
HAL Id: hal-03916547
https://hal.science/hal-03916547v1

Submitted on 30 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Facilitating the Migration to the Microservice
Architecture via Model-Driven Reverse Engineering and

Reinforcement Learning
Mohammadhadi Dehghani, Shekoufeh Kolahdouz-Rahimi, Massimo Tisi,

Dalila Tamzalit

To cite this version:
Mohammadhadi Dehghani, Shekoufeh Kolahdouz-Rahimi, Massimo Tisi, Dalila Tamzalit. Facilitating
the Migration to the Microservice Architecture via Model-Driven Reverse Engineering and Reinforce-
ment Learning. Software and Systems Modeling, 2022, 21 (3), pp.1115-1133. �10.1007/s10270-022-
00977-3�. �hal-03916547�

https://hal.science/hal-03916547v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Facilitating the Migration to the Microservice Architecture
via Model-Driven Reverse Engineering and Reinforcement
Learning

MohammadHadi Dehghani · Shekoufeh Kolahdouz-Rahimi ·
Massimo Tisi · Dalila Tamzalit

Received: date / Accepted: date

Abstract The microservice architecture has gained re-

markable attention in recent years. Microservices allow

developers to implement and deploy independent ser-

vices, so they are a naturally effective architecture for

continuously deployed systems. Because of this, sev-

eral organizations are undertaking the costly process

of manually migrating their traditional software archi-

tectures to microservices.

The research in this paper aims at facilitating the

migration from monolithic software architectures to mi-

croservices. We propose a framework which enables soft-

ware developers/architects to migrate their software sys-

tems more efficiently by helping them remodularize the

source code of their systems. The framework leverages

model-driven reverse engineering to obtain a model of

the legacy system, and reinforcement learning to pro-

pose a mapping of this model towards a set of microser-

vices.

Keywords Microservice Architecture · Reinforcement

Learning · Model-Driven Reverse Engineering ·
Migration

MohammadHadi Dehghani
MDSE Research Group, Department of Software Engineering,
University of Isfahan, Isfahan, Iran
E-mail: mhdehghani@eng.ui.ac.ir

Shekoufeh Kolahdouz-Rahimi
MDSE Research Group, Department of Software Engineering,
University of Isfahan, Isfahan, Iran
E-mail: sh.rahimi@eng.ui.ac.ir

Massimo Tisi
IMT Atlantique, Nantes, France
E-mail: massimo.tisi@imt-atlantique.fr

Dalila Tamzalit
Université de Nantes, Nantes, France
E-mail: Dalila.Tamzalit@univ-nantes.fr

1 Introduction

Microservices (MSs) are becoming one of the prevalent

architectural styles associated with Cloud Computing

[14]. In a MS architecture, applications are developed as

a suite of small autonomous and single-responsible ser-

vices, each operating according to its own process and

communicating with standard and lightweight commu-

nication mechanisms and protocols. The power of MSs

lies in their ability to be deployed independently and

automatically, and to be combined to create more com-

plex services. MSs can be easily scaled up and tested

independently. Because of their fine granularity, MSs

allow for applications that make more efficient use of

available resources and systematically reuse basic func-

tionalities. These features significantly increase the re-

sponsiveness of software systems, as new functionalities

can be added in a more agile and affordable way.

Remodularizing monolithic software to many fine-

grained MSs is one of the greatest challenges in mi-

grating an existing system to a MS architecture [22,

15,16]. Identifying the appropriate parts of code for

each MS and then adapting them to the target MS

is costly, error-prone and time-consuming [22,3]. Tra-

ditional software systems may contain very large mod-

ules, therefore, identifying and extracting the individual

instructions that compose a fine-grained module from

these code-bases is not a trivial task [22,29]. Although

significant research has been conducted about decom-

posing software into MSs, the extraction of MSs by de-

coupling and reusing pieces of a bigger system, through

refactoring and remodularization, is still an open prob-

lem [10]. We argue that a high-level model of the system

can aid the decomposition of a large codebase because it

enables focusing on the important aspects of the system

while removing the unessential information. Instead of

2 MohammadHadi Dehghani et al.

considering the whole codebase, at first, developers can

focus on a much smaller representation. After that, de-

velopers can advance the decomposition by passing to

lower levels of abstraction, and finally, remodularize at

the source code level.

Each MS in a system has a precise responsibility

and claims ownership of some system resources. We re-

fer to these resources with the term nanoentities, in-

troduced in [17]. Nanoentities are elements used by a

MS to provide business capabilities. They can be either

data fields, operations, or artefacts. In [17], the authors

propose a manual computer-aided decomposition pro-

cess into MSs that requires defining a certain number

of MSs and assigning all nanoentities to exactly one

service. After this assignment, developers perform the

decomposition by finding the methods that are related

to each nanoentity and grouping them in a MS module

(possibly adapting them). Developers move the meth-

ods that deal with nanoentities to the right MS mod-

ule iteratively. The remaining monolithic software gets

smaller, simplifying the identification of other MSs. The

whole refactoring process is very long, therefore a tool

that can reduce this time by facilitating the mapping

of the methods of the monolithic system to the most

suitable MS is of high importance.

In this paper, we propose a framework that lever-

ages Model-Driven Reverse Engineering (MDRE) and

Reinforcement Learning (RL) for aiding the migration

of a monolithic codebase to a MS-based system. The

framework takes three inputs: the existing source code,

the entity-relationship (ER) model of the original sys-

tem and its use-case model.

Our processing contains three key steps:

1. A model of the source code of the system is automat-

ically extracted. For this step, we use MoDisco, a

well-known model-driven reverse engineering tool [6].

2. A model of the microservices, i.e. the desired result

of the migration, is derived by analyzing the system

design models. For this step, we leverage Service-

Cutter, the tool from [17], to identify MSs from ER

models and use-case models.

3. We automatically propose to the user an assignment

of existing methods in the model from step (1) to

each MS identified in step (2).

The main technical contribution of the paper is step

(3). This step is challenging because it needs to fill the

gap between the high level of abstraction of the MS

decomposition returned by step (2) and the low level of

abstraction of the methods identified in step (1). Note

that our contribution in this paper does not aim at

improving the conceptual decomposition (i.e. the set of

MSs), which is manually determined in step (2) with

the help of Service-Cutter. We aim only at facilitating

its application to the source code, which in previous

work is completely manual.

For each MS we produce the list of existing methods

that should be considered in its implementation. This

improves w.r.t. previous work, where microservices are

typically associated with classes or packages of the ini-

tial codebase. Fine-grained method-based migration is

sometimes mentioned as part of future work in these

proposals [10].

Mapping methods to MSs is a complex problem that

depends on factors that are not easy to model, so we

choose an end-to-end approach based on AI. The main

reason for choosing RL is its ability to generate training

episodes (by full plays of the game, e.g. in [27]), which

allows us to avoid the problem of unavailability of pub-

lic real-world systems in monolithic and decomposed

forms. In this paper, we show that Deep Q-Learning,

a reinforcement learning (RL) technique, can learn an

efficient strategy for the distribution of methods to MSs

in the user scenario. RL does not require a large training

set and has been very successful in areas where specific

goals need to be achieved in a given environment [27].

The developed framework is evaluated by applying

it to 5 software systems of different sizes and structures.

We provide both a ready-to-run (General) approach

and a customizable (Individual) approach. The gen-

eral approach has good accuracy and performance for

all the case studies, with a decrease in accuracy when

the system size increases. The Individual approach in-

creases accuracy for larger systems but requires addi-

tional training for the specific system to decompose.

The rest of this paper is organized as follows. Section

2 presents a sample system that we will use to illustrate

our proposal. Section 3 introduces the main technolo-

gies used throughout the paper. Section 4 presents our

framework and Section 5 discusses its AI in detail. Sec-

tion 6 experimentally evaluates the framework. Section

7 surveys related work and Section 8 concludes the pa-

per.

2 Running Example

This section provides a running case to exemplify the

research problem. This example is used to illustrate how

the proposed framework works in Section 4, and eval-

uate the usability and accuracy of our proposal in Sec-

tion 6. The Cargo Tracking System is a notable software

project designed to represent the ideas in the Domain-

Driven Design book [13]. This system is chosen as an

illustrative example by many researchers because its

characteristics are close enough to a real-world enter-

prise system to consider it a complex system while the

Facilitating the Migration to Microservice Architecture... 3

domain model of the system is adequately simple and

clear to be understood by any software developer as it

is deliberately designed this way [17,4]. A sample im-

plementation of this system is publicly available1.

In [18] the domain model, use cases, and some char-

acteristics were extracted by analyzing the code of the

system. The domain model is shown in Figure 1. The

Cargo Tracking System provides the following function-

alities [18]:

– The purpose of the system is to ship a Cargo from

the starting point Location to the destination Loca-

tion. Each Cargo is issued with a TrackingId and a

RouteSpecification. After a Cargo object is created,

one of the appropriate Itineraries is assigned to it.

