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Reverberant Audio Blind Source Separation via Local Convolutive Independent Vector Analysis

In this paper, we propose a new formulation for the blind source separation problem for audio signals with convolutive mixtures to improve the separation performance of Independent Vector Analysis (IVA). The proposed method benefits from both the recently investigated convolutive approximation model and the IVA approaches that take advantages of the cross-band information to avoid permutation alignment. We first exploit the link between the IVA and the Sparse Component Analysis (SCA) methods through the structured sparsity. We then propose a new framework by combining the convolutive narrowband approximation and the Windowed-Group-Lasso (WGL). The optimisation of the model is based on the alternating optimisation approach where the convolutive kernel and the source components are jointly optimised.

I. INTRODUCTION

The Blind Source Separation (BSS) recovers source signals from observed mixtures without knowing the mixing system. The mixing model is:

x m (t) = N n=1 h mn (t) * s n (t) + n m (t), (1) 
where s n (t) is the n-th source signal and x m (t) is the m-th mixture. N and M are the numbers of sources and mixtures respectively. h mn (t) is the Room Impulse Response (RIR) and n m (t) is the additive Gaussian white noise. We denote s img mn (t) the image of the n-th source at the m-th microphone.

The BSS with convolutive mixtures (1) is usually tackled in each frequency bin with the help of the Short-Time-Fourier-Transform (STFT) based on the narrowband approximation [START_REF] Kellermann | Wideband algorithms versus narrowband algorithms for adaptive filtering in the dft domain[END_REF]. More precisely, the convolutive mixtures are approximated by instantaneous mixtures (multiplicative approximation) in each frequency bin, such that the Frequency-Domain Independent Component Analysis (FDICA) [START_REF] Sawada | Grouping separated frequency components by estimating propagation model parameters in frequency-domain blind source separation[END_REF], Sparse Component Analysis (SCA) [START_REF] Yilmaz | Blind separation of speech mixtures via time-frequency masking[END_REF]- [START_REF] Feng | Underdetermined reverberant blind source separation: Sparse approaches for multiplicative and convolutive narrowband approximation[END_REF], Independent Vector Analysis (IVA) [START_REF] Kim | Blind source separation exploiting higher-order frequency dependencies[END_REF], or Nonnegative Matrix Factorisation (NMF) methods [START_REF] Sawada | Multichannel extensions of non-negative matrix factorization with complex-valued data[END_REF], [START_REF] Ozerov | Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation[END_REF] can be applied.

The FDICA methods assume that the source components in each frequency bin are independent and look for a separation matrix that minimizes a contrast function. SCA assumes that the source signals are sparse in the time-frequency domain and formulate the separation problem into an optimization [START_REF] Feng | Underdetermined reverberant blind source separation: Sparse approaches for multiplicative and convolutive narrowband approximation[END_REF], [START_REF] Zibulevsky | Blind source separation by sparse decomposition in a signal dictionary[END_REF] or a clustering framework [START_REF] Yilmaz | Blind separation of speech mixtures via time-frequency masking[END_REF], [START_REF] Sawada | Underdetermined convolutive blind source separation via frequency bin-wise clustering and permutation alignment[END_REF]. Because of the permutation indetermination, the separation in each frequency bin is followed by an alignment step to group the separated components from the same source in different frequency bins. This alignment is usually tackled based on the Time-Difference-of-Arrival (TDOA) [START_REF] Duong | Underdetermined reverberant audio source separation using a full-rank spatial covariance model[END_REF], beamforming [START_REF] Muhammad | A beamforming approach to permutation alignment for multichannel frequency-domain blind speech separation[END_REF] or the inter-frequency correlation of the separated source components [START_REF] Sawada | Underdetermined convolutive blind source separation via frequency bin-wise clustering and permutation alignment[END_REF], [START_REF] Murata | An approach to blind source separation based on temporal structure of speech signals[END_REF]. IVA is an extension of FDICA as it assumes the same amount of statistical dependency within neighboring frequency bins to avoid the permutation alignment [START_REF] Ikeshita | Independent vector analysis with frequency range division and prior switching[END_REF]. It generally assumes a spherical multivariate distribution as the source model to ensure higher-order correlations between frequency bins. NMF-based approaches assume that the source spectrograms can be decomposed into several spectral bases and temporal activations [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF], [START_REF] Smaragdis | Non-negative matrix factorization for polyphonic music transcription[END_REF], and use the spatial covariance [START_REF] Duong | Underdetermined reverberant audio source separation using a full-rank spatial covariance model[END_REF], [START_REF] Nikunen | Direction of arrival based spatial covariance model for blind sound source separation[END_REF], [START_REF] José Carabias-Orti | Multichannel blind sound source separation using spatial covariance model with level and time differences and nonnegative matrix factorization[END_REF] to model the mixing conditions. It is important to notice that the permutation alignment is not necessary for NMFbased methods because the cross-band information is taken into account.

