
HAL Id: hal-03916530
https://hal.science/hal-03916530

Submitted on 30 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

What is the Future of Modelling ?
Antonio Bucchiarone, Federico Ciccozzi, Leen Lambers, Alfonso Pierantonio,

Matthias Tichy, Massimo Tisi, Andreas Wortmann, Vadim Zaytsev

To cite this version:
Antonio Bucchiarone, Federico Ciccozzi, Leen Lambers, Alfonso Pierantonio, Matthias Tichy,
et al.. What is the Future of Modelling ?. IEEE Software, 2021, 38 (2), pp.119-127.
�10.1109/MS.2020.3041522�. �hal-03916530�

https://hal.science/hal-03916530
https://hal.archives-ouvertes.fr

1

What is the Future of Modelling?
Antonio Bucchiarone, Federico Ciccozzi, Leen Lambers, Alfonso Pierantonio,

Matthias Tichy, Massimo Tisi, Andreas Wortmann, and Vadim Zaytsev

Abstract—Modelling languages and frameworks have
been the key technology for advancing Model-Driven
Engineering (MDE) methods and tools. Many industrial
and research tools have been realised and are used across
many domains. Hence, we think it is the right time to
define what should be the future of modelling technologies,
especially the requirements for the next generation of
modelling frameworks and languages.

In January 2020, the Second Winter Modelling Meeting
(WMM2020) was held in San Vigilio di Marebbe (Italy),
focusing on the analysis of the state of research, state
of practice, and state of the art in MDE. The event
brought together experts from industry, academia, and
the open-source community to assess (i) what had changed
in research on modelling in the last ten years, (ii) which
problems are still unsolved, and (iii) which new challenges
have arisen.

This article presents a set of success stories and driving
success factors of modelling and MDE, as well as a set
of challenges and corresponding research directions that
emerged from the synthesis of the results of our analysis.

Index Terms—Software Modelling, Success Stories, Re-
search Roadmap

I. INTRODUCTION

The use of models in computer science can be
traced back to the earliest efforts in the field. The se-
quences of designs by Charles Babbage on his “Ana-
lytical Machine”1 were the first models of a Turing-
complete mechanical device. Since then, many dif-
ferent modelling languages have been designed in
software engineering and strongly shaped the disci-
pline of Model-Driven Engineering (MDE)2.

The role of models in improving productivity in
software engineering is a recurring theme. During

Antonio Bucchiarone is with the Fondazione Bruno Kessler, Italy
Federico Ciccozzi is with Mälardalen University, Sweden
Leen Lambers is with the HPI, University of Potsdam, Germany
Alfonso Pierantonio is with Università degli Studi dell’Aquila, Italy
Matthias Tichy is with Ulm University, Germany
Massimo Tisi is with the Institut Mines-Telecom Atlantique, France
Andreas Wortmann is with the RWTH Aachen, Germany
Vadim Zaytsev is with the University of Twente, The Netherlands
1https://en.wikipedia.org/wiki/Analytical Engine
2See also https://modeling-languages.com

the “Peak of Inflated Expectations” in the hype
cycle3 at the beginning of the 2000s, concepts like
Model Driven Architecture (MDA), Model-Driven
Software Engineering (MDSE), as well as the pro-
motion of the Unified Modelling Language (UML)
as the panacea for all possible problems in software
engineering, have substantially influenced the MDE
discipline.

Since then, software modelling has arrived at the
“Plateau of Productivity,” and the modelling com-
munity learned when and how to use its founding
principles for improving the productivity of software
engineering [8].

The aim of this report is (1) to present three
success stories where modelling has been applied in
various ways for different target groups to achieve
other goals, and (2) to formulate a set of areas and
corresponding research directions.

II. MODELLING SUCCESS STORIES

In the following sections, we review successful
shapes of modelling: model-based systems engi-
neering, low-code software development, and infor-
mal software modelling. Each of the three sections
concludes with a summary of the success factors
relevant for that modelling shapes illustrated in
Figure 1.