– The system calculates which Itineraries are suitable

for a Cargo from the list of the existing Voyages.

Each Voyage includes some CarrierMovements.

– When a Cargo is routed, HandlingEvents track the

advancement of every Cargo’s Itinerary. A

HandlingEvent contains some information about the

event in a particular Location and references a Cargo

on a certain Voyage.

– The Delivery of a Cargo includes information about

the state and estimated arrival time of the cargo

and also indicates if the Cargo is on track.

In [18], an abstract decomposition of this system in

MSs is described:

1. 4 MSs are identified, as the objective of the refac-

toring. We list them in Table 1.

2. The responsibility for each data field is assigned to
one MS, as we show by coloring in Figure 1. As

depicted in the figure, the Delivery entity contains

nanoentities belonging to both the Planning Service

and the Tracking Service.

For bringing this abstract decomposition to the source

code level, it is necessary to assign methods to MSs

by analyzing their instructions, understanding their be-

havior, and choosing the MS (among the 4 identified

in step 1) that should detain the responsibility for that

functionality. The last step is especially time-consuming

because it requires in general: 1) to inspect the full

source code of the application, understanding the in-

tent and side effects of each method, 2) to choose a

policy for assigning methods to MSs and use it con-

sistently through the refactoring. In this paper, we aim

especially at providing automated assistance to this last

step.

1 https://github.com/javaee/cargotracker

3 Background

This section introduces the existing technologies lever-

aged in this research.

3.1 MoDisco

It is often necessary to have a high-level view of a pre-

viously developed system, for extracting information

about its overall structure, without having to deal with

low-level code [6]. Reverse Engineering (RE) techniques

are applied to existing systems for obtaining their ab-

stract representation. Model-Driven Reverse Engineer-

ing (MDRE) facilitates the extraction of a higher-level

presentation of the system by leveraging the concepts

of model-driven engineering and RE [6].

MoDisco is an open-source MDRE framework. It

provides a set of tools for the extraction of a model

view of the system. MoDisco has addressed different

challenges of RE such as migration, refactoring, retro-

documentation, and quality assurance. MoDisco consid-

ers three primary stages for reverse engineering a soft-

ware system, including Model Discovery, Model Under-

standing, and Model (Re)Generation [6]. In the Model

Discovery stage, models are derived from software ar-

tifacts. Then in the Model Understanding stage, these

models are analyzed and sometimes modified. Finally,

in the Model (Re)Generation stage, the discovered mod-

els in the past stages can be utilized to produce differ-

ent models or another variant of the software system

[6]. In this work, we make use of the Model Discovery

capability.

3.2 Service Cutter

The MS architecture is one of the latest Cloud-native

architectural styles. It is an architectural approach and

not a technological one, and aims at being more sus-

tainable than previous types of architecture since it

Table 1 MSs of the cargo tracking system [18]

MS Functional Responsibility
Voyage Covers the part of the domain related to voyages
Service and their movements, regardless of any cargo.
Location Only contains the Location domain class.
Service Locations are used and referred from almost

all entities, but very rarely written. This service
could be categorized as a master data service.

Planning Handles the part of the domain regarding
Service cargos and their itinerary.
Tracking Responsible to track the actual events of a
Service cargo.

4 MohammadHadi Dehghani et al.

Fig. 1 Cargo tracking system domain model and service cuts with nanoentities [18]

fosters the development as a set of small independent

services [21]. A MS is a service that has a single respon-

sibility (the “micro” attribute). It is built so that it can

be deployed, scaled, and also tested easily and indepen-

dently. Thus, it can be requested without encountering

dependencies, and it can be easily replaced and main-

tained [31]. Each MS is a business capability that can

utilize various programming languages and data stores

and is developed by a small team [14,22,11]. Systems
with a MS architecture are composed of self-contained

and independent MSs that interact only through stan-

dard and lightweight communication protocols [3]. In

addition, the centralized management of these services

is a completely separate service too, that may be writ-

ten in a different programming language, use its own

data model, etc. [32].

Service Cutter [17] is a tool for assisting the migra-

tion of monolithic systems to MSs. It derives candidate

service cuts from the ER model and use-case model

of the monolithic system, through graph clustering al-

gorithms. It provides 16 coupling criteria from 4 cat-

egories of cohesiveness, compatibility, constraints, and

communication, which are distilled from the literature

and industry experience to be considered when decom-

posing a system into MSs. It searches for set of MSs, by

considering their bounded contexts and independence in

terms of business scope, which are core concepts in the

MS architecture and Domain-Driven Design [20,22,13].

This differentiates Service Cutter from most migration

tools, that aim at optimizing metrics related to class

coupling and cohesion [10], and in some cases to the

scalability and availability of MSs in the cloud [1].

Service-Cutter is based on a concept called nanoen-

tity which represents a unit of resource of the system.

The Service-Cutter approach argues that in order to

provide capabilities, a service requires resources. Three

types of resources are considered as the building blocks

of services in this approach [17]:

– Data nanoentities: These nanoentities represent own-

ership over a field in the system’s data. The data can

only be altered by the owner MS. Other MSs can be

notified of the alterations in the data.

– Operation nanoentities: The business rules and pro-

cessing logic are also considered nanoentities.

– Artifact nanoentities: These nanoentities are snap-

shots of data or operation results that are saved in

a specific format.

According to [17], service decomposition can be de-

fined as the process of identifying a set of services and

assigning all nanoentities to one (and only one) of these

services.

Facilitating the Migration to Microservice Architecture... 5

Nanoentity

Data Operation Artifact

is a is ais a

Fig. 2 Data, operations and artifacts generalized into the
nanoentity concept, from [17].

3.3 Deep Q-Learning

Reinforcement Learning (RL) is an area of Machine

Learning, used for teaching a computer program (an

agent) how to achieve a certain goal inside environ-

ments that require sequential decision-making [33,28,

25]. RL can solve problems in environments with cer-

tain or uncertain rules. Recently, there have been many

advances in the field of RL in various domains, such as

robotics and game-playing. There are many policies to

use inside the RL program [33,28,25]. Q-Learning is a

commonly-used method in RL that maintains a table

containing the reward for each of the agent actions in

each possible state, and it is hence suitable for a small

number of states and actions. Deep Q-Learning can ad-

dress larger state spaces by replacing the reward table

with a neural network (NNET) that learns the reward

for each action in each possible state. The state space

for MS decomposition is generally very large because of

the number of possible mappings of methods to MSs.

In order to handle such a large state space, we apply

Deep Q-learning.

We briefly list the common terms in Deep Q-Learning

[28]:

– Agent: It is the part of the Reinforcement Learn-

ing program that takes actions in each state of the

problem based on some policy.

– Game: The problem that is being solved by Q-Learning.

This problem can have different states and through-

out the game, the agent can take some actions.

– Action: By taking an action, the game will enter

another state. The action taken in each step of the

game is determined by the output of the NNET.

– Episode: Each time the game is played from begin-

ning to end.

– State: Each different configuration of the game that

occurs throughout the game. The state of the cur-

rent step of the game is the input of the NNET.

– Reward Function: Function that computes the im-

mediate value given by a certain action in a certain

state.

Agent

state reward

St Rt

Rt+1

St+1 Environment

action

At

Fig. 3 The agent–environment interaction in a Deep Q-
Learning problem [28]

– Q-value: It is an estimation for the cumulative ex-

pected reward from a certain state to the end of the

game. The reward function only considers the next

action, while Q-Value considers the whole path from

the current state to the final state of the game. This

ideal function is what the NNET tries to learn in-

ternally during training.

The agent is the learner and decision-maker. Any

external process that the agent interacts with is called

the environment. The agent and the environment in-

teract continuously. The agent chooses actions and the

environment responds to these actions and calculates

the next state, based on the current state and the taken

action. The environment also gives rewards to the agent

and the agent tries to maximize the overall cumulative

reward through its choice of actions. Figure 3 shows the

interaction between the agent and the environment in

Deep Q-Learning problems [28]. The agent receives the

current State (St) and the current reward (Rt) from the

environment, then it chooses an action (At) and sends

it to the environment. Finally the environment starts

the same process for the next state (St+1) and the next

(updated) reward (Rt+1).

4 Proposed Framework

In this section, we describe the global structure of the

framework. The first steps exploit the tools from related

work, i.e. Service-Cutter and MoDisco. The following

steps, which are the main contribution of this research,

take the result of the existing tools as input and produce

the final output which is the mapping of methods to

MSs. Finally, the user will have to manually refactor

the code, using the generated mapping as a reference.

Figure 4 shows the structure of this framework, and

Figure 5 depicts the proposed workflow. The workflow

consists of six steps. In the following, we provide a de-

tailed description of each step. The detailed specifica-

tion of the RL steps will be provided in Section 5.

