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Metarouting models routing protocols in the form of an algebraic structure called routing algebra. It aims to help designing or validating routing protocols. Most research work on routing algebras have been applied to routing protocols used in networks having a single addressing and forwarding protocol. In this context, some of the basic algebraic structures used are semirings. In this paper, we define a new algebraic structure for dealing with networks containing multiple forwarding protocols, which may induce many (and possibly nested) tunnels. We widely generalize the semiring structure for modeling the routing problem with automatic tunneling. We define a new model of routing algebra with tunneling. It is defined as a semi-direct product of two structures, the well-know shortest paths algebra and a new proposed valid paths algebra. We show that it has a fixed point and we prove the iterative convergence to the optimal solution of the valid shortest paths problem.

I. INTRODUCTION

Routing algebras for classical dynamic routing protocols have been proposed in 1971 [START_REF] Carré | An Algebra for Network Routing Problems[END_REF]. However, they were studied in the context of Internet routing protocols (such as BGP) only as 2003 [START_REF] Sobrinho | Network routing with path vector protocols: Theory and applications[END_REF]. The problem of automatic tunneling management for multilayer network routing was itself only tackled since 2009 [START_REF] Kuipers | Path selection in multi-layer networks[END_REF]. It has gotten an increasing attention due to the advent of IPv6 and VPN deployments, where tunneling is pervasive. In this context, leveraging routing algebras to derive properties of multilayer networks is compelling. Our aim in this paper is to define such an algebra and to give some properties related to network routing with automatic tunneling. Our contributions are summarized below:

• We present recent related work (Section II), algebraic elements (Section III) and network model (Section IV). • We define a routing algebra as a semiring for path computation with tunnels (Section V). • We show that this routing algebra is isotonic and nonmonotonic with a partial order (Section VI.A). • We propose a fixed point for this new algebra and we prove the iterative convergence to the optimal solution of the valid shortest paths problem vsp (Section VI.B).

II. RELATED WORK

In [START_REF] Griffin | Metarouting[END_REF], the authors proposed an algebraic approach called metarouting in order to define routing protocols in a declarative and high-level way. For example, this approach allowed to define a "scoped" product to model the combined metric of iBGP and eBGP. In [START_REF] Griffin | Metarouting[END_REF], [START_REF] Gurney | Lexicographic products in metarouting[END_REF], [START_REF] Dynerowicz | On the forwarding paths produced by internet routing algorithms[END_REF], the authors proposed a lexicographic product to combine several Quality of Service metrics to obtain a single composite metric. They also showed which properties are required to guarantee optimal global and local solutions when using the lexicographic products. Another so-called functional product was used in [START_REF] Khayou | A validation model for non-lexical routing protocols[END_REF] to model EIGRP non-lexical metrics. More recently, the aurhors of [START_REF] Daggitt | Asynchronous convergence of policy-rich distributed bellman-ford routing protocols[END_REF] showed that a small set of conditions (called Sobrinho's conditions) is sufficient for a routing protocol to converge to a single solution. They illustrate this result by the case of the asynchronous Bellman-Ford algorithm. Recently, the authors of [START_REF] Sobrinho | Routing on multiple optimality criteria[END_REF] studied the problem of routing without an important metric condition called isotonicity (see Section VI-A for a formal definition). To preserve isotonicity (and thus convergence), they proposed new routing protocols based on partial order over the routing protocol metrics.

On the side of routing in multilayer networks, the authors of [START_REF] Lamali | A stack-vector routing protocol for automatic tunneling[END_REF] proposed the first distributed algorithm to compute the shortest paths while automatically establishing tunnels. It is widely inspired by Bellman-Ford algorithm. However, as tunneling induces a stack of headers (and thus of protocols), the algorithm propagates stack vectors together with distance vectors. It allows to compute routing tables where the packets are forwarded according to their stack vector and to the distance to the destination. Another approach (inspired by the Floyd-Warshall algorithm) was proposed in [START_REF] Mouhoub | A highly parallelizable algorithm for routing with automatic tunneling[END_REF]. The subpaths are concatenated to form a path under some conditions, the most important one being the compatibility of their stack vectors. In both works, the notion of valid (sub)path is crucial. Informally, a path is valid if each node along it is able to deal with a packet it receives having some protocol stack. Figure 1 illustrates a multilayer network with a valid and an invalid paths. x, y, . . . are protocols (for example IPv4 and IPv6), and nodes capabilities (encapsulation, etc.), are drawn near each node. The notations and formal definitions are given in Section IV.