A. Model-Based Systems Engineering

For the systematic and reliable engineering of
(cyber-physical) systems, modelling, as a technique
to describe or prescribe the system’s properties
under development, is the essential foundation. Con-
sequently, engineers from various domains have
been modelling for ages. For instance, electrical
engineers use mathematical formulae to describe a
system’s processes, and mechanical engineers use
technical drawings to prescribe constructions.

3https://en.wikipedia.org/wiki/Hype cycle

https://en.wikipedia.org/wiki/Analytical_Engine
https://modeling-languages.com
https://en.wikipedia.org/wiki/Hype_cycle

2

Fig. 1. Modelling Success Stories and Challenges.

The automated analysis and synthesis of system
models and their parts have become possible thanks
to modeling notations that helped define and estab-
lish practices in application areas (e.g., automotive,
railway, aerospace).

Via model-based analyses, simulations, and syn-
theses across system parts provided by experts
of different domains, challenges and mistakes too
costly to address in real systems can be uncovered
early. For example cases like extreme situations
(cf. Boeing 737 MAX) or incompatible assump-
tions of system parts (cf. Ariane 5), if proactively
discovered, can significantly reduce failures in the
resulting systems.

Research and industry have produced various
modelling techniques for the engineering of soft-
ware for embedded and cyber-physical systems.
Those techniques address different phases in the
engineering process. Large systems engineering
companies in avionics successfully apply archi-
tecture modelling languages to decompose system
components’ structure and behaviour and facili-
tate development, analysis, and integration of sub-
components across multiple departments. Particu-
larly, the modelling and analysis of extra-functional
requirements like dependability and timeliness have
been a success in that area.

To describe continuously varying behaviour, cor-
responding modelling languages have been broadly

and successfully adopted. In many engineering de-
partments, MatLab’s Simulink4 has become one of
the prime modelling tools. Modelling languages
enable both the automated analysis of correctness
and other properties and automatic generation of
code that is widely used in today’s products like
Eclipse, MetaEdit+, and Modelica.

The standardisation of modelling languages by
ANSI/ISA, NIST, or ISO has built the founda-
tion for multi-stakeholder, cross-company modelling
required to successfully engineer cyber-physical
systems. Popular standards that employ modelling
techniques, define modelling languages, such as
function block diagrams (IEC 61131-35), IDEF0
manufacturing functions (NIST FIPS 1836), or the
EXPRESS data modelling language (ISO 103037).
These standards allow companies and stakeholders
to rely on the same explicit models to ensure the
systems’ compatibility under development. More-
over, they enable tool builders to rely on stable
shared foundations. Overall, standards are vital to
the success of modelling in industrial practice.

The success of modelling for cyber-physical sys-
tems is due to the levels of precision of the
modelling languages, standardisation, and the im-

4https://www.mathworks.com/products/simulink.html
5https://plcopen.org/status-iec-61131-3-standard
6https://csrc.nist.gov/publications/fips
7https://www.iso.org/standard/38047.html

https://www.mathworks.com/products/simulink.html
https://plcopen.org/status-iec-61131-3-standard
https://csrc.nist.gov/publications/fips
https://www.iso.org/standard/38047.html

3

portance of frontloading in systems engineering:
successful languages, such as AADL8 or Simulink,
are tailored to broad domains without being overly
specific.

Moreover, this broad use of such sufficiently
precise modelling languages fosters communication,
understanding, and development across experts from
different departments, companies, and domains. An-
other reason for the success of explicit modelling
in engineering is that modelling languages—and,
by extension, the tools featuring them—are either
supported by large industrial consortia or standard-
ised. The broad commitment to specific technolo-
gies, languages, and standards enables companies
to rely on their availability and stability in the
future, which encourages further commitments to
their use, development, and extension. However,
this generality introduces a challenging conceptual
gap [7] between the experts’ domains, with their
concepts and methods, and the solution domain of
software engineering, along with its own concepts
and methods; this gap needs to be addressed in
the next generation modelling tools. The idea of
bridging these two worlds with automated means
is intriguing and has engaged the community, but it
has not always worked. Successful applications in
these areas focus on the domains’ specifics and pro-
vide well-integrated platforms with clear technical
benefits for the developers.