6 MohammadHadi Dehghani et al.

Entity Relationship

and Use Case Models

Graph Cutting

Model of

Microservices With

Nano Entities Inside

Project Source Code

Reverse

Engineering

Java and KDM Model

AI trained by

reinforcement

learning

Preprocessing the

KDM model to modify

it to our needs

This part is already developed

INPUT #2

Our main contribution

A mapping between service-cutter

microservices and methods in the

source-code

First Phase

This part is developed in this research

Second Phase
Fig. 4 The structure of the developed framework to facilitate migration to the MS architecture.

Start

1

Preparing models

and source code

General Approach

3

Using the AI pre-trained

by the authors to assign

methods to

microservices

End

Refactoring the

software

6

Extraction of microservices,

methods and nanoentities

2

ER model, use-

case model and

source code

ER model and use-

case model

Source code and ER

model

List of

microservices

with owned

nanoentities

List of methods

with accessed

nanoentities

Is there

enough time

and

computation-

power

Yes

Individual Approach

5

Using the exclusively

trained AI to assign

methods to

microservices

4

Continue training the

pre-trained AI

exclusively for the

user's system

No

List of

microservices,

nanoentities,

methods and the

pre-trained neural

network as the

initial network

The redistributed

methods inside

microservices

Fig. 5 The workflow of using the framework by the end-user consisting of six steps

4.1 Step 1: Artifact Preparation

In the first step, the architect prepares the input ar-

tifacts required by the framework: an ER model for

the system data, a use-case model, and the source code

of the project. The models are expected in JSON for-

mat. These input artifacts are the prerequisites for our

framework.

A part of the expected ER model of the running

example system is shown in Listing 1. The listing shows

that the Cargo Tracking system has a Voyage entity

that contains the voyageNumber attribute.

4.2 Step 2: Service-Cutter and MoDisco

In this step, the ER and use case models are given as an

input to Service-Cutter, and the source code is analyzed

by MoDisco.

Service-Cutter produces a model that indicates which

MSs will be included in the target software system, and

which nanoentities are under the responsibility of each

MS. When a MS is responsible for a nanoentity, every

instruction that reads or writes that nanoentity should

be included in that MS. We call this model the MS-

Nanoentity model.

For instance, a part of the MS-Nanoentity model of

the running example system is depicted in Listing 2.

The listing shows that Service-Cutter recommends the

Facilitating the Migration to Microservice Architecture... 7

{

"name": "Cargo Tracking",

"entities": [

{

"name": "Voyage",

"attributes": [

"voyageNumber"

]

},

...

]

}

Listing 1 A part of the ER model of the cargo tracking
system expected as the output of Step 1

{

"services": [

{

"id": "1",

"name": "Voyage Service",

"nanoentities": [

"Voyage.voyageNumber",

"CarrierMovement.departureLocation",

"CarrierMovement.arrivalLocation",

"CarrierMovement.departureTime",

"CarrierMovement.arrivalTime"

]

},

...

]

}

Listing 2 A piece of the MS-Nanoentity model of the cargo
tracking system expected as the output of Step 2

definition of a Voyage Service, that should be respon-

sible for the voyageNumber nanoentity and of several

nanoentities of the CarrierMovement entity.

MoDisco generates a model from the source code

in Knowledge Discovery Metamodel (KDM) [24]. From

this model, we automatically extract a list of the meth-

ods that are inside the project. Each method needs

to be annotated by the list of attributes and artifacts

that are read or written by one of its potential exe-

cutions. While this task can be automatized by static

analysis of the source code, we currently require the

user to perform it manually (automation is left for fu-

ture work). We call the resulting model, the Method-

Nanoentity model. Note that methods could access na-

noentities that are not included in the MS-Nanoentities

model, e.g. because they refer to technical aspects at the

source-code level of abstraction. Similarly, the system

may contain technical methods that will not be mapped

to a specific MS.

For the cargo tracking system, an excerpt of its

Method-Nanoentity model is shown in Listing 3. The

listing shows that the code base contains a viewTrack-

{

"methods": [

{

"name": "viewTracking",

"nanoentities": [

"Cargo.trackingId",

"HandlingEvent.type",

"HandlingEvent.location",

"HandlingEvent.completionTime",

"Delivery.transportStatus",

"Delivery.estimatedArrivalTime",

"Delivery.misdirected",

"Voyage.voyageNumber",

"RouteSpecification.destination"

]

},

...

]

}

Listing 3 A part of the Method-Nanoentity model of the
cargo tracking system expected as the output of Step 2

ing method that accesses several nanoentities, including

voyageNumber.

4.3 Step 3: Application of the General NNET

The output models of Step 2 (MS-Nanoentity and

Method-Nanoentity models) are given to a pre-trained

NNET that is provided together with the framework.

The result of this step is a mapping of the methods to

the MSs.

We call this step the general approach because all

users will use the same NNET to solve their problems.

As this NNET is already trained, the users can get a

result instantaneously.

The NNET is used in a Deep Q-Learning system,

as an agent simulating a user that is mapping meth-

ods to MSs iteratively. We define an environment, and

a reward function to evaluate the actions taken by the

agent. The agent alters the environment randomly to

find the best possible action for each given state of the

environment. The general training is performed by feed-

ing the NNET with a training set produced by an au-

tomatic model generator. The training set contains a

large number of pairs of MS-Nanoentity and Method-

Nanoentity models. In each episode of training, a differ-

ent pair of models are used. This will enable the general

approach’s NNET to produce a solution to the refac-

toring problem for any given system, however, it may

not give the best possible solution due to the variety of

the training set (see Section 6.3.2).

The result of this step for the running example is

shown in Listing 4. Note that in this example the view-

Tracking method has not been mapped to the Voyage

8 MohammadHadi Dehghani et al.

Voyage Service:

[createVoyage , addCarrierMovement]

Location Service:

[createLocation]

Planning Service:

[viewCargos , bookCargo ,

changeCargoDestination , routeCargo]

Tracking Service:

[viewTracking , handleCargoEvent]

Listing 4 The result of Step 3 for the cargo tracking system

Service. While viewTracking accesses the voyageNum-

ber nanoentity, that is under the responsibility of the

Voyage Service, the AI did not consider this reason suf-

ficient to include the logic of viewTracking in the Voy-

age Service.

If users are satisfied with this result which is pro-

duced immediately and requires no training nor devel-

opment effort, they can skip to Step 6, otherwise, they

can proceed to the next step to improve the quality of

the result. The accumulated reward of the mapping is

a quality measurement criterion for the output.

4.4 Step 4: Individual Training

In all cases, the user can further train the AI for the

specific modularization problem, in order to search for

better solutions. In Step 4 the user runs a training pro-

gram that accepts the output models of Step 2 (MS-

Nanoentity and Method-Nanoentity models) and the

NNET of Step 3 as inputs and starts training the NNET

further exclusively for the models of the system to refac-

tor. This way the user can reach a higher quality result

provided that they have enough time and computation

power available. This approach is called the individual

approach because the trained NNET will be specialized

in a single system.

In this approach, the AI is trained for a specific

problem. In other words, the AI knows from the be-

ginning exactly what models will be given to it to be

solved. The environment contains different states of a

single pair of MS-Nanoentity and Method-Nanoentity

models, therefore the training set concentrates only on

a pair of models from one system. This concentration

speeds up the training. The AI will be trained with

one MS-Nanoentity model and one Method-Nanoentity

model. Since the correct solution is not known a pri-

ori, the AI will play the given game, looking for strate-

gies that maximize the cumulative reward. The solution

that maximizes this reward during the training will be

taken as the final output. The resulting NNET will be

different for each system, and it can only solve the prob-

lem for that particular system. In our experimentation,

with a sufficient number of training episodes, the indi-

vidual approach gives the same or a better answer of

the general approach (see Section 6.3.2).

While the training in the individual approach could

start from a new NNET, we opt for transferring the

general training to the individual approach. We have

used the same NNET structure in both general and

individual approaches so that the general NNET can

be trained by the individual approach2. The training

of the individual approach is completely automatic and

no development effort is needed. The users only need

to provide the individual approach training program,

with the Service-Cutter and MoDisco models and the

neural network will be trained automatically. In our

experimentation, this technique causes a reduction of

the training time without a loss in accuracy.

4.5 Step 5: Application of the Individual NNET

Step 5 is similar to step 3, as the simple application of

a trained NNET. This time the trained NNET comes

from Step 4. The user can also repeat steps 4 and 5 if

they are not satisfied with the result. The accumulated

reward of the mapping, returned by the RL algorithm

after each full execution and the normalized accuracy

(see Section 6), are quality criteria for the output.

Note that in our small example the general approach

is already capable of finding the optimal solution, shown

in Listing 4. The individually-trained NNET will pro-

duce the same mapping as the general approach.

