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Towards robust complexity indices in
linguistic typology
A corpus-based assessment

Yoon Mi Oh and François Pellegrino
Ajou University | CNRS, University of Lyon

There is high hope that corpus-based approaches to language complexity
will contribute to explaining linguistic diversity. Several complexity indices
have consequently been proposed to compare different aspects among lan-
guages, especially in phonology and morphology. However, their robustness
against changes in corpus size and content hasn’t been systematically
assessed, thus impeding comparability between studies. Here, we systemati-
cally test the robustness of four complexity indices estimated from raw texts
and either routinely utilized in crosslinguistic studies (Type-Token Ratio
and word-level Entropy) or more recently proposed (Word Information
Density and Lexical Diversity). Our results on 47 languages strongly suggest
that traditional indices are more prone to fluctuation than the newer ones.
Additionally, we confirm with Word Information Density the existence of a
cross-linguistic trade-off between word-internal and across-word distribu-
tions of information. Finally, we implement a proof of concept suggesting
that modern deep-learning language models can improve the comparability
across languages with non-parallel datasets.

Keywords: complexity metric robustness, complexity trade-off, linguistic
typology, morphological complexity, non-parallel corpus

1. Introduction

Language complexity is a notion that has hovered in linguistics for more than
a century, both as an implicit scale in a language description (with one feature
being considered as more complex than another, such as passive vs. active syn-
tactic constructions for instance) and as a general backdrop against which differ-
ences among languages could be dismissed or highlighted, depending on one’s
position on the equi-complexity hypothesis (see Joseph & Newmeyer 2012, for a
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discussion). For most of the twentieth century, those discussions have arguably
remained impressionistic but in the last two decades, considerable progress has
been achieved in giving language complexity a more tangible substance. On the
one hand, large databases based on thorough linguistic descriptions, such as
LAPSyD (Maddieson et al. 2013) in phonology or the more comprehensive and
multi-domain WALS (Dryer & Haspelmath 2013) and AUTOTYP (Bickel et al.
2022), offered gold mines that led to the emergence and specification of enlight-
ening hypotheses in historical and typological linguistics and to the adoption
of a broader worldwide perspective than the (mostly) euro-centric analysis grid
that was previously prevalent. On the other hand, the increasing availability of
large multilingual corpora allowed a quantitative estimation of several complex-
ity indices that can be estimated from the raw text itself or from linguistically-
informed representations that follow cross-linguistically consistent schemes such
as Universal Dependencies (de Marneffe et al. 2021) for part-of-speech tagging or
UniMorph (McCarthy et al. 2020) for inflectional morphology annotation (See
Section 2 for a brief introduction).

Such corpora have been instrumental in confirming remarkable hypothesized
relationships, such as the trade-off in information distribution between the
within-word and the across-word dimensions (e.g. Ehret & Szmrecsanyi 2016;
Koplenig et al. 2017, see also Bentz et al. 2022 for a recent meta-analysis) and
the correlation between morphological complexity and sociolinguistic variables
(Koplenig 2019; Miestamo et al. 2008; Sinnemäki & Di Garbo 2018). As a conse-
quence, language complexity provides now a useful and intuitive means to tackle
open questions in the fields of linguistic typology, both by providing a way to
compare languages against a common complexity index and by emphasizing the
existence of communicative and linguistic pressures within a language, as revealed
by complexity trade-offs such as the aforementioned one.

Linguists are now equipped with an efficient toolbox of complexity metrics,
although there exists no unique and authoritative definition of how language
complexity should be assessed, so far and arguably ever, because of the highly
multidimensional phenomena at play (Ehret et al. 2021). Still, language complex-
ity is far from being fully understood and the recent studies shed light on some
pieces of the puzzle, leaving others in the dark. For instance, large-scale studies
that involve hundreds of languages often provide an amazing picture on global
variations and common trends among languages at the expense of their inter-
pretability in terms of language-specific phenomena (e.g. Koplenig et al. 2017;
Pimentel et al. 2021). Conversely, finer-grained studies allowing thorough inter-
pretation mostly focus on small sets of languages, often limited to European lan-
guages (but see also Gutierrez-Vasques & Mijangos 2020 and Vera & Palma 2020
for more diverse language samples), at the expense of statistical robustness and
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breadth in diversity (Easterday et al. 2021 being a notable exception, with a broad
and thorough evaluation of the relation between phonological and morphological
complexities).

Another limitation of most of these approaches is that they use textual cor-
pora selected for their comparability across languages at the expense of their nat-
uralness. A parallel corpus, made of linguistic material translated from one (or
a few) languages to others (such as the Parallel Bible Corpus (Mayer & Cysouw
2014) used in this study, see Section 3 for details) is thus the archetype analyzed
in most studies on linguistic complexity since its language-specific versions are
comparable by design. One can assume that differences induced by idiosyncratic
semantic and stylistic characteristics are quasi-neutralized and conversely that
regular differences among languages are underlined. In other words, a textual par-
allel corpus provides a material akin to but also distant from our everyday spon-
taneous linguistic experience, since it is polished by several authors and lacks
any temporal dimension. As a consequence, one must be careful in their inter-
pretation and the generalization of conclusions drawn from such corpora should
remain cautious. A few attempts have recently been made to break this parallel
corpus barrier to close the distance to more natural linguistic content. The most
comprehensive contribution so far is arguably the work by Ehret & Szmrecsanyi
(2016), who compared complexity hierarchies estimated from several configura-
tions ranging from parallel to non-parallel corpora on a small sample of nine
European languages. They observed a positive correlation between the resulting
hierarchies, but also differences calling for further analyses on a larger and more
diverse language sample. More recently, von Prince & Demberg (2018) explored
the use of information-theoretic indices to characterize syntactic complexity on
a non-parallel corpus of 25 languages (including a few non-European languages)
and show a promising correlation with expert judgment.

Here, we propose to thoroughly investigate the potential consequences of
some methodological choices in such quantitative typological studies of language
complexity. Following Bentz et al. (2016); Ehret et al. (2021) and Koplenig et al.
(2017), among others, we focus on complexity metrics estimated from raw text
and our main objective is to assess their consistency and robustness against varia-
tions in the analyzed corpora. Additionally, we put our methodological results in
perspective with the aforementioned trade-off between word-internal and across-
word distributions of information and we consider how recent language models
developed in Natural Language Processing (NLP) can help extending cross-
language comparisons with non-parallel datasets.

Our study is based on a dataset consisting of 47 typologically diverse lan-
guages, which conveniently opens a window into linguistic diversity and allows
us to keep track of each individual language’s characteristics in a manageable way.

Towards robust complexity indices in linguistic typology [3]
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The main focus of the study is on the morphological domain, but syntactic aspects
are also tangentially addressed when we evaluate several complexity metrics in
light of expert judgements on complexity, as made available in the WALS and
AUTOTYP initiatives.1

The paper is organized as follows: Section 2 offers a short introduction to the
measurement of linguistic complexity. Section 3 describes the corpus and our sub-
sampling strategy. We introduce in the first part of Section 4 the grammar-based
complexity indices that provide the expert background against which our corpus-
based study is elaborated and interpreted. In the second part of Section 4, we
describe the four indices of morphological complexity assessed in the paper, along
with the methodology implemented to test its robustness. Results on morpholog-
ical complexity are then provided. In Section 5, we study the interaction between
the within-word and across-word information distribution, taking advantage of
the Word Information Density index introduced in Section 4. In Section 6, a proof
of concept is proposed and evaluated to alleviate the need for a parallel dataset in
quantitative typological studies. The paper ends with a general discussion and a
few perspectives.