Heavyweight modelling, profoundly relying on
rigorous specification and state of the art engi-
neering practices, as employed in cyber-physical
systems, works well if models are continually used
throughout the development process. Ideally, models
provide the single source of truth; tools are used
to analyse the models, performing timing analysis,
correctness, control stability of feedback controllers,
easy deployment, code generation, or interpretation
of the model.

In Model-Based Systems Engineering, mod-
elling is successful if standardised or estab-
lished modeling techniques and languages lead
to cost- and time-savings for domain experts
and system integrators. This is often achieved
by enabling analysis and synthesis of system
parts at design time, long before the real system
or its components are manufactured, in order to

8http://www.aadl.info

avoid failures, rather than to detect reasons for
them.

These benefits are also shown in the highly pos-
itive results of empirical studies on the effect of
modelling in the embedded systems domain, where
modelling affects very positively the productivity of
engineers and the quality of the products [8].

B. Low-Code Software Development
Recently, low-code development platforms have

been considered promising for democratising digi-
tal processes in organisations [4]. Notably, earlier
attempts to simplify software development, e.g.,
fourth-generation languages (4GLs), were not ex-
empt from problems. Nowadays, end-user program-
ming, mashups, or situational programming leverage
abstraction and automation by making full use of
recent advances in domain-specific modeling, visual
editing, and user experience. Spreadsheet appli-
cations’ overwhelming success inspired low-code
platforms with their ease of use and substantial com-
putational power. The major market analysis firms
have highlighted the current impressive investments
by vendors and customers in low-code platforms for
business applications, and foreseen a positive trend
for the next years. Besides the current commer-
cial success in business application development,
other domains are considered reasonable grounds
for these solutions, like knowledge management and
digital transformation in manufacturing.

Several web giants have recently started provid-
ing their own low-code development platform (Mi-
crosoft PowerApps9, Google App Maker10, Ama-
zon Honeycode11). Some medium-sized vendors
were recently protagonists of impressive acqui-
sitions (e.g., $360 million by KKR and Gold-
man Sachs for OutSystems12, and $730 million by
Siemens for Mendix13). Other popular low-code
platform providers include AppSheet14, Caspio15,
FileMaker16, Kony17, Parabola18, QuickBase19 and

9https://powerapps.microsoft.com
10https://developers.google.com/appmaker
11https://www.honeycode.aws
12https://www.outsystems.com
13https://www.mendix.com
14https://www.appsheet.com
15https://www.caspio.com
16https://www.filemaker.com
17https://www.kony.com
18https://parabola.io
19https://www.quickbase.com

http://www.aadl.info
https://powerapps.microsoft.com
https://developers.google.com/appmaker
https://www.honeycode.aws
https://www.outsystems.com
https://www.mendix.com
https://www.appsheet.com
https://www.caspio.com
https://www.filemaker.com
https://www.kony.com
https://parabola.io
https://www.quickbase.com

4

Salesforce20.
The prominent success of low-code platforms

in business applications is tied to the present-day
software production landscape. Despite aggressive
recruitment efforts and innovative working condi-
tions, the IT industry’s development capability is at
capacity. Low-code development platforms enable
the inclusion of non-professional developers into the
application production process, letting IT experts to
focus on the more knowledge-intensive tasks.

Typically, low-code platforms are inspired by dif-
ferent modeling paradigms and tailored to the most
diverse domains. Therefore, it is not trivial to pro-
vide a unifying and informative characterisation of
the features they offer and for which types of appli-
cations. Nevertheless, they can be distinguished by
the following factors: (1) advanced user-interfaces
that help the user develop his/her proficiency with
the tool in a learning-by-doing manner quickly; (2)
Platform-as-a-Service architecture to mitigate the
accidental complexity of managing (e.g., installing
and upgrading versioned components) the modelling
environment, deploying the application, and monitor
its execution. Finally, (3) machine-learning tech-
niques to ease the user’s development process by
providing him with automatic assistance tools, such
as a recommendation system. Modelling languages
and model-driven techniques are used within low-
code platforms either explicitly or implicitly (e.g.,
hidden behind visual editors or forms).

