
HAL Id: hal-03916536
https://hal.science/hal-03916536

Submitted on 30 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low-code development and model-driven engineering:
Two sides of the same coin?

Davide Di Ruscio, Dimitris Kolovos, Juan de Lara, Alfonso Pierantonio,
Massimo Tisi, Manuel Wimmer

To cite this version:
Davide Di Ruscio, Dimitris Kolovos, Juan de Lara, Alfonso Pierantonio, Massimo Tisi, et al.. Low-
code development and model-driven engineering: Two sides of the same coin?. Software and Systems
Modeling, 2022, 21 (2), pp.437-446. �10.1007/s10270-021-00970-2�. �hal-03916536�

https://hal.science/hal-03916536
https://hal.archives-ouvertes.fr

Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Low-code development and Model-driven engineering:
Two sides of the same coin?

Davide Di Ruscio · Dimitris Kolovos · Juan de Lara ·
Alfonso Pierantonio · Massimo Tisi · Manuel Wimmer

Received: date / Accepted: date

Abstract The last few years have witnessed a signifi-

cant growth of so-called low-code development platforms

(LCDPs) both in gaining traction on the market and

attracting interest from academia. LCDPs are adver-

tised as visual development platforms, typically run-

ning on the cloud, reducing the need for manual cod-

ing and targeting also non-professional programmers.

Since LCDPs share many of the goals and features of

model-driven engineering approaches, it is a common

point of debate whether low-code is just a new buz-

zword for model-driven technologies, or whether the

two terms refer to genuinely distinct approaches. To

contribute to this discussion, in this expert-voice paper,

we compare and contrast low-code and model-driven

approaches, identifying their differences and common-

alities, analysing their strong and weak points, and
proposing directions for cross-pollination.

Keywords Low-code development · No-code develop-

ment · Model-driven engineering

Davide Di Ruscio, Alfonso Pierantonio
University of L’Aquila
E-mail: firstname.lastname@univaq.it

Dimitris Kolovos
University of York
E-mail: dimitris.kolovos@york.ac.uk

Juan de Lara
Universidad Autónoma de Madrid
E-mail: juan.delara@uam.es

Massimo Tisi
IMT Atlantique, LS2N (UMR CNRS 6004)
E-mail: massimo.tisi@imt-atlantique.fr

Manuel Wimmer
Johannes Kepler University Linz
E-mail: manuel.wimmer@jku.at

1 Introduction

Low-code development platforms (LCDPs) are on the

rise, with an increasing number of cloud vendors, such

as Google, Microsoft, and Amazon, offering solutions

for developing and operating complex software applica-

tions with little or no code. The main aims of LCDPs

are to reduce the development and maintenance effort

required to deliver and operate certain types of appli-

cations and to enable digital-savvy citizen developers

who lack or have limited programming experience to

contribute to the software development process directly.

As model-driven engineering (MDE) [3] has similar

aims, there is an ongoing debate on how low-code soft-

ware development is different from model-driven engi-

neering and to what extent work carried out in the field
of MDE is directly transferable to LCDPs [6]. In this

paper, we aim at clarifying the commonalities and dif-

ferences between both approaches. We argue that while

the two approaches share similar high-level aspirations,

for instance, not all model-driven techniques aim at re-

ducing the amount of code needed to implement soft-

ware solutions, and not all low-code approaches are

model-driven.

The rest of the paper is organised as follows. In Sec-

tion 2, we summarise the history of the low-code move-

ment we have seen so far. In Section 3, we provide an

overview of typical low-code development processes and

tools that LCDPs offer. In Section 4, we contrast and

compare the principles and practices of low-code de-

velopment and MDE. In Section 5, we discuss possible

reasons behind the increasing adoption of LCDPs. In

Section 6, we identify lessons that the two communi-

ties can learn from each other. Finally, Section 7 sum-

marises and concludes the paper.

2 Davide Di Ruscio et al.

2 The history of low-code development

The past decades have been marked by several indus-

try trends aiming at reducing the amount of hand-

crafted code required to produce software such as 4GLs

in the 80’s [28], Rapid Application Development in the

90’s [29], End-User Development in the 00’s [26], and

MDE in the last two decades [54].

The first use of the term low-code can be traced

back to the market analysis firm Forrester in 2014 [43]

(cf. Fig. 1), where low-code development platforms

(LCDPs) were defined as “platforms that enable rapid

delivery of business applications with a minimum of

hand-coding and minimal upfront investment in setup,

training, and deployment.” It is interesting to note

that this report identified the LCDP segment as spe-

cific to the production of business applications, such

as software for accounting, customer relationship man-

agement, human resource management, outsourcing

relationship management, field service, enterprise re-

source planning, enterprise content management, busi-

ness process management, product lifecycle manage-

ment, and other productivity-enhancing applications.

In 2016, Forrester detailed the successful application

domains for LCDPs in four specific application sce-

narios, i.e., database, request-handling, process, and

mobile-first [49].