2. Linguistic complexity across languages: A short overview

In the last 25 years, the notion of linguistic complexity has pervaded most lan-
guage sciences, with various foci on its phylogeny and ontogeny (e.g. Givón
2009), its online cognitive processing (e.g. Gibson 1998), or its distribution across
the world’s languages (see below). Numerous books and collective volumes have
tackled these issues from various perspectives and epistemological stances, offer-
ing comprehensive reviews (e.g. Dahl 2004; Hawkins 2004; Kortmann &
Szmrecsanyi 2012; Kusters 2003; Miestamo et al. 2008; Mufwene et al. 2017;
Trudgill 2011). In this short overview, we will focus on how linguistic complexity
can be measured from a cross-language comparison perspective, a framework
in which most developments pertain to the phonological and morphological
domains.

Phonological complexity is often operationalized as the number of units (syl-
lables, phonemes, features or gestures) or contrasts between units implemented in

1. The paper is provided with a Rmarkdown html document incorporating the analysis code
in R, the main results detailed in the paper, and results from additional analyses. This document
is referred to as Supplementary Information throughout the paper. It is freely available in the
GitHub repository (https://github.com/yoonmioh/RobustMorphComp, last access 2 Decem-
ber 2022).

[4] Yoon Mi Oh and François Pellegrino
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a language (e.g. Maddieson 2009; Shosted 2006). This descriptive perspective can
furthermore be supplemented by considering how much information is encoded
in these contrasts, either in a paradigmatic (e.g. Oh et al. 2015; Wedel et al. 2013)
or syntagmatic perspective (e.g. Coupé et al. 2019; Pimentel et al. 2020; Pimentel
et al. 2021). Phonological complexity has nevertheless attracted less interest than
morphological complexity so far, and more specifically than inflectional complex-
ity (for recent reviews, see Arkadiev & Gardani 2020, Baerman et al. 2015).

At least since Joseph Greenberg’s seminal study (Greenberg 1960), the striking
differences observed across languages in their verbal and nominal inflectional sys-
tems have nurtured a very prolific literature on how to account for a language’s
inflectional complexity. In an influential paper, Ackerman & Malouf convincingly
argued that this complexity goes beyond the size of inflectional paradigms and
the number of distinct inflected forms, and should also consider to what extent
predicting the inflected form for a given lexeme in a given slot of the paradigm
is difficult (Ackerman & Malouf 2013). Their approach paved the way for many
computational approaches based on morphologically tagged corpora or lexicons.
However, “The complexity of morphological inflection is only a small bit of the
larger question of morphological typology” (Cotterell et al. 2019:339), and deriv-
ing morphologically tagged corpora from the kind of raw texts we address in this
paper is still an open issue, despite recent progress (Erdmann et al. 2019; Malouf
2017).

Fortunately, even a raw text can help open a window on morphological com-
plexity by applying agnostic methods focused on wordform frequency distrib-
ution or on derived indices, such as the Type-Token Ratio (TTR). This index
finds its origin in psycholinguistic research in the middle of the twentieth century,
and is meant to be “a measure of vocabulary ‘flexibility’ or variability” (Johnson
1944: 1). Defined as the ratio of the number of distinct wordforms over the text
length (total number of word tokens), it is influenced by a given language’s
propensity to shape words through morphological processes such as inflection,
derivation, reduplication or compounding. Its conceptual and practical simplicity
led to its dissemination and adoption as a typological index of morphological
complexity (Kettunen 2014) either in its original formulation or more elaborated
ones such as MATTR (Covington & McFall 2010) or MTLD (McCarthy & Jarvis
2010). The word entropy (denoted H) is a somewhat similar index of morpholog-
ical complexity stemming from the information-theoretical framework. It is influ-
enced by both the number of different wordforms in a text and the distribution
of their relative frequency (see Section 4.2 for details). TTR, MATTR, MTLD,
and H are known as distribution-based indices, following the terminology pro-
posed by Bentz et al. (2016). These authors also introduced a translation-based
index conceptually similar to the comparison of the relative lengths of the same

Towards robust complexity indices in linguistic typology [5]
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text translated in several languages. Being intrinsically comparative, this kind of
approaches provide an interesting way to compare how different languages dis-
tribute an identical semantic content over its words.

Finally, other approaches have been elegantly derived from the concept of
Kolmogorov complexity (Juola 1998). By comparing the mathematical compress-
ibility of different distorted variants of the same text, these distortion/compres-
sion methods aim to quantify morphological and syntactic complexities in terms
of within-word and inter-word regularities respectively (Ehret & Szmrecsanyi
2016; Juola 1998; Moscoso del Prado 2011).

All of these distribution-based, translation-based, and distor-
tion/compression-based approaches are blindly applicable to raw text corpora. In
Section 4, we implement TTR and H as they are the most widespread and stan-
dard complexity metrics used in crosslinguistic studies. They consequently pro-
vide the baseline for our robustness study. We also implement the MTLD index
because it is supposed to overcome some of the known shortcomings of TTR (and
especially its dependency to the text length) without requiring any additional
parameter tuning, which is an advantage over MATTR. These distribution-based
indices are then compared to Word Information Density (WID), a translation-
based index. Finally, a distortion/compression method is applied in Section 5 to
investigate the relative importance of the within-word and inter-word informa-
tion and their potential trade-off.

3. Corpus description and subsampling strategy

We used a subset of the Parallel Bible Corpus (Mayer & Cysouw 2014) which
was selected and preprocessed by the organizers of the Interactive Workshop
on Measuring Language Complexity (IWMLC2019), with additional preprocess-
ing by the authors for Burmese,2 Egyptian Arabic, and Persian.3 The dataset4

contains 1,150 verses which are fully parallelized with maximum overlaps across
47 typologically and geographically diverse languages (Figure 1a). No linguistic
annotation is included. However, since it is fully parallelized, we assume that the
semantic content S of each verse v in a language L is equivalent for all languages

. By equivalent, we mean that each verse translation is likely to convey the

2. Segmentation into words was performed by the authors with the Myan-word-breaker
library (downloaded at https://github.com/stevenay/myan-word-breaker, last access 2 Decem-
ber 2022).
3. Punctuation marks were removed by the authors for Egyptian Arabic and Persian.
4. http://www.christianbentz.de/MLC2019_data.html, last access 2 December 2022.

[6] Yoon Mi Oh and François Pellegrino

/#CIT0046
/#CIT0029
/#CIT0029
/#CIT0046
/#CIT0067
/#s4
/#s5
/#CIT0059
/#fig1
https://github.com/stevenay/myan-word-breaker
http://www.christianbentz.de/MLC2019_data.html


  G
ue

st
 (

gu
es

t)
 IP

:  
87

.2
31

.1
59

.9
3 

O
n:

 F
ri,

 3
0 

D
ec

 2
02

2 
17

:0
6:

28

same meaning on average, despite fluctuations (but see Christodouloupoulos &
Steedman, 2015 for a discussion on the translation process).

Figure 1. (a) Geographical distribution. (b) Distribution of the languages among WALS
classical typological features and symbolic codes. Marker color and shape respectively
encodes the fusion strategy and the exponence category. Marker size further indicates
whether verbal inflection is limited (small size for Low values) or more extended (large
size for Mid and High values). In each cell, the number of languages is displayed when
different from zero. See text for details and Supplementary Information (§ 3) for the list of
languages belonging to each category

We have selected this corpus because it offers a sound balance between its
coverage in terms of linguistic diversity (both typological and areal, see Figure 1)
and its size, in coherence with the linguistically-informed and quantitative
approach adopted here. Our rationale is that this dataset size offers a testbed that
is large enough to reveal or confirm cross-language trends while allowing to indi-
vidually tag all languages in each figure. While it is also easily extendable to other

Towards robust complexity indices in linguistic typology [7]
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languages available in the Parallel Bible Corpus, we also decided to conform to the
selection made for the IWMLC2019 workshop to guarantee the coherence with
other studies initiated in this framework (cf. Bentz et al. 2022, Çöltekin & Rama
2022; Gutierrez-Vasques & Mijangos 2020). As explained in the introduction,
such a parallel corpus is far from being ideal for comparing spontaneous language
complexities, but it is well-adapted to our purpose of assessing the robustness of
complexity indices by the subsampling approach we propose in this paper.

