| = λ. The set of protocols that
a node v can receive (resp. send) is denoted by In(v)
(resp. Out(v)).

• F is the set of adaptation functions available in the
network. For each node v ∈ V , F(v) denotes the set of
adaptation functions available on node v. An adaptation
function may be:

– A Conversion: the header of a packet of protocol x
is transformed into the header of another protocol
y. It is denoted by (x → y). If x = y, then it is a
classical transmission;

– Encapsulation: the whole packet of protocol x is
encapsulated in the data field of a packet of protocol
y. It is denoted by (x → xy). Note that a packet can
be encapsulated in another one of the same protocol,
e.g., IP-in-IP;

– Decapsulation: a packet of protocol x is extracted
from the data field of a packet of protocol y, this is
the reverse operation of (x → xy), and is denoted by
(xy → x). Note that this operation can be performed
only if the received packet of protocol y contains a
packet of protocol x in its data field.

• ω : V × F × V → N is a weight function modeling any
additive metric. ω(vi, f, vj) is the cost of performing the
adaptation function f on vi then transmitting the packet



v0

x → y

v1

y → y

v2

y → yx

v3

x → xy

v4

y → y

v5

xy → x

v6

x
y

y
y

y
y

y
y

(a) An invalid multilayer path.
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(b) A valid multilayer path with a cycle.

Fig. 1: Example of an invalid path and a valid path with a cycle.

on the link (vi, vj). Its sum over a path is the cost to be
minimized. It is very generic and can model: the number
of hops (ω(vi, f, vj) = 1 for each (vi, f, vj)), the number
of encapsulations (ω(vi, f, vj) = 1 only when f is an
encapsulation and 0 otherwise), etc.

A sequence of adaptation functions induces a protocol stack.
For example, the sequence:

(x → y)(y → yx)(x → x)(x → xx)(x → xy)

induces the stack yxxy (top on the right). The protocol at the
top of the stack h is denoted by Top(h).

Let f be an adaptation function and h a protocol stack.
We denote by f(h) the application of the adaptation function
f to the stack h. For example, if f is the decapsulation
(xy → x) and h = yxy, then f(h) = yx. The outer protocol
y is removed and the inner one (protocol x) is extracted,
without any change to the underlying protocols that are still
nested (here the bottom y). Applying an adaptation function
to a protocol stack is not always possible. For example, it is
impossible to apply f = (yx → y) to stack h = x since there
is no nested (packet of) protocol y in h. In such cases, we
denote the resulting stack by f(h) = ϕ, where ϕ is called
the forbidden stack. For any adaptation function f , we have
f(ϕ) = ϕ. This means that we cannot apply an adaptation
function at some point of a path and thus there is no way to
continue through this path.

Definition 4. Let fifi+1 . . . fj−1fj be a sequence of adapta-
tion functions and hi an initial protocol stack. Then

hk = fk−1(hk−1), i+ 1 ≤ k ≤ j + 1

More formally, let H = {ϕ, x, y, . . . , xx, yy, xy, yx, . . . }
be the set of all possible protocol stacks. Note that this set is
finite if we consider only the stacks induced par the shortest
paths, since these stacks are bounded by λn2 (see [10] for
the proof). We can define an elementary adaptation function
as a function f from Ha → Hb where Ha (resp. Hb) is a
set of protocol stacks in H representing the domain (resp. co-
domain) of f . For example, if the function is the decapsulation
xy → x, then f : Hxy → Hx where Hxy (resp. Hx) is the set

of all protocol stacks starting with the sub protocol stack xy
(resp. the protocol x). We define the application of a sequence
of adaptation functions fifi+1 . . . fj−1fj on a given protocol
stack h by a composition of these adaptation functions.