The convolutive approximation is initially introduced in [START_REF] Avargel | System identification in the short-time fourier transform domain with crossband filtering[END_REF], [START_REF] Talmon | Relative transfer function identification using convolutive transfer function approximation[END_REF] for system identification problems. It was shown recently that the convolutive approximation models better the mixtures than the multiplicative approximation [START_REF] Feng | Underdetermined reverberant blind source separation: Sparse approaches for multiplicative and convolutive narrowband approximation[END_REF], [START_REF] Li | Multichannel speech separation and enhancement using the convolutive transfer function[END_REF]. Being a generalization of the multiplicative approximation, the convolutive approximation can be written as follows:

x(f, τ ) ≈ N n=1 K k=1 hn (f, k)s n (f, τ -k), (2) 
where hn (f, k) = h1n (f, k), . . . , hMn (f, k)

T contains the RIRs of the n-th source in the time-frequency domain and K is the length of the convolution kernel. x(f, τ ) contains the STFT coefficients of the observations and sn (f, τ ) is the coefficient of s n (t).

By concatenating the time-frequency samples, the above formulation (2) can be rewritten with the tensoriel notations:

X = H f S, (3) 
where

X ∈ C M ×L F ×L T , S ∈ C N ×L F ×L T and H ∈ C M ×N ×K×L F .
L F and L T are respectively the number of temporel and frequency samples in the time-frequency domain.

f denotes the frequency-wise convolutive mixing process [START_REF] Feng | Underdetermined reverberant blind source separation: Sparse approaches for multiplicative and convolutive narrowband approximation[END_REF].
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In this paper, we generalise the IVA into an optimisation framework with the convolutive approximation model and propose a new separation algorithm with the help of the Windowed-Group-Lasso operator [START_REF] Feng | Hybrid model and structured sparsity for under-determined convolutive audio source separation[END_REF]. The new algorithm benefits from both the advantages of convolutive approximation and the IVA. In particular, it suits better the original timedomain mixing model than the multiplicative approximation in the same STFT parameter setting and avoids the permutation alignment because of the higher-order inter-frequency correlation. It's the first time, to the best of our knowledge, that such a method is proposed.

The paper is organized as follows. We first investigate the link between the IVA source model and the mixed norm [START_REF] Kowalski | Sparse regression using mixed norms[END_REF] in an optimization framework in section II. The new algorithm that combines the convolutive approximation and the local structures of audio signals is then described in the section III. Numerical evaluations are performed in the section IV and we conclude the paper in the section V.

II. IVA AND STRUCTURED SPARSITY

In the following, we present the basic idea of IVA and discuss the passage from IVA to the structured sparsity.