Low-code development platforms’ technical mer-
its do not fully explain their significant commer-
cial success thoroughly. While their interoperability,
openness, and scalability are still subject to further
investigations [13], their accessibility, user focus,
strategies for hiding accidental complexity, and a
convenient learning curve can spur innovation lead-
ing to better model-driven platforms.

In Low-Code Software Development, mod-
elling is successful if it enables software en-
gineering with a minimal upfront investment
in setup (e.g., by native integration with an
existing development platform), training (e.g.,
by advanced user interfaces, self-explaining and
AI-assisted IDEs), and deployment (e.g., as
Platform-as-a-Service), and with costs rising in

20https://www.force.com

proportion to the business value of the devel-
oped applications.

C. Informal Modelling

The above two scenarios show the application
and value of modelling in two specific and different
application areas. Additionally, modelling is also
extensively used in generic software engineering
albeit with different intentions than the applications
above.

Störrle conducted a survey [12] to identify how
and with which frequency modelling is used in the
software engineering industry. The results show that
over 70% of all survey participants used models
often or always for communicative and cognitive
processes, which were the most popular usage areas;
code generation was never or rarely used by half of
the survey’s population. Additionally, models were
used more in the early phases of the development,
e.g., for domain- and requirements-oriented discus-
sions. This means that models were used more as a
“thought tool” and to facilitate discussions among
stakeholders with diverse backgrounds. According
to the survey results, software architects were the
stakeholders benefiting the most from modelling,
with 91% of the respondents rating the benefits for
software architects as “a lot” or “crucial”.

Another empirical study by Baltes and Diehl [1]
showed that informal modelling such as sketching is
frequent in software engineering. 77% of the study
participants created and/or used model sketches in
the previous week, and 68% of the sketches were
rated as informal. In line with the findings of Störrle,
Baltes and Diehl reported that design, explaining or
understanding were the most common purposes of
the sketches. Similarly, sketches were often used to
analyse requirements. Sketches are not only used as
informal and temporary means for communication
and discussion; whiteboard sketches are sometimes
subsequently detailed on paper, later more formally
modelled in a tool and sometimes converted to text
too. Interestingly, also generic drawing tools like
yEd21, miro22 or Visio are reported to be used for
modelling. Finally, the study reported that about half
the sketches were rated as helpful to understand the
related source code artefact(s) in the future.

21https://www.yworks.com/products/yed
22https://miro.com

https://www.force.com
https://www.yworks.com/products/yed
https://miro.com

5

An example of informal modelling via collab-
orative sketching on an interactive whiteboard is
brought by OctoUML23, which supports the creation
of UML models at various levels of formality (or
precision), collaborative and multi-modal interac-
tion. OctoUML is a prototype of a new gener-
ation design environment that enhances informal
collaboration when architecting a product. Similar
approaches are beneficial in other settings, such as
teaching and training.

In contrast to formal and, more generally, less
flexible modelling, informal modelling (e.g., by
sketching on a whiteboard) is particularly useful for
communication, collaboration, and understanding.
Here, cheap solutions like whiteboard or drawing
tools are enough to reap significant benefits and
make the design phase faster and more effective
without high investments. Moreover, being more
flexible and less chained to specific formalisms and
constraints, informal modelling pushes down the
learning/training curve of beginners and supports
the needs of a wider variety of stakeholders. In-
dustrial experience using modelling tools shows a
noteworthy division between stakeholders preferring
different types of modelling notations; we believe
that informal and thereby flexible modelling is the
only viable way to broaden acceptance of modelling
tools by industrial stakeholders.

..

In Informal Modelling, modelling is successful
if a wide variety of stakeholders can employ it
for communicative and cognitive processes in
early development phases using emergent and
flexible graphical notations while postponing
any structural limitations on the sketched mod-
els as long as possible.

III. CHALLENGES AND OPPORTUNITIES

There have been many empirical studies carried
out in modelling-rich domains about standing is-
sues, apparent trends, and future challenges: object-
oriented modelling, business process modelling,
model-data management, self-adaptive systems, and
specifically in MDSE [2]. Many mention the same
issues, but in different contexts: demonstration of
added value to potential users/customers, integration

23https://github.com/Imarcus/OctoUML

of produced artefacts, learnability, reliability, etc. In
the following, we highlight the most important new
issues that have changed significantly over the last
few years, as discussed during WMM2020.