4.6 Step 6: Guided Refactoring

After the user has a satisfactory result which may come

from Steps 3 or 5, they can eventually use this result as

a guide to manually refactor their code base in MSs.

For instance, given the solution in Listing 4, the

user could start designing the Voyage Service MS by

manually including and refactoring the code of the cre-

ateVoyage and addCarrierMovement methods.

5 Application of Deep Q-Learning

In both the individual and the general approaches, Deep

Q-Learning is applied to find a mapping between MSs

and methods of a given system. The instantiation of

2 As we will see in the next section, the general approach
depends on the number of MSs of the system. The closest
general NNET in terms of the number of MSs can be used as
a starting point for the individual approach training.

Facilitating the Migration to Microservice Architecture... 9

Deep Q-Learning terms in the context of this research

problem is as follows:

Let M be the set of the methods of the monolithic

system, each member of this set is a method and is

represented with m. Also, MS represents the set of MSs

which is provided by Service-Cutter and is produced

based on the models of the monolithic system. Each

member of this set is a MS and will be depicted as ms.

– Agent: The program that assigns methods to MSs.

– Game: Assigning all methods to their suitable MSs,

one by one, until there are no methods left unas-

signed. It is possible to play the game several times.

Each game iterates over the method set (M) and as-

signs each member (m) to a MS (ms). Each step of

this sequential game corresponds to a certain method

m and finding the best suitable MS for it.

– Action: Assigning the current step’s method to a

MS. So the number of possible actions in each and

every step is the number of MSs (|MS|). Each step

of the game ends with taking one action.

– Episode: Playing the game once from the beginning

to end i.e. Each time all the methods are assigned to

MSs. Each episode includes taking a series of actions

(steps) to reach the end. The number of these steps

is the same as the number of the methods of the

system (|M|). Each episode is an iteration over the

method set M.

– State: The configuration of the game in each step of

an episode. It contains information about the chosen

MS for each method we have considered so far in the

game.

– Reward Function: A number indicating how good

or bad is assigning a certain method mt to a cer-

tain MS ms in a certain state. Listing 5 shows the

pseudo-code of the reward function used in both ap-

proaches. First, an integer r is initialized to 0. Then,

we compare the nanoentities of the method with the

nanoentities of all the MSs of the system. For each

identical nanoentity we find, if it was found in the

chosen MS, 20 points are added to the reward, oth-

erwise, 10 points are reduced from the reward. Then,

the function rewards cases where the set of nanoen-

tities of the method is a subset of the nanoentities

of the MS. This will cause minimum coupling be-

tween MSs as Service-Cutter classifies nanoentities

into separate groups. The fewer the methods of a

MS that access the nanoentities of other MSs, the

less coupled the MSs are. So, for each nanoentity

that is present in the method, but not present in

the MS, 10 points are reduced, otherwise, 20 points

are added. Finally, if the chosen MS has already ex-

ceeded the average number of methods, 5 points are

reduced from the reward. This small reduction is

int reward(MS ms , Method mt){

int r = 0

for each MS m except ms {

for each nanoentity m and mt share{

r -= 10

}

}

for each nanoentity n inside ms {

if n is shared with mt{

r += 20

}

}

for each nanoentity n inside mt {

if n is shared with ms {

r += 20

} else {

r -= 10

}

}

if ms has more than the average

number of methods assigned {

r -= 5

}

return r;

}

Listing 5 Pseudo-code of the reward function for assigning
a method called mt to a MS named ms

useful to decide assignments between two MSs that

would give the same reward based on the previous

calculation. The global reward function prioritizes

mappings between methods and MSs with highly

similar nanoentities, regardless of the ordering. Note

that the exact reward values we use have been de-

termined by several executions of the algorithm over

the given use cases.

– Q-value: An estimation of how much reward we will

get from all the remaining steps of the refactoring if

a particular method is assigned to a particular MS

in the current step.

The MS-Nanoentity and Method-Nanoentity mod-

els are the inputs of the RL program. A game is defined

inside the RL program to be played and mastered by the

AI. The game consists of steps and in each step, an ac-

tion is taken by the AI and then a reward is given to the

AI indicating how good its action was. This is how the

AI will learn to take better actions in each step of the

game. For our RL, in each step of the game, a certain

method is assigned to an MS. The reward function will

indicate how good was the assignment of that method

to that MS, in that particular state. For instance, an

MS may already have several methods assigned to it

due to the previous steps. Consequently, overfilling an

MS will not be desirable.

While in our tool we use NNETs of various sizes, in

Figure 6 we show a small sample with 4 output nodes

10 MohammadHadi Dehghani et al.

and 12 input nodes, to illustrate the structure of the

NNET used in both approaches. We apply the NNET

to decompose a system model with 4 MSs (the right side

of the figure): MS1, MS2, MS3, and MS4. The NNET

includes three main layers. The input layer, the hid-

den layers, and the output layer. Each layer consists

of some nodes and each node is connected to all the

nodes of the next layer, except the nodes of the out-

put layer. The nodes of the input layer get their values

from the agent. There are 3 hidden layers between the

input layer and the output layer, each containing 100

nodes. The nodes of the first hidden layer get their val-

ues from the input layer nodes’ values multiplied by the

weights of the edges connecting the two layers. In the

same manner, the second hidden layer gets values from

the first hidden layer, the third hidden layer gets value

from the second and the output layer nodes get their

values from the third hidden layer nodes. Each of the

nodes of the output layer represents an action which in

the context of this research corresponds to an MS. The

input layer has three nodes for each MS of the system

model. The first node holds the number of matching

nanoentities between the method of the current step

and the first MS. The second node holds the number of

non-matching nanoentities between the method and the

first MS. The third node holds the number of already

assigned methods to the first MS. The rest of the input

layer is filled in the same manner for the second, third,

and fourth MS of the system. Therefore, in each step

of the game, we are considering one particular method

of the system and all of the MSs of the system. This

causes the NNET to be more reliant on the number of

the MSs of the system, rather than the number of the

methods or the nanoentities. In the training phase, in

each step of the game, the weights of the edges of this

NNET evolve based on the feedback reward. This alter-

ation is done so that the NNET would produce a better

output the next time. Therefore, the NNET will choose

better actions that cause better feedback rewards in the

future. When the training phase is over, the NNET will

be used to solve real problems. This time, for each step

of the game, the agent asks the NNET for the best ac-

tion in the current state and the game proceeds to the

end.

6 Evaluation

To evaluate the accuracy of the framework in solving

a real problem, both the individual and general ap-

proaches have been applied to five case studies includ-

ing the Cargo Tracking System presented in Section 2.

First, we present the complete solution to the running

Matching NEs

Non Matching NEs

Already Assigned

Matching NEs

Non Matching NEs

Already Assigned

Matching NEs

Non Matching NEs

Already Assigned

Matching NEs

Non Matching NEs

Already Assigned

M
S 1

M
S 2

M
S 3

M
S 4

M
S 4

M
S 3

M
S 2

M
S 1

Hidden Layers

O
u

tp
u

t Layer

In
p

u
t Layer

Fig. 6 The structure of the neural network used in the indi-
vidual and the general approach

example in Section 6.1, and then we discuss the accu-

racy and the speed of the proposed framework in solv-

ing four other case studies from literature in Section 6.2.

We discuss how the approach scales in Section 6.3, and

summarize the evaluation key results in Section 6.4.

6.1 Solution of the Running Example

The implementation of the cargo tracking system has

many methods. The most challenging methods to assign

to MSs are those which provide the main functionalities,

namely, the business functionalities represented in use

cases of the system. We consider these extracted use-

cases of the system as the main methods that need to

be assigned to MSs. The list of these methods, with the

nanoentities each of them reads or writes, is as follows

[18]:

1. viewTracking:
– Nanoentities written: -
– Nanoentities read: Cargo.trackingId,

HandlingEvent.type, HandlingEvent.location,
HandlingEvent.completionTime,
Delivery.transportStatus,
Delivery.estimatedArrivalTime,
Delivery.misdirected, Voyage.voyageNumber,
RouteSpecification.destination, Stock.stockName

2. viewCargos:
– Nanoentities written: -
– Nanoentities read: Cargo.trackingId,

RouteSpecification.destination,
RouteSpecification.arrivalDeadline,
Delivery.routingStatus, Itinerary.itineraryNumber

Facilitating the Migration to Microservice Architecture... 11

3. bookCargo:
– Nanoentities written: Cargo.trackingId,

RouteSpecification.origin,
RouteSpecification.arrivalDeadline,
RouteSpecification.destination

– Nanoentities read: Location.unLocode
4. changeCargoDestination:

– Nanoentities written: RouteSpecification.destination
– Nanoentities read: Cargo.trackingId,

RouteSpecification.destination
5. routeCargo:

– Nanoentities written: Itinerary.itineraryNumber,
Leg.loadLocation, Leg.unloadLocation, Leg.loadTime,
Leg.unloadTime

