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A Model-Driven Methodology to Accelerate
Software Engineering in the Internet of Things

Imad Berrouyne1, Mehdi Adda2, Jean-Marie Mottu3, and Massimo Tisi3

Abstract—The Internet of Things (IoT) aims for connecting
Anything, Anywhere, Anytime (AAA). This assumption brings
about several software engineering challenges that constitute a
serious obstacle to its wider adoption. The main feature of the
Internet of Things (IoT) is genericity w.r.t the variability of
software and hardware technologies. Model-Driven Engineering
(MDE) is a paradigm that advocates using models to address
software engineering problems. It can help to meet the genericity
of the IoT from a software engineering perspective. Existing
MDE approaches for the IoT focus only on modeling the internal
behavior of things but lack a comprehensive approach dedicated
to network modeling. In the present paper, we introduce a
network-oriented methodology based on MDE to unify the IoT’s
heterogeneous concepts. Fundamentally, we avoid the intrinsic
heterogeneity of the IoT by separating the network’s specification
(i.e., the things, the communication scheme, and its constraints)
from its concrete implementation (i.e., the low-level artifacts such
as source code and documentation). Technically, the methodology
relies on a model-based Domain-Specific Language (DSL) and a
code generator. The former enables the modeling of the network’s
specification, and the latter provides a procedure to generate
the low-level artifacts from this specification. Our results show
that this methodology makes IoT’s software engineering more
rigorous, helps prevent bugs earlier, and saves time.

Index Terms—Internet of Things, Software Engineering,
Model-Driven Engineering, Model Transformation, Policy En-
forcement, Code Generation

I. INTRODUCTION

The IoT aims for connecting Anything, Anywhere, Anytime
(AAA) [1]. In particular, connecting things of different sizes
ranging from bacterias [2] to supercomputers. Manifestly, each
thing has its requirements. For instance, a tiny sensor may
require a Constrained Application Protocol (CoAP) [3] client
to connect to the World Wide Web (WWW), because of its
limited resources, while a laptop may require a standard Hy-
pertext Transfer Protocol (HTTP) client. Indeed, the premises
of the IoT are that (1) anything with computing power (2)
can connect to the Internet. While the former premise (1)
is hardware-related, the latter (2) could be tackled using an
appropriate software engineering approach.

Software engineering for the IoT is hard [4]. On the one
hand, many stakeholders are involved (e.g., Security, Busi-
ness, Network), each using its own tools and methods [5].
On the other hand, heterogeneity of software technologies
(e.g., languages, protocols) [6] causes, among other things, an
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interoperability problem by hindering communication between
things [7]. Commonly, a typical IoT application contains
multiple computing platforms, languages, and protocols from
various ranges. Besides, a new thing emerges every day,
with often non-standard proprietary technologies. Neverthe-
less, although it is problematic, heterogeneity constitutes the
differentiating factor between the IoT and the conventional
Internet. Indeed, numerous studies [8], [9], [10], [11], [12]
suggest that this heterogeneity is necessary to connect things
from different ranges by means of different protocols.

The IoT generates much hype; still, only a few soft-
ware engineering approaches have been proposed to meet
its requirements. Today, the existing approaches are time-
consuming, require a good deal of expertise, lack separation
of concerns [13], and lead to poorly tested and insecure
IoT applications [14]. In fact, heterogeneity provokes the
involvement of more human resources and expertise than
usual. Hence, most companies, often with inappropriate or
limited human resources, fail to respond adequately; this may
result in flawed applications that sometimes lead to large-scale
network attacks such as Mirai and Persirai [15], [16].

Clearly, the IoT needs a novel software engineering ap-
proach adequate to its requirements. MDE is a promising
paradigm having the potential to meet some of these re-
quirements. It can help in designing robust and reliable IoT
applications by separating the specification (source of intent)
from the implementation (source of heterogeneity). Particu-
larly by enabling the design of a complete IoT application in a
unified manner using models on the one hand and interpreting
these models using an automatic code generator on the other.
For instance, the Unified Modelling Language (UML) [17]
is a generic modeling language to design, using models,
any Object-Oriented (OO) application. UML models are used
for illustration purposes, code generation [18] or test cases
generation [19] to cite a few. In the present paper, we are
heading towards a similar goal, i.e., enabling the design of an
IoT application using models and the automatic generation of
its low-level software artifacts.

This paper extends two of our conference papers [20], [7]
by introducing a comprehensive software engineering method-
ology for the IoT, with clearly defined modeling concerns
(Section IV-A) and software engineering tasks (Section III),
a conflict detection mechanism (Section V-F), additional code
generation procedures (Section VI), and a quantitative evalua-
tion (Section VII). Concretely, the methodology enables a) the
modeling and validation of a network of things, b) the ability
to constrain this network with a policy, and c) the generation
of the network’s artifacts by means of state-of-the-art MDE
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techniques.
For the sake of clarity, we aim to keep this paper as concrete

as possible by targeting some specific IoT tasks. The present
contribution is structured as follows. Section II provides the
background. Section III points out the specific targeted soft-
ware engineering tasks. Sections IV, V, and VI detail how our
methodology contributes to the adequate execution of these
tasks. Finally, Sections VII,VIII and IX respectively evaluate
the methodology, points out its limitations, and concludes.

II. RELATED WORK

The IoT still faces several obstacles related to its engi-
neering, scalability, and deployment. It lacks a set of best
practices to build scalable, robust, and secure applications [21].
In addition, the intrinsic heterogeneity of the IoT creates an
interoperability problem between things [22], restricting the
ability to achieve seamless smart scenarios [23].

Presently, most of the existing software engineering ap-
proaches for the IoT consist of programming each thing to
fit the needs of the application [24], [25], [26], [27]. These
approaches require a significant amount of time as many skills,
ranging from networking to security and programming, are
needed. For instance, a typical IoT application may have mul-
tiple things based on heterogeneous programming languages,
heterogeneous protocols and require some degree of control
of the network. These software engineering strategies are less
likely to scale, typically in very large networks.

Recently, several model-based approaches emerged to tackle
heterogeneity in the IoT. In this respect, many approaches
chose a Domain-Specific Language (DSL) to provide a user-
friendly interface to specify a network of things [28], [29],
[30], [31], [32]. However, most of these approaches target
specific usecases, and lack the mechanisms necessary to tackle
generic IoT applications. From a conceptual perspective, the
MDE literature for IoT draws a distinction between two
underlying concepts in the IoT; the concept of thing and the
concept of network. The modeling of a thing consists of using
abstract concepts to describe its internal behavior. We can
distinguish two ways to achieve it; the first one consists of
mapping the behavior into some established formalism such as
a statechart [33], [34] or a workflow chart [35], and the second
one consists of defining the behavior with an unconventional
formalism [36]. The former benefits from the interoperability
with the established formal tools, while the latter generally
aims to reflect reality using some intuitive concepts. For our
methodology, we opted for a statechart-based behavior to
model things based on the work of Harrand et al. [33], namely
ThingML1. This work constitutes our baseline.

The modeling of a network consists of wiring things through
their external interfaces to form a network of things. Because
of the implicit heterogeneity of the IoT, the wiring is compli-
cated at the code level. Hence, higher abstractions are needed,
free from the technical considerations to enable seamless
wiring. The existing approaches for network modeling are
disparate; some approaches target Wireless Sensor Networks
(WSN) [37], [38] (a network of many tiny sensors dedicated

1https://github.com/TelluIoT/ThingML

to collect data) [39], others target the web of things [40] (i.e.,
the IoT using existing web technologies), and others target a
specific category of IoT applications such as Smarthomes or
TinyOS-based things [41], [31], [30], [32]. According to our
literature review, we noticed a lack of a full-scale, documented,
and open-source approach for modeling a network of things
generically. Moreover, only a few approaches [42], [43], [44],
[45] leverage the power of MDE for the automatic code
generation of a complete network, which can consequently
reduce the redundant tasks and help tackle the interoperability
problem of the IoT [7].

III. SOFTWARE ENGINEERING TASKS

The engineering process for an IoT application involves
multiple tasks. For simplicity, we point out the issues of four
essential engineering tasks with the current state of practice.
Further, we show how our model-based methodology can help
improve their execution. In the future, our methodology may
be extended to more tasks.

A. Task 1: Wiring Heterogeneous Things

The wiring of heterogeneous things is a task that enables the
communication between two things that use either different
programming languages or protocols. For instance, wiring a
thing tj programmed in Java with a thing tc programmed in
C via a publish and subscribe communication based on MQTT.
To be implemented flawlessly, this example may require two
experts, one in Java and the other in C, and some degree of
synchronization between them to ensure correct wiring of tj
and tc.

