
HAL Id: hal-03916103
https://hal.science/hal-03916103

Submitted on 18 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Human Motion Likelihood Representation Map-Aided
PDR Particle Filter

Mohamed Anis Ghaoui, Bastien Vincke, Roger Reynaud

To cite this version:
Mohamed Anis Ghaoui, Bastien Vincke, Roger Reynaud. Human Motion Likelihood Represen-
tation Map-Aided PDR Particle Filter. IEEE Sensors Journal, 2022, 23 (1), pp.484 - 494.
�10.1109/jsen.2022.3222639�. �hal-03916103�

https://hal.science/hal-03916103
https://hal.archives-ouvertes.fr


Human Motion Likelihood Representation Map-aided PDR Particle Filter

Mohamed Anis Ghaoui∗, Bastien Vincke, and Roger Reynaud †‡

15-sept-2022

Abstract

Indoor localization systems are seeing increasing demand.
Those for pedestrians are receiving a particular focus. Some
of these systems leverage Inertial Measurement Unit (IMU)
data collected from a device worn by the pedestrian. The
IMU data are used to predict and estimate the pedestrian’s
location. This paper proposes a system based on a Pedes-
trian Dead Reckoning (PDR) and Particle Filter (PF) with
human motion likelihood grid and floor map filtering. We set
an evaluation method by creating pedestrian ground truth
landmarks and by measuring statistical properties at these
landmarks allowing the comparison to similar techniques.
The algorithms, implementation, landmarks, and data used
for the experiments of this paper are available as free Open
Source.

Keywords: Indoor Localization, Pedestrian Dead Reck-
oning, Particle Filter, Floor Map, Human Motion, Likeli-
hood Grid.
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1 Introduction

Localization is one of the most desired services that has
been developing over the last decades due to the increas-
ing demand of Location-Based Services [1, 2]. Outdoor lo-
calization has reached a satisfying level of maturity and
consumer-ready solutions exist, thanks to satellite-based so-
lutions like Global Navigation Satellite System. Indoor lo-
calization techniques see efforts to enhance their capabilities
in terms of accuracy, uncertainty, and price. Since satel-
lite signals cannot be received in indoor environments, other
ways to locate a device were sought. There are numerous
techniques that deploy an infrastructure using various tech-
nologies such as WiFi [3], Bluetooth [4], UWB [3], RFID [5]
or vision-based [6]. These techniques can have prohibitive
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deployment and energy costs and are often considered in-
trusive [7]. Others worked on self-contained techniques that
use embedded sensors when using wearable embedded sen-
sors [8].

A phone is the typical consumer device that is ubiqui-
tous and always carries an Inertial Measurement Unit (IMU)
which enables a self-contained navigation technique: Inertial
Navigation System (INS). INSs are attractive because IMUs
are reliable, cheap, omnipresent, have a high data rate and
low power.

Pedestrian Dead-Reckoning (PDR) seems a promising
technique. It leverages accelerometer, gyroscope, and mag-
netometer data to reconstruct the displacement of each step
of a pedestrian. However, in an indoor environment, the
magnetometer data is often considered partially or totally
unusable [9], making the PDR a relative positioning system
to its starting position.

The Particle Filter (PF) models the dynamics of the local-
ization problem by representing the hypotheses space with
individual particles and by adding randomness during par-
ticles’ propagation. This randomness is related to the IMU
sensors noises. The PF is particularly interesting in the
case of indoor localization because of the ability to fuse a
new type of information [10]: the indoor map. Indoor maps
are mathematical objects that represent some geometrical
and/or semantic information to describe the indoor environ-
ment. They can be represented in various forms and levels
of details such as floor maps, grids, and spatial graphs [11].
In this paper, we pick up on the works of [12], analyze it
and propose an enhancement. We are particularly inter-
ested in leveraging the human motion likelihood extracted
from a map in the form of a grid. We gradually explain
the steps that led to the final result and the impact of this
behavior described by the grid. This grid is different from
an occupancy grid used in probabilistic robotic localization.
Our grid is a mapping of the likelihood of a step performed
by the human where each particle of the PF will draw its
weight from. While occupancy grids aim to represent the
environment by an evenly spaced field random variable and
to indicate the probability of a cell being occupied.

