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Abstract

Crystalline materials exhibit an hysteresis behaviour when deformed cyclically. The origins of

this tension-compression asymmetry have been fully understood only recently as being caused by

an asymmetry in the junction strength and a reduced mean free path of dislocations inherited

from previous deformation stage. Here, we investigate the saturation stress in fcc single- and poly-

crystals using a Crystal Plasticity framework derived from dislocation dynamics simulations. In

the absence of plastic localization and damage mechanism, the single-crystal mechanical response

eventually saturates. We show that the cyclic saturation stress converges asymptotically to the

monotonic saturation stress as the cycle plastic increment increases, and this convergence can be

observed for some experimental conditions. The analysis of the experimental literature suggests

that the mechanisms controlling the saturation in single crystals are the same controlling the cyclic

response of polycrystals with large grains. We propose also analytical and approximated models to

predict the saturation stress over the considered loading conditions. The saturation stress appears

as a fundamental property of dislocations, explaining the consistency observed in the experimental

literature. This work provides a unified view on the monotonous and cyclic responses of fcc single

and poly-crystals, which may help in interpreting experimental data.

I. INTRODUCTION

Deformation of crystalline materials depends upon the deformation history undergone by

the materials. This is particularly apparent through the existence of hysteresis curves when

alternating the loading direction in tension and compression as in cyclic deformation [1–3].

A part of the deformation is reversible and the resulting hardening is much smaller that in

continuous monotonic deformation, explaining why deformation can be easily accumulated

this way. At every two cycles, the flow stress may increase usually in a continuous manner,

until reaching a saturation shear stress [4–10]. In single crystals, this saturation stress

depends upon the loading direction and the materials as it not always scales with the shear

modulus [10]. For a given loading direction and material, the saturation stress typically

increases with the cycle shear increment γp,cy, and the saturation stress may well be below

the stress values observed in monotonous deformation. For example, in Cu -certainly the
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most studied system- deformed in single glide condition, the cyclic saturation stress ranges

from 16 to 40 MPa exhibits a three stage curve with a central plateau value of 28 MPa.

In stable multislip conditions, the cyclic saturation stress typically increases monotonously

with an apparent slope that depends upon the loading direction and the material [7–10]

and may reach 50 or 60 MPa. In comparison the maximum stress reached by monotonically

deformed single crystal of Cu is in the range of 80-100 MPa.

Until recently, this tension-compression asymmetry -also known as the Bauschinger Ef-

fect (BE)- was commonly thought to be related to the building up of Long-Range Internal

Stresses (LRIS) or backstress associated to the formation of dislocation patterns according

to the so-called composite model [3, 11, 12]. However, dislocation patterns are rather weak

at smaller strain, they may well be different from the archetype of the composite model, and

no LRIS was found in recent large scale mesoscale simulations [13] or by X-ray microdiffrac-

tion [14, 15] (except at very large strain [16]). Another explanation consisted in the partial

dissolution of the microstructure [17–20], as a mechanistic way to reduce dislocation den-

sity and thus flow stress. However, no clear dislocation elementary mechanism was clearly

identified as there is no in-situ observation of dislocation motion during cyclic deformation.

Ultimately, these explanations explain neither the transient nature of the Bauschinger effect

nor its reversibility component.

The present authors [13, 21] recently proposed a systematic study of cyclic deformations

in single crystals by means of Discrete Dislocations Dynamic (DDD) simulations. Despite

of the present of a pronounced Bauschinger effect in the simulations, no LRIS was measured

in the simulations. Statistical analysis of the DDD simulations showed that the tension-

compression asymmetry is caused by two original elementary mechanisms of dislocations.