Issues: a) The need of too many human resources and ex-
pertise for this simple usecase b) The synchronization between
the experts is time-consuming, untraceable, and a vector for
the introduction of bugs.

B. Task 2: Smart Scenarios

Smart Scenarios’ design is a task that consists of enabling
interdependence between things according to some imposed
policy. In addition to the requirements of Task 1, this inter-
dependence requires programming each thing independently
using its inner concepts to conform with the policy. For
instance, a smart scenario may require turning on a Python-
based system for heating, ventilation and air-conditioning tac
when a C-based temperature sensor tts indicates the current
temperature. The engineer needs here to add the instructions,
non-uniformly, in tts using Python and in tac using C to enable
their interdependence.

Issues: a) The lack of common concepts for a seamless
implementation b) The manual implementation is difficult to
scale.

C. Task 3: Controlling Communication

Controlling communication is a task that consists of defining
how these presumably heterogeneous things can communicate
with each other in the network using some specific policy.
For instance, we may need to define rules that govern the
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communication flow between adverse things, such as a private
camera and a public Webserver.

Issues: a) The lack of common concepts to control the
communication flow uniformly b) The manual implementation
may lead to information leaks.

D. Task 4: Designing Large Networks

The previous tasks become even more complicated when
one needs to create a large network. The traditional software
engineering approaches suffer from many redundant tasks in
this context, such as wiring each thing separately or writing
manually various artifacts (e.g., code documentation, user
manual, and access control) although these tasks are based
on a unique source information, i.e., the specification of the
network. Moreover, in a typical network, these artifacts need
to be synchronized at each update.

Issues: a) The redundancy of tasks and difficulty to scale b)
The risk of overlooking essential artifacts due to the workload
required.

The Proposed Solution

By and large, software engineering for IoT is made dif-
ficult by low-level heterogeneity, interoperability problems,
difficulty in controlling the network, and overlapping concerns.
The root cause of these issues is often difficult to identify
through traditional software engineering approaches.

We propose to unravel these issues using various MDE
layers, primarily by separating the specification of the network
(using unified concepts at the model-level) from its implemen-
tation. This separation aims to make these issues more visible
and easier to tackle using an appropriate software engineering
tool. Indeed, we offer software engineers a DSL to specify
a network of heterogeneous things in a unified environment.
Then, within this DSL, we provide means to define smart
scenarios based on behavioral and temporal factors. Finally, we
introduce an extensible code generator capable of interpreting
the network specification and generating its low-level artifacts
(e.g., code, documentation, and access control rules).

IV. NETWORK SPECIFICATION

The function of the network specification is to enable the
interoperability of heterogeneous things using unified concepts
at a higher level. The literature contains mature approaches
to model a thing’s behavior, yet it lacks a comprehensive
modeling solution for networking.

A. Modeling Concerns

The specification focuses on the commonalities that can
unify, at the model-level, the heterogeneous low-level concepts
based on a few primitive relations. Still, if something more
specific is needed, it can be tackled during the interpretation
of the specification (cf. Section VI). We assume that these
primitive concepts must apply to all things, regardless of their
characteristics. We also aim to make these concepts readable
to avoid the need for learning new (time-consuming) skills.

Models make it possible to avoid the technical details, which
are a source of heterogeneity. A software engineer can create
a model specifying a network of things using only the reified
primitive concepts. Thus, only the aspects necessary to develop
the network’s business logic are expected, namely in the form
of a model. Code generation is the process that allows moving
from the model to code, and it reproduces this model using
the concepts of the target low-level programming language or
protocol.

Further, we discuss in detail the primitive concepts. Before,
it should be noted that within this methodology, we define the
following responsibilities:

• Thing Designer: one responsible for writing the behavior
of the things.

• Network Designer: one responsible for writing the be-
havior of the network.

• Policy Designer: one responsible for writing the policies
aiming to ensure the correct functioning of the network
from a specific angle (e.g., security angle, business angle).

B. Thing Modeling

Initiliaze

Sensor 
Initialized

SendTemperature
TemperatureSent

SenseTemperature

TemperatureSensed RegulateSamplingRate

Timeout

Uses a port  
for sending

Fig. 1. Statechart-based behavior of a temperature sensor.

We present in this section ThingML, authored by Harrand
et al. [46], as it is the main requirement of our methodol-
ogy. We presume that the model encapsulating the thing’s
behavior, called ThingML-Model (TH-Model), is specified
using ThingML-DSL (TH-DSL)1. ThingML-DSL (TH-DSL)
permits specifying a statechart-based behavior along with
functions and properties that can be called within any state.
TH-DSL provides a syntax based on the Xtext2 grammar. This
grammar provides a way to write the model in a textual form.

Figure 1 depicts an example of the behavior of a temperature
sensor thing based on a statechart, and Listing 1 shows its
equivalent in TH-DSL. Each state accomplishes a specific
goal, and each state can have a transition specifying its next
state. In this example, the state SendTemperature uses the port
sendingTemperaturePort to send the temperature in Line 44.
The port provides a means to route some data within the
statechart to a specific internal address identified by the port
name. Within our methodology, this statechart needs to be
specified by a Thing Designer.

TH-DSL offers the concept of external connector. This
concept lets us wire the port with the outside by specifying
the protocol and the serialization format. The ThingML Code

2https://www.eclipse.org/Xtext
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Generator (TH-CGEN) reproduces the same statechart speci-
fied in TH-DSL as well as the external connector in a target
programming language (e.g., C/C++, Arduino, JavaScript,
Go).

1 thing temperatureSensor
2 @c header ”#include <DHT.h>” // DHT is a library to read the

temperature from a sensor
3 @c header ”dht sensor;”
4 {
5 property currentTemperature : UInt8 // Storing the temperature
6 property sensorPin : UInt8 = 8 // the pin where to read the data
7 property samplingRate : UInt8 = 3000 // the sampling rate
8 message temperatureMessage(temperatureValue: UInt8)
9

10 provided port sendingTemperaturePort {
11 sends temperatureMessage // the sending port
12 }
13
14 function sense() do
15 ‘sensor.read11(‘&sensorPin&‘)‘ // embedding arduino code to

read the temperature; &sensorPin& sets the value 8 in
the low−level code

16 currentTemperature = ‘sensor.temperature‘ // assiging the
temperature value to the currentTemperature property

17 end
18
19 statechart temperatureSensorBehavior init initialize {
20 state initialize {
21 on entry do
22 println ”initialize”
23 ‘sensor.begin();‘
24 end
25 transition −> senseTemperature
26 }
27 state senseTemperature {
28 on entry do
29 println ”senseTemperature”
30 sense()
31 end
32 transition −> regulateSampling
33 }
34 state regulateSampling {
35 on entry do
36 println ”regulateSampling”
37 ‘delay(‘&samplingRate&‘)‘ // setting the sampling rate
38 end
39 transition −> sendTemperature
40 }
41 state sendTemperature {
42 on entry do
43 println ”sendTemperature”
44 sendingTemperaturePort!temperatureMessage(

currentTemperature) // sending the current
temperature via the sending port

45 end
46 transition −> senseTemperature
47 }
48 }
49 }

Listing 1. The behavior of the temperature sensor in ThingML-DSL; The
syntax for embedding code is: ‘<EMBEDDED CODE>‘.

We created a DSL called CyprIoT-DSL (CY-DSL)3, dedi-
cated exclusively to networking. Listing 2 depicts the decla-
ration of a thing. For instance, Line 1 imports the model (i.e.,
ThingML statechart) of a light sensor, and has been assigned
the role sensor (cf. Section IV-C2 for more details on roles). It
consists of a name as an identifier (i.e., TemperatureSensor) and

3CyprIoT Github : https://github.com/atlanmod/CyprIoT/

the relative path in disk of the ThingML-Model (TH-Model)
(i.e., ”temperatureSensor.thingml”).

It is noteworthy that when it is not possible to express an
instruction using TH-DSL syntax, TH-DSL permits embed-
ding low-level code at the model-level. The TH-CGEN places
the embedded code, as such, in the statechart of the target
programming language. Thus, at worst, expressing low-level
concepts from the model-level is still possible (e.g., Lines 16
and 37 of Listing 1).

1 import LightSensor ”lightSensor.thingml” assigned sensor
2 import TemperatureSensor ”temperatureSensor.thingml”

assigned sensor
3 import Gateway ”gateway.thingml” assigned actuator, sensor

Listing 2. Declaration of a thing.