This paper is organized as follows: Section II presents the
main contributions of this paper. Section III summarizes
the state of the art related to our problem and discusses the
works of [12]. Section IV sets the mathematical foundations
of the problem. Section V is a description of the system.
Section VI presents the experiments. Finally, Section VII
analyzes the obtained results and provides a discussion sur-
rounding them.
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2 Contributions

This paper presents the following contributions:

• An extension of [12] via a robust particle filtering based
on floor map usage, and on a particle weighting via a
human motion likelihood representation of the indoor
environment.

• An evaluation method of the proposed system in terms
of accuracy, robustness, and integrity.

• A dataset with IMU (accelerometers and gyroscopes),
landmarks data, and the floor map of the building.

• A Free Open Source implementation of the framework.1

3 Related works

3.1 Embedded Sensors Indoor localization

Murata [13] identified six main challenges related to indoor
localization which are often overlooked. We noted that re-
searchers worked on each point with different approaches.
Localization needs to be continuous and accurate in order
to offer reliable guidance. Their preliminary tests consider
that two meters accuracy is the limit for their indoor applica-
tion. Probabilistic approaches are designed to consider the
sensors’ noise but often incorporate correction techniques
that may produce a jump in position estimation which is
highly undesirable [14].

The techniques relying on understanding human motion
[15] need to be flexible in order to adapt to the individ-
ual’s distinctive walking pattern. Such adaptivity is far from
reach, and thus motion models are approximated. It is of-
ten mentioned that humans have multiple motion patterns
among: forward, backward, sidestep, turn, ... and each of
them presents specific sensor signatures. That is why hu-
man motion recognition is problematic in itself [16, 17]. In
this paper, the user is considered to be a forward walker.

3.2 Pedestrian Dead-Reckoning and Parti-
cle Filter

Pedestrian Dead-Reckoning (PDR) [18] is a technique that
combines data from gyroscopes, accelerometers, and magne-
tometers to reconstruct a human walking motion. There are
two main variations [19]: the strap-down approach and the
step-and-heading approach. The latter interests us because
it sequentially predicts the current pedestrian position by
computing the displacement relative to the previous posi-
tion. This is done by predicting PDR’s three main compo-
nents: step detection, step length, body heading.

[20] deployed an adaptative step detection and counting
using accelerometers and gyroscopes signals. By placing an
adaptive low-pass filter and a peaks/valleys detection in the
signals. All thresholds used in their work are computed
adaptively.

1https://github.com/anisghaoui/humolire

Both [12] and [21] built a PDR-PF system leveraging
IMUs data: accelerators and gyroscopes, and additionally
the magnetometer for [21]. Even though their prediction
functions differ, they produce the same observation data:
step length and step heading. To build on the work of [12],
we will need to use the same or equivalent prediction func-
tions presented in section 5.1. For instance, both Lu [12]
and Zhao [21] used the Madgwick filter [22] for angle pre-
diction, which is known to be fast and robust to sensor er-
ror. It also deduces the absolute roll and pitch angles from
the vertical acceleration, leaving only the yaw relative to
its starting angle if the magnetometer is not used. [12] used
double accelerometer integration for step length prediction.
While [21] said: "The human gait is modelled by an inverted
pendulum of a knee-less biped on the sagittal plane". [23]
explains the inverted pendulum model even further which
is very similar to the Weinberg approximation [24, 25]. We
will use the Madgwick filter for heading prediction without
magnetometer data and Weinberg Method for step predic-
tion.

Due to drift phenomena associated with noisy gyroscope
data, localization with PDR becomes erroneous. Thus, the
addition of a PF on top is often done as seen in the IPIN
2018 [26]. This is understandable to leverage the discrete
prediction of the PDR associated with the discrete multi-
hypothesis capabilities that the PF performs. Previously
cited papers do this to achieve better localization [27–29] or
to use of a kind of map [12,21].

The PF is especially interesting since [12, 21, 27–29] all
differed in the number of particles used for their PF, respec-
tively 256, 500, 1000, 1000, 1000 particles. This indicates
that, for what appears to be the same problem, either not
every approach is very efficient with its particles use, or the
problem dealt with has a hidden layer of complexity.

Researchers have tried machine learning by feeding IMU
data to their models and by training them to perform a ro-
bust double integral. In their previous work, [30] used a lin-
ear model to perform a robust integration. But in [31], they
trained a long short-term memory neural network to perform
the robust double integration. The aforementioned neural
network named RoNIN was trained on the RoNIN dataset,
the most significant IMU dataset (40 hours of records). They
then compared their results to the well-known Oxford model
IONet [32] trained on the OxIOD IMU dataset [33]. We will
also compare our system to RoNIN, because for the same
inputs, our results are clearly better as shown in Fig. 15.

