
HAL Id: hal-03916659
https://hal.science/hal-03916659

Submitted on 30 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic Edge Multicast Routing for the XRP
Network

Vytautas Tumas, Sean Rivera, Damien Magoni, Radu State

To cite this version:
Vytautas Tumas, Sean Rivera, Damien Magoni, Radu State. Probabilistic Edge Multicast Routing
for the XRP Network. IEEE Global Communications Conference (GLOBECOM’22), Dec 2022, Rio
de Janeiro, Brazil. �hal-03916659�

https://hal.science/hal-03916659
https://hal.archives-ouvertes.fr

Probabilistic Edge Multicast Routing
for the XRP Network

Vytautas Tumas
SEDAN - SnT

University of Luxembourg
Luxembourg, Luxembourg

vytautas.tumas@uni.lu

Sean Rivera
SEDAN - SnT

University of Luxembourg
Luxembourg, Luxembourg

sean.rivera@uni.lu

Damien Magoni
LaBRI - CNRS

University of Bordeaux
Talence, France
magoni@labri.fr

Radu State
SEDAN - SnT

University of Luxembourg
Luxembourg, Luxembourg

radu.state@uni.lu

Abstract—The XRP Ledger relies on a trusted set of validator
nodes to advance the ledger history. Nodes use flood-based broad-
casting to disseminate messages. Flooding offers strong message
delivery guarantees at the cost of high network utilisation caused
by duplicate messages.

In this paper, we present pemcast, an application layer algo-
rithm for efficient one-to-many message routing. The algorithm
leverages limited topology awareness and application layer multi-
casting to deliver messages in the network. The evaluation shows
that compared to flooding and gossiping algorithms, pemcast can
maintain similar reliability whilst generating significantly less
redundant traffic.

Index Terms—Blockchain, broadcast, multicast, routing, XRP.

I. INTRODUCTION

XRP Ledger is one of the oldest well-established cryp-
tocurrencies. XRP, its native token, ranked sixth by market
capitalisation, in August 2022. Unlike Proof of Work protocols
used in Bitcoin or Ethereum, the XRP Ledger relies on trust-
based validation to advance the ledger history. As a result, it
can handle up to 1,500 transactions per second [1].

The XRP network consists of independent servers that fall
into two categories: validator or tracking servers. Tracking
servers process candidate transactions from clients and prop-
agate them through the network. Validator servers perform
tracking server tasks and work with other validators to advance
the ledger version.

The servers use a broadcast algorithm to disseminate mes-
sages. When a server receives a new message, it forwards
(by flooding) it to all nodes except the sender. Flood-based
protocols are reliable as they explore every path in the net-
work. However, they generate numerous duplicate messages.
Naumenko et al. [2] reveal that up to 44% of Bitcoin network
traffic is redundant.

Gossip protocols reduce the amount of redundant traffic gen-
erated while propagating messages in the network. The term
”gossip protocol” was coined by Alan Demers in 1987 [3],
who was studying methods to disseminate information in
unreliable networks. Gossip protocols were extensively studied
at the beginning of the century. Due to the advances in
blockchain technology [4], [5], they are receiving a renewed
interest.

In a typical gossip-based algorithm, a node sends a message
to a random subset of its 1-hop neighbours. The size of the
set is often called a fanout. Leitao et al. [6] showed a trade-
off between the fanout and protocol reliability and an inverse
correlation between fanout and message redundancy.

In this paper, we propose a novel probabilistic multicast ap-
plication layer routing algorithm - pemcast. It relies on partial
network views (neighbourhoods) and multicasting to distribute
messages with less redundant traffic. Our key contributions are
as follows:
• We propose a novel application layer routing algorithm

which uses limited topology awareness and application
layer multicasting to achieve efficient message routing.

• We designed distinct metrics to evaluate the performance
of pemcast, flooding and probabilistic broadcast algo-
rithms.

• We conduct an experimental evaluation using the existing
XRP network topology. We demonstrate that pemcast
in comparison to flooding and gossip-based protocols,
can: (1) propagate a message to multiple targets whilst
generating fewer duplicates, (2) send the message to
fewer nodes not involved in the broadcasting of a message
to a given destination.