The first aim of our study is indeed to assess whether several corpus-based
metrics (described in Section 4) are robust complexity indices. Throughout the
study, we thus implement an iterated subsampling strategy by comparing, for each
metric, the values estimated from the whole corpus to repeated values estimated
by splitting the corpus into several smaller subsets. This way, we can both evalu-
ate each index sensitivity to subset length and, for a given length, its sensitivity to
differences in the texts themselves. More specifically, we proceed with an increas-
ing number of subsets extracted from the Parallel Bible Corpus. For a given subset
number and size, each subset contains the same number of verses across lan-
guages. The indices’ robustness is thus assessed by comparing between six dif-
ferent configurations with respect to the total number of subsets: whole (1,150
verses), 5 (230 verses in each dataset), 10 (115 verses), 20 (57 verses), 40 (28 verses),
and 60 subsets (19 verses). With such a procedure, a complexity index is con-
sidered robust if it is characterized by a stability of the language-specific values
across the six configurations, along with a limited standard deviation within each
configuration. Additionally, one also expects that a robust index would keep the
language ranking constant across the configurations, even if the index values are
prone to a limited fluctuation.

Two metrics of morphological complexity are acquired and computed from a
top-down typological approach by means of two linguistic databases: Grammar-
based Morphological Complexity derived from WALS (GMC_W) and Grammar-
based Morphological Complexity derived from AUTOTYP (GMC_A), and a
bottom-up corpus-based approach is additionally applied to the Parallel Bible
Corpus to compute four indices: Word Information Density (WID), Type-Token
Ratio (TTR), Measure of Textual Lexical Diversity (MTLD), word-level Entropy
(H).

In addition, we adopt a symbolic code to visually represent the languages
throughout the paper against a traditional morphological typology backdrop
(Figure 1b). For each language marker, its color, shape, and size respectively
encodes Fusion strategy (derived from WALS Chapter 20), Exponence (derived
from WALS Chapter 21B), and the amount of Verbal inflection (WALS Chapter
22).

[8] Yoon Mi Oh and François Pellegrino
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Finally, information on phonological complexity is also provided though only
tangential to our study (see Supplementary Information § 5.2.1).

4. Morphological complexity

4.1 Grammar-based morphological complexity indices

4.1.1 Methods
The measure of Grammar-based Morphological Complexity derived from WALS
(GMC_W) is adapted from the methodology proposed by Lupyan & Dale (2010)
where 29 linguistic features relevant to the inflectional morphology are chosen
from WALS. The score of GMC_W is calculated by distinguishing between lexical
and inflectional coding strategies and summing assigned values (−1 for lexical and
0 for morphological strategies) to the linguistic features which are accounted for
by continuous or categorical variables. (See Supplementary Information § 4.1.1 for
details.) Following the method in Oh (2015), the current study does not convert
continuous variables into dichotomous variables, which differs from Lupyan &
Dale (2010). Instead, continuous variables, such as the number of case categories
(WALS feature 49A) and the number of grammatical categories expressed by the
inflectional synthesis of the verb (WALS feature 22A), are normalized between 0
and −1 to better represent the degree of morphological complexity. The score is
obtained by dividing the overall sum by the total number of available linguistic
features in each language.5

Following Kettunen (2014) and Sinnemäki & Di Garbo (2018) (see also
Nichols & Bentz 2019), another Grammar-based Morphological Complexity met-
ric is derived from AUTOTYP (GMC_A). More specifically, we integrate the
degree of inflectional synthesis of verbs. One of the linguistic features aforemen-
tioned and derived from WALS (Inflectional synthesis of the verb, 22A) was orig-
inally based on this dataset of AUTOTYP (Bickel & Nichols 2013) and classified
languages into seven categories according to the number of grammatical cate-
gories which can be expressed by a maximally inflected verb form. Since such
classification results in a loss of information as described by Sinnemäki & Di
Garbo (2018), we decided to use the actual maximum number of inflectional cat-
egories per word. For Malagasy and Wichí, two languages with missing informa-
tion, we used a score obtained from their variant language present in AUTOTYP
with a distinct Glottocode (Malagasy (mala1537) and Mataco (wich1263), respec-

5. On average, there are 27 linguistic features available (out of 29) per language, with a mini-
mum number of 23 features for Mountain Arapesh and all 29 features available for 16 languages.

Towards robust complexity indices in linguistic typology [9]
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tively). To summarize, the dataset is studied in the light of both a comprehensive
morphological complexity index (GMC_W) and a more specific one (GMC_A),
in order to provide two levels of granularity in expert-based indices.

4.1.2 Crosslinguistic overview
On a WALS-based MC scale (GMC_W index, Figure 2), languages distribute
from −0.92 (Vietnamese) to −0.34 (Turkish), arguably revealing three groups
according to their dominant strategy: languages with MC values higher than −½
favor inflectional coding strategies (hence MORPH strategy). Conversely below
−⅔, we see that languages favoring lexical coding strategies (hence LEXICAL)
span over a larger range of values. A third group consists of languages for which a
more balanced strategy is observed (hence BALANCED). Please note that this tri-
chotomy is indicative and does not pretend to identify clear-cut boundaries along
the GMC_W scale but rather a hint on each language’s strategic orientation. Addi-
tionally, one can expect that adding more languages to the dataset would both fill
the gaps within and extend beyond the current distribution.

Figure 2. Grammar-based Morphological Complexity based on WALS (GMC_W). On
the x-axis, languages are ordered by increasing GMC_W values from left to right.
GMC_W is by definition normalized between −1 and 0. Marker convention is shown in
Figure 1b (also in Supplementary Information § 8.1)

Unsurprisingly, the GMC_W index is visually coherent with the WALS fea-
ture encoded in each language’s color: Isolating languages (in blue) lead to low
complexity values (but note the exception of Wichí) while Concatenative lan-
guages (in orange) tend to show higher values. In contrast, the connections
between the complexity index and the exponence (encoded by the marker shape)

[10] Yoon Mi Oh and François Pellegrino
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Figure 3. Grammar-based verbal inflectional complexity based on AUTOTYP
(GMC_A). On the x-axis, languages are ordered by increasing GMC_A values from left to
right. Marker convention is shown in Figure 1b (also in Supplementary Information § 8.1)

or the amount of verbal inflection (encoded by the marker size) are less straight-
forward and require a more detailed analysis.

On an AUTOTYP-based MC scale (GMC_A, Figure 3), languages are dis-
tributed from 0 (Vietnamese) to 11 (Alamblak). At first glance, it appears that
the grammatical information captured by the index is quite different from the
WALS-based analysis, with for instance Yoruba (GMC_W=−0.87) and Green-
landic (West) (GMC_W =−0.37) sharing the same GMC_A value (5) with ten
other languages, despite their differences in terms of traditional morphological
typology.

This first impression is confirmed by a Bayesian correlation analysis.6 The
Bayes factor (BF =13.19) indicates strong evidence toward a relatively low positive
correlation found between the two indices (rmedian = 0.37, 95% CI [0.12, 0.58]) as
illustrated by the scatter plot in Figure 4. While a few languages oriented towards

6. All correlations reported in this paper are estimated in a Bayesian framework with the
BayesFactor and bayestestR packages in R. We used the default prior options of the following
two functions (correlationBF and describe_posterior) for the correlation analysis (cf. see Sup-
plementary Information § 4.3.2 for the code). Each correlation is reported as the median
Bayesian posterior estimate rmedian, along with the 95% credible intervals for each correlation
coefficient under a two-sided alternative hypothesis. The BayesFactor (BF) in support of the
alterative hypothesis (viz. the existence of a correlation) is also reported. BF > 10 indicates a
strong support in favor of the existence of a correlation. 3 < BF<10 indicates a moderate sup-
port while BF values between one and three are considered weak.