In summary, ThingML is useful for us to specify a thing’s
behavior in the form of a statechart with a communication
interface (i.e., port wired via an external connector) and
the generation of its equivalent in the low-level code using
TH-CGEN.

C. Network Modeling

This section provides the underlying primitive concepts to
wire things, group them, and create a network.

1) Channel: The concept of channel constitutes the
medium between the sender and receiver interface. The utility
of a channel concept arises because of the need to wire
various things without concerns about the concrete details
of their communication means, namely the protocol or the
message format. This point is a crucial requirement to foster
collaboration between heterogeneous things.

Indeed, the concept of channel decouples the communi-
cation of things from their programming languages, thus
enabling seamless networking at the model-level using only
abstract and unified concepts. Listing 3 shows an example of
a channel, containing two paths, where the second is a fork of
the first. The concept of path offers a uniquely identified way
to exchange messages via the channel, while a fork enables
us to organize paths in the form of a tree [47]. It is inspired
by existing standard protocols. For instance, in MQTT [48]
a message is exchanged via a topic, while in HTTP via a
Uniform Resource Locator (URL). Both topics and URLs can
be unified under the concept of path.

1 channel mySimpleChannel {
2 path indoor
3 path temperaturePath (temperatureMessage:JSON) fork indoor
4 }

Listing 3. Declaring channel, path and fork (Line 1 to 6).

For a more concrete example, in HTTP we con-
sider the URL https://atlanmod.org/cypriot/ as a path and
https://atlanmod.org/cypriot/smarthome as one of its forks,
likewise in MQTT we consider the topic org/atlanmod/cypriot/
as a path and org/atlanmod/cypriot/smarthome as one of its
forks. As shown in Listing 3, a path consists of an iden-
tifier (temperatureTopic), a declaration of the accepted mes-
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sage (temperatureMessage) and the message serialization format
(JSON). Hence, an exchange via a path is transparent, thus eas-
ing detection of incompatibility between a message and a path
or a port. The compatibility refers to the fact that a message
needs to be accepted (i.e., understood) by the sending port,
the receiving port and the path that connects them, to reach its
destination correctly. For instance, the sendingTemperaturePort is
compatible with the path temperatureTopic as both understand
internally the message temperatureMessage.

2) Users and Roles: We also reified the concepts of user
and role. Lines 2-3 of Listing 4 show an example of a user

declaration. It consists of an identifier (i.e., Bob or Alice)
and optionally a token for identification at a low-level (i.e.,
pa$$word). The declaration of a user serves to specify the owner
of a thing. A user can own several things, but only one user
can own a thing. The owner has the right to access and share
the thing’s messages within a policy. For the sake of focus,
users’ ability to share the same thing is not supported for now.
The concept of user gives more context w.r.t the place of the
thing in the network and provides the opportunity to group the
things by user.

1 // User declaration
2 user Bob:pa$$word
3 user Alice:pa$$word
4 // Role declaration
5 role sensor
6 role actuator

Listing 4. Declaration of users and roles.

The concept of role in the IoT is useful because it can
help to attach a specific responsibility to a thing or a group
of things. This responsibility enables a more specific control
in the network, especially large ones (cf. Section V for more
details). Declaring a role has a similar syntax than a user.
Lines 5-6 of Listing 4 show an example of a role declaration.
It consists of an identifier (i.e., sensor or actuator) and can be
assigned to several things, as shown in Listing 2. Also, a thing
can have simultaneously several roles.

3) Network: The Network Designer declares things, chan-
nels, roles, and users, then use them in the network. The
things and channels need to be instantiated to be used inside
the network. Several instances may be derived from the same
declaration. The concept of a network describes the global
network configuration. It defines what things to instantiate and
what channels are available. It also contains the wiring of the
things’ ports to the channels. As shown in Listing 5, a network
has an identifier (mySimpleNetwork) and a domain (org.atlanmod.
mynetwork). A domain has to be unique and serves as a global
identifier for the network at a low-level. For instance, we can
use the domain in the path structure as the root path of the
networks’ channels.

Inside the network, we can declare an instance of a thing
(based on the imported TH-Model). An instance of a thing con-
sists of an identifier (e.g., myTempSensor, myGW), the platform
specifying the target programming language (e.g. C/POSIX

based), and if necessary the owner (e.g., Bob). We can also
declare an instance of a channel. An instance of a channel sets
a protocol (e.g., MQTT). Finally, we can specify to bind a port

of an instance of a thing to one or multiple paths of any of the
available instances of channels (e.g., Line 10 of Listing 5).

A network can also enforce a policy. Multiple policies can
be enforced. For instance, in Listing 5, both roleBasedPolicy as
well as smartpolicy are enforced. Policies and control strategies
are discussed in detail in the next sections.

The network serves as a glue to make distributed statecharts
communicate and exchange messages from a conceptual per-
spective. It constitutes the entry point for the code generator
(cf. Section VI-A1).

1 network mySimpleNetwork {
2 domain org.atlanmod.mynetwork
3 enforce roleBasedPolicy, smartpolicy
4 // Instances of things
5 instance myTempSensor : TemperatureSensor platform POSIX

owner Bob
6 instance myGW : Gateway platform JAVA owner Bob
7 // Instance of a channel
8 instance zigbeeChannel:ptpChannel protocol ZIGBEE
9 // Binding : Sending (i.e., =>) the sensed temperature by

myTempSensor
10 bind myTempSensor.TempDataPortSend => zigbeeChannel{

temperaturePath}
11 // Binding : Receiving (<=) the sensed temperature
12 bind myGW.TempDataPortRec <= zigbeeChannel{

temperaturePath}
13 }

Listing 5. Specification of a network; sending (=>) and receiving (<=)
messages via a path.

4) Forwarding: Usually, in the IoT, a thing may need
to pass through a more powerful intermediary thing before
reaching its final destination because of its limited resources.
In the IoT literature, this mechanism is cited as multihop
routing or as intermediary gateway. Implementing this simple
mechanism using low-level concepts is arduous because of
heterogeneity.

1 network mySimpleNetwork {
2 domain org.atlanmod.mynetwork
3 enforce roleBasedPolicy, smartpolicy
4 // Instance of things
5 instance myRD : RemoteDisplay platform JAVASCRIPT

owner Bob
6 ...
7 // Instance of a channel
8 instance zigbeeChannel:brokerChannel protocol ZIGBEE
9 instance mqttBroker:brokerChannel protocol MQTT(server=”

mqtt.atlanmod.org:1883”)
10 ...
11 // Binding : We add an identifier (i.e., tempBindGw) to the bind
12 bind tempBindGw : myGW.TempDataPortRec <=

zigbeeChannel{temperaturePath}
13 // Forwarding
14 forward tempBindGw to mqttBroker{temperatureTopic}
15 // Binding : Receiving the forwarded temperature message
16 bind myRD.receivingTemperaturePort <= mqttBroker{

temperatureTopic}
17 }

Listing 6. Forwarding of an existing binding

The concept of forwarding enables to forward an existing
binding (i.e., bind) to another path. For instance, in Line 14 of
Listing 12, we forward the temperature received via ZIGBEE

by myGW to temperatureTopic, a path of mqttBroker that is
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using MQTT as a protocol. The Network Designer has the
responsibility to ensure that myGW supports both protocols.
Then, we bind the port receivingTemperaturePort of myRD to
receive the message sent to tempMQTTPath. myGW plays the
role of an intermediary thing between myTempSensor and myRD
. In this particular usecase, we link two things using different
protocols without dealing with the low-level heterogeneity as
we are designing our network using model-based and unified
concepts.

In fact, due to variation in sizes of things, an interoperability
issue is a common trait of connectivity of things in the
IoT [7]. The ability to forward an existing binding at the
model-level allows navigating freely between various ranges
of things. The implementation of these forwardings is kept for
the code generation phase. During code generation, some spe-
cific procedures interpret these model-based forwardings and
reproduce their equivalent in the things’ target programming
languages (cf. Section VI-A2).

V. CONTROL SPECIFICATION

The previous section shows how to create a model of the
network based on unified concepts. This section shows how we
can use this model to control the network’s behavior based on
a declarative policy. By control, we refer to the ability to inject
monitors either for restricting communication or triggering
actions according to some conditions. We will solely discuss
the controls’ specification in this section; its enforcement is
developed in the next section.