A. From IVA to Group-Lasso

The key idea behind IVA is that all of the frequency components of the same source are regarded as a single vector [START_REF] Lee | Independent vector analysis based on overlapped cliques of variable width for frequency-domain blind signal separation[END_REF]. It avoids the permutation by exploiting the higher-order correlation of different frequency bins. Such inter-frequency correlation also improves the separation performance compared to FDICA [START_REF] Kim | Blind source separation exploiting higher-order frequency dependencies[END_REF]. In particular, the STFT coefficients of the source signals are modeled as a multivariate vector variable that groups all the frequency bins S n,τ ∈ C L F . A super-Gaussian spherical multivariate distribution 1 is then considered as the prior distribution of the source p(S n,τ ) [START_REF] Kim | Blind source separation exploiting higher-order frequency dependencies[END_REF]:

p(S n,τ ) = ρ exp   - L F f =1 S n,f,τ r n,τ 2   , (4) 
where ρ is a normalization term and r n,τ is the uniform variance on the frequency bins, which corresponds to the power spectra of each source. This spherical symmetric distribution of the source ensures a higher-order correlation between the frequency bins [START_REF] Kim | Blind source separation exploiting higher-order frequency dependencies[END_REF].

If we assume that r n,τ = r, then the negative log-likelihood of the prior distribution ( 4) is proportional to a Group-Lasso type penalty term as:

-log p(S n,τ ) ∝ n,τ L F f =1 |S n,f,τ | 2 = n S n 2,1 . (5) 
A similar discussion also appeared in [START_REF] Yatabe | Time-frequency-masking-based determined BSS with application to Sparse IVA[END_REF]. With the above penalty term, an SCA type optimization framework can be obtained with the convolutive approximation (3) as:

min H,S 1 2 X -H f S 2 F + λ n S n 2,1 + p(H), (6) 
1 The spherical Laplacian distribution is often used.

where • F is the Frobenius norm and the data term takes into account the approximation error. p(H) is an indicator function such that m,k |H m,n,k,f | 2 = 1 to avoid the trivial solutions due to the scaling ambiguity between H and S. λ is a hyperparameter between the data term and the penalty term

n S n 2,1 .
Compared to IVA, this proposed separation approach is based on the convolutive approximation that suits better the temporal mixtures. Compared to the convolutiveapproximation-based C-PALM [START_REF] Feng | Underdetermined reverberant blind source separation: Sparse approaches for multiplicative and convolutive narrowband approximation[END_REF], this approach exploits the cross-band information that improves the separation and avoids the permutation alignment.

B. Minimization

The optimization problem ( 6) is non-convex and nondifferentiable. We propose, in this paper, to solve it with the iterative method based on the well studied proximal operator [START_REF] Patrick | Proximal splitting methods in signal processing[END_REF]. The definition of the proximal operator is given below along with two propositions: Definition 1. Let ψ be a convex lower semi-continuous function. The associated proximal operator is given by:

prox ψ (z) = argmin u 1 2 z -u 2 2 + ψ(u). (7) 
The norm 2,1 is a convex lower semi-continuous function, non-differentiable in 0 whose proximal operator can be computed in closed form.

Proposition 1. The proximal operator associated with the mixed norm prox λ • 2,1 is given by the following element-wise thresholding [START_REF] Kowalski | Sparse regression using mixed norms[END_REF]:

Ŝn,f,τ = S n,f,τ 1 - λ S n,τ 2 + , (8) 
where (z) + = max(0, z).

Proposition 2. The proximal operator associated with the indicator function p(H) reduces to a projection operator P(H) [START_REF] Feng | Underdetermined reverberant blind source separation: Sparse approaches for multiplicative and convolutive narrowband approximation[END_REF]:

Ĥm,n,k,f = H m,n,k,f m,k |H m,n,k,f | 2 . ( 9 
)
With the above operators, the minimization problem (6) can be solved with the PALM type alternating minimization techniques [START_REF] Bolte | Proximal alternating linearized minimization for nonconvex and nonsmooth problems[END_REF].