The definition has evolved, and in 2017, Forrester

provided a more detailed version, characterizing LCDPs

as “products and/or cloud services for application de-

velopment that employ visual, declarative techniques

instead of programming and are available to customers

at low- or no-cost in money and training time to begin,

with costs rising in proportion of the business value

of the platforms” [45]. The focus here is on visual in-

terfaces and declarative techniques, with Forrester es-

pecially emphasizing visual WYSIWYG development

and model-driven development [17]. The focus on the

platform is highlighted as a key differentiating aspect

of these solutions with respect to the previous gener-

ation of declarative tools: LCDPs are platforms first,

with features for application deployment and life-cycle

management, as well as platform management [50].

Gartner identified a similar segment from 2016,

called low-code application platform (LCAP) [58]. In

particular, it introduced enterprise LCAPs, which aim

at producing enterprise-class applications requiring

high performance, scalability, high availability, disaster

recovery, security, SLAs, resource use tracking, techni-

cal support from the provider, and API access to and

from local and cloud services.

The year 2017 noted the start of a series of acqui-

sitions for LCDP vendors as reported in [46]. Appian

Fig. 1 Major events in low-code history

started an initial public offering (IPO) in May 2017

with a revenue of $150 million, and on August 1, 2018,

Appian’s market valuation nearly reached $2 billion.

In July 2018, OutSystems received investments of $360

million and was rated with $100 million in annual rev-

enue. In August 2018, Siemens announced the acquisi-

tion of Mendix for $730 million in cash or at least 7–8

times its annual revenue [46].

In 2017, Forrester estimated a market size for

LCDPs of $3.8 billion2. Forrester also periodically sur-

veys developers about LCDP usage1: In 2018, 23% of

developers reported using low-code platforms, and an-

other 22% planned to do so within a year [48]. In 2019,

37% of developers were using or planning to use low-

code products [32].

In 2021, most large cloud providers offer LCDPs

within their cloud-based solutions. Microsoft was

among the first to embrace the trend by releasing its

Power Apps LCDP in November 2016. In January 2020

Google acquired the LCDP provider AppSheet, and

made it its flagship low-code solution. In June 2020

Amazon released Honeycode, an LCDP for web and

mobile application development.

No-Code Development Platform (NCDP) is a re-

lated term used for platforms that eliminate the need

for programming using visual languages, graphical user

interfaces, and configuration. While the term is widely

used in marketing, market analysis firms currently op-

pose using it to identify a clear market segment [47].

For the context of this paper, we consider NCDP and

LCDP interchangeably, and consequently, hereafter, we

use the term LCDP only.

3 Overview of low-code development platforms

In this section, we present an overview of the most sig-

nificant LCDPs by considering the typical steps that

1 The survey included more than 3 thousand developers in
Australia, Canada, China, France, Germany, India, the UK,
and the US. Developers participated with small material in-
centives.

Low-code development and Model-driven engineering: 3

Fig. 2 Top-level features of LCDPs (refinement of [51])

are performed when using them and by relying on a

refined taxonomy originally presented in [51].

LCDPs support the development of applications

that can be web-only or also native for the target

deployment environments. Thus, they can natively

support both desktop and mobile devices, and inte-

grate with existing workflows developed with popu-

lar Software-as-a-Service (SaaS) applications, including

Zapier, Amazon AppFlow, and Trello to mention just

a few. Appian [2] is among the most long-lived LCDP,

whereas Amazon Honeycode [1] and Google AppSheet

[15] are among the most recent approaches.

Particular characteristics that distinguish existing

LCDPs pertain to the user experience of advanced

Graphical user interfaces (see Fig. 2) providing

tools and widgets to enable citizen developers to con-

ceive the desired applications. Drag-and-drop facilities,

advanced reporting features, decision engines for mod-

elling complex logic, and form builders are just ex-

amples of functionalities provided in the front-end of

LCDPs. Moreover, LCDPs can give the users some Live

collaborative development support to help devel-

opers that are geographically distributed and that want

to work on the same applications collaboratively. An-

other distinguishing aspect of existing LCDPs is related

to the Supported application domain intended to be

the primary focus of interest. For instance, the main fo-

cus of Node-RED [34] is supporting the development of

IoT applications. Other platforms support the develop-

ment of chatbots [40], whereas the majority of existing

LCDPs aim at being general-purpose supporting the

development of any data-intensive application.

LCDPs can provide users with pre-defined artifacts,

which can be used as starting points. This is reflected

by the Reusability support feature shown in Fig. 2.

For instance, Salesforce App Cloud [52] includes the

extensive AppExchange marketplace [53] consisting of

pre-built applications and components, reusable objects

Fig. 3 A simple domain model specified in Mendix [51]

and elements, drag-and-drop process builder, and in-

built Kanban boards.

As discussed in [51], realizing software systems

with LCDPs encompasses several tool-supported steps,

which are summarised below.

Domain modeling. In this phase, users are provided

with modeling constructs to represent concepts and

relationships underpinning the application being de-

veloped. Fig. 3 shows a simple domain model specified

with the Mendix platform to describe training courses.