In order to define these new structures, we aim to construct two operations on the valid shortest paths set. The first operation is used to concatenate valid shortest paths and the second one is used to choose between them. The concatenation operation must make possible to calculate the weight sum of a path under the condition of preserving its validity. However, the second operation must keep all valid paths, and in equality cases, i.e., valid paths having the same protocol stack (tunnel), must keep the shortest one. The proposed algebraic structures can be used to prove some convergence properties of the stackvector algorithm proposed in [START_REF] Lamali | A stack-vector routing protocol for automatic tunneling[END_REF].

III. ALGEBRAIC FOUNDATIONS

We use the same algebraic structures as the ones defined in [START_REF] Mohri | Semiring frameworks and algorithms for shortest-distance problems[END_REF], [START_REF] Dynerowicz | On the forwarding paths produced by internet routing algorithms[END_REF]. Definition 1. A semiring is a structure SM = (S, ⊕, ⊗, 0, 1) where:

• ⊕ and ⊗ are associative binary operations over S • ⊕ is commutative • 0 is an identity element for ⊕ and an annihilator for ⊗ • 1 is an identity for ⊗ • ⊗ is left and right distributive on ⊕

The generalized shortest paths problem is modeled by the semiring, SM sp = (N ∞ , min, +, +∞, 0). In the idempotent semiring (⊕ is idempotent) the relation ≤ ⊕ is a partial order over S if:

(a ≤ ⊕ b) ≡ (a = a ⊕ b) (a < ⊕ b) ≡ (a = a ⊕ b ̸ = b)
This order is total if the operation ⊕ is selective. Definition 2. Given a semiring (S, ⊕, ⊗, 0, 1), the semiring of n × n matrix is M n (S), ⊕, ⊗, N, I , where:

• all the elements of the matrix N are equals to 0

• I i,j =
1 if (i = j) 0 otherwise And for any two matrices X, Y ∈ M n (S), the two operations ⊕ and ⊗ are defined as follow:

• (X ⊕ Y) i,j = X i,j ⊕ Y i,j • (X ⊗ Y) i,j = n k=1 X i,k ⊗ Y k,j
Given a semiring (S, ⊕, ⊗, 0, 1) and a directed graph G = (V, E) with n nodes. We can define a weight function over the links of G, ω : E → S and we denote by ω ij the weight of the link e ij = v i v j .

Let A ∈ M n (S) the n × n weighted adjacency matrix of G such that,

A i,j = ω i,j if e i,j ∈ E 0 otherwise For a path p = v 0 , v 1 , v 2 , ..., v k-1 , v k , the weight ω(p) is, ω(p) = A 0,1 ⊗ A 1 ,2 ⊗ ... ⊗ A k-1 , k = ω 0,1 ⊗ ω 1 ,2 ⊗ ... ⊗ ω k-1 , k = k-1 i=0 ω i,i+1
We define recursively the power of a matrix A ∈ M n (S) with,

A k = I if k = 0 A ⊗ A k-1 otherwise
Let P k i,j be the set of all paths from node v i to node v j of size k. We denote by P (k) i,j the set of all paths form v i to v j of size at most k. We define the weight of an optimal path form v i to v j of size at most k as follows,

A (k) i,j = ω (k) i,j = p∈P (k) i,j ω(p)
Where:

A (k) = p∈P (k) ω(p)
The global optimal solution for the generalized path problem consists in finding (if it any) the matrix A * defined as:

A * = k≥0 A (k) = p∈P (k) ω(p)

IV. MULTILAYER NETWORK MODEL

We use the same model, definitions and notations as in [START_REF] Lamali | A stack-vector routing protocol for automatic tunneling[END_REF].