We arrange the remainder of this paper as follows. In
Section II, we discuss existing probabilistic broadcasting so-
lutions. In Section III, we describe the algorithm and discuss
the methods to reduce network flooding. In Section IV, we
evaluate pemcast, and discuss the simulation results. We
conclude and discuss future work in Section V.

II. RELATED WORK

Bimodal Multicast [7] was one of the pioneering works to
combine multicasting and gossiping to disseminate messages
in large-scale distributed systems.

The algorithm has two stages: (1) the message is sent using
IP-Multicast, and (2) participants engage in gossip routing to
deliver messages lost in the first stage. This approach has well-
known drawbacks. IP-Multicast is not widely deployed [8].
Furthermore, the algorithm uses two different protocols, which
introduces unnecessary complexity.

Lightweight Probabilistic Broadcast [9] (lpbcast), is a de-
centralised probabilistic broadcast algorithm. Nodes maintain

a local view of a fixed size whose members they obtained
randomly. When every node in the network is known by
multiple other nodes fault tolerance is preserved.

Scribe [10] is an application layer multicast infrastructure
built on top of a Pastry [11] overlay network. Scribe uses
multicast groups with multiple senders. Scribe constructs a
distribution tree for each group. In the tree, some nodes serve
as rendezvous points and root of the multicast tree. Non-root
nodes are aware of their parent node and actively monitor
the health of that node. Such an approach requires regular
heartbeat messages from the root node to notify its children
that it is still alive, which generates a high number of control
messages when they are not piggy-backed on data messages.

GossipSub [5] is a publish-subscribe messaging system. It
constructs an overlay network (mesh) per topic. Messages are
broadcasted in the mesh. Furthermore, nodes gossip informa-
tion about the messages they have to nodes not part of the
mesh. The actual messages are cached so that nodes receiving
the gossip can request the messages with a control request.

Distributing messages via routed spanning trees is another
popular method. [12]–[14]. These algorithms rely on a central
node in the network to behave as a root of the spanning tree.
However, this introduces a central failure point.

In 2019, Craig et al. implemented a forwarding state reduc-
tion mechanism for multi-tree multicast by using Bloom filters.
However, their proposal only works in Software Defined
Networks [15].

In 2021, Newport et al. designed an asynchronous algorithm
to implement a new gossip strategy in smartphone-based peer-
to-peer networks. [16]. It is one of the most recent papers on
gossiping. However, it targets periodic communication, which
is not the case in the XRP network.

III. PROBABILISTIC MULTICAST ROUTING

A. Algorithm Design

1) Goals: We designed pemcast with three goals in mind:
1) Minimise the number of duplicate packets created whilst
delivering a message. We consider a message duplicate when
some node u receives it more than once. 2) Reasonable length
paths to the destination node lead through a subset of nodes in
the network. Our goal is to reduce the portion of the network
explored during message propagation. 3) It is inevitable that
nodes in the network will fail, and the neighbourhood view
will become stale. Messages must be delivered even when
there are inactive nodes (as defined below) in the network.

On the one hand, typical multicast protocols based on a
shared tree or source-rooted trees would significantly reduce
the amount of traffic. On the other hand, trees have a high
convergence time recovering from failures and must hold
numerous memory states. In addition, only a single path
exists between any two nodes in the tree. A node could
easily interfere with traffic to a given destination. Probabilistic
multicast ensures that a message travels to the destination
across multiple paths. For these reasons, we do not consider
tree-based techniques, and we do not evaluate such protocols
in Section IV.

SB

A

E

C

F

G J D

I

Neighbourhood
of S

Neighbourhood
of D

Neighbourhood Edge
Nodes

r = 2
f = 3

H

Dead end Node

Fig. 1: Example network.

2) Assumptions: We make several assumptions about the
behaviour of the nodes. 1) The nodes are not Byzantine faulty.
A node can either receive a message and respond to it correctly
or not respond at all. 2) The nodes can be either active
or inactive. An active node correctly executes the protocol.
An inactive node does not respond to received messages.
Furthermore, other nodes are not aware of its state.

3) Overlay Network: Formally we define the network in
which pemcast is running as an unweighted, bi-directional
simple graph G = (V,E), where V is a finite set of nodes u,
and E ⊂ V ×V a set of links connecting the nodes. A unique,
cryptographically secure identifier identifies each node. Peers
(i.e., 1-hop neighbours) of u are nodes with which u has a
direct link P (u) = {v|{u, v} ∈ E}.