A. Policy

Generally speaking, a policy can serve various purposes [49]
(e.g., communication control, administrative goal). However,
this study focuses on two main aspects: communication control
and smart scenarios. A policy aims to ensure that the IoT
application is behaving as expected from a stakeholder’s
perspective, such as a security officer, government, or the
owner of the network.

It contains a set of rules. We define a rule as the composition
of a subject (e.g., thing, instance, port, or role), an action
type (e.g., permission, trigger), an action (e.g., send, receive,
goToState, executeFunction), an object (thing, instance, port,
message or path) and time (e.g., specific date, period). As
shown in Line 3 of Listing 5, one or more policies can
be enforced in the network; in this particular example, the
network enforces roleBasedPolicy and smartpolicy.

1 policy smartPolicy {
2 rule ...
3 rule ...
4 }

Listing 7. Declaration of a policy.

Listing 7 shows a specification of a policy written in
CY-DSL. It consists of an identifier (i.e., smartpolicy) and
two rules, that we discuss further. This policy is enforced in
mySimpleNetwork (Line 3 of Listing 5).

The policy’s specification is readable and relieved from the
low-level technical details. It needs to be written by a Policy

TABLE I
THE COMBINATION OF RULE ENTITIES.

Subject Action
Type Action Object Control Type

Port
Instance of thing

Thing
User
Role

Permission
Send

Receive
Send-Receive

Port
Instance of thing

Thing
User
Role
Path

Channel

Communication

State Trigger
goToState

executeFunction
State

Function
Thing

Behavior

Designer and made available to the Network Designer who
can decide to enforce it. The concrete enforcement inside
the low-level code is the concern of the code generator (cf.
Section VI), assumed by experts. Experts are responsible for
developing the enforcement strategies in the code generator
and mapping the model’s abstract concepts to their concrete
equivalents at a low-level.

B. Rule

A rule specifies the conditions necessary for an action to be
applied to an object. Listing 8 depicts its structure. It comprises
5 parts: Subject, ActionType, Action and Object and Time. The
subject is the entity applying an action, and the object is the
entity undergoing the action. The time permits to delimit the
effect of the rule over time. Specifying a rule in this structure is
meant to be readable as a sentence in plain English. The ability
to use model-based abstractions permits the dissociation of the
network’s control from its concrete implementation (source of
heterogeneity).

rule <Subject> <ActionType>:<Action> <Object>
when time:<start>−<end>

Listing 8. Rule syntax.

Table I depicts the possible entities of a rule for each of its
parts and how they can be combined. The first column contains
the subject’s supported entities, and the fourth column, the
object’s entities.

C. Types of Control

The rule structure previously mentioned offers two types
of control: communication control and behavioral control.
The separation of the specification from the implementation
permits focusing on specifying the constraints we wish to see
in the implementation. This structure can serve various control
purposes down the road and may be subject to extension. So
far, we chose to implement these two types of control first as
a proof of concept:

• Communication Control [50]: consisting of denying
or allowing the sending or receiving of messages. For
instance, a rule can deny or allow the port py from
sending its messages to the port px. We may apply the
same control for two things, two users or the combination
of these entities.
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• Behavioral Control [7]: consisting of triggering an ac-
tion (i.e., goToState, executeFunction) on the object based
on the current state of the subject. Indeed, as the behavior
consists of a statechart, the control aims to change this
statechart to satisfy the rule’s intent. For instance, a rule
can specify that a thing tx should go to the state si when
the current state of a thing ty is sj (Task 2).

In summary, this section introduced the central notions of
the rule-based system we use for control. In the next sections,
we show how they may be used in more detail.

D. Communication Control
The communication flow is a critical asset of a network of

things, hence the need to regulate it. However, its regulation
at a low-level is burdensome because of heterogeneity. The
proposed solution consists of specifying this regulation at the
model-level and enforcing it by the code generator using a
dedicated procedure.

Communication control rules aim to specify the constraints
on this flow—many entities of the network where this flow
transit are controllable. For instance, in a thing, we can control
what to receive and what to send at the port level, in a channel,
we can control what message to accept at the path level, and
at the user level, we can control the messages that can be sent
or received by the thing s/he owns.

We presume that all communications are denied by default
unless a rule allows things to communicate. The communi-
cation control rules allow controlling communication between
things, users, roles, and the combination of all of them.

We can control communication using ports, things, users,
and roles. The smallest level of granularity among these
entities is the port. The port is a checkpoint, i.e., where an
action (e.g., deny, allow) can take place concretely. Then
comes, in that order, an instance of a thing, type of thing,
and user/role. When the subject/object is a type of thing, the
action applies to all its instances. When it is a user, it applies
to all things and instances s/he owns, and when it is a role, it
applies to all things and instances where this role is assigned.
This scheme enables an action to be enforced at various levels
of granularity.

Moreover, the object can be of type channel or path. The
path is also a checkpoint, i.e., it is where the action (e.g., deny,
allow) can take place concretely. When the object is a channel,
the action applies to all its paths.

1) Potential application: The communication control type
has various applications in the real world, such as access
control [51], content-based control [52], or privacy control,
to cite a few.

Our communication control approach is singular and aims
to be generic, yet, we could see some commonalities with
Attribute-Based Access Control (ABAC) and Role-Based
Access Control (RBAC) from an access control perspective.
Indeed, while we do not cover all the theories behind these
two models exhaustively, we offer similar mechanisms. For
instance, if we consider that the elements of the network are
the attributes, we cover, to some extent, the concepts of ABAC.
Whereas for RBAC, we provide a dedicated concept of role
that can be used in our communication control rules.

It is worth noting that this study focuses on the software
engineering aspects of the IoT. However, we believe that
extending our methodology to cover comprehensively some
access control models such ABAC and RBAC is a promising
avenue of research. All the more that Access Control (AC)
is an important milestone for the IoT [53], [54]. Separating
the specification from the implementation should ease the
enforcement of such access control models.

E. Smart Rules

The interoperability of things to achieve Smart Scenarios
suffers from heterogeneous concepts at a low-level. The
proposed solution consists of specifying these scenarios at
the model-level and implementing them by a code generator
using a dedicated procedure.

The previous section shows how we can specify communi-
cation flow control; this section presents how we can control
the network’s behavior according to contextual factors, such
as the state of things and time.

This type of control enables the specification of Smart
Scenarios, i.e., the ability to trigger certain actions according to
the context of the network [55]. The interoperability problem
of the IoT is one of its major obstacles [7]. Indeed, the
difficulty to implement smart scenarios is often caused by the
heterogeneity of things at a low-level. Our methodology avoids
this heterogeneity by relying on unified concepts at the model-
level.

1) Potential applications: By lacking a common represen-
tation of the behavior at a low-level, it is not easy to implement
a smart scenario where things collaborate towards a common
goal. This kind of scenario implies the ability of a thing to
impact another thing’s behavior, regardless of its resources.
The hypothesis of relying on a statechart-based thing, i.e., a
specific and unified way to specify the behavior, enables its
control according to its state.

The specification of such Smart Scenarios must be seamless,
i.e., not impacted by the low-level technical details, such as
the communication protocols or the programming languages
that are often heterogeneous. This heterogeneity may distract
us from achieving the interoperability of these heterogeneous
things which is enabling these smart scenarios.

The network may be influenced by two types of factors:
behavioral factors, i.e., the properties and the states of things,
and temporal factors, i.e., the physical time. For instance, in
a typical smart scenario, we may need to specify that when
a thing tx is on the state si, the thing ty has to be on the
state sj . Thus, ty adjusts its behavior according to the state of
tx. Specifying this simple example requires many skills and
resources with a traditional software engineering approach, as
many heterogeneous concepts are involved at a low-level.

2) Behavioral factors: The behavioral factors correspond
to the control according to the states of things. A smart rule
can activate two actions: a) goToState, instructing the thing
to go to a specific state, and b) executeFunction, executing
a function in the thing. These actions are triggered based on
the current states of the subject or object thing. For instance,
the rule in Line 2 of Listing 9 specifies that the state isLow of
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myTempSensor (i.e., instance of a temperature sensor), triggers
myAC (i.e., instance of an air conditioner) to be at the state
isOn (typically for an optimal cooling).

Also, as a thing can provide a function (i.e., a sequence
of instructions), there are cases where a function needs to
be executed depending on the state of another thing. For
instance, the rule in Line 11 specifies that the state isHigh
of myTempSensor, triggers the function setTemperature(25) of

mySAC (thus, setting the temperature to 25◦C when it’s warm).

