
HAL Id: hal-03916653
https://hal.science/hal-03916653

Submitted on 30 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Highly Parallelizable Algorithm for Routing With
Automatic Tunneling

Noureddine Mouhoub, Mohamed Lamine Lamali, Damien Magoni

To cite this version:
Noureddine Mouhoub, Mohamed Lamine Lamali, Damien Magoni. A Highly Parallelizable Algorithm
for Routing With Automatic Tunneling. 2022 IFIP Networking Conference (IFIP Networking), Jun
2022, Catania, Italy. pp.1-9, �10.23919/IFIPNetworking55013.2022.9829784�. �hal-03916653�

https://hal.science/hal-03916653
https://hal.archives-ouvertes.fr


A Highly Parallelizable Algorithm for Routing With
Automatic Tunneling

Noureddine Mouhoub
LaBRI - CNRS

Université de Bordeaux
Talence, France

noureddine.mouhoub@u-bordeaux.fr

Mohamed Lamine Lamali
LaBRI - CNRS

Université de Bordeaux
Talence, France

mohamed-lamine.lamali@u-bordeaux.fr

Damien Magoni
LaBRI - CNRS

Université de Bordeaux
Talence, France

damien.magoni@u-bordeaux.fr

Abstract—Most current routing protocols are based on path
computation algorithms in graphs (e.g., Dijkstra, Bellman-Ford,
etc.). These algorithms have been studied for a long time and
are very well understood, both in a centralized and distributed
context, as long as they are applied to a network having a
single communication protocol. The problem becomes more
complex in the multi-protocol case, where there is a possibility
of encapsulation of some network protocols into others, therefore
inducing nested tunnels. The classic algorithms cited above no
longer work in this case because they cannot manage the protocol
encapsulations and the corresponding protocol stacks. In this
work, we propose a highly parallelizable algorithm that takes into
account protocol encapsulations as well as protocol conversions
in order to compute shortest paths in a multi-protocol network.
To achieve this computation efficiently, we study the transitive
closure between sub-paths (i.e., the concatenation of two sub-
paths to obtain a longer one) in the case where each sub-
path induces a protocol stack, and thus tunnels. Leveraging on
Software-Defined Networks with a controller having a highly
parallel architecture enables us to compute the routing tables
of all nodes in a very efficient way. Experimentation results on
both random and realistic topologies show that our algorithm
outperforms the previous solutions proposed in the literature.

Index Terms—Path computation algorithms, Routing algo-
rithms, Tunneling

I. INTRODUCTION

Nowadays, the number of communication protocols1 rapidly
grows due to the regular appearance of new technologies.
Besides the classical case of IPv4/IPv6, new technologies
such as the Internet of Things (IoT), introduce new protocols
such as AODV in the Zigbee stack or RPL in 6LowPAN
networks. Moreover, some technologies based on Software
Defined Networking (SDN), such as P4 [1], virtually allow
the creation of any desired new protocol.

In this context, protocol interoperability is crucial for
ensuring connectivity (and thus communication). There are
mainly two methods to enable connectivity in this context:
i) protocol conversion, ii) protocol encapsulation. The first
method converts the header format of a given protocol into
another header format that belongs to a different protocol
(e.g., proxy, dual-stack [2], NAT-PT [3], NAT-64 [4], etc.). The

1In order to avoid any confusion between communication protocol and
routing protocol in the rest of this paper, we refer to the former by the single
word protocol, while the latter is explicitly stated as routing protocol.

second method encapsulates a packet from a given protocol
into another packet, i.e., putting a whole packet of a protocol
(data and header) into the data field of another protocol, and
performing the reverse operation (called decapsulation) later,
i.e., to extract the inner packet from the data field of the
outer one. These operations induce the creation of tunnels, that
may be nested, i.e., several packets are then encapsulated in
others in some defined order. Tunnels are extensively used in
current networks. Besides protocol interoperability, they are
also used for security purposes (e.g., IPsec, Onion routing),
in Virtual Private Networks, etc). We call these transforma-
tion functions (conversion, encapsulation and decapsulation):
adaptation functions.

Figure 1 illustrates a network where IPv4 and IPv6 protocols
coexist. In the top path between nodes S and D (in green),
node U1 encapsulates an IPv4 packet into an IPv6 packet, thus
inducing a protocol stack, i.e., the stack of headers (IPv4.IPv6)
(from the bottom to the top of the stack). The node U4

performs the reverse operation by decapsulating the inner IPv4
packet from the outer IPv6 one. The subpath from U1 to U4

is a tunnel. The whole path allows the communication from
S to D. We call such a path a feasible path. In contrast, in
the bottom path (in black), node U2 converts an IPv4 packet
into an IPv6 one. However, U4 is not able to transmit an IPv6
packet as it is. Thus, D cannot be reached from S. We call
such a path an unfeasible path.