Definition 3. A multilayer network is modeled by 4-tuple N = (G, A, F , ω) where: 
• G = (V, E) is a directed graph modeling the network topology. The set of nodes V models the routers and the set of links E models the physical links. The number of nodes (resp. links) is denoted by |V| = n (resp. |E| = m.) • A = {x, y, . . . } is the set of protocols available in the network (not necessarily at each router). The number of protocols is denoted by |A| = λ. The set of protocols that a node v can receive (resp. send) is denoted by In(v) (resp. Out(v)). • F is the set of adaptation functions available in the network. For each node v ∈ V, F(v) denotes the set of adaptation functions available on node v. An adaptation function may be:

-A Conversion: the header of a packet of protocol x is transformed into the header of another protocol y. It is denoted by (x → y). If x = y, then it is a classical transmission; -Encapsulation: the whole packet of protocol x is encapsulated in the data field of a packet of protocol y. It is denoted by (x → xy). Note that a packet can be encapsulated in another one of the same protocol, e.g., IP-in-IP; -Decapsulation: a packet of protocol x is extracted from the data field of a packet of protocol y, this is the reverse operation of (x → xy), and is denoted by (xy → x). Note that this operation can be performed only if the received packet of protocol y contains a packet of protocol x in its data field.

• ω : V × F × V → N is a weight function modeling any additive metric. ω(v i , f, v j ) is the cost of performing the adaptation function f on v i then transmitting the packet

v 0 x → y v 1 y → y v 2 y → yx v 3 x → xy v 4 y → y v 5 xy → x v 6
x y y y y y y y (a) An invalid multilayer path.

v 0 x → y v 1 y → y v 2 y → yx v 3 x → xy v 4 y → y v 5 xy → x v 6
x y y x y y x y y x y

x y (b) A valid multilayer path with a cycle.

Fig. 1: Example of an invalid path and a valid path with a cycle. on the link (v i , v j ). Its sum over a path is the cost to be minimized. It is very generic and can model: the number of hops (ω(v i , f, v j ) = 1 for each (v i , f, v j )), the number of encapsulations (ω(v i , f, v j ) = 1 only when f is an encapsulation and 0 otherwise), etc.

A sequence of adaptation functions induces a protocol stack. For example, the sequence:

(x → y)(y → yx)(x → x)(x → xx)(x → xy)
induces the stack yxxy (top on the right). The protocol at the top of the stack h is denoted by T op(h).

Let f be an adaptation function and h a protocol stack. We denote by f (h) the application of the adaptation function f to the stack h. For example, if f is the decapsulation (xy → x) and h = yxy, then f (h) = yx. The outer protocol y is removed and the inner one (protocol x) is extracted, without any change to the underlying protocols that are still nested (here the bottom y). Applying an adaptation function to a protocol stack is not always possible. For example, it is impossible to apply f = (yx → y) to stack h = x since there is no nested (packet of) protocol y in h. In such cases, we denote the resulting stack by f (h) = ϕ, where ϕ is called the forbidden stack. For any adaptation function f , we have f (ϕ) = ϕ. This means that we cannot apply an adaptation function at some point of a path and thus there is no way to continue through this path. Definition 4. Let f i f i+1 . . . f j-1 f j be a sequence of adaptation functions and h i an initial protocol stack. Then

h k = f k-1 (h k-1 ), i + 1 ≤ k ≤ j + 1
More formally, let H = {ϕ, x, y, . . . , xx, yy, xy, yx, . . . } be the set of all possible protocol stacks. Note that this set is finite if we consider only the stacks induced par the shortest paths, since these stacks are bounded by λn 2 (see [START_REF] Lamali | A stack-vector routing protocol for automatic tunneling[END_REF] for the proof). We can define an elementary adaptation function as a function f from H a → H b where H a (resp. H b ) is a set of protocol stacks in H representing the domain (resp. codomain) of f . For example, if the function is the decapsulation xy → x, then f : H xy → H x where H xy (resp. H x ) is the set of all protocol stacks starting with the sub protocol stack xy (resp. the protocol x). We define the application of a sequence of adaptation functions f i f i+1 . . . f j-1 f j on a given protocol stack h by a composition of these adaptation functions.