Pre-built templates can be exploited as starting point,

and interactive application analytics are provided out

of the box. Other tools follow a similar approach. For

example, Codebots [7] uses UML to specify domain

models that are consumed to automatically generate

target artifacts, including complete REST APIs, client

libraries, Swagger API documentation, and a JSON

Schema definition for each domain object.

User interface definition. Users define data forms
and pages to create, edit, and visualize data that the

application under development will manage. Fig. 4

shows a form-based screen in Microsoft Power Apps.

Business logic specification. Users define the con-

trol and data flows of the system under development

through intuitive Business logic specification

mechanisms. Graphical workflows and textual busi-

ness rules are examples of business logic specifications

that typically make use of one or more API call(s).

Fig. 5 shows a simple Node-RED workflow. Node-RED

implements a programming model that permits devel-

oping event-based applications, which can be specified

by a wide range of node types available in an exten-

sible palette. Workflow specification is also prominent

in Kissflow [24], which mainly focuses on workflow

automation for small businesses.

Integration with external services. LCDPs typ-

ically provide Interoperability support with

external services and data sources to use

4 Davide Di Ruscio et al.

Fig. 4 User interface definition with Microsoft Power-
Apps [31]

Fig. 5 Business logic specification with Node-RED [35]

services or consume data provided by third-party

systems, e.g., using dedicated APIs. LCDPs can

consume services provided by external providers

such as Dropbox, Zapier, Office 365, and Google

Drive. Thus, users might connect or integrate such

services to build forms or to compile data reports.

For instance, Fig. 6 shows the page in Zoho Creator

[62] to configure the connection with Google Drive.

Fig. 6 Configuring the Google Drive connector in Zoho Cre-
ator [63]

Application generation and deployment. The

next step of the process consists of generating and

Fig. 7 Application deployment with OutSystem [38]

deploying the modeled application by means of

provided Application build mechanisms. Several

execution environments can be supported, as for

instance, in the case of zAppDev [61], which provides

users with different code generation facilities. Once

the desired system has been specified and built, a

dedicated Deployment support is available to deploy

the system in private or public environments. De-

ployments are typically done on cloud infrastructures

with a few clicks, as shown in Fig. 7. In particular,

OutSystem [37] provides developers with quick mech-

anisms to publish developed applications, connect

different services, and create real-time dashboards.

Application maintenance. The last step of the pro-

cess is monitoring and maintaining the developed sys-

tem by means of dedicated features, e.g., to react in

case of unforeseen requirements that need to be ad-

dressed or fix issues that might occur during the op-

eration of the system.

4 Low-code vs. Model-driven Engineering

Having discussed the main features of LCDPs, we com-

pare them with MDE processes and technologies in this

section.

MDE [3] encompasses software paradigms empha-

sizing the use of models as first-class artefacts dur-

ing the development lifecycle. Hence, in MDE, mod-

els are used to specify, test, simulate, verify, modern-

ize, maintain, understand, and generate code for the

system, among many other activities. Still, not every

MDE process ends with code generation but actively

uses models. The goal of MDE is to increase productiv-

ity by automating different steps in software develop-

ment employing models while augmenting the overall

quality [19,23]. For this purpose, MDE processes often

rely on Domain-Specific Languages (DSLs), specially

tailored for the domain at hand. Using domain-specific

models makes descriptions more intentional and include

less accidental detail than code written using general-

purpose programming languages. Hence, those models

Low-code development and Model-driven engineering: 5

become easier to create, verify, and maintain than the

corresponding low-level code.

In their turn, LCDPs promote the construction of

applications using forms and graphical editors with lit-

tle or no hand-crafted code. Since some of their target

users are citizen developers, one of their key points is to

reduce accidental complexity regarding the installation

and operation of both the development environments

and the developed applications. This way, they typ-

ically provide cloud-based development environments

and manage the lifecycle of the designed applications

(e.g., hosting, resource allocation and provisioning, us-

age analytics, etc.) Therefore, low-code development

shares some of the goals of MDE, but there are some

differences, too.

model-driven
engineering

low-code
software development

low-code
application platforms

1 4 5 2 3

Fig. 8 Venn diagram showing commonalities and differences
between model-driven approaches, low-code application plat-
forms and low-code software development

Fig. 8 schematically illustrates the commonalities

and differences between low-code and MDE approaches

using a Venn diagram. The diagram represents the ap-
proaches following MDE, low-code development, and

development based on low-code platforms in terms of

sets. This leads to 5 regions of interest (marked as 1–

5 in the figure). This way approaches termed “model-

driven” by our community fall under regions 1, 2, and 3;

with an overlap under 2 and 3 with low-code platforms

and low-code development approaches. Instead, regions

4 and 5 are exclusively low-code, while region 1 is ex-

clusively model-driven. The regions can be described as

follows:

1. This region contains the model-driven approaches

that use models as machine-processable artefacts

but do not aim at reducing the amount of code re-

quired to implement the system. Instead, they focus

on automating tasks like simulation, formal verifica-

tion, software optimization, or reverse engineering.