Unfortunately, the computation of paths (i.e., routing) in net-
works with tunnels is not yet fully automated. Although sev-
eral attempts at automation have taken place (e.g., Teredo [5],
6over4 [6], 6to4 [7], TSP [8], ISATAP [9], etc.), they do not
entirely solve the problem. In fact, most of these methods
require access to a Domain Name system (DNS) or another
dedicated server. In such servers, the routes are pre-computed.
Moreover, they are not necessarily optimal in terms of path
cost. Above all, none of them are able to automatically deter-
mine the exit points of the various tunnels. This task is done
either by manual configuration or by pre-computation. We
advocate that the simplest solution is to compute the shortest
paths with tunnels (including entry and exit points) directly
by the routing protocol. Such a solution would allow full
automation and rapid path recalculation. The routing protocol
instances, which run continuously, could adapt to events of



S

U1

can encapsulate
IPv4 in IPv6

U2

can convert
IPv4 to IPv6

U3

can only
transmit IPv6

U4

can decapsulate
IPv4 from IPv6

D

IPv4

IPv4

IPv6
IPv4

IPv6

IPv6
IPv4

IPv6

IPv4

Fig. 1: Example of a network encompassing IPv4 and IPv6 protocols. The top path in green is feasible, and contains a tunnel
from U1 to U4. The bottom path in black is not feasible. The protocol stack specific to each path is shown next each outgoing
link.

topology changes. Thus, an efficient approach is to design path
calculation algorithms which take into account encapsulations
and conversions. Only a few algorithmic related works tackle
this problem [10], [11], [12], [13], [14], [15], [16].

These works will be discussed in Section II-B. They are all
centralized except the last one, which is fully distributed. The
authors of [16] propose a Stack-Vector algorithm (called SV
in the rest of this paper) inspired by the classical Bellman-
Ford one. However, SDN technology with powerful and par-
allel architecture controllers is widely deployed nowadays.
Thus, it would be interesting to design a parallel algorithm
that takes full advantage of the computational power and
the high parallelism of SDN controllers. In contrast to a
fully distributed context, one of the main advantages of a
parallel context is that each node2 can access the routing
table of any other node in the network, thanks to a shared
memory. While in a fully distributed context, a node can
only have knowledge of the routing table of its neighbors
through message exchanges. Leveraging on this advantage,
a parallel algorithm would be able to perform a transitive
closure, i.e., computing a path by concatenating two (or more)
subpaths. This operation may drastically accelerate the routing
tables’ computation. However, in paths with (possibly nested)
tunnels, the concatenation of two subpaths does not always
result in a feasible path. For example, a subpath ending before
a tunnel endpoint cannot be concatenated with a subpath
starting after a tunnel endpoint. Figure 2 illustrates such
cases. They are discussed in Section II-C. Thus, one should
carefully distinguish when a transitive closure (concatenation)
is possible.
Our contributions:
• We study the transitive closure operation in paths en-

compassing several protocols and with (possibly nested)
tunnels;

• We design a highly parallelizable algorithm, called Tran-
sitive Closure algorithm (or TC for short) based on

2As will be shown later in the paper, in our solution, each node is
implemented as a thread in the controller.

this study. Our algorithm merges some ideas of the SV
algorithm [16] with the transitive closure operation;

• We compare our TC algorithm with two parallelized
versions of the SV algorithm through extensive experi-
mentation on both random and realistic topologies. The
results show that our new TC algorithm outperforms the
two other solutions.

The paper is organized as follows. Section II details the
problem and discusses the related work. Section III presents
the formal model that we use and formalizes the problem
that we aim to solve. In Section IV, we first recall the SV
algorithm presented in [16], then we study the transitive
closure operation and when it can be applied to subpaths.
Based on this study, we present our TC algorithm and how
it computes the routing tables. Section V shows the results
of the extensive experimentation of our TC algorithm and
two parallelized implementations of the SV algorithm. These
results show that our algorithm outperforms the other solutions
in terms of processing time while being as efficient. Finally,
Section VI concludes the paper and gives some new research
perspectives.

II. PATH COMPUTATION WITH TUNNELING

A. Some Properties of Feasible Paths with Tunnels

Recall that our goal is to design a highly parallelizable
algorithm that computes the shortest feasible paths (if any)
from each node of the network to all the others, i.e., the All-
Pairs Shortest Paths (APSP). Path computation in networks
encompassing adaptation functions, i.e., several protocols and
conversion/encapsulation capabilities, cannot be performed by
using classical path computation algorithms (e.g., , Dijkstra,
Bellman-Ford, Floyd-Warshall, etc.). These algorithms do not
take into account the adaptation functions. Moreover, shortest
paths in such networks have several nontrivial properties:
• They may contain cycles [10], [11], [12];
• They can have exponential length in the size of the

network and the number of protocols [15];
• They do not have an optimal substructure, i.e., a sub path

of a feasible path may be not feasible;



• The height of the protocol stack along a shortest feasible
path is quadratic in the number of nodes in the worst
case [16].

These properties require new algorithmic ideas to tackle the
problem of path computation in such networks.

