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BEYOND GÖLLNITZ’ THEOREM II: ARBITRARILY MANY PRIMARY COLORS

ISAAC KONAN

Abstract. In 2003, Alladi, Andrews and Berkovich proved a four parameter partition identity lying beyond

a celebrated identity of Göllnitz. Since then it has been an open problem to extend their work to five or more
parameters. In part I of this pair of papers, we took a first step in this direction by giving a bijective proof of

a reformulation of their result. We introduced forbidden patterns, bijectively proved a ten-colored partition
identity, and then related, by another bijection, our identity to the Alladi-Andrews-Berkovich identity.

In this second paper, we state and bijectively prove an
n(n+1)

2
-colored partition identity beyond Göllnitz’

theorem for any number n of primary colors, along with the full set of the
n(n−1)

2
secondary colors as the

product of two distinct primary colors, generalizing the identity proved in the first paper. Like the ten-colored

partitions, our family of
n(n+1)

2
-colored partitions satisfy some simple minimal difference conditions while

avoiding forbidden patterns. Furthermore, the
n(n+1)

2
-colored partitions have some remarkable properties,

as they can be uniquely represented by oriented rooted forests which record the steps of the bijection.

1. Introduction and Statements of Results

1.1. History. A partition of a positive integer n is a non-increasing sequence of positive integers whose sum
is equal to n. For example, the partitions of 7 are

(7), (6, 1), (5, 2), (5, 1, 1), (4, 3), (4, 2, 1), (4, 1, 1, 1), (3, 3, 1), (3, 2, 2), (3, 2, 1, 1),

(3, 1, 1, 1, 1), (2, 2, 2, 1), (2, 2, 1, 1, 1), (2, 1, 1, 1, 1, 1) and (1, 1, 1, 1, 1, 1, 1) ·

The study of partition identities has been a center of interest for centuries, dating back to Euler’s proof of
the following identity,

(−q; q)∞ =
1

(q; q2)∞
, (1.1)

where

(x; q)m =

m−1∏
k=0

(1− xqk) ,

for any m ∈ N ∪ {∞} and a, q such that |q| < 1. From a combinatorial viewpoint, this can be formulated
by the following statement: there are as many partitions of n into distinct parts as partitions of n into odd
parts.

The study of integer partitions underwent a significant advancement with the works of Rogers-Ramanujan
at the beginning of the past century. Following in their tracks, Schur found another simple identity [14],
stating that the number of partitions of n into distinct parts congruent to ±1 mod 3 is equal to the number
of partitions of n where parts differ by at least three and multiples of three differ by at least six. In the spirit
of Schur’s identity, Göllnitz proved in [11] that the number of partitions of n into distinct parts congruent to
2, 4, 5 mod 6 is equal to the number of partitions of n into parts different from 1 and 3, and where parts differ
by at least six with equality only if parts are congruent to 2, 4, 5 mod 6. Looking at the set of partitions
involved in the previous identities, one may view Göllnitz’ identity as embedded in Schur’s identity. It also
works in the opposite way, as we now describe.
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In seminal work of Alladi-Gordon [3], they pointed out a refinement of Schur’s identity, where they
introduced the weighted words method with the use of two primary colors a, b along with a secondary color
ab. Later, Alladi-Andrews-Gordon [2] found a refinement of Göllnitz’ identity, with the use of weighted words
with three primary colors a, b, c and three secondary colors ab, ac, bc, which indeed implies the refinement of
Schur’s identity. Further explanation of these two refinements is given in the first part of this series [10].

It was an open problem to find a partition identity beyond Göllnitz’ theorem arising from four primary
colors. In [1], Alladi, Andrews, and Berkovich solved this problem. Their result uses four primary colors,
the full set of secondary colors, along with one quaternary color abcd, and can be described as follows. We
consider parts that occur in eleven colors {a, b, c, d, ab, ad, bc, bd, cd, abcd} and ordered as follows:

1abcd < 1ab < 1ac < 1ad < 1a < 1bc < 1bd < 1b < 1cd < 1c < 1d < 2abcd < · · · · (1.2)

Let us consider the partitions with the size of the secondary parts greater than one and satisfying the minimal
difference conditions in

λi
\λi+1 ab ac ad a bc bd b cd c d
ab 2 2 2 2 2 2 2 2 2 2
ac 1 2 2 2 2 2 2 2 2 2
ad 1 1 2 2 2 2 2 2 2 2
a 1 1 1 1 2 2 2 2 2 2
bc 1 1 1 1 2 2 2 2 2 2
bd 1 1 1 1 1 2 2 2 2 2
b 1 1 1 1 1 1 1 2 2 2
cd 1 1 1 1 1 1 1 2 2 2
c 1 1 1 1 1 1 1 1 1 2
d 1 1 1 1 1 1 1 1 1 1

, (1.3)

and such that parts with color abcd differ by at least 4, and the smallest part with color abcd is at least
equal to 4 + 2τ − χ(1a is a part), where τ is the number of primary and secondary parts in the partition.
Here, χ(A) equals 1 if the proposition A is true and 0 if not, and the term minimal difference conditions
means that, for λ = (λ1, . . . , λs) with the parts λk colored by c(λk), we have for all i ∈ {1, . . . , s − 1} that
the value λi − λi+1 is at least equal to the value corresponding to the row c(λi) and the column c(λi+1).
Their theorem is then stated as follows.

Theorem 1.1 (Alladi-Andrews-Berkovich). Let u, v, w, t, n be non-negative integers. Denote by A(u, v, w, t, n)
the number of partitions of n into u distinct parts with color a, v distinct parts with color b, w distinct parts
with color c and t distinct parts with color d, and denote by B(u, v, w, t, n) the number of partitions of n
satisfying the conditions above, with u parts with color a, ab, ac, ad or abcd, v parts with color b, ab, bc, bd
or abcd, w parts with color c, ac, bc, cd or abcd and t parts with color d, ad, bd, cd or abcd. We then have
A(u, v, w, t, n) = B(u, v, w, t, n) and the identity∑

u,v,w,t,n≥0

B(u, v, w, t, n)aubvcwdtqn = (−aq; q)∞(−bq; q)∞(−cq; q)∞(−dq; q)∞ · (1.4)

Note that when d = 0, we recover Alladi-Andrews-Gordon’s refinement of Göllnitz’ identity (see [10] for
more details). Their main tool was an intricate q-series identity.

In part I of this series [10], we showed an equivalent version of Theorem 1.1. In fact, we supposed that
the parts occur in only primary colors a, b, c, d and secondary colors ab, ac, ad, bc, bd, cd, and are ordered as
in (1.2) by omitting quaternary parts:

1ab < 1ac < 1ad < 1a < 1bc < 1bd < 1b < 1cd < 1c < 1d < 2ab < · · · · (1.5)
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We then considered the partitions with the size of the secondary parts greater than one and satisfying the
minimal difference conditions in

λi
\λi+1 ab ac ad a bc bd b cd c d
ab 2 2 2 2 2 2 2 2 2 2
ac 1 2 2 2 2 2 2 2 2 2
ad 1 1 2 2 1 2 2 2 2 2
a 1 1 1 1 2 2 2 2 2 2
bc 1 1 1 1 2 2 2 2 2 2
bd 1 1 1 1 1 2 2 2 2 2
b 1 1 1 1 1 1 1 2 2 2
cd 0 1 1 1 1 1 1 2 2 2
c 1 1 1 1 1 1 1 1 1 2
d 1 1 1 1 1 1 1 1 1 1

, (1.6)

and which avoid the forbidden patterns

((k + 2)cd, (k + 2)ab, kc), ((k + 2)cd, (k + 2)ab, kd), ((k + 2)ad, (k + 1)bc, ka) , (1.7)

except the pattern (3ad, 2bc, 1a) which is allowed, and we obtained the following theorem:

Theorem 1.2. Let u, v, w, t, n be non-negative integers. Denote by A(u, v, w, t, n) the number of partitions
of n into u distinct parts with color a, v distinct parts with color b, w distinct parts with color c and t distinct
parts with color d, and denote by C(u, v, w, t, n) the number of partitions of n satisfying the conditions above,
with u parts with color a, ab, ac or ad, v parts with color b, ab, bc or bd, w parts with color c, ac, bc or cd and t
parts with color d, ad, bd or cd. We then have A(u, v, w, t, n) = C(u, v, w, t, n), and the corresponding q-series
identity is given by∑

u,v,w,t,n∈N
C(u, v, w, t, n)aubvcwdtqn = (−aq; q)∞(−bq; q)∞(−cq; q)∞(−dq; q)∞ · (1.8)

The proof of Theorem 1.2 consisted of a bijection established between the two sets of partitions. We also
used a second bijection to show that Theorem 1.2 is equivalent to Theorem 1.1.

By specializing the variables in Theorem 1.2, one can deduce many partition identities. For example, by
considering the following transformation in (1.8){

dilation : q 7→ q12

translations : a, b, c, d 7→ q−8, q−4, q−2, q−1 , (1.9)

we obtain a corollary of Theorem 1.2.

Corollary 1.3. For any positive integer n, the number of partitions of n into distinct parts congruent to
−23,−22,−21,−20 mod 12 is equal to the number of partitions of n into parts not congruent to 1, 5 mod 12
and different from 2, 3, 6, 7, 9, such that the difference between two consecutive parts is greater than 12 up to
the following exceptions:

• λi − λi+1 = 9 =⇒ λi ≡ ±3 mod 12 and λi − λi+2 ≥ 24,
• λi − λi+1 = 12 =⇒ λi ≡ −23,−22,−21,−20 mod 12,

except that the pattern (27, 18, 4) is allowed.

Example 1.4. For example, with n = 49, the partitions of the first kind are

(35, 10, 4), (34, 11, 4), (28, 11, 10), (23, 22, 4),

(23, 16, 10), (22, 16, 11) and (16, 11, 10, 8, 4)

and the partitions of the second kind are

(35, 14), (34, 15), (33, 16), (45, 4), (39, 10), (38, 11) and (27, 18, 4) ·

The main goal of this paper is to give a general result beyond Göllnitz’ theorem, by proving an analogue
of Theorem 1.2 for an arbitrary finite set of primary colors.
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1.2. Statement of Results. Let C = {a1, . . . , an} be an ordered set of primary colors, with a1 < · · · < an
and let C⋊ = {aiaj : 1 ≤ i < j ≤ n} be the set of secondary colors.

We can naturally extend the order from C to C ⊔ C⋊ with

a1a2 < · · · < a1an < a1 < a2a3 < · · · < a2an < a2 < · · · < ai−1 (1.10)

< aiai+1 < · · · < aian < ai < · · · < an−1an < an−1 < an ·

We also set

SP⋊ = {(akal, aiaj) ∈ C2⋊ : i < j < k < l or k < i < j < l} (1.11)

to be the set of the special pairs of secondary colors. Note that the pairs of SP⋊ use four different primary
colors. Let us now define the lexicographic order ≻ on the set of colored parts by the following relation:

kp ≻ lq ⇐⇒ k − l ≥ χ(p ≤ q) · (1.12)

Explicitly, this gives the order

1a1a2
≺ · · · ≺ 1an

≺ 2a1a2
≺ · · · ≺ 2an

≺ 3a1a2
≺ · · · · (1.13)

Definition 1.5. Let P be the set of the parts with primary color, and let S be the set of the parts with
secondary color and size greater than one. We then define two relations ▷ and ≫ on P ⊔ S as follows :

kp ▷ lq ⇐⇒
{

kp ⪰ (l + 1)q if p or q ∈ C
kp ≻ (l + 1)q if p and q ∈ C⋊

, (1.14)

and

kp ≫ lq ⇐⇒

 kp ⪰ (l + 1)q if p or q ∈ C
kp ≻ (l + 1)q if (p, q) ∈ C2⋊ \ SP⋊
kp ≻ lq if (p, q) ∈ SP⋊

· (1.15)

Note that kp ▷ lq implies kp ≫ lq. We can easily check that in the case n = 4 and C = {a < b < c < d},
the relations ▷ and ≫ establish some minimal differences k − l that correspond respectively to the minimal
differences λi − λi+1 in (1.20) and (1.6). We also remark that these differences constitute an exhaustive list
of all the minimal differences for our relations, since at most four primary colors occur in any pair of colors
in C ⊔ C⋊.

Definition 1.6. A secondary color is just a product of two primary colors. For any type of partition λ, its
size |λ| is the sum of its part sizes.

(1) We denote by O the set of partitions with parts in P and well-ordered by ≻. We then have that
λ ∈ O if and only if there exist λ1 ≻ · · · ≻ λt ∈ P such that λ = (λ1, . . . , λt). We set c(λi) to be the
color of λi in C, and C(λ) = c(λ1) · · · c(λt) as a commutative product of colors in < C >.

(2) We denote by E the set of partitions with parts in P ⊔S and well-ordered by ≫. We then have that
ν ∈ E if and only if there exist ν1 ≫ · · · ≫ νt ∈ P ⊔ S such that ν = (ν1, . . . , νt). We set colors
c(νi) ∈ C ⊔ C⋊ depending on whether νi is in P or S, and we also define C(ν) = c(ν1) · · · c(νt) seen
as a commutative product of colors in C.

(3) We finally denote by E2 the subset of partitions of E with parts well-ordered by ▷.

We can now state the first result of our paper.

Theorem 1.7. Let m be a non-negative integer and C a commutative product of primary colors in C. Denote
by U(C,m) the number of partitions λ in O with (C(λ), |λ|) = (C,m), and denote by V (C,m) the number
of partitions ν in E with (C(ν), |ν|) = (C,m). We then have the following inequality :

U(C,m) ≤ V (C,m) · (1.16)

The previous theorem implies that O can be associated to a set E1 such that E1 ⊂ E . We define this set E1
using two technical tools : the different-distance and the bridge. The definition of the different-distance
is stated here, while the definition of the bridge, more intricate, will be given in Section 5.
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Definition 1.8. Let λ = (λ1, · · · , λs) be a sequence, where the elements λi belong to a set of colored
numbers ordered by a relation ⪰, and let d be a positive number. For any i, j ∈ {1, . . . , s}, we say that λi

is d-different-distant from λj if we have the following relation:

λi ⪰ λj + d(j − i) · (1.17)

Note that the relation ”being d-different-distant from” is transitive, as λi is d-different-distant from λj and
λj is d-different-distant from λk implies that λi is d-different-distant from λk.

A good example of a partition having such a property is a partition ν = (ν1, · · · , νs) ∈ E2. In fact, by
(1.14), we recursively obtain for any i ≤ j ∈ {1, . . . , s} that νi is 1-different-distant from νj . This is not true
in general when ν ∈ E , as by (1.14) and (1.15), a part νi not well-ordered with νi+1 in terms of ▷ is also not
1-different-distant from νi+1.

The main theorem of this paper and generalization of Theorem 1.2 can be stated as follows.

Theorem 1.9. Let E1 be the set of partitions ν = (ν1, . . . , νs) ∈ E such that, for all i ∈ {1, . . . , s− 1} with

νi−1 ▷ νi ̸ ▷ νi+1 , (1.18)

the part νi is 1-different-distant from its bridge. Then, for any non-negative integer m and any commutative
product of primary colors C in C, by setting U(C,m) as before in Theorem 1.7, and by setting W (C,m) to
be the number of partitions ν in E1 with (C(ν), |ν|) = (C,m), we then have that U(C,m) = W (C,m) and
the identity

∑
m,u1,...,un≥0

W (

n∏
i=1

aui
i ,m)

n∏
i=1

aui
i qm =

∑
m,u1,...,un≥0

U(

n∏
i=1

aui
i ,m)

n∏
i=1

aui
i qm = (−a1q; q)∞ · · · (−anq; q)∞ ·

(1.19)

This may be compared with another result of the author. In his generalization of Siladić’s partition
theorem [9], he used the same set of n primary colors, along with the total set of the n2 non-commutative
secondary colors aiaj for i, j ∈ {1, . . . , n}, and gave an identity with the same product as (1.19). Another
identity, discovered by Corteel and Lovejoy [7], relates the same set of partitions, with primary colored parts,
to a set of partitions with parts having some colors as products of at most n different primary colors, giving
2n − 1 colors in total.