Each node in the network maintains a view of all nodes up
to r hops away. The view is called neighbourhood of u, and
r is its radius. neighbourhood of u is rooted in u, we define
it as Nr(u) = {v|dv(u) 6 r}; r is the upper bound on the
shortest path length, and dv(u) is the length of the shortest
path between nodes u and v. neighbourhood edge is a set of
nodes in the neighbourhood that are exactly r hops away or
are end-vertices.

We illustrate a neighbourhood in Figure 11. A neigh-
bourhood of node S has a radius of 2. N2(S) =
{A,B,C,E, F,G,H}, and the edge nodes are {B,E,G,H}.
Note that G belongs to the neighbourhood of both S and D.

4) neighbourhood maintenance: When a new node N ′

joins the network, N ′ builds its local neighbourhood. Nodes
up to r hops away from N ′ add it to their neighbourhood.
When N ′ leaves the network, other nodes remove it from their
neighbourhoods.

A membership discovery algorithm is responsible for man-
aging this process. The details of these algorithms are outside
the scope of this paper. Instead, we defer the reader to previous
works [17]–[19].

5) Control Parameters: pemcast is controlled by two pa-
rameters fanout and neighbourhood radius.
• Fanout affects the number of neighbourhood edge nodes

selected by the sender at each multicasting step. The
trade-off is between reliability and redundancy. Higher

1For simplicity, we have omitted highlighting neighbourhoods of all other
nodes in the network.

values increase the reliability at the cost of increased
redundant traffic.

• neighbourhood radius controls the maximum length of
the shortest path from the root node to every other node in
the network. Higher values create larger neighbourhoods,
which reduce the amount of traffic. However, large neigh-
bourhoods will have a high membership maintenance
cost.

pemcast execution consists of two phases. (1) Path Discov-
ery - during which a message is transmitted from an arbitrary
source node to some destination node using a combination of
multicasting and source routing. (2) Path Establishment - the
fastest discovered path to the destination is fixed in place.
Subsequent messages between the source and destination
nodes travel across this path. In the rest of this section, we
discuss the phases in more detail.

Algorithm 1: Select edge nodes at node u

1 targets← ∅
2 edgeNodes← edgeNodes()
3 for |targets| < fanout ∧ !edgeNodes.empty() do
4 node← edgeNodes.popRandom()
5 path← neighbourhoodShortestPath(node)
6 if |path| < neighbourhoodRadius then
7 continue
8 if path.contains(m.sender) ∨
9 path.contains(m.source) then

10 continue
11 targets[path[0]].append(path[lpath − 1])

12 return targets

B. Path Discovery
During path discovery, a node can have one of the following

roles: Source (S) - a node from which the message originates.
Destination (D) - the final recipient of the message. Sender
- node that multicasts the message to the edge of its neigh-
bourhood. Receiver - a node on the neighbourhood edge that
receives the message. Forwarder - any node simply forwarding
the message.

A unique path ID PIDSD identifies a path between source
and destination nodes. The path ID uniquely combines the
source and destination node IDs, irrespective whether the
message is traveling from S to D or D to S..

Nodes maintain two path tables: pending paths and estab-
lished paths. Both tables use the path ID for indexing. The
Pending Paths table holds candidate paths between a source
and destination nodes. For example, the pending paths table for
node F for PIDSD is [(S,G), (S,H)]. The Established Paths
table holds confirmed paths. For example, PIDSD → (S,G).

Entries in both tables expire after a period of inactivity.
Entries in the established paths table expire when a node does
not observe any messages. Similarly, entries in the pending
paths expire when the path is not confirmed.

Nodes maintain a view of nodes up to r number of hops
away. The neighbourhood is stored as a graph. The graph
allows nodes to retrieve paths to other nodes in their neigh-
bourhood. In the remainder of this section, we describe node
roles in greater detail.

1) Source Node: The role of the source node S is to deliver
message m to the destination node D. If a path between S and
D exists in the Established Paths table, S sends the message
over it. Otherwise, S initiates the path discovery process.

If S finds at least two paths between itself and D in its
neighbourhood, S routes the messages over every found route.
Otherwise, S proceeds to multicast the message as follows.