– Nanoentities read: Cargo.trackingId,
RouteSpecification.destination,
RouteSpecification.origin,
RouteSpecification.arrivalDeadline,
Location.unLocode, Voyage.voyageNumber,
CarrierMovement.departureLocation,
CarrierMovement.arrivalLocation,
CarrierMovement.departureTime,
CarrierMovement.arrivalTime

6. createLocation:
– Nanoentities written: Location.unLocode,

Location.name
– Nanoentities read: -

7. createVoyage:
– Nanoentities written: Voyage.voyageNumber
– Nanoentities read: -

8. addCarrierMovement
– Nanoentities written:

CarrierMovement.departureLocation,
CarrierMovement.arrivalLocation,
CarrierMovement.departureTime,
CarrierMovement.arrivalTime

– Nanoentities read: Voyage.voyageNumber
9. handleCargoEvent

– Nanoentities written: HandlingEvent.type,
HandlingEvent.completionTime,
HandlingEvent.registrationTime,
HandlingEvent.location, Delivery.transportStatus,
Delivery.misdirected,
Delivery.estimatedArrivalTime,
Delivery.isUnloadedAtDestination,
Delivery.routingStatus

– Nanoentities read: Voyage.voyageNumber,
Cargo.trackingId

Given the principles of loose coupling and bounded

context [22], the correct mapping of the methods to

MSs is the one shown in Listing 4. We train our AI and

confirm that it reaches this mapping, with the given

models of the Cargo Tracking System as inputs. The

performance of this process is discussed in the next sub-

section.

6.2 Accuracy and Execution Time

6.2.1 Experimentation Setup

We first evaluate our proposal in terms of accuracy and

execution time. For the experimentation, we use five

case studies that were already used for experimental

evaluation in existing work on MS migration [18,19].

As these case studies consist of 3 to 9 MSs and 5 to

19 methods, we were able to manually define by inspec-

tion an ideal mapping for all of them. Both the general

and the individual approaches can reach the optimal

mapping with less than two thousand episodes of train-

ing. To be able to quantify how far we are from the opti-

mal mapping in the experimentation, we define a value

function with respect to our goal (having bounded-

contexts and micro-granularity). The value function is

maximized by the optimal manual mappings of our five

case studies. We use this value function in this section to

evaluate the accuracy of our approach. In the next sec-

tion, we will use it to discuss how this accuracy changes

as the learning progresses.

The value function we use is the weighted average of

two parameters, one concerning the context-bounds the

methods that are mapped to a MS should as much as

possible access only the nanoentities of that MS) and

one concerning the granularity of MSs (a MS should

have small size). We give to the context-bound param-

eter double weight w.r.t. granularity, to make it a pri-

ority.

Figure 7 shows the formula of the context-bound

parameter in Equation (1) and the formula of the gran-

ularity parameter in Equation (2). Both parameters

range from 0 to 1, where a higher value indicates a more

valuable solution. The notations of MS, M, and NE rep-

resent the set of all microservices, methods, and na-

noentities respectively. The contextNE(ms) and NE(m)

functions, return the nanoentities of a microservice (ms)

and of a method (m) respectively. The mappedMS(m)

and mappedM(ms) functions, return the microservice

that a method m is mapped to, and the method that a

microservice ms is mapped to, respectively.

To quantify how much this solution respects the

bounded context, the formula counts, for each method

m, how many of its nanoentities are under the responsi-

bility of the MS to which m is mapped. This formula is

maximized if all the nanoentities that are under the re-

sponsibility of the MS are included in at least a method

mapped to that MS.

To evaluate the granularity of MSs, the function

compares two ratios for each MS: 1) the number of

the nanoentities (responsibilities) of a MS divided by

the number of all nanoentities of the system and 2) the

number of methods mapped to a MS divided by the

number of all the methods of the system. If these ratios

are close, the formula approaches close to 1, indicating

a good granularity.

By using this value function, we also compare our

accuracy and performance to two baseline approaches,

12 MohammadHadi Dehghani et al.

contextBoundNormalized =

∑
m∈M

|contextNE (mappedMS (m)) ∩ NE (m)|∑
m∈M

|NE (m)|
(1)

granularityNormalized = 1−

∑
ms∈MS

∣∣∣ |contextNE(ms)|
|NE| − |mappedM(ms)|

|M|

∣∣∣
|MS|2

(2)

Fig. 7 Components of the value function related to context-bound and granularity

Random Search and Brute Force. These approaches

search through the possible solutions the ones that max-

imize the value function. Random Search explores a

random set of solutions, while brute force proceeds in

a deterministic order and will explore all solutions if

given enough time.

In our experimentation, we first identify for each

case study the maximum value function for the sys-

tem. For the three smaller systems (Booking, Cargo,

and Trading) we compute automatically this value by

applying the brute force approach. Finally, we compute

a normalized accuracy as a percentage representing the

ratio of the value function for the solution divided by

the maximal value function for the system. For the In-

surance and Lakeside systems that are bigger and the

optimal solution cannot be found by brute force, we

consider the maximum ideal accuracy to be 100 percent

and ignore the fact that a solution with 100 percent ac-

curacy might not exist at all.

6.2.2 General Approach Evaluation

Table 2 shows the required time by the random search,

brute force, and general approach to reach the best so-

lution for each case study.

From partial runs of the brute force approach, we

can estimate that a brute force search on the two largest

case studies would take days or years, respectively, to

complete. The random search approach is applied until

we reach the best solution which we previously found

out by brute force. For the larger case studies, the com-

pletion time of the random search is estimated after

completing increasingly complex problems.

Finally, we execute the Deep Q-Learning agent us-

ing the pre-trained general NNET to check if we can

reach the best solutions. As shown by the table, the

general approach reaches the best solutions in the first

three case studies. For the bigger case studies, where we

do not formally know the maximum accuracy possible,

a 98% normalized accuracy is gained.

We can observe that the execution time for the ran-

dom search and brute force approaches grows steeply

with the size of the case studies. Instead, as the NNET

in the general approach is already trained, it solves all

the case studies in about 100 milliseconds and there is

0
10
20
30
40
50
60
70
80
90

100

25 200 375 550 725 900 1075 1250 1425 1600 1775 1950
N

or
m

al
iz

ed
 A

cc
ur

ac
y

Pe
rc

en
ta

ge

Training Episodes

Accuracy of the General Approach

Booking Trading Cargo Insurance Lakeside

Fig. 8 The normalized accuracy of the general approach dur-
ing training (graphical)

no need to apply the individual NNET to any of the

use cases. The individual training is confirmed to be

useful for decomposing the randomly generated bigger

systems (see Table 4).

In Table 3 and Figure 8, we can see how the accuracy

of the general approach evolves during training. For

all case studies, the accuracy of the general approach

tends to increase with the number of training episodes.

Large systems require very long training to stabilize.

The graph shows that interrupting the training at 2000

episodes would not be enough to have a stable accuracy

for problems of the size of the Insurance use case. That

is why we have trained the general NNETs for 100,000

episodes. During training, the NNET performs abstrac-

tions from the training episodes, intuitively to derive

a general rule. The fluctuations in accuracy are some-

times due to abstractions from a first set of episodes,

that are proved wrong by a following set, and need to

be replaced by different abstractions. This is common

in training NNETs [28].

6.2.3 Individual Approach Evaluation

As the individual approach is run on the user’s com-

puter, we show how its accuracy evolves w.r.t. its ex-

ecution time (i.e. as number of episodes). We compare

this accuracy with the random search and brute force

approaches. Figures 9 to 13 show for each case study

(in the order of size of the case studies) the normal-

Facilitating the Migration to Microservice Architecture... 13

Table 2 The required time to reach the best solution for each case study

Case
Study

of
MSs

of
Methods

Problem
Space Size

Time to reach the best solution (miliseconds)

Random
Search

Brute
Force

RL (General
Approach)

Booking 3 5 243 1611 1962 93

Cargo 4 9 262144 4323 10520 103

Trading 4 10 1048576 17847 32797 107

Insurance 9 10 3/5 × 109
15 hours
(estimate)

1 day
(estimate) 119

Lakeside 5 19 1/9 × 1013
10 years

(estimate)
17 years

(estimate) 166

Table 3 The normalized accuracy of the general approach
during training (tabular)

Normalized Accuracy in Case Studies
Episodes Booking Trading Cargo Insurance Lakeside

250 100 64 94 27 35
500 100 100 99 76 53
750 100 100 100 65 91
1000 100 100 100 46 97
1250 100 100 100 98 98
1500 100 100 100 81 96
1750 100 100 100 98 98
2000 100 100 100 98 98

ized accuracy of the approaches w.r.t. the number of

episodes each approach has passed. Each episode cor-

responds to arriving at a complete solution, regardless

of its accuracy.