3.3 Map Usage

According to [11], maps come in different types, embedded
pieces of information, and levels of detail: floor-plan, Build-
ing Information Modelling, point cloud, textured mesh, and
even hand-drawn. [34] and [35] used incomplete or inaccu-
rate prior knowledge, i.e. maps, to obtain better results in
their applications. [28] used a floor plan map to eliminate
candidate particles that land behind an impassable wall.

[36] considered the indoor environment as a graph where
every corridor is an edge and intersection is a vertex. Then,
they tracked the gyroscope for 90◦ rotation signature and
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updated their position in the graph by observing the walked
distance.

For estimation, we will stick to the usage of a map-assisted
PF. Both [12, 21] used the floor map of the building where
the experiment was conducted. They applied particles wall-
filtering via the floor map where an updated particle that
goes into an inaccessible area would be eliminated; else, it
survives. The major flaw in their systems is that their par-
ticles weights are binary. Thus, they only use the PF as a
multi-hypotheses propagator rather than a complete prob-
abilistic estimation filter. This is sensible since the wall-
filtering is already efficient at distinguishing particles that
perform an impossible physical movement. However, this
also means that anything that is not an impossible physi-
cal location is plausible. Which, in our view, is flawed. We
believe that humans in an indoor space tend to move accord-
ing to a motion likelihood related to the indoor environment
configuration. We chose to represent this behavior as a grid
in section 5.2.2.

4 Problem statement and Methodol-
ogy

4.1 Mathematical Model
Both [12] and [21] processed the floor transition via barome-
ter tracking. In this paper, we will consider working only on
a single floor. This means locating on a 2D plan the phone
that a pedestrian is carrying in terms of position (x, y) and
heading θ. Thus, the device is represented by the state vec-
tor ~Pt at each step of timestamp t:

~Pt = [xt yt θt]
T | ~Pt ∈ R3 (1)

A data collection system on the phone is needed to be
able to acquire the accelerometer and gyroscope data. From
this data, we produce an observation vector ~Ut described in
section 5.1:

~Ut = [dxt dyt dθt]
T | ~Ut ∈ R3 (2)

Where dxt, dyt are the displacements along the x and
y axes, respectively, and dθt is the change in heading be-
tween two consecutive steps. Then, the displacement of the
pedestrian is deduced by observing the accelerometer and
gyroscope data at each step via the following equations:

dxt = SLt × cos(θt) dyt = SLt × sin(θt) (3)

Where SLt is the step length at step index t. θ and SL
are obtained via the predictions explained in Section 5.1.
The result is then accumulated over the previous position
to compute the new position:

~Pt = ~Pt−1 + ~Ut (4)xtyt
θt

 =

xt−1yt−1
θt−1

+

dxtdyt
dθt

 (5)

with x0 = X0, y0 = Y0, θ0 = Θ0 as initial conditions.

The predictions of the PDR are then sequentially fed to
the PF to estimate the next position. The PF uses multiple
particles representing possible trajectories that the pedes-
trian could have stepped into [37]. Each particle is repre-
sented by a state vector and weight: ~P it , wit (ith particle at t
time index). The PF adds a noise vector ~N t

i to both the dis-
placement (dxit, dy

i
t) and differential heading dθit. Equation

(5) becomes:

~P it = ~P it−1 + ~U it + ~N i
t (6)

with ~N i
t =

[
δit cos(θit) δit sin(θit) αit

]T (7)

Where δit and αit are the independent random variables
respectively drawn from Gaussian distributions Nδ and Nα
with parameters µδ, σδ and µα, σα defining them respec-
tively (their empirical values are given in section 7.1). Re-
placing equations (3) and (5) in equation (6) develops into
equation (8).


xityit
θit

 =

xit−1

yit−1

θit−1

+

SLit × cos(θit)
SLit × sin(θit)

dθit

+

δit × cos(θit)
δit × sin(θit)

αit


wit = wit−1 × L(xit, yit)

(8)

A weight is applied to each particle’s state vector. The
weight allows to filter some particles according to their like-
lihood L which is a function of the particle’s location is:
(xit, y

i
t).