III. LOCAL CONVOLUTIVE INDEPENDENT VECTOR ANALYSIS (LCIVA)

Although IVA has its advantages compared to other approaches, it is mentioned in [START_REF] Kitamura | Determined blind source separation unifying independent vector analysis and nonnegative matrix factorization[END_REF], [START_REF] Ikeshita | Independent low-rank matrix analysis with decorrelation learning[END_REF] that the IVA methods do not suit the multi-component signal such as music signals. Several works have been proposed to reconsider the grouping of the set of all frequency bins to improve the IVA performance [START_REF] Ikeshita | Independent vector analysis with frequency range division and prior switching[END_REF], [START_REF] Lee | Independent vector analysis based on overlapped cliques of variable width for frequency-domain blind signal separation[END_REF], [START_REF] Jang | Independent vector analysis using non-spherical joint densities for the separation of speech signals[END_REF]. In particular, based on the assumption that the statistical dependency between adjacent frequency components is larger than that between distant components, the authors of [START_REF] Ikeshita | Independent vector analysis with frequency range division and prior switching[END_REF], [START_REF] Lee | Independent vector analysis based on overlapped cliques of variable width for frequency-domain blind signal separation[END_REF], [START_REF] Jang | Independent vector analysis using non-spherical joint densities for the separation of speech signals[END_REF] proposed to group the frequency bins into several overlapping cliques to break the direct dependency between distant frequency bins. Based on the multiplicative approximation model, the experiments in [START_REF] Ikeshita | Independent vector analysis with frequency range division and prior switching[END_REF], [START_REF] Lee | Independent vector analysis based on overlapped cliques of variable width for frequency-domain blind signal separation[END_REF], [START_REF] Jang | Independent vector analysis using non-spherical joint densities for the separation of speech signals[END_REF] confirm the advantages of this approach compared in IVA for speech signals.

In this paper, we propose to relax the Group-Lasso operator by the Windowed-Group-Lasso (WGL) operator which is able to exploit the local cross-band information. Indeed, forcing the same activity pattern for all the frequency bins is too strong in practice because the activity patterns of audio signals can be very different for low and high-frequency ranges [START_REF] Sawada | Underdetermined convolutive blind source separation via frequency bin-wise clustering and permutation alignment[END_REF], [START_REF] Ikeshita | Independent vector analysis with frequency range division and prior switching[END_REF].

Being a generalization of the Group-Lasso, the WGL operator is defined [START_REF] Kowalski | Social sparsity! neighborhood systems enrich structured shrinkage operators[END_REF] as follows:

Ŝ = S WGL λ (S) such that for all n, f, τ, Ŝn,f,τ = S n,f,τ     1 - λ (f ,τ )∈N n,f,τ |S n,f ,τ | 2     + , (10) 
where N n,f,τ is a pre-defined neighborhood of the timefrequency index (f, τ ) for the n-th source. We choose here a neighborhood that groups the frequency bins for each time index τ . The size of the neighborhood reveals the range of the "similar" frequency bins that we want for each frequency. Large range groups more frequency bins thus helps better the permutation alignment, while a small range exploits better the local structure. Therefore, the size of the neighborhood has to be well chosen which is discussed in the experiment section. When the size of the neighborhood equals to 100% of the number of frequency bins L F , the WGL operator reduces to the proximal operator of the Group-Lasso and we have the solution of the problem [START_REF] Kim | Blind source separation exploiting higher-order frequency dependencies[END_REF]. Based on the PALM algorithm that solves the problem (6), the proposed algorithm for LCIVA is summarized in the following Algorithm 1 where L A and L S are the Lipschitz constants that can be calculated with the Power Iteration [START_REF] Feng | Underdetermined reverberant blind source separation: Sparse approaches for multiplicative and convolutive narrowband approximation[END_REF].

Algorithm 1: LCIVA Initialization : S ∈ C N ×L F ×L T , H ∈ C M ×N ×K×L F ; repeat
Update the source coefficients by gradient descent followed by the proximal operator [START_REF] Duong | Underdetermined reverberant audio source separation using a full-rank spatial covariance model[END_REF]:

S ← S -H H f (H f S -X) /L S ; S ← S WGL λ (S);
Update the mixing kernels by gradient descent followed by the normalization projection ( 9):

H ← H -(H f S -X) f S H /L A ;
H ← P(H); until convergence;

IV. EXPERIMENTS

The experimental study is based on a classical protocol in which the most relevant parameters are varied and different combinations are made to scan a large number of scenarios.