Note that by definition, a partition in E2 never satisties (1.18), so that the definition of E1 still holds for
this partition. We thus have E2 ⊂ E1 ⊂ E . We also remark that SP⋊ is empty for C with fewer than four
primary colors, so that in that case, E2 = E . Therefore, Theorem 1.9 implies the Alladi-Andrews-Gordon
refinement of Göllnitz’ identity. For n ≥ 4, the set E1 can be seen as a subset of E that avoids some patterns.
When n = 4, we show that the forbidden patterns are the ones described in Theorem 1.2. For n > 4, the
enumeration of forbidden patterns becomes more intricate.

We give a corollary of Theorem 1.9 for five primarys colors a < b < c < d < e. The set E2 consists of
partitions with parts occurring in

ab < ac < ad < ae < a < bc < bd < be < b < cd < ce < c < de < d < e,
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such that the size of secondary parts being greater than one, and which satisfy the minimal difference
conditions in

λi
\λi+1 ab ac ad ae a bc bd be b cd ce c de d e
ab 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ac 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ad 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
ae 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
a 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
bc 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
bd 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
be 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
b 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
cd 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
ce 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
c 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2
de 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
d 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
e 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2

. (1.20)

The set E consists of partitions satisfying the minimal difference conditions in

λi
\λi+1 ab ac ad ae a bc bd be b cd ce c de d e
ab 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ac 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ad 1 1 2 2 2 1 2 2 2 2 2 2 2 2 2
ae 1 1 2 2 2 1 1 2 2 1 2 2 2 2 2
a 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
bc 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
bd 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
be 1 1 1 1 1 1 1 2 2 1 2 2 2 2 2
b 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
cd 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2
ce 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2
c 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2
de 0 0 1 1 1 0 1 1 1 1 1 1 1 2 2
d 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
e 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2

. (1.21)

Corollary 1.10. Let u, v, w, t, r, n be non-negative integers. Denote by A(u, v, w, t, r, n) the number of
partitions of n into u distinct parts with color a, v distinct parts with color b, w distinct parts with color
c, t distinct parts with color d, and r distinct parts with color e. Denote by B(u, v, w, t, n) the number of
partitions of n satisfying the conditions of table 1.20, with u parts with color a, ab, ac, ad or ae, v parts with
color b, ab, bc, bd or be, w parts with color c, ac, bc, cd or ce, t parts with color d, ad, bd, cd or de and r parts
with color e, ae, be, ce or de. Denote by C(u, v, w, t, n) the number of partitions of n satisfying the conditions
of table 1.21, with u parts with color a, ab, ac, ad or ae, v parts with color b, ab, bc, bd or be, w parts with
color c, ac, bc, cd or ce, t parts with color d, ad, bd, cd or de and r parts with color e, ae, be, ce or de. We then
have

B(u, v, w, t, n) ≤ A(u, v, w, t, n) ≤ C(u, v, w, t, n) .

In particular, the above inequality become an equality when two of the parameters u, v, w, t, r are equal to 0.

The paper is organized as follows. In Section 2, we will present some tools that will be useful for the proof
of Theorem 1.7 and Theorem 1.9. After that, in Section 3, we will give two mappings Φ and Ψ for Theorem
1.7 that preserve the size and the color product of partitions. Then, in Section 4, we will prove Theorem 1.7
by showing that Φ(O) ⊂ E and Ψ ◦ Φ|O = Id|O. In Section 5, we will set E1 = Φ(O), describe the notion of
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bridge, and prove Theorem 1.9. In Section 6, we explain how to generate the forbidden patterns of Theorem
1.9, and we especially retrieve in the case of four primary colors the three forbidden patterns as enumerated
in Theorem 1.2, and we prove that, for more than four primary colors, there is an infinite set of forbidden
patterns. Finally, in Section 7, we relate the mapping Ψ to Motzkin paths and oriented rooted forests, giving
new perspectives for the study of the forbidden patterns.

We postpone the proofs of the technical lemmas and propositions respectively to Sections 8 and 9.

2. Preliminaries

2.1. The setup. Let us first analyze the secondary parts in S. For any 1 ≤ i < j ≤ n, and any positive
integer k, we have

(2k)aiaj = kaj + kai (2.1)

(2k + 1)aiaj
= (k + 1)ai

+ kaj
·

In fact, any secondary part in S with color aiaj can be uniquely written as the sum of two consecutive parts
in P with colors ai and aj in terms of ≻.

Definition 2.1. For any 1 ≤ i < j ≤ n, we define the functions α and β on S by

α :

{
2kaiaj

7→ kaj

(2k + 1)aiaj
7→ (k + 1)ai

and β :

{
2kaiaj

7→ kai

(2k + 1)aiaj
7→ kaj

, (2.2)

respectively named upper and lower halves.

One can check that for any kaiaj ∈ S,

α((k + 1)aiaj
) = β(kaiaj

) + 1 and β((k + 1)aiaj
) = α(kaiaj

) · (2.3)

In the previous sum, adding an integer to a part only changes its size but does not change its color. We can
then deduce by induction that for any m ≥ 0,

α((k +m)aiaj ) ⪯ α(kaiaj ) +m and β((k +m)aiaj ) ⪯ β(kaiaj ) +m · (2.4)

Remark 2.2. In fact, we have

α((k + 2m)aiaj ) = α(kaiaj ) +m and β((k + 2m)aiaj ) = β(kaiaj ) +m · (2.5)

Remark 2.3. Let us consider a partition λ in O. By definition (1.6), it does not belong to E if and only if
it has two consecutive parts λi, λi+1 such that λi ̸≫ λi+1. We then have by (1.15) that

λi ≻ λi+1 and λi ̸≫ λi+1 ⇐⇒ λi+1 + 1 ≻ λi ≻ λi+1 · (2.6)

An equivalent reformulation consists in saying that λi and λi+1 are two primary parts with distinct colors,
consecutive in terms of ≻. Then, by (2.2), λi+λi+1 can be seen as the unique secondary part with respectively
λi and λi+1 as its upper and lower halves.

2.2. Technical lemmas. We will state some important lemmas for the proof of Theorem 1.7 and Theorem
1.9. The proofs can be found in Section 8.

Lemma 2.4 (Ordering primary and secondary parts). For any (lp, kq) ∈ P ×S, we have the following
equivalences:

lp ̸≫ kq ⇐⇒ (k + 1)q ≫ (l − 1)p , (2.7)

lp ≫ α(kq)⇐⇒ β((k + 1)q) ̸≻ (l − 1)p · (2.8)



8 ISAAC KONAN

Lemma 2.5 (Ordering secondary parts). Let us consider the table ∆ in (1.6). Then, for any secondary
colors p, q ∈ C⋊,

∆(p, q) = min{k − l : β(kp) ≻ α(lq)} · (2.9)

Moreover, if the secondary parts kp, lq are such that β(kp) ≻ β(lq), then

(k + 1)p ≫ lq · (2.10)

Furthermore, if k − l ≥ ∆(p, q), we then have either β(kp) ≻ α(lq) or

α(lq) + 1≫ α((k − 1)p) ≻ β((k − 1)p) ≻ β(lq) · (2.11)

In the case of equality k − l = ∆(p, q), we necessarily have

β(lq) + 1 ⪰ β(kp) , (2.12)

and in the other case, we necessarily have that β(kp) ≻ α(lq).

Lemma 2.6 (1-different-distance on E2). Let us consider a partition ν = (ν1, . . . , νt) ∈ E2. Then, for
any 1 ≤ i < j ≤ t, we have

νi ▷ νj + j − i− 1 · (2.13)

3. Bressoud’s algorithm

Here we adapt the algorithm given by Bressoud in his bijective proof of Schur’s partition theorem [6].
The mappings are easy to describe and execute, but their justifications are more subtle and are given in the
next section.

3.1. Machine Φ: from O to E. Let us consider the following machine Φ:

Step 1: For a sequence λ = λ1, . . . , λt, take the smallest i < t such that λi, λi+1 ∈ P and λi ≻ λi+1 but
λi ̸≫ λi+1, if it exists, and replace

λi ↢ λi + λi+1 as a part in S
λj ← λj+1 for all i < j < t

(3.1)

and move to Step 2. We call such a pair of parts a troublesome pair. We observe that λ loses two
parts in P and gains one part in S. The new sequence is λ = λ1, . . . , λt−1. Otherwise, exit from the
machine.

Step 2: For λ = λ1, . . . , λt, take the smallest i < t such that (λi, λi+1) ∈ P × S and λi ̸≫ λi+1 if it exists,
and replace

(λi, λi+1) ↬ (λi+1 + 1, λi − 1) ∈ S × P (3.2)

and redo Step 2. We say that the parts λi, λi+1 are crossed. Otherwise, move to Step 1.

Let Φ(λ) be the resulting sequence after putting any λ = (λ1, . . . , λt) ∈ O in Φ. This transformation
preserves the size and the commutative product of primary colors of partitions.

Example 3.1. For C = {a < b < c < d}, let us apply this machine on the partition (5b, 3d, 2a, 1d, 1c, 1b, 1a):

5b
3d
2a
1d
1c
1b
1a

↣

5b
3d

3ad

1c
1b
1a

↬

5b
4ad
2d
1c
1b
1a

↣

5b
4ad
2d

2bc

1a

↬

5b
4ad
3bc
1d
1a

↣

5b
4ad
3bc
2ad

· (3.3)

This example shows that Φ(O) ̸⊆ E2.
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3.2. Machine Ψ: on E. Let us consider the following machine Ψ:

Step 1: For a sequence ν = ν1, . . . , νt, take the greastest i ≤ t such that νi ∈ S if it exists. If νi+1 ∈ P and
β(νi) ̸≻ νi+1, then replace

(νi, νi+1) ↬ (νi+1 + 1, νi − 1) ∈ P × S (3.4)

and redo Step 1. We say that the parts νi, νi+1 are crossed. Otherwise, move to Step 2. If there
are no more parts in S, exit from the machine.

Step 2: For ν = ν1, . . . , νt, take the the greatest i ≤ t such that νi ∈ S. By Step 1, it satisfies β(νi) ≻ νi+1.
Then replace

νj+1 ← νj for all t ≥ j > i
(νi) ⇒ (α(νi), β(νi)) as a pair of parts in P ,

(3.5)

and move to Step 1. We say that the part νi splits. We observe that ν gains two parts in P and
loses one part in S. The new sequence is ν = ν1, . . . , νt+1.

Let Ψ(ν) be the resulting sequence after putting any ν = (ν1, . . . , νt) ∈ E in Ψ. This transformation
preserves the size and the product of primary colors of partitions.

Examples 3.2. For example, we choose C = {a < b < c < d < e < f} and we apply the machine Ψ
respectively on (4ae, 3cd, 3ab), (4a, 3ae, 2cd, 1b) and (4e, 3ef , 3cd, 3ab, 1f ), and we obtain

4ae
3cd

2a + 1b

⇒

4ae
2c + 1d

2a
1b

↬

4ae
3a

1d + 1c
1b

⇒

2e + 2a
3a
1d
1c
1b

↬

4a
2a + 1e

1d
1c
1b

⇒

4a
2a
1e
1d
1c
1b

,

4a
3ae

1d + 1c
1b

⇒

4a
2a + 1e

1d
1c
1b

⇒

4a
2a
1e
1d
1c
1b

,

4e
3ef
3cd

2a + 1b
1f

↬

4e
3ef
3cd
2f

1b + 1a

⇒

4e
3ef

2c + 1d
2f
1b
1a

↬

4e
3ef
3f

1d + 1c
1b
1a

⇒

4e
2e + 1f

3f
1d
1c
1b
1a

↬

4e
4f

1f + 1e
1d
1c
1b
1a

⇒

4e
4f
1f
1e
1d
1c
1b
1a

·

With these examples, we can see that Ψ is not injective on E and Ψ(E) ̸⊆ O.

4. Proof of Theorem 1.7

In this section, we prove Theorem 1.7 by showing the following theorem.

Theorem 4.1. The transformation Φ describes an injection from O into E such that Ψ ◦ Φ|O = Id|O.

Theorem 4.1 follows from the next three propositions whose proofs can be found in Section 9.
In the following for any sequence U = u1, . . . , ut, we set g(U) = u1 and s(U) = ut respectively the first and
the last terms of U .
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Proposition 4.2. Let us consider any λ = (λ1, . . . , λt) ∈ O. Then, in the process Φ on λ, before the uth

application of Step 1, there exists a triplet of partitions (δu, γu, µu) ∈ E × (E ∩O)×O such that the sequence
obtained is δu, γu, µu and which satisfies the following conditions:

(1) The uth application of Step 1 occurs in the pairs (s(γu), g(µu)),
(2) s(δu) is the (u− 1)th secondary part of δu and satisfies s(δu)≫ g(γu),
(3) µu+1 is the tail of the partition µu and has at least one fewer part than µu.
(4) δu is the head of δu+1.

Note that the first triplet for u = 1 has the form (∅, γ1, µ1) with (γ1, µ1) ∈ (E ∩O)×O and (s(γu), g(µu))
the first troublesome pair of λ. The fact that Φ(O) ⊂ E follows from Proposition 4.2 since µu strictly
decreases in terms of number of parts and the process stops as soon as µu = ∅. In fact, if µu ̸= ∅, then
g(µu) exists and we can still apply Step 1 on the pair (s(γu), g(µu)). The last triplet has then the form
(δS+1, γS+1, ∅) with (δS+1, γS+1) ∈ E × (E ∩ O), s(δS+1) the Sth and last secondary part of Φ(λ) and
s(δS+1)≫ g(γS+1) if γS+1 ̸= ∅.

Example 4.3. We again take the example λ = (5b, 3d, 2a, 1d, 1c, 1b, 1a) given in (3.3). We summarize the
triplets of Proposition 4.2 in the following table:

u δu γu µu

1 ∅ 5b, 3d, 2a 1d, 1c, 1b, 1a
2 5b, 4ad 2d, 1c 1b, 1a
3 5b, 4ad, 3bc 1d 1a
4 5b, 4ad, 3bc, 2ad ∅ ∅

·

Proposition 4.4. Let us consider any ν = ν1, . . . , νt ∈ E. Then, in the process Ψ on ν, after the (v − 1)th

application of Step 2, there exists a triplet of partitions (δv, γv, µv) with δv ∈ E and γv, µv some sequences
of primary parts, such that the sequence obtained is δv, γv, µv and which satisfies the following conditions:

(1) (s(γv), g(µv)) is the troublesome pair resulting from the (v − 1)th splitting in Step 2,
(2) s(δv) ∈ S so that the next iterations of Step 1 after the (v − 1)th Step 2 occurs on this part,
(3) µv is the tail of the sequence µv+1 and has at least one fewer part than µv+1.
(4) δv+1 is the head of δv.

The process stops as soon as δv = ∅, which means that we have split every secondary part of ν. If we
set S to be the number of secondary parts of ν, the last triplet then has the form (∅, γS+1, µS+1) with
(s(γS+1), g(µS+1)) being a troublesome pair of primary parts. Also, we remark that the first triplet for
v = 1 is such that (δ1, γ1, ∅) with δ1 equal to the head of ν up to the last secondary part, and with γ1 equal
to the tail of ν after this last part, so that (δ1, γ1) ∈ E × (E ∩ O) with s(δ1)≫ g(γ1) if γ1 ̸= ∅.