Towards robust complexity indices in linguistic typology [11]
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a LEXICAL coding strategy share low values on both axes (Vietnamese, Thai,
Sango, and English), most languages are spread over a large surface, underlying
the highly multidimensional nature of morphological complexity. Isolating lan-
guages (in blue) also show an interesting pattern: they occupy a quite large por-
tion of the total variation range observed on both axes, and their distribution
suggests the existence of a higher correlation than for the other languages (not sta-
tistically tested here because of the very limited subsample of isolating languages).
This distribution more largely underlines that the form taken by morphological
complexity across the world’s languages is quite variable because of the numer-
ous dimensions involved, their interactions, and their potential relative weights in
complexity metrics. Moreover, even the language classification in broad categories
can be debated and three of the languages considered here as isolating (following
WALS) would be considered morphologically complex in other accounts (Fijian:
Aranovich 2013; Hausa: Newman 2003; Wichí: Nercesian 2014). We leave for
future work a thorough study of these aspects and simply emphasize that GMC_A
and GMC_W give only partial visions of the processes of word formation and
usage at play in each language. Interested readers can further find a breakdown of
the complexity distribution by more specific descriptors (Morphological Strategy,
Fusion, Verb Inflection, Syllable Structure, and Tonal system) in the Supplemen-
tary Information (§ 4.3.1).

4.2 Towards robust indices of morphological complexity

4.2.1 Methods
The following four metrics estimate morphological complexity by means of the
Parallel Bible Corpus. From an information-theoretic angle, the average amount
of information conveyed per unit of language (such as word in this study) WI can
be defined in Equation (1) as the semantic content S of verse v in language
divided by the number of its words .

(1)

By adopting the method in (Oh 2015; Pellegrino et al. 2011), Word Information
Density (WID) is calculated by a pairwise comparison between the number of
words in our reference language and a target language L. English is used here as
a reference language, because it offers a convenient background shared all over
the world. Since we use a parallel corpus, the semantic content S of each verse
is assumed to be equivalent across all languages . Therefore, WID is esti-
mated by a pairwise ratio between the number of words of verse v in English

[12] Yoon Mi Oh and François Pellegrino
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Figure 4. Language distribution in a two-dimensional space defined by Grammar-based
Morphological Complexities based on WALS (GMC_W, x-axis) and AUTOTYP
(GMC_A, y-axis). Marker convention is shown in Figure 1b (also in Supplementary
Information § 8.1)

and in a target language . At a global level, for each language L, WIDL is
obtained by averaging over the V verses in the dataset:

(2)

In contrast, the following three corpus-based metrics are directly calculated at the
level of the entire text, without averaging nor normalizing with reference to Eng-
lish.

Type-Token Ratio (TTR) measures the degree of lexical diversity and mor-
phological productivity by means of vocabulary size (number of unique word
types) and text length (total number of word tokens). One should note that it is
known to be influenced by the text length (Covington & McFall 2010). Following
other similar studies using parallel corpus (Bentz et al. 2016; Gutierrez-Vasques &
Mijangos 2020, inter alia), we do not try to match text lengths across languages
because they are mainly influenced by each language’s morphology and word-
hood, the semantic content being kept equivalent. TTR is calculated for language

Towards robust complexity indices in linguistic typology [13]
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L as the ratio of the number of unique word types TL over the word token count
NL in the dataset:

(3)

A higher score of TTR denotes there are more word types generated by a language,
which approximates its morphological productivity and complexity. However, as
the text length gets longer, the likelihood of encountering a new word type in the
text decreases.

Another measure of lexical diversity, Measure of Textual Lexical Diversity
(MTLD) has been proposed by McCarthy & Jarvis (2010) as a solution to the
length-sensitivity problem of TTR. MTLD is defined as the average number of
words required within a text to reach the same TTR value of 0.72 (the threshold
point of stabilization established in McCarthy & Jarvis 2010). MTLD is calculated
by using a code released by John Frens.7 A higher score of MTLD means the text
requires more words to reach the point of stabilization and therefore, it can be
considered more complex in terms of morphological productivity. The advantage
of MTLD is that it was designed to be less prone than TTR to variations in text
length even on small dataset ranging from 100 to 2k words, thanks to its intrinsic
averaging nature (McCarthy & Jarvis 2010). We thus hypothesize that our study
will confirm this enhanced robustness.

Word-level (unigram) Entropy (H) is defined as the average amount of infor-
mation (or unpredictability) of words and it can be estimated by Equation (4),
where Language L consists of a finite set of TL unique word types {W1, …, WTL}
and Pwi is the probability of ith word type, estimated from the corpus.

(4)

It is another measure of morphological complexity which is also sensitive to the
corpus size, as the accuracy of estimating the distribution of word probabili-
ties depends on the corpus size. On the one hand, in Oh (2015), syllable uni-
gram entropy has been shown to be more robust as the corpus size grows, with
a range of convergence threshold between 50k and 70k word tokens for 4 lan-
guages. On the other hand, in Bentz & Alikaniotis (2016), convergence points for
the word unigram block entropy of 21 languages have been established with text
sizes between 20k and 60k word tokens, with an average of 38k. Since the average

7. Downloaded from https://github.com/jennafrens/lexical_diversity/, last access 2 December
2022.

[14] Yoon Mi Oh and François Pellegrino
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number of tokens per language in our parallel corpus is 25.4k, with a maximum
of 57.3k for Sanumá and a minimum of 10.8k for Greenlandic (West), our study
sheds light on the extent to which those limited lengths affect the reliability of H.

4.2.2 Results: Type-Token ratio and entropy
TTR is easy to compute and its interpretation is rather intuitive, but it is known
to be prone to fluctuation caused by variations in the examined corpus. Our sen-
sitivity methodology based on subsampling the data set in a variable number of
subsets illustrates this trend. For each language, increasing the number of subsets
(and coincidentally reducing their size) increases both the overall range and the
variation in TTR among the subsets for a given language. This is the combined
effect of estimating TTR on smaller samples and of the inherent differences exist-
ing among the samples themselves, even though they are all extracted from the
same source text. Figure 5 illustrates this effect according to the subset configura-
tion (Whole, 5, 10, 20, 40, and 60 subsets).

A more important consequence is that the relative ranking of the languages
is highly dependent on the corpus itself, as illustrated at the end of the present
section in Figure 9 (leftmost panel). Each dot represents the rank (from 1 for the
highest TTR to 47 for the lowest, y-axis) obtained by one language in one subset
configuration on average (Whole dataset, 5, 10, 20, 40, and 60 datasets, x-axis),
and for each language, an edge connects its ranks across configurations if they are
not identical. Conversely, perfectly consistent rankings are displayed as gray dots
and labels on the figure, without any edge. The desirable property of a consis-
tent index, immune to fluctuation, would be to maintain rank estimations similar
(leading to almost horizontal segments for small variations or no segment at all
for identical ranks), which is clearly not the case with TTR, where non-marginal
changes are visible for the majority of the sample.

Applying the same methodology to the word-level Entropy H yields similar
results and observations. When the Whole dataset is considered, H values spread
over a quite large range and seem to be quite informative on each language, but
the smaller subsets are considered, the more overlap is present (Figure 6). In
turn, this instability results in abundant reorganizations of the language rank-
ing throughout different sampling configurations, as shown in Figure 9 (second
panel).