The first mechanism i) is related to easy destruction of binary junctions as their stability is

asymmetrical as they formed from mobile segments whose curvature is driven by the applied

loading. Junctions formed is tension are thus more stable in tension than in compression, and

are easily destroyed during the backward motion of dislocation in compression. The second

elementary mechanism ii) is related to the reduction of the mean free path of dislocations

as they glide in regions of the crystal that they already explored. In the backward motion,

the mobile segments unwind stored segments on the edge of the swept area, leading to a

reduction in the storage rate. These mechanisms naturally explain the transient nature of

the tension-compression asymmetry and the reversible component of plastic deformation.
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From these results, the authors proposed a modified Crystal Plasticity framework, that

was implemented into a FEM to include the physics highlighted in the DDD. As a results

this multiscale approach was successful in predicting the Bauschinger effect, hysteresis and

saturation stress reported in most of the experimental literature on cyclically deformed fcc

single crystals.

Now that we have a CP framework justified from mesoscale physics and validated by

confrontation with the existing single-crystal literature, we can now assess the full implica-

tions of these results and of the model. In particular, when comparing the literature data

obtained though out decades on cyclic deformation of single crystals - the saturation stresses

- observed in cyclic deformation are clearly more reproducible that the Bauschinger effect

observed on a single tension-compression experiment. This fact suggests that the saturation

stress in cyclic deformation is the sole result of the average of some basic dislocation mech-

anisms, while the Bauschinger effect is impacted by the initial state of the material, such as

the impurity content, the initial dislocation density or the microstructure, but also by the

loading conditions. In other words, the saturation stress seems to be a basic property of

the material and dislocations. Simulation results could also be processed in order to provide

simple equations to help in interpreting and/or fitting the experimental data or to trace

back to some of the fundamental constants of the CP model e.g. in an inverse approach.

Finally, the single crystal is an integral part of the more complex polycrystal system. The

elementary mechanisms described above are general enough to be operative in a polycrystal.

The insertion of GB adds a new lengthscale, and a competition between this lengthscale and

the ones associated with elementary mechanisms i and ii. These ideas will act as motivations

of the present paper.

The objectives of the present work are thus to extend and analyse the CP FEM results

obtained for the cyclic deformation of fcc single-crystals. We will see that the saturation

stress of cyclic loading is actually related to the theoretical saturation stress obtained in

monotonous conditions. Analytical solutions to the constituting differential equations of the

CP framework will be provided and can be employed to help in interpreting experimental

data. Finally, the implication of the mechanisms i and ii on the cyclic deformation of

polycrystal will be assessed.
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II. METHODOLOGY

This section presents the Crystal Plasticity framework derived from the DDD results in

[13]. Readers interested in the presentation of the technical details of the DDD technique

along with a review of recent progresses are referred to [22, 23]. This CP model is an

extension of the dislocation density based descriptions proposed in the seminal work [24, 25]

and subsequent works inspired from DDD [26] for monotonous loadings. In fcc metals

at intermediate and high temperature, the flow stress is controlled by the formation and

destruction of reactions -junctions- between dislocations belong to different slip systems.

The critical shear stress τ ic on the active slip system ’i’ is thus related to the forest obstacle

densities ρj and expressed as :

τ ic = µb
√∑

j

aijρj (1)

Where µ is the isotropic shear modulus, b the norm of the Burgers vector and aij the

components of the interaction matrix. These last interaction coefficients measure the average

strength of the two interacting slip systems and can be determined in a straigthforward

manner from DDD [26–29]. For reasons of symmetry, only six different interactions of

different nature exist among the twelve a0/2 < 110 > 111 slip systems existing in fcc metals.

The interactions are the self-interaction, the coplanar interaction, three junctions: Lomer,

Hirth and glissile reactions, and the collinear interaction. The interaction matrix has to

have non identical components in order to reproduce fully the anisotropy of the plastic

deformation of fcc single-crystals.

A first extension of the CP framework was introduced to capture the asymmetry of

dislocation junctions (mechanism ’i’ in the introduction) and to reproduce the tension-

compression asymmetry observed in DDD [13]. Junctions formed during the forward loading

from curved segments inherit a mechanical stability asymmetry. The junctions formed during

prestrain or forward tension loading, are stronger when stressed in tension and statistically

weaker when now stressed in compression, and this asymmetry in mechanical stability can be

considered as a line tension effect, with the parent moving segments colliding when they were

in extension. As a results, while plastic flow is still controlled by junctions destruction, the

interaction coefficients during the backward loading are effectively weakened over a transient

that depends on the amount of the initial forward deformation. The pool of weak junctions

gets destroyed as backward deformation proceeds, until mobile segments explore new area
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of the crystal and form junctions polarized in compression. A reversibility function ra was

introduced to reproduce these effects as:

abckij = (1− ra)× aij, with ra = exp

− γibck

Cab
√

∆ρipr

 (2)

with aij the reference and constant interaction coefficient measured in continued tension.