B. Related Work

The authors of [11] propose the first algorithm tackling this
problem. They show that the problem is NP − hard under
bandwidth constraints. They propose a Breadth-First Search
(BFS) algorithm which explores all possible paths in a brute-
force approach. This algorithm is exponential in the worst case
(independently of the path length). The authors of [12] propose
a polynomial algorithm (w.r.t. the network size and the shortest
path length) in the case having no bandwidth constraint.
Their solution is based on a language theory approach and
it allows to compute the optimal path between two nodes
by minimizing either the number of hops in the path or the
number of adaptation functions. In [13], the authors propose a
matrix model and some associated algorithms for solving the
problem of shortest paths having a length of at most k. The
proposed algorithms are exponential and they do not allow the
computation of paths containing cycles. In [14], the authors
widely generalize the work of [12]. Their algorithm computes
the shortest path according to any additive metric chosen by
the user (weighted links, weighted adaptation functions, etc.).
They also propose (polynomial) heuristics to compute the
shortest path under bandwidth constraints. They generalize
the work of [17] to propose an exponential algorithm that
computes the shortest feasible path under several Quality of
Service (QoS) constraints. All these works propose centralized
algorithms. Moreover, these algorithms compute paths but not
routing tables. Thus, they are only suitable for source routing.
The first fully distributed algorithm to resolve the problem
is proposed in [16]. It is a generalisation of the Bellman-
Ford algorithm, a distance-vector algorithm, hence the name
Stack-Vector (SV) algorithm. The main idea is to propagate
the distance (as in Bellman-Ford) but also the protocol stack.
Each node sends a message to its neighbors to inform them
that it can reach a destination at some distance if the received
packet has some protocol stack. Since cycles are possible, the
algorithm termination is guaranteed by the maximum height of
a protocol stack (see Section II-A). This algorithm is adapted
to hop-by-hop routing since it builds routing tables for each
node. The endpoints of the tunnels in some feasible paths are
automatically computed during the path computation process
and they are stored in the routing tables. We briefly summarize
this work in Section IV-A.

C. Transitive Closure of Paths

Our main idea to improve the SV algorithm is to extend
the propagation of the routes. While in the latter case, this is
done by adding a hop at each round through messages sent by
each node to its neighbors, we aim at directly concatenating
subpaths. If a source node (say S) has a route to a destination
D, and D has a route to D′, then we can try to build a route

S D D D′ ⇒ S D D′

IPv4 IPv4 IPv4 IPv4

(a) Concatenation of subpaths in a single protocol network.

S D D D′ ⇒ S D

can decapsulate
IPv4 from IPv6

D′

IPv6
IPv4

IPv4 IPv6
IPv4

IPv4

(b) Possible concatenation of subpaths in a network with IPv4 and IPv6.

S D D D′ ⇒
IPv6
IPv4

IPv4
IPv6

(c) Impossible concatenation of subpaths in a network with IPv4 and IPv6.

Fig. 2: Some cases of (im)possible concatenation of subpaths.

from S to D′. But this first requires that S has access to the
routing table of D in order to know which destinations D can
reach. If S and D are not neighbors, this operation is very
costly to carry out by sending messages in a fully distributed
context. But in a parallel context, several CPUs can compute
independently and can communicate through message passing
and shared memory. Thus, we can design an algorithm where
any node can access the routing tables of the other nodes. This
is possible by leveraging SDN technology based on a highly
parallel architecture of controllers.

However, besides the usual synchronisation issues inherent
to any parallel algorithm, we have to deal with the condi-
tions allowing the concatenation of two subpaths. Figure 23

illustrates some of these issues. As seen in Figure 2a, if the
network uses only one protocol, the concatenation is possible.
Thus a path from S to D and another from D to D′ lead to a
path from S to D′. This is a classical transitive closure used
in graph theory, for example by the Floyd-Warshall algorithm.
Figure 2b depicts a case where, in the route from S to D, the
latter receives a packet with the protocol stack (IPv4.IPv6),
i.e., an IPv4 packet encapsulated in an IPv6 one. And in
the route from D to D′, node D must send an IPv4 packet
(without other nested ones) in order to reach D′. Fortunately,
D has the adaptation function that decapsulates an IPv4 packet
from an IPv6 one. Thus, when receiving the packet with the
(IPv4.IPv6) protocol stack, it can extract the inner IPv4 packet
and thus send it to D′. Again, the route from S to D′ is
obtained by concatenation. However, it should be specified
in the routing table of D that, when it receives a packet
with the protocol stack (IPv4.IPv6) at destination to D′, it
must perform the suited decapsulation. In contrast, Figure 2c
illustrates a case where concatenation is impossible. In the
route from S to D, node D receives a packet with protocol
stack (IPv6.IPv4), while in the route from D to D′, node
D must send a packet with the protocol stack (IPv4.IPv6) in
order to reach D′. Node D is not able to convert the protocol
stack (IPv6.IPv4) into (IPv4.IPv6). Thus, concatenating these
two subpaths is impossible. In Section IV-B, we study the

3Note that these examples do not always depict feasible paths. We present
them only for illustration purposes of the issues of subpath concatenation with
tunnels.



conditions allowing to perform a transitive closure. Moreover,
we will see that associating transitive closure with some ideas
found in the SV algorithm can be of high benefit.

III. MODEL AND DEFINITIONS

In this section, we use the same network model with several
protocols and possible tunnels as the one defined in [15], [16].
It is very generic and can model most use cases. Table 4
summarizes the main notations and definitions.

A. Network Model

In our context, a network is a 4-tuple N = (G,A,F ,w),
where G = (V, E) is a symmetric directed graph (a link UV
exists if and only if the link V U exists) representing the
network topology with n nodes (routers) and m links. The
set of neighbors of node U is denoted by Nei(U). We do not
distinguish predecessor and successor nodes since the directed
graph is symmetric. A = {a, b, ...} is the finite set of protocols
(e.g., IPv4 and IPv6) available in the network. The number
of protocols is denoted by λ. The set In(U) (resp. Out(U))
denotes the set of protocols that a node U can receive (resp.
send).

We denote by F the set of adaptation functions (conversion,
encapsulation and decapsulation) available in the network and
by F(U) the set of adaptation functions available on node U ,
i.e., that U can perform.

