N
N

N

HAL

open science

Specialization of Run-time Configuration Space at
Compile-time: An Exploratory Study

Xhevahire Térnava, Mathieu Acher, Benoit Combemale

» To cite this version:

Xhevahire Térnava, Mathieu Acher, Benoit Combemale. Specialization of Run-time Configuration
Space at Compile-time: An Exploratory Study. SAC 2023 - The 38th ACM/SIGAPP Symposium on

Applied Computing, Mar 2023, Tallinn, Estonia. pp.1-10. hal-03916459

HAL Id: hal-03916459
https://hal.science/hal-03916459
Submitted on 30 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03916459
https://hal.archives-ouvertes.fr

Specialization of Run-time Configuration Space at Compile-time:
An Exploratory Study

Xhevahire Térnava
Univ Rennes, CNRS, Inria, IRISA
UMR 6074, F-35000 Rennes, France
xhevahire.ternava@irisa.fr

Mathieu Acher
Univ Rennes, CNRS, Inria, IRISA
Institut Universitaire de France (IUF)
UMR 6074, F-35000 Rennes, France

Benoit Combemale
Univ Rennes, CNRS, Inria, IRISA
UMR 6074, F-35000 Rennes, France
benoit.combemale@irisa.fr

mathieu.acher@irisa.fr

ABSTRACT

Numerous software systems are highly configurable through run-
time options (e.g., command-line parameters). Users can tune some
of the options to meet various functional and non-functional re-
quirements such as footprint, security, or execution time. However,
some options are never set for a given system instance, and their val-
ues remain the same whatever the use cases of the system. Herein,
we design a controlled experiment in which the system’s run-time
configuration space can be specialized at compile-time and com-
binations of options can be removed on demand. We perform an
in-depth study of the well-known x264 video encoder and quan-
tify the effects of its specialization to its non-functional properties,
namely on binary size, attack surface, and performance while ensur-
ing its validity. Our exploratory study suggests that the configurable
specialization of a system has statistically significant benefits on
most of its analysed non-functional properties, which benefits de-
pend on the number of the debloated options. While our empirical
results and insights show the importance of removing code related
to unused run-time options to improve software systems, an open
challenge is to further automate the specialization process.
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1 INTRODUCTION

Modern software systems are highly configurable and expose to
the users their abundant configuration options. By setting configu-
ration options’ values, a software system is customized for different
users to reach specific functionality or performance goals (e.g., ex-
ecution time, energy consumption, quality of the result) without
the need to modify its source code. Such systems have a large and
different number of options. A considerable number of their options
are set at run-time, which are typically accessible via command-line
parameters, configuration files, or menu preferences. Such run-time
variability is a strength since system’s users have the flexibility to
tune their systems, owing to their specific use case. However, there
is evidence that "a significant percentage (up to 54.1%) of param-
eters are rarely set by any user" [51], that is, the options’ values
remain the same for a given usage, for example, depending on the
user, the performed activities, and the targeted environment. Thus,
they unnecessarily "bloat" the software. For instance, a user or an
organization may choose always to encode a video with x264 in
an (ultra-)fast way. In this case, its run-time configuration option
of --cabac is always disabled, as it offers better compression, but
requires more processing power to encode and decode a video. Such

unused functionalities in a software system can threaten its security,
slow down its performance, affect its reliability, or increase its main-
tenance [36]. Thus, run-time variability is sometimes unnecessary
and does not have to be embedded.

Based on this observation, we bring up the idea of specializing
the run-time configuration space of a software system. The goal is
to retain only a subset of configurations that meet a functional or
a performance requirement and thus discard the rest. Specifically,
we aim to debloat run-time options that are never used within the
source code, at compile-time. Which options are unused depend on
the system’s usage context and they are inputs to the specialization
process. Our hypothesis is that the code of unused run-time options
is a manifestation of code bloat that may increase the binary size,
the attack surface, or slow down the system. For instance, options
that are never used induce dead code that can be eliminated (e.g.,
by a compiler), thus improving the overall system. This paper aims
to investigate this hypothesis and explore to what extent removing
run-time options can bring benefits to the non-functional properties
of software. To the best of our knowledge, quantifying the benefits
(if any) has received little attention.

Specializing the configuration space of a software system has
a long tradition since the seminal paper of Czarnecki et.al, [13,
14] and others (e.g., [1, 3, 11, 19, 28, 46]). However, most of the
works are focused on the specialization of variability models where
constraints among individual options (or across several options)
are added to enforce the configuration space. A missing part we
investigate in this paper is to propagate this specialization to the
source code of a configurable system. Specialization can also be
seen as a debloating problem where a subset of run-time options
to specialize are bloat of a configurable system. Several debloating
approaches are proposed in the literature. Most of them provide
a way for debloating the unused functionalities from the external
libraries or from high-level "features” of a system [37, 40, 43]. Yet,
to the best of our knowledge, debloating run-time options of the
configurable systems has received little attention. An important
specificity of our problem is that the specialization should be flexible
and is itself configurable. That is, not all options are set once and for
all: in contrast, existing debloating techniques specialize the system
under study with a full configuration. Our proposal is to annotate
run-time options with compilation directives throughout the source
code. As such, the configuration space of run-time options can be
specialized at compile-time and options can be removed on-demand.

To realize the idea of specializing a configuration space, several
new challenges need to be addressed, such as (i) to locate the run-
time options within the source code and (ii) to take care of the
system’s validity after its specialization. Our research methodology



is to statically annotate run-time options to mitigate the risk of
synthesizing an unsound and incomplete specialization. In this way,
this controlled effort limits the introduction of errors that could
bias the benefits (if any) of specialization on non-functional prop-
erties. In addition, we establish a ground truth for future automatic
program specializers and we report on insights from our experience
on the case of x264. The contributions of this paper are as follows:

e We propose a means for configuring the specialization of
a software system through debloating its unused run-time
configuration options at compile-time;

e We analyze the resulting non-functional properties (i.e.,
binary size, attack surface, and performance) under two
specialization scenarios of x264, showing improvements
of the x264 configurable system without sacrificing its in-
teroperability and validity;

e We made available the data for reproducing the experi-
ments, the ground-truth for the x264 case study, and call to
replicate our study for further confirming or refuting our
results !.

2 BACKGROUND AND MOTIVATION

In this section, we introduce the basic concepts of configurable
software systems and the system used as a case study.