4.2.3 Results: Measure of textual lexical diversity and word information
density

The Measure of Textual Lexical Diversity proposed by McCarthy & Jarvis (2010)
is conceived to be less prone to fluctuations induced by changes in corpus lengths.
It is nevertheless somehow sensitive to variations in the corpus content itself, as

Towards robust complexity indices in linguistic typology [15]
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Figure 5. Languages ranked by Type-Token Ratio (TTR, x-axis). Each panel corresponds
to a different corpus sampling configuration, from one unique sample (Whole set, top left
panel) to 60 samples (bottom right panel). In each panel, languages are ranked by average
TTR over the subsets, potentially leading to differences in ranking across the panels

illustrated when comparing the MTLD range and variation in estimated values
resulting from different subset configurations (see Figure 7). However, these vari-
ations are mostly limited to few languages, principally Greenlandic (West), and
Arabic (Egyptian) and yet, it is interesting to note that the range of across-
language difference in MTLD is also quite limited and on par with the within-
language fluctuation for a large proportion of the sample. Despite those
variations, MTLD is quite consistent in the relative rank allocated to each lan-
guage, as shown by the small changes in rank visible between the Whole vs.
60-subset configurations, consisting mostly of swaps between adjacent languages
on the MTLD scale (see Figure 9, third panel).

TTR, H, and MTLD are based on the mathematical properties of the word-
form distribution in a corpus. On the contrary, WID approximates the difference
between the morphological strategy of a given language and the strategy at work
in the English corpus: a language for which each English word is consistently
translated into two words would get a WID of ½ and its words would be consid-
ered less dense than their English counterpart in terms of information encoding.
Is such an index prone to or on the contrary resistant to variations in corpora?

[16] Yoon Mi Oh and François Pellegrino
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Figure 6. Languages ranked by word-level Entropy (H, x-axis). The Figure convention is
the same as in Figure 5

Figure 7. Languages ranked by Measure of Textual Lexical Diversity (MTLD, x-axis).
The Figure convention is the same as in Figure 5

Towards robust complexity indices in linguistic typology [17]
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As shown in Figure 9 (rightmost panel), WID is quite consistent, with very
few changes in language ranks induced by changes in the corpus configuration.
Moreover, languages are more evenly distributed on a range quite stable across
configurations except for Greenlandic (West), which is a potential clue of an inter-
esting discriminative power to differentiate languages, even if a large number of
small subsets are considered (see Figure 8).

Figure 8. Languages ranked by Word Information Density (WID, x-axis). The Figure
convention is the same as in Figure 5

4.3 Comparing corpus-based and grammar-based indices

In the previous sections, we showed that standard indices such as TTR and H
are quite sensitive to changes in the material they are estimated on, in contrast
with MTLD and WID, which seem more resilient to the sensitivity test we imple-
mented. However, there is no doubt that TTR and H can be correctly estimated
on large corpora and as such provide useful information on the range of variation
in morphological complexity among a language sample, as shown by Kettunen
(2014) among others. In a sample of more than 500 languages, Bentz et al. (2016)
furthermore found a positive correlation of rρ = 0.402 between a morphological
complexity index based on WALS8 and TTR (and similarly a correlation of

8. The WALS-based index in Bentz et al. (2016) is different from the one we implemented in
the present study since they took a variable number of morphological features per language,

[18] Yoon Mi Oh and François Pellegrino
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Figure 9. Impact of the sampling configuration on the four complexity indices (TTR:
Type-Token Ratio; H: Word-level Entropy; MTLD: Measure of Textual Lexical
Diversity; WID: Word Information Density). In each panel, the y-axis shows the
language ranks according to the sampling configuration (whole set, 5, 10, 20, 40, and 60
subsets, on the x-axis). Languages are displayed in gray when rank is preserved
throughout all configurations and in orange when changes occur, with orange edges
underlying the changes

rρ =0.362 with H), demonstrating that these corpus-based indices can be infor-
mative about a language’s morphological strategy. This potential is confirmed
in our sample when for each language, the whole dataset is used without sub-
sampling to evaluate the indices (see Supplementary Information §4.3.1 for a
global overview of the correlations observed across the indices over the Whole set
sampling configuration and § 4.3.2 for Bayesian correlation analyses). A median
Bayesian posterior estimate rmedian =0.55, 95% CI [0.29, 0.72], BF=3514, (resp.
rmedian = 0.58, 95% CI [0.32, 0.73], BF = 7720) – higher than the one reported in
Bentz et al. (2016) – is present between GMC_W and TTR (resp. H). The exis-
tence of a moderate positive correlation is also strongly supported between WID
and GMC_W (rmedian = 0.46, 95% CI [0.24, 0.65], BF= 137.79) while the Bayesian

because of the very large language sample they investigated. As explained in Section 4.1, the
number of morphological features taken into account in our study is less variable, ranging from
23 features for Mountain Arapesh to 29 features for 16 languages. For this reason, GMC_W is
probably more consistent and comparable throughout our language sample, at the expense of a
narrower coverage of linguistic diversity.

Towards robust complexity indices in linguistic typology [19]
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analysis brings only a weak support to the existence of a correlation between
MTLD and GMC_W (rmedian =0.29, 95% CI [0.01, 0.52], BF = 3.04). Interestingly,
the Bayesian analysis does not support the existence of correlations between
GMC_A and neither WID (rmedian = 0.13, 95% CI [−0.14, 0.38], BF= 0.496) nor
MTLD (rmedian = 0.05, 95% CI [−0.22, 0.31], BF=0.347), underlying the multidi-
mensional kinds of grammatical information subsumed in these corpus-based
indices. Moreover, the four corpus-based indices are substantially positively cor-
related (see Supplementary Information § 4.3.1), and they consequently partially
encode redundant information. In the rest of the paper, we focus on WID, to fur-
ther test whether this innovative index brings new opportunities and understand-
ing on language complexity.

5. Beyond word complexity

Morphological complexity is only one facet of the overall complexity of a lin-
guistic system. As mentioned in the introduction, several studies have revealed
a compensatory relationship between the complexity (and thus informativeness)
within words (morphology or word constituency) and across words (syntactical
or sentence constituency). In this section, we investigate how WID interacts with
an inter-word index of complexity and information (Inter-Word Information, or
IWI, see below) in order to test whether this seemingly robust index confirms pre-
vious results on compensation.

5.1 Methods

Inter-Word Information (IWI) estimates the amount of information across words
by measuring the average compression ratio for each language L, i.e., the change
in the size of compressed text files C in Language L before (CAL) and after
(CPL) distorting word order (by a random permutation). In order to increase
robustness, this procedure is iterated 10 times per language and the average value
MeanCL is reported. This estimation method of Kolmogorov complexity for lin-
guistic description was introduced by Juola (1998) and adopted for cross-
linguistically comparing (pseudo-)syntactic complexity (see also Kettunen et al.
2006). It is based on the ability of the compression algorithm to achieve higher
compression rates for texts exhibiting regularities in their word order, compared
to texts where the transitions between adjacent words are difficult to predict.

(5)

[20] Yoon Mi Oh and François Pellegrino
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In essence, one expects that compressibility will be almost unchanged between
the original and the randomized versions in a putative language with a totally free
word-order. Such a language should result in a ratio between CAL and CPL close
to one, and consequently to a MeanCL close to zero. Conversely, compressibility
should be dramatically altered in a language with a strict word order, leading to a
MeanCL value less than one (the compressed randomized version being on aver-
age larger than the compressed original text).

English being used as a pivot language in our study, IWI is computed by a
pairwise comparison between the average compression ratio in a target language
(MeanCL) and in English (MeanCENG) in order to get a normalized value.