The weight function w : V × F × V → R+ can model any
additive cost. The value of w(U, f, V ) is the cost of performing
the adaptation function f on U and then transmitting the
packet on the link (U, V ). Its sum over a path is the cost
that we want to minimize. It is very generic as it can model
the number of hops (by putting w(U, f, V ) = 1 for all
the possible triples), or the number of encapsulations (by
putting w(U, f, V ) = 1 when f is an encapsulation and
w(U, f, V ) = 0 otherwise), etc.

There are three types of adaptation functions:

• Conversion: the header of a packet of protocol a is
transformed into the header of another protocol b. It is
denoted by (a→ b). If the received and emitted packets
are of the same protocol, i.e., a classical transmission, it
is denoted by (a → a). Thus, we consider a classical
transmission as a special type of conversion;

• Encapsulation: the whole packet of protocol a is en-
capsulated in the data field of a packet of protocol b.
It is denoted by (a → ab). Note that a packet can be
encapsulated in another one of the same protocol, such
as for IP-in-IP (i.e., RFC 1853 and RFC 2003). In this
case, the function is simply denoted by (a→ aa);

• Decapsulation: a packet of protocol a is extracted from
the data field of a packet of protocol b, this is the
reverse operation of (a→ ab), and thus it is denoted by
(a→ ab). Note that this operation can be performed only
if the received packet of protocol b effectively contains a
packet of protocol a in its data field.

We denote by f the reverse function of f . For example, if
f = (a → b) then f = (b → a). The reverse function of an
encapsulation is the corresponding decapsulation.

B. Protocol Stack

A sequence of adaptation functions f0f1 ... f` induces a
protocol stack. For example, on Figure 3b, the sequence
(a → a)(a → b)(b → ba)(a → a) induces the stack ab (top
on the right). This sequence implicitly started with a protocol
stack containing only a. If we apply the same sequence to
the protocol stack ba, we obtain the stack aba. We denote by
f(H) the application of adaptation function f to stack H . For
example, if f is the decapsulation (a→ ab) and H = bab,
then f(H) = ba. The outer protocol b is removed and the
inner one (protocol a) is extracted, without any change to the
underlying protocols that are still nested (here the bottom b).
The height of a stack H (the number of protocols in H) is
denoted by h(H).

Applying an adaptation function to a protocol stack is not
always possible. For example, on Figure 3a, it is impossible to
apply f = (b→ ba) to stack H = a since there is no nested
(packet of) protocol b in H . In such cases, we denote the
resulting stack by f(H) = ∅, where ∅ is called the forbidden
stack. For any adaptation function f , we have f(∅) = ∅. This
means that there is an impossibility to apply an adaptation
function at some point of a path and thus there is no way to
continue through this path.

Definition 1. A protocol stack H` induced by a sequence of
adaptation functions f0f1 ... f`, is recursively defined by:
• H0 = x if f0 = (x→ x)
• H` = f(H`−1)

C. Feasible Paths

We define a path as a mixed sequence of nodes and
adaptation functions Sf0U1f1 ... U`f`D. Each node Ui applies
the adaptation function fi in the path, except the source node
S that applies a dummy function f0 = (a→ a), which means
that S emits packets of protocol a.

Definition 2. A path P = Sf0U1f1 ... U`f`D from a node S
to a node D is feasible if and only if:
• The sequence of nodes SU0U1 ... U`D is a directed path

in G = (V, E);
• Each fi ∈ F(Ui) (1 ≤ i ≤ `);
• The protocol stack H` induced by the sequence f0f1 ... f`

is of height 1, i.e., does not contain nested protocols, and
the only (header of) protocol that it contains, denoted by
H` = xDin can be received by D, i.e., xDin ∈ In(D).

The cost of a feasible4 path P = Sf0U1f1 ... U`f`D from
node S to node D is the sum of the weights of its links and
its adaptation functions. It is denoted by

w(P) def
=

∑̀
i=0

w(Ui, fi, Ui+1)

4The cost of an unfeasible path is not defined.



S

b→ b

U1

b→ a

U2

b→ ba

U3

a→ a

U4

b→ ba

D

b a a
(a) An unfeasible path.

S

a→ a

U1

a→ b
a→ a

U2

b→ ba

U3

a→ a

U4

b→ ba

D

a b
a
b

a
b b

(b) A feasible path with a cycle.

Fig. 3: Example of an unfeasible path and a feasible path with a cycle.

Notation Description Defined in
N A multi-protocols network Section III-A
G A symmetric directed graph Section III-A
V The set of nodes Section III-A
E The set of links Section III-A
A The set of protocols Section III-A
F The set of adaptation functions Section III-A
n The number of nodes Section III-A
m The number of links Section III-A
λ The number of protocols Section III-A

In(U) The protocols that a node U can receive Section III-A
Out(U) The protocols that node U can send Section III-A
F(U) The set of adaptation functions of node U Section III-A
Nei(U) The neighbors set of node U Section IV-A

f The reverse function of the adaptation function f Section III-A
w(U, f, V ) The weight of the link (U, V ) performing the function f Section III-A
h(H) The height of a protocol stack H Section III-B
∅ The forbidden stack Section III-B

w(P) The cost of the path P Section III-C
TU The routing table of node U Section III-D
xDin The last protocol in a feasible path, e.g. received by D Section III-D
hmax The maximum stack height Section V

SV-MP The stack-vector algorithm with message passing Section V
SV-SM The stack-vector algorithm with shared memory Section V

TC The transitive closure algorithm Section V
Adaptation function Section III-A

Protocol stack Section III-B
Feasible path Section III-C
Routing table Section III-C

Fig. 4: Table of notations.

where S = U0 and D = U`+1.