2.1 Background

Users can configure a software system by setting the values of its
numerous options. Usually, an option carries a particular function-
ality, has a type of value (namely, Boolean, integer, or string), and
a binding time (namely, compile-time or run-time). A configura-
tion is an assignment of values to options at their specific binding
time. Default values are also assigned to some options. Hence, users
can build their custom software by (de-)activating some options
at compile-time or run-time, but not only at these times [9]. The
interest of compile-time options is to embed in the resulting exe-
cutable program what is necessary for a given use case. Typically,
preprocessor directives (e.g., #ifdef in C/C++ projects) are used to
implement them. As for the run-time options, they are (de-)activated
prior to, or even during, the execution. Command-line parameters,
plugins, or configuration files are examples of mechanisms that
users can rely on to control them. In this work, we considered the
run-time options, which are set as command-line parameters during
the software’s load-time. Within the source code, run-time options
are implemented by ordinary control statements, such as if state-
ments, and locating them in code can be challenging as they are
implicit. Nowadays, software systems such as x264 video encoder
are configurable by their compile-time and run-time options.

2.2 Motivating case study

As a motivating system for this study is chosen the software system
of x264 2. Tt is a command-line video encoder implemented in C,
which has been used for the past 5 years to evaluate the debloating
approaches [42], is studied among the highly configurable systems
(e.g., [2, 17, 20, 24, 41, 46]), and has plenty of run-time options. We

!Companion page: https:/github.com/ternava/x264/tree/x264-rmv
Zhttp://www.chaneru.com/Roku/HLS/X264_Settings.htm
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use the x264 at its recent commit db@d417 3. It has 114,475 lines of
code (LoC) 4 237 files, 39 compile-time options, and 162 run-time
options. For example, it is possible to deactivate the support of
mp4 format at compile-time by using the --disable-1smash option
during the system build, as in the following.

$ ./configure --disable-1lsmash && make

After the system’s build, the run-time options can be set. They have
an effect on the properties of the encoded video, namely on its
encoding time, bitrate, and frame rate. Here is a possible usage of
three run-time options in x264.

$ x264 --cabac --mbtree --mixed-refs -o vid.264 vid.y4m

The used --cabac, --mbtree, and --mixed-ref's options are Boolean.
They also have their variant to negate their functionality, for exam-
ple, --mbtree has --no-mbtree.

X264 is a free software application for encoding video streams
into the H.264 compression format. It is often used as a library in
large systems, such as in space flight hardware > where its (i) binary
size and (ii) performance matters. Besides, (iii) a vulnerability in
the x264’s (H.264 decoder) function could be used to attack a larger
system, such as the case with the Cisco Meeting Servers °. Nowa-
days, the security of modern software systems is mostly threatened
internally, that is, by reusing their existing code, without the need
for code injection [40]. This kind of attack allows an attacker to
execute arbitrary code on a victim’s machine. In this attack, the
attacker is able to chain some small code sequences (called gadgets)
and threaten the security of the system. Basically, the exploited code
sequences by the attacker end in a return (RET or JMP) instruction.
Therefore, one of the commonly used metrics for measuring the
attack surface in a system is the number of code reuse gadgets that
are available and which can be exploited by an attacker [10, 23, 40].
Motivated by similar requirements, we analyse the effects of spe-
cializing x264 on these three non-functional properties, namely on
its binary size, attack surface, and performance.

3 SPECIALIZATION APPROACH
3.1 The vision for debloating

At the system level, the usual approach is to keep as much variabil-
ity as possible. All run-time options may somehow be needed one
day. Furthermore, packages, binaries, or build instructions force
users to take them all. However, this variability is sometimes un-
necessary: in a given context, some options may never be tuned
and thus they always have the same value for all actual use cases
of a given instance of the software. For instance, --cabac might
always have the true value. In this case, its corresponding variable
in the source code becomes a constant. By setting the option of
--no-cabac will speed up the video encoding time, but the video
quality may deteriorate. Hence, the tune of run-time options de-
pends on the objectives and constraints of the user. Keeping an
option while actually always using the same value leads to missed
opportunities. First, by knowing that an option has the same value,

3264 software system: https://github.com/mirror/x264

4Measured using the clocl tool: https://github.com/AlDanial/cloc

5 AVN443 encoder: https://www.tvbeurope.com/production-post/visionary-provides-
hd-encoders-for-international-space-station

%A vulnerability: https://www.cvedetails.com/cve/CVE-2017-12311
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compilers do not have to make some assumptions and the gener-
ated code can be improved. Specifically, compilers can further apply
optimizations and constant folding, including the propagation of
constants and the removal of dead code. Secondly, the presence of
unused options at run-time is likely (i) to increase the executable
binary size, since the related code will be included; (ii) can increase
the attack surface; and (iii) even slow down the system. The vision
is that the proactive removal of the unused run-time options can
be beneficial to several non-functional properties of software.

To technically support this vision, developers should have the
means to debloat run-time options, for example, by lifting them
at compile-time, and thus specialize the original program. With
configurable specialization, developers can build specialized pack-
ages (binaries) out of the specialized program. For example, one
can envision delivering new variants of x264: x264-fast, with
fast encoding time; x264-hq, with high quality video encoding;
x264-secured, with fewer code-reuse gadgets; or x264-tinyfast,
a small binary size yet fast x264. Importantly, they do not neces-
sarily specify a full and complete configuration: not all options
are subject to specialization since a part of the variability can be
preserved at run-time for addressing several usages. But, some of
the unneeded options can be eliminated from code to improve the
system’s non-functional properties. Inspired by multi-staged con-
figuration of variability models [12, 19], the specialization in our
case occurs at the code level and regarding the run-time options.

3.2 Process for program specialization

To quantify the benefits of such a vision, we report in this paper
about our experiments in debloating run-time options of x264
through program specialization. To achieve our vision, one should
be able to specialize x264 by removing run-time configuration
options on demand. This implies removing the parts of source
code that implement such options, which is different from simply
disabling those options in a configurator or at the command-line
parameter level. Moreover, to be able to remove the unused run-
time options, they first need to be located in the source code. Hence,
we propose a removal approach which is based on 4 tasks: (T1) we
first comprehend the implementation of run-time options, then (T2)
we annotate the corresponding code which implement a given run-
time option, and finally (T3) we apply a partial evaluator taking
care of the actual code removal. In addition to these three tasks, we
conducted the last task (T4) which consists in validating the program
specialization by comparing the resulting debloated program with
the original one according to a given run-time configuration.