(6)

Given the abundant literature suggesting the existence of a trade-off in how a
language weighs the within-word and across-word dimensions in complexity,
we expect a negative correlation between WID and IWI, probably quite strong
because WID is expected to be quite robust to idiosyncratic fluctuations across
languages.

WID and IWI respectively quantify whether a given language relies more or
less than English on the within-word and across-word dimensions. Since both
indices are dimensionless and normalized with regard to English, by definition
WIDENG = IWIENG = 1 and we can take advantage of this normalization to compose
an index that accounts for within-word and across-word dimensions together,
maintaining English as a reference. We thus define Language EXplicitness (LEX)
as the product of WID with IWI.

(7) LEXL = WIDL × IWIL

A language with both WID and IWI larger than one automatically yields a LEX
value larger than one. Conceptually, it means that such a language explicitly
encodes more information in its text than English. Assuming a negative corre-
lation between WID and IWI analog to the one found in previous studies, we
expect that the LEX variation range will be rather limited, but still present because
of crosslinguistic variation in the components that are obligatorily expressed (see
Bisang 2014, 2015 for discussions of the notion of overt vs. covert complexity) and
in average speech rates which can be seen as the other aspect of information trans-
mission (Coupé et al. 2019; Pellegrino et al. 2011). In the absence of any specific
prediction on the position of English in the potential range of variation of LEX,
we expect that languages will distribute on a limited range below and above one.

Towards robust complexity indices in linguistic typology [21]
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5.2 Results

Koplenig et al. (2017) have nicely shown at a large scale (more than 1,000 lan-
guages) that there exists a statistical trade-off in how information is split between
across-word and within-word regularities (Spearman correlation of at least
rρ =−0.71 depending on the dataset considered). Projecting our language sample
in a two-dimension space defined by Inter-Word Information (IWI) and WID
offers a similar balance, with a correlation of rmedian = −0.79, 95% CI [−0.88,
−0.67], BF =6.24e+09. Since both dimensions are normalized with regard to Eng-
lish (at coordinates [1,1] on Figure 10), one can formulate a few additional com-
ments.

First, there exists a large range of variation on both axes: Greenlandic (West)
conveys less than half of English-equivalent information on the across-word axis
and more than twice on the within-word axis, while at the other end on the plot,
Sanumá exhibits the opposite proportions. Greenlandic (West) is well-known to
be a polysynthetic language, according to a traditional typological account, and
its extreme position on this figure is thus not surprising. Sanumá on the other
end, is a Yanomaman language classified as concatenative in WALS but “while not
strictly an isolating language, Sanumá appears to be less polysynthetic than many
Amazonian languages” (Derbyshire & Payne 1990:246) and our analysis shows
that it heavily relies on the word order to convey information. Three other lan-
guages show a remarkably high bias towards IWI: Sango is a tonal creole affili-
ated to the Ubangi languages (Thornell 1997) with little affixation. Being used as
a lingua franca, Sango may have undergone changes under the kind of sociolin-
guistic pressures for learnability improvement discussed in Lupyan & Dale 2010;
Sinnemäki & Di Garbo 2018; Thomason & Kaufman 1992; Trudgill 2001, and
Wray & Grace 2007, among others. Burmese is well-known for its pervasive parti-
cles and the very productive reduplication at work, leading to a salient amount of
regular collocations that are broken apart by the randomization process. Fijian is
an Austronesian isolating language with a quite strict ordering of the constituents
in the predicate and noun phrase structure (Dixon 1988). More generally, strictly
isolating languages and languages with a non-concatenative morphology tend to
be in the low-right quadrant of the figure.

Secondly, no language is characterized by low values on both dimensions (the
rectangle defined by values below English on both axes is empty). Similarly, no
language jointly exhibits high values on both axes. Still, there is room for cross-
linguistic differences as illustrated by the dispersion around a theoretical hyper-
bolic regression line of equal explicit information amount (not shown on the
figure).

[22] Yoon Mi Oh and François Pellegrino
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Thirdly, the European languages present in the sample cover a quite limited
area (roughly approximated by a rectangle with a diagonal defined by the Finnish-
English segment), underlying the absolute need for addressing complexity issues
from a broader perspective before drawing any conclusion on linguistic diversity
and universal tendencies.

Figure 10. Distribution of the languages according to their information encoding
strategies along the Inter-Word Information and Word Information Density (IWI and
WID, respectively) dimensions. Marker convention is shown in Figure 1b (also in
Supplementary Information § 8.1)

When we turn to the explicit information encoded (LEX), we see that English
lies in the middle of the distribution (ranked 23/47) which spreads from 0.57
for Russian to 1.32 for Quechua (Imbabura), with a rather narrow peak (mean
0.99, median 1, sd 0.16). Highest values are reached by languages with a limited
imbalance between the within-word and inter-word dimensions (Quechua
(Imbabura): WID= 1.24, IWI=1.06; Vietnamese: WID= 1.02, IWI=1.22; Mixtec
(Chalcatongo): WID =1.02, IWI =1.18). On the contrary, the two languages with
extreme strategies (Greenlandic (West) toward word-internal information encod-
ing (WID =2.44) and Sanumá toward Inter-Word Information encoding
(IWI =1.97)) exhibit modest LEX values (0.7 and 0.91, respectively).

Towards robust complexity indices in linguistic typology [23]
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In addition, LEX is more strongly positively correlated to IWI (rmedian = 0.52,
95% CI [0.29, 0.69], BF=818.41) than negatively correlated to WID
(rmedian = −0.24, 95% CI [−0.48, 0.04], BF= 1.55), suggesting that languages encod-
ing more explicit information rely more heavily on syntax (as approximated by
IWI) than on morphology to do so. This is somewhat confirmed by the nega-
tive correlation also observed between LEX and GMC_W (rmedian =−0.36, 95%
CI [−0.57, −0.10], BF= 10.58) that illustrates that highly explicit languages tend to
adopt more lexical than morphological strategies.

Figure 11. Languages ranked by increasing Language EXplicitness (LEX). Marker
convention is shown in Figure 1b (also in Supplementary Information § 8.1)

6. Breaking the parallel corpus barrier: A proof of concept

6.1 Experimental framework

Most studies on language complexity, including the one presented in the previous
section, are based on parallel corpora with the assumption that they convey a
similar informational content and can consequently reveal the genuine cross-
language range of variation by neutralizing (or at least limiting) differences that
would be induced by semantic dissimilarities in non-parallel corpora. A few stud-
ies have nevertheless ventured into non-parallel territories (e.g. Kettunen 2014),
but comparing languages based on indices such as TTR remains a scaffolding
whose robustness is challenged by the results shown in the Morphological section
of this paper.

In this section, we investigate whether this parallelism constraint can be par-
tially relaxed while preserving robust and informative indices, using our results
on Word Information Density as a testbed. By definition a non-parallel dataset

[24] Yoon Mi Oh and François Pellegrino
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induces the existence of crosslinguistic differences in the amount of semantic
information encoded. The challenge in extending the WID approach to a non-
parallel dataset is thus to neutralize those differences and, in this section, we pro-
pose a proof of concept based on the utilization of a Transformer language model
to quantify this amount of semantic information (see below).

Figure 12 displays the implemented procedure. Three configurations are pre-
sented in the left (Full Parallel or FP), central (Pairwise Parallel or PP), and right
(Non-Parallel or NP) panels, respectively. In each panel, the datasets are schema-
tized by a box outlined in green, English (the reference language) is denoted in a
shaded box and the other languages in boxes outlined in gray. The modifications
in WID calculation induced by each configuration are shown in the formulas at
the bottom of the panels.