A. Artificial Intelligence
Admittedly, it was impossible to overlook the

recent advances in Artificial Intelligence (AI), which
are now dramatically changing how we design, engi-
neer, and maintain software. Many believe that this
will cause a massive shift in a skill set that software
developers are expected to carry. MDE techniques
are also being enhanced with AI extensions for au-
tomation and bringing quantifiable advantages [5].
The main reason is that many MDE techniques are
already based on the intensive use of knowledge and
data. Even success factors of other areas of AI like
TensorFlow24 and its internal DSL, are similar to
those of software modelling. In the future, we will
only see more applications like modelling bots that
assist modellers by identifying potential issues and
giving advice [5] or model recommenders integrated
into IDEs [6]. For example, the new version of
Matlab Simulink includes reusing components by
creating library blocks from subsystem clones and
replacing clones with library links.

B. Multi-Paradigm Modelling
When engineering cyber-physical systems, ex-

perts from different domains collaborate to con-
tribute solutions to various aspects of the systems
under development. To engineer these solutions,
experts employ different paradigms (discrete vs.
continuous, geometric vs. functional, ...), reified in
modeling languages, tool, and processes, that need
to be integrated to describe the systems under devel-
opment. One of the solutions to this integration is
known as Multi-Paradigm Modelling (MPM) [10],
which envisions to “model everything”, i.e., each
aspect of the system and each corresponding process
is specified using models at the appropriate level of
abstraction, while model transformations propagate
information. By modeling everything, the paradigms
(models plus related processes) provided by differ-
ent domain experts are made explicit and can be
integrated, analyzed, and synthesized automatically.
This ultimately enables to support cross-disciplinary
communication and collaboration.

24https://www.tensorflow.org

https://github.com/Imarcus/OctoUML
https://www.tensorflow.org

6

TABLE I
SELECTED KEY RESULTS OF MODELLING SUCCESS STORIES

Success Story Modeling Goal Experiences Ref.

Model-Based
Systems Engineering

Cost- and time-
savings for domain
experts and system
integrators

”[MBSE] enables realization of several key benefits including: Establishing a
common understanding of the structure and meaning of information; Enabling
domain knowledge reuse; Making domain assumptions explicit; Maintaining
separation of domain knowledge and operational knowledge; Supporting
reasoning and analysis of domain knowledge; Capturing agreements on us-
age; Enabling consistent [...] conversation, thereby preventing confusion and
misunderstanding.”

[9]

Low-Code Software
Development

Shifting
programming tasks
from software
engineers to domain
experts

”[...] a significant difference from traditional development was observed in
that the application architecture was provided through the platform, leaving
the developer to concentrate primarily on what data is required and how it
should be captured.”

[14]

Informal Modeling Communication &
collaboration

”over 70% of all survey participants used models often or always for commu-
nicative and cognitive processes”
”models were used more as a “thought tool” and to facilitate discussions among
stakeholders with diverse backgrounds”

[12]

C. Adoption Model for Modelling

As outlined in Section II, different types of
modelling can be successful for various reasons, in
different domains, and with different characteristics.
Another challenge that we therefore identified is
how to support organisations on their ways towards
applying modelling successfully. In other words,
how can an organisation assess, evaluate, and im-
prove its modelling activities?

An initial idea for coming up with a concrete
solution to this overall challenge is elaborating an
adoption model for modelling. This idea is closely
related to the development of a maturity model
for model-driven development initiated by Rios et
al. [11].

The overall goal of the adoption model will be to
provide guidelines for discovering the right level of
adoption of modelling within (different parts of) an
organisation as well as to support the transitioning
from one level to the next when needed.