D. The Feasible Path Computation Problem and Routing
Tables

Recall that our goal is to compute the shortest feasible path
from any node to any other one (if such a path exists), i.e.,
for each ordered pair of nodes (S,D) we aim to compute the
feasible path (if any) P that minimizes w(P). We also want
to use hop-by-hop routing. Thus, the real goal is to compute
the routing tables that correspond to these paths. The rows of
a routing table must contain the following information:
• D: the destination to reach;
• H: the protocol stack needed to reach D;
• c: the cost of the remaining path to reach D;
• V : the next hop to reach D;
• f : the adaptation function to perform at U before sending

a packet to the next hop;

• xDin: the protocol received by the destination D.
The last item is not needed by the SV algorithm, but it is
useful for our TC algorithm in order to concatenate subpaths.

Thus, a routing table TU of node U is a set of rows,
each one being a 6-tuple (D,H, c, V, f, xDin). This means
that when receiving a packet with a protocol stack H to
destination D, node U applies f to H , then sends the message
(D, f(H), packet) to V . The pair (D,H) is the access key
to the routing table, since if U receives another packet at
destination to D but with another protocol stack H ′, the
corresponding shortest path may be different.

IV. TRANSITIVE CLOSURE ALGORITHM

A. Stack-Vector Algorithm

We summarize here the main ideas of the SV algorithm [16].
It consists in the following steps:
Initialization. It starts by an initialisation step where each
node U sends to its neighbors the message (U, x, 0). This
means that node U can reach itself (destination = U ) if it
receives a packet of any protocol x ∈ In(U). It is a classical
initialisation step as in the Bellman-Ford algorithm, except that
the protocol that can be received is specified.
Routing table construction. The general form of messages is
(D,H, c), meaning that the sender V can reach the destination
D at cost c if it receives a packet with protocol stack H .
When receiving such a message, a receiver U tries to know
if it is able to send a packet with protocol stack H . It is
able to do so only if it has an adaptation function f ∈ F(U)
and if it receives a packet with a protocol stack H ′ such that
f(H ′) = H . In other words, it can itself reach D at cost
c+ w(U, f, V ) if it receives a packet with a stack f(H).

Thus, each row of the routing table TU of node U is a 5-
tuple (D,H, c, V, f). It means that, in the routing process, if U
receives a packet with a protocol stack H and destination D, it
applies f to H then it sends the packet to the next hop V . The
cost of this route is c. The access key to the routing table is
the pair (D,H). Thus, when U receives a message (D,H, c),



it first selects the adaptation functions f ∈ F(U) such that
f(H) 6= ∅. If there is no entry in its routing table with key
(D, f(H)), it adds the row (D, f(H), c + w(U, f, V ), V, f).
Otherwise, it compares to the cost c′ found in the existing entry
and it replaces it by the new row only if c′ > c+w(U, f, V ),
i.e., the new route cost is better then the old route one. The
termination of this algorithm is guaranteed by the fact that
in a shortest path between two nodes (if any), the protocol
stack along the path never exceeds λn2 [16]. Thus, the nodes
do not send messages (D,H, c) where h(H) > λn2, and the
algorithm stops at some round.

S Un−1 Un

can decapsulate
a from b

D

round 2 round 1

a
b
a

Fig. 5: Path propagation in the SV algorithm.

Figure 5 illustrates the SV algorithm. At round 1 (the
initialization step) node D sends a message to its neighbors,
for example Un, informing it that it can reach itself at cost
0 if it receives a packet of protocol a, i.e., the message
(D, a, 0). At round 2, Un checks its adaptation functions,
f = (a→ ab) in this example. Thus, it can reach D if it
receives the stack f(a) = ab. Then it sends to its neighbors
the message (D,H ′, w(Un, f,D)) where H ′ = ab. And so
on.

This algorithm is fully distributed, and thus de facto paral-
lelizable. In Section V, we implement it in two versions. In
both versions, the local algorithm corresponding to each node
is a thread. In the first version, communication is performed
through message passing between the threads. In the second
one, each node accesses the routing table of its neighbors via
a shared memory (instead of receiving messages).

B. Transitive Closure of Subpaths
In order to explain our solution, we first slightly extend the

definition of a feasible path. In Definition 2, the first adaptation
function f0 = (x → x) is dummy. It simply states that
the source node sends packets of protocol x. Here, we also
consider paths where f0 is really applied by the source node
as feasible paths (if they comply with the other conditions of
Definition 2). For example, we accept that the path from D to
D′ on Figure 6 is feasible if we know what protocol it should
receive in order to apply f0, even if f0 is an encapsulation
(since the stack height increases after D). Our main idea is to
use the SV algorithm to compute some specific feasible paths,
then to use the transitive closure of these paths in order to
compute the remaining ones.

Let us consider again the path from D to D′ on Figure 6.
This path starts and ends with a protocol stack of height 1
(even if the stack height increases after the application of
the adaptation function of D, i.e., f0). It does not contain a
decapsulation followed by an encapsulation (separated or not
by conversions). We call such a path a valley-free path.

Thus our main idea is to use an SV-like algorithm to
construct valley-free paths. Since these paths start and end with

St
ac

k
he

ig
ht

Path length

S D D′

6 5 4

3 2

1

Fig. 6: Stack-Vector forwarding.

a protocol stack of height 1, they are considered as feasible in
the extended definition. The next step is then to concatenate
them, as depicted on Figure 7.