The source node constructs multicast sub-trees for a subset
of neighbourhood edge nodes, as depicted in Algorithm 1.
First, S selects neighbourhood edge nodes. Next, until a
fanout number of target nodes are selected, S picks a random
candidate node and computes the shortest path to it. S skips
the candidate node if (1) the path’s length is shorter than the
neighbourhood radius, implying the node is a dead-end, or (2)
the path contains the source or the sender nodes. Otherwise,
S adds the candidate to the set of targets. A single entry in
targets is a mapping (peer, destinations), from some peer P
of S, to a list of edge nodes that can be reached through P .
For example, for node S this could be (F, [G,H]), as both G
and H nodes are reached via F .

Once S constructs the multicast sub-trees, it sends the
messages as depicted in Algorithm 2. For each mapping m,
the source node prepares a new message, sets its destinations
field to m.destinations, sends the message to m.peer, and
finally adds an entry to the list of potential paths.

2) Forwarder Node: A node determines its role in message
handling by checking whether its identifier is in the destina-
tions field of a message. If the identifier is present, the node
behaves as a receiver, and forwarder otherwise.

The forwarder node is responsible for forwarding messages
to their respective destinations. For each entry in the message’s
destinations field, the forwarder: (1) computes the shortest
neighbourhood path to it, (2) computes a multicast mapping,
as outlined in Algorithm 1, and (3) forwards a copy of the
message to the next node on the path.

3) Receiver Node: The node behaves as a receiver when
its identifier is present in the destinations field of a message.
The receiver has two tasks: (1) to unicast the message to the
final destination node if it is a member of the forwarder’s
neighbourhood. (2) to multicast the message to the edge of its
neighbourhood by executing Algorithms 2 and 1

C. Path Establishment

When the destination node D receives a message addressed
to itself, it responds with a path acknowledgement, which
is sent back to S via the reverse path. Each node on the
reverse path executes Algorithm 3 upon receiving a path
acknowledgement message. First, a node retrieves the pending
path entry from the Pending Paths table using the path and
sender IDs. The sender ID is the identifier of the node that
sent the acknowledgement. It identifies which pair of nodes
were involved in forwarding the message from the source to
the destination. One of the nodes in the pair is always the
Sender ID. Next, the node forwards the path acknowledgement
message to the peer, which is not the sender. For example,
node F has a pending path entry (S,G). When F receives a

path acknowledgement from G, it will know to forward the
message to S. Finally, the node moves the confirmed entry to
the Established Paths table and removes it from the Pending
Paths table.

D. Minimising Flooding

In this section, we discuss how the algorithm design ad-
dresses redundant traffic.

1) Effects of the neighbourhood: When the destination
node is in the neighbourhood of some node u, the node can
terminate the multicasting process and proceed to route the
message directly to the destination. The neighbourhood’s size
impacts how soon the message can be routed directly to the
destination. Furthermore, multicasting the packet to the edge
of the neighbourhood reduces the volume of created traffic. By
multicasting, the forwarder nodes only propagate the message
to selected peers. Therefore, they do not introduce redundant
copies of the message to the network. As a result, nodes can
use higher fanout values than traditional gossip algorithms
without creating duplicate packets.

Algorithm 2: Multicasting path request message m
from node u to the edge of Nn(u)

1 targets← selectEdgeNodes(m)
2 foreach t ∈ targets do
3 m′ ← copy(m)
4 m′.destinations← t.destinations
5 sendMessage(m′)
6 pID ← newPathID(m.source,m.destination)
7 addPendingPath(t.peer, pID)

2) Message Cycling: The pemcast algorithm uses pseudo-
random nonce numbers to uniquely identify messages. Upon
receiving a message, a node determines whether it has recently
seen a message by consulting its cache. In case of a cache
hit, either the message is looping, or it travelled over multiple
paths and is therefore not on the fastest path. In either scenario,
the node will drop the message. During path confirmation,
cycling is not possible as the message travels on the reverse
path. The nonce mechanism enables nodes to drop duplicate
messages and prevents message cycles without running a
control plane algorithm.

In this section, we provided a detailed description of pem-
cast. Next, we discuss the experimental evaluation setup and
explore simulation results.