The experiments conducted for these 4 tasks in the context of
run-time options in C-based systems, taking x264 as an illustra-
tive example, are presented in the following. As a partial evaluator,
we decided to use the preprocessor switches [6] and all the opti-
mizations (e.g., dead code elimination) provided by GCC. A partial
evaluator is a method for simplifying programs when program pa-
rameters are known [6, 21]. For instance, when it is known that
a run-time configuration option in a given system will always be
unset. In this study, the program parameters are the given run-time
options for removal whereas their removal and code optimization
is completed by the GCC compiler. Hence, the annotations of the
source code consist in adding the required C preprocessor directives

to let GCC remove the code corresponding to the given run-time
options. Moreover, the validation of the program specialization is
not realized at the program level but at the binary level after the
complete compilation of the original program.

T1: Comprehending the implementation of run-time options. To
debloat unused run-time options later, we first had to comprehend
their implementation within the codebase. During this process,
we identified the following patterns how they are handled in the
source code. (A) The x264, and most of the C-based systems, uses
the getopt.h 7 which has the functionalities to automate some
of the chores involved in parsing typical Unix command-line op-
tions. (B) A corresponding variable is usually used to represent a
run-time option. In this case, we manually analyse the data-flow
corresponding to this variable and locate all parts of the code used
to implement that particular run-time option. (C) Some functions
were dedicated to handling a single run-time option. Hence, remov-
ing all the functions calls will eventually lead to the removal of the
complete functions considered as dead code. (D) Then, some of the
options have dependencies, for example, --cabac and --no-cabac
have an alternative logic. This suggests that x264 will be unsound
if both these options are removed.

Adding annotations and the experiment’s set up took less than
12 person-weeks to be finished. We recorded patterns (A)-(D) to
automate the removal of unused runtime options in the future.

T2: Annotating source code. Our approach of removing unused
run-time options is as in the following. First, (1) we lift run-time
options to compile-time through annotating them with preproces-
sor directives. Then, (2) the objective is to let the preprocessor and
optimizations of GCC remove the source code related to the val-
ues of a given run-time option. A way to make explicit options’
values is to annotate them in places where they are implemented
(i.e., to locate them). For this purpose, we propose to use C pre-
processor directives, namely, #define, #if, and #endif. They are
special instructions directed to the preprocessor, which is part of
the compiler, in order to be processed. Because of their prominent
and widespread nature, we chose them as they are pretty light to
learn, use, and make it possible to remove the enclosed code.

Algorithm 1 shows the static approach that we conducted to de-
limit Boolean run-time options in x264, one at a time. The following
example illustrates it. In x264, both values of a Boolean run-time
option use different names, such as --cabac and --no-cabac, there-
fore we will refer to them as run-time options instead of values of
an abstract option. In Listing 2 is shown a code snippet that imple-
ments these options. It has a conditional if statement with two
branches where both options --cabac and --no-cabac are involved.
When the condition is true (lines 4 — 5), that is, the user chose to
encode a video with the option of --cabac, then the function on the
second branch for --no-cabac (line 11) becomes dead code and thus
can be removed. Further, a compiler can realize that some functions
are never called and will further optimize the code.

As Algorithm 1 shows, to locate and remove the related code of
an unused option we first make sure that the system of x264 is com-
pilable. We then add the removeoption.h file and two directives,
namely CABAC_YES and CABAC_NO, as shown in Listing 1. Further,

https://www.gnu.org/software/libc/manual/html_node/Getopt.html
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Algorithm 1 Delimiting a Boolean run-time option

Input: compilable 6 C-based system with run-time options
Output: compilable O with delimited run-time option(s)
Create: removeoption.h € source_files in 0

1: for option € Oruntime_options do

2: for option = true, false do e.g., true = --cabac, false = --no-cabac
3: Within removeoption.h

4: #define OPTION_YES 1 e.g., #define CABAC_YES 1
5: #define OPTION_NO 1 // e.g., #define CABAC_NO 1
6: Set OPTION_YES @ = O pecialized < 0

7: repeat

8: Find code that implement its ¢rue value

9: Enclose it within #if OPTION_YES...#endif

10: until Gspecialized is valid

11: Set OPTION_YES 1,

12: Set OPTION_NO @ = Ospecialized C €

13: repeat

14: Find code that implement its false value

15: Enclose it within #if OPTION_NO...#endif

16: until O pecialized is valid

17: Set OPTION_NO 1

18: end for

19: end for

each of them are used to annotate all lines of code related to options
--cabac and --no-cabac, respectively, as is given in Listing 2 in lines
3,6 —7,9— 10, and 12. We used preprocessor directives at different
granularity levels and in different combinations. In Listings 2 and 3
is shown their usage to annotate the related code of --cabac and
--no-cabac at statement and function levels, respectively.

In this way, we continue to annotate statically the related parts
of code for one option at a time until the system of x264 becomes
again compilable and valid. We check the validity of the program
when an option is removed, that is, of its specialized version.

It should be emphasized that, while we add the run-time options’
annotations, we kept unmodified the existing code of the system.
For this reason, we add two directives in combination as in lines
7 and 9 in Listing 2. This way of annotating allows the user to
remove one of the options by setting the values (0, 1) or (1,0)
in Listing 1 for each directive respectively. Setting both directives
to 0 is unacceptable as at least one of the options must be part of
the system. Whereas, when both directives are set to 1 then both
options are kept available at run-time.

The algorithm is repeated for as many Boolean options as it is
necessary and it can be extended for not Boolean options.

The process ends as soon as the system after the option’s removal
is valid. The part of the approach to ensure system validity and
doing its automated specialization are given in the following.

T3 & T4: Debloating validation. After annotating and removing
each option, we check the validity of x264, that is, if the the re-
mained system delivers the same functionality as before when the
option was part of the code but unset/disabled (lines 10 and 16 in
Algorithm 1). The validity check is automated and has three steps.