The results show that in the smallest case study

(Booking), all three approaches are able to reach the

maximum accuracy before 1000 episodes. As the case

studies get bigger, the individual approach takes a clear

lead in reaching higher levels of accuracy.

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 P
er

ce
nt

ag
e

Episodes

Booking Case Study Accuracy

Indiviudal Approach Random Search Brute Force

Fig. 9 The normalized accuracy of the individual approach
in solving the Booking case study

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 P
er

ce
nt

ag
e

Episodes

Cargo Case Study Accuracy

Indiviudal Approach Random Search Brute Force

Fig. 10 The normalized accuracy of the individual approach
in solving the Cargo Tracking case study

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 P
er

ce
nt

ag
e

Episodes

Trading Case Study Accuracy

Indiviudal Approach Random Search Brute Force

Fig. 11 The normalized accuracy of the individual approach
in solving the Trading case study

6.3 Scalability

The most time-consuming part of the developed frame-

work is the AI training. To find out how much time is

needed for the training phase, we need to know how

much time a single episode takes to complete, and how

many episodes are needed for the AI to reach a cer-

tain accuracy. These parameters are discussed in Sub-

sections 6.3.1 and 6.3.2, respectively. The computer on

14 MohammadHadi Dehghani et al.

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 P
er

ce
nt

ag
e

Episodes

Insurance Case Study Accuracy

Indiviudal Approach Random Search Brute Force

Fig. 12 The normalized accuracy of the individual approach
in solving the Insurance case study

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 P
er

ce
nt

ag
e

Episodes

Lakeside Case Study Accuracy

Indiviudal Approach Random Search Brute Force

Fig. 13 The normalized accuracy of the individual approach
in solving the Lakeside case study

which these benchmarks were run, has 12 GB of RAM

and 4 processor cores of 2.5GHz.

6.3.1 Time Charts

As previously mentioned, an episode of a Deep RL sys-

tem requires playing the training game once from be-

ginning to end and reaching a solution. The duration

of an episode depends on the size of the problem. To

estimate this dependency for large systems we auto-

matically generate 100 system models, each containing

1 to 100 MSs, respectively. Figure 14 shows the time

needed for one episode to be completed (in both gen-

eral and individual approaches) for each one of these

systems. The chart shows linear behavior. It means that

the time needed for an episode to complete increases as

the number of MSs increases. This is mainly because

the size of the input layer and the output layer of the

NNET depend on the number of MSs. Note that the

result obtained with randomly generated systems can

be generalized to any system, since the completion time

of an episode does not depend on the structure of the

system, but only on its size.

0

500

1000

1500

2000

2500

3000

3500

3 7

1
1

1
5

1
9

2
3

2
7

3
1

3
5

3
9

4
3

4
7

5
1

5
5

5
9

6
3

6
7

7
1

7
5

7
9

8
3

8
7

9
1

9
5

9
9

Ti
m

e
in

 m
ill

is
ec

o
n

d
s

Number of microservices

Fig. 14 Time needed for each episode of the training pro-
gram to complete based on the number of MSs

6.3.2 Episode Charts

In this section, as we want to evaluate only the train-

ing speed of approaches (and not their real-world ac-

curacy), we consider the number of episodes needed to

reach 80% accuracy for synthetic system models of dif-

ferent sizes. The system models we use are generated

with the following configuration: n MSs, n nanoentities,

and n methods, where each nanoentity is only present in

one MS and one method, but randomly indexed. Since

in this simplified scenario the methods that should be

mapped to each MS are easily identified (by their ex-

clusive nanoentity), then it is trivial to calculate the

accuracy of the solution.

The NNET trained by the general approach com-

putes a solution for any system, while the NNET trained

by the individual approach is specialized for a particu-

lar system. Therefore, they are discussed separately.

General Approach Episode Charts. As the training set

of the general approach includes several different system

models, its training requires a high number of episodes.

At first, we tried to train a single NNET to solve prob-

lems with any number of MSs. So it was needed to set a

limit to the maximum number of MSs the AI can solve.

As Figure 15 shows, we set the maximum number of

MSs to 3 and gradually increased it to see how many

episodes are needed for the AI to reach 80% accuracy

based on the maximum number of MSs.

Then, instead of training only one NNET to solve

problems with 1 to n MSs, we trained multiple NNETs,

each of them able to solve the problems in the range of

3n+1 to 3n+3 MSs (n ≥ 0). Figure 16 shows the num-

ber of episodes needed to reach 80% accuracy for each

one of the limited-range general NNETs. This approach

takes much less training than the former to reach the

same accuracy. This is because the problem it needs to

solve is more constrained.

Facilitating the Migration to Microservice Architecture... 15

0

20

40

60

80

100

120

140

3 6 9 12 15

Th
ou

sa
nd

 e
pi

so
de

s

Number of microservices

Fig. 15 Thousand episodes needed to reach 80% accuracy
based on the maximum number of MSs in general approach

0

2

4

6

8

10

12

14

16

18

1-3 4-6 7-9 10-12 13-15

Th
ou

sa
nd

 e
pi

so
de

s

Range of microservices

Fig. 16 Thousand episodes needed to reach 80% accuracy
based on the range of MSs in the general approach

Individual Approach Episode Charts. The individual ap-

proach only trains on one set of models and solves

the same problem over and over again, each time tak-

ing random actions and searching for solutions that

maximize the global reward. Focusing on one system

makes the training much faster than the general ap-

proach which has to deal with a huge number of variant

problems. Figure 17 shows again the number of episodes

required to reach 80% accuracy for the same sample

models used for the general approach.

Comparison. Table 4 summarizes the number of episodes

needed to reach 80% accuracy in different approaches.

Even though the training for the general approach can

be accelerated by limiting the range of the number

of MSs, the individual approach still is much faster

in training. The table also shows that the training of

limited-range general NNETs is more effective than train-

ing a single general NNET. In our experimentation,

35,000 total training episodes for the set of limited-rage

NNETs produce an agent that has the same accuracy

as a single general NNET trained by 118,000 episodes.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

3 6 9 12 15

Th
ou

sa
nd

 e
pi

so
de

s

Number of microservices

Fig. 17 Thousand episodes needed to reach 80% accuracy
based on the number of MSs in individual approach

As each training episode only takes about a few hun-

dred milliseconds, the individual approach can migrate

systems with up to 15 MSs with minutes of training.

The general approach required hours of training to ob-

tain the same result on systems with up to 15 MSs.

The curves show that longer training would make our

approach, able to decompose bigger systems. However,

we experimentally evaluated the accuracy of these ap-

proaches in migrating systems with more than 9 MSs

only for randomly generated systems, as the available

real-world case studies had 9 MSs maximum.

Table 4 Thousand episodes needed to reach 80% accuracy
based on the number of MSs in different approaches

of General Approach General Approach Individual
MSs (Unlimited Range) (Limited Range) Approach

3 1 1 0.1
6 6 3 0.8
9 28 7 1.3
12 48 8 3.9
15 118 16 4.7

6.4 Discussion

Two approaches have been introduced in this research.

The general approach produces immediate solutions and

generates high-quality solutions for systems with up to

15 MSs. The individual approach is able to improve

the quality of the results of the general approach for

the cases where the general approach may not reach

100% of accuracy, but it requires additional training by

the user. However, it does not require any programming

effort for training as the training program is already de-

veloped and is ready to be compiled and executed. The

16 MohammadHadi Dehghani et al.

source code of both approaches is available online in

a GitHub repository3. The process of using the NNET

trained during the general approach as a starting point

for training in the individual approach is in the spirit

of transfer learning, i.e. it reuses the knowledge stored

in an NNET, to solve a similar problem [33].

The case study of the Cargo Tracking System is used

in this research to present the correctness and appli-

cability of the developed framework. Additionally, the

scalability of the framework is illustrated by the time

charts and the episode charts. The results indicate that

for systems with up to 15 MSs, the general approach

will produce high-quality results (98% to 100% accu-

racy for all the five use cases). This is due to the limi-

tation of the computation power of the system that we

have used throughout this research. Additionally, it is

possible for the users of the framework to improve the

results for bigger systems by applying the individual

approach. For example, it would only take a few hours

to train the individual NNET adequately for a system

with 30 MSs. The presented time chart proves the lin-

earity of the time needed for an episode of training,

with respect to the number of MSs of the system. The

Episode charts start off linear at first, but as the num-

ber of MSs grows, they shift from linear to exponential.

This shifting occurs slowly in the individual approach

and, therefore, it is able to solve the problems with

higher numbers of MSs more efficiently. Additionally,

this shifting gets more pace in the limited version of

the general approach. Furthermore, the unlimited ver-

sion of the general approach shifts from linear to expo-

nential in an even faster manner. This means that the

individual approach will produce a better result than

the general approach for systems with a higher number
of MSs.

We did not observe any phenomenon of overfitting

with training up to 120,000 episodes in the case studies

and scalability evaluations.