the subscripts ’pr’ and ’bck’ refer to prestrain and backward loading, respectively. In a

cyclic loading, the prestrain becomes the previous cycle, while the backward loading cor-

responds to the current cycle. The amount of backward strain impacted by this transient

on the junction stability is approximated as Cab
√

∆ρipr. This last equation can provide a

lengthscale estimate to this effect. The density increase during previous deformation cy-

cle is ∆ρipr = max(ρipr) −min(ρipr) and corresponds to the potentially impacted dislocation

density polarized according to the initial loading. The constant Ca has been determined as

Ca = 0.6± 0.1 through a statistical analysis of the interaction coefficients over a large panel

of relevant DDD simulations [13]. The γibck/Cab
√

∆ρipr term within the exponential of ra

states the competition between the easy destruction of junctions formed in tension, and the

formation of new junctions in never-explored regions of the crystal.

A second fundamental equation in the CP framework describes the evolution of the

dislocation density on active slip system ’i’ with the system shear γi. The evolution of

the dislocation density is related to the kinetics of plastic activity that occurs through

intermittent busts or avalanches of dislocation motion. In principle, dislocations are stored

at the end of an avalanche as dislocation segments left at the edge of the swept area. This

being said the exact theoretical connection between dislocation avalanches at the mesoscale

and the observed continuous macroscale storage of dislocations has still to be formulated.

For the present work and in monotonic loading conditions, the density evolution takes the

following simple form:

dρi

dγi
=

1

b

(
1

Lhkl
+

1

LI
− yρi

)
=

1

b


√∑

i 6=j aijρj

Khkl

+

√
a′0ρ

i

KI

− yρi
 (3)

where the first two terms relate to the dislocation storage and the last term represents the

dynamic recovery. The storage rate is commonly related to the Mean Free Path (MFP)

of dislocations Li, which represents the average distance covered by dislocations before the

temporary or permanent storage. The MFP of dislocations typically depends upon the

6



loading axis and thus the number of active slip systems. In [24, 26], Kubin et al. proposed

a simple decomposition of the MFP into elementary ingredients: i) the rate p0 of forming

a junction that will ultimately store a dislocation segment, and ii) the average length of

stored dislocation < l > and iii) junction segments and < lj >, both of which scale with

the dislocation density < l >= k0/
√
āρ and < lj >= κ < l >. ā is the average interaction

coefficient for the considered orientation. Statistical analysis of DDD results showed that

parameters k0, p0, κ to be constants independent of the loading direction. The MFP can

thus be written:

Li =
µb2

τ ic

[ √
ān(1 + κ)3/2

p0k0(n− 1− κ)

]
(4)

the third term is associated to the dynamic recovery occurring at large dislocation density.

y is related to critical distance at which two dislocations can easily annihilate, which may be

measured from atomistic data. Here, y takes different values depending on the loading axis

to reproduce the anisotropy of the onset of stage III observed on experimental deformation

curves on single-crystal [30, 31].

Table I. List of physical parameters employed in the CP simulations of the cyclic deformation of fcc

single crystals. Most of these parameters are coming from DDD simulations for monotonic or cyclic

deformation, few parameters are coming from the experiemental litterature but for monotonic

loading only. No parameters or equations were fitted to the cyclic deformation literature. The

resulting FEM simulations are therefore truly predictive of cyclic deformation.

a′0 (self) aortho (Hirth) a2 (glissile) a3 (Lomer) acolli (Collinear) ρref ρ0

0.122 0.07 0.137 0.122 0.625 1012 m−2 1012/nsys

KI K112 K111 K001 Ca Ap Cp

90 10.42 7.29 5 0.6 ± 0.1 2 ± 0.6 2.3 ± 0.3

γ̇app γ̇i0 m yI (SG, [112]) y001 (nm) y111 (nm)

nsys × γ̇i0 10−4 s−1 35 0.5 nm 3.6 (Ni), 3.4 (Cu) 2 (Ni), 1.5 (Cu)