/* File
#ifndef
#define
#endif
#ifndef
#define
#endif
/* The rest of the directives are omitted */

removeoption.h */
CABAC_YES
CABAC_YES @

CABAC_NO
CABAC_NO 1

Listing 1: An excerpt from the removeoption.h file with 2
defined preprocessor directives

S o o IS
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/% File encoder/encoder.c */
/*The previous code is omittedx/
#if CABAC_YES //option --cabac
if( h->param.b_cabac )
x264_cabac_init( h );
#endif
#if CABAC_YES && CABAC_NO
else
#endif
#if CABAC_NO //option --no-cabac
x264_cavlc_init( h );
#endif
/*The rest of the code is omitted=/

Listing 2: The encoder.c file where --cabac and --no-cabac
are implemented

/* File common/cabac.c */

/*The previous code is omitted=/

#if CABAC_YES

void x264_cabac_init( x264_t *h ) {
int ctx_count = CHROMA444 ? 1024 :
for( int i = @0; i < 4; i++ ) {
// 8 lines of computation

}

460;

3
#endif
/*The rest of the code is omittedx/

Listing 3: The cabac.c file where the directive is used at the
function level

First, the original and specialized program are used to encode
eight carefully chosen videos (cf: Section 4.4) by the ten built-in
presets © in x264 and record the resulting video sizes (A). In the
next check (B), if the size in bytes of each encoded video by the
original and specialized program is exactly the same and if using
the removed option (e.g., of --cabac) at run-time in the specialized
program is not possible anymore we then conclude that the spe-
cialized program is valid °. In case that at least one of these two
conditions is false, then the program is invalid, meaning that the
annotated option (e.g., of --cabac) needs to be further improved.
Finally, we check the interoperability of the specialized program (C).
For example, trying to encode a video by setting the removed option
of --cabac must show a warning message which notifies the user
that the option of --cabac is no longer available. The validation pro-
cess is specific to our program of interest, here x264. However, the
methodology is general and essentially requires to develop a testing
procedure (e.g., oracle [5]) capable of comparing two programs (e.g.,
their outputs) — the original and the specialized ones.

4 EXPERIMENTAL DESIGN

4.1 Hypothesis

We present three null hypotheses each to be supported or refuted
by our analysis. Hy; concerns the binary size, Hy the attack surface,
and Hys3 the performance of a software system. Their respective
alternatives are H 1, Hy», and H 3.

Hy1 : The baseline software system and its specialization are not
significantly different with respect to their binary size.
H 4 : The specialized software system has smaller binary
size than its baseline.
Hy : The baseline software system and its specialization are not
significantly different with respect to their attack surface.

8A preset is a set with run-time configuration options that are set at once.

Comparing the videos’ content is used too: https://github.com/ternava/x264/discussions/15
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Table 1: Run-time options and presets to specialize x264

2 3 o E
IR I RN : s ¢ 3
g 2 = s " S S E > 8
Presets = g o) ] ] ] S S o} =

) 3 2 B & & g @ @ B 2.
Options
| Su Sz S13 Si4 S5 S, Si7 S8 Si9 Sao

--no-mixed-refs Sy ) . . . o o o o o o
--no-mbtree S . . o o < o o o o o
--no-cabac S3 . o o o o o o o o o
--no-weightb Sy . o o o o o o o o o
--no-psy Ss o o o o o o o o o o
--mixed-refs Se o o o o . . . . . .
--mbtree S7 o o . . . . . . . 0
--cabac Ss o . . . . . . . 0 0
--weightb So o . . . . . . . . 0
--psy S10 . . . . . . . . . .

Table 2: The properties of the eight used videos

Name Size  Length | Name Size  Length
[.mko] [MB] [sec.] [.mko] [MB] [sec.]
V_1_720x480 108.4 13 V_5_640x360 172.8 20
V_2_480x360 155.6 20 V_6_640x360 41.5 20
V_3_640x360 165.5 19 V_7_640x360 207.4 20
V_4_640x360 172.5 19 V_8_624x464 217.2 20

H sy : The specialized software system has smaller attack
surface (i.e., # code reuse gadgets) than its baseline.
Hps3 : The baseline software system and its specialization do not
perform significantly different.
H s : The specialized software system performs better than
its baseline as for the encoding time, bitrate, and frame rate.

To statistically evaluate our hypotheses, we build 20 specializa-
tions of x264. Then, we measure their binary size, attack surface (i.e.,
# code reuse gadgets), and performance (i.e., encoding time, bitrate,
and frame rate) using 8 input videos. Finally, we do a statistical hy-
pothesis testing by using the Wilcoxon signed-rank test [50], which
is one of the most used statistical test in software engineering [15].
We reject any of the null hypothesis at a common significance level
of @ = 0.05 and do one sided ("greater"/"less") testing.

4.2 Baseline system

The system of x264 comes with a default configuration (cf. its
analysed commit, Section 2.2), that is, each of its compile-time and
run-time options is either enabled or disabled by default. It uses
6 external libraries as compile-time options, which are enabled
by default. We installed all of them. Aside from this, the other
compile-time and run-time options are kept to their default values.
We refer to such an x264’s version with default configuration as
the baseline system. In the following, we will refer to its measured
properties as the baseline binary size, baseline number of gadgets,
baseline encoding time, baseline bitrate, and baseline frame rate.

4.3 System specialization

The sample of run-time options. As given in Section 2.2, x264
has 162 run-time configuration options and 10 built-in presets. A
preset is a group of run-time options that are commonly set to
quickly encode a video. In x264, only 22 options are used to build
its 10 presets. For this exploratory study, we chose a sample of
10 run-time options in x264 that are mainly part of these presets
and may help thus to address our hypothesis. In Table 1 are given

the 10 available presets in x264 and the presence of the 10 chosen
run-time options into them. In particular, we chose 9 options that
are part of at least one preset, 1 option that is not a part of any
preset (--no-psy), and 1 option that is not part of the presets (--psy).
For example, the preset ultrafast can be used as in the following
and it includes up to 17 options.

$ x264 --preset=ultrafast -o <output_video> <input_video> ‘

We have chosen to analyze 5 of its options, which will be set at once
by this preset and hence marked with filled circles () in Table 1. The
5 other chosen options, namely --mixed-ref's, --cabac, --mbtree,
--weightb, and --no-psy, we have chosen to specialize x264 regard-
ing this preset. These options are marked with unfilled circles (o)
in Table 1, meaning that they will remain unset in the case when
users use X264 to always encode videos with the ultrafast preset.
In the companion page we provide a table with details regarding
the set and unset options’ directives in each specialization.

Independent and dependent variables. To conduct our experiment,
we have as control variables: the compile-time options in the subject
system, the number and kind of used videos, and the used environ-
ment. Then, we can identify the independent variable: the remained
run-time options in x264 after its specialization. The dependent
variables for the study were the measures of binary size, number
of code reuse gadgets, encoding time, bitrate, and frame rate.