Definition 5. Let f : H a → H b and f ′ : H ′ a → H ′ b
be two elementary adaptation functions in F. We define the composition by the new function f ′′ = f ′ ⊙ f as follows:

f ′′ = H ′′ a → H ′′ b if (H ′′ a ̸ = ∅) ∧ (H ′′ b ̸ = ∅) {ϕ} → {ϕ} otherwise
Where:

• H ′′ a = h ∈ H a | f (h) ∈ H ′ a • H ′′ b = f ′ (h) | h ∈ (H b ∩ H ′ a )
Note that this composition ⊙ is associative and not commutative. The function {ϕ} → {ϕ} is denoted by the forbidden function ϕ → ϕ. It is clear that the set of elementary adaptation functions F is not closed under composition. For example, if the composition is (x → xy) ⊙ (y → yx) then the composed function is (y → yxy). This new function is not in the set F. Thus, we define a new set F of all adaptation functions closed under composition. Each composition of elementary adaptation functions can be represented by a new composed adaptation function. The impossibility of composition is represented by the forbidden function ϕ → ϕ. Let F = {ϕ → ϕ, x → x, x → y, x → xxx, xyx → x, . . . } be the set of all adaptation functions closed under composition. We say that two functions f ′ and f of F are equal if and only if they have the same domain and co-domain. For example, the two functions (x → xx) and (y → x) ⊙ (x → xy) are equal and they can apply on protocol stacks starting with x and give a protocol stacks starting with xx. In the rest of the paper, we will denote by F id the set of all passive functions, i.e., classical transmissions {x → x, y → y, . . . } called identity adaptation functions.

A multilayer path is represented by a directed path in the underlined graph G by taking into account the adaptation function involved at each node in the path. Thus, a path from node v i to node v j in N is a mixed sequence of nodes and adaptation functions with starting and ending protocol stacks h i v i f i v i+1 f i+1 . . . v j-1 f j-1 h j v j where each v k , i ≤ k ≤ j is a node, and each f k is an adaptation function. The starting stack is h i and the ending stack is h j . Definition 6. A path p = h i v i f i v i+1 f i+1 . . . v j-1 f j-1 h j v j from v i to v j is valid if and only if:

• The sequence v i v i+1 . . . v j-1 v j is a classical path in G and each f k ∈ F(v k );
• h i ̸ = ϕ and T op(h i ) ∈ In(v i );

• h j ̸ = ϕ and T op(h j ) ∈ In(v j );

• h j = f j-1 f j-2 . . . f i+1 f i (h i ) .
Note that a valid path p = h i v i f i v i+1 f i+1 . . . v j-1 f j-1 h j v j from v i to v j can be represented by the valid composition of the elementary adaptation functions

f j-1 ⊙ • • • ⊙ f i-1 ⊙ f i .
This latter composition is defined by the function h i → h j of the set F.

In Figure 1a, the depicted path from v 0 to v 6 with the starting protocol stack yx is:

v 0 (x → y)v 1 (y → y)v 4 (y → y)v 5 (xy → x)v 6
It cannot be valid because, the node v 5 receives the protocol stack yy and it cannot decapsulate the protocol x from y, i.e., it cannot perform the function xy → x on the stack yy. The composed function of this path is ϕ → ϕ. In contrast, Figure 1b depicts a valid path v 0 to v 6 with the starting stack x and the arrival stack xy:

v 0 (x → y)v 1 (y → y)v 2 (y → yx)v 3 (x → xy) v 1 (y → y)v 4 (y → y)v 5 (xy → x)v 6
The composed function of this valid path is x → xy. The used links in the path are in bold and the corresponding protocol stacks are below the links in Figure 1.

The weight of a valid path1 p from node v i to node v j with stacks h i and h j , p = h i v i f i v i+1 f i+1 . . . v j-1 f j-1 h j v j is the sum of the weights of its links and its adaptation functions. It is denoted by

ω(p) def = j-1 k=i ω(v k , f i , v k+1 ) V. SEMIRING WITH TUNNELS
In this section, we define a semiring algebraic structure for the valid path problem vp. Then, we study the semi-direct product of the valid paths structures vp with the shortest paths structures sp in order to model the valid shortest paths vsp.