Definition 5. Let f : Ha → Hb and f ′ : H ′
a → H ′

b

be two elementary adaptation functions in F . We define the
composition by the new function f ′′ = f ′ ⊙ f as follows:

f ′′ =

{
H ′′

a → H ′′
b if (H ′′

a ̸= ∅) ∧ (H ′′
b ̸= ∅)

{ϕ} → {ϕ} otherwise

Where:
• H ′′

a =
{
h ∈ Ha | f(h) ∈ H ′

a

}
• H ′′

b =
{
f ′(h) | h ∈ (Hb ∩H ′

a)
}

Note that this composition ⊙ is associative and not commu-
tative. The function {ϕ} → {ϕ} is denoted by the forbidden
function ϕ → ϕ. It is clear that the set of elementary adaptation
functions F is not closed under composition. For example,
if the composition is (x → xy) ⊙ (y → yx) then the
composed function is (y → yxy). This new function is not
in the set F . Thus, we define a new set F̂ of all adapta-
tion functions closed under composition. Each composition
of elementary adaptation functions can be represented by
a new composed adaptation function. The impossibility of
composition is represented by the forbidden function ϕ → ϕ.
Let F̂ = {ϕ → ϕ, x → x, x → y, x → xxx, xyx → x, . . . }
be the set of all adaptation functions closed under composition.
We say that two functions f ′ and f of F̂ are equal if and only
if they have the same domain and co-domain. For example, the
two functions (x → xx) and (y → x) ⊙ (x → xy) are equal
and they can apply on protocol stacks starting with x and give
a protocol stacks starting with xx. In the rest of the paper, we
will denote by Fid the set of all passive functions, i.e., classical
transmissions {x → x, y → y, . . . } called identity adaptation
functions.

A multilayer path is represented by a directed path in the
underlined graph G by taking into account the adaptation
function involved at each node in the path. Thus, a path from
node vi to node vj in N is a mixed sequence of nodes and



adaptation functions with starting and ending protocol stacks
hivifivi+1fi+1 . . . vj−1fj−1hjvj where each vk, i ≤ k ≤ j
is a node, and each fk is an adaptation function. The starting
stack is hi and the ending stack is hj .

Definition 6. A path p = hivifivi+1fi+1 . . . vj−1fj−1hjvj
from vi to vj is valid if and only if:

• The sequence vivi+1 . . . vj−1vj is a classical path in G
and each fk ∈ F(vk);

• hi ̸= ϕ and Top(hi) ∈ In(vi);

• hj ̸= ϕ and Top(hj) ∈ In(vj);

• hj = fj−1

(
fj−2

(
. . . fi+1

(
fi(hi)

))
.

Note that a valid path p = hivifivi+1fi+1 . . . vj−1fj−1hjvj
from vi to vj can be represented by the valid composition of
the elementary adaptation functions fj−1 ⊙ · · · ⊙ fi−1 ⊙ fi.
This latter composition is defined by the function hi → hj of
the set F̂ .

In Figure 1a, the depicted path from v0 to v6 with the
starting protocol stack yx is:

v0(x → y)v1(y → y)v4(y → y)v5(xy → x)v6

It cannot be valid because, the node v5 receives the protocol
stack yy and it cannot decapsulate the protocol x from y, i.e.,
it cannot perform the function xy → x on the stack yy. The
composed function of this path is ϕ → ϕ. In contrast, Figure
1b depicts a valid path v0 to v6 with the starting stack x and
the arrival stack xy:

v0(x → y)v1(y → y)v2(y → yx)v3(x → xy)
v1(y → y)v4(y → y)v5(xy → x)v6

The composed function of this valid path is x → xy. The used
links in the path are in bold and the corresponding protocol
stacks are below the links in Figure 1.

The weight of a valid path1 p from node vi to node vj with
stacks hi and hj , p = hivifivi+1fi+1 . . . vj−1fj−1hjvj is the
sum of the weights of its links and its adaptation functions. It
is denoted by

ω(p)
def
=

j−1∑
k=i

ω(vk, fi, vk+1)

V. SEMIRING WITH TUNNELS

In this section, we define a semiring algebraic structure for
the valid path problem vp. Then, we study the semi-direct
product of the valid paths structures vp with the shortest paths
structures sp in order to model the valid shortest paths vsp.