Implementing such guidelines goes along with
appropriate training and education. Teaching mod-
elling is commonplace and almost any degree pro-
gram offers courses at different levels that range
from foundational aspects to laboratory practice.
Recently, the state-of-the-practice of modelling and
MDE has been characterized in [3], where a precise
picture of the covered topics and their relevance is
presented. In particular, it emerges that modelling
can be considered a trait d’union between software
and language engineering: on the one hand, models

can be used at any stage of the development process
for documenting, analyzing, designing, deploying
and simulating systems; on the other hand, meta-
modelling techniques can be used for designing
notations and the associated modelling environment.
Consequently, this distinction makes place for a di-
versity of courses at both bachelor and master level
covering the most relevant aspects of model-based
software engineering and model-driven engineering.

D. Model Management

Current modelling tools are sophisticated tools
that provide features to simplify and automate
development activities. However, the sheer com-
plexity of modern software systems often requires
designers to deal with heterogeneous collections
of related models. Their continuous management,
deployment, and integration are crucial at different
development stages and can take the form of reusing
artifacts, analysing their characteristics, managing
consistency or leveraging the underlying informative
contents. Several model repositories have been pro-
posed over the last decade. A daunting challenge is
represented by the enhancement of these platforms
from merely cloud storage to (possibly collabora-
tive) modelling environments where the designer
can smoothly maintain collections of artifacts con-
sistent, efficiently cluster, quickly locate and reuse
them, and compose different transformations. More
recently, several initiatives, including Visual Studio

7

Code25, Eclipse Che26, Theia27 and others, hold
great promise to shift modelling environments from
monolithic installations to cloud-based platforms to
reduce the accidental complexity and extend the
set of offered features. In a way, this represents a
refreshing scenario where commercial competitors
will also contribute to the field’s advance. As a
consequence, it seems that state-of-the-art suggests
that versioning tools will soon be part of the mod-
eling environment alongside collaborative modeling
possibilities.

IV. CONCLUSION

Figure 1 provides a visual summary of this
paper. It captures what we discussed at a single
glance: how modelling is being increasingly adopted
across the diverse areas of software and system
engineering, and beyond. Besides fields where mod-
els are traditional instruments, like embedded and
cyber-physical systems domains, new areas of ap-
plications emerged, including the so-called low-
code development platforms where even people
with considerably less programming experience can
develop software applications within organizations.
Empirical studies showed that modelling positively
affects both engineers’ productivity and the prod-
ucts’ resulting quality, also thanks to consortia and
standardisation bodies.

The urge for improved platforms and founda-
tions is stringent because of the pervasive adoption
of models and related environments. The paper
presented some of the most daunting challenges
to move towards a community roadmap. Such a
roadmap aims to provide a motivated collection of
challenges, addressing which can be used to im-
prove modelling technology and leverage adjacent
research and development fields.

ACKNOWLEDGMENT

The authors that compiled this document would
like to thank all participants of the Second Winter
Modelling Meeting28, especially those that actively
contributed to discussing these issues and describing
them.

25https://code.visualstudio.com
26https://www.eclipse.org/che/
27https://theia-ide.org
28http://eventmall.info/WMM2020/

https://code.visualstudio.com
https://www.eclipse.org/che/
https://theia-ide.org
http://eventmall.info/WMM2020/

8

REFERENCES

[1] S. Baltes and S. Diehl, “Sketches and diagrams in practice,”
in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, (FSE-
22), Hong Kong, China, November 16 - 22, 2014, S. Cheung,
A. Orso, and M. D. Storey, Eds. ACM, 2014, pp. 530–541.
[Online]. Available: https://doi.org/10.1145/2635868.2635891

[2] A. Bucchiarone, J. Cabot, R. F. Paige, and A. Pierantonio,
“Grand challenges in model-driven engineering: an analysis of
the state of the research,” Software and Systems Modeling,
vol. 19, no. 1, pp. 5–13, 2020. [Online]. Available:
https://doi.org/10.1007/s10270-019-00773-6

[3] L. Burgueño, F. Ciccozzi, M. Famelis, G. Kappel, L. Lambers,
S. Mosser, R. F. Paige, A. Pierantonio, A. Rensink, R. Salay
et al., “Contents for a model-based software engineering body
of knowledge,” Software and systems modeling, vol. 18, no. 6,
pp. 3193–3205, 2019.