St
ac

k
he

ig
ht

Path length

S D D′

2 1 4

3 2

1

Fig. 7: Transitive Closure operation.

Algorithm 1 shows the initialization process of each node.
It is roughly the same as the one of SV algorithm, except that
the node has a direct access to the protocols x ∈ In(V ) for all
his neighbors V thanks to shared memory. It also computes
f(x) in order to know that if it receives a packet with protocol
stack H ′ = f(x) and destination V , then it must apply f in
order to reach D. Note that in the routing tables, for each pair
of destination and protocol stack (D,H), we keep the protocol
xDin, the protocol received by D on this route.

Algorithm 1 Initialization algorithm on node U
1: for all V ∈ Nei(U) do
2: for all x ∈ In(V ) do
3: for all f ∈ F(U) do
4: H ← f(x)
5: if H 6= ∅ then
6: c← w(U, f, V )
7: Add (V,H, c, V, f, x, 0) to TU

Algorithm 2 computes the valley-free feasible paths using
the ideas behind SV algorithm but with important changes:
• The node running the local algorithm directly accesses

the routing table of its neighbors;
• If h(H) 6= 1, it means that U is the starting point of a

valley-free feasible path. thus, it does not consider the
routes where h(H) 6= 1 (line 4) and stop propagating



them. We can see this difference on Figures 6 and 7.
Node D stops propagating the route to D′ when using
Algorithm 2 (Figure 7), while it propagates it when using
the original SV algorithm (Figure 6);

• The round i when a row is added to the routing table is
stored in the row itself (line 9).

Algorithm 2 Modified SV algorithm on node U
1: i← 1
2: repeat
3: for all V ∈ Nei(U) do
4: for all (D,H, c, xDin) ∈ TV and h(H) 6= 1 do
5: for all f ∈ F(U) do
6: H ′ ← f(H)
7: if H ′ 6= ∅ and h(H ′) ≤ λn2 then
8: c′ ← c+ w(U, f, V )
9: Add (D,H ′, c′, V, f, xDin, i) to TU

10: i← i+ 1
11: until no routing table has been modified

When all the valley-free feasible paths are computed (e.g.,
from S to D and from D to D′ on Figure 7) thanks to
Algorithm 2. The last step is to perform the transitive closure
of these paths.

Figure 8 depicts the two possible cases that we may face
in the concatenation process. In the first case (Figure 8a), the
incoming protocol in D in the route from S to D is a, while
the incoming protocol in D to reach D′ is b. These paths
cannot be concatenated. On the other hand (Figure 8b), the
incoming protocol in D is the same in the route from S to
D and in the route from D to D′. Here the concatenation is
possible. Algorithm 3 describes this operation. The round i is
stored for optimization purpose, since at each round we only
have to check the routes added at the previous round.

S D D D′ ⇒
b a b b

(a) Impossible concatenation.

S D D D′ ⇒ S D D′

a b b a a b a

(b) Possible concatenation.

Fig. 8: Transitive closure of feasible paths.

V. EXPERIMENTS

We performed experiments in order to evaluate the perfor-
mance of the algorithms defined in Section IV. We have used
both random and realistic (i.e., sampled maps) topologies. The
three following algorithms were implemented5:

1) The SV algorithm [16] was implemented with message
passing between the threads and named SV-MP;

2) The SV algorithm was implemented with shared mem-
ory and named SV-SM;

5Each local algorithm on a node is implemented as a thread.

Algorithm 3 Transitive closure algorithm on node U
1: i← 1
2: repeat
3: for all (D,H, c, V, f, xDin) ∈ TU and h(H) = 1 do
4: for all (D′, H ′, c′, xD

′

in ) ∈ TD and h(H ′) = 1 do
5: if H ′ = xDin then
6: c′′ ← c+ c′

7: H ′′ ← H
8: Add (D′, H ′′, c′′, V, f, xD

′

in , i) to TU
9: i← i+ 1

10: until no routing table has been modified

3) Our TC algorithm was implemented with shared mem-
ory and named TC.

A. Setup and Configurations

The implementation has been developed in ISO C++14 with
the help of the Igraph 0.8.0 library 6 for generating random
graphs. The implementation of the distributed version is given
as follows: each node is simulated by a thread, and a directed
link (U, V ) is implemented as a queue where U can only write,
and V can only read. The simulations were performed on two
different hardware configurations. The sequential simulations
were executed on a Dell server equipped with a 6-core hyper-
threaded Intel Xeon E-2146G processors at 3.5GHz with 16GB
of RAM.The parallel experiments were executed on the Curta
cluster of the MCIA 7 which is equipped with 336 Lenovo
ThinkSystem SD530 compute nodes, each one having two 16-
core hyperthreaded Intel Xeon Gold SKL-6130 processors at
2.1 GHz with 96GB of RAM.In the implementation, each node
of the network has its own thread and reads/writes shared data
by using mutexes and condition variables. Enough compute
nodes were reserved in the cluster in order to ensure that
each simulated node’s thread gets one physical core. The
reservations of compute nodes were done as follows:

1) for the random 100-node topologies: 4× 32 cores
2) for the random 300-node topologies: 10× 32 cores
3) for the random 500-node topologies: 16× 32 cores
4) for the realistic 1k-node topologies: 32× 32 cores
The input parameters of each algorithm are: the number

of nodes n in the network, the probability p of availability
of an adaptation function, the number λ of protocols, and
the maximum stack height hmax, i.e., the maximum allowed
number of nested protocols at the same time. The output
metrics are: the % of feasible paths found and the convergence
time. All the result values presented in the following figures
are averaged over the result values of 100 runs.