Example 4.5. We take the example ν = Φ(λ) = 5b, 4ad, 3bc, 2ad in (3.3). We summarize the triplets of
Proposition 4.4 in the following table:

v δv γv µv

1 5b, 4ad, 3bc, 2ad ∅ ∅
2 5b, 4ad, 3bc 1d 1a
3 5b, 4ad 2d, 1c 1b, 1a
4 ∅ 5b, 3d, 2a 1d, 1c, 1b, 1a

·

We now show that Ψ ◦ Φ|O = Id|O using the following proposition.

Proposition 4.6. For any λ ∈ O, if we set ν = Φ(λ) and S to be the number of secondary parts of ν, then
for any v ∈ [1, S+1], the triplet of Proposition 4.4 is equal to the triplet of Proposition 4.2 for u = S+2−v.

5. Description of E1 = Φ(O) and proof of Theorem 1.9

In this section, we set E1 = Φ(O), and we give an explicit definition of the bridge for a partition ν ∈ E
in order to fit with the condition given in Theorem 1.9. Note that, by setting E1 = Φ(O), the mapping Φ
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then describes a bijection between O and E1, and Ψ = Φ−1, so that the identity (1.19) holds and this implies
Theorem 1.9.

Enumeration of parts. Let us consider a partition ν = (ν′1, . . . , ν
′
p+s) with p primary parts and s secondary

parts. We can thus consider the p+ 2s primary parts that occur in ν by counting both the upper and lower
halves of the secondary parts. We then set

ν = (ν1, . . . , νp+2s) (5.1)

with J, I and I + 1 defined to be respectively the sets of indices of the primary parts, the upper and lower
halves of secondary parts. The secondary parts of ν are indeed the parts νi + νi+1 for i ∈ I. This method of
enumeration according to the occurrences of the primary parts was already used by the author in his proof
of the generalization of Siladić’s theorem [9]. We can then retrieve the corresponding indices for the parts
ν′k with

νj = ν′j−|I∩[1,j)| for all j ∈ J ,

νi + νi+1 = ν′i−|I∩[1,i)| for all i ∈ I ·

For ease of notation, we set I = {i1 < · · · < is} and J = {j1 < · · · < jp}. We then consider the index set of
the troublesome secondary parts as defined in (1.17),

T S(ν) = {i ∈ I : ν−(i) ▷ νi + νi+1 ̸ ▷ νi+2 + νi+3} , (5.2)

where ν−(i) = ν′i−|I∩[1,i]| is the (primary or secondary) part to the left of νi+νi+1. We recall that, by (1.14)

and (1.15), we do not have νi + νi+1 ▷ νi+2 + νi+3 only if the pair of consecutive secondary parts has a pair
of colors in SP⋊.

Example 5.1. We take ν = (14bd, 11a, 10ad, 9bc, 8ac, 3c, 2cd, 2ab) ∈ E with (p, s) = (2, 6). Our enumeration
gives

ν = (7d, 7d︸ ︷︷ ︸, 11a, 5d, 5a︸ ︷︷ ︸, 5b, 4c︸ ︷︷ ︸, 4c, 4a︸ ︷︷ ︸, 3c, 1d, 1c︸ ︷︷ ︸, 1b, 1a︸ ︷︷ ︸)
J = {3, 10}, I = {1, 4, 6, 8, 11, 13}, I + 1 = {2, 5, 7, 9, 12, 14} ,

and T S(ν) = {4, 11}.

We will then define, in the first part of this section, for any i ∈ I, the Bridge Brν(i) ≥ i as an index
in I ∪ J , and the bridge as the part νBrν(i) corresponding to this index. This definition will fit with the
definition of E1 given in Theorem 1.9, that we can explicitly state in the following theorem.

Theorem 5.2 (Explicit definition of E1). The following are equivalent:

(1) ν ∈ E1 = Φ(O),
(2) For any i ∈ I such that Brν(i) > i, we have

ν−(i)≫ νBrν(i) +
Brν(i)− i

2
̸≻ νi + νi+1 ,

(3) (Necessary and sufficient checks) For all i ∈ T S(ν) such that Brν(i) > i, we have

νi + νi+1 ≻ νBrν(i) +
Brν(i)− i

2
· (5.3)

Recall that if ν ∈ E2, then T S(ν) = ∅ so that (3) is true. We thus retrieve the fact that E2 ⊂ E1.

In the remainder of this section, we will first give an explicit definition of the bridge, describe its prop-
erties and show how to easily compute it. Then, in the next part, we will prove that (1) implies (2). After
that, we show that (2) implies (1). Finally, we give a proof of the equivalence between (2) and (3).
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5.1. Definition and properties of the Bridge. For any i ∈ I, let us consider j = min(i, p+ 2s] ∩ J , if it
exists, which is the index of the greatest primary part to the right of the secondary part νi+νi+1. Otherwise,
there is no primary part to its right, and we set j = p + 2s + 1. Note that j − i is twice the number of
secondary parts (νi + νi+1 included) between νi + νi+1 and νj , even if we set νp+2s+1 = 0an

. In any case, we
can set j = min(i, p+ 2s+ 1] ∩ (J ∪ {p+ 2s+ 1}).

Definition 5.3. We define the Bridge Brν(i) to be as follows :

• If j satisfies

νi′+1 ̸≻ νj +
j − i′

2
− 1 (5.4)

for all i′ ∈ [i, j) ∩ I, we set Brν(i) = j. Note that for j = p + 2s + 1, the relation (5.4) is never
satisfied for the last secondary part, since its upper and lower halves have size greater than 0.

• Otherwise, we define

Si = {u ∈ (i, j) ∩ I : νi′+1 ̸≻ νu +
u− i′

2
− 1 ∀i′ ∈ [i, u) ∩ I}. (5.5)

If Si ̸= ∅, we then set
Brν(i) = maxSi · (5.6)

Otherwise, we set Brν(i) = i.

Here, we observe that Brν(i) ≥ i, and for Brν(i) > i, we have the relation

νi′+1 ̸≻ νBrν(i) +
Brν(i)− i′

2
− 1 (5.7)

for all i′ ∈ [i,Brν(i)) ∩ I. Also note that the function Brν is local, as it only depends on the maximal
sequence of secondary parts and not on the entire partition ν.

Remark 5.4. The value Brν(i)−i′

2 indeed corresponds to the difference between the index of the secondary
part ν′i′−|I∩[1;i′)| and the index of the primary or secondary part ν′Brν(i)−|I∩[1;Brν(i))|, so that the relation

(5.7) can be formulated as follows: the lower half νi′+1is not 1-distant-different from νBrν(i) − 1.

The definition of brigde as stated above has the sole purpose to make our results simpler to prove. It
may seem difficult to compute, but the calculation of the bridge is indeed quite simple as it can be done
recursively. In fact, the first hint for the computational method is given by the following lemma.

Lemma 5.5. The function Brν is non-decreasing on I, and for any i such that Brν(i) ∈ I, we have
Brν(Brν(i)) = Brν(i).

Lemma 5.5 allows us to state that for any i ∈ I, Brν(i) is either the index of the greastest primary part
to the right of νi + νi+1, or the smallest fixed point (by Brν) to its right. This fact leads to the following
proposition, which gives us the second and final hint for the computation of Brν .

Proposition 5.6 (Crossing rules for Ψ). By applying Ψ on ν = (ν1, . . . , νp+2s), we have that the secondary
part νi + νi+1:

• does not cross any primary part if and only if Brν(i) = i,
• otherwise, for iu = i < Brν(i), it first crosses the primary part that comes from νBrν(i):

g(γs+1−u) = νBrν(iu) +
Brν(iu)− iu

2
− 1 · (5.8)

The relevance of this proposition consists in saying that, during Ψ, the fixed points are the indices of the
secondary parts which split directly with no application of Step 1, and if a fixed point i = Brν(i) is found,
then the next fixed point to its left is the index of the smallest secondary part which is not crossed by the
upper half νi during iterations of Step 1.
Note that, by definition, the bridges are exactly the parts νi for the fixed points i, along with the primary
parts νj after the tail of a sequence of secondary parts. The key idea to compute the bridge is then to retrieve
the fixed points by performing iterations of Step 1 with the bridges νj and νi.
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Method to compute Brν . The functionBrν being local, we then consider a maximal sequence of secondary
parts, with the ending primary part to its right. The reasoning will be the same when we do not have a
primary part at the tail of the sequence. Without loss of generality, we can restrict the partition ν to such
sequence: ν = (ν1, . . . , ν2s+1) with

ν1 + ν2 ≫ ν3 + ν4 ≫ · · · ≫ ν2s−1 + ν2s ≫ ν2s+1 ·
For simplicity, we show the computation on the following example. We take the set of primary colors
C = {a < b < c < d < e < f} and the partition

ν = (20ef , 20ad, 19bc, 16de, 14af , 11ad, 6c) ,

or rewritten with our enumeration

ν = (10f , 10e︸ ︷︷ ︸
i=1

, 10d, 10a︸ ︷︷ ︸
i=3

, 10b, 9c︸ ︷︷ ︸
i=5

, 8e, 8d︸ ︷︷ ︸
i=7

, 7f , 7a︸ ︷︷ ︸
i=9

, 6a, 5d︸ ︷︷ ︸
i=11

, 6c︸︷︷︸
j=13

) ·

Recall that to perform Step 1 of Ψ, we always compare a primary part to the lower half of a secondary
part. We then proceed as follows:

(1) We start with the sequence

(β1, β2, · · · , βs, αs+1) = (ν2, ν4, · · · , ν2s, ν2s+1)

consisting of the lower halves and the primary part. Our example gives the sequence

(10e, 10a, 9c, 8d, 7a, 5d︸ ︷︷ ︸
βu,u=1,...,6

, 6c︸︷︷︸
α7

) ·

The first fixed point (starting from the right) corresponds to the first βu which is 1-different-distant
from αs+1 − 1 in the order ≻. We then have i1 = 2u1 − 1 if such u1 exists. If there is no such u1,
it means that j is the Bridge of all i ∈ 2{1, . . . , s} − 1. With our example, we just have to compare
the two sequences

(10e, 10a, 9c, 8d, 7a, 5d)

(11c, 10c, 9c, 8c, 7c, 6c)

starting from the right, and we identify the first fixed point, i1 = 2u1 − 1 = 7, corresponding to the
underlined lower half.

(2) We redo the same process for the sequence

(β1, β2, · · · , βu1−1, αu1
) = (ν2, ν4, · · · , νi1−1, νi1) ,

where βu are the lower halves of the (u1 − 1) first secondary parts, and αu1
is the upper half

the uth
1 secondary part, which corresponds to the first Bridge. Our example gives the sequence

(10e, 10a, 9c︸ ︷︷ ︸
β1,2,3

, 8e) and the sequence comparison

(10e, 10a, 9c)

(10e, 9e, 8e)

and the second fixed point is i2 = 2u2 − 1 = 5.
(3) Following the same process, we apply the comparisons for the sequence

(β1, β2, · · · , βuk−1, αuk
) = (ν2, ν4, · · · , νik−1, νik) ,

in order to retrieve the (k + 1)th fixed point. Here again, we have ik = 2uk − 1. If there is no βu

which is 1-different-distant from αuk
− 1 in the order ≻, we stop the process, as ik is the last fixed

point and becomes the Bridge of the remaining i < ik. In our example the last fixed point is indeed
i2, since we have the sequence (10e, 10a︸ ︷︷ ︸

β1,2

, 10b) and the sequence comparison

(10e, 10a)
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(11b, 10b)·

Note that applying this computation requires in fact s comparisons, starting from the right to the left, to
retrieve all of the fixed points, but computing the precise bridge for an i will require as many comparisons
as the number of secondary parts to its right. For our example, we sum up the computation of the Bridge
with the following table.

i 1 3 5 7 9 11
Brν(i) 5 5 5 7 13 13

· (5.9)

By condition (3) of Theorem 5.2, to see if ν ∈ E1, we only need to check the secondary part 20ef , whose
bridge corresponds to 10b, and we have 20ef ≻ 10b + 2. We then have ν ∈ E1. One can check that

Ψ(ν) = (12b, 11a, 9f , 9e, 9d, 9c, 8e, 8d, 8c, 7a, 6f , 5d, 5a) ,

and that Φ(Ψ(ν)) = ν.

For the case where the sequence ν = (ν1, . . . , ν2s) does not end by a primary part, the first splitting occurs
at the right most secondary part, and we set the first fixed point i1 = 2u1 − 1 = 2s− 1. We then start the
process at step (2) and the remainder of the computation of the bridges is the same.

5.2. Proof that (1) implies (2). We suppose that i = is+1−v for some v ∈ [1, s]. Then by the Proposition

5.6 and Proposition 4.4, νi + νi+1 = s(δv) and g(γv) = νBrν(i) +
Brν(i)−i

2 − 1. After crossing, the primary

part becomes νBrν(i) +
Brν(i)−i

2 and the secondary part becomes νi + νi+1 − 1. But, by Proposition 4.6, the
crossing is the reverse crossing of Step 2 in process Φ, so that we have

νBrν(i) +
Brν(i)− i

2
̸≫ νi + νi+1 − 1⇐⇒ νBrν(i) +

Brν(i)− i

2
̸≻ νi + νi+1 ·

Also, note that the sequence

δv \ {νi + νi+1} , νBrν(i) +
Brν(i)− i

2

is indeed the head of the sequence δv+1, γv+1, which is a partition in E by Proposition 4.6. In fact, this pair
of sequences corresponds to the same pair in Proposition 4.2 for u = s − v, and is a pair in E × (E ∩ O)
satisfying s(δu) ≫ g(γu). We then deduce that the part ν−(i) to the left νi + νi+1 is well-ordered with

νBrν(i) +
Brν(i)−i

2 in terms of ≫, so that

ν−(i)≫ νBrν(i) +
Brν(i)− i

2
·

With this, we have proved that (1) implies (2) in Theorem 5.2.

5.3. Proof that (2) implies (1). We prove that (2) implies (1) with the following proposition.

Proposition 5.7. If ν satisfies condition (2) in Theorem 5.2, then in Proposition 4.4, the triplet (δv, γv, µv)
satisfies the following properties:

(1) (γv, µv) ∈ (E ∩ O)×O,
(2) s(δv)≫ g(γv).
(3) If we apply Step 1 once and some iterations of Step 2 of the process Φ on the sequence δv+1, γv+1, µv+1,

we obtain the sequence δv, γv, µv

Proposition 5.7 says that, for any ν ∈ E that satisfies (2) of Theorem 5.2, we have that Ψ(ν) ∈ O, since
the last sequence δS+1, γS+1, µS+1 is such that δS+1 = ∅ and (s(γv), g(µv)) is a troublesome pair so that
s(γv) ≻ g(µv). The fact that all the crossings and the splitting of Ψ are reversible by Φ means that the
process Ψ on ν is reversible by Φ, and we then have E1 ∋ Φ(Ψ(ν)) = ν.
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5.4. Proof of the equivalence between (2) and (3). In this part, we will show that it sufficient to satisfy
the condition (2) only on T S(ν). In fact, condition (2) of Theorem 5.2 implies that (5.3) is true on T S(ν),
so that (2) implies (3). To prove that (3) implies (2), we will use the following lemmas.

Lemma 5.8. Let us consider some consecutive secondary parts νi + νi+1 ≫ · · · ≫ νi′ + νi′+1 such that

νi + νi+1 ̸ ▷ · · · ̸ ▷ νi′ + νi′+1 ·
We then have that

νi′ + νi′+1 +
i′ − i

2
≻ νi + νi+1 · (5.10)

Lemma 5.9. Let us consider some consecutive secondary parts νi + νi+1 ≫ · · · ≫ νi′ + νi′+1 such that the
size differences between consecutive parts are minimal. If Brν(i

′) > i′, then Brν(i) = Brν(i
′).