[4] R. D. Caballar. Programming Without Code: The Rise of No-
Code Software Development. IEEE Spectrum. [Online]. Avail-
able: https://spectrum.ieee.org/tech-talk/computing/software/
programming-without-code-no-code-software-development

[5] J. Cabot, R. Clarisó, M. Brambilla, and S. Gérard, “Cognifying
model-driven software engineering,” in Software Technologies:
Applications and Foundations, M. Seidl and S. Zschaler, Eds.
Cham: Springer International Publishing, 2018, pp. 154–160.

[6] A. Dyck, A. Ganser, and H. Lichter, “A framework for model
recommenders requirements, architecture and tool support,” in

[13] M. Tisi, J.-M. Mottu, D. S. Kolovos, J. De Lara, E. M. Guerra,
D. Di Ruscio, A. Pierantonio, and M. Wimmer, “Lowcomote:
Training the Next Generation of Experts in Scalable Low-
Code Engineering Platforms,” in STAF 2019 Co-Located
Events Joint Proceedings, ser. CEUR Workshop Proceedings
(CEUR-WS.org), Eindhoven, Netherlands, Jul. 2019. [Online].
Available: https://hal.archives-ouvertes.fr/hal-02363416

2014 2nd International Conference on Model-Driven Engineer-
ing and Software Development (MODELSWARD), 2014, pp.
282–290.

[7] R. France and B. Rumpe, “Model-driven Development of
Complex Software: A Research Roadmap,” Future of Software
Engineering (FOSE ’07), pp. 37–54, May 2007.

[8] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson,
“Model-based engineering in the embedded systems domain:
an industrial survey on the state-of-practice,” Software and
Systems Modeling, vol. 17, no. 1, pp. 91–113, 2018. [Online].
Available: https://doi.org/10.1007/s10270-016-0523-3

[9] A. M. Madni and M. Sievers, “Model-based systems engi-
neering: Motivation, current status, and research opportunities,”
Systems Engineering, vol. 21, no. 3, pp. 172–190, 2018.

[10] P. J. Mosterman and H. Vangheluwe, “Computer automated
multi-paradigm modeling: An introduction,” SIMULATION,
vol. 80, no. 9, pp. 433–450, 2004.

[11] E. Rios, T. Bozheva, A. Bediaga, and N. Guilloreau, “MDD
maturity model: A roadmap for introducing model-driven de-
velopment,” in Proceedings of the Second European Conference
on Model Driven Architecture — Foundations and Applica-
tions (ECMDA-FA), ser. Lecture Notes in Computer Science,
A. Rensink and J. Warmer, Eds., vol. 4066. Springer, 2006,
pp. 78–89.

[12] H. Störrle, “How are conceptual models used in industrial
software development?: A descriptive survey,” in Proceedings
of the 21st International Conference on Evaluation and
Assessment in Software Engineering, EASE 2017, Karlskrona,
Sweden, June 15-16, 2017, E. Mendes, S. Counsell, and
K. Petersen, Eds. ACM, 2017, pp. 160–169. [Online].
Available: https://doi.org/10.1145/3084226.3084256

[14] R. L. Totterdale, “Case study: The utilization of low-code
development technology to support research data collection.”
Issues in Information Systems, vol. 19, no. 2, 2018.

https://doi.org/10.1145/2635868.2635891
https://doi.org/10.1007/s10270-019-00773-6
https://spectrum.ieee.org/tech-talk/computing/software/programming-without-code-no-code-software-development
https://spectrum.ieee.org/tech-talk/computing/software/programming-without-code-no-code-software-development
https://hal.archives-ouvertes.fr/hal-02363416
https://doi.org/10.1007/s10270-016-0523-3
https://doi.org/10.1145/3084226.3084256

	Introduction
	Modelling Success Stories
	Model-Based Systems Engineering
	Low-Code Software Development
	Informal Modelling

	Challenges and Opportunities
	Artificial Intelligence
	Multi-Paradigm Modelling
	Adoption Model for Modelling
	Model Management

	Conclusion
	References