In the Full Parallel configuration (left panel), the dataset is unique and shared
by all languages, including English. This configuration is the one presented in
the previous sections: a common semantic information S is shared by all lan-
guages. As explained in Equation (2), WID then simplifies to the ratio between
the number of words in English and in any other language, and estimating S itself
is unnecessary. In the following, this WID index resulting from this configuration
is referred to as WID_FP in order to distinguish it from the other configurations
introduced hereafter. The equation shown at the bottom of the panel summarizes
WID_FP calculation and is identical to Equation (2).

In the Pairwise Parallel configuration (central panel), a different subset k
is analyzed for each language k and matched to its translation in English. The
semantic information is no longer the same across the languages, but for each
given language k, it is shared with its English counterpart on subset k. WID_PP
can be conveniently computed without explicit estimation of Sk (the semantic
information in subset k) since it reduces as previously to the ratio of the number
of words in subset k in English and in language k. One can nevertheless expect
that differences across datasets will result in fluctuations in word information
density estimations. The equation shown at the bottom of the panel summarizes
WID_PP calculation and its simplification.

In the Non-Parallel configuration (right panel), each language, including
English, is analyzed on a different subset. By definition, we now have different
semantic information Sk for each language, including English. Computing
WID_NP thus requires evaluating SENG for English and Sk for each other language
k, since those semantic components do not simplify anymore when the ratio
between language k and English is computed, as illustrated in Equation (8) where
Nk and NENG refer to the number of words in different subsets assigned to lan-
guages k and English respectively:
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(8)

We thus need a way to estimate Sk. In the next subsection, we will show how
semantic information can conceptually be connected to the information-
theoretical notion of surprisal and how a recent Transformer language model can
provide estimations of surprisal that satisfy our requirements.

Figure 12. Schematic representation of the three cross-linguistic estimations of Word
Information Density (WID) implemented. Left panel: Full Parallel configuration with a
common dataset for all languages. Central panel: Pairwise Parallel configuration, with a
shared subset for each language and its English translation but different subsets across
languages. Right panel: Non-Parallel configuration, with a different subset for each
language, including English

6.2 Evaluating information content

Several recent studies have convincingly showed that word-level and sentence-
level surprisals estimated with state-of-the-art Transformer language models are
intimately related to cognitive language processing, revealed by behavioral and
electrophysiological cues in experimental comprehension tasks (Merkx & Frank
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2021; Schrimpf et al. 2021; Wilcox et al. 2020). Word-level surprisal is inversely
linked to the predictability of a word given its context and as such, it quantifies
the information borne by this word and its cognitive processing cost (see Frank
2013, among many others).

A thorough analysis of these recent studies is beyond the scope of this paper
but they provide a solid ground for considering that the surprisal estimated by
such models is a good proxy of the amount of semantic information in a sen-
tence or verse. However, despite the impressive results achieved by these language
models on a few languages, their deployment in a multilingual context is still in
its infancy (for a discussion, see Gerz et al. 2018; Hollenstein et al. 2021; Mielke
et al. 2019, inter alia). This situation is rapidly improving but at the moment, the
absence of a robust multilingual language model able to correctly handle the spe-
cific 47 languages considered here leads us to consider for each subset k that the
semantic information Sk is correctly approximated by the surprisal estimated on
its English version.9 There is undoubtedly a speculative dimension here, because
using a text surprisal estimated in one language as a predictor of the surprisal of
a translated version in another language is not routinely done, meaning that our
approach is exploratory. This workaround is only temporary but we consider that
it still enables us to assess this approach as a proof of concept, leaving improve-
ments for further studies based on the ongoing research – especially on the multi-
lingual prediction of human reading times (associated to cognitive processing and
surprisal, see Hollenstein et al. 2022 for a recent evaluation).

As in the previous sections, we implemented a manifold repeated random
sampling in order to get an estimation of the procedure robustness. WID_FP
is estimated on 20 random subsets drawn from the whole corpus, as we did in
one configuration of the previous sections. In parallel, the whole corpus is ran-
domly split into N =47 subsets, corresponding to the 47 languages (including Eng-
lish). A twenty-fold permutation is then applied, in which each subset is randomly
assigned to a language and WID_PP and WID_NP are calculated following Equa-
tions (2) and (8) in each permuted configuration.

9. More specifically, we estimated surprisal at the verse level with the lm-scorer package down-
loaded from https://github.com/simonepri/lm-scorer, last access 2 December 2022, using the
GPT-2 model (Radford et al. 2019). More powerful language models have been released since
then, but performance optimization is not the goal of this exploratory study.
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6.3 Comparing information density estimations from parallel and non-
parallel corpora

Figure 13 displays the similarities and differences induced by the experimental set-
ting in terms of word information density ranking. In each panel, the left column
indicates the original ranks assessed using the whole parallel corpus (these ranks
are thus identical to the leftmost ones reported in Figure 9 in the WID panel)
while the right column shows the average rank over the twenty-fold sampling for
WID_FP, WID_PP, and WID_NP in left, central, and right panel respectively. By
construction, the left panel shows results identical to the WID panel shown in
Figure 9, with only three rank swaps between WID on the whole dataset and the
20-fold subset sampling. As expected, relaxing the parallelism constraints intro-
duces larger differences: ranking is modified for 22 languages and 18 languages
in the WID_PP and WID_NP configurations, respectively. Most alterations nev-
ertheless remain between adjacent languages, except for German and Khoekhoe
which nevertheless stay in the same central area of the distribution. In other
words, WID estimations remain remarkably consistent despite introducing fluc-
tuations due to the use of different subsets across languages.

Figure 13. Comparison of the information density computed on the whole corpus (WID,
left column in each panel) and the information densities implemented following Figure 12
(right column in each panel)
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This result is corroborated by the scatterplot of the 20 subsets per language
in the two-dimension space defined by WID_PP and WID_NP (Figure 14, back-
ground panel). The consistent ranking of the languages translates in a very high
global correlation which is higher than one would get if semantic information was
not taken into consideration, as revealed by comparing the actual correlation (red
vertical line on the superimposed panel in Figure 14) to a distribution of simu-
lated subsets with a 1000-fold shuffling of the semantic content associated with
each subset (histogram in yellow on the same panel). This high positive correla-
tion is partially due to differences among languages in terms of basic properties
such as the average number of words per verse for instance and can thus hide a
more complex reality within each language’s dataset (a phenomenon known as
Simpson’s paradox, Blyth 1972). A visual inspection nevertheless reveals that a
within-language positive correlation between WID_PP and WID_NP is present
in 40/46 languages while a majority of their randomized counterparts logically
exhibit a negative or no correlation at all (see Supplementary Information §6.3.3
and §6.3.4). In other words, for most languages, taking the semantic information
approximated by a language model into account brings substantial information
on the WID that would be calculated from the parallel version, both ruling out
a pure “Simpsonian” correlation and supporting the initial assumption that sur-
prisals calculated on English versions are informative on the semantic informa-
tion present in their translated counterparts.

7. General discussion

In this paper, we first presented our main objective consisting in evaluating to
which extent language comparisons based on raw complexity indices are reliable
and robust against corpus content variation. Once this methodological goal set,
we briefly presented several indices that have been used as yardsticks for mea-
suring complexity in a typological perspective. It led us to select several indices
computable from raw texts and that globally encompass morphological complex-
ity rather than just inflectional morphology (Section 2).