RL is commonly used in sequential problems, whereas

in our approach, it is being used in an unordered prob-

lem space. However, there is no evidence that the se-

quential nature of RL worsens performance in unordered

problems. Our good experimentation results confirm

the applicability of this choice.

6.5 Threats to validity

The use cases we have considered have different problem

space sizes and structures, although for evaluating the

performance of our framework when dealing with bigger

systems, we developed a random model generator that

3 https://github.com/hadiDHD/MS-MDE-RL

can generate both the services model and the meth-

ods model of an artificial randomly generated software

system. Decomposing randomly generated systems has

generally different performance than decomposing real

systems, posing a threat to the possibility to gener-

alize those experimentation results. However, our ex-

perimentation shows that solving randomly generated

models takes more time than solving real-world case

studies of similar size. This can be seen by comparing

Table 4, which shows the number of training episodes

to reach 80% accuracy based on the number of MSs of

the system, and Table 3, which consists of the number

of training episodes for the five use cases. Therefore, we

expect that our approach will have better performance

for large real-world systems w.r.t. to the generated ones

we used here.

In this research, the authors have leveraged two

tools developed by other researchers. This fact natu-

rally causes dependency and also makes our framework

vulnerable to potential validity issues caused by these

tools, even before our approaches are used. It should be

noted that the authors of this paper, did not encounter

any specific validity issues when leveraging these two

preliminary tools when evaluating the five uses cases.

7 Related Work

Our work intersects the research areas of migration to

MSs, MDE, and AI. Hence, we divide the related work

into two groups. The first one includes works related

to the application of AI in MDE. The second one in-

cludes research that investigates migration to MSs by

leveraging MDE or AI techniques.

7.1 MDE and AI

The effectiveness of applying DL to solve and automate

various problems in the field of MDE is presented in

different researches. In [8] the ML-based framework is

developed to drive transformation automatically from

sets of input/output models. Therefore, by applying

this framework, there is no need for developers to write

transformation specifications. In this research, the mod-

els are pre-processed and represented as an independent

tree. These models are then fed to the Artificial Neural

Network (ANN) to provide an automatic representa-

tion of transformation. The evaluation presents a pos-

itive result by applying this framework to models of

different sizes. Nguyen et al. [23] presented a tool for

automatic supervised classification of metamodels by

applying ML techniques. In this research, the NN learns

labeled metamodels and then classifies unlabeled ones.

https://github.com/hadiDHD/MS-MDE-RL

Facilitating the Migration to Microservice Architecture... 17

The result of the evaluation of different metamodels

reflects the effectiveness of this tool in categorizing the

unlabeled data. For the purpose of repairing models, the

concepts of Reinforcement Learning (RL) are applied in

[5]. The learning process is performed through the inter-

action between the learning agent and its environment.

The EMF-based tool is presented in this research to

identify and repair the errors. This approach is tested

on the number of broken models and provided personal-

ized solutions for all of them. An automated process is

introduced in [2] to analyze and compare a large num-

ber of (meta)models by applying model clustering tech-

niques, as an unsupervised ML technique and consider-

ing the structural context in the form of n-grams. The

result of the evaluation in this research shows the high

accuracy of n-grams. In order to cluster software model-

ing artifacts, graph kernels are applied in [9]. Clustering

enables the user to handle a large collection of models

for different tasks such as validation, verification, and

testing. Additionally, it is possible to generate model

diversity in this research to enforce model collection

to include models with distinct sizes. In this research,

positive evaluation results are presented in terms of ef-

ficiency and usability after applying this approach.

7.2 Migration to Microservices

In [12], an approach is presented to modernize legacy

applications into MSs with the help of a model-centered

process that analyzes and visualizes the current struc-

ture and dependencies between the business layer and

the data layer of Java Enterprise applications. Differ-

ent diagrams are generated to help remodularize the

system to MSs. These diagrams are generated based

on the models extracted from the software system via

MoDisco. The main difference between their research

and ours is that they only facilitate the migration to MS

architecture by generating some visual artifacts from

Java annotations to help the developers understand the

structure of the monolithic system, whereas our ap-

proach produces actual source code decomposition. In

[7] the challenges of migration from monolithic appli-

cations to MS-based applications are tackled. In this

paper, a model-driven approach is implemented utiliz-

ing JetBrains MPS (a text-based meta-modeling frame-

work) for the automatic migration to MSs. The solution

is composed of two major components, an MS Miner

and an MS Generator, leveraging two Domain-Specific

Languages (DSLs), one for the MS specifications, and

another for their Deployment. The input monolithic ap-

plication is written in Java and the generated MS-based

application is represented with the ”Jolie” language (a

programming language for defining MSs). The respon-

sibility of MS Miner is to search in the abstract syn-

tax tree of the imported Java code for specific patterns

and suggests to the developer the set of MSs for the

migration. MS Generator uses model-to-text transfor-

mations to generate MS specification and deployment

files from the models extracted by MS Miner. Differ-

ently from them, we start from a conceptual decom-

position in a set of MSs manually derived with the

help of Service-Cutter, and then we look for a map-

ping of the code to those MSs. In [1] an automatic

decomposition method targeting application scalability

and performance is proposed. The presented decompo-

sition method leverages a black-box approach that uses

the application access logs and unsupervised machine-

learning to auto-decompose the application into MSs.

The application access logs are mined using a clustering

method to discover URL partitions having similar per-

formance and resource requirements. Such partitions

are mapped to MSs. The proposed method supports

auto decomposition to MSs, deploying the MSs using

appropriate resources, and auto-scaling the MSs. The

experimental evaluation shows improved performance

of the auto-created MSs compared with the monolithic

version of the application and the manually created

MSs. Differently from us, the authors aim at optimizing

the system performance, while we focus on the business

domain and bounded-context for each MS. In [30], a

model-driven tool for a specification of REST MS archi-

tectures is presented. This work aims to automate and

ease the process of MS software architecture specifica-

tion and configuration. A DSL for MS software archi-

tecture modeling named MicroDSL is developed for this

purpose. The abstract syntax of this language is repre-

sented by a meta-model specified in Ecore. The Mi-

croDSL concrete syntax specifies the MS architectures.

A set of code generators as part of the MicroBuilder tool

are developed to generate executable program code,

based on MicroDSL specification. The proposed tool

is evaluated by applying it to a case study and con-

sidering a comprehensive questionnaire. It should be

noted that this research facilitates developing MSs from

scratch while our research supports the migration from

monolithic architectures towards MSs. In [26], an ap-

proach is introduced for the identification of MSs from

Object-Oriented source code. They consider the rela-

tionships between the elements of the source code, the

data layer, and some help from the architect of the sys-

tem to identify MSs via a hierarchical clustering al-

gorithm. They evaluate their work by comparing the

(semi)automatically identified MSs with the manually

identified ones. While this work shares a similar objec-

tive to ours, our accuracy is higher: we automatically

18 MohammadHadi Dehghani et al.

find the optimal solution in all considered use cases,

while a perfect match is rare in their experimental eval-

uation.

8 Conclusion and Future Work

In this research, a framework is developed to find the

best possible mapping of methods to MSs, in order to

remodularize monolithic software systems. The purpose

is to facilitate the migration to an MS architecture.

The framework exploits existing tools and contains two

training approaches for the embedded NNET. The ap-

plicability, correctness, and scalability of the developed

approaches have been evaluated in this paper by apply-

ing them to well-known use-cases and running perfor-

mance benchmarks.

We plan the following future work:

Automatic annotation of methods with nanoentities. As

it was mentioned in Section 4, the user of the framework

annotates each extracted method with the read/written

nanoentities inside that method. However, this step can

be automatized, by static analysis of the source code.

The user would only need to define a relation between

the nanoentities and the data access layer of the source

code and all the methods that directly or indirectly

access these nanoentities would be annotated automat-

ically.

Automatic Refactoring. The final output of our frame-

work is a mapping of methods to MSs. The develop-

ers will have to refactor these methods manually to the

mapped MSs. Automating this step will provide the op-

portunity of building a fully automatic framework that

is able to migrate the source code of a monolithic soft-

ware system to the source code of a MS-based software

system.

Neural Networks. The NNET-based approach in deep

RL can be naturally extended with more complex NNET

topologies and sets of input features. In particular, we

are interested in integrating method and nanoentity

names in the NNET learning process, so that the agent

can make decisions based on name similarity.

Method Decomposition. In some cases, the developers

may want to decompose some methods so the parts of

the method that read/write a certain set of nanoenti-

ties, would be separated. We want to add these actions

to the RL agent and produce a new reward function ac-

cordingly. The reward function would assign a proper

negative reward based on the number of lines of code

inside that method.