B. Experimentation Results on Random Topologies

All the network topologies used for the experimentation
are graphs randomly generated by a preferential attachment
mechanism defined by Barabàsi and Albert in [18], where

6https://igraph.org/
7https://www.mcia.fr/



 0.01

 0.1

 1

 10

100 300 500 1000

C
o
n
v
e
rg

e
n
c
e
 t
im

e
 (

s
)

Network size

SV-MP
SV-SM

TC

(a) Probability p = 0.05

 0.1

 1

 10

 100

100 300 500 1000

C
o
n
v
e
rg

e
n
c
e
 t
im

e
 (

s
)

Network size

SV-MP
SV-SM

TC

(b) Probability p = 0.10

 1

 10

 100

100 300 500 1000

C
o
n
v
e
rg

e
n
c
e
 t
im

e
 (

s
)

Network size

SV-MP
SV-SM

TC

(c) Probability p = 0.15

Fig. 9: Convergence time of algorithms according to different parameters. Note the logarithmic scale on the y-axis.

each newly added node is attached to 3 existing nodes. For a
given number λ of protocols, there are 3λ2 possible adaptation
functions. Each adaptation function is made available on a
node with a given probability p.

1) Convergence Time: Figures 9a, 9b, 9c show the con-
vergence time of the three algorithms w.r.t. the network size
and the probability p of availability of an adaptation function
on each node. We can see that TC is the fastest algorithm
for all settings, followed by the SV-MP algorithm then SV-
SM algorithm. For example, when n = 1000, p = 0.1 and
hmax = 5, the processing time of TC algorithm is 287s while
that of SV-MP is 477s and that of SV-SM is 534s. Regarding
the % of paths found vs the maximum stack height, Figure 10
shows that, for the same values of n and p, only 54% of
ordered pairs of nodes are linked by a feasible path when
hmax = 3. The percentage of linked pairs increases to 60%
when hmax = 4. This means that new routes are found if we
allow a maximum of 4 nested tunnels at the same time instead
of only 3.

 0

 20

 40

 60

 80

 100

1 2 3 4 5

%
 o

f 
fo

u
n
d
 p

a
th

s

Maximum stack height

p=0.05
p=0.10
p=0.15

Fig. 10: Percentage of found paths in random network of 1000
nodes according to hmax and probability p.

C. Experimentation Results on Realistic Topologies

In order to construct realistic topologies, we have over-
lapped two Autonomous System (AS) maps collected by Route
Views 8 on November 1st, 2019. One map contains all the ASes
of IPv4 nodes, while the other contains all the ASes of IPv6

8http://www.routeviews.org/routeviews/

nodes. The overlapped ASes gives an IPv4/IPv6 multi-protocol
maps. The assembled AS-level topology has 67381 nodes
and 162369 links, where 73% of nodes are ASes containing
IPv4 nodes only, 1% of nodes are ASes containing IPv6
nodes only, and 26% of nodes are ASes containing dual stack
IPv4/IPv6 nodes. Furthermore, as this AS-level assembled map
is currently too big for running the implementation code of our
experimentation directly on it, we have sampled this map to
produce smaller ones in the range of a few thousand nodes.

Therefore, the realistic networks are generated from the as-
sembled topology described above, according to the following
steps:

1) We generate two sub-graphs called T1 and T2 of
1000 nodes by using an algorithm which samples the
assembled topology (defined as the source topology).
This algorithm is implemented in the Network Topology
Analysis and Internet Modeling tool called nem [19].
available as an open source software 9. The algorithm
is designed so that the characteristics of the sampled
topologies are similar to the original maps except for
the distances, eccentricities, and diameters which are
slightly reduced compared to the original ones.

2) We distribute the adaptation functions such that IPv4
(resp. IPv6) nodes can have only classical forwarding,
v4 → v4 (resp. v6 → v6). The IPv4/IPv6 nodes can
have a single set from: {v4 → v6, v6 → v4}, {v4 →
v4v6, v4→ v4v6}, {v6→ v6v4, v6→ v6v4}.

The average percentages of the distribution of the two
network protocols in the two generated topologies are as
follows:
• For network topology T1: 69.90% of nodes are IPv4 only

(resp. 0.6% IPv6 only) and 29.50% nodes are IPv4 and
IPv6.

• For network topology T2: 47.60% of nodes are IPv4 only
(resp. 0.7% IPv6 only) and 51.70% nodes are IPv4 and
IPv6.

The generated topologies have not the same protocol distribu-
tion because of the sampling algorithm behavior.

1) Convergence Time: Figures 11a and 11b show the con-
vergence time of the implemented algorithms on topologies T1

9https://www.labri.fr/perso/magoni/nem/



 0.1

 1

 10

 100

 1000

1 2 3 4 5 6 7 8

C
o
n
v
e
rg

e
n
c
e
 t
im

e
 (

s
)

Maximum stack height

SV-MP
SV-SM

TC

(a) Convergence time in T1.

 0.1

 1

 10

 100

 1000

1 2 3 4 5 6 7 8

C
o
n
v
e
rg

e
n
c
e
 t
im

e
 (

s
)

Maximum stack height

SV-MP
SV-SM

TC

(b) Convergence time in T2.

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6 7 8

%
 o

f 
fo

u
n
d
 p

a
th

s

Maximum stack height

T1
T2

(c) % of found paths in T1 and T2.