1 policy smartPolicy {
2 rule myTempSensor−>state:isLow trigger:goToState myAC−>

isOn
3 rule myTempSensor−>state:isLow trigger:executeFunction

myAC−>setTemperature(25)
4 }

Listing 9. Go to a state (Line 2) and execute a function (Line 11) according
to another thing.

3) Temporal factors: The temporal factors correspond to a
specific date and time or a period. When a temporal factor
is set, the control consists of applying the action only when
the temporal condition is met—for instance, controlling a
communication or triggering an action only at a specific time
of the day.

The syntax consists of adding the keyword when and speci-
fying either a specific time or a period using the keyword time:.
Listing 10 shows an example. The rule states that mySAC must
go the state isOn if the myTempSensor reaches the state isLow,
but only when the time is between 20/01/2020 at 11:00:00 and
20/01/2020 at 13:00:00.

The specification of these temporal factors is straightfor-
ward. Still, their implementation may be difficult in a de-
coupled system as there is no standard way to define the
physical time (cf. Section VI). On another note, logical time
is unsuitable here, as it is not a problem of ordering. Instead,
things need to depend on the physical world, incidentally one
fundamental promise of the IoT.

1 policy smartPolicy {
2 rule myTempSensor−>state:isLow trigger:goToState mySAC

−>isOn when time:20012020@11:00:00−20012020@13
:00:00

3 }

Listing 10. Go to a state (Line 2) and execute a function (Line 11) according
to another thing.

The temporal factors are useful in controlling a network
according to the physical environment. Separating the spec-
ification from the implementation helps better tackle the
difficulty of implementing time. We show in the next section
some implementation strategies.

F. Conflict Detection and Resolution

The detection of conflicts at deployment is costly and
difficult to debug. The proposed solution consists of detecting
and resolving them early in the editor.

The detection of conflicts between rules can help for a
safe deployment. We consider that two rules conflict when

they cannot be enforced simultaneously. These conflicts can
be prevented at various steps of the software engineering
process. However, as a general norm, detecting them as early
as possible is recommended.

We aim to enable the detection of most conflicts between
any rule in the long run. Still, so far, we only offer some
conflict detection and resolution mechanisms w.r.t the commu-
nication control rules. Given their variability, there could be
some implicit conflicts that are difficult to notice. For instance,
a rule involving only users may conflict with a rule involving a
more fine-grained entity such as a port or a thing. We provide
mechanisms to detect them directly in the editor and ask the
software engineer to resolve them.

1) Early Detection: The conflicts are displayed in real-
time in Eclipse Integrated Development Environment (IDE)
(cf. example in Figure 2). The model is deemed invalid until
the conflict is resolved. This mechanism prevents the engineer
from generating inconsistent code that may contain bugs.
Figure 2 shows an example of the error that may be displayed.
The error reports an inconsistency of the model due to two
conflicting rules; namely, the first rule allows device2 to send
to pubsub1, while the second states the opposite.

Fig. 2. A conflict detection error in the editor.

2) Conflict Detection Algorithms: We present a few algo-
rithms that we use in our implementation to detect conflicts
between rules. The goal here is to show that conflict detection
can be automated. Some aspects, such as their efficiency or
scalability, did not receive detailed treatment. These algorithms
are executed in the editor in real-time. An error is shown when
a conflict is detected, asking the engineer to resolve it. We
implemented these algorithms as a proof of concept; more
of such algorithms will be developed for more fine-grained
conflict detection in the future.

So far, we have implemented two algorithms: (1) Detection
of a conflict between a group (i.e., a role or a user) and a
thing, and (2) Detection of a conflict between a role and a
user.

The algorithm (1) aims at detecting conflicts between a
group (user or role) and a thing. A group consists of several
things. The algorithm returns the conflicting rules, w.r.t an
input rule. It iterates over all rules and checks whether the
subject and the object (or type role or user) contains the object
of the input rule on the one hand and whether the actions are
opposed on the other. If so, it adds the rule to the Conflicting
collection and returns it.

The algorithm (2) aims at detecting conflicts between two
groups, i.e., when the subject and the object are either a user
or a role. The algorithm returns the conflicting rules, w.r.t
an input rule. It checks whether any thing contained in the
subject/object set of the input rule is also contained in the
subject/object set of any other rule. Then, it checks whether
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Algorithm 1: Detecting a conflict between a thing and
a group.

Input: InputRule : Rule to test, AllRules : Collection of all rules
Output: Conflicting : Array of conflicting rules
Conflicting ← ∅;
if size(AllRules) > 0 then

foreach r ∈ AllRules do
if subject(r) = subject(InputRule) &
object(r) ∩ object(InputRule) 6= ∅ & action(r) 6=
action(InputRule) then

Conflicting ← Conflicting ∪ {r};
end

return Conflicting;

the actions are opposed. If these two conditions are met, it
adds the rule to the Conflicting collection and returns it.

Algorithm 2: Detecting conflict between two groups.
Input: InputRule : Rule to test, AllRules : Collection of all rules
Output: Conflicting : Array of conflicting rules
Conflicting ← ∅;
if size(AllRules) > 0 then

foreach r ∈ AllRules do
if subject(r) ∩ subject(InputRule) 6= ∅ &
object(r) ∩ object(InputRule) 6= ∅ & action(r) 6=
action(InputRule) then

Conflicting ← Conflicting ∪ {r};
end

return Conflicting;

3) Resolution Strategies at Enforcement: The detection
of conflicts in the editor asks the software engineer for an
intervention to resolve the conflict. This mechanism is far from
complete, and in some cases, it may not be able to detect a con-
flict. Hence, the resolution of conflicts at enforcement consists
of deciding what action takes precedence in conflict during
code generation. In that respect, the software engineer needs
to specify the resolution strategy for each enforced policy. We
propose a few resolution strategies: Best-Effort, Deny-First,
Allow-First. We discuss some of these strategies in the next
section (cf. Section VI-C2). Line 3 of Listing 11 shows an
example of the specification of a resolution strategy; namely
Deny−First for roleBasedPolicy and Best−Effort for smartpolicy.

1 network mySimpleNetwork {
2 domain org.atlanmod.mynetwork
3 enforce roleBasedPolicy Deny−First, smartpolicy Best−Effort
4 ...
5 }

Listing 11. Forwarding of an existing communication.

VI. CODE GENERATION

Code generation aims to eliminate redundant tasks using
Model Transformation (MT). MT [56] is a process based on
transformation rules (usually written by experts) that takes one
or more input models to produce a target artifact. There are
two types of transformations: Model-to-Model Transformation
(M2MT) and Model-to-Text Transformation (M2TT). The
former produces a target model while the latter produces a
target text, from the input model. We use both types for the
interpretation of the network and control specifications.

The Transformation Process (T-PROCESS) (cf. Figure 3),
i.e., the transformation work accomplished inside the CyprIoT
Code Generator (CY-CGEN), has the function to transform
the input models, i.e., the CyprIoT-Model (CY-Model) and
TH-Models, into the target artifacts by changing the behavior
of the TH-Models according to the CY-Model, and if necessary
generating any related textual artifact. In this process, the
experts are expected to map the abstract concepts into low-
level concepts for the artifacts’ automatic generation.

As shown in Figure 3, we use the AtlanMod Transfor-
mation Language (ATL)4 for Model-to-Model Transforma-
tion (M2MT) and Acceleo5 for Model-to-Text Transformation
(M2TT), two state-of-the-art transformation tools. ATL uses
rules to apply the transformation, where it matches an element
in the input model to produce another element in the output
model that is satisfying the rule. Acceleo, on the other hand,
relies on templates, where it fills a template’s placeholders
with information from the input model. The final output of the
T-PROCESS consists of either the implementation code (e.g.,
C, JAVA, Arduino), the simulation code (to run on the local
machine for testing the network before deployment) or textual
artifacts (e.g., access control rules, documentation). Generating
the simulation code provides a cost-effective means to test the
network’s scalability and performance before generating the
implementation code.

A. Model-to-Model Transformation

M2MT allows us to decorate the TH-Model (i.e., the
behavior of the thing) according to the CY-Model (i.e., the
specification of the network) at the model-level. Indeed, it
takes information from the CY-Model and adds only what
is needed to the TH-Model to conform to the specification
of the network. As this process takes place at the model-
level (using unified concepts), interoperability is preserved.
The transformed TH-Models are then used to generate their
equivalent in the low-level code using TH-CGEN.