In order to enumerate the set of all valid shortest paths
between each pair of nodes in a multilayer network, we intro-
duce a semi-direct product over a set of weighted elements2,
in which the concatenation operation is a direct product and

1The weight of an invalid path is not defined and can be set to ∞ value.
2These elements represent the compositions of adaptation functions and

they can represent other depending on the nature of the algebraic structure.

the choice operation is based on a new binary operation that
combines the union and the min operations.

Let S = {a, b, c . . . } be a finite set of elements. We define
the positive weighted set of S as the set product S × N∞.
We denote P(S × N∞), the power set in which each subset
contains a unique pair for each element. We define the union-
min operation over subsets of weighted elements as follows:

Definition 7. Let S1 and S2 be two subsets of P(S × N∞).
We define the union-min operation of S1 and S2 as follows:

S1 ∪
min

S2 =
{
(a, ωa) | (1) ∨ (2)

}
(a, ωa) ∈ S1 ∧ ∀ (b, ωb) ∈ S2, (a = b) ⇒ ωa = min[ωa, ωb] (1)
(a, ωa) ∈ S2 ∧ ∀ (b, ωb) ∈ S1, (a = b) ⇒ ωa = min[ωa, ωb] (2)

This new operation, i.e., union-min, introduces the idea
of enumerating different weighted paths from a source to a
destination. And in the case of equality of paths (with the
same elements), it keeps the path with the smallest weight. It
is easy to check that the union-min operation is idempotent,
associative and commutative, but not selective (it can return
a new subset different from the two initial subsets). The
identity element of this operation is the empty subset and
the annihilator element is the subset of unique elements with
weight 0, i.e.,

{
(a, 0), (b, 0), (c, 0), . . .

}
.

Definition 8. Let S1 and S2 be two subsets of P(S × N∞).
We define the order relation as follows:

S1 ⊆ S2 ≡ ∀ (a, ωa) ∈ S1 ⇒ ∃ (b, ωb) ∈ S2, (a = b) ∧ (ωa ≤ ωb)

It is clear that this order is a partial order, i.e., there exists
some incomparable subsets. For example, the two subsets{
(a, 1), (b, 5)

}
and

{
(a, 4), (b, 2)

}
are incomparable. We use

this operation to define a semi-direct product for semirings.
Recall that a valid multilayer path is represented by a valid

composition of adaptation functions. In order to compute the
set of all valid paths, i.e., valid compositions, we extend
the definition of adaptation function composition on sets of
compositions.

Let be F̂ the set of all adaptation functions closed under
composition, and P(F̂) its power set. If F̂1 and F̂2 are
two subsets of P(F̂), then we define the set of pair-wise
compositions,

F̂1 ⊙ F̂2 =
{
f̂1 ⊙ f̂2 | f̂1 ∈ F̂1 and f̂2 ∈ F̂2

}
Note that in the case of invalid composition, the resulting
forbidden function will be removed from the result set. The
composition with an empty set is always an empty set. Based
on this operation, we define our semiring valid paths SMvp

that enumerates all valid paths as follows,

SMvp =
(
P(F̂),∪,⊙, ∅,Fid

)
Where, ∅ is the empty set composition and Fid is the set
of identity adaptation functions {x → x, y → y, . . . }. It is
easy to check that the composition ⊙ is associative and non-
commutative with the ∅ as annihilator. We check the identity
set compositions Fid and the distributivity of ⊙ over ∪,



Identity of ⊙: Let F̂ = {f̂i, f̂i+1, . . . , f̂j−1, f̂j} be a set of
composed functions in P(F̂). We want to show that,

F̂ ⊙Fid = Fid ⊙ F̂ = F̂ ∀ F̂ ∈ P(F̂)

Let fk, i ≤ k ≤ j, fk : Ha → Hb be a function in F̂ . There
are two possible situations:

1) Ha is a set of protocol stacks starting with x. In this case,
fk ⊙ (x → x) = fk and for all f ∈ Fid − {(x → x)}
we have fk ⊙ f = (ϕ → ϕ).