Specialization scenarios. By using the 10 chosen run-time options,
we follow two scenarios for specializing x264.

Scenario1: x264 is specialized by removing one run-time
option at a time. With the 10 considered options, there are only 10
such possible specializations of x264. They consist of the special-
izations regarding one of the 10 run-time options (i.e., horizontal
aspect) given in the first column of Table 1.

Scenarioy: x264 is specialized by removing one preset at
a time. In this case, we specialize X264 regarding the 10 presets
by removing the set of unused options within each specific preset.
Based on Table 1, they consist of the vertical specializations. For
instance, towards an x264-fast version, x264 will be specialized
regarding the fast preset by removing its 5 unused options, which
are marked with "o". Hence, in this scenario, there are only 10 other
possible specializations of x264. But, they can be grouped into
four specializations, for example, veryfast and faster have the
same used and unused options and thus both specializations look
the same. Despite this, we still analyze them separately as their
performance may differ because of their other (un)set options that
are different and are kept out of the study. For instance, ultrafast
has 17 options, but only 10 of them are analyzed.

In total, there is the baseline of x264 and its 20 possible special-
izations with both scenarios. In the following, we will refer to them
as S, for the baseline, and S; —Syo, for the specialized systems.

4.4 Experiment settings

We conducted our experiment on a Linux workstation running
Fedora 33 with Intel Core i7-10610U CPU and 15.3 GiB of memory.
In all cases, we use the gcc 10.3.1 compiler to build the baseline
and specialized systems of x264. Some of the done measurements
(cf- Ho3) require an input, namely a video. Instead of a random
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Figure 1: The binary size and the found number of gadgets in Sy (baseline) and S; — Sz (specializations). (mean + std) for binary
size - Sp : (3,096,176 + 0), S1—20 : (3,020,417 + 63, 641), and for gadgets - Sp : (106,495 + 0), S1—20 : (103,414 + 2,696)

selection, we carefully chose 8 videos based on a recent work by
Lesoil et.al., [25], which properties are given in Table 2. Actually,
these video are evaluated to be as representative enough of 1,300
input videos in the YT UCG dataset '° [25]. Besides, considering
the suggestions by DB. Stewart [44], the encoding time of videos
is measured by using the time method, and the measurements are
repeated 5 times. To prevent side effects, all experiments are run
sequentially and as the only process in the workstation.

5 RESULTS

In this section, we present the obtained results on three hypothesis.

5.1 The binary size of specialized system

To address Hj1, we measured the binary size of x264 in bytes. At
first, under the same experiment settings, we measured the baseline
binary size of x264. Then, we specialized x264 following Scenario;
and Scenarioy, measured their respective binary size, and compared
them with the baseline binary size. Finally, we statistically test the
Ho1 null hypothesis.

The obtained results in Figure 1 (left) show that each specialized
system has a smaller binary size than the baseline system. The
smallest binary size have the specialized systems by Scenarios (S11
- S20), as they are specialized by more than one run-time option,
than those by Scenario; (S1 - S10). In percentage, compared to the
baseline binary size, the specialized systems Sj - S19 have a reduced
binary size between 0.001% and 5.416%, whereas S11 - Sgo have a
reduced binary size between 3.526% and 6.365%. Concretely, the
x264’s binary size is reduced by 2.45% on average, or up to 6.37%
(based on 10 analysed options). To avoid repetition here, all of these
data in percentage are also given later in Table 5.

Moreover, the calculated Wilcoxon signed-rank test shows that
the p-value is less than @ = 0.05 (+ = 210, p = 9.54 - 10_7) 1
therefore Hy; is rejected in favor of H4;. This suggests that spe-
cializing a software system regarding its run-time options will sta-
tistically significantly reduce its binary size. This reduction can be
useful for resource-constraint devices. Although there is no direct
or strong correlation between binary size and other non-functional
properties, the reduction suggests that many paths of the code are
eliminated and can be beneficial to the system to be run.

10UCG dataset: https://media.withyoutube.com
Where ¢ is the sum of the ranks of the differences above or below zero.

5.2 The attack surface of specialized system

To measure the attack surface, we counted the number of code reuse
gadgets in the baseline and 20 specialized systems of x264. For this
reason, we used the well-known ROPgadget ' tool and counted
the overall gadgets in the system’s binary. Then, we statistically
test the Hy, null hypothesis.

The resulting overall number of code reuse gadgets in Figure 1
(right) show that the overall number of gadgets are most often
reduced (the blue bars) compared to the baseline number of gadgets
(the orange bar). The specialized systems S; - S19 have fewer gad-
gets than the baseline system, between —0.42% and 6.60%, whereas
specialized systems S11 - Sz have fewer gadgets, between 4.35%
and 7.18%. The —0.42% indicates that some specialized systems by a
single option (specifically, the 5 red ones, see also Table 5) can have
a small increase in the number of gadgets despite that their binary
size is reduced. This is something that is also claimed by [10] that
could happen, that is, the debloating techniques can cause an in-
crease in the number of gadgets as a side effect. But, not all gadgets
in a system can be chained by an attacker and threaten the system.

However, the calculated Wilcoxon signed-rank test shows that
the Hyy is not rejected for S; - S19 (t = 35, p = 0.25), whereas it
is rejected for S11 - Soo (t = 55, p = 9.77 - 107%). In general, it is
rejected for Sy - Spo in favor of the Ha, (t = 190, p = 3.54 - 107%),
This suggests that it is better to specialize a software system by
multiple run-time options (i.e., Scenarioy), as this will statistically
significantly reduce its attack surface (by 2.9% on average, or up to
7.18% based on 10 options in x264), and hence its security will be
improved. Moreover, the attack surface gets reduced much quicker,
for 2.9% on average, than the binary size, for 2.5% on average.

5.3 The performance of specialized system

Next, we examine how a specialized system performs to the end-
users. Namely, as x264 is a video encoder, we measure the per-
formance of a specialized x264 by using three metrics: the video
encoding time, bitrate, and frame rate. For this purpose, we encoded
8 videos (cf. Table 2) using the baseline and each of the 20 specializa-
tions of x264, but only using their available presets. For example, S¢
is specialized regarding the --mixed-ref's (cf. Table 1). We should
encode videos only with 4 presets in it, namely, with ultrafast,
superfast, veryfast, and faster. The rest of the presets should
not be used in S¢ as they require the option of --mixed-ref's, which

12ROPgadget tool: https://github.com/JonathanSalwan/ROPgadget
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Table 3: The average and standard deviation of encoding time in seconds [s] of 8 videos by the baseline (Sp) and specialized
systems (S; — Sz0). The R and =R mark a rejection and nor rejection of the Hys hypothesis, respectively.