A. Experimental setup

We evaluate the proposed algorithm in the determined stereo (M=2, N=2) setting with the configuration shown in Fig. 1. The reverberation is RT 60 = 130 or 250 ms and the distance between the two microphones is 4 cm. The RIRs are simulated via the toolbox [START_REF] Lehmann | Prediction of energy decay in room impulse responses simulated with an image-source model[END_REF] using the image source method [START_REF] Jont | Image method for efficiently simulating small-room acoustics[END_REF]. We take audio sources of three categories (music, singing, and drum) from [START_REF] Vinyes | MTG MASS database[END_REF] to form four types of combinations (mu-sic+music, music+singing, music+drum, and singing+drum) with 4 sets of sources for each combination. The sample rate is 14.7 kHz. The STFT window length is 69.7 ms with the window shift being 17.4 ms. These parameters are chosen to preserve the local stationarity of audio signal without bringing too mush computational costs [START_REF] Feng | Underdetermined reverberant blind source separation: Sparse approaches for multiplicative and convolutive narrowband approximation[END_REF]. The configuration of the experiments are summarized in Table I. The proposed LCIVA is initialized with Gaussian random signals with the continuation trick [START_REF] Hale | Fixed-point continuation for 1 -minimization: Methodology and convergence[END_REF]: we first run the algorithm with a large value of λ, then iteratively decrease the value of λ to the desired value. We stop the iterations when the relative square error is inferior to 10 -4 . The separation performance is evaluated with the signal to distortion ratio (SDR), signal to interference ratio (SIR), source image to spatial distortion ratio (ISR) and signal to artifact ratio (SAR) [START_REF] Vincent | Performance measurement in blind audio source separation[END_REF] which is the standard approach in the specialized scientific community to evaluate the quality of separated signals. The SDR reveals the overall quality of each estimated source. SIR indicates the crosstalk from other sources. ISR measures the amount of spatial distortion and SAR is related to the amount of musical noise.

B. Performance as a function of the kernel length

The convolution kernel length K is pre-defined and directly linked to the reverberation time [START_REF] Feng | Underdetermined reverberant blind source separation: Sparse approaches for multiplicative and convolutive narrowband approximation[END_REF]. We evaluate the proposed LCIVA as a function of the kernel length for music+music with a neighborhood size fixed to 78%. Fig. 2 shows the result for RT 60 = 130 and 250 ms respectively. We choose λ → 0 for the hyper-parameter which is a valid choice for the considered noiseless scenario [START_REF] Kowalski | Beyond the narrowband approximation: Wideband convex methods for underdetermined reverberant audio source separation[END_REF]. For RT 60 = 130 ms, the best performance in terms of SDR, SIR and ISR is achieved when the kernel length is around 90 ms. For RT 60 = 250 ms, a compromise has to be made between the SDR (ISR) and the SIR and we conclude that the best performance is achieved with a kernel length being around 100 ms. These observations coincide with the fact that smaller kernel length fails to capture the reverberation condition and larger kernel length fails to meet the approximation in the algorithm, especially for the calculation of the Lipschitz constants [START_REF] Feng | Underdetermined reverberant blind source separation: Sparse approaches for multiplicative and convolutive narrowband approximation[END_REF]. The comparison between the two reverberation conditions also confirms the conclusion that long reverberation time deteriorates the separation [START_REF] Yoshioka | Blind separation and dereverberation of speech mixtures by joint optimization[END_REF]. These experiments offer empirical choices for the kernel length. In the following, we fixed the reverberation time to RT 60 = 250 ms and we choose a kernel length of 104.4 ms.

C. Performance as a function of the sparsity level

The hyper-parameter λ in LCIVA controls the sparsity level2 of the estimated source signals. A higher value of λ results in a higher sparsity level. In the noiseless case, λ → 0 should be empirically chosen so as not to do any denoising [START_REF] Kowalski | Beyond the narrowband approximation: Wideband convex methods for underdetermined reverberant audio source separation[END_REF]. Nonetheless, we show the separation performance of the LCIVA for music+music as a function of the sparsity level of the estimated sources in Fig. 3. The neighborhood size is fixed to 78%.