Proof that (3) implies (2). Let us consider a maximal sequence of consecutive secondary parts νi + νi+1 ≫
· · · ≫ νi′ + νi′+1 with

νi + νi+1 ̸ ▷ · · · ̸ ▷ νi′ + νi′+1 ·
We then have that the extremal parts are well-ordered in terms of ▷ with the parts to the left and to the
right of the sequence, and we have the inequality

· · · ▷ νi + νi+1 ̸ ▷ · · · ̸ ▷ νi′ + νi′+1 ▷ · · · (5.11)

In particular, i ∈ T S(ν). Now, let us consider the set

{u ∈ [i, i′] ∩ I : Brν(u) > u} ·
If it is empty, then any u ∈ [i, i′] ∩ I is a fixed-point of Brν . Otherwise, by Lemma 5.9, it has the form
[i, u] ∩ I and Brν is the identity on (u, i′] ∩ I. Furthermore, Brν(i) = Brν(u

′) > u′ for all u′ ∈ [i, u] ∩ I.

If we assume that

νi + νi+1 ≻ νBrν(i) +
Brν(i)− i

2
,

by (5.10), we then have for all u′ ∈ [i, u] ∩ I

νu′ + νu′+1 ≻ νBrν(u′) +
Brν(u

′)− u′

2
⇐⇒ νBrν(u′) +

Brν(u
′)− u′

2
̸≻ νu′ + νu′+1 ·

In addition, by (1.15), we obtain, for all u′ ∈ (i, u] ∩ I, that we also have u′ − 2 ∈ [i, u) ∩ I and have
Brν(u

′ − 2) = Brν(u
′), and the following

νu′−2 + νu′−1 ≻ νBrν(u′−2) +
Brν(u

′ − 2)− u′ + 2

2
⇐⇒ νu′−2 + νu′−1 ≫ νBrν(u′) +

Brν(u
′)− u′

2
,

so that the condition (2) is also satisfied. Note that condition (2) is also satisfied in i, since we have by
definition (1.14)

ν−(i) ▷ νi + νi+1 ≻ νBrν(i) +
Brν(i)− i

2
=⇒ ν−(i) ▷ νBrν(i) +

Brν(i)− i

2
̸≻ νi + νi+1

=⇒ ν−(i)≫ νBrν(i) +
Brν(i)− i

2
̸≻ νi + νi+1 ·

We then have proved that the condition (2) is satisfied for any element of I in a sequence of the form (5.11).

Now let us take i ∈ I such that i is not in a sequence of the form (5.11). This is equivalent to saying that
νi + νi+1 is well-ordered to its left and to its right in terms of ▷, so that

· · · ▷ νi + νi+1 ▷ · · · ·
We can then see by (1.14) that, for Brν(i) > i,

ν−(i) ▷ νi + νi+1 ≻ νBrν(i) +
Brν(i)− i

2
=⇒ ν−(i) ▷ νBrν(i) +

Brν(i)− i

2
̸≻ νi + νi+1

=⇒ ν−(i)≫ νBrν(i) +
Brν(i)− i

2
̸≻ νi + νi+1 ·
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This means that we only need to prove that νi + νi+1 ≻ νBrν(i) +
Brν(i)−i

2 in order to satisfy the condition
(2).

• Suppose first that there exists i′ ∈ T S(ν) such that i′ ∈ (i,Brν(i)). We then have by Lemma 5.5
that Brν(i

′) = Brν(i). By taking i′ the minimum of all such elements, we than have the sequence

νi + νi+1 ▷ · · · ▷ νi′ + νi′+1

so that, by (1.14) and the fact that the parts between these two are in S, we obtain

νi + νi+1 ≻ νi′ + νi′+1 +
i′ − i

2
·

Since i′ satisfies condition (3), we then have

νi′ + νi′+1 ≻ νBrν(i′) +
Brν(i

′)− i′

2
,

and thus,

νi + νi+1 ≻ νBrν(i) +
Brν(i)− i

2
·

• If (i,Brν(i)) ∩ T S(ν) = ∅, we then have the sequence

νi + νi+1 ▷ · · · ▷ νBrν(i)−2 + νBrν(i)−1 ▷ νBrν(i)

if Brν(i) ∈ J , and otherwise,

νi + νi+1 ▷ · · · ▷ νBrν(i)−2 + νBrν(i)−1 ▷ νBrν(i) + νBrν(i)+1 ·

By (1.14), in the first case, we directly have

νi + νi+1 ≻ νBrν(i) +
Brν(i)− i

2
,

while in the second case, we obtain

νi + νi+1 ≻ νBrν(i) + νBrν(i)+1 +
Brν(i)− i

2
·

But, in terms of part sizes for the second case, we have by definition (1.13) that

νi + νi+1 −
(
νBrν(i) +

Brν(i)− i

2

)
≥ νBrν(i)+1 ≥ 1 ,

so that, again by (1.13),

νi + νi+1 ≻ νBrν(i) +
Brν(i)− i

2
·

□

6. Forbidden patterns of E1
In this section, we study the forbidden patterns that a partition in E has to avoid to be in E1.

By the definition of the bridge and Theorem 5.2, we can see that the reversibility of Ψ by Φ is a local
problem. In fact, for any secondary part in a partition ν ∈ E , the reversibility only depends on the sequence
starting from this part up to either the greatest primary part to its right if it exists, or the last part of
ν if there is no primary part to its right. Furthermore, by condition (3) of Theorem 5.2, we only have to
consider the sequences whose head is a sequence which is not well-ordered by ▷. Then, it suffices to restrict
the fordidden patterns to those such that the first part does not satisfy (5.3):

ν = ν1 + ν2 ̸ ▷ ν3 + ν4 ≫ · · · ≫ ν2s+1 or ν2s+1 + ν2s+2 , (6.1)

such that Brν(1) = 2s+ 1 and ν2s+1 + s ≻ ν1 + ν2.



BEYOND GÖLLNITZ’ THEOREM II: ARBITRARILY MANY PRIMARY COLORS 17

Remark 6.1. It is sufficient to consider the last part to be a primary part. In fact, a sequence that ends
by a secondary part can be viewed as the same sequence with this last part replaced by its upper half, as by
(1.12) and (1.15),

ν2s−1 + ν2s ≫ ν2s+1 + ν2s+2 =⇒ ν2s−1 + ν2s ≻ ν2s+1 + ν2s+2

=⇒ ν2s−1 + ν2s ≻ ν2s+1 + 1

=⇒ ν2s−1 + ν2s ≫ ν2s+1 ·

Note that, if a pattern ν is forddiden, then any pattern η whose head or tail is ν is also forddiden. This
is obvious when the tail of η is ν since the troublesome crossing will not change. When ν is the head of η,
we have that Brη(1) = Brη(Brν(1)) and we use the same reasoning as in the proof of Lemma 2.6 given in
Section 8 to show that

νBrν(1) +
Brν(1)− 1

2
≻ ν1 + ν2 =⇒ ηBrη(1) +

Brη(1)− 1

2
≻ η1 + η2 ·

Therefore, the optimal fordidden patterns are the ones that are allowed after removing either the first part
or the last part. Furthermore, these forddiden patterns satisfy the fact that the Bridge of the first part is
the position of the last part, so that during the process of Ψ, every secondary part is crossed by the last
part if it is a primary part, or by its upper half. The optimization also implies that all these crossings are
reversible by Φ, except the last one which occurs with the first part of the pattern.

In the next subsections, we first give some particular properties of the optimal forbidden patterns, and after
that, we aim at retrieving the optimal forbidden patterns for four primary colors. Finally, we enumerate the
optimal forbidden patterns, with some restrictions, for five primary colors, showing that there is an infinitude
of optimal forbidden patterns for more than four primary colors.

6.1. Properties of optimal forbidden patterns. We first define a tool that will help to have a better
understanding of the optimal forbidden patterns.

Definition 6.2. We say that two secondary colors p and q are primary equivalent if and only if their orders
according to the primary colors are the same, which means that p = aiau and q = aiav for some u, v ∈ (i, n].
We then use the notation kp ≡ kq and the equivalence class kp. This matters in the sense that for any
primary color c, we have the equivalence between kp ≡ kq and

kp ≻ lc ⇐⇒ kq ≻ lc · (6.2)

We can then write kp ≻ lc. For two secondary colors p and q, we say that kp ≻ hq if and only if we can

find a primary part lc such that kp ≻ lc ≻ hq. This is equivalent to saying that k > h or k = h and
(p, q) = (aiau, ajav) with i > j.

Let us now consider an optimal forbidden pattern

ν = ν1 + ν2 ̸ ▷ ν3 + ν4 ≫ · · · ≫ ν2s+1 (6.3)

where the secondary parts are ν2i−1 + ν2i and the last part ν2s+1 is a primary part. In the remainder of the
section, we consider the different-distance with respect to the order ≻. We thus have the following properties:

(1) For all i ∈ [1, s], we have Brν(2i− 1) = 2s+ 1.
(2) The part ν2s+1 is 1-different-distant from ν1 + ν2:

ν2s+1 + s ≻ ν1 + ν2 , (6.4)

(3) The fact that the pattern ν3 + ν4 ≫ · · · ≫ ν2s−1 + ν2s ≫ ν2s+1 is allowed implies by Theorem 5.2,
for all i ∈ [2, s], that ν2i−1 + ν2i is 1-different-distant from ν2s+1,

ν2i−1 + ν2i ≻ ν2s+1 + s+ 1− i , (6.5)

and by transitivity, this implies that ν2i−1 + ν2i is 1-different-distant from ν1 + ν2 − i+ 1,

ν2i−1 + ν2i ≻ ν1 + ν2 − i+ 1 · (6.6)
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(4) We obtain the following inequality

ν3 + ν4 + 1 ≻ ν2s+1 + s ≻ ν1 + ν2 · (6.7)

(5) If we replace the primary part ν2s+1 by another ν′2s+1 satisfying ν1 + ν2 ≻ ν′2s+1 + s, we then obtain
the following allowed pattern

ν′ = ν1 + ν2 ̸ ▷ ν3 + ν4 ≫ · · · ≫ ν2s−1 + ν2s ≫ ν′2s+1 ·

Remark 6.3. By (6.1), a pattern ν1 + ν2 ≫ · · · ≫ ν2s−1 + ν2s ≫ ν2s+1 + ν2s+2 only consisting of secondary
parts is optimal and forbidden if and only if ν1 + ν2 ≫ · · · ≫ ν2s−1 + ν2s ≫ ν2s+1 is an optimal forbidden
pattern. Note that in this case, (6.6) is also satisfied for i = s+ 1.

We now define a special kind of pattern, that we call a shortcut.

Definition 6.4. A pattern ν1 + ν2 ≫ · · · ≫ ν2s+1 + ν2s+2 is said to be a shortcut if

ν2s+1 + ν2s+2 ≻ ν1 + ν2 − s+ 1· (6.8)

One can check that a shortcut has at least three secondary parts, and that the relation (6.8) is stronger
than (6.6). The following property makes the enumeration of optimal forbidden patterns which contain
shorcuts quite difficult.

Proposition 6.5. We can always build a forbidden pattern starting from any allowed pattern and using
iteration of a shortcut.

By considering the optimal forbidden pattern ν = ν1 + ν2 ̸ ▷ ν3 + ν4 ≫ · · · ≫ ν2s+1 which does not
contain any shortcut, we then have by (6.4),(6.5) and (6.8) the following relation for all i ∈ {1, . . . , s− 1}:

ν1 + ν2 − i+ 1 ⪰ ν2i+1 + ν2i+2 ≻ ν2s+1 + s− i ≻ ν1 + ν2 − i · (6.9)

The latter implies the following properties:

(1) By definition of the head and (1.15), ν1 + ν2 and ν3 + ν4 are consecutive for ≻.

(2) For all i ∈ {2, . . . , s− 1}, two consecutive parts ν2i−1 + ν2i and ν2i+1 + ν2i+2 are either consecutive
in terms of ≻ (or equivalently not well-ordered by ▷), or consecutive in terms of ▷. In fact, by (6.9),
we necessarily have

ν2i+1 + ν2i+2 + 2 ≻ ν2i−1 + ν2i =⇒ ν2i−1 + ν2i ̸⪰ ν2i+1 + ν2i+2 + 2 ·

(3) By (6.9), we have

ν2s+1 + 2 ≻ ν1 + ν2 − s+ 2 ⪰ ν2s−1 + ν2s ≻ ν2s+1 + 1 ,

so that, by (1.14), ν2s−1 + ν2s and ν2s+1 are consecutive for ▷.

We see that the optimal forbidden patterns with no shortcut have their parts either consecutive in the
order ≻ or in the order ▷. Let us then consider the following moves:

• The arrow p→q means that (p, q) is a special pair and it represents a pattern of the form

(k + χ(p ≤ q))p, kq ·

• The two-headed arrow p↠q represents a move from a part with color p to the greatest secondary
part with color q smaller than the first part in terms of ▷. In fact, it indeed represents the pattern

k + 1 + χ(p ≤ q))p, kq ·

Therefore, the optimal forbidden patterns with no shortcut have the form

c1 ◦ · · · ◦ cm , k (6.10)

where c1, . . . , cm are some colors, ◦ is either → or ↠, and k is the size of the smallest part, so that the last
part is kcm .
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Example 6.6. For C = {a < b < c < d} , the pattern

ad→ bc ↠ cd ↠ b , 5

will represent the pattern 9ad, 8bc, 6cd, 5b.

Since an optimal forbidden pattern is allowed after removing the last part, we will consider the following
form

c1 ◦ · · · ◦ cm−1| ◦ cm , k (6.11)

If we refer to an optimal pattern into another one (see Proposition 6.10), then it means that we only use the
allowed pattern obtained after removing the last part.

6.2. Optimal forbidden patterns of E1 for four primary colors. For four primary colors a < b < c < d,
recall (1.10) the total order on primary and secondary colors

ab < ac < ad < a < bc < bd < b < cd < c < d (6.12)

and the set of special pairs SP⋊ = {(ad, bc), (cd, ab)}.

Theorem 6.7. The optimal forbidden patterns are the following:

cd→ ab|↠ c, d , k ≥ 1 (6.13)

ad→ bc|↠ a , k ≥ 2 · (6.14)

Proof. Let us consider the following diagram:

−
abac

ad

bc bd

a b

c

d

cd

general diagram

abac

ad

bc bd

cd

actual moves with examples
cd↠ab and ab→cd

We can see that the main nodes are the secondary colors, and we remark that a move p↠q is indeed between
p and the color q of the greatest secondary part smaller, in terms of ▷, than a part with color p. Thus,
any move p↠q′ with another secondary color q′ will be greater than the move p↠q represented in the first
diagram. As we notice on the second diagram, proceeding clockwise, we need more than one loop for a move
p↠q, while a move p→q requires less than one loop.
Since a forbidden pattern must necessarily begin with a sequence of secondary parts not well-ordered by ▷,
we then have as the head of the pattern either cd→ ab or ad→ bc.

• Suppose that the pattern begins by cd → ab. By (6.7), if it ends by a primary part kcs , by setting
ν1 + ν2 = hcd we then have

hab + 1 ≻ kcs + s ≻ hcd

so that cm ∈ {c, d}. Another interpretation is that, in the diagram, the color cm is in the clockwise
arc (ab, cd), and it leads to the same result. Suppose now that s ≥ 3, which means that the third
part is secondary. Since the next move can be at least ab ↠ cd, we then obtain that

hcd − 2 ⪰ ν5 + ν6 =⇒ hcd − 2 ⪰ ν5 + ν6·
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This contradicts (6.6). Therefore, s = 2 and, by (6.7), we obtain the pattern cd → ab ↠ c, d. It
actually corresponds to the pattern (k+2)cd, (k+2)ab, kc,d. Here kc,d means kc or kd. Since we must
necessarily have that

β((k + 2)ab) ̸≻ kc,d

and a quick check according to the parity of k shows that is always the case for k ≥ 1.
• The same reasoning occurs when the pattern begins by ad→ bc. We obtain the pattern ad→ bc ↠ a

which corresponds to (k + 2)ad, (k + 1)bc, ka. We then look for k such that

β((k + 1)bc) ̸≻ ka

and a quick check according to the parity of k shows that is always the case for k ≥ 2.