The ATL rules6 of this process are depicted using a Graph
Transformation Rules (GTR) [57] for illustrative purposes. In
the GTR, the left-hand side (LHS) shows the TH-Model before
transformation, while the right-hand side (RHS) shows the
TH-Model after transformation. All the elements added in the
RHS (in white) are added according to the specification of the
network in the CY-Model.

We present in this section how we use two M2MT to
adapt TH-Models according to the CY-Model: (1) adding the
communication interface according to the network (i.e., adding
the protocol and path) and (2) forwarding an existing binding.
(1) and (2) tackle the networking issues mentioned respectively
in Tasks 1 and 4. In Section VI-C, we show how we tackle
the enforcement of the policies.

1) Wiring: The upper part of Figure 4 depicts the GTR of
(1). On the RHS, the elements in white (i.e., MyExternalCon-
nector, MyProtocol and some annotations) are added according

4https://www.eclipse.org/atl/
5https://www.eclipse.org/acceleo/
6CyprIoT Github > generator/transformations/
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Fig. 3. Generation of network artifacts using the T-PROCESS.
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Fig. 4. Upper Part: Adding the communication interface according to the
specification of the network GTR (1); Lower Part: Forwarding an existing
binding GTR (2); White boxes are added based on the CY-Model; The added
External Connector box is thicker for readability purpose.

to the specification of the network in the CY-Model. An exter-
nal connector links a port to a protocol and uses annotations for
the configuration of the protocol (e.g., for Message Queuing
Telemetry Transport (MQTT), the annotations specify the bro-
ker address, the port, the topic, and the serialization format).
Indeed, a bind consists of adding MyExternalConnector to the
TH-Model along with the connection information specified in
the CY-Model. TH-CGEN reproduces the equivalent of this ex-
ternal connector in the low-level code. For instance, for myRD
in Listing 12, it adds the external connector to connect the port
receivingTemperaturePort via the protocol MQTT (with the con-
figuration: addressAnnotation=”mqtt.atlanmod.org”, serializer-
Annotation=”JSON” and the portNumberAnnotation=”1883”)
through the path (i.e., topic) pathAnnotation=”temperatureTopic
”. This gives TH-CGEN all the information needed to generate
the low-level code containing the correct communication in-
terface for myRD.

If the target programming language is C/Posix and the
communication protocol is MQTT, then TH-CGEN generates
a statechart communicating via MQTT in C/Posix language;
the same would apply in the case of Java or Arduino.
Thus, as the low-level code is a mere translation of the
TH-Model, interoperability is preserved at the low-level code.
The T-PROCESS applies this M2MT to all things in the
network. So, in summary, the function of this transformation

is to connect things in the form of a network.
2) Forwarding: The lower part of Figure 4 depicts the

GTR of (2). To forward the binding corresponding to MyEx-
ternalConnector (via MyProtocol using MyPort), we create a
New ExternalConnector with a New Protocol (i.e., creating a
new external connector using the protocol needed for forward-
ing). For the sake of readability, we omitted adding the anno-
tations (that are similar to (1)) of the New ExternalConnector
and New Protocol. The transformation looks for any state
waiting to receive the message to forward (i.e., ReceiveMs-
gEvent waiting for Message) and adds the action MsgSend to
the event. MsgSend consists of sending the received message
as such using the New ExternalConnector (via New Protocol
using New Port that accepts the same received message).
This transformation is useful to enable a seamless cross-
range interoperability using an intermediary thing as a bridge
between ranges. It enables to forward a received message as
such with, e.g., a protocol pi via a new protocol, e.g., pj ,
presuming that the thing is physically equipped to support
both protocols.

It is important to note that the transformed TH-Models
”interoperate” at the model-level as only abstract and unified
concepts (e.g., port, path, bind) are used. TH-CGEN (cf.
Figure 3) reproduces the same concepts at the low-level code
for each TH-Model (i.e., same statechart, same communica-
tion interface) according to the specified target programming
language for each thing.

B. Model-to-Text Transformation
M2TT allows us to generate any related textual artifact that

is not part of a thing’s internal behavior (e.g., access con-
trol rules, configuration file, documentation). The information
necessary to make these artifacts is usually contained in the
network’s specification, yet it needs to be written in the right
format.

The lack of unification of low-level concepts adds another
layer of complexity to the interoperability between things.
Indeed, the heterogeneity of low-level concepts (e.g., user,
topic, URL, permission, documentation, configuration) inhibits
connecting things safely and leads to poor synchronization
between all the network elements. This subsection shows
how we use the unified network specification to automatically
generate some network artifacts using M2TT.
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The typical infrastructure of a network of things includes
artifacts that are not part of a thing’s internal behavior but
remain essential for the network’s correct functioning. For
instance, in the example of Listing 12, we need to ensure
a secure access control into the MQTT broker between the
myGW and myRD. The information about access control is
contained in the CY-Model. We need to write it in the right
syntax, i.e., the syntax of the target broker at a low-level (e.g.,
Mosquitto7, RabbitMQ8). The goal of M2TT is to generate
this kind of artifacts based on templates. It takes advantage
of the network’s unified specification to synchronize, using an
automatic process based on M2TT, the low-level textual arti-
facts. By synchronization, we refer to the ability to reproduce
the same information uniformly through all the artifacts of the
network (e.g., the equivalent information that appears in the
access control rules should appear in the documentation file).

The syntax and semantics of these textual artifacts are spec-
ified using Acceleo templates. Figure 5 depicts an illustration
of how Acceleo textual generation works. To show that this
process can be applied to generate various textual artifacts
based on the same source model, we demonstrate how to
generate the same access control rules for two MQTT brokers,
namely Mosquitto and RabbitMQ. As shown in the figure, the
M2TT fills their respective templates automatically using the
information contained in the CY-Model.

Mosquitto Access Control Rules

user Bob
topic write org/atlanmod/smarthome/myMQTTChannel/tempMQTTPath
user Monitor
topic read org/atlanmod/smarthome/myMQTTChannel/tempMQTTPath

network {
    domain org.atlanmod.smarthome
    instance myRD : remoteDisplay platform JAVASCRIPT owner Monitor
    instance myGW : gateway platform ARDUINO owner Bob
    bind sensedTempBind : myGW.receivingTempPort <= tempZigbee{tempPath}
    forward sensedTempBind to myMQTTChannel{tempMQTTPath}
    bind myRD.receivingTemperaturePort <= myMQTTChannel{tempMQTTPath}
}

Legend (after transformation)
text

text
Part of Acceleo Template
Added based on C-Model

$ rabbitmqctl set_permissions bob " " "org/atlanmod/smarthome
/myMQTTChannel/tempMQTTPath" " "
$ rabbitmqctl set_permissions monitor " " " " "org/atlanmod/smarthome
/myMQTTChannel/tempMQTTPath"

RabbitMQ Permissions Commands
Model to Text Transformation

C-Model (in C-DSL syntax)

Fig. 5. Generation of Access Control Rules for Mosquitto and RabbitMQ
using M2TT; Same information indicated with same sign; For RabbitMQ
syntax, first argument (” ”) is for configure permission, second for write
permission and third for read permission.

Moreover, the artifacts may be diverse; the CY-CGEN
offers an interface to the T-PROCESS via the plugin system.
Thus, a developer can make a custom plugin to generate any
textual artifact in a traceable manner by leveraging any step
of the code generation process. In a large network, writing
many of these textual artifacts uniformly is time-consuming
when using traditional software engineering approaches (e.g.,
requires learning a new syntax, synchronizing the artifacts
manually) and exposes the IoT engineer to introduce more
bugs. These transformations help tackle the issues of Task 4.

C. Enforcement Strategies

The enforcement refers to the implementation of the policies
in the generated artifacts. It enables the concrete implemen-
tation of smart scenarios (Task 2) and communication control
(Task 3). It also relies on MT. In Section VI-C2, we present
our strategy to implement the enforcement of communication
control rules, and in Section VI-C3, we present our approach

7https://mosquitto.org
8https://www.rabbitmq.com

Thing Thing

Broker

Checkpoint Send Receive

Fig. 6. Enforcement checkpoints.

to implement the smart rules. We also point out the various
other strategies that could be implemented.

The enforcement of communication control rules consists
of interpreting the rules presented in Section V-D to include
them inside the deployable network artifacts. This section first
discusses the possible enforcement checkpoints in a network,
then the enforcement mechanisms.

1) Enforcement Checkpoints: As depicted in Fig. 6, con-
trols can be enforced at various checkpoints of the network
architecture: 1) in the broker (if any), by controlling the
access to it, or 2) in the thing by changing its internal
behavior in the TH-Model, on send or receive. The choice of
the correct enforcement checkpoint depends on the strategy.
Some checkpoints may be more or less preferable for various
reasons, such as security, trust, or implementation challenges
in some scenarios.