As expected, the best performance in terms of SIR and ISR is obtained with the lowest sparsity level. However, it is interesting to notice that the performance is slightly improved (by about 0.1 dB) when the sparsity level is around 7% in terms of SDR and SAR. This observation validates the advantage of the proposed optimization framework which is able to take the approximation error into account. In the following experiments, we choose λ → 0.

D. Performance as a function of the neighborhood size

We evaluate the LCIVA algorithm as a function of the neighborhood size. In order to show that the cross-band information does not only avoid the permutation alignment but also improves the separation, we cancel here the alignment effect of the proposed approach by designing an oracle alignment to have the best alignment possible. In particular, we look for, in each frequency, the permutation that maximizes the correlation between the estimated and the original source. The Fig. 4 illustrates the performance of the LCIVA as a function of the neighborhood size with and without the oracle permutation.

It is natural that the additional oracle permutation improves the performance. In terms of SDR and SIR, the best performance of LCIVA+oracle permutation is achieved when the neighborhood size is around 80%. The variation of the performance of LCIVA+oracle permutation validates that the cross-band information does not only avoid the permutation alignment but also improves the separation. It is also important to notice that the LCIVA without the oracle permutation also achieves its best performance in terms of SDR, SIR, and ISR when the neighborhood size is around 80%.

E. Performance compared with the state-of-the-art methods

We compare in this subsection the performance of the LCIVA with the state-of-the-art methods: C-PALM [START_REF] Feng | Underdetermined reverberant blind source separation: Sparse approaches for multiplicative and convolutive narrowband approximation[END_REF], Fullrank (Full) [START_REF] Duong | Underdetermined reverberant audio source separation using a full-rank spatial covariance model[END_REF], Bin-wise (Bin) [START_REF] Sawada | Underdetermined convolutive blind source separation via frequency bin-wise clustering and permutation alignment[END_REF], auxIVA [START_REF] Ono | Stable and fast update rules for independent vector analysis based on auxiliary function technique[END_REF] and MNMF [START_REF] Sawada | Multichannel extensions of non-negative matrix factorization with complex-valued data[END_REF]. All four combinations of the source signals are tested. For LCIVA, three different sizes of neighborhood are tested. The same kernel length is chosen for C-PALM and LCIVA. Fig. 5 shows the results 3 . LCIVA and C-PALM show significant advantages for singing+drum thanks to the convolutive approximation and because the inter-frequencycorrelation-based permutation alignment used in C-PALM is suitable for speech (singing) signals [START_REF] Sawada | Underdetermined convolutive blind source separation via frequency bin-wise clustering and permutation alignment[END_REF]. LCIVA performs better than C-PALM for music+drum in terms of SDR and SIR thanks to the cross-band information. LCIVA shows better performance than other methods with neighborhood size percentage equaling 78% for music+music.

V. CONCLUSION

For the BSS problem with convolutive mixtures, we generalise the IVA into an optimisation framework with convolutive approximation model. We show that the a priori distribution of the source signals in IVA methods can be rewritten in the form of a penalty term with a mixed norm, and can then be associated with the convolutive approximation in an optimization framework. We then generalize the obtained algorithm with the Windowed-Group-Lasso operator to exploit the local crossband information. We show by experiments that the crossband information can not only avoid the permutation alignment but also improve the separation performance. The numerical evaluations also show the benefits of LCIVA compared to the state-of-the-art methods, especially for music and drum signals. The proposed LCIVA works only in determined case for now. It would be interesting to generalize the proposed method to underdetermined scenarios where the number of microphones is less than the number of sources. 

Fig. 1 .

 1 Fig. 1. The room configuration. The size of the room is 4.45 m × 3.55 m × 2.5 m. The distance between the two sources and the center of the microphones is 1.2 m. The height of microphones and the sources is 1.2 m.
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 2345 Fig. 2. The separation results of the proposed LCIVA with different kernel length K.

The sparsity level in this paper is defined as the percentage of zero elements in a vector or a matrix. A high sparsity level indicates a sparse vector or matrix.

For some of the methods listed, their performance may be different from that reported in their original articles because of the used STFT parameters and the dataset.