When considering the cyclic deformation, DDD simulations [13, 21] showed that dislo-

cation evolution is still associated to the storage of segments in the wake of avalanches at

the fringe of the area swept by dislocations, with some similarities to what was observed

in alloys [32]. Equation 3 is thus still valid. However, the reduced storage (mechanism ii
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in the introduction) observed at the loading reversal where the stored segments are simply

unwinded, needs to be taken into account through a modified MFP (through a change of

rate of locking dislocation rate p0). A second reversibility function rp is thus introduced

[13, 21] as:

pbck0 = (1− rp)× p0, with rp = Ap × exp

− γibck

Cpb
√

∆ρipr

 (5)

Where Ap and Cp are two additional constants measuring the initial MFP drop and the

transient length of the reduced MFP, respectively. Statistical analysis over the transient

observed in DD showed that Aa = 2±0.6 and Cp = 2.3±0.3. Interestingly, the transient on

the reduced MFP (ii) is much larger that the one on the reduced junction stability (i). These

different transients explain the non-monotonic response at the beginning of the backward

deformation that is sometimes observed on experimental deformation curves [33–35].

Finally, the flow rule provides a close form to the CP framework in connecting the plastic

activity γ̇i on the active system to the critical resolved shear stress τ ic and the applied shear

stress τ i:

γ̇i = γ̇i0

(
τ i

τ ic

)m
(6)

In the case of fcc metals at room temperature, the strain rate sensitivity is related to the

formation and dragging of jogs along dislocation lines. Here, the constant γi0 is taken as

γapp/nact, with γapp the applied shear rate and nact the number of active slip system. The

sensitivity exponent is chosen as m > 35 to stay as close as possible to the Schmid criterion.

The proposed CP modeling focuses on the some fundamental mechanisms of dislocations

that are described by some average constants obtained from statistical analysis of DDD

results. The resulting FEM simulations are expected to be general and representative of

fcc pure systems. The simulations will not include plastic localization nor finite geometry

effects for now.

Great care has been paid to the numerical resolution of the set of ODE presented above

using the Z-Set Finite Element software and Matlab. We employ a double nested Newton-

Raphson implicit scheme to solve the corresponding non-linear equations and obtain ρi and τ i

for a given time step. Gradients required in the Newton-Raphson are expressed analytically,

and a relative convergence criterion was set to 10−7. The representative volume was set to

a single point of integration in order to simulate several thousand of cycles of deformation

and finite geometry effects are left for a future work. The parametrization and resolution
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Figure 1. a. One-to-one comparison between the CP prediction (thick continuous lines) and the

reference data from Takeuchi [30] (circles) on the monotonous deformation of Cu single-crystals

at RT. Key single-crystal orientations are chosen. b. Extension of the CP prediction until true

saturation of the stress is obtained, in the absence of finite geometry and plastic localization effects.

c. Corresponding total dislocation density evolutions in log-log scale. Note that the saturation

density for [001] and [111] simulations are of the order of > 1015 m−2, which is still lower than the

saturation density obtained in recent large scale MD simulations of single-crystals of Al [36].

strategy were validated in [13] by the one-to-one comparison of CP predictions with the

reference DDD simulations.

III. RESULTS

A. Saturation stress in monotonic deformation in absence of damage

In this first section, we focus on the basic case of the single-crystal deformed monotonically

in tension. This constitutes as well-pose problem, for which reference experimental data

exists. The plastic response is mostly homogeneous during most of the deformation, in the

sense that the slip activity is similar in all part of the single-crystalline sample [37]. We will

see later that this basic plastic response can be connected to cyclic deformation.