Algorithm 3: Handling of path reply message m in
node u

1 IDp ← newPathID(m.source,m.destination)
2 pendPath← getPendingPath(IDp,m.sender)
3 next← pendPath.from = m.sender ?

pendPath.to : pendPath.from
4 m′ ← copy(m)
5 m′.sender ← IDu

6 m′.target← next
7 sendMessage(m′)
8 Estu[IDp]← pendPath
9 Pndu[IDp]← ∅

IV. EXPERIMENTAL EVALUATION

The goal of the experimental evaluation is to determine how
well pemcast achieves the goals outlined in Section III. In the
remainder of this section, we evaluate pemcast.

A. Metrics

We used the following metrics to evaluate the performance
of the algorithm:
• Reliability is the percentage of successful message de-

liveries. A value of 100% indicates that the protocol
delivered every message sent. A flood-based algorithm
will achieve a 100% delivery as long as at least one path is
available to the destination. Note that we do not consider
message loss due to network or transport layer failures.

• Relative Message Redundancy [6] (RMR) captures
message overheads of a routing protocol. It is expressed
as (m/n−1)−1, where m is the total number of messages
sent and n is the number of nodes that participated in
delivering the message. A zero value indicates that each
node sent exactly one message. An increase in value
indicates a poorer utilisation of the network. Low RMR
may indicate a failure to establish a path. Therefore, it
should be followed by a high-reliability value.

• Path Stretch is a ratio between the length of the found
path and the shortest path. A value of one indicates that an
algorithm found the shortest path. Greater values indicate
path stretch.

• Network Explored is the percentage of nodes that re-
ceived a message. A zero value suggests that the message
did not visit any nodes in the network (and therefore was
not sent). A value of 100% indicates that all nodes in the
network received the message.

B. Experimental Setup

1) Algorithms: There are many variations of gossip and
flooding algorithms, too vast to benchmark against each.
Instead, we compare the performance of pemcast to that of
flood-based broadcast and probabilistic broadcast algorithms
as outlined below.

We selected flood-based broadcast as it provides the highest
reliability at the expense of efficiency. We implemented the
algorithm as follows: After receiving a message, a node
forwards it to all of its peers except the sender. The node
ignores the message if it has processed it before. The algorithm
terminates when the destination node receives the message.

Probabilistic broadcasting (pbcast) is a widely used mech-
anism to distribute messages in a peer-to-peer network. Thus
it is vital to compare its performance to pemcast. The basic
implementation of the probabilistic algorithm is as follows:
Each node randomly selects a fanout number of peers and
forwards the message to them. Nodes repeat this process until
the destination node receives the message. There is a high
variety [20] of optimisation and peer sampling strategies. We
chose the minimalist implementation of the algorithm, which
accurately represents the baseline behaviour of the algorithm.

Inactive Node Percentage

M
es

sa
ge

 D
el

iv
er

ey

90

92.5

95

97.5

100

0 5 10 15 20 25 30 35 40

flood pbcast pemcast

Reliability

(a) Protocol Reliability
Inactive Node Percentage

R
M

R

0

200

400

600

800

0 5 10 15 20 25 30 35 40

flood pbcast pemcast

Relative Message Redundancy

(b) Protocol Relative Message Redundancy

Fig. 2: Protocol performance comparison

2) Simulator: In order to evaluate pemcast we implemented
a discrete event simulator2. The simulator triggers a message
propagation event. The event is to deliver a message from a
randomly selected, active source node to a randomly selected
set of active destination nodes. Multiple destination nodes
simulate communication to a group of trusted validator nodes.
As of September 2021, the recommended trusted list of
validators contained 41 nodes [21]. A single iteration of the
simulator is complete when there are no more events to be
processed. The simulator iterates until it reaches a 5% Relative
Statistical Error in all the metrics outlined previously for a
95% confidence level. We performed the experiments using
the XRP Network topology. The network contains 849 nodes
and 8,136 edges and has a mean degree of 19.1, with an SD
of 42.

3) Control Parameters: We use a range of different con-
figuration parameters for the experiments. First, to accurately
measure the effects of fanout between pemcast and pbcast
we express it as a percentage of peers or neighbourhood
edge nodes to which to send the message. The fanout ranges
from 10% to 95%. Due to the network’s density, we use a
neighbourhood radius of two for pemcast. Finally, up to 40%
of nodes in the network were randomly set as inactive.

Due to size limitations, we discuss only the fanout, which
produced the highest reliability. 55% and 90% for pemcast
and pbcast respectively. In the remainder of the section, we
compare the performance results of the algorithms in the XRP
network.