From a security perspective, controlling the communication
on receive requires checking whether the message satisfies
the control conditions before the reception. The message can
still be intercepted while transiting and demands additional
processing on receive. This processing may waste (scarce)
resources if the received message does not satisfy the con-
ditions. Whereas, when communication is controlled on send,
the message remains until it meets the control conditions; this
is more secure and privacy-friendly as the thing keeps control
over the message. Moreover, sometimes distributed control can
be more scalable and flexible and avoids the ”single point
of failure” risk associated with the control on the broker as
customary.

2) Enforcement Mechanisms: Our methodology relies on
separating the specification from the implementation; the pol-
icy’s enforcement depends on the specified network’s param-
eters. Hence, many enforcement strategies at the implementa-
tion may be automated according to these parameters.

The enforcement mechanisms of a communication control
rule consist of programmatically allowing or denying sending
or receiving on the checkpoints, at the model level, using
M2MT, i.e., transforming the behavior inside the TH-Model to
satisfy the rule. We show a few examples of such mechanisms
using illustrative figures. All these mechanisms are applied
at the model-level using M2MT and are permitted by the
TH-Model formalism.

Figure 7 shows an example of a simple rule consisting
of three things. The rule denies thing2 from receiving any
message from thing1. In this case, the enforcement, as stated
by the rule, occurs at thing2 on the receive checkpoint. The
same mechanism is applied in Figure 8, but on the send check-
point. We consider this enforcement correct as it translates the
exact meaning of the rule in the implementation. Sometimes
the correct enforcement may not be possible at low-level for
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thing1

thing2

Broker

Deny Allow Send Receive

thing3

rule thing2 deny:receive thing1

Fig. 7. Enforcement of ”on the receive” checkpoint.

thing1

thing2

Broker

Deny Allow Send Receive

thing3

rule thing2 deny:send thing1

Fig. 8. Enforcement of ”on the send” checkpoint.

technical reasons.
Figure 9 shows the enforcement of a rule involving users.

Alice is denied to receive any message from Bob. The enforce-
ment consists of preventing any message, sent by any thing
owned by Bob, to be received by any thing owned by Alice.

Figure 10 shows the enforcement of a rule based on roles.
The first rule denies any thing with the role sensor from
receiving a message from the broker, as a sensor is only
expected to send data. The second rule denies any thing
with the role actuator from sending a message to the broker,
as an actuator is only expected to receive instructions. The
enforcement targets all the things having these roles and blocks
the reception of messages on the receive checkpoint for sensors
and on the send checkpoint for actuators.

In some cases, the correct enforcement of the rule is a dead-
lock, i.e., the CY-CGEN can’t decide the correct enforcement.
For instance, the rule in Figure 11 denies thing1 from sending
a message to thing2. thing2 and thing3 consumes messages
from the same path. If we deny thing1 from sending to the
path of thing2, we will be preventing thing3 from receiving
the message. Thus, the correct enforcement, as stated by the

thing1

thing2

Broker
thing3

rule Alice deny:receive Bob

Bob Alice

owns owns

Fig. 9. Enforcement of a user-based rule.

thing1
<sensor>

thing2
<sensor>

Broker
thing3

<actuator>

rule sensor deny:receive Broker
rule actuator deny:send Broker

<text> assigned role

Fig. 10. Enforcement of a role-based rule.

thing1

thing2

Broker
thing3

rule thing1 deny:send thing2

Enforcement Strategy : Best Effort 

Fig. 11. Enforcement of a Best-Effort strategy.

rule, is not possible in this configuration. In this case, the tie
break is the enforcement strategy specified in the network, as
shown in Line 3 of Listing 12.

The other enforcement strategies apply the same principles,
i.e., interpret the model and implement the policies accord-
ing to their drive. The strategy Deny−First presumes that all
communications are denied unless there is a rule allowing
a communication. While the strategy Allow−First assumes the
opposite. It is important to note that, unlike traditional soft-
ware engineering, these enforcement mechanisms have to be
implemented only once by an expert and are later applied
automatically by CY-CGEN.

1 network mySimpleNetwork {
2 domain org.atlanmod.mynetwork
3 enforce myPolicy Best−Effort
4 ...
5 }

Listing 12. Specifying the enforcement strategy.

3) Enforcement of Smart Rules: As the network specifica-
tion relies on unified concepts at the model-level, we avoid
the interoperability issues to achieve smart scenarios. The
enforcement of smart rules consists of adding only what is
needed in each thing so that the output model conforms to the
rule. As shown in Figure 3, the enforcement relies on a M2MT
based on ATL. The transformation inputs are the CY-Model
and the TH-Model of the thing to be transformed. The output
is a transformed TH-Model incorporating the needed part from
the smart rule.

There may be various ways to enforce smart rules, we
present here our implementation. This implementation serves
as a proof of concept, more advanced implementations cov-
ering other concerns may be implemented in the future.
Figure 12 depicts the GTR of trigger:executeFunction rule
(cf. Line 11 of Listing 7) and Figure 13 the GTR of trig-
ger:goToState rule (cf. Line 2 of Listing 7).

The enforcement of a trigger:executeFunction rule consists
of two M2MTs; one for the subject thing and the other for
the object thing. On the one hand, in our implementation,
this transformation needs to add in the subject thing a way
to inform the object thing that it entered the subject state
and, on the other hand, to add a way for the object thing
to receive this information. For this, we create a message and
send it on the entry of the subject state (i.e., we use Message-
SendAction OnEntry to send CommandMsg). An event waits
for the message inside all states of the object thing (i.e., we
use ReceiveMsgEvent). This event is added to every state to
ensure that the function can be executed anytime regardless
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Fig. 12. Upper Part for Subject, Lower Part for Object; Applying the
trigger:executeFunction rule GTRs (3) with the subject thing having two states
and the object thing having three states; White boxes are added based on the
CY-Model.

of a thing’s current state. Once the object thing receives the
message, it executes the function (i.e., we use ExecFunction)
with the specified Parameter in the rule. We try to send the
message using an existing path between the two things. If no
direct path exists between them, we search for an indirect path.

The trigger:goToState rule in Figure 13, on the other hand,
uses the same principle, but adds, inside all states of the
object thing, a transition to the state to go to (instead of an
ExecFunction in comparison with a trigger:executeFunction
rule). These transformations enable the enforcement of a
smart scenario at the model-level. TH-CGEN reproduces the
equivalent statechart for each thing in the low-level code.

ThingMLThing
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LHS RHS
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Port
hasPort

hasState

ThingMLThing

Statechart

otherState

hasBehavior

subjectState

Port
hasPort

hasState

MessageSendAction

OnEntry

CommandMsg
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acceptSendingMessage

usePortToSend

hasOnEntry

hasMessageSendAction

ThingMLThing

Statechart
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Port
hasPort

hasState

objectState

Function

Parameter

hasFunction
hasState

hasParameter

Thing
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State1

hasBehavior

State2

Port
hasPort

hasState

objectState

hasState

ReceiveMsgEvent

ReceiveMsgEvent

Transition

CommandMsg
Transition

hasAction

hasAction

waitForEvent
waitForEvent

acceptMessage
receivesMessage

gotToState

goToState

Fig. 13. Upper Part for Subject, Lower Part for Object; Applying the
trigger:goToState rule GTRs (4) with the subject thing having two states and
the object thing having three states; White boxes are added based on the
CY-Model.

The last step of our methodology consists of generating
network artifacts from the network and policies specifications.
This section introduced an extensible code generator, named
CY-CGEN, capable of interpreting the model and generating
the specified network’s artifacts.

VII. EVALUATION

A. Comparison of Lines of Code

We tested our methodology on networks ranging from 1
to 25 things. We use traditional software engineering as a

TABLE II
COMPARISON OF THE REQUIRED LOC WITH CY-DSL, C, JAVA AND

ARDUINO FOR EACH M2MT.