Examples of works in this category include the work

of Cortellessa et al. [9] on analysing and refactor-

ing UML design models for optimizing their perfor-

mance; or reverse engineering tools like Modisco [5],

which extracts models from code.

2. These are the approaches that use models as

machine-processable artefacts and aim to reduce

the amount of code required to implement a sys-

tem (e.g., via code generation or interpretation) but

without offering deployment or lifecycle manage-

ment capabilities for the produced system. Exam-

ples of this class of approaches are JHipster [20] and

its JDL [21] domain-specific language, Google Pro-

tocol Buffers [16], or the OlivaNova model execution

system [39].

3. This region contains the platforms that use mod-

els to facilitate the development of software ap-

plications with reduced code and offer built-in de-

ployment and lifecycle management facilities for the

produced application. Examples include the Code-

bots [7] and Judo [22] low-code platforms, both of

which are based on technologies of the Eclipse Mod-

elling ecosystem [56].

4. This region, and the next one, contain approaches

that cannot be considered model-driven. In par-

ticular, region 4 contains the platforms that fa-

cilitate the development of software applications

with reduced code. Such approaches offer built-in

deployment and lifecycle management facilities for

the produced application. However, they do not

use models that conform to explicitly defined lan-

guages/metamodels (e.g., they use data stored in a

relational database or schema-less XML/JSON doc-

uments).

5. These approaches aim to reduce the amount of code

required to implement a system without offering de-

ployment or lifecycle management capabilities for

the produced system, and – like region 4 – without

using models that conform to explicitly defined lan-

guages/metamodels. Examples of this type of ap-

proach include database-schema-driven generators

like Phreeze [41] and one-off generators such as those

provided by Ruby on Rails [44].

Next, we elaborate on other aspects that differen-

tiate model-based and low-code approaches, based on

Fig. 8:

Platform. Low-code application platforms (regions 3

and 4 in the figure) are cloud-based: they can be used

from the web browser and host the defined applica-

tions. This frees the user from both installing the de-

velopment platform itself and from deploying the de-

fined applications. This approach simplifies the adop-

tion of low-code by newcomers. While MDE solutions

can be cloud-based (falling in region 3) [8], this is not

the norm today. Instead, many solutions are based on

6 Davide Di Ruscio et al.

the desktop, for example, those using the Eclipse Mod-

elling Framework (EMF) [56], or meta-modelling tools

like MetaEdit+ [30]. These approaches would fall un-

der region 2 – and be considered low-code development

approaches – if their aim is automating application de-

velopment, otherwise they would fall in region 1.

Users. Low-code development platforms mainly tar-

get end-users, so-called citizen developers. Therefore

low-code platforms tend to be easy to use for people

with a non-technical background. This means that fre-

quently (but not always), users of tools in regions 3

– 4 are citizen developers and non-professional pro-

grammers. For example, while low-code platforms like

OutSystems target citizen developers, others like Judo

target teams of business analysts, software architects,

and programmers.

In their turn, MDE solutions can target end-users, but

many of them are directed to professional software

developers since they are expected to be used within

development processes. Therefore, typically, users of

approaches in regions 1 and 2 have a more technical

background.

Domains. As mentioned in Section 2, the first wave of

low-code targeted business applications. Recently, we

are witnessing proposals for low-code tools in other do-

mains, like IoT/event-driven applications (e.g., Node-

RED [34]), chatbots (e.g., Google’s Dialogflow [10],

Amazon’s Lex [25], IBM’s Watson Assistant [59])

or Machine Learning (e.g., Google’s AutoML [14] or

RapidMiner [42]). MDE solutions (in regions 1–3 of

the figure) can target those domains but frequently

also target more technical areas, which require spe-

cialized engineers. These include domains like auto-

motive [11], power engineering [13], or cyber-physical

systems [33] in general, among many others.

5 Low-code development: why now?

In terms of their core ambition to expedite the delivery

of software systems, low-code development platforms

are not very dissimilar to previously tried approaches

like 4GLs, case tools, etc., as already mentioned in Sec-

tion 2. Essentially, they provide an environment for

specifying the structure and behavior of a software sys-

tem at a high level of abstraction. Such an environment

shields developers from low-level concerns (e.g., specific

databases, object-relational mappers, service, messag-

ing, and security middleware). They then generate exe-

cutable code that realizes the specified software system.

Given the broad consensus that previous approaches

were not wildly successful, why should low-code envi-

ronments fare any better? There are multiple reasons

why this may be the case, which we analyse next.

Cloud-Based Deployment. Beyond generating

code, modern low-code platforms can also deploy the

produced software systems on scalable cloud-based

infrastructures and make them instantly available to

users globally through web-based interfaces. This can

dramatically shorten the time and effort required to

release applications (and updates) to users and in-

crease the appeal for low-code platforms as a medium

for rapid application development and delivery.