We compute the particles’ weighed average P̄t as specified
in equation (9) to choose the pedestrian’s new position. This
presents an edge case where the P̄t may land in a forbidden
area.

P̄t =

[
x̄t =

N∑
i

wit × xit, ȳt =

N∑
i

wit × yit, θ̄t =

N∑
i

wit × θit

]T
(9)

In the Fig. 1, we noticed that P̄t (green particle) might
land inside/behind the wall, which is physically impossible.
To counter this edge case, after computing P̄t, we choose
the closest valid particle among all particles. This ensures
that P̄t is valid without having to perform a domain validity
analysis. To our experience, this method does not degrade
the estimation’s performance and is deemed necessary.

Figure 1: Particles
around the corner.

This will produce the successive
positions that a pedestrian walked
for each step. It effectively means
that our system is Event Triggered
by the steps of the user. Once the
positions are obtained, we can com-
pute metrics to evaluate the impact
of different parameters.

4.2 Coordinate Systems
We define three coordinate systems: Global (GCS), User
(UCS), and Device (DCS) according to Fig. 2. We make
assumptions about the pedestrian verticality to be the same
as the building they are in (zg and zu are the same). So, only
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a translation Tu→g and rotation Ru→g around the heading
θ are needed to express the change of system. The DCS
is presented relative to the user carrying the device. We
suppose the user to hold the device horizontally as explained
in section 6. This implies that we suppose both ψ � and
φ � meaning that only a translation Td→u (corresponding
the user’s arm) and rotation Rd→u around α (gyroscope z-
axis) are needed to express the change of system.

Figure 2: Coordinate systems changes.

5 System description

The system is split into two main parts: the prediction
and estimation functions. The former are a set of tools
that transform the raw synchronized accelerometer and gy-
roscope data into step events t and observation vector ~Ut.
The estimation functions are the set of tools that leverage
the prediction result by deploying probabilistic mechanisms.
The proposed system is offline processing. The processing
time of our system is elaborated in section 7.5.

5.1 Prediction

5.1.1 Step detection

Step detection techniques have been studied and tested [20].
Zero-crossing peak valley detection is a technique where the
centered acceleration norm is computed from the 3-axis ac-
celerometer Anorm. Then, it is filtered via a low-pass second-
order Butterworth filter with a cut-off frequency of 2 Hz.
Then, it finds the moments where Anorm crosses 0, respec-
tively, from negative/positive to positive/negative, noted t+i
, t−i where i ∈ N. Then, find the peaks/valleys in each
interval such as:

tpeak = argmax
t

Anorm(t) | t ∈ [t+i , t
−
i ] (10)

tvalley = argmin
t

Anorm(t) | t ∈ [t−i , t
+
i+1] (11)

Since each step is defined as a peak then a valley, ev-
ery pair (tpeak, tvalley) defines a step interval. Finally, only
peaks/valleys above/below a manually fixed threshold are
kept.

5.1.2 Step length

A well-known method is Weinberg ’s [24] which considers the
step length SL to be proportional to a function of the dif-
ference between the peak and valley accelerations:

SL = K × 4
√
apeak − avalley | K ∈ R+ (12)

Where K is the Weinberg gain proportional to the length
of the pedestrian’s leg.

5.1.3 Heading

The heading is predicted by the Madgwick filter [22] that
uses gyroscope and accelerometer data to estimate the atti-
tude’s quaternion at each sample. We convert the quater-
nions to Euler angles. Moreover, using the coordinate sys-
tem changes explained in section 4.2, we only keep the head-
ing value, θ.

The Madgwick filter returns a continuous array of angles.
So, we subsample it by only picking the steps events from
the continuous heading prediction. Then, it is differentiated
to obtain the change in heading dθt.

dθt = θt − θt−1 (13)

It is important to note that we consider choosing the head-
ing of a step closer to when the foot landed (closer to tvalley).

5.2 Estimation
5.2.1 Particle Filter

A PF mainly consists of 4 processes [37] : Initialization,
Prediction, Update and Resampling. We will see and
discuss these below.

Initialization We select a starting region by randomly
normally generating particles around the starting position
and a heading that is the starting heading with some noise
added to it. So, there is already some incertitude around the
pedestrian’s starting position for robustness’s sake. Each
particle weighs 1/N.