System ‘ ultrafast superfast veryfast faster fast medium slow slower veryslow placebo ‘ Hoj
So [s] 0.28 + 0.02 0.48 +0.01 0.74 + 0.03 1.03 + 0.04 1.41 +0.04 1.73 £ 0.04 2.76 + 0.08 4.97 +0.16 9.85 + 0.37 35.03 +0.72

S1 [s] - - - - 1.39£0.03 1.77 £ 0.05 2.85+0.10 5.08 £0.18 9.86 +0.26 35.32 £ 0.46

Sy [s] - - 0.67 £ 0.02 0.96 + 0.01 1.29 £ 0.02 1.63 £ 0.04 2.61+0.06 4.78 £ 0.18 9.27 £ 0.42 33.23 £ 0.69

S3 [s] - 0.46 +0.02 0.73 £ 0.02 1.02 £ 0.02 1.43 £0.03 1.79 £ 0.05 2.80 +0.06 5.00 +£0.18 9.96 +0.26 35.34 £ 0.76

Sy [s] - 0.46 +0.01 0.73 £0.01 1.03 £0.01 1.43+0.03 1.78 £0.05 2.92 +0.10 5.07 £0.19 10.11 £ 0.32 35.09 +0.48

S5 [s] 0.29 +0.01 0.46 + 0.02 0.75 £ 0.01 1.06 +0.03 1.46 +£0.04 1.83 +£0.04 2.87 £0.08 5.05+0.19 10.09 £ 0.37 35.20 £ 0.63

Se [s] 0.30 +0.01 0.47 +0.02 0.75 £ 0.02 1.05£0.01 - - - - - -

S; 51| 0.28+0.01 0.45 +0.01 - - - - - - - -

Ss 51| 0.28+0.01 B - - - - - - - -

So 1] 0.29+0.02 B - - - - - - B -

S0 [ - - - - - - - - - -
Ave.Si—io [s]] 0.29£0.017 046£0.01] 072+0.03] 1.02+£0.04] 140%£0.07] 176+0.087 2.81£0.127 4990137 9.86+0.347 34.84x0.90| | -R|
S [s]|  0.29+0.01 - - } - . B B B B

Stz [s] - 0.47 +0.02 - - - - - - - -

S13.14 [s] - - 0.66 + 0.03 0.95 +0.03 - - - - - -

S15-20 [s] - - - - 1.24 +£0.04 1.53+0.03 2.56 +0.07 4.70 £ 0.16 9.21 £ 0.40 33.55+0.54

Avr. [5]| 0.29+£0.07  047+00]  0.66+00] 095+00] 1.24+0.0]  1.53+0.0] 256+00] 470+£0.0]  9.21+0.0] 335500 ‘ R ‘
S11-20

Avt.Si_g0  [s]| 0.29+0.017 0.46+001] 071£0.04] 1.01£0.05] 1.37+0.09] 1.72+0.12] 277+0.15] 4.95+0.16] 9.75+0.41| 34.62+0.96] | R
% of S1—20 1.39% —4.13% —4.08% —2.12% —2.76% —0.33% 0.31% —0.49% -1.07% -1.18%

Table 4: The average and standard deviation of bitrate in [kb/s] and frame rate in [fps] of 8 videos by Sy and S; — S29

System Unit ‘ ultrafast superfast veryfast faster fast medium slow slower veryslow placebo ‘ Hoys ‘
So [kb/s] |  1,800+0 1,167 £0 905 £ 0 946 £ 0 947 £ 0 935+ 0 928 + 0 851+ 0 843 +0 7870 | |
Avr. S1-19 [kb/s] 1,800+ 0  1,167+0¢> 912£157 948 £6 1 946 £3 | 9352 926 £4 | 849+4| 849+147 79197 -R
Avr. S11-20 [kb/s] 1,800+ 0« 1,167+ 0« 938+07 959+07 941+0 | 931+0] 919+0 ] 841+0 ] 874+017 80607 =R
Avr. S1-20 [Kkb/s] 1,800+ 0  1,167+0¢> 916177 950 £7 7 945+3 | 934+2 ] 925+5 ] 848+5] 853+x16T 793107 -R
% of S1—20 0.00% 0.00% 1.22% 0.46% —0.22% —-0.15% —0.33% —0.36% 1.24% 0.83%

So [fps] | 2,257+157 1,313+ 43 881+ 26 590 + 13 436 +9 336+ 8 218+ 6 136 5 69 +2 18+1 | |
Avr. S1-19 [fps] 2,276 £537  1,303+25] 875+28| 58323 | 436+327 337+247 220+187 136 +8 7 69+4] 18+17 -R
Avr. S11-20 [fps] 2,242+0 ] 1,301+0 ] 957+0 T 634+07 50007 39607 25907 154+07 77+07 1907 R
Avr. S1_29 [£ps] 2,271+497 1,303+23| 888+421 5914297 446+397 347+£327 226+237 139+107 7057 1817 R
% of S1—20 0.59% =0.73% 0.83% 0.30% 2.47% 3.07% 3.68% 2.74% 1.95% 2.84%

is removed from them. In case that they are used, the resulting sys-
tem’s performance is expected to be distorted, and thus unrealistic.
Therefore, only the first 4 presets (i.e., with "o") are available during
the encoding with S¢. This way of encoding is followed by all 20
specializations. As for the baseline system, we use all 10 presets.
As for the measured values, we first computed the average of
values in 5 repeated measurements, that is, the average encoding
time, bitrate, and frame rate of each video by each available preset
in each system. Next, we computed the average encoding time,
bitrate, and frame rate of all 8 videos within each preset and system.
Results in Tables 3 and 4 show the average values with the standard
deviation of specialized systems by the Scenario, Scenario;, and
their overall average, per preset. The dash ("-") in Table 3 is used
to mark the unmeasured values for the unavailable presets in each
specialized system. It can be noticed that S1¢ has no values, meaning
that it has no available presets as all of them require the option of
--psy, which is removed for Sq¢. To save space, the results in Table 4
are more condensed, showing only these three averages for bitrate
and frame rate. In percentage, they are more detailed in Table 5.