Digital Native Workforce. Computer literacy has

improved dramatically over the last 40 years. The ba-

sics of computer programming are taught in many

countries as part of compulsory education, and the

new generations of domain experts (e.g., accountants,

medicinal practitioners, construction engineers) are

digital natives. As a consequence, while most domain

experts would require substantial training to master

some part of the complexity of a CASE tool released

40 years ago, a growing number of contemporary do-

main experts have substantial experience with work-

ing with computers and non-trivial software, and ar-

guably require a lot less training to use a low-code

platform to implement bespoke applications.

Zero Setup. The fact that many low-code platforms

are cloud-based and do not require installation of be-

spoke software significantly lowers the entry barrier for

new users, who can evaluate such platforms and even

develop and deliver small-scale applications at no cost

from the familiar environment of their web browser.

Developer Shortfall. As software is becoming perva-
sive in all aspects of human activity, the demand for

software developers has outgrown the supply of suit-

ably skilled professionals, and the gap is constantly

widening [4]. Moreover, highly skilled software devel-

opers are attracted to intellectually demanding (and

financially rewarding) software systems instead of run-

of-the-mill applications. This creates a growing gap

for business applications that would be more effective

than shared spreadsheets but are too expensive to im-

plement and maintain manually.

Training Facilities. The media through which users

learn have also changed considerably recently. A cou-

ple of decades ago, the primary learning media for ap-

plication development environments were books writ-

ten by technology experts. This landscape has changed

dramatically with the growth of the web and, particu-

larly, video sharing services such as YouTube, making

it easier to deliver up-to-date training material aimed

at different audiences. This enables citizen develop-

Low-code development and Model-driven engineering: 7

ers to develop and share their own training material

(e.g., walk-throughs, screencasts) rather than acting

as passive consumers.

6 What MDE can learn from low-code and vice

versa

Based on the previously presented insights in low-code

development and MDE, we will now discuss what the

two approaches can learn from each other to tackle

critical challenges for their future developments.

Generic vs. specific platforms. Many LCDPs at-

tempt to cover a wide range of applications through

an ever-growing library of highly configurable compo-

nents. In the MDE community, it is widely accepted

that in many cases, smaller domain-specific languages

can be more beneficial for engagement with domain

experts and automated reasoning and processing than

large and complex all-encompassing languages such as

UML. An open question is if the current generation of

domain-agnostic LCDPs will increasingly struggle as

they keep growing in complexity. This can give rise to

domain-specific LCDPs in the future, which will tar-

get specific classes of systems and citizen developers.

Here an opportunity is about reusing the rich tech-

nological infrastructure offered by MDE for building

domain-specific platforms. Interestingly, while MDE

is often referred to as an essential building block of

low-code in the Forrester and Gartner reports, there

is little evidence that existing LCDPs use technolo-

gies (predominately Eclipse-based) commonly used in

the MDE community. Thus, it seems to be an oppor-

tunity to speed up the development of LCDPs with

MDE technologies if the latter are ready to run on

the web/cloud and can deal with the requirements of

typical LCDP users.

Opening up Web/Cloud-based Platforms. A les-

son that the MDE community can learn from the suc-

cess of LCDPs is that web-based interfaces can sig-

nificantly improve uptake and engagement with do-

main experts. A transition of core MDE technologies

is underway with frameworks such as Xtext [60] and

Sirius [55] providing web-based counterparts. How-

ever, significant effort is still required to realise the vi-

sion of zero-installation web-based MDE workbenches.

Some efforts already started to reuse open source tech-

nologies for building up LCDPs [36]. As there is cur-

rently already a trend to migrate MDE technologies

to the web/cloud, there may be an opportunity to

develop the next generation of LCDPs with existing

MDE technologies such as metamodeling frameworks

for language engineering, code generators for produc-

ing the final applications, etc. [57]. This may be fur-

ther supported by current initiatives for building open

source cloud platforms such as GAIAX [12], which is

especially important for long-living software systems.

Counteracting vendor lock-in. Since the introduc-

tion of CASE tools, one of the major concerns is the

potential for vendor lock-in, i.e., application devel-

opment and deployment are bound to a particular

technology. While this may not be considered as a

potential problem in the short term, it can become

critical in the long term. For instance, consider mi-

grating projects from CASE tools to MDE tools or

projects developed with Rapid Application Develop-

ment (RAD) approaches to modern cloud platforms.

In the context of low-code such issues may also occur,

e.g., imagine a LCDP produces applications that only

work with a specific cloud provider’s technology stack

(cf. cloud vendor lock-in). Nevertheless, there are even

more important aspects related to the development

artefacts. First of all, is export of the development

artefacts possible, and if it is, how can these artefacts

be reused, imported, and interpreted in other plat-

forms? The MDE community has invested substantial

effort in this respect by providing dedicated standards

for modeling languages (e.g., UML, BPMN), and even

meta-modeling languages (e.g., MOF, Ecore), model

exchange standards (e.g., XMI and HUTN), etc. It has

to be explored if these approaches may also be reused

for LCDPs or if other means are needed to prevent

vendor lock-in.