2) Hb is a set of protocol stacks starting with x. In this case,
(x → x) ⊙ fk = fk and for all f ∈ Fid − {(x → x)}
we have f ⊙ fk = (ϕ → ϕ).

Note that, by the definition of ⊙, the forbidden functions are
removed from the result set.

Distributivity of ⊙ over ∪: Let F̂1, F̂2, F̂3 be three sets of
composed functions in P(F̂). By the definition of ⊙ over sets
of composed functions, which compute the set of pair-wise
compositions, we can see that,

F̂1 ⊙ (F̂2 ∪ F̂3) = (F̂1 ⊙ F̂2) ∪ (F̂1 ⊙ F̂3)

And,
(F̂2 ∪ F̂3)⊙ F̂1 = (F̂2 ⊙ F̂1) ∪ (F̂3 ⊙ F̂1)

Now, we can define the valid shortest paths semiring SMvsp

by the following semi-direct product of SMvp and SMsp,

SMvsp = SMvp ⋊ SMsp

SMvsp =
(
P
(
F̂ × N∞)

, ∪
min

, (⊙×+), ∅, (Fid × 0)
)

It is well known that the direct product of semigroups pre-
serves the associativity property, the identity elements and the
annihilators [13]. In most situations where algebraic structures
violate some axioms of semirings, they do not generally satisfy
the distributivity of ⊗ over ⊕. We check this property in order
to ensure that our structure defines a semiring.

Distributivity of (⊙×+) over ∪
min

: We want to show that

for all F̂1, F̂2, F̂3 sets of weighted composed functions in
P(F̂ × N∞) we have lhs = rhs where,

lhs = F̂1 (⊙×+) (F̂2 ∪
min

F̂3)

rhs = (F̂1 (⊙×+) F̂2) ∪
min

(F̂1 (⊙×+) F̂3)

Based on the definition of the union-min operation, we distin-
guish between the two following cases:
Case 1: The two sets F̂2 and F̂3 are strictly different and don’t
have any common composed function,

F̂2 ∪
min

F̂3 = F̂2 ∪ F̂3

In this case, we can see that,

lhs = rhs = (F1 (⊙×+) F̂2) ∪ (F1 (⊙×+) F̂3)

Case 2: The two sets have some common composed functions,

F̂2 ∪
min

F̂3 = F̂ ∗
2 ∪ F̂ ∗

3

Where: F̂2 = F̂ ∗
2 ∪ F̂ and F̂3 = F̂ ∗

3 ∪ F̂ ′ and F̂ (resp. F̂ ′)
is the non empty set of the common non optimal composed
functions of F̂2 (resp. F̂3). In this situation, we have,

F̂1(⊙×+)F̂2 =(F̂1(⊙×+)F̂ ∗
2 ) ∪ (F̂1(⊙×+)F̂ )

F̂1(⊙×+)F̂3 =(F̂1(⊙×+)F̂ ∗
3 ) ∪ (F̂1(⊙×+)F̂ ′)

And,

(F̂1(⊙×+)F̂ ∗
2 ) ∪

min
(F̂1(⊙×+)F̂ ′) =(F̂1(⊙×+)F̂ ∗

2 )

(F̂1(⊙×+)F̂ ∗
3 ) ∪

min
(F̂1(⊙×+)F̂ ) =(F̂1(⊙×+)F̂ ∗

3 )

As we can see, the two sets F̂ ∗
2 and F̂ ∗

3 are different. So we
can apply the case 1,

lhs = rhs = (F1 (⊙×+) F̂ ∗
2 ) ∪ (F1 (⊙×+) F̂ ∗

3 )

We can check the right distributivity in the same way.
Using this semiring, we can define the adjacency matrix A

of all valid paths where Ai,j is the set of valid paths from node
i to node j represented by the corresponding compositions of
adaptation functions and its weights involved in each path.
Missing paths are simply represented by the empty set of
compositions.