Note that we cannot have a optimal forbidden pattern consisting of three secondary parts, since whatever
the head is, the third secondary part does not respect the relation (6.6). □

Theorem 6.7 and Proposition 6.5 imply that, for four primary colors, we do not have any shortcut. This
is not the case for more than four primary colors, as we now see in the next subsection.

6.3. Optimal forbidden patterns of E1 for more than four primary colors. We can restrict the study
to five colors, as the set of colored partitions generated by five primary colors is embedded in any set of
colored partitions generated by more than four primary colors. We then consider the set of primary colors
C = {a < b < c < d < e}. The corresponding diagram with the primary equivalence classes for the secondary
colors gives

−

ab

acad

ae

bc de

ce

cdbe

bd

d

e
a

b

c

a·

b·

c·

d·

Let us first discuss the behaviour of the patterns with moves → p →. We can see in the diagram that this
happens only if p = cd. Consider now the pattern

ae→ cd→ ab ↠ de→ bc , k

which actually represents the pattern

(k + 3)ae, (k + 2)cd, (k + 2)ab, kde, kbc ·
We notice that this pattern is a shortcut. As we saw in Proposition 6.5, the enumeration of the forbidden
patterns then becomes intricate. We give the following lemma to restrict our study to some particular
patterns without shortcut.

Lemma 6.8. For five primary colors, the patterns of secondary parts without the moves → cd → do not
contain any shortcut.

The patterns without shortcut listed by the previous lemma are not exhaustive. In fact, we can have a
pattern with moves → cd→ without shortcut, as we give in the following example.
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Example 6.9. The pattern ae→ cd→ ab , k is not a shortcut and is even allowed for k ̸= 3.

The following theorem gives an exhaustive list of optimal forbidden patterns without moves→ cd→. The
notation < g1, . . . , gt > denotes the multiplicative group generated by g1, . . . , gt, and the notation (pattern)
means that the move pattern is optional.

Theorem 6.10. The optimal forbidden patterns with no move → p→ are the following:

head : ad→ bc

ad→ bc| ↠ a , k ≥ 2 (6.15)

head : be→ cd

be→ cd| ↠ b , k ≥ 2 (6.16)

head : de→ ab

de→ ab| ↠ d, e , k ≥ 1 (6.17)

head : de→ ac

de→ ac(↠ ab)| ↠ d, e , k ≥ 1 (6.18)

head : ae→ bc

ae→ bc| ↠ a , k ≥ 2 (6.19)

head : ae→ bd

ae→ bd(↠ bc)| ↠ a , k ≥ 2 (6.20)

head : ae→ cd

ae→ cd| ↠ b , k ≥ 2 (6.21)

ae→ cd(pattern)| ↠ a , k ≥ 2 (6.22)

where pattern ∈<↠ (6.16) >

(6.22)(↠ be)(↠ bd)(↠ bc)| ↠ a , k ≥ 2 (6.23)

head : de→ bc

de→ bc| ↠ a , k ≥ 2 (6.24)

de→ bc (pattern)| ↠ e , k ≥ 1 (6.25)

where pattern ∈<↠ (6.23),↠ (6.20),↠ (6.19), (↠ ae) ↠ (6.15) >

(6.25)(↠ ae)(↠ ad)(↠ ac)(↠ ab)| ↠ e , k ≥ 1 (6.26)

(6.26)| ↠ d , k ≥ 2 (6.27)

(6.26)| ↠ d , 1 (6.28)

with (6.26) not ending by ae, be

(6.25) ↠ (6.22)| ↠ be, bd , 2 (6.29)

(6.25) ↠ (6.23)| ↠ ae , 2 (6.30)

(6.30)| ↠ ad , 2 (6.31)

with (6.30) not ending by be

head : cd, ce→ ab

cd, ce→ ab| ↠ d, e , k ≥ 1 (6.32)

cd, ce→ ab(pattern)| ↠ c , k ≥ 2 (6.33)

where pattern ∈<↠ (6.17),↠ (6.18),↠ (6.26) >

(6.33) ↠ de| ↠ c , k ≥ 2 (6.34)

(6.33)| ↠ c , 1 (6.35)
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with (6.33) ending by ac, ab, bc

(6.33) ↠ (6.29) ↠ be| → cd , 3 (6.36)

(6.33) ↠ (6.30) ↠ ae| → cd , 3 (6.37)

(6.33) ↠ (6.25)(↠ ae) ↠ ad| ↠ ac , 2 (6.38)

(6.33) ↠ (6.25)| ↠ ac , 2 (6.39)

with (6.25) ending by bc

Proof of Theorem 6.10. We recall that the optimal forbidden patterns

ν = ν1 + ν2 ̸ ▷ ν3 + ν4 ≫ · · · ≫ ν2s+1

with no shortcut have the form described in (6.11):

c1 ◦ · · · ◦ cs| ◦ cs+1 , k ·

The part ν2i−1 + ν2i has the secondary color ci for all i ∈ [1, s], and the primary part ν2s+1 has the color
cs+1.

Rule 1 : For all i ∈ [2, s], cs+1 belongs to the clockwise arc (ci, c1). In fact, by (6.9), we have that

ν2s+1 + s− i+ 2 ≻ ν1 + ν2 − i+ 2 ⪰ ν2i−1 + ν2i ≻ ν2s+1 + s− i+ 1 ,

so that by starting a clockwise loop in the diagram from ci, we respectively meet cs+1, c1 and ci.
Rule 2 : If we have a move ci ↠ ci+1, then ci+1 strictly belongs to the clockwise arc (ci, cs+1). In

fact, we have by the primary equivalence definition and (6.9) that

ν2s+1 + s+ 2− i ≻ ν2i−1 + ν2i ≻ ν2s+1 + s+ 1− i ≻ ν2i+1 + ν2i+2 ≻ ν2s+1 + s− i

and the move ci ↠ ci+1 implies that

ν2i−1 + ν2i ▷ ν2i+1 + ν2i+2 ⇐⇒ ν2i−1 + ν2i − 1 ≻ ν2i+1 + ν2i+2 ·

We thus obtain the following inequality

ν2s+1 + s+ 1− i ≻ ν2i−1 + ν2i − 1 ≻ ν2i+1 + ν2i+2 ≻ ν2s+1 + s− i ·

With these two rules, we can retrieve all the optimal forbidden patterns. In our construction, we will see that
our moves are indeed minimal for ≫. This means that, in the case where (ci, ci+1) ∈ SP⋊, we necessarily
make the move ci → ci+1. By Lemma 5.9, with the minimality of the consecutive size differences, once the
part ν2s+1 crosses the parts ν2s−1 + ν2s, it then crosses all the parts up to ν1 + ν2. Therefore, the choice of
the size k is such that the part kcs+1

crosses the last secondary part (k + 1+ χ(cs ≤ cs+1))cs . We thus have

kcs+1
⪰ β((k + 1 + χ(cs ≤ cs+1))cs) · (6.40)

We then proceed as follows.

(1) We select a head c1 → c2, and cs+1 a primary color in the clockwise arc (c2, c1). The best way is to
begin with those with the shortest arc.

(2) The next move must necessarily be of the form c2 ↠ c3.
(a) With Rule 2, the patterns (6.15),(6.16),(6.17) and (6.19) follow immediately. In fact, in these

cases, the only primary colors in the arc (c1, c2) directly follow c2 in the clockwise sense before
all the secondary colors.

−

ab

acad

ae

bc de

ce

cdbe

bd

d

e
a

b

c

(b) We also obtain the patterns (6.21),(6.24), and (6.32) since the chosen primary color is directly
after c2.



BEYOND GÖLLNITZ’ THEOREM II: ARBITRARILY MANY PRIMARY COLORS 23

−

ab

acad

ae

bc de

ce

cdbe

bd

d

e
a

b

c

(c) In the case (6.18) and (6.20), there is only one secondary color in the arc which occurs before
the chosen primary color, and we can see that from this color we only have moves of the form
↠. The only possibility if we choose c3 to be this secondary color will be then to directly reach
the primary color at c4. We can also decide to choose c3 as the primary color. We recall that

c1 → c2(↠ c3)|↠ c4

means that the choice of the secondary color in between c2 and the primary color c4 is optional.
−

ab

acad

ae

bc de

ce

cdbe

bd

d

e
a

b

c

For all these cases, one can check that it is not possible to build from them some forbidden pattern
with only secondary parts.

(3) The remaining case is where c3 is between in the arc (c2, cs+1) and such that we can have a move
c3 → c4. We then use the following property of our optimal forddiden pattern due to (6.9): when we
do m moves from the first color to another secondary color, in the diagram, we do around the first
color fewer than m but at least m−1 primary loops. This means that, by taking the allowed pattern
resulting from the removal of the last part in an optimal forbidden pattern beginning by c3 → c4,
we will always satisfy (6.9). For this reason, we wisely begin with c1 → c2 = ae→ cd and cs+1 = a.
(a) For c1 → c2 = ae→ cd and cs+1 = a.

−

ab

acad

ae

bc de

ce

cdbe

bd

d

e
a

b

c

If c3 ̸= cs+1 = a, by both rules, we have that c3 ∈ {be, bd, bc}. As soon as c3 ̸= be, we obtain by
the second rule that the pattern is

ae→ cd ↠ bc|↠ a or ae→ cd ↠ bd(↠ bc)|↠ a ·

If c3 = be, then we can iterate the pattern (6.16) (which is be→ cd) as many times as we want.
By doing this, we do as many loops as the number of moves, which is twice the number of
iterations. However, once we move out from this iteration, we can only move to a by optionally
passing by be, bd, bc through ↠. In fact, anytime we reach cd, we cannot make a move cd→, so
that by the second rule, we need to move back to either be, bd, bc or a using ↠. We then obtain
the patterns (6.22) and (6.23). Note that for these patterns, we stay in the arc (cd, a), and the
passage from ae = c1 to cs requires more than s− 1 primary loops, so that the pattern

ae · · · cs ↠ ae

requires s + 1 primary loops. We also observe that apart from c1 = ae and cs+1, all colors ci
belong to {cd, be, bd, bc}, so that their upper halves can never be a primary part with color a
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and we do not have any optimal forbidden patterns with only secondary parts coming from a
forbidden pattern of that form.

(b) For c1 → c2 = de→ bc and cs+1 = d, e.
−

ab

acad

ae

bc de

ce

cdbe

bd

d

e
a

b

c

We use the same reasoning to show that the only moves that can leave the arc (bc, a) are (6.15),
(6.19),(6.20) and (6.23). For (6.15) (the move ad → bc), in order to make as many loops as
the number of moves, we can optionally add a move ↠ ae ↠ before reaching ad. This is why
we can compose a pattern using the patterns (6.19),(6.20) and (6.23) and ae ↠ (6.15), and we
obtain (6.25). In this composition, we can remark that we do not make a move cd→. In fact,
the only way to reach cd is to do a move (6.23), but in this move cd can only be reached after
the move ae→ cd, so that we cannot do cd→.
Once we move out of this composition, we can only reach the primary color d, e by optionally
passing by the primary equivalent class a., which consists of the secondary colors ae, ad, ac, ab.
In addition, these moves have the form ↠. We then obtain (6.26), (6.27) and (6.28). Note that
for these patterns, the secondary colors stay in the arc (cd, d), and the passage from de = c1 to
cs requires more than s− 1 primary loops, so that the pattern

de · · · cs ↠ de

requires s + 1 primary loops. To obtain the forbidden patterns with only secondary colors,
we just need to choose those which correspond to the forbidden patterns ending by a primary
color and such that the upper half of the last part corresponds to the primary color and is
at least equal than the lower half of the previous secondary part. We then have the patterns
(6.29),(6.30) and (6.31).

(c) For c1 → c2 = cd, ce→ bc and cs+1 = c.
−

ab

acad

ae

bc de

ce

cdbe

bd

d

e
a

b

c

We use the same reasoning to show that the only moves that can leave the arc (ab, c) are (6.26),
(6.18),(6.17). As before, in the composition of these moves, we remark that we do not make a
move cd → and the secondary colors stay in the clockwise arc (cd, c). Once we do not make
these moves, we can only go to c by optionally passing by de through ↠. For these patterns,
the passage from de = c1 to cs requires more than s− 1 primary loops, so that the pattern

cd, ce · · · cs ↠ ce, cd

requires s + 1 primary loops. We obtain the optimal forbidden patterns consisting of only
secondary parts, always by choosing those corresponding to optimal forbidden patterns ending
primary colors and such that the upper half of the last part corresponds to the primary color
and is at least equal than the lower half of the previous secondary part.

□

To conclude, we see that for more than four colors, there exist some shortcuts. However, even for five
colors, the set of optimal forbidden patterns without shortcut is infinite, as a consequence of Theorem 6.10,
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since some patterns use as many iterations of others. The enumeration of the forbidden patterns then
becomes intricate for more than four primary colors.

7. Bressoud’s algorithm, Motzkin paths and oriented rooted forests

In this section, we relate the partitions in E to oriented rooted forests, and give a new potential approach
to deal with the enumeration of the forbidden patterns.

Let us take a partition ν ∈ E and write it as

ν = (ν1, · · · , νp+2s) , (7.1)

where as before, p is the number of primary parts and s is the number of secondary parts. We recall that
the set J is the set of indices that correspond to the primary parts, and I corresponds to the upper halves,
so that I + 1 is associated to the lower halves.
We observe that the sequence λ = Ψ(ν) has also p+ 2s primary parts. We then have λ = λ1, . . . , λp+s. For
any x ∈ [1, p+ 2s], we set θx to be the index in λ of the primary part that comes from νx.

Example 7.1. As an example, we apply Φ on the partition λ = (12a, 7b, 6d, 6c, 5a, 4d, 4c, 4b, 4a, 3c, 1d, 1c, 1b, 1a)
and take ν = Φ(λ):

12a
7b
6d
6c
5a
4d
4c
4b
4a
3c
1d
1c
1b
1a

↣

12a

13bd

6c
5a
4d
4c
4b
4a
3c
1d
1c
1b
1a

↬

14bd
11a
6c
5a
4d
4c
4b
4a
3c
1d
1c
1b
1a

↣

14bd
11a
6c

9ad

4c
4b
4a
3c
1d
1c
1b
1a

↬

14bd
11a
10ad
5c
4c
4b
4a
3c
1d
1c
1b
1a

↣

14bd
11a
10ad
5c

8bc

4a
3c
1d
1c
1b
1a

↬

14bd
11a
10ad
9bc
4c
4a
3c
1d
1c
1b
1a

↣

14bd
11a
10ad
9bc
8ac
3c
1d
1c
1b
1a

↣

14bd
11a
10ad
9bc
8ac
3c
2cd
1b
1a

↣

14bd
11a
10ad
9bc
8ac
3c
2cd
2ab

·

(7.2)

We retrieve the partition ν of Example 5.1. By considering the occurrences of the primary parts, we obtain
the following diagram:

λx : 12a 7b 6d 6c 5a 4d 4c 4b 4a 3c 2d 2c 2b 2a

ν = Φ(λ) : 14bd 11a 10ad 9bc 8ac 3c 2cd 2ab

νx : 7d 7b 11a 5d 5a 5b 4c 4c 4a 3c 2d 2c 2b 2a .