Fig. 11: Convergence time and percentage of found paths in network topologies T1 and T2.

and T2 respectively. They exhibit slightly different results. We
can see that in the T1 topology, TC is the fastest algorithm
when the maximum stack height is equal or above 3. It is
an order of magnitude faster when the maximum stack size
is equal or greater to 6. Below 3, TC is similar to SV-SM in
computation time. This is not an issue as we need a maximum
stack height higher than 3 to find more feasible paths.

2) Algorithm Effectiveness: Figure 11c shows the % of
paths found w.r.t. the maximum stack height. We can see
that increasing the height helps in finding more feasible paths
in both T1 and T2 topologies. We observe a diminishing
return when the height is equal or above 6. It is important
to notice that for a maximum stack height of 6 or more, the
TC algorithm takes roughly 20 sec for T1 and 100 sec for T2
to compute the feasible paths and routing tables while both
SV algorithms take around 110 sec for T1 and 300 sec for
T2. As the % of paths found is still increasing up to 60% for
T2 and 40% for T1 for heights of 6 or more, being able to
compute fast at these settings is an advantage.

VI. CONCLUSION

Networks encompassing several communication protocols
require the use of adaptation functions (conversion, encapsu-
lation, decapsulation) in some specific nodes for providing
reachability inside the network. Today, this is mostly per-
formed by manual configuration on those specific nodes. There
are no existing routing protocols currently able to automati-
cally compute shortest paths which include conversions and
tunnels. In this work, we propose a parallel algorithm able to
compute routing tables by using the transitive closure oper-
ation. Our algorithm offers a high degree of parallelization,
and enables using path concatenation (i.e., transitive closure)
whenever possible. It is particularly suited for SDN-managed
networks where the controller holds the full knowledge of the
network.

Regarding future work, we plan to investigate the compu-
tation and storage of multiple shortest paths for implementing
ECMP, of multiple paths for traffic engineering operations
such as load-balancing and backup paths, and to construct
and manage multicast trees. We also plan to use bigger and
more detailed network topologies for assessing further the
performance of our algorithm on other metrics.

ACKNOWLEDGEMENT

This work was funded by The French National Research
Agency - HÉRA project. Grant no.: ANR-18-CE25-0002.

REFERENCES

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
CCR, vol. 44, no. 3, pp. 87–95, 2014.

[2] E. Nordmark and R. Gilligan, “RFC 4213: Basic Transition Mechanisms
for IPv6 Hosts and Routers,” 2005.

[3] G. Tsirtsis and P. Srisuresh, “Rfc2766: Network address translation -
protocol translation (nat-pt),” USA, 2000.

[4] M. Bagnulo, P. Matthews, and I. van Beijnum, “RFC 6146: Stateful
NAT64: Network Address and Protocol Translation from IPv6 Clients
to IPv4 Servers,” 2011.

[5] C. Huitema, “RFC 4380: Teredo: Tunneling IPv6 over UDP through
Network Address Translations (NATs),” 2006.

[6] B. Carpenter and C. Jung, “Rfc2529: Transmission of ipv6 over ipv4
domains without explicit tunnels,” USA, 1999.

[7] B. Carpenter and K. Moore, “RFC 3056: Connection of IPv6 Domains
via IPv4 Clouds,” 2001.

[8] M. Blanchet and F. Parent, “RFC 5572: IPv6 Tunnel Broker with the
Tunnel Setup Protocol (TSP),” 2010.

[9] F. Templin, “RFC 5579: Transmission of IPv4 Packets over Intra-Site
Automatic Tunnel Addressing Protocol (ISATAP) Interfaces,” 2010.

[10] F. Dijkstra, B. Andree, K. Koymans, J. van der Ham, P. Grosso, and
C. de Laat, “A multi-layer network model based on ITU-T G.805,”
Comput. Netw., 2008.

[11] F. Kuipers and F. Dijkstra, “Path selection in multi-layer networks,”
Comput. Commun., vol. 32, no. 1, pp. 78–85, 2009.

[12] M. L. Lamali, H. Pouyllau, and D. Barth, “Path computation in multi-
layer multi-domain networks: A language theoretic approach,” Computer
Communications, vol. 36, no. 5, pp. 589–599, 2013.

[13] F. Iqbal, J. van der Ham, and F. Kuipers, “Technology-aware multi-
domain multi-layer routing,” Comput. Commun., vol. 62, no. C, pp. 85–
96, 2015.

[14] M. L. Lamali, N. Fergani, J. Cohen, and H. Pouyllau, “Path compu-
tation in multi-layer networks: Complexity and algorithms,” in IEEE
INFOCOM, 2016.

[15] M. L. Lamali, N. Fergani, and J. Cohen, “Algorithmic and complex-
ity aspects of path computation in multi-layer networks,” IEEE/ACM
Transactions on Networking, vol. 26, no. 6, 2018.

[16] M. L. Lamali, S. Lassourreuille, S. Kunne, and J. Cohen, “A stack-
vector routing protocol for automatic tunneling,” in IEEE INFOCOM,
2019, pp. 1675–1683.

[17] P. Van Mieghem and F. Kuipers, “Concepts of exact qos routing
algorithms,” IEEE/ACM Transactions on networking, vol. 12, no. 5, pp.
851–864, 2004.

[18] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[19] D. Magoni, “Network topology analysis and internet modelling with
nem,” International Journal of Computers and Applications, vol. 27,
no. 4, pp. 252–259, 2005.