Encoding time. The overall Average S1_p in Table 3 shows that
in 8 from 10 presets the encoding time is improved or decreased
between 0.33% and 4.13%, whereas it is increased or worsened

in only 2 presets and for less, for 0.31% and 1.39%. Actually, the
increased time in ultrafast and slow is very small, for 3.9 and
8.4 milliseconds, respectively. Still, as our used system to measure
them has a higher resolution (of 1 microsecond), we believe that
the increased encoding times are a consequence of our x264 special-
izations. Looking at the individual specializations, the S5 has the
most improved encoding time, for 11.97%. This means that because
of its removed unused options the preset fast in S;5 becomes even
faster. Moreover, the encoding time measurements have always less
than 0.96 seconds in terms of standard deviations.

Bitrate. Table 4 shows that the number of presets with an equal,
increased, or decreased bitrate is the same. S19 has the most in-
creased bitrate, for 3.71%, indicating that the video compression
will be most significantly improved by this specialization because
of its removed unused run-time options. In our measurements, the
bitrate standard deviations are minor, less than 17 [kb/s].

Frame rate. A more notable improvement can be observed in the
frame rate in the Average S1_3¢, in Table 4. The frame rate is im-
proved in 9 from the 10 presets, between 0.30% and 3.68%, whereas
only in superfast it is worsened, for only 0.73%. As for the spe-
cializations, the S17 has the most increased frames per second, for
about 18.65%, meaning that the video compression will be improved



Table 5: A comparison of changes, in %, of five properties

System  Binary size Gadgets  Encoding time Bitrate  Frame rate
S1 —-0.270% -0.51% 0.89% 0.00% -1.78%
So —0.001% 0.18% —5.38% 0.96% 8.53%
S3 —3.254% —4.00% 0.87% 0.00% —0.65%
Sy —0.001% —-0.02% 1.06% 0.00% —1.88%
Ss —0.001% 0.42% 1.29% 0.00% —2.26%
Se —0.403% 0.29% 1.07% 0.00% -2.91%
S7 —0.543% —0.81% —4.73% 0.00% 1.86%
Sg —5.416% —6.60% —0.14% 0.00% 2.32%
Sy —0.003% 0.05% 1.58% 0.00% 2.77%
S10 —0,001% 0.18% NaN NaN NaN
S11 —6,365% —-7.18% 1.71% 0.00% —0.68%
S12 —4.202% —4.88% -3.07% 0.00% -0.91%
S13 —3.659% —4.43% —9.58% 2.50% 8.15%
S14 —3.659% —4.43% —9.58% 2.50% 8.15%
Si5 —3.526% -4.35% —-11.97% —0.67% 14.77%
S16 —3.526% —4.35% —11.28% —0.45% 17.64%
S17 —3.526% —4.35% —=7.24% —0.98% 18.65%
S1s —3.526% —4.35% —5.41% -1.09% 13.91%
S19 —3.526% —4.35% —6.59% 3.71% 12.52%
S20 —3.526% —4.35% —4.25% 2.49% 8.41%
Avr. —2.447% -2.89% —3.40% 0.36% 5.47%

by this specialization. The frame rate deviates more in our mea-
surements, up to 157 [fps], because by default it is auto-detected.
The key observations on the x264’s performance are that remov-
ing even only 5 of its unused run-time options will improve the
video encoding time in 80% of the presets (for up to 4.13%), will
improve the bitrate in 40% of the presets (for up to 1.24%), and
will improve the frame rate in 90% of the presets (for up to 3.86%).
In practical terms, using a specialized system in those predefined
configurations, a video is encoded faster and exhibits a better frame
rate and bitrate than the original x264. Moreover, the calculated
Wilcoxon signed-rank test given in the last column in Tables 3
and 4 shows that Hys is not rejected for S; - Sqo for encoding time
(t = 28, p = 0.5), bitrate (¢t = 10, p = 0.16), and frame rate (t = 26,
p = 0.46). But, it is rejected for S11 - Sgo for encoding time (t = 54,
p = 1.95 - 1073) and frame rate (¢t = 7, p = 0.02). In general, it is
rejected for all specializations S; - S0 in favor of H,5 for encoding
time (¢ = 51, p = 0.01) and frame rate (¢ = 7, p = 0.02), but not for
bitrate (t = 10, p = 0.16). Hence, specializing a software regard-
ing its unused run-time options could improve its performance (in
X264, it does not significantly improve its bitrate, but it statistically
significantly improves its encoding time and frame rate).

5.4 The trade-off among the system properties

The obtained results in Sections 5.1, 5.2, and 5.3 show that different
specialized systems of x264 have notably different improvements
on two non-functional properties — namely, on the binary size
and attack surface — and on two performance measurements —
namely, on the video encoding time and frame rate. Therefore, to
understand which removed options most significantly improve the
system in all or in most of these five aspects (including the cases
with an improvement in the bitrate), we compared the changes of
these five properties (from the baseline) for each specialized system.
Specifically, we compared the changes regarding the binary size
and number of gadgets given in Table 1, the encoding time given
in Table 3, and bitrate with frame rate given in Table 4. The results
in percentage are given in Table 5.

It can be observed that the specialized systems S1; — Sz¢ have far
more improved values in each of the five aspects than the S;—S1¢. In
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fact, the maximum improvements in five aspects are achieved with
the specializations S11 —S20, which percentages are colored in green.
The red-colored percentages show that the number of gadgets and
frame rate are worsened the most in the set of systems S; — Sio,
whereas the encoding time and bitrate are worsened the most in
the set S11 — Sz0. The percentages in orange show the systems
with the smallest improvement on the binary size, as there are
only improvements. Whereas the NaN values are the unmeasured
values, as all presets use the run-time option --psy which is used to
specialize S19, hence measuring them is unrealistic. It is interesting
to note that specializations that provide an improvement or not are
different. Therefore, one should find a trade-off among them and
choose the specialization that best meets their requirements. For
instance, in resource-constraint devices and in those where security
is more important, but the encoding time and frame rate are flexible,
then Sy; is a good choice. But, in case that encoding time matters
more than the other properties then S5 best fulfills this criterion. In
fact, there are 4 specializations that have an improvement in all five
properties - namely, S13, S14, S19, and Sz. These specializations can
be chosen when an improvement is expected on all five properties.
Besides these changes within every single specialized system, the
overall average in the last row in Table 5 reveals that each of the
five properties gets improved by specializing the x264 system.