Prediction The PF predicts the state of particles every
time a step is detected via the state model from equation
(8). It receives two informations from the prediction stage
(Section 5.1), the step length SL and the differential heading
dθt. Every particle computes its new heading and position
with angle and radius additive Gaussian noises according to
equation (8).

Update In the case of indoor localization, providing a
floor map allows the introduction of filtering as [12] and [28]
did. The updated particles are declared valid if they do not
cross a wall. This is a straightforward constraint rule. Nev-
ertheless, it is the most accurate mapping of the physical
behavior of the pedestrian by the PF. It is often referred to
as Map Aiding. The number of particles after this step is
lower than the optimal number that the PF is designed for.
A floor map of the experiment building is shown in Fig. 3.

4



This preprint paper was submitted to The IEEE Sensors Journal in November 2022. Please cite the related paper

Figure 3: A floor-plan of the experiment building: grayed
out areas are forbidden. User walks along the landmarks
from 0 to 28.

Resampling It removes lighter-weight particles and du-
plicates the heavier-weight ones to avoid what is known as
PF degeneracy. This process is deemed of the utmost impor-
tance [38,39] and has been well studied [39–42]. On the other
hand, resampling too often presents the risk of obstructing
the hypotheses space because the heaviest particles will clus-
ter together and will shadow every other particle (a black-
hole-like effect). This is why Kong [43] and Pham [44] each
introduced a criterion to know when resampling is needed.
After implementing and testing different resampling algo-
rithms and criteria, we noticed that the behavior of PF was
not enhanced nor degraded due to already using Filtering
and Regeneration. We thus abandon resampling in favor of
the following one.

Regeneration Although it was not formally named in [12]
and [28], it consists of regenerating the missing particles to
have the entirety of particles best represent the updated hy-
potheses space. The optimality zone of the PF is sensitive to
the particles count that is deemed necessary for the PF to be
able to correctly represent the hypotheses space (see section
7.1). Since Filtering deleted some particles, the PF is left
with Ñ particles, such as Ñ ≤ N . We need to regenerate
the N − Ñ missing particles. The way of regenerating these
missing particles affects how the PF paves the hypotheses
space and what it "believes" to be the more likely position.
If all particles had the same weight, the particles would re-
generate according to a majority vote. But, we propose in
section 5.2.2 a method to weigh our particles and to intro-
duce a priori likelihood.

The association of Map Filtering and Regeneration emu-
lates a resampling where the particles landing in inaccessible
zones (e.g., behind walls) are eliminated, and only the valid
particles will have offspring.

Subset Regeneration: We studied more formally the ap-
proach [12] implemented in their open-source code. In order
to reach N particles, it considers that the new M particles
need to be generated from M randomly selected subsets of
N̂ particles defined as N̂ = ss × Ñ where ss ∈]0, 1] is the
subset proportional size. Fig. 4 shows a visualization of
algorithm 1.

Our contribution is to randomly draw new particles from

Figure 4: N̂ particles subset regeneration are green.

Algorithm 1: Particles subset regeneration func-
tion.
Input: particles, subset size
Output: valid particles

1 mean particles = ∅
2 candidates = ∅
3 for i← 1 to N − Ñ by 1 do

// no repetition in selection
4 subset = random pick (particles, subset size)

// average θ, x , y and weight
5 mean particles.append(average(subset))

// generate the new particle from the subset’s
statistical properties

6 Nθ,Nx,Ny ,Nw = statistical properties(subset)
7 candidates.append(particle(Nθ,Nx,Ny ,Nw))
// check if the candidates do not cross walls

8 valid = filter(candidates, mean particles)
9 return valid

the statistical properties (mean and variance) of the
subset and to verify that the new proposed particles do not
cross a wall of the map. This acts as a random re-sampling
based on the paved hypotheses space where each randomly
selected subset is a pavement from where the new particle is
picked. It emulates a re-sampling algorithm but bases itself
on both statistical properties of the particles and physical
properties of the indoor environment. After our tests, we
empirically selected ss = 5% and preferably Ñ × ss ≤ 25.

5.2.2 Human Motion Likelihood grid

Our final contribution is the creation of a grid that repre-
sents the human motion likelihood. To represent the human
motion inside a building on a floor map, we set an a priori
about the likelihood during motion associated with the dif-
ferent indoor dispositions and configurations. We suppose
that a human is more likely to move in the center of a cor-
ridor rather than hugging the wall, walk through the center
of a door rather than the sides.