Fostering ecosystems. Providing a LCDP is the first

step, but then an ecosystem for this platform is re-

quired to ensure the continuous growth of a healthy

user base. This may be even more important for

LCDPs as professional developers as well as citizen

developers may be targeted. Thus, the availability of

documentation, support, consultancy, reusable com-

ponents, etc., is of major importance. In MDE, such

an ecosystem was triggered by Eclipse, i.e., a large and

active ecosystem around the Eclipse Modeling Frame-

work was established from the industrial and academic

sides. It has to be further explored how such ecosys-

tems will develop for LCDPs, as most current plat-

forms are single vendor efforts. This issue also con-

cerns the academic area, where scientific community

efforts are required to stimulate research on topics re-

lated to low-code [57]. For instance, a current example

is the low-code workshop [27] hosted with the MOD-

ELS conference since 2020, which provides a forum to

discuss low-code development and MDE.

8 Davide Di Ruscio et al.

Managing software evolution. Notably, one of the

most crucial stages of the software lifecycle is the

maintenance of a software product after its release.

Providing support to such activities requires the abil-

ity to grow in functionality and size without unwanted

side effects satisfying new requirements emerging from

the routine usage of the product. Managing software

evolution processes in LCDPs is an interesting line of

research since these platforms are managed and al-

low cloud-based monitoring of the developed appli-

cations. Consequently, the platform provider should

offer as much support for evolution as possible. How-

ever, this may involve many different aspects. Con-

sidering the application level, we may need support

for model/data co-evolution, e.g., the data model is

changing and there are already running instances of

the application in usage. Evolution also applies on the

language level, which has been extensively researched

in MDE, and is often referred to metamodel/model

co-evolution [18]. Here, the problem applies both to

low-code and MDE approaches. Low-code will only be

successful if applications developed with low-code ap-

proaches can evolve for a longer time in combination

with the LCDPs themselves.

7 Summary

This paper compared and positioned the relatively

new low-code movement against the established model-

driven engineering discipline. We summarised the his-

tory of low-code so far, provided an overview of typi-

cal low-code development processes and the tools that

LCDPs offer to support them, and contrasted and com-

pared the principles and practices of low-code and

model-driven engineering.

While low-code and model-driven engineering both

aspire to improve software development by raising ab-

straction and hiding implementation-level details, we

argue that the two practices are not identical. In-

deed, not all model-driven approaches aim at reduc-

ing the amount of code needed to implement software

solutions, and not all low-code approaches are model-

driven. However, being close conceptually creates sub-

stantial potential for applying existing knowledge and

cross-pollination between the two disciplines.

Acknowledgements

This work has received funding from the Lowcomote

project under European Union’s Horizon 2020 research

and innovation program under the Marie Sk lodowska-

Curie grant agreement n. 813884.

References

1. Amazon Honeycode. https://www.honeycode.aws/. Last
access in Sept. 2021.

2. Appian. https://appian.com/. Last access in Sept. 2021.
3. M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven

Software Engineering in Practice, Second Edition. Syn-
thesis Lectures on Software Engineering. Morgan & Clay-
pool Publishers, 2017.

4. T. Breaux and J. Moritz. The 2021 software developer
shortage is coming. Commun. ACM, 64(7):39–41, June
2021.

5. H. Brunelière, J. Cabot, G. Dupé, and F. Madiot.
Modisco: A model driven reverse engineering framework.
Inf. Softw. Technol., 56(8):1012–1032, 2014.

6. J. Cabot. Positioning of the low-code movement within
the field of model-driven engineering. In E. Guerra and
L. Iovino, editors, MODELS ’20: ACM/IEEE 23rd Inter-
national Conference on Model Driven Engineering Lan-
guages and Systems, Virtual Event, Canada, 18-23 Oc-
tober, 2020, Companion Proceedings, pages 76:1–76:3.
ACM, 2020.

7. Codebots. https://codebots.com/. Last access in Sept.
2021.

8. J. Corley, E. Syriani, and H. Ergin. Evaluating the Cloud
Architecture of AToMPM. In Proc. MODELSWARD,
pages 339–346. SciTePress, 2016.

9. V. Cortellessa, R. Eramo, and M. Tucci. From software
architecture to analysis models and back: Model-driven
refactoring aimed at availability improvement. Informa-
tion and Software Technology, 127:106362, 2020.

10. Dialogflow. https://dialogflow.com/. Last access in
Sept. 2021.

11. I. Drave, S. Hillemacher, T. Greifenberg, S. Kriebel,
E. Kusmenko, M. Markthaler, P. Orth, K. S. Salman,
J. Richenhagen, B. Rumpe, C. Schulze, M. von Wenck-
stern, and A. Wortmann. SMArDT modeling for automo-
tive software testing. Softw. Pract. Exp., 49(2):301–328,
2019.

12. GAIAX. https://www.data-infrastructure.eu/GAIAX/
Navigation/EN/Home/home.html. Last access in Sept.
2021.

13. A. Gómez, X. Mendialdua, K. Barmpis, G. Bergmann,
J. Cabot, X. D. Carlos, C. Debreceni, A. Garmendia,
D. S. Kolovos, and J. de Lara. Scalable modeling tech-
nologies in the wild: an experience report on wind tur-
bines control applications development. Softw. Syst.
Model., 19(5):1229–1261, 2020.