We recall that

(p, s) = (2, 6), J = {3, 10}, I = {1, 4, 6, 8, 11, 13}, I + 1 = {2, 5, 7, 9, 12, 14}

and we have
x 1 2 3 4 5 6 7 8 9 10 11 12 13 14
θx 2 3 1 5 6 7 8 4 9 10 11 12 13 14

· (7.3)

We also compute Brν for ν = Φ(λ) and we obtain

i 1 4 6 8 11 13
Brν(i) 3 8 8 8 11 13

· (7.4)

The most important results of this part are the following.
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Proposition 7.2 (Motzkin path behaviour of the final positions). For any (i, i′, j, j′) ∈ I2 × J2, we
have the following relations:

If i < i′, then either θi < θi+1 < θi′ < θi′+1 or θi′ < θi < θi+1 < θi′+1 · (7.5)

If j < j′, then θj < θj′ · (7.6)

i+ 1 ≤ θi+1 and θj ≤ j · (7.7)

Either θj < θi or θi+1 < θj · (7.8)

Proposition 7.3 (Bridge according to the final positions). For any i ∈ I, we have the following:

• If there exists i < j ∈ J such that θj < θi, then

Brν(i) = min{j ∈ J : j > i and θj < θi} · (7.9)

• Otherwise,
Brν(i) = max{i′ ∈ I : i′ ≥ i and θi′ ≤ θi} · (7.10)

Remark 7.4. We indeed have by Proposition 7.2 for all i ∈ I that

θi+1 − (i+ 1) = |{u ∈ I ⊔ J : u > i and θu < θi}| ,
and Proposition 7.3 gives the following equivalence:

Brν(i) = i ⇐⇒ θi+1 = i+ 1 ·

Let us set I = {i1 < · · · < is} and J+ = J ⊔ {0, p + 2s + 1} = {j0 < j1 < · · · < jp < jp+1} and
(θ0, θp+2s+1) = (0, p + 2s + 1). Then, by (7.6) and (7.8) of Proposition 7.2, for any consecutive j, j′ ∈ J+,
there exists a unique V ⊂ {1, . . . , s} such that

{θj + 1, . . . , θj′ − 1} = {θx : x ∈ {iv, iv + 1 : v ∈ V }} ·
This means that the final positions between those of consecutive primary parts consist of those of the upper
and lower halves of some secondary parts. By (7.5), we can check that those secondary parts are consecutive,
and V is indeed an interval. Since the positions θi+1 form an increasing sequence, we then have a unique
decomposition

{1, . . . , s} = V0 ⊔ V1 ⊔ · · · ⊔ Vp

where the Vy are consecutive intervals.

We refer the reader to [13] for the definition of the combinatorial terms we use in the following. In each
interval, the positions behave like a Dyck path. In fact, the positions θi of the upper halves occur as the
moves (1, 1) and the positions θi+1 of the lower halves as the moves (1,−1). We also draw the positions θj
of the primary parts as the moves (1, 0), and we obtain what is called a Motzkin path (also see [8]). With
the bijection between Dyck paths of length 2l and the oriented rooted trees with l edges, one can then see
the initial positions as an oriented rooted forest with exactly p+ 1 trees and s edges.

Example 7.5. We take the corresponding representations for the example (7.2). We then have that

(i1, i2, i3, i4, i5, i6) = (1, 4, 6, 8, 11, 13), (j0, j1, j2, j3) = (0, 3, 10, 15)

and
0, . . . , 15 = θj0 , θj1 , θi1 , θi1+1, θi4 , θi2 , θi2+1, θi3 , θi3+1, θi4+1, θj2 , θi5 , θi5+1, θi6 , θi6+1, θj3

and the representations correspond to the following diagrams:

Motzkin path representation

j0 j1 j2 j3
i1 i4

i2 i3

i5 i6

Forest representation

j0 j1 j2 j3

i1

i2

i5i4

i3

i6
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Note that while we still keep track of the primary parts as the horizontal moves in Motzkin paths, they
vanish in oriented rooted forests. However, we can manage to record all information of the partition ν in the
oriented rooted forest by weighting the edges with the corresponding secondary part, while recording each
primary part on the root to its right. The optimal forbidden pattern ending by a primary part will then be
represented by a weighted oriented rooted tree.

Let us now consider the edges of the roots. In terms of Motzkin paths, they exactly correspond to the
meeting points with the horizontal axis. For the final positions, they correspond to the elements i ∈ I that
satisfy θi+1 < θi′ for all i

′ > i. By Proposition 7.3, in the case where the Bridge is not a element of J , it then
corresponds to some root’s edge. This means that the study of optimal forbidden patterns not ending by
a primary part can be reduced to the study of planted trees weighted by the secondary parts. The planted
trees are indeed in bijection with the oriented trees with one fewer edge, and the problem then becomes the
same as the previous case.

To conclude, we see that we can reduce the study of the optimal forbidden patterns to the study of
weighted oriented rooted trees, and this give a new perspective to investigate on a precise enumeration of
these patterns.

8. Proofs of the technical lemmas

8.1. Proof of Lemma 2.4. To prove (2.7), we observe that, for any (lp, kq) ∈ P × S, by (1.15),

lp ̸≫ kq ⇐⇒ lp ̸⪰ (k + 1)q ,

and

(k + 1)q ≫ (l − 1)p ⇐⇒ (k + 1)q ≻ lp

⇐⇒ (k + 1)q ̸⪯ lp ·

To prove (2.8), we first remark that, by (2.3), α(kq) = β((k + 1)q). We then obtain by (1.15) that

lp ≫ α(kq)⇐⇒ (l − 1)p ⪰ α(kq)

and

β((k + 1)q) ̸≻ (l − 1)p ⇐⇒ α(kq) ̸≻ (l − 1)p

⇐⇒ α(kq) ⪯ (l − 1)p ·

8.2. Proof of Lemma 2.5. Let us consider min{k − l : β(kp) ≻ α(lq)}. An abstract way to show (2.9) is
to use the explicit formula

∆(p, q) = χ(r ≤ y) + χ(r ≤ x)χ(s ≤ y)

with q = axay and p = aras. Recall that x < y and r < s. In fact, by considering (1.10) and the lexicographic
order ≻, one can check that the minimal difference between the secondary colors p and q for the relation ▷ is

1 + χ(p ≤ q) = 1 + χ(r < x) + χ(r = x)χ(s ≤ y) ·

By definition (1.11),

χ((p, q) ∈ SP⋊) = χ(r > y) + χ(r < x)χ(s > y)

so that, by (1.15), the minimal difference between the secondary colors p and q for the relation ≫ is given
by

1 + χ(r < x) + χ(r = x)χ(s ≤ y)− χ((p, q) ∈ SP⋊) = χ(r ≤ y) + χ(r ≤ x)χ(s ≤ y) ·
Now, we reason first according to the parity of k. For k = 2u, we have by (2.2) that α(kp) = uas and
βkp = uar . In order to minimize k − l, α(lq) and β(lq) have to be the greatest primary parts with color ax
and ay smaller than uar

in terms of ≻, so that, by (1.12), they must necessarily be the parts (u−χ(r ≤ x))ax

and (u− χ(r ≤ y))ay
. We then obtain the difference

χ(r ≤ x) + χ(r ≤ y) ·
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With the same reasoning for k = 2u+1, since α(kp) = (u+1)ar
and β(kp) = uas

, we then reach the difference

1 + χ(s ≤ x) + χ(s ≤ y) ≥ χ(r ≤ y) + χ(s ≤ y)·

Since the minimum is reached either for k even or k odd, we then have that

min{k − l : β(kp) ≻ α(lq)} ≥ min{χ(r ≤ y) + χ(s ≤ y), χ(r ≤ x) + χ(r ≤ y)} ·

We finally consider the case l = 2v, so that α(lq) = vay
and β(lq) = vax

, and to minimize k − l, α(kp)
and β(kp) have to be the smallest primary parts with color ar and as greater than vay in terms of ≻, so
that they must necessarily be the parts (v + χ(r ≤ y))ar and (v + χ(s ≤ y))as . We obtain the difference
χ(r ≤ y) + χ(s ≤ y) and then the inequality

min{k − l : β(kp) ≻ α(lq)} ≤ min{χ(r ≤ y) + χ(s ≤ y), χ(r ≤ x) + χ(r ≤ y)}·

Since min{χ(r ≤ y) + χ(s ≤ y), χ(r ≤ x) + χ(r ≤ y)} = χ(r ≤ y) + χ(r ≤ x)χ(s ≤ y), we then have (2.9).

To prove (2.10), we have by (2.3) that α((l − 1)q) = β(lq). Since β(kp) ≻ β(lq) = α((l − 1)q), this then
implies by (2.9) that kp ≫ (l − 1)q, and this is equivalent to (k + 1)p ≫ lq.

Let us now suppose that k − l ≥ ∆(p, q). We just saw that this minimum value was reached at k or
k − 1. Then if we do not have β(kp) ≻ α(lq), we necessarily have β((k − 1)p) ≻ α((l− 1)q) = β(lq) by (2.3).
Moreover, by (1.15), we have

β(kp) ̸≻ α(lq)⇐⇒ α(lq) + 1≫ α((k − 1)p) ,

so that we obtain (2.11). Suppose now that we have k − l = ∆(p, q). If β(kp) ≻ α(lq) then we necessarily
have

β(kp) ≻ α(lq) ≻ β(lq) ⪰ β(kp)− 1 ·
In fact, we saw that the minimal difference is obtained when the primary parts α(lq) and β(lq) are the closest
possible to β(kp) with the primary colors of q. If β(kp) ̸≻ α(lq), since we have β(lq)+1 ≻ α(lq), we also have

β(lq) + 1 ≻ α(lq) ⪰ β(kp) ·

In both cases, the relation (2.12) holds. If we have that k − l − 1 ≥ ∆(p, q), then we necessarily have by
(2.3) that

β(kq) ≻ β(l + 1)q = α(lq) ·

8.3. Proof of Lemma 2.6. For any ν = (ν1, . . . , νt) ∈ E2 and any i ∈ [1, t− 2], we have

νi ▷ · · · ▷ νj ·

By (1.14), we have

νi ⪰ νi+1 + 1 ⪰ · · · ⪰ νj + j − i⇒ νi ⪰ νj + j − i ,

with a strict inequality as soon as we have νi or νj in S, and we thus obtain (2.13).

8.4. Proof of Lemma 5.5. By definition, for all i ∈ I, Brν(i) ∈ ([i, j)∩I)∪{j}, for j = min(i, p+2s+1]∩J .
This means that, for any I ∋ i′ > j,

Brν(i
′) ≥ i′ > j ≥ Brν(i) ·

Let us now consider the function Brν on [i, j) ∩ I. It is obvious that, for all i′ ∈ [i, j) ∩ I, we have
j = min(i′, p+ 2s+ 1] ∩ J .

• If Brν(i) = i, then

Brν(i
′) ≥ i′ ≥ i = Brν(i) ·

• If we have Brν(i) = j, then by (5.4)

νu+1 ̸≻ νj +
j − u

2
− 1

for all u ∈ [i, j) ∩ I, and since [i′, j) ⊂ [i, j), we also obtain that Brν(i
′) = j.
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• Finally, if Brν(i) ∈ (i, j) ∩ I, then we have either j > i′ ≥ Brν(i), or i ≤ i′ < Brν(i). In the first
case, we obtain

Brν(i
′) ≥ i′ ≥ Brν(i) ·

In the second case, we observe that, by (5.5) and (5.6),

νu+1 ̸≻ νBrν(i) +
Brν(i)− u

2
− 1

for all u ∈ [i,Brν(i)) ∩ I, and in particular for all u ∈ [i′,Brν(i)) ∩ I. Thus, if Brν(i
′) ̸= j, we

necessarily have by (5.6) that Brν(i
′) ≥ Brν(i).

In any case, we have that Brν(i
′) ≥ Brν(i).

Let us now suppose that Brν(i) ∈ I. If Brν(i) = i, then Brν(Brν(i)) = i = Brν(i). Otherwise, let us
assume that Brν(Brν(i)) > Brν(i).

• If Brν(Brν(i)) = j, this means that

νu+1 ̸≻ νj +
j − u

2
− 1⇐⇒ νj +

j − u

2
− 1 ⪰ νu+1

for all u ∈ [Brν(i), j)∩I. Since νBrν(i) and νBrν(i)+1 have different primary colors and are consecutive
with respect to ≻, we then obtain that νBrν(i)+1 + 1 ≻ νBrν(i), so that

νj +
j −Brν(i)

2
⪰ νBrν(i) ·

We also have by (5.5) and (5.6) that

νu+1 ̸≻ νBrν(i) +
Brν(i)− u

2
− 1⇐⇒ νBrν(i) +

Brν(i)− u

2
− 1 ⪰ νu+1

for all u ∈ [i,Brν(i)) ∩ I, so that

νj +
j − u

2
− 1 ⪰ νu+1 ⇐⇒ νu+1 ̸≻ νj +

j − u

2
− 1 ·

We then conclude by (5.4) that Brν(i) = j, which contradicts the fact that Brν(i) /∈ J .
• For Brν(Brν(i)) > Brν(i), we reason exactly in the same way, by replacing j by Brν(Brν(i)), and

we obtain by (5.6) that Brν(i) ≥ Brν(Brν(i)) > Brν(i).

To conclude, we necessarily have that Brν(Brν(i)) = Brν(i) for Brν(i) ∈ I.

8.5. Proof of Lemma 5.8. By (1.14), (1.15) and the fact that all the pairs in SP⋊ have distinct secondary
colors, we have that for any u ∈ [i, i′) ∩ I

νu+2 + νu+3 + 1 ≻ νu + νu+1 ≻ νu+2 + νu+3 ,

so that we obtain (5.10) recursively.

8.6. Proof of Lemma 5.9. By (2.12) of Lemma 2.5, we have for any u ∈ [i, i′) ∩ I that

νu+3 + 1 ⪰ νu+1 ,

so that we recursively have

νi′+1 +
i′ − u

2
⪰ νu+1 ·

By (5.7), if we suppose that Brν(i
′) > i′, we then have

νi′+1 ̸≻ νBrν(i′) +
Brν(i

′)− i′

2
− 1⇐⇒ νBrν(i′) +

Brν(i
′)− i′

2
− 1 ⪰ νi′+1 ,

and we obtain that

νBrν(i′) +
Brν(i

′)− u

2
− 1 ⪰ νu+1 ⇐⇒ νu+1 ̸≻ νBrν(i′) +

Brν(i
′)− u

2
− 1
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for all u ∈ [i, i′)∩ I. Since the previous relation is also true for for all u ∈ [i′,Brν(i
′))∩ I, by (5.5) and (5.6),

we have that Brν(i
′) ≤ Brν(i). Finally, by Lemma 5.5, the fact that Brν is non-decreasing on I gives that

Brν(i
′) = Brν(i).

8.7. Proof of Lemma 6.8. We can notice that for any pair (kp, lq) of secondary parts different from a
pattern cd→ ab and that satisfies kp ≫ lq, we can always find an integer h such

kp ≻ hcd ⪰ lp · (8.1)

This is obvious when (p, q) /∈ SP⋊. In fact,

kp ≫ lq ⇐⇒ kp ≻ (l + 1)q ≻ lq

and we can find a unique hcd satisfying (l + 1)q ≻ hcd ⪰ lq. Note that if q = cd, we then have at least two
possible integers h = l, l+1. Suppose now that (p, q) ∈ SP⋊. Recall that here, we set {a1 < a2 < a3 < a4 <
a5} = {a < b < c < d < e}. We then have two kinds of pairs.

• First, we have the pairs (aiaj , akal) with 5 ≥ j > i > l > k ≥ 1, so that i ≥ 3 and l ≤ 3. Thus,
aiaj ≥ cd, while akal ≤ bc < cd. If aiaj ̸= cd, we have that aiaj > cd, and then

kaiaj
≻ kcd ≻ kakal

and the property (8.1) is true for (kp, lq) = (kaiaj , kakal
).