VI. CONVERGENCE PROPERTIES

A. Monotonicity and Isotonicity
In general, the convergence of routing protocols, e.g.,

distance-vector and path-vector protocols, is based on the two
important properties of the corresponding routing algebra.

The first property, i.e., monotonicity, guarantees that the
routing protocol converges in any network, but not necessarily
to a global optimal solution [14].

Definition 9. Let ⊗ be the extension operation and the order
relation ≤⊕. The operation ⊗ is monotonic if and only if,

a ≤⊕ a⊗ b ≡ a = a⊕ (a⊗ b) ∀ a, b ∈ S

We can see that the proposed algebra in this paper does not
satisfy this property. The composition of two sets can yield a
new set (possibly the empty set) which is incomparable to the
first sets. And the application of a set of adaptation functions
on a set of protocol stacks can give a new set of protocol
stacks (possibly the empty set) which is incomparable to the
first set. For this, we prove the following proposition,

Proposition 1. The direct product operator (⊙×+) over the
power set P

(
F̂ × N∞) is not monotonic.

The second property, i.e., isotonicity, guarantees that the
routing protocol converges to a global optimal solution [14].

Definition 10. Let ⊗ be the extension operation and the order
relation ≤⊕. The operation ⊗ is isotonic if and only if,

a ≤⊕ b =⇒ a⊗ c ≤⊕ b⊗ c ∀ a, b, c ∈ S

In order to show that our algebras are isotonic, we prove the
following proposition for semirings with composition.

Proposition 2. The direct product operator (⊙×+) over the
power set P

(
F̂ × N∞) is isotonic.



B. Iterative Convergence

It is known that in classical networks without absorbing
cycles (with only positive weights) called free networks, the
global optimal solution A∗ converges to the matrix A(n−1)

where n−1 is the maximum length of an elementary path [1],
[15]. This means that cycles only increase the weight of paths
and therefore will be ignored by the computation. In our case,
cycles are allowed and sometimes necessary for some paths
i.e., constructing the necessary protocol stack for the path to
be valid. For this reason, we firstly define the multilayer cycle
and the multilayer elementary path in the multilayer network
model in order to generalize the convergence theorem cited
above.

Definition 11. A multilayer path p = hivifi . . . vj−1fj−1hjvj
is a multilayer cycle if and only if:

• The node vi is the same node vj , i.e., vi = vj
• The two stacks hi and hj received by vi (or vj) are the

same, i.e., hi = hj

Using the above definition, we now define the multilayer
elementary paths.

Definition 12. A multilayer elementary path is a multilayer
path in which its cycles (if any) are non multilayer cycles.

Definition 13. A free multilayer network is a network in which
all of its multilayer cycles have positive weights.

In [16], the authors proved some bounds on the valid
shortest paths problem in a multilayer network. We leverage
on the following proposition whose proof can be found in [16]:

Proposition 3. For any multilayer network N , the valid
shortest path (if any) between two nodes is upper bounded
by

2(λ+1)λ2n2

.

Using this proposition, we can prove the following theorem;

Theorem 1. In a free multilayer network N we have:

A∗ = A(k) = I⊕A⊕A2 ⊕ · · · ⊕Ak

Where k is the maximum length of the multilayer elementary
paths in N , and it is equal to 2(λ+1)λ2n2 − 1.

VII. CONCLUSION AND FUTURE WORK

Routing algebras are powerful abstractions for studying
complex structures such as multilayer networks. In this paper,
we have defined a new routing algebra based on semirings
for path computation with tunnels. We have shown that this
routing algebra is isotonic and non-monotonic with a partial
order. We have proposed a fixed point for this algebra and we
have proved the iterative convergence to the optimal solution
of the valid shortest paths problem vsp.

For future work, we plan to adapt these modifications to
other existing algebraic structures (algebra of endomorphisms
and Sobrinho’s algebra). Using these algebras, we aim to study
the asynchronous convergence of the stack-vector protocol by

applying, if possible, the asynchronous convergence [8] of [10]
and implementing it in AGDA [17].
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