14. Google. AutoML. https://cloud.google.com/automl/.
Last access in Sept. 2021.

15. Google AppSheet. https://www.appsheet.com/. Last
access in Sept. 2021.

16. Google’s protocol buffers. https://developers.google.

com/protocol-buffers. Last access in Sept. 2021.
17. J. Hammond. The Forrester Wave: Mobile Low-Code

Development Platforms, Q1 2017. Forrester Research,
2016.

18. R. Hebig, D. E. Khelladi, and R. Bendraou. Approaches
to co-evolution of metamodels and models: A survey.
IEEE Trans. Software Eng., 43(5):396–414, 2017.

19. J. E. Hutchinson, J. Whittle, and M. Rouncefield. Model-
driven engineering practices in industry: Social, organi-
zational and managerial factors that lead to success or
failure. Sci. Comput. Program., 89:144–161, 2014.

20. JHipster. https://www.jhipster.tech. Last access in
Sept. 2021.

https://www.honeycode.aws/
https://appian.com/
https://codebots.com/
https://dialogflow.com/
https://www.data-infrastructure.eu/GAIAX/Navigation/EN/Home/home.html
https://www.data-infrastructure.eu/GAIAX/Navigation/EN/Home/home.html
https://cloud.google.com/automl/
https://www.appsheet.com/
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://www.jhipster.tech

Low-code development and Model-driven engineering: 9

21. JHipster’s JDL DSL. https://www.jhipster.tech/jdl.
Last access in Sept. 2021.

22. Judo. https://judo.codes. Last access in Sept. 2021.
23. S. Kelly and J. Tolvanen. Domain-Specific Modeling -

Enabling Full Code Generation. Wiley, 2008.
24. Kissflow. https://kissflow.com/workflow/process/.

Last access in Sept. 2021.
25. Lex. https://aws.amazon.com/en/lex/. Last access in

Sept. 2021.
26. H. Lieberman, F. Paternò, M. Klann, and V. Wulf. End-

User Development: An Emerging Paradigm, pages 1–8.
Springer Netherlands, Dordrecht, 2006.

27. LowCode Workshop at MODELS. https:

//lowcode-workshop.github.io/. Last access in
Sept. 2021.

28. J. Martin. Application Development without Program-
mers. Prentice Hall PTR, USA, 1982.

29. J. Martin. Rapid Application Development. Macmillan
Publishing Co., Inc., USA, 1991.

30. MetaEdit+ by Metacase. https://www.metacase.com/

products.html. Last access in Sept. 2021.
31. Microsoft Power Apps. https://docs.microsoft.

com/en-us/powerapps/maker/canvas-apps/

working-with-forms. Last access in Sept. 2021.
32. C. Mines. Predictions 2020: More Changes For Software

Development. Forrester Research, 2020.
33. M. A. Mohamed, G. Kardas, and M. Challenger. Model-

driven engineering tools and languages for cyber-physical
systems. a systematic literature review. IEEE Access,
9:48605–48630, 2021.

34. Node-RED. https://nodered.org/. Last access in 2021.
35. Node-RED (workflows). https://nodered.org/docs/

tutorials/second-flow. Last access in Sept. 2021.
36. OSBP. https://www.eclipse.org/osbp/. Last access in

Sept. 2021.
37. Outsystems. https://www.outsystems.com/. Last access

in Sept. 2021.
38. Outsystems (deploying an application). https:

//success.outsystems.com/Documentation/11/

Managing_the_Applications_Lifecycle/Deploy_

Applications/Deploy_an_Application. Last access
in Sept. 2021.

39. O. Pastor, J. Gómez, E. Insfrán, and V. Pelechano. The
OO-method approach for information systems modeling:
from object-oriented conceptual modeling to automated
programming. Inf. Syst., 26(7):507–534, 2001.

40. S. Pérez-Soler, S. Juarez-Puerta, E. Guerra, and
J. de Lara. Choosing a chatbot development tool. IEEE
Softw., 38(4):94–103, 2021.

41. Phreeze. http://www.phreeze.com. Last access in Sept.
2021.

42. RapidMiner. https://rapidminer.com/. Last access in
Sept. 2021.

43. C. Richardson and J. Rymer. New development plat-
forms emerge for customer-facing applications. Forrester
Research, 2014.

44. S. Ruby, D. Copeland, and D. Thomas. Agile Web
Development with Rails 6. The Pragmatic Program-
mers, 2019. See also https://guides.rubyonrails.

org/command_line.html#bin-rails-generate. Last ac-
cess Sept. 2021.