Learning the Bounded Context. In the future, we would

like to extend the determination of microservices gran-

ularity by taking into account the notion of bounded

contexts advocated by Evans’ Domain-Driven Design

approach [13]. This notion of bounded context is fun-

damental to identifying the right granularity of a mi-

croservice. It represents a subsystem aligned with part

of the business domain. Thus, a bounded context spec-

ifies a coherent and unified business perimeter for each

service. Future work will focus on extending the semi-

automated approach to identify bounded contexts of a

software system that needs to migrate towards a mi-

croservice architecture. One of the main issues to ad-

dress is when central concepts of the domain are polyse-

mous, generally tied to the fact that there are different

stakeholders within the domain. For instance, the con-

cept of ”Customer” is present for the sales department

and also for the support department. The challenge will

be to identify, in our RL approach, the common con-

cepts, before working on defining the mapping between

these polysemous concepts for aims of integration.

References

1. Abdullah, M., Iqbal, W., Erradi, A.: Unsupervised learn-
ing approach for web application auto-decomposition into
microservices. Journal of Systems and Software 151, 243
– 257 (2019). DOI https://doi.org/10.1016/j.jss.2019.02.
031.

2. Babur, Ö., Cleophas, L.: Using n-grams for the auto-
mated clustering of structural models. In: International
Conference on Current Trends in Theory and Practice of
Informatics, pp. 510–524. Springer (2017)

3. Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri,
D.A., Lynn, T.: Microservices migration patterns. Soft-
ware: Practice and Experience 48(11), 2019–2042 (2018).
DOI 10.1002/spe.2608. URL https://onlinelibrary.

wiley.com/doi/abs/10.1002/spe.2608

4. Baresi, L., Garriga, M., De Renzis, A.: Microservices
identification through interface analysis. In: F. De Paoli,
S. Schulte, E. Broch Johnsen (eds.) Service-Oriented
and Cloud Computing, pp. 19–33. Springer International
Publishing, Cham (2017)

5. Barriga, A., Rutle, A., Heldal, R.: Personalized and au-
tomatic model repairing using reinforcement learning.
In: 2019 ACM/IEEE 22nd International Conference on
Model Driven Engineering Languages and Systems Com-
panion (MODELS-C), pp. 175–181. IEEE (2019)

6. Bruneliere, H., Cabot, J., Dupé, G., Madiot, F.: Modisco:
A model driven reverse engineering framework. Informa-
tion and Software Technology 56(8), 1012–1032 (2014)

7. Bucchiarone, A., Soysal, K., Guidi, C.: A model-driven
approach towards automatic migration to microservices.
In: J.M. Bruel, M. Mazzara, B. Meyer (eds.) Software En-
gineering Aspects of Continuous Development and New
Paradigms of Software Production and Deployment, pp.
15–36. Springer International Publishing, Cham (2020)

8. Burgueño, L., Cabot, J., Gérard, S.: An lstm-based
neural network architecture for model transformations.
In: 2019 ACM/IEEE 22nd International Conference

https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2608
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2608

Facilitating the Migration to Microservice Architecture... 19

on Model Driven Engineering Languages and Systems
(MODELS), pp. 294–299. IEEE (2019)

9. Clarisó, R., Cabot, J.: Applying graph kernels to model-
driven engineering problems. In: Proceedings of the 1st
International Workshop on Machine Learning and Soft-
ware Engineering in Symbiosis, pp. 1–5 (2018)

10. De Alwis, A.A.C., Barros, A., Fidge, C., Polyvyanyy, A.:
Remodularization analysis for microservice discovery us-
ing syntactic and semantic clustering. In: S. Dustdar,
E. Yu, C. Salinesi, D. Rieu, V. Pant (eds.) Advanced
Information Systems Engineering, pp. 3–19. Springer In-
ternational Publishing, Cham (2020)

11. Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara,
M., Montesi, F., Mustafin, R., Safina, L.: Microservices:
yesterday, today, and tomorrow. In: Present and ulterior
software engineering, pp. 195–216. Springer (2017)

12. Escobar, D., Cárdenas, D., Amarillo, R., Castro, E.,
Garcés, K., Parra, C., Casallas, R.: Towards the under-
standing and evolution of monolithic applications as mi-
croservices. In: 2016 XLII Latin American Computing
Conference (CLEI), pp. 1–11. IEEE (2016)

13. Evans, E.: Domain-Driven Design: Tackling Complexity
in the Heart of Software. Addison-Wesley (2003)

14. Fowler, S.J.: Production-ready microservices: Building
standardized systems across an engineering organization.
” O’Reilly Media, Inc.” (2016)

15. Gouigoux, J.P., Tamzalit, D.: From monolith to microser-
vices: Lessons learned on an industrial migration to a web
oriented architecture. In: 2017 IEEE International Con-
ference on Software Architecture Workshops (ICSAW),
pp. 62–65. IEEE (2017)

16. Gouigoux, J.P., Tamzalit, D.: “functional-first” recom-
mendations for beneficial microservices migration and
integration lessons learned from an industrial experi-
ence. In: 2019 IEEE International Conference on Soft-
ware Architecture Companion (ICSA-C), pp. 182–186.
IEEE (2019)

17. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.:
Service cutter: A systematic approach to service decom-
position. In: European Conference on Service-Oriented
and Cloud Computing, pp. 185–200. Springer (2016)

18. Gysel, M., Kölbener, L.: Service cutter - a structured way
to service decomposition. Bachelor’s thesis, Department
of Computer Science, University of Applied Sciences of
Eastern Switzerland (HSR FHO), Rapperswil (2015)

19. Kapferer, S.: A Modeling Framework for Strategic
Domain-driven Design and Service Decomposition. Mas-
ter’s thesis, Department of Computer Science, University
of Applied Sciences of Eastern Switzerland (HSR FHO),
Rapperswil (2020)

20. Lewis, J., Fowler, M.: Microservices - a definition of
this new architectural term. https://martinfowler.

com/articles/microservices.html (2014). [Online; ac-
cessed 24-October-2020]

21. Namiot, D., Sneps-Sneppe, M.: On micro-services archi-
tecture. International Journal of Open Information Tech-
nologies 2(9), 24–27 (2014)

22. Newman, S.: Building Microservices. O’Reilly Media Inc,
USA (2015)

23. Nguyen, P.T., Di Rocco, J., Di Ruscio, D., Pierantonio,
A., Iovino, L.: Automated classification of metamodel
repositories: A machine learning approach. In: 2019
ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems (MODELS),
pp. 272–282. IEEE (2019)

24. OMG: Knowledge discovery meta-model specification
version 1.3. (2011). URL http://www.omg.org/spec/

KDM/1.3/PDF

25. Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan,
K., Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Has-
sabis, D., Graepel, T., Lillicrap, T., Silver, D.: Master-
ing atari, go, chess and shogi by planning with a learned
model (2020)

26. Selmadji, A., Seriai, A.D., Bouziane, H.L., Oumarou Ma-
hamane, R., Zaragoza, P., Dony, C.: From monolithic
architecture style to microservice one based on a semi-
automatic approach. In: 2020 IEEE International Con-
ference on Software Architecture (ICSA), pp. 157–168
(2020). DOI 10.1109/ICSA47634.2020.00023

27. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I.,
Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran,
D., Graepel, T., Lillicrap, T., Simonyan, K., Hass-
abis, D.: A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play.
Science 362(6419), 1140–1144 (2018). DOI 10.1126/
science.aar6404. URL https://science.sciencemag.

org/content/362/6419/1140

28. Sutton, R.S., Barto, A.: Reinforcement learning: an in-
troduction. The MIT Press (2018)

29. Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motiva-
tions and issues for migrating to microservices architec-
tures: An empirical investigation. IEEE Cloud Comput-
ing 4 (2017). DOI 10.1109/MCC.2017.4250931

30. Terzić, B., Dimitrieski, V., Kordić, S., Milosavljević,
G., Luković, I.: Development and evaluation of mi-
crobuilder: a model-driven tool for the specification of
rest microservice software architectures. Enterprise In-
formation Systems 12(8-9), 1034–1057 (2018). DOI 10.
1080/17517575.2018.1460766. URL https://doi.org/

10.1080/17517575.2018.1460766

31. Thönes, J.: Microservices. IEEE software 32(1), 116–116
(2015)

32. Wolff, E.: Microservices: flexible software architecture.
Addison-Wesley Professional (2016)

33. Zhu, Z., Lin, K., Zhou, J.: Transfer learning in deep re-
inforcement learning: A survey (2020)

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
http://www.omg.org/spec/KDM/1.3/PDF
http://www.omg.org/spec/KDM/1.3/PDF
https://science.sciencemag.org/content/362/6419/1140
https://science.sciencemag.org/content/362/6419/1140
https://doi.org/10.1080/17517575.2018.1460766
https://doi.org/10.1080/17517575.2018.1460766

	Introduction
	Running Example
	Background
	Proposed Framework
	Application of Deep Q-Learning
	Evaluation
	Related Work
	Conclusion and Future Work