• The second kind of pair is of the form (aiaj , akal) with 5 ≥ j > l > k > i ≥ 1, so that l ≤ 4 and
i ≤ 2. Thus, aiaj ≤ be < cd, while akal ≤ cd. We have that aiaj > cd, and then

(l + 1)aiaj
≻ lcd ⪰ lakal

and the property (8.1) is true for (kp, lq) = ((l + 1)aiaj , lakal
).

Let us now consider a pattern of secondary parts (ν1, ν2, · · · , ν2s−1, ν2s, ν2s+1, ν2s+2) with no moves→ cd→.

If ν1 + ν2, ν3 + ν4 ̸= cd→ ab, we recursively show on 1 ≤ i ≤ s that there exists h such that

ν1 + ν2 ≻ (h+ i− 1)cd ≻ hcd ⪰ ν2i+1 + ν2i+2 · (8.2)

In fact, by (8.1), the previous statement holds for i = 1. Suppose now it holds by induction up to i. If
ν2i+1 + ν2i+2, ν2i+3 + ν2i+4 ̸= cd→ ab, then by (8.1), we have h′ such that

hcd ⪰ ν2i+1 + ν2i+2 ≻ h′
cd ⪰ ν2i+3 + ν2i+4 ·

We thus have h > h′, and by choosing h′, we obtain

ν1 + ν2 ≻ (h′ + i)cd ≻ h′
cd ⪰ ν2i+3 + ν2i+4 ·

If ν2i+1 + ν2i+2, ν2i+3 + ν2i+4 = cd → ab, we then necessarily have that ν2i−1 + ν2i ▷ ν2i+1 + ν2i+2 not to
have the moves → cd →. Therefore, by setting hcd = ν2i+1 + ν2i+2, we have that ν2i−1 + ν2i ≻ (h + 1)cd.
Since the statement (8.2) also holds for i− 1, there exists h′ such that

ν1 + ν2 ≻ (h′ + i− 2)cd ≻ h′
cd ⪰ ν2i−1 + ν2i ·

We can then remark that h′ ≥ h+ 2, and we conclude that

ν1 + ν2 ≻ (h+ i)cd ≻ hcd ⪰ ν2i+3 + ν2i+4 ·
We have thus proved the statement (8.2) when the head is different from cd→ ab.

If the head is equal to cd → ab, we then apply (8.2) on the pattern (ν3, ν4, · · · , ν2s−1, ν2s, ν2s+1, ν2s+2),
and we obtain that there exists h such that

ν1 + ν2 ≻ ν2 + ν3 ≻ (h+ i− 2)cd ≻ hcd ⪰ ν2i+1 + ν2i+2

so that ν1 + ν2 ⪰ (h+ i− 1)cd. In both cases, we always have that ν1 + ν2 − s+ 1 ⪰ ν2s+1 + ν2s+2 so that

ν1 + ν2 − s+ 1 ⪰ ν2s+1 + ν2s+2 ·
By definition (6.8), (ν1, ν2, · · · , ν2s−1, ν2s, ν2s+1, ν2s+2) cannot be a shortcut. Since a pattern that does not
contain the moves → cd → does not have any subpattern that contains these moves, we then obtain our
lemma.
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9. Proofs of the propositions

9.1. Proof of Proposition 4.2. Let λ = (λ1, . . . , λt) be a partition in O. Let us set c1, . . . , ct to be the
primary colors of the parts λ1, . . . , λt.
First Step 1. Now consider the first troublesome pair (λi, λi+1) at Step 1 in Φ. We then set

δ1 = ∅
γ1 = λ1 ≫ · · · ≫ λi ,

µ1 = λi+1 ≻ · · · ≻ λt ·
The first resulting secondary part is λi + λi+1.
First iterations of Step 2.

• If there is a part λi+2 after λi+1, we have that

λi + λi+1 − λi+2 = χ(ci < ci+1) + 2λi+1 − λi+2 by (2.6)

≥ χ(ci < ci+1) + 2χ(ci+1 ≤ ci+2) + λi+2 by (1.12)

≥ 1 + χ(ci ≤ ci+2) + χ(ci+1 ≤ ci+2) ·

Since by (1.10), we have that ci > ci+2 and ci+1 > ci+2 implies cici+1 > ci+2, we then have that
λi + λi+1 − λi+2 ≥ 1 + χ(cici+1 ≤ ci+2), and we conclude that λi + λi+1 ≫ λi+2. This means that
if there is no iteration of Step 2 (which happens if i = 1 or λi+1 ≫ λi + λi+1), then the secondary
part is well-ordered with the primary part to its right.

• The primary parts of γ1 are well-ordered by ≫. By (1.15) and (2.4), we have that for any j < i, if
λi + λi+1 crosses λj after i− j iterations of Step 2, we then have by (2.7) that

(λi + λi+1 + i− j)≫ (λj − 1)≫ · · · ≫ λi−1 − 1 ·
• We also have by (1.15) that

λi−1 ≫ λi ≻ λi+1 ≻ λi+2 =⇒ λi−1 − 1 ⪰ λi ≻ λi+1 ≻ λi+2

=⇒ λi−1 − 1 ≻ λi+2 ·

If we can no longer apply Step 2 after i− j iterations, we then obtain (even when there is no crossing which
means that j = i)

λ1 ≫ · · · ≫ λj−1 ≫ (λi + λi+1 + i− j)≫ (λj − 1)≫ · · · ≫ λi−1 − 1 ≻ λi+2 ≻ · · · ≻ λt·
Second Step 1. Now, by applying Step 1 for the second time, we see that the next troublesome pair is
either λi−1 − 1, λi+2, or λi+2+x, λi+3+x for some x ≥ 0.

• If λi−1− 1 ̸≫ λi+2, this means that (λi−1− 1, λi+2) is a troublesome pair, and Step 1 occurs there.
We then set

δ2 = λ1 ≫ · · · ≫ λj−1 ≫ (λi + λi+1 + i− j)

γ2 = (λj − 1)≫ · · · ≫ λi−1 − 1

µ2 = λi+2 ≻ · · · ≻ λt ·

By (2.10), we have that (λi + λi+1 +1)≫ (λi−1 + λi+2 − 1). Then, even if (λi−1 + λi+2 − 1) crosses
the primary parts (λj − 1)≫ · · · ≫ λi−2 − 1 after i− j − 1 iterations of Step 2, by (1.15), we will
still have that

(λi + λi+1 + i− j)≫ (λi−1 + λi+2 + i− j − 2) ·
We have before the third application of Step 1 that

δ3 = λ1 ≫ · · · ≫ (λi + λi+1 + i− j)≫ λj − 1≫ · · · ≫ λj′−1 − 1≫ (λi−1 + λi+2 − 2 + i− j′)

γ3, µ3 = λj′ − 2≫ · · · ≫ λi−2 − 2≫ λi+3 ≻ · · · ≻ λt ,

for some i− 1 ≥ j′ ≥ j. Observe that µ3 is the tail of the partition λi+3 ≻ · · · ≻ λt.
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• If λi−1 − 1 ≫ λi+2, then the next troublesome pair appears at λi+2+x, λi+3+x for some x ≥ 0, and
it forms the secondary part λi+2+x + λi+3+x. We then set

δ2 = λ1 ≫ · · · ≫ λj−1 ≫ (λi + λi+1 + i− j)

γ2 = (λj − 1)≫ · · · ≫ λi−1 − 1≫ λi+2 ≫ · · · ≫ λi+2+x

µ2 = λi+x+3 ≻ · · · ≻ λt ·

We also have

λi ≻ λi+1 ≻ λi+2 ≫ · · · ≫ λi+2+x ≻ λi+3+x ·
By (1.15), we can easily check that

λi ≻ λi+1 ≻ λi+2 ⪰ λi+2+x + x ≻ λi+3+x + x

so that, by (2.9),

(λi + λi+1)≫ (λi+2+x + λi+3+x + 2x) ·
This means by (1.15) that,

(λi + λi+1)≫ (λi+2+x + λi+3+x + x)

and, as soon as x ≥ 1, by (1.14)

(λi + λi+1) ▷ (λi+2+x + λi+3+x + x) ·

We then obtain that, even if the secondary part λi+2+x + λi+3+x crosses, after x + i − j iterations
of Step 2, the primary parts

λj − 1≫ · · · ≫ (λi−1 − 1)≫ λi+2 ≫ · · · ≫ λi+1+x ,

we still have

(λi + λi+1 + i− j)≫ (λi+2+x + λi+3+x + x+ i− j) ·
However, as soon as x ≥ 1, we directly have

(λi + λi+1 + i− j) ▷ (λi+2+x + λi+3+x + x+ i− j) ·

We thus obtain before the third application of Step 1 that,

δ3 = λ1 ≫ · · · ≫ (λi + λi+1 + i− j)≫ · · · ≫ (λi+2+x + λi+3+x + x+ i− j′)

γ3, µ3 = · · · ≻ λi+4+x ≻ · · · ≻ λt ,

for some i + x ≥ j′ ≥ j. Observe that µ3 is the tail of the partition λi+x+3 ≻ · · · ≻ λt. Moreover,
we have the following inequalities

– λj′−1 − 1≫ (λi+2+x + λi+3+x + x+ i− j′)≫ λj′ − 2 for x− 1 ≥ j′ ≥ j,
– λi−1 − 1≫ (λi+2+x + λi+3+x + x)≫ λi+2 − 1 for j′ = i,
– λj′+1 ≫ (λi+2+x + λi+3+x + x+ i− j′)≫ λj′+2 − 1 for x+ i ≥ j′ ≥ i+ 1.

Observe that the partition to the left of λi+x+4 is well-ordered by ≫, so that µ3 is the tail of the
partition λi+x+4 ≻ · · · ≻ λt.

In both cases, the conditions in the proposition are satisfied. In fact, the partition δ2 belongs to E and is
the head of the partition δ3 that also belongs to E , and the fourth statement is true. By comparing µ1, µ2

(and µ3), the third statement is true since µ2 is a strict tail of µ1. The two first statements directly come
from the way we established the sequences, and the fact that s(δu)≫ g(γu) is true for u = 2, 3.

By induction, we only apply Step 1 once to the troublesome pair (s(γu), g(µu)) in the partition ∅, γu, µu ∈
O and then some iterations of Step 2. We then obtain some sequence δ′u, γ′u, µ′u with the same form as
(δ2, γ2, µ2), and we set the triplet (δu+1, γu+1, µu+1) = ((δu, δ′u), γ′u, µ′u). Note that the sequence δu, δ′u is
indeed a partition in E by considering the process from the (u− 1)th Step 1.
Then, the sequence (δu, γu, µu) becomes the sequence (δu+1, γu+1, µu+1) after applying Step 1 once to the
troublesome pair (s(γu), g(µu)), and some iterations of Step 2 by crossing the secondary part s(γu)+ g(µu)
with some primary parts of γu \ {s(γu)}. Proposition 4.2 follows naturally.
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9.2. Proof of Proposition 4.4. Let us consider E ∋ ν = (ν1, . . . , νt). If we suppose that the secondary
parts of ν are νi1 , . . . , νiS for i1 < · · · < iS , we can then set for all v ∈ [1, S]

δv = ν1 ≫ · · · ≫ νiS+1−v

and δS+1 = ∅. By setting i = iS , we also have that

δ1 = ν1 ≫ · · · ≫ νi

γ1 = νi+1 ≫ · · · ≫ νt

µ1 = ∅ ·

• If νi crosses all the primary parts up to νt after iterating Step 1, we have that

β(νi − t+ i+ 1) ̸≻ νt ·

But, we also have that

νi ▷ · · · ▷ νt
since νi+1, . . . , νt are all primary parts. We thus have by Lemma 2.6 that

νi − t+ i ≻ νt ,

so that, if νi − t+ i has size 1, then νt has also size 1 and a color smaller than the color of νi. But
by (2.1) and (1.10), we necessarily have that β(νi− t+ i+1) has size 1 and a color greater than the
color of νi. We then obtain by (1.13) that

β(νi − t+ i+ 1) ≻ νi − t+ i ≻ νt ,

and we do not cross νi− t+ i+1 and νt, which is aburd by assumption. This means that in any case
after crossing, we still have that the secondary part size is greater than 1, so that after splitting, its
upper and lower halves stay in P.

• if νi crosses all the primary parts up to νj after iterating Step 1 and stops before νj+1, we then set

δ2 = ν1 ≫ · · · ≫ νiS−1

γ2 = νiS−1+1, . . . , νiS−1, νiS+1 + 1, . . . , νj + 1, α(νiS + iS − j)

µ2 = β(νiS + iS − j), νj+1, . . . , νt ·

The statements of Proposition 4.4 are then satisfied.
• Suppose now that (δv, γv, µv) satisfies the conditions in Proposition 4.4. Note that s(γv), g(µv) are
respectively the upper and the lower halves after the splitting of the secondary part coming from
νiS+2−v

. We also have by (1.15) that

νiS+1−v
≫ νiS+1−v

≫ · · · ≫ νiS+2−v
≫ νiS+2−v

=⇒ νiS+1−v
+ iS+1−v − iS+2−v + 1≫ νiS+2−v

since the parts between these secondary parts are primary parts. By Lemma 2.5, even if these
secondary parts meet after crossing the primary parts, the splitting of the part coming from νiS+1−v

will then occur either before the upper half or between the upper and the lower halves obtained
after the splitting of νiS+2−v

. Thus the splitting of s(δv) = νiS+1−v
occurs before g(µv). By taking

s(γv+1), g(µv+1) as the upper and the lower halves of the split secondary part coming from νiS+2−v
,

we thus obtain a sequence (δv+1, γv+1, µv+1) such that µv is the strict tail of µv+1. Note that these
sequences also satisfy the other statements.

9.3. Proof of Proposition 4.6. Note that Step 1 of Φ is reversible by the splitting in Step 2 of Ψ. Let
us now show that iterations of Step 2 of Φ are also reversible by iterations of Step 1 in Ψ.

We saw in the proof of Proposition 4.2 in (9.1) that for any u ≥ 1, the sequence (δu, γu, µu) becomes the
sequence (δu+1, γu+1, µu+1) after applying Step 1 once to the troublesome pair (s(γu), g(µu)), and some
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iterations of Step 2 by crossing the secondary part s(γu) + g(µu) with some primary parts of γu \ {s(γu)}.
Without loss of generality, let us set

γu = π1 ≫ · · · ≫ πi

µu = πi+1 ≻ · · · ≻ πr

and suppose that the secondary parts πi + πi+1 crossed the primary parts πj ≫ · · · ≫ πi−1. Since γu ∈
E ∩ O ⊂ E2, by Lemma 2.6 and (2.4), we have that

πj ≫ πi + i− j − 1 ⪰ α(πi + πi+1 + i− j − 1) ·

Using (2.8) of Lemma 2.4, this is equivalent to saying that

α(πi + πi+1 + i− j) ̸≻ πj − 1 · (9.1)

If the iteration of Step 2 ceases before πk−1, we then have that

δ′u = π1 ≫ · · · ≫ πi + πi+1 + i− k

γ′u, µ′u = πj − 1≫ · · · ≫ πi−1 − 1 ≻ πi+2 ≻ · · · ≻ πr

so that (δu+1, γu+1, µu+1) = ((δu, δ′u), γ′u, µ′u). But the inequality (9.1) holds for all k ≤ j ≤ i− 1, so that
by applying Ψ on (δu+1, γu+1, µu+1), the secondary part s(δu+1) = πi + πi+1 + i − k will recursively cross
by Step 1 the parts πj − 1. The iteration of Step 1 stops before the part πi+2 since

πi+2 ≺ πj+1 = β(πi + πi+1)

and we split by Step 2 the secondary part πi + πi+1 into πi and πi+1. We then retrieve the sequence
(δu, γu, µu).