The more unused run-time options are removed the greater the
benefits gained. Still, these benefits may vary in the system’s binary
size, attack surface, and performance, therefore finding their trade-
offs to a given usage context is necessary.

6 RELATED WORK

We discern the four following areas of related work that are relevant.

Configurable systems and their non-functional properties. Soft-
ware product line engineering and variability management is a
well-established research area that led in the past decade to several
techniques for supporting e.g., orthogonal variability management
and derivation of custom variants [4, 7, 8, 30, 34]. In practice, vari-
ability is often moved from compile-time to load-time (a.k.a., en-
coding variability) [48]. The consequence is to deploy the whole
product line (or configurable system) in the delivered software sys-
tems. In our work, we follow the opposite path: we aim to move
from run-time to compile-time. We specifically explore the benefits
of applying the derivation process at compile-time (instead of at
run-time) in order to specialize legacy software systems, with a
particular focus on non-functional properties. Besides, there are
numerous works about the non-functional properties and perfor-
mance of configurable systems (e.g., see [17, 20, 26, 33, 41, 47]). The
goal of this line of research is to study the performance modeling
of configurable systems without removing run-time options and
without altering the original source code. In contrast, we provide
an approach for debloating a configurable system regarding its
run-time options. We also show the impact of their removal in the
system’s non-functional properties.

Software debloating. Furthermore, software debloating has been
previously explored, for example, to reduce the size of deployed
containers [39], or the attack surface of specific programs [18, 22,
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38, 40, 42]. Often, proposed approaches debloat compiled bina-
ries, or debloat a system by removing its unused libraries or its
stale feature toggles. To our best knowledge, none of them debloat
software regarding the unused run-time configuration options. Ex-
isting approaches are all inheriting of existing works in program
specialization [29]. In [22], an approach is proposed to remove
feature-specific shared libraries that are needed only when certain
configuration directives are specified by the user in configuration
files. In contrast, we target run-time options within the source code.

Program slicing. It is another longstanding method for automati-
cally decomposing programs by analyzing their data flow and con-
trol flow [49]. Program slicing techniques require the identification
of a variable of interest, and the benefits have been demonstrated
in the context of white-box activities, such as debugging, testing,
maintenance, and understanding of programs. However, as in our
study, configuration options are usually given from an external
(black-box) view of the program, and it is challenging to relate
internal variables to such high-level configuration options. This has
been demonstrated in [27]. In practice, we also observed much more
complex data and control flows that would limit the applicability of
such an approach. Hence we believe that such tools can be helpful
to partly support the task of annotating run-time options in the
source code.

Performance. Performance has been investigated at run-time,
e.g., speculative execution [16] and ahead-of-time compilation [35].
Such speedups come in complement to the proposed specialization
approach applied at compile-time. Since the specialization is applied
at the source level, existing approaches for optimizing compilers
come also in complement to a previous debloating. Performance
has been also investigated in the context of approximate comput-
ing [32], which provides unsound transformations, still useful in
the context of possible trade-offs with accuracy. For example, loop
perforation [31] is a useful interpolation technique while unrolling
relaxable loops (e.g., signal processing). In contrast, we explore a
sound, compile-time derivation of a specialized configuration space.

In general terms and in contrast to the related works, we pro-
pose in this paper a unique experimental study that combines the
system’s variability management and configuration debloating with
a specific focus on its non-functional properties, including its perfor-
mance. The program slicing techniques with the identified patterns
to implement run-time options (cf: T1) and program transforma-
tions are helpful to automate the specialization process in the future.

7 THREATS TO VALIDITY

External threats. With respect to generalization, we use only a
single software subject in a specific domain (video compression)
that is implemented in C language. x264 has been studied in several
papers on configurable software (e.g., [17, 20, 33, 41, 46]), but not
in the context of specializing configurable systems and debloating
run-time options. Our exploratory research aims to investigate a
problem that has not been studied or thoroughly investigated in
the past: the potential benefits of removing run-time options. As
with any exploratory case study, we cannot draw any statistically
generalizing conclusions from such studies [45]. However, such
generalization of findings is not the goal of such studies - instead,

we aim to develop an understanding and propose hypotheses about
other similar configurable systems.

Internal threats. The performance, such as the video’s encoding
time by x264, may differ depending on the inputs processed. To
mitigate this threat, we use 8 videos considered as representatives
of 1,300 videos coming from the YouTube UGC dataset. Then, the
measurements are repeated 5 times. A threat to validity is also the
set of run-time options we consider. Choosing different options may
have a different effect on the performance measurements. We have
selected a diverse set of options with potentially different impacts
on non-functional properties and which are part of the presets that
are widely used and represent a variety of usage in x264.

Another threat to our experiments is the annotation of run-time
options, which can be incomplete and not valid. An incomplete an-
notated option may impact different properties (e.g., binary size) and
break existing functionalities, not related to the removed options.
To mitigate this threat, we manually and thoroughly annotated
the source code. We systematically reported on progress through
GitHub issues and concrete meetings for clarifying some subtle
cases about, for instance, the meaning of debloating. In terms of
validity, we used oracles that control that some remaining configu-
rations produce the exact same videos. In terms of completeness, we
chose to not consider the assembly code of x264 when annotating
options. A few lines of code and options are involved, suggesting
little to negligible impact on our results.

8 CONCLUSION AND FUTURE WORK

We proposed an approach for specializing a software system by
changing the binding time of its unused run-time options at compile-
time. Using the well-known video encoder of x264, we experi-
mented with 10 of its options over 8 inputs (videos) and over its
10 built-in presets. The results show that specializing a system re-
garding its unused run-time options brings statistically significant
benefits w.r.t. three non-functional properties, namely binary size,
attack surface, and performance (except for bitrate). For instance,
removing the single option of --cabac in x264 reduces the binary
size by about 7%, its attack surface by 8%, and the video encoding
time by 3%. The combination of options during the specialization
process can lead to further benefits (up to 18% for frame rate). We
believe that developers, operationals, and users can use our ap-
proach to specify and then remove run-time options that are never
used or changed for their specific use cases.

Our exploratory study naturally calls to replicate the approach
and results in other software engineering contexts. We also brought
a new problem to the community: instead of adding options, the
challenge of specialization is to remove code related to options.
Another future work direction is to automate our approach and also
to measure the change of the system’s non-functional properties
when some of its compile- and run-time options are both removed.
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