C. Reliability

We compare the reliability of all three algorithms in Fig-
ure 2a, together with relative message redundancy in Fig-
ure 2b. The pemcast algorithm achieves 100% reliability in
a network with up to 10% of inactive nodes. When 40% of
nodes are inactive, reliability drops to 99%. pemcast achieves
this reliability whilst maintaining an RMR between 50 and
12. We measured these numbers with a fanout of 55%. Higher
fanout values showed no improvement in reliability.

In contrast, pbcast achieves marginally better reliability,
between 100% and 99.9% with a fanout of 90%. However, the

2https://bitbucket.org/vytautastumas/pblearn/src/master

RMR is significantly higher, between 671 and 224, slightly
lower than the flood-based algorithm. Smaller fanout value
results in smaller RMR. For example, a fanout of 55% results
in RMR between 409 and 132. However, the reliability drops
down to between 99% and 93%.

As expected, the flood-based algorithm achieves 100%
reliability with up to 40% of inactive nodes. However, the
RMR is the highest: 742 in a fully active network and 250
when 40% of nodes are down.

Our proposed routing algorithm achieves a marginally
(0.9%) lower reliability than pbcast and flooding. However,
the amount of generated redundant traffic is significantly
lower, 14 times lower than flooding and 13 times lower
than pbcast. The experimental evaluation shows that we have
successfully achieved the goals of reducing redundant traffic
and maintaining acceptable reliability even when 40% of nodes
in the network are down. Next, we compare the overheads of
the algorithms.

D. Overheads

All algorithms come with overheads, pemcast is no excep-
tion. Figure 3a depicts the stretch ratio between the established
path and the shortest path. We calculate the shortest path
using Dijkstra’s Algorithm, considering only active nodes. The
flood-based algorithm has little impact on the path length. It
guarantees to find the shortest path as the algorithm finds all
routes to the destination.

The impact of both pbcast and pemcast is insignificant. The
pemcast algorithm achieves this by performing neighbourhood
routing. It enables a node to route a message directly to the
destination when it is present in the node’s neighbourhood.
Due to the dense nature of the XRP network, the neigh-
bourhoods are large, with around 500 nodes. Therefore, the
probability of sending a message directly to the destination is
high.

It is well established [6] that there is a clear trade-off
between reliability and network exploration. Intuitively, in the
presence of inactive nodes, as we explore more of the network,
the higher the probability of finding a path to the destination.
We show this in Figure 3b. The figure depicts the percentage of
the network explored to achieve the reliability rates discussed
in Section IV-C. Messages sent by the flooding algorithm reach

Inactive Node Percentage

Pa
th

 S
tr

et
ch

0.990

0.995

1.000

1.005

1.010

0 5 10 15 20 25 30 35 40

flood pbcast pemcast

Path Stretch

(a) Path Stretch Comparison. As flooding guarantees to find the
shortest available path, the path stretch is 1

Inactive Node Percentage

N
et

w
or

k
E

xp
lo

re
d

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

flood pbcast pemcast

Network Explored

(b) Percentage of the Network Explored

Fig. 3: Protocol overhead comparison

100% of nodes in the network. This behaviour is expected.
Each node forwards the message to each of its peers (except
the sender). Therefore, the message reaches every node in
the network. To achieve high-reliability pbcast has to use
a high fanout value. As a result, messages reach 99% of
nodes. In contrast, messages distributed with pemcast reach
between 82% and 73% of nodes. By multicasting messages
to the edge of the neighbourhood, the algorithm can see a
higher percentage of the nodes in the network without directly
sending messages to them. The experimental results show that
we also achieved the second goal of visiting a minimal portion
of the network.

V. CONCLUSIONS AND FUTURE WORK

With the advent of blockchain technology, probabilistic
broadcasting has been attracting renewed research interest to
improve communication efficiency. In this paper, we proposed
a novel probabilistic, multicast, application layer routing al-
gorithm called pemcast. It uses local topology awareness to
increase routing efficiency whilst maintaining high reliability.
Simulation results show that, compared to flooding and prob-
abilistic broadcasting, pemcast: (1) can establish a path whilst
sending fewer messages, (2) provides established paths which
are closer to the shortest path, in comparison to probabilistic
broadcasting, (3) explores a smaller portion of the network.
Indeed, pemcast requires one order of magnitude fewer mes-
sages than the typical broadcasting techniques. A critical piece
of our future work is to evaluate the performance of pemcast
as the communication protocol for the XRP network.