In order to enumerate the set of all valid shortest paths between each pair of nodes in a multilayer network, we introduce a semi-direct product over a set of weighted elements2 , in which the concatenation operation is a direct product and the choice operation is based on a new binary operation that combines the union and the min operations.

Let S = {a, b, c . . . } be a finite set of elements. We define the positive weighted set of S as the set product S × N ∞ . We denote P(S × N ∞ ), the power set in which each subset contains a unique pair for each element. We define the unionmin operation over subsets of weighted elements as follows: Definition 7. Let S 1 and S 2 be two subsets of P(S × N ∞ ). We define the union-min operation of S 1 and S 2 as follows:

S 1 ∪ min S 2 = (a, ω a ) | (1) ∨ (2) (a, ωa) ∈ S1 ∧ ∀ (b, ω b ) ∈ S2, (a = b) ⇒ ωa = min[ωa, ω b ] (1) (a, ωa) ∈ S2 ∧ ∀ (b, ω b ) ∈ S1, (a = b) ⇒ ωa = min[ωa, ω b ] (2)
This new operation, i.e., union-min, introduces the idea of enumerating different weighted paths from a source to a destination. And in the case of equality of paths (with the same elements), it keeps the path with the smallest weight. It is easy to check that the union-min operation is idempotent, associative and commutative, but not selective (it can return a new subset different from the two initial subsets). The identity element of this operation is the empty subset and the annihilator element is the subset of unique elements with weight 0, i.e., (a, 0), (b, 0), (c, 0), . . . . Definition 8. Let S 1 and S 2 be two subsets of P(S × N ∞ ). We define the order relation as follows:

S1 ⊆ S2 ≡ ∀ (a, ωa) ∈ S1 ⇒ ∃ (b, ω b ) ∈ S2, (a = b) ∧ (ωa ≤ ω b )
It is clear that this order is a partial order, i.e., there exists some incomparable subsets. For example, the two subsets (a, 1), (b, 5) and (a, 4), (b, 2) are incomparable. We use this operation to define a semi-direct product for semirings.

Recall that a valid multilayer path is represented by a valid composition of adaptation functions. In order to compute the set of all valid paths, i.e., valid compositions, we extend the definition of adaptation function composition on sets of compositions.

Let be F the set of all adaptation functions closed under composition, and P( F) its power set. If F1 and F2 are two subsets of P( F), then we define the set of pair-wise compositions,

F1 ⊙ F2 = f1 ⊙ f2 | f1 ∈ F1 and f2 ∈ F2
Note that in the case of invalid composition, the resulting forbidden function will be removed from the result set. The composition with an empty set is always an empty set. Based on this operation, we define our semiring valid paths SM vp that enumerates all valid paths as follows,

SM vp = P( F), ∪, ⊙, ∅, F id
Where, ∅ is the empty set composition and F id is the set of identity adaptation functions {x → x, y → y, . . . }. It is easy to check that the composition ⊙ is associative and noncommutative with the ∅ as annihilator. We check the identity set compositions F id and the distributivity of ⊙ over ∪, Identity of ⊙: Let F = { fi , fi+1 , . . . , fj-1 , fj } be a set of composed functions in P( F). We want to show that,

F ⊙ F id = F id ⊙ F = F ∀ F ∈ P( F) Let f k , i ≤ k ≤ j, f k : H a → H b be
a function in F . There are two possible situations:

1) H a is a set of protocol stacks starting with x. In this case,

f k ⊙ (x → x) = f k and for all f ∈ F id -{(x → x)} we have f k ⊙ f = (ϕ → ϕ).
2) H b is a set of protocol stacks starting with x. In this case,

(x → x) ⊙ f k = f k and for all f ∈ F id -{(x → x)} we have f ⊙ f k = (ϕ → ϕ).
Note that, by the definition of ⊙, the forbidden functions are removed from the result set.