Number of Lines of Code

Transformation CY-DSL C (% gain) Java (% gain) Arduino (%
gain)

Wiring 11 186 (94.09%) 137 (91.97%) 102 (89.22%)

Forwarding 5 237 (97.89%) 14 (64.29%) 24 (79.17%)

trigger:goToState 4 122 (96.72%)1 121 (96.69%)2 120 (96.67%)3

trigger:executeFunction 4 126 (96.83%)4 131 (96.95%)5 124 (96.77%)6

1Subject thing (Subj): 59 LoC + Object thing (Obj): 63 LoC ;
2 Subj: 57 LoC + Obj: 64 LoC; 3 Subj: 58 LoC + Obj: 62 LoC;
4 Subj: 63 LoC + Obj: 63 LoC; 5 Subj: 67 LoC + Obj: 64 LoC;

6 Subj: 62 LoC + Obj: 62 LoC

baseline, with things software written in C (suitable for things
of any size), Java (ideal for medium and large things), and
Arduino (suitable for small things). We compare the Lines of
Code (LoC) needed between the baseline and our model-based
methodology. The compared code for C, Java and Arduino
is the output of CY-CGEN; code written by real software
engineers should be within these ranges. As our focus is on
networking, we presume that the behavior of things is not
part of this evaluation as it has been evaluated in previous
work on ThingML [46]. We compare only the LoC needed
for networking and policy enforcement. We removed the
comments and empty lines from the count.

For this experiment we used MQTT as a means of com-
munication. C, Java, Arduino and MQTT are among the most
used technologies in the IoT [58]. Table II depicts our results,
we save for each thing:

• 175 LoC (94.09% gain) for C, 126 (91.97%) for JAVA
and 91 (89.22%) for Arduino (CY-DSL: 11 vs. C: 186
vs. JAVA: 137 vs. Arduino: 102) with the wiring trans-
formation.

• 233 LoC (97.89% gain) for C, 10 (64.29%) for JAVA
and 19 for Arduino (79.17%) (CY-DSL: 5 vs. C: 237 vs.
JAVA:14 vs. Arduino: 24) with the forwarding transfor-
mation.

• 118 LoC (96.72% gain) for C, 117 (96.69%) for JAVA
and 116 (96.67%) for Arduino (CY-DSL: 4 vs. C:
122 vs. JAVA: 121 vs. Arduino: 120) with the trig-
ger:executeFunction rule.

• 122 LoC (96.83% gain) for C, 127 (96.95%) for JAVA
and 120 (96.77%) for Arduino (CY-DSL: 4 vs. C: 126 vs.
JAVA: 131 vs. Arduino: 124) with the trigger:goToState
rule.

The LoC correspond to the white elements in the GTRs (cf.
Section VI), added automatically by CY-CGEN. Obviously,
the more things are in the network, the more LoC are generated
automatically, consequently saving time and bugs with the
benefit of having a tangible specification of the network and
a traceable transformation process. With traditional software
engineering, we need to connect each thing separately (this
task is automated by the wiring and forwarding M2MTs, cf.
Section VI-A), and eventually make it part of a smart scenario
(automated by the enforcement of policies, cf. Section VI-C).
Traditional engineering is time-consuming, particularly for
large networks (Task 4), and exposes software engineers to
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the low-level heterogeneity that increases their chances of
introducing bugs.

Also, the CY-CGEN generates automatically the textual
artifacts based on M2TT. For the access control rules files
of Mosquitto and RabbitMQ (two widely used MQTT brokers
in the IoT), we generate approximately 60 characters per thing
and for each file in the worst-case scenario. Factors such
as the granularity of control may influence the complexity
of the rules and the number of characters. More characters
could understandably be saved if additional textual artifacts
are needed; with a reasonable investment in time to write the
plugin and the Acceleo template of the M2TT, set it up and
forget it.

B. Real-World Experiment

We conducted a small scale experiment using a network of
3 things. This experiment consists of a temperature sensor,
a cooling fan and a user interface. The temperature sensor
should communicate the temperature to the cooling fan to
adjust its speed, while the user interface should display the
current temperature for monitoring purposes.

1 thing tempSensor import ”temperatureSensor.thingml”
2 thing coolingFan import ”coolingFan.thingml”
3 thing userInterface import ”ui.thingml”
4 user bob
5 channel mqttChannel {
6 path tempPath(tempValue:JSON)
7 }
8 policy smartPolicy {
9 rule ts−>state:isHigh trigger:goToState ac−>isOn

10 rule ts−>state:isLow
11 trigger:executeFunction ui−>notify(”Temperature is low.”)
12 }
13 network experimentNetwork {
14 domain org.atlanmod.experiment
15 enforce smartPolicy
16 instance ts:tempSensor platform POSIX owner bob
17 instance cf:coolingFan platform POSIX owner bob
18 instance ui:userInterface platform POSIX owner bob
19 instance localNet:mqttChannel
20 protocol MQTT(server=”mqtt.eclipse.org:1883”)
21 instance externalNet:mqttChannel
22 protocol MQTT(server=”mqtt.eclipse.org:1883”)
23 bind tempBind: ts.tempPort => localNet{tempPath}
24 bind cf.tempPort <= localNet{tempPath}
25 forward tempBind to externalNet{tempPath}
26 }

Listing 13. Specification of the experiment using CY-DSL.

As shown in Listing 13, this network consists of 26 LoC
in CY-DSL and includes two wirings, one forwarding, one
trigger:goToState rule and one trigger:executeFunction rule.
From this code our generator produces 857 LoC in C, and 540
LoC in Java, showing a reduction of an order of magnitude in
LoCs.

Next, we want to give an intuition of the reduction in
development time allowed by CY-DSL in our case study and
offer a means to extrapolate for larger real-world networks. We
measured the time required to write the code in Listing 13, and
estimated the time required to write its equivalent in C and
Java using the estimates provided in [59]. Writing the code
in CY-DSL took an experienced developer approximately 1

person-hour (including coding and non-coding work), while
writing its equivalent using C would have taken more than 17
person-hours, and using Java more than 12 person-hours. The
result of this experiment emphasizes the fact that CY-DSL
abstracts several redundant and time-consuming tasks (e.g.,
wiring, forwarding, triggers).

C. CY-CGEN Execution Time
Figure 14 shows the time required by CY-CGEN to generate

the network according to the number of things. We notice
that the execution time growth for low-level code generation
is non-linear. Although the execution time remains rather
reasonable in the context of our evaluation (90 seconds for
a network of 25 things), this limitation may hinder scalability
for the deployment of larger networks.

Fig. 14. CY-CGEN execution time according to the number of things.

VIII. LIMITATIONS

On the one hand, our approach suffers from some draw-
backs of MDE [60], [61]. First, it may add a semantic level
for software engineers, provoking resistance to its adoption.
Second, it lacks a consistent integration with existing software
engineering methods. Indeed, as it still lacks maturity, a
software engineer may be tempted to use it partially, creating
a maintainability problem. Third, as there is a separation
between the specification and the implementation, there may
be a fear of losing control over the code. Fourth, the approach,
by its nature, advocates for a top-down development by
presuming that all the network elements are known a priori,
making the structure of the designed network rigid.

On the other hand, our approach needs more experimental
work. First, the concepts are possibly biased; apart from our
empirical experiments, we still cannot guarantee the inclu-
siveness (i.e., covering all possible low-level elements of a
network) and genericity of these concepts. Second, we need an
evaluation with real IoT engineers to assess the methodology’s
benefits concretely in terms of time. The current evaluation is
based on the number of LoC for M2MT and on the number of
characters for M2TT (as the textual artifacts are not necessarily
coded) thus suggesting approximately the time that may be
saved. Third, the current solution requires ThingML for the
behavior of things, making the entry ticket rather expensive.
However, we started working on a process for the reverse
engineering of a low-level code into a TH-Model. Fourth, we
need more experiments on more complex networking scenarios
as the current results still do not guarantee the scalability of
the methodology.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

IX. CONCLUSION & FUTURE WORK

The present study advocates for an integrated model-based
software engineering methodology to design and deploy a
network of things. The methodology consists of the unified
network abstractions to wire heterogeneous things, the control
abstractions and mechanisms to define constraints on the
network, and a code generator, based on model transformation,
to process the model and generate the network artifacts.
We showed that by separating the model from the low-level
code, the code generator saves a significant amount of LoC,
consequently saving time, automating redundant tasks and
preventing bugs.

This work presents the first brick for a scalable method-
ology in the long run to build robust IoT applications. As
future work, we plan to take full advantage of Model-Driven
Reverse Engineering (MDRE) by reverse-engineering things
programmed using traditional software engineering. A con-
tribution in that sense may play a vital role in adopting
our methodology. Moreover, we will continue to enrich the
code generation process to cover more complex networks by
exploring ways to support the generation of textual artifacts
in natural language. This feature may be helpful to exempt
the manual writing of any human-readable artifact, such as
documentation or a security assessment report.
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