First, to demonstrate the validity of the CP framework and its parametrization from

DDD results, we start with a one-to-one confrontation of the CP prediction with some of

the reference data from the experimental literature on single crystal deformation [30]. Such

experiments are rather delicate to perform as the materials state and experimental conditions

can have a dramatic impact on the mechanical response, such as the impurity content, the
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precise orientation of the sample, or whether the jaws can rotate to accommodate crystalline

rotation and ensure uniaxial deformation. Here, we compare our CP simulations with the

reference work from Takeuchi on Cu single-crystals for selected loading directions: [112],

[111] and [001] directions. The initial density was slightly adjusted in the simulations about

1012 m−2 to capture the initial flow stress.

This comparison is shown in Figure 1.a, where a nice quantitative agreement is found

between the simulations and the experimental reference data. The classical picture of the

response of the single crystal is recovered here. The initial hardening rate depends upon

the orientation and the number of slip systems activated simultaneously, e.g. in a increasing

order: [112], [111] and [001] having two, three and four slip systems activated simultaneously.

For [111] and [001] loading directions, these numbers of slips correspond to only half of the

six or eight possible slip systems as these are pairs of colinear interactions. The colinear

interaction is known to be a specific reaction among junctions, as it leads to the annihilation

of the intersecting segments of dislocations and is associated to a very large hardening due

to the shortening of mobile segments. DDD simulations have shown that when starting

with pairs of colinear systems, one of the colinear system will take over the other for [111] or

[001] simulations [38]. Another notable aspect of the single-crystal response is the anisotropic

onset of the stage III, when the dynamic recovery becomes noticeable. The dynamic recovery

of the [111] in particular is weaker, so much so that the [111] curve eventually crosses the

initially steepest [001] curve at a deformation of about 40% of plastic strain.

In agreement with the response of ductile materials, prior to the fracture of the sample,

the experimental flow stress decreases after a maximum corresponding to the striction of

the sample. This decrease is expectedly absent in the CP simulations as plastic localization

and fracture mechanics are not included. Fracture mechanics may be included in different

manner in FEM, for example using a cohesive zone framework [39, 40], in connection to

atomistic mechanisms controlling the debonding of matter [41–43]. For now, let us focus on

the plastic response in the absence of fracture mechanism. For a deformation corresponding

to the experimental fracture, the hardening rate in the simulations has still a non-zero value.

When recalling that equation 3 was proposed initially to saturate, the CP deformation curves

are thus expected to saturate at a larger deformation.

We thus expanded the deformation range until saturation of the stress is obtained, and

this is shown in figure 1.b for Cu. All curves saturate eventually, the corresponding deforma-
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tion at saturation is however rather large, even beyond 100% for the [001] and [111] curves.

The saturation stress in monotonous condition τsat,mo follows the following hierarchy, with

the single glide condition [135] having the smallest saturation stress of 28 MPa, [112], [001]

and [111] having the largest τsat,mo = 140 MPa. Since yc is material independent for the

[135] and [112] curves, the τsat,mo for these curves scales nicely with the shear modulus of

the considered materials. This saturation stress values will be exploited a bit further.

From a theoretical point of view, this saturation stress observed in the simulation can

be predicted from the set of constituting ODE of the CP framework. The starting point is

obviously the dislocation density evolution that has to be set to zero. In the case of single

glide the resolution is straigthforward leading to:

ρsat,I =

√
a′0

K2
I y

2
c,I

(7)

The stable multislip conditions are a bit less straightforward to solve as the interaction

coefficient exhibit a dependence upon the dislocation density inherited from the simplified

line tension that is assumed in the critical stress equation [28, 44]. When the dislocation

density is large this correction becomes important, which is the case at the large satura-

tion stresses under consideration here. The logarithmic correction is defined as c(ρi) =

ln
(
1/b

√
aijρj

)
/ ln

(
1/b
√
aijρref

)
, where ρref is the reference dislocation density used to de-

termine the interaction coefficient aij. The saturation density is now:

ρsat,hkl =


√
a′0

KIyhkl
+

√
(nact − 1)āc(ρi)

Khklyhkl

2

(8)

where nact is the number of activated systems. This equation is an implicit equation for ρi,

but since the density is contained in a logarithm function, this equation converges after only

few iterations to evaluate ρsat. Finally, the saturation stress is obtained in inserting the ρsat

into the critical stress:

τsat = µb
√
ānactρsat (9)

In the past equations, the saturation stresses are solely function of interaction coefficients,

MFP and y. In the model, these quantities are defined from statistical averages over evolv-

ing dislocation microstructures, and are weakly impacted by the nature of the fcc system

under consideration (at least not as a first order approximation). The initial dislocation

microstructure or density are absent from these equations. The saturation stresses appear
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Figure 2. The saturation shear stress τsat,cy for cyclic deformation in fcc metals measured in a

number of experimental studies [4–10] compared to the prediction of the CP model in [13, 21] and

to the theoretical saturation stress in monotonous conditions from previous section. Data is shown

as function of the loading direction: a) initially single glide condition, b) [001] and c) [111] for Cu,

Ni and Ag and the plastic strain increment γp,cy

thus as a fundamental dislocation property representing the balance of storage and recovery

processes among dislocations in fcc crystals.

An approximate solution for the evolution ρi(γi) is provided in the appendixes for single

and stable multislip conditions. Theses functions can be used to interpret or fit experimen-

tal data. In monotonous condition, the dislocation density increases monotonically until

saturation. The strain corresponding to the saturation density can be estimated from the

density evolution as an integral:

∆γi =
∫ ρsat

ρ0

1

b


√∑

aijρj

Khkl

+

√
a′0ρ

i

KI

− yρi
−1 dρi (10)

This only provides an estimation as the saturation density is only reached as γi tends to

+∞. We now recover a dependence upon the initial dislocation density ρ0 that affects the

amount of deformation required before saturation.

B. Saturation stress in cyclic deformation in single crystals

The CP framework can be applied to alternating loadings and the simulations capture

most of the features of cyclic deformation [10, 45]. The maximum stress reached at each

cycle increases monotonically until spontaneously saturating. For example in single glide
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conditions, we recover the so-called three stage curves of the now saturation stress in cyclic

deformation τsat,cy with respect to the shear increment per cycle γp,cy. This is shown in figure

2.a for some fcc metals in comparison with most of the existing experimental literature [4–

10]. In the central plateau (or pseudo plateau) the microstructure typically transform from

no Persistent Slip Band (PSB) to progressively fully constituted of PSB [10, 45]. The plateau

ends for strain increments of the order of 1% when a secondary slip system activates. In the

CP simulations, the center region of the curve is not exactly a plateau as it exhibits a slight

slope.

Figure 2.b and 2.c show the saturation stress for cyclic deformation of Cu and Ni single

crystals oriented along [001] and [111] in stable multislip conditions. The saturation stress

τsat,cy increases here monotonically without the presence of stages. The slope of the exper-

imental curves seems however to decrease as the strain increment per cycle γp,cy increases.

This effect is more apparent on the data concerning Ni single crystals. The CP predictions of

the τsat,cy are in nice qualitative and quantitative agreement with the existing experimental

data. The CP predictions seem however to overestimate the saturation stress at larger γp,cy,

and this was suggested to be a consequence of the absence of dislocation microstructure in

the CP simulations [13].

The saturation stress τsat,cy can be also obtained from the analytical resolution of the

set of ODE presented in section 2. The resolution is however a bit more delicate with the

presence of the two reversible functions ra and rp that are themselves function of γi and the

dislocation density ∆ρi stored on the previous cycle. In cyclic deformation, we highlight that

the saturation stress does not mecessary correspond to an horizontal tangent of the shear

strain-shear stress curves of the considered cycle (except in the large γp,cy limit discussed

a bit further). At the end of a cycle at saturation, the hardening may well be non zero,

but wince the cycle starts with a large dislocation density decrease, the increment over the

entire cycle is null. To obtain the saturation density, one has to solve the integrated density

evolution function:

∆ρi = 0 =
∫ γp,cy/nact

0

1

b


√∑

aijρj

Khkl

+

√
a′0ρ

i

KI

− yρi
 dγi (11)

Therefore, the dislocation evolution ρi(γi) must be solved first contrary to the monotonous

case. This can be done if the logarithm correction is approximated as a Taylor series where

the dislocation ρi in the current cycle is in the proximity of ρisat. The details are given in
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the Appendixes. The resolution leads once more to an implicit equation to obtain ρisat.