Distributivity of ⊙ over ∪: Let F1 , F2 , F3 be three sets of composed functions in P( F). By the definition of ⊙ over sets of composed functions, which compute the set of pair-wise compositions, we can see that,

F1 ⊙ ( F2 ∪ F3 ) = ( F1 ⊙ F2 ) ∪ ( F1 ⊙ F3 ) And, ( F2 ∪ F3 ) ⊙ F1 = ( F2 ⊙ F1 ) ∪ ( F3 ⊙ F1 )
Now, we can define the valid shortest paths semiring SM vsp by the following semi-direct product of SM vp and SM sp ,

SM vsp = SM vp ⋊ SM sp SM vsp = P F × N ∞ , ∪ min , (⊙ × +), ∅, (F id × 0)
It is well known that the direct product of semigroups preserves the associativity property, the identity elements and the annihilators [START_REF] Harden | Direct and semidirect products of semigroups[END_REF]. In most situations where algebraic structures violate some axioms of semirings, they do not generally satisfy the distributivity of ⊗ over ⊕. We check this property in order to ensure that our structure defines a semiring.

Distributivity of (⊙ × +) over ∪ min : We want to show that for all F1 , F2 , F3 sets of weighted composed functions in P( F × N ∞ ) we have lhs = rhs where,

lhs = F1 (⊙ × +) ( F2 ∪ min F3 ) rhs = ( F1 (⊙ × +) F2 ) ∪ min ( F1 (⊙ × +) F3 )
Based on the definition of the union-min operation, we distinguish between the two following cases: Case 1: The two sets F2 and F3 are strictly different and don't have any common composed function, F2 ∪ min F3 = F2 ∪ F3 In this case, we can see that,

lhs = rhs = (F 1 (⊙ × +) F2 ) ∪ (F 1 (⊙ × +) F3 )
Case 2: The two sets have some common composed functions,

F2 ∪ min F3 = F * 2 ∪ F * 3 
Where: F2 = F * 2 ∪ F and F3 = F * 3 ∪ F ′ and F (resp. F ′ ) is the non empty set of the common non optimal composed functions of F2 (resp. F3 ). In this situation, we have,

F1 (⊙ × +) F2 =( F1 (⊙ × +) F * 2 ) ∪ ( F1 (⊙ × +) F ) F1 (⊙ × +) F3 =( F1 (⊙ × +) F * 3 ) ∪ ( F1 (⊙ × +) F ′ ) And, ( F1 (⊙ × +) F * 2 ) ∪ min ( F1 (⊙ × +) F ′ ) =( F1 (⊙ × +) F * 2 ) ( F1 (⊙ × +) F * 3 ) ∪ min ( F1 (⊙ × +) F ) =( F1 (⊙ × +) F * 3 )
As we can see, the two sets F * 2 and F * 3 are different. So we can apply the case 1,

lhs = rhs = (F 1 (⊙ × +) F * 2 ) ∪ (F 1 (⊙ × +) F * 3 )
We can check the right distributivity in the same way.

Using this semiring, we can define the adjacency matrix A of all valid paths where A i,j is the set of valid paths from node i to node j represented by the corresponding compositions of adaptation functions and its weights involved in each path. Missing paths are simply represented by the empty set of compositions.

VI. CONVERGENCE PROPERTIES A. Monotonicity and Isotonicity

In general, the convergence of routing protocols, e.g., distance-vector and path-vector protocols, is based on the two important properties of the corresponding routing algebra.

The first property, i.e., monotonicity, guarantees that the routing protocol converges in any network, but not necessarily to a global optimal solution [START_REF] Sobrinho | An algebraic theory of dynamic network routing[END_REF]. Definition 9. Let ⊗ be the extension operation and the order relation ≤ ⊕ . The operation ⊗ is monotonic if and only if,

a ≤ ⊕ a ⊗ b ≡ a = a ⊕ (a ⊗ b) ∀ a, b ∈ S
We can see that the proposed algebra in this paper does not satisfy this property. The composition of two sets can yield a new set (possibly the empty set) which is incomparable to the first sets. And the application of a set of adaptation functions on a set of protocol stacks can give a new set of protocol stacks (possibly the empty set) which is incomparable to the first set. For this, we prove the following proposition, Proposition 1. The direct product operator (⊙ × +) over the power set P F × N ∞ ) is not monotonic.