ACKNOWLEDGMENT

This work was financially supported by Ripple UBRI.

REFERENCES

[1] I. Amores-Sesar, C. Cachin, and J. Mićić, “Security analysis of ripple
consensus,” arXiv preprint arXiv:2011.14816, 2020.

[2] G. Naumenko, G. Maxwell, P. Wuille, A. Fedorova, and I. Beschastnikh,
“Erlay: Efficient transaction relay for bitcoin,” in ACM SIGSAC Confer-
ence on Computer and Communications Security, 2019, p. 817–831.

[3] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” in 6th ACM Symposium on Principles
of Distributed Computing, 1987.

[4] N. Berendea, H. Mercier, E. Onica, and E. Rivière, “Fair and efficient
gossip in hyperledger fabric,” CoRR, vol. abs/2004.07060, 2020.
[Online]. Available: https://arxiv.org/abs/2004.07060

[5] D. Vyzovitis, Y. Napora, D. McCormick, D. Dias, and Y. Psaras,
“Gossipsub: Attack-resilient message propagation in the filecoin and
eth2.0 networks,” 2020.

[6] J. Leitão, J. Pereira, and L. Rodrigues, Gossip-Based Broadcast.
Boston, MA: Springer US, 2010, pp. 831–860. [Online]. Available:
https://doi.org/10.1007/978-0-387-09751-0 29

[7] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and
Y. Minsky, “Bimodal multicast,” ACM Trans. Comput. Syst., vol. 17,
no. 2, p. 41–88, May 1999.

[8] C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen, “Deploy-
ment issues for the ip multicast service and architecture,” IEEE Network,
vol. 14, no. 1, pp. 78–88, 2000.

[9] P. T. Eugster, R. Guerraoui, S. B. Handurukande, P. KOUZNETSOV
Distributed Programming Laboratory, A.-m. Kermarrec, and A.-M. Ker-
marrec, “Lightweight Probabilistic Broadcast,” Tech. Rep. 4, 2003.

[10] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “Scribe: a
large-scale and decentralized application-level multicast infrastructure,”
IEEE Journal on Selected Areas in Communications, vol. 20, no. 8, pp.
1489–1499, 2002.

[11] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems,” 2001.

[12] G. Malavolta, P. Moreno, A. Kate, and M. Maffei, “Silentwhispers:
Enforcing security and privacy in decentralized credit networks,” 2017.

[13] S. Roos, M. Beck, and T. Strufe, “Anonymous addresses for efficient and
resilient routing in f2f overlays,” in 35th IEEE International Conference
on Computer Communications, 2016.

[14] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg, “Settling
payments fast and private: Efficient decentralized routing for path-based
transactions,” 2017.

[15] A. Craig, B. Nandy, and I. Lambadaris, “Forwarding state reduction for
multi-tree multicast in software defined networks using bloom filters,”
in IEEE International Conference on Communications, 2019.

[16] C. Newport, A. Weaver, and C. Zheng, “Asynchronous gossip in
smartphone peer-to-peer networks,” in 17th International Conference on
Distributed Computing in Sensor Systems, 2021.

[17] A. Ganesh, A. Kermarrec, and L. Massoulié, “Scamp: Peer-to-peer
lightweight membership service for large-scale group communication,”
in Networked Group Communication, 2001.

[18] S. Voulgaris, D. Gavidia, and M. van Steen, “Cyclon: Inexpensive
membership management for unstructured p2p overlays,” J. Network
Syst. Manage., vol. 13, pp. 197–217, 06 2005.

[19] J. Leitao, J. Pereira, and L. Rodrigues, “Hyparview: A membership
protocol for reliable gossip-based broadcast,” in 37th IEEE/IFIP Int’l
Conf. on Dependable Systems and Networks, 2007, pp. 419–429.

[20] D. Gutiérrez-Reina, S. L. T. Marı́n, P. Johnson, and F. Barrero, “A survey
on probabilistic broadcast schemes for wireless ad hoc networks,” Ad
Hoc Networks, vol. 25, pp. 263–292, 2015.

[21] “XRP Validators,” Oct 2020, [Online; accessed 21. Sep. 2021].
[Online]. Available: https://xrpcharts.ripple.com/#/validators