45. J. Rymer. The Forrester Wave: Low-Code Development
Platforms For AD&D Pros, Q4 2017. Forrester Research,
2016.

46. J. Rymer. Siemens Snaps Up Mendix; Low-Code Plat-
forms Enter New Phase. Forrester Research, 2018.

47. J. Rymer and R. Koplowitz. Now Tech: Rapid App De-
livery, Q1 2019. Forrester Research, 2019.

48. J. Rymer and R. Koplowitz. The Forrester Wave: Low-
Code Development Platforms For AD&D Professionals,
Q1 2019. Forrester Research, 2019.

49. J. Rymer and C. Richardson. The Forrester Wave: Low-
Code Development Platforms, Q2 2016. Forrester Re-
search, 2016.

50. J. Rymer and C. Richardson. Vendor Landscape: The
Fractured, Fertile Terrain Of Low-Code Application Plat-
forms. Forrester Research, 2016.

51. A. Sahay, A. Indamutsa, D. D. Ruscio, and A. Pieran-
tonio. Supporting the understanding and comparison of
low-code development platforms. In Proc. 46th Euromi-
cro Conference on Software Engineering and Advanced
Applications SEAA, pages 171–178. IEEE, 2020.

52. Salesforce. https://developer.salesforce.com/. Last
access in Sept. 2021.

53. Salesforce (AppExchange marketplace). https://

appexchange.salesforce.com/. Last access in Sept.
2021.

54. D. Schmidt. Guest editor’s introduction: Model-driven
engineering. Computer, 39:25–31, 2006.

55. Sirius. https://www.eclipse.org/sirius/. Last access
in Sept. 2021.

56. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks.
EMF: Eclipse Modeling Framework, 2nd Edition.
Addison-Wesley Professional, 2008. see also https://

www.eclipse.org/modeling/.

57. M. Tisi, J. Mottu, D. S. Kolovos, J. de Lara, E. Guerra,
D. D. Ruscio, A. Pierantonio, and M. Wimmer. Lowco-
mote: Training the next generation of experts in scal-
able low-code engineering platforms. In STAF 2019
Co-Located Events Joint Proceedings, volume 2405 of
CEUR Workshop Proceedings, pages 73–78. CEUR-
WS.org, 2019.

58. P. Vincent, K. Iijima, M. Driver, W. Jason, and Y. Natis.
Magic Quadrant for Enterprise Low-Code Application
Platforms. Gartner, 2016.

59. Watson. https://www.ibm.com/cloud/

watson-assistant/. Last access in Sept. 2021.

60. Xtext. https://www.eclipse.org/Xtext/. Last access in
Sept. 2021.

61. zAppDev. https://zappdev.com/. Last access in Sept.
2021.

62. Zoho Creator. https://www.zoho.com/creator/. Last
access in Sept. 2021.

63. Zoho Creator (third-party integration). https:

//www.zoho.com/developer/help/extensions/

connectors.html. Last access in Sept. 2021.

https://www.jhipster.tech/jdl
https://judo.codes
https://kissflow.com/workflow/process/
https://aws.amazon.com/en/lex/
https://lowcode-workshop.github.io/
https://lowcode-workshop.github.io/
https://www.metacase.com/products.html
https://www.metacase.com/products.html
https://docs.microsoft.com/en-us/powerapps/maker/canvas-apps/working-with-forms
https://docs.microsoft.com/en-us/powerapps/maker/canvas-apps/working-with-forms
https://docs.microsoft.com/en-us/powerapps/maker/canvas-apps/working-with-forms
https://nodered.org/
https://nodered.org/docs/tutorials/second-flow
https://nodered.org/docs/tutorials/second-flow
https://www.eclipse.org/osbp/
https://www.outsystems.com/
https://success.outsystems.com/Documentation/11/Managing_the_Applications_Lifecycle/Deploy_Applications/Deploy_an_Application
https://success.outsystems.com/Documentation/11/Managing_the_Applications_Lifecycle/Deploy_Applications/Deploy_an_Application
https://success.outsystems.com/Documentation/11/Managing_the_Applications_Lifecycle/Deploy_Applications/Deploy_an_Application
https://success.outsystems.com/Documentation/11/Managing_the_Applications_Lifecycle/Deploy_Applications/Deploy_an_Application
http://www.phreeze.com
https://rapidminer.com/
https://guides.rubyonrails.org/command_line.html#bin-rails-generate
https://guides.rubyonrails.org/command_line.html#bin-rails-generate
https://developer.salesforce.com/
https://appexchange.salesforce.com/
https://appexchange.salesforce.com/
https://www.eclipse.org/sirius/
https://www.eclipse.org/modeling/
https://www.eclipse.org/modeling/
https://www.ibm.com/cloud/watson-assistant/
https://www.ibm.com/cloud/watson-assistant/
https://www.eclipse.org/Xtext/
https://zappdev.com/
https://www.zoho.com/creator/
https://www.zoho.com/developer/help/extensions/connectors.html
https://www.zoho.com/developer/help/extensions/connectors.html
https://www.zoho.com/developer/help/extensions/connectors.html

	Introduction
	The history of low-code development
	Overview of low-code development platforms
	Low-code vs. Model-driven Engineering
	Low-code development: why now?
	What MDE can learn from low-code and vice versa
	Summary