The second property, i.e., isotonicity, guarantees that the routing protocol converges to a global optimal solution [START_REF] Sobrinho | An algebraic theory of dynamic network routing[END_REF]. Definition 10. Let ⊗ be the extension operation and the order relation ≤ ⊕ . The operation ⊗ is isotonic if and only if,

a ≤ ⊕ b =⇒ a ⊗ c ≤ ⊕ b ⊗ c ∀ a, b, c ∈ S
In order to show that our algebras are isotonic, we prove the following proposition for semirings with composition.

Proposition 2. The direct product operator (⊙ × +) over the power set P F × N ∞ ) is isotonic.

B. Iterative Convergence

It is known that in classical networks without absorbing cycles (with only positive weights) called free networks, the global optimal solution A * converges to the matrix A (n-1) where n -1 is the maximum length of an elementary path [START_REF] Carré | An Algebra for Network Routing Problems[END_REF], [START_REF] Gondran | Algèbre linéaire et cheminement dans un graphe[END_REF]. This means that cycles only increase the weight of paths and therefore will be ignored by the computation. In our case, cycles are allowed and sometimes necessary for some paths i.e., constructing the necessary protocol stack for the path to be valid. For this reason, we firstly define the multilayer cycle and the multilayer elementary path in the multilayer network model in order to generalize the convergence theorem cited above.

Definition 11. A multilayer path p = h i v i f i . . . v j-1 f j-1 h j v j is a multilayer cycle if and only if:

• The node v i is the same node v j , i.e., v i = v j • The two stacks h i and h j received by v i (or v j ) are the same, i.e., h i = h j Using the above definition, we now define the multilayer elementary paths.

Definition 12. A multilayer elementary path is a multilayer path in which its cycles (if any) are non multilayer cycles.

Definition 13. A free multilayer network is a network in which all of its multilayer cycles have positive weights.

In [START_REF] Lamali | Algorithmic and complexity aspects of path computation in multi-layer networks[END_REF], the authors proved some bounds on the valid shortest paths problem in a multilayer network. We leverage on the following proposition whose proof can be found in [START_REF] Lamali | Algorithmic and complexity aspects of path computation in multi-layer networks[END_REF]: Proposition 3. For any multilayer network N , the valid shortest path (if any) between two nodes is upper bounded by 2 (λ+1)λ 2 n 2 .

Using this proposition, we can prove the following theorem;

Theorem 1. In a free multilayer network N we have:

A * = A (k) = I ⊕ A ⊕ A 2 ⊕ • • • ⊕ A k
Where k is the maximum length of the multilayer elementary paths in N , and it is equal to 2 (λ+1)λ 2 n 2 -1.

VII. CONCLUSION AND FUTURE WORK

Routing algebras are powerful abstractions for studying complex structures such as multilayer networks. In this paper, we have defined a new routing algebra based on semirings for path computation with tunnels. We have shown that this routing algebra is isotonic and non-monotonic with a partial order. We have proposed a fixed point for this algebra and we have proved the iterative convergence to the optimal solution of the valid shortest paths problem vsp.

For future work, we plan to adapt these modifications to other existing algebraic structures (algebra of endomorphisms and Sobrinho's algebra). Using these algebras, we aim to study the asynchronous convergence of the stack-vector protocol by applying, if possible, the asynchronous convergence [START_REF] Daggitt | Asynchronous convergence of policy-rich distributed bellman-ford routing protocols[END_REF] of [START_REF] Lamali | A stack-vector routing protocol for automatic tunneling[END_REF] and implementing it in AGDA [START_REF] Daggitt | AGDA-routing for SIGCOMM[END_REF].

The weight of an invalid path is not defined and can be set to ∞ value.

These elements represent the compositions of adaptation functions and they can represent other depending on the nature of the algebraic structure.
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