Next, we connect the saturation stresses obtained in monotonous and cyclic deformation.

Previous section has shown that the saturation stress in monotonous conditions can be

obtained for rather large deformation amount. These saturation stress results could thus be

drawn as well on the figure 2 for one cycle of the corresponding amount γp,cy. One would

expect that the τsat,mono would act as an asymptotic limit to the τsat,cy curves. This is exactly

what is obtained when considering the case of single glide condition. The saturation stresses

obtained in single glide and monotonous conditions in previous section are strikingly close

to the saturation stress at the plateau in cyclic conditions. The τsat,cy curves obtained from

experiments or from the CP simulations asymptotically converge towards τsat,mono.

When now considering the third stage of the curves in figure 2.a or the multislip condi-

tions in figure 2.b and 2.c, the agreement with experiments is a bit less obvious. The CP

simulations are carried out past the range of γp,cy considered in the experiments. Similarly

to the single glide condition, the simulated τsat,cy curves converges towards the τsat,mono limit

defined in previous section. In figure 2.a, the third stage converges certainly toward the

τsat,mono in secondary double glide, that is probably out of reach. The agreement with the

experimental data is rather good for the case of Cu. However, the quantitative agreement

between with the model is a bit less good for Ni single crystal data, nonetheless the exper-

imental data seem to enter a plateau for the largest γp,cy considered experimentally, which

could be well agree with the analysis proposed here, but not the quantitative values of the

saturation stress. The τsat,mono being here overestimated in the model due maybe because

of some specific parameters less well documented for Ni, such as yhkl or the stronger impact

of microstructures that are absent in the model.

C. Saturation stress in polycrystals

This last section aims at connecting our results on the single crystal to the more complex

and general polycrystalline system. What comes next is simply an illustration as the plastic

response of the polycrystals is the average of many different features or elementary mech-

anisms that are not addressed here, ranging from the crystallographic texture, grain size

and morphology, and dislocation-grain boundary interactions. Besides, simulating using CP

FEM the cyclic deformation over more than 10,000 cycles while accounting for the a rep-
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Figure 3. compilation of saturation stresses obtained experimentally on polycrystalline Cu with

large grain size [46] as function of strain increment ∆εp,cy. The data covers the work from Sax-

ena and Antolovich (1975, squares), Figueroa et al. (1981, circles), Mughrabi and Wang (1981,

triangles) and Rasmussen and Pederson (1980, diamonds)

resentative polycrystalline microstructure seems computationally out of reach, still to date.

This being said we reprise a part of the analysis initiated by Magnin et al. in [46], where

they compiled the cyclic response of polycrystalline Cu with relatively large grains. The

collection of saturation stresses σsat from the literature is displayed in figure 3. These curves

typically show an increase in the σsat with the plastic increment per cycle εp,cy, some curves

may suggest a quasi plateau regime starting for εp,cy > 10−5 and ending around εp,cy ≈ 10−3.

The deformation microstructures transform from veines to PSB that are typical of the pat-

terns observed in single glide conditions in single crystals. For εp,cy >≈ 10−3, the saturation

stress increases more rapidly. The deformation microstructures now correspond to mazes,

that are typical of the patterns observed in single-crystals deformed in multislip conditions.

The polycrystalline plastic response can be understood in terms of effective single-crystal

response through the so-called Taylor coefficientM , which depends upon the crystallographic

texture. The so-called Hall-Petch effect is neglected and this is a valid assumption in the

case of large grain polycrystals. In the absence of precise M measures, the Taylor or Sachs

hypothesises are commonly considered as bounding limits. The figure 4 shows theses two

transformations of the polycrystal saturation stress into a single crystal approximation as
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Figure 4. Comparison of the cyclic saturation shear stress of single crystals and polycrystals in

pure Cu from Mughrabi [47] and Wang using the Taylor coefficient following the procedure from

Magnin et al. [46].