To conclude, we observe that if Φ(λ) ∈ E has S secondary parts, then the last sequence in the process
Φ is (δS+1, γS+1, µS+1) with µS+1 = ∅, δS+1 the partition Φ(λ) up to the Sth secondary part and γS+1 the
tail to the right of this last secondary part. But this triplet is equal to the triplet (δv, γv, µv) of Proposition
4.4 for v = 1. We then recursively obtain the result of Proposition 4.6 in the decreasing order according to
u.

9.4. Proof of Proposition 5.6. Let us take any i ∈ I = {i1 < · · · < is}, let us consider j = min(i, p +
2s+1]∩ J . Since in the process of Ψ, the primary parts never cross, and the secondary parts can only move
forward before splitting, the part νj will not be affected by Ψ operating on any secondary part to its right.

• Suppose that Brν(i) = j. By definition (5.4), this means that

νi′+1 ̸≻ νj +
j − i′

2
− 1

for all i′ ∈ [i, j) ∩ I, so that, by the crossing condition of Step 2 of Ψ, νj +
j−i′

2 − 1 will recursively
be the first primary part that crosses all the secondary parts νi′ + νi′+1 up to νi + νi+1. Thus, for
i = iu

s(δs+1−u) = νiu + νiu+1, g(γs+1−u) = νj +
j − iu

2
− 1 ·

• Suppose that Brν(i) < j. Let us set Brν(i) = i′1 and let i′1 < · · · < i′t < j be all the fixed points by
Brν in [i, j). By Lemma 5.5, have that

Brν([i, i
′
1]) = {i′1} , Brν((i

′
s−1, i

′
s]) = {i′s} and for (i′t, j) ̸= ∅ , Brν((i

′
t, j)) = {j} ·

We then have during the process of Ψ that νj crosses all the secondary parts up to νi′t+2+νi′t+3, but
does not cross νi′t + νi′t+1. Thus, νi′t + νi′t+1 directly splits into νi′t and νi′t+1, and by (5.5) and the
crossing condition of Step 1 , νi′t crosses all the secondary parts up to νi′t−1

+ νi′t−1+1, which is not

crossed.
The process then continues and we reach νi′1 +νi′1+1 which directly splits into νi′1 and νi′1+1. If i = i1,
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we have the first statement of Proposition 5.6. Otherwise, νi′1 crosses all the secondary parts up to
νi + νi+1. We then obtain for for i = iu

s(δs+1−u) = νiu + νiu+1, g(γs+1−u) = νi′1 +
i′1 − iu

2
− 1 ·

In any case, if i = Brν(i), then νi + νi+1 directly splits, otherwise, we have that for i = iu

g(γs+1−u) = νBrν(iu) +
Brν(iu)− iu

2
− 1 ,

and the part νiu + νiu+1 first crosses the primary part g(γs+1−u).

9.5. Proof of Proposition 5.7. Let us take ν = (ν1, · · · , νp+2s), and I = {i1 < · · · < is}. Note that the
triplet (δ1, γ1, µ1) is such that µ1 = ∅, δ1 is the partition ν up to νis + νis+1 and γ1 is the tail to the right
of this part. We then have that γ1, µ1 ∈ (E ∩ O)×O and νis + νis+1 = s(δ1)≫ g(γ1).

• If we have that Brν(iu) > iu, by Proposition 5.6, we necessarily have that

g(γs+1−u) = νBrν(iu) +
Brν(iu)− iu

2
− 1 ·

But with the condition (2), we have by (1.15) and (2.7) that

νBrν(iu) +
Brν(iu)− iu

2
̸≻ νiu + νiu+1 ⇐⇒ νiu + νiu+1 ≫ νBrν(iu) +

Brν(iu)− iu
2

− 1 ·

If γs+1−u ∈ E ∩O ⊂ E1, we then obtain that the partition s(δs+1−u), γs+1−u belongs to E2, so that,
by Lemma 2.6 and (2.7) of Lemma 2.4, all the crossings in Step 1 of Ψ are reversible by Step 2 of
Φ. We set

γs+1−u = π1 ≫ · · · ≫ πr

and if νiu+νiu+1 = s(δs+1−u) crosses all the primary parts up to πj , we then have by (2.8) of Lemma
2.4

δs+2−u, γs+2−u = δs+1−u \ νiu + νiu+1 , π1 + 1≫ · · · ≫ πj + 1≫ α(νiu + νiu+1 − j)

µs+2−u = β(νiu + νiu+1 − j) ≻ πj+1 ≻ · · · ≻ πr, µs+1−u ·

Furthermore, always by condition (2), we have that

s(δs+1−u \ νiu + νiu+1) = ν−(iu)≫ νBrν(iu) +
Brν(iu)− iu

2
= π1 + 1

so that δs+2−u, γs+2−u ∈ E and we obtain that γs+2−u ∈ E ∩ O and s(δs+2−u)≫ g(γs+2−u).
Moreover, if µs+1−u ∈ O and j < r, we then have that (πr, g(µs+1−u)) is the troublesome pair
coming from the splitting of νiu+1 + νiu+1+1 and satisfies πr ≻ g(µs+1−u), so that µs+2−u ∈ O. If
µs+1−u ∈ O and j = r, this means that the splitting of νiu + νiu+1 occurs in between those of
νiu+1

+ νiu+1+1 and the lower halves are still well-ordered in terms of ≻, so that µs+2−u ∈ O. In any
case, if µs+1−u ∈ O (with the previous assumption that γs+1−u ∈ E ∩ O), then µs+2−u ∈ O.

• If we have that Brν(iu) = iu, then by Proposition 5.6, the splitting occurs directly and we have

νiu+1 ≻ g(γs+1−u) ·

Then we have that

δs+2−u, γs+2−u = δs+1−u \ νiu + νiu+1 , νiu

µs+2−u = νiu+1, γ
s+1−u, µs+1−u ·

so that, if γs+1−u and µs+1−u are in O, since s(γs+1−u) ≻ g(µs+1−u), we then have that µs+2−u is
also in O. Note that s(δs+1−u \ νiu + νiu+1) = ν−(iu).
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– If ν−(iu) ▷ νiu + νiu+1, then we obtain that

ν−(iu)− νiu = ν−(iu)− (νiu + νiu+1) + νiu+1

≥ 2 (by (1.14) and the fact that νiu+1 ≥ 1) ,

so that, by (1.13) and (1.14), ν−(is)≫ νiu .
– In the case that ν−(is) ̸ ▷ νiu + νiu+1, this means by (1.15) that we have the case of a pair

of secondary parts with colors in SP⋊, and which are consecutive for ≻. Then the pair
(ν−(is), νiu + νiu+1) has the form (kcd, kab) or ((k + 1)ad, kbc) for some primary colors a <
b < c < d. We check the different cases according to the parity of k :

(2k)cd ≫ kb , (2k + 1)cd ≫ (k + 1)a (2k + 1)ad ≫ kc (2k + 2)ad ≫ (k + 1)b ·

We then conclude that ν−(is)≫ νiu .
In any case, we always have that νiu is well-ordered with the part to its left in terms of ≫, so that
δs+2−u, γs+2−u ∈ E , and then γs+2−u ∈ E ∩ O and s(δs+2−u)≫ g(γs+2−u).

Note that the process Ψ is reversible by Φ since the crossings are reversible and so is the splitting. We then
obtain Proposition 5.7 recursively on u in decreasing order.

9.6. Proof of Proposition 6.5. Let us take a shortcut ζ = ζ1 + ζ2 ≫ · · · ≫ ζ2s+1 + ζ2s+2, and an allowed
pattern η = η1 + η2 ≫ · · · ≫ η2t−1 + η2t ≫ η2t+1 such that Brη(1) = 2t+ 1. Without loss of generality, by
adding a constant k to the part ν2i−1 + ν2i, we can suppose that ζ2s+1 + ζ2s+2 ≫ η1 + η2. If we consider the
sequence

ν(0) = ζ1 + ζ2 ≫ · · · ≫ ζ2s+1 + ζ2s+2 ≫ η1 + η2 ≫ · · · ≫ η2t−1 + η2t ≫ η2t+1 ,

by adding a large constant k to the parts of the sequence ν(0), we can say η2t+1 is the bridge in ν of all

i ∈ 2{0, . . . , s+ t}+ 1 ·

In fact, by Remark 2.1, we have that the lower halves grow according to k/2, so that for some k large enough,
η2t+1 + k− 1 will be 1-distant-different from all the lower halves in the sequence ν in terms of ⪰. We finally
consider the sequences of the form

ν(u) = ζ1 + ζ2 + su≫ · · · ≫ ζ2s+1 + ζ2s+2 + su≫ ζ1 + ζ2 + s(u− 1)≫ · · · ≫ ζ2s+1 + ζ2s+2 + s(u− 1)≫
· · · ≫ ζ1 + ζ2 + s≫ · · · ≫ ζ2s+1 + ζ2s+2 + s≫ ζ1 + ζ2 ≫ · · · ≫ ζ2s+1 + ζ2s+2 ≫
η1 + η2 ≫ · · · ≫ η2t−1 + η2t ≫ η2t+1 ·

The sequence ν is well defined, since ζ is a shortcut, we then have by (1.14) and (1.15) that

ζ2s+1 + ζ2s+2 ≻ ζ1 + ζ2 + 1− s =⇒ ζ2s+1 + ζ2s+2 ≻ ζ1 + ζ2 + 1− s

=⇒ ζ2s+1 + ζ2s+2 ▷ ζ1 + ζ2 − s

=⇒ ζ2s+1 + ζ2s+2 + s≫ ζ1 + ζ2 ,

so that ζ2s+1 + ζ2s+2 + su′ ≫ ζ1 + ζ2 + s(u′ − 1) for all u′ ≥ 1. We also have that η2t+1 is the bridge of all
the indices of the secondary parts in ν(u). In fact, we have by (2.4) that

β(ζ2s+1 + ζ2s+2 + s) ⪯ s+ β(ζ2s+1 + ζ2s+2) ⪯ s+ t+ η2t+1 ≺ s+ t+ 1 + η2t+1 ,

and we obtain in the same way, that for all i ∈ {0, . . . , s− 1}

β(ζ2i+1 + ζ2i+2 + s) ≺ s− i+ s+ t+ 1 + η2t+1 ,

so that η2t+1 is the bridge of all the indices (in the corresponding set I) of the parts in ν(1). Using (2.4)
recursively on u, we proved that η2t+1 is indeed the bridge of all indices of the secondary parts in the sequence
ν(u).
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To conclude, we see that there are (u+ 1)(s+ 1) + t secondary parts in ν(u) (the head included) between
ζ1 + ζ2 + su and η2t+1, and we then have

η2t+1 + (u+ 1)(s+ 1) + t− (ζ1 + ζ2 + su) = η2t+1 − (ζ1 + ζ2) + t+ u+ s+ 1 ·
There then exists some u0 such that,

η2t+1 + (u0 + 1)(s+ 1) + t ≻ (ζ1 + ζ2 + su0) ,

so that condition (2) in Proposition 5.2 is not true. The sequence ν(u0) is then a forbidden pattern, and this
concludes the proof.

9.7. Proof of Proposition 7.2. Let us take ν = (ν1, · · · , νp+2s), with I = {i1 < · · · < is} and J = {j1 <
· · · < jp}.

We observe that, in Proposition 4.4, the sequence (δv, γv, µv) becomes the sequence (δv+1, γv+1, µv+1) after
applying Step 1 once to the secondary part s(δv), and some iterations of Step 2 by crossing the secondary
part with some primary parts of γv. This means that once we obtain the sequence µv, it is no longer affected
by the process Ψ.

• Since we never cross two primary parts in the process, once we have the splitting s(γv), g(µv), their
relative position in the remainder of the process Ψ is unchanged. We then obtain that the upper
and the lower halves’ positions satisfy θis−v+2 < θis−v+2+1.

• The passage from the secondary part s(δv) to its splitting to become s(γv+1), g(µv+1) implies that
the position of the lower part increases during the crossings, and then is fixed after the splitting. We
thus obtain that θis+1−v+1 is the position of the g(µv+1). With the fact that the sequence g(µv) is
the strict tail of g(µv+1), we reach the inequality θis−v+2+1 > θis+1−v+1 ≥ is+1−v +1. This gives the
first inequality of (7.7).

• If the splitting of s(δv) occurs before g(γv), it means that g(γv) belongs to µv+1, and the po-
sition of the corresponding upper half is fixed in the rest of the process. We then have that
θis−v+2

> θis+1−v+1 · Otherwise, the splitting of s(δv) occurs between g(γv) and g(µv), and the
relative position of the corresponding upper halves will not change until the end of the process. We
thus have that θis+1−v+1 > θis+1−v

> θis−v+2
, and this leads (recursively on v) to the proof of (7.5).

• Recall that we never cross two primary parts in the process, and this naturally leads to θjv < θjv+1 ,
for jv < jv+1 and we have (7.6). Moreover, the primary parts can only move backward, since they
can only cross some secondary parts to their left. We then obtain the second inequality of (7.7)
θjv ≤ jv.
.

• Since the crossing only occurs between the secondary and primary parts, if the secondary part
corresponding to i does not cross in the primary part corresponding to j, then we have that θi+1 < θj ,
and if they crossed, then both the upper and the lower halves move together, and in the remainder
of the process, their relative positions stay unchanged, so that θj < θi, and we obtain (7.8).

9.8. Proof of Proposition 7.3. We saw in the previous proof that, since the positions of the lower halves
are increasing, for any iu ∈ I, the crossings can occur with primary parts coming from some indices J or in
I. We then look for x ∈ J ∪ I such that x > iu and θx < θiu . Let us then set {x1, . . . , xv} = {x ∈ J ∪ I :
x > iu, , θx < θiu} such that

θx1
< · · · < θxv

·
Note that if {x ∈ J ∪ I : x > iu, , θx < θiu} = ∅, then the splitting occurs directly and

Brν(iu) = iu = max
x∈I
{x ≥ iu, θx ≤ θiu} ·

Recall that if {x ∈ J ∪ I : x > iu, , θx < θiu} ≠ ∅, we then have

θxv
< θiu < θiu+1 and x1, . . . , xv > iu ·
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• If {x1, . . . , xv} ∩ J ̸= ∅, then we necessarily have that x1 ∈ J . In fact, suppose that x1 ∈ I and
x1 < x ∈ {x1, . . . , xv} ∩ J . Since x1 > iu, by (7.5), we have θiu+1 < θx1+1 and then

θx1
< θx < θiu < θiu+1 < θx1+1 ,

and this contradicts (7.8). Furthermore, by (7.6), we have that

x1 = min{x1, . . . , xv} ∩ J = min
x∈J
{x > iu, θx < θiu} ·

• Otherwise, we have {x1, . . . , xv} ∩ J = ∅. In that case, {x1, . . . , xv} ⊂ I. We then have that
x1 > · · · > xv. In fact, for any x < x′ ∈ {x1, . . . , xv}, by (7.5), we have

θiu+1 < θx+1 < θx′+1 ,

and if we suppose that θx < θx′ , we then obtain the inequality

θx < θx′ < θiu < θiu+1 < θx+1 < θx′+1 ,

and this contradicts (7.5). Furthermore, this leads to the following relation

x1 = max{x1, . . . , xv} = max
x∈I
{x ≥ iu, θx ≤ θiu} ·

In any case, by Proposition 5.6, we have that x1 = Brν(i). In fact, x1 is the index of the first crossed part.
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[11] H. GÖLLNITZ, Partitionen mit Differenzenbedingungen, J. Reine Angew. Math. 225 (1967), 154–190.
[12] PADMAVATHAMMA, M. RUDY SALESTINA and S.R. SUDARSHAN, Combinatorial proof of the Göllnitz’s theorem
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