In Section 4, we started by projecting the languages from our corpus (intro-
duced in Section 3) into a bidimensional space defined by two complexity indices
derived from WALS and AUTOTYP (GMC_W and GMC_A respectively). The
moderate positive correlation present between these grammar-based indices calls
for caution in their interpretation, since they only provide partial views on the
overall morphological complexity. They nevertheless offer a rich and insightful
background for systematically assessing the sensitivity of four indices of morpho-
logical complexity (TTR, H, MTLD, and WID) against variation in the dataset

Towards robust complexity indices in linguistic typology [29]
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Figure 14. Large panel: Comparison between information densities estimated from Non-
Parallel and Pairwise-Parallel configurations (20 subsets per language). Small panel:
Comparison of the observed global correlation on the large panel (red vertical line) and
the distribution of correlations obtained from 1000 randomized permutations (histogram
in yellow)

on which they are estimated. Results show that while the indices positively cor-
relate, partially encoding similar information, MTLD and WID are much more
consistent in language complexity ranking than TTR or H across different dataset
sizes and contents (results summarized in Figure 9). As a consequence, we insist
on the fact that the interpretation of crosslinguistic differences in TTR and H
should be cautious, and instead, we would suggest adopting MTLD or WID as
more robust comparison metrics. Since this stress test was only performed on
variable subsampled subsets of the Parallel Bible Corpus, we consider that repli-
cating this observation on more diverse corpora will be a welcome improvement
in the future. MTLD (introduced in McCarthy & Jarvis 2010) is not conceptually
different from TTR and H since it is derived from the type and token frequencies
estimated in the dataset.10 In contrast, WID (introduced in Pellegrino et al. 2011)

10. MTLD is also conceptually similar to another variation of TTR designed to deal with
disparities across corpora, namely MATTR (Covington & McFall 2010), briefly mentioned in
Section 2. However, MATTR is based on a sliding analysis window whose length should be
manually set, with a recommended minimum length of a few hundred words, which can be
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relies on a normalization with regard to a reference language (set to English in our
study), and thus falls into the category of translation-based indices. It is robust,
even on small subsets, and natively interpretable in a crosslinguistic framework,
being comparative by design.

In Section 5, we confirmed that WID is meaningful as a morphological com-
plexity index by showing that it is engaged in a multilingual trade-off with the
pseudo-syntactic complexity (IWI) assessed by a randomized compression
method (Figure 10). This result replicates previous findings (e.g. Koplenig et al.
2017, but see also Gutierrez-Vasques & Mijangos 2020 for a different perspective)
and extends them: because WID and IWI are both unitless and normalized with
regard to English, we can define Language EXplicitness (LEX) as their product,
giving an insightful perspective on how different languages behave regarding their
explicit vs. implicit information encoding. Another important aspect in our opin-
ion is that these results are obtained on a corpus of 47 languages, which is by no
means impressive in terms of coverage of the world’s languages but still offers a
diversity sufficient to give a gist of the shape and range of the complexity distribu-
tion one can expect. We thus advocate that, beside large-scale studies – especially
useful for assessing statistical significance and defining the mathematical relation-
ship binding several variables – there is still room for smaller scale studies as long
as enough geographical and typological diversity is taken into consideration. In
such a study for instance, it is quite easy to see how a specific language behaves
and to take advantage of linguistic expertise, either encoded in WALS and AUTO-
TYP frameworks for instance, or directly by visually inspecting the language dis-
tributions.

In Section 6, we explored a quite different direction by bridging typological
motivations and deep learning language models. We proposed a proof of concept
which shows that, under certain circumstances, one can depart from strictly par-
allel corpora and still assess word information densities in a robust enough way
that permits cross-linguistic comparisons, thanks to recent progress in natural
language processing. The implemented approach nevertheless suffers from sev-
eral limitations.

First, by subsampling our corpus, we introduced differences in the texts used
for each language, but the general style and topic remain similar (excerpts of the
King James Version of the bible). It means that the intrinsic coherence existing
across the verses in terms of narration and vocabulary is partially preserved, lead-
ing to a high comparability of the semantic content across the datasets. There is no

problematic for the very small subsets we used here. In addition, Wu et al. (2019) showed that
MTLD is more sensitive than MATTR in assessing meaningful differences in the context of lan-
guage acquisition.
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doubt that selecting more diverse language-specific datasets would increase varia-
tion in the informational content. Future studies will show whether the approach
proposed here is viable in this context, but several encouraging observations can
be drawn: (i) WID is based on densities defined as the ratio of a text informational
content divided by its length. Adopting a diversified dataset will influence both
the numerator and the denominator, and one can expect that language-specific
regularities will preserve some invariance in WID; (ii) in the present study, each
subset is very small (24 verses per language, because we needed distinct subsets
for the 47 languages). Larger and more diverse corpora (both across-languages
and within-language) will likely yield more robust and less text-specific estima-
tions. (iii) Semantic embeddings (Mikolov et al. 2013) are methods developed to
represent texts in a vector space sensitive to syntactic and semantic relationships.
Initially developed in a monolingual framework, they can now provide a multilin-
gual embedding space shared across an increasing number of languages (Artetxe
& Schwenk 2019), paving the way to more accurate estimation of components of
WID mostly influenced by the language itself or more idiosyncratic aspects (topic,
style, register).

Secondly, this approach requires an estimation of the informational content
of texts for each of the languages considered. Using the English version of the
texts as a workaround is a trick in the sense that it considers this problem solved,
by projecting all languages in the English language semantic and informational
space. While not perfect, we argue that this kind of approach, somehow akin to
the Wizard of Oz paradigm used in human-computer interfaces research, is a
necessary step while the development of multilingual language models is still in
progress. Even if reasonably optimistic on the future improvement of multilin-
gual language models such as XLM (Conneau et al. 2019), available for 100 lan-
guages, we still consider their use for typological purposes problematic as long
as they do not guarantee that their language-specific representations are directly
comparable. In a sense, Gerz and her colleagues (Gerz et al. 2018) rightly advo-
cate for taking typological considerations into account for developing “next-level
language-agnostic [Language Model] Architecture”, coining an oxymoron that is
still to be solved (see also Lake & Murphy 2021 and Rust et al. 2020 for a broader
perspective).

Such language models have nevertheless undergone tremendous improve-
ments since the introduction of the Transformer architecture (Vaswani et al. 2017,
see also Wolf et al. 2020 for an introduction) and they can already help linguists
to break the parallel corpus barrier. Additionally, adopting a complexity stand-
point provides a promising avenue to mediate the dialogue between the linguistic
typology and the NLP communities in a multilingual perspective. Indeed, several
recent papers have investigated the intertwined relationship between the perfor-
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mances reached by modern language model architectures and languages’ typo-
logical features (see Gerz et al. 2018; Ponti et al. 2019, inter alia) and advocated
for this much necessary cross-fertilization (see Choenni & Shutova 2020 and
Gutierrez-Vasques et al. 2021 for fruitful examples).

8. Conclusions

In this study, we demonstrate a proof of concept suggesting that recent language
models can improve the comparability across language corpora, both parallel and,
as we believe, non-parallel ones. We consider that the methodologies introduced
in this paper are an important and necessary step for the extension of quantita-
tive complexity studies towards more natural and more diverse corpora than the
ones traditionally used, often limited to religious or administrative texts. Obvi-
ously, even considering more diversified textual sources is not enough to get a
comprehensive grasp on language diversity. As mentioned in the introduction
(and advocated in Haig et al. 2021), there is an urgent need to study multilingual
speech corpora recorded in natural interactions or narration if we want to put
the notion of language complexity in its right place: as an indicator of a complex
adaptive system at work where several dynamic mechanisms “mesh in the current
moment” (MacWhinney 2005: 191, italics in the original). In this respect, ongo-
ing initiatives such as the Multi-CAST (Haig & Schnell 2022), DoReCo (Paschen
et al. 2020), and SCOPIC (Barth & Evans 2017) projects are important to offer
a rich and diversified material for studying natural language and the reciprocal
influences at play between grammar and real-time temporal constraints of speech,
such as the ones recently demonstrated (e.g. Cohen Priva 2017; Coupé et al. 2019;
Meister et al. 2021; Pimentel et al. 2021).
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