τsat = σsat/M . The Sachs is typically a good approximation at small strain, while the Taylor

approximation works well at large strain. The average single crystal behaviour is expected

to follow Sacks approximation first and transition to the Taylor ones at larger deformation.

These curves will be compared with the saturation stress obtained experimentally on single

crystals. At small strain, one might expect that grains in the polycrystal deform in sin-

gle glide condition as suggested by the dislocation microstructures, and we see a sticking

agreement between the single crystal τsat and the Sachs approximation for εp,cy < 5.10−4.

For very small strain, so grains may remain in the elastic regime. For large deformation,

one might expect that all grains to deform in multislip conditions, in accordance with the

maze microstructure observed experimentally, and the [001] curve in particular remains be-

tween the two approximations. Between these two extreme situations, the polycrystalline

behaviour is certainly a composite response of the single glide and multislip grain activity,

with more and more grains transitioning into multislip as γp,cy is increased.

These correlations may thus explain the shape of the raw σsat curves from the previous

figures. Most grains of the polycrystals are thus following the single crystal response, which

will eventually reach a saturation stress corresponding to τsat,mono of 28 MPa. The plateau in
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the single-crystal system is transformed in a quasi-plateau in the polycrystalline system as

more grains transition into multislip conditions. At large εp,cy = εIII ≈ 10−3 the polycrystal

enters stage III where most of the grains are deformed in multislip conditions. Interestingly,

the curves for single slip and [001] obtained for the single crystal cross for a deformation

≈ MγIII = M ∗ 3e−3 that corresponds well to the onset of the third stage εIII observed

in the figure 4. The cyclic behaviour of the polycrystal with large grains seems thus to

correspond simply to the average of the individual single grain behaviour, similar to what

is accepted for polycrystals in monotonic deformations.

Finally going back to our CP framework, we showed that its predictions were in quan-

titative agreement with the single crystal cyclic response, and we proposed expressions to

predict the saturation stress in these conditions. The previous qualitative analysis means

that we can use these results to estimate the saturation stress of the polycrystal with large

grains as well.

IV. CONCLUSION

In this paper, we employ a physically based CP FE model derived from our recent DDD

analysis [13, 21] to analyse the saturation stresses obtained in monotonic and cyclic defor-

mations of single-crystals and polycrystals of fcc metals.

• First, we compare the model results to reference strain-stress deformation curves from

the experimental literature on Cu single-crystals. In the absence of plastic localization

and fracture mechanism, the CP model expectedly saturates at large strain.

• For cyclic deformations, the CP model reproduces the cyclic saturation over various

loading conditions and fcc metals. The saturation stress observed in monotonic con-

ditions acts as an asymptotic behaviour at large cycle increment strain γp,cy to the

cyclic deformation. This asymptotic behaviour is clearly reached in the plateau stage

of single-glide conditions for several fcc metals and for Ni single crystals in multi-slip

conditions at large strain increment.

• From an analysis of the experimental literature on large grain polycrystals, we have

shown that the polycrystalline response to cyclic deformation corresponds to the re-

sponse of an aggregate of effective single-crystals. At small strain increment, grains
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are deformed elastically or in single slip, a quasi plateau can thus be sometimes seen

as in single-crystals. Then at larger strain, grains transition into multislip conditions

with larger saturation stresses.

• We proposed analytical or approximated solutions of the CP ODE to predict the

saturation stresses in single or multislip conditions for single crystals. These models

can be employed to interpret experimental data.

• These results were obtained in the absence of plastic localisation and dislocation mi-

crostructure, which means that these features have only a secondary order impact on

the macroscopic behaviour.

• The saturation stress in monotonic or cyclic conditions appear as a fundamental prop-

erty of dislocations mechanism as it is simply related to averages of dislocations inter-

actions (through the interaction coefficients), dynamical recovery mechanism (through

y), and reversibility part of the microstructure.

• These quantities are phenomenological averages from DDD, where large number of

binary interactions are occurring in absence of patterns.

• Experimental data on the saturation stress can thus now be used to define these

physical quantities and the procedure can be applied to other bcc or hcp crystalline

systems.
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