We convert the floor map of length L and width W to
a grid: G ∈ Rl×w of length l = L/scale and width w =
W/scale, with each cell g ∈ G | g ∈ [0, 1]. In our case,
scale = 5 cm. So the grid is composed of 5 × 5 cm2 cells.
Then, we compute the distance from each cell to the closest
wall.

The resulting distances map is converted into a likelihood
grid via a membership function f defined as f : Nl×w →
[0, 1]l×w. The choice of the mapping functions f , shown
in Fig. 5 as an example, affects how the grid constrains
the particles during their propagation. In every case, the
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function f creates a centering constraint as it pushes the
particles into the center of corridor. It has 2 parameters:
min range, that determines the end of the forbidden area;
and max range, that determines the end of the transition
area.

Figure 5: Example of distance to likelihood functions f(d) =
L. .

The resulting grid is shown in Fig. 6 and represents our
a priori on human motion likelihood. A zoomed n example
of a corridor grid is given in Fig. 7a. Black cells are walls
with an associated likelihood of 0. Fairer cells have a higher
likelihood of a step occurring on them and thus associate a
more important weight to the particles landing on them.

Figure 6: Likelihood grid built upon the floor map in Fig.
3: darker areas are less likely.

6 Setup and experiment
In order to test different configurations of the system’s pa-
rameters, we need to set up an experiment that reflects a
realistic human motion in indoor space. We use a OnePlus
6T phone to acquire LSM6DS3 IMU data (accelerometer +
gyroscope. The summary of this IMU’s characteristics2 in
Table 1 shows that the IMU uses 16 signed bits to code

2https://eu.mouser.com/datasheet/2/389/dm00133076-1798402.
pdf

(a) Example of corridor grid. (b) Walking over a
cross and pressing the
timestamp button.

Figure 7: Left: grid concept. Right: experiment setup.

its data. The Linear acceleration measurement range is se-
lected because we noticed that the accelerometer data never
surpassed 1.5g. Also, human rotation didn’t exceed 180◦/s.
So, an Angular rate measurement range of ±250◦/s seams
reasonable.

Parameter values unit
Linear acceleration measurement range ± 2 g
Linear acceleration sensitivity at± 2g 0.061 mg/LSB

Angular rate measurement range ± 250 ◦/s
Angular rate sensitivity at ± 250 ◦/s 8.75 m◦/s/LSB

Table 1: Summary of LSM6DS3 IMU.

The user holds the phone horizontally, the USB port to-
wards their chest, and the back camera looks at the ground.
This ensures that the coordinate system does not change
during the experiment and considers Android’s Z rotation
axis as the pedestrian heading θ.

To produce relevant metrics to measure the performance,
we need to set up a pedestrian ground truth. This ground
truth must have a satisfying spatial and temporal accuracy
and uncertainty. So, we put landmarks in the form of crosses
on the ground and ask the pedestrian to step on them and si-
multaneously press a timestamp button on the phone. This
procedure is illustrated in Fig. 7b. We use a high-precision
laser telemeter to locate the crosses relative to the building’s
walls. If synchronization is done correctly, the moment the
user presses the button should correspond to when they step
on the cross. This reduces the ground truth effort into a syn-
chronization problem. Experiments showed that this eval-
uation method was satisfactory as we can count how many
timestamps the user produced and invalidate the run if any
are missing. We also have a worst case error of a step around
the cross compared to when the user pressed the timestamp
button (the user pressed the button a step before, while on,
or after the cross).

While looking for an acquisition tool, we settled for the
INRIA-Tyrex team’s open-source app: SensLogs [45]. The
app allows for a plethora of sensor acquisition and different
sampling frequencies. We select the maximum frequency
our phone allows: 400 Hz. The temporal synchronization
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is guaranteed because all the sensors are timestamped with
the same clock source. Thanks to this, the tedious work
of synchronization is abstracted, and we have an all-ready
solution.

We define a trajectory to have various indoor cases as
shown in Fig. 3. The trajectories ought not to loop around
a single place many times as this biases when performing
map aiding. This happens if the first loop is correctly
performed, then the others are quasi-automatically correct,
which makes a system looks more permanent than it is.

We previously mentioned that our system had many pa-
rameters. However, two of them are particular because
they are specifically related to the user holding the phone:
the Weinberg gain from section 5.1.2 and the acceleration
threshold from section 5.1.1. We tested our system’s invari-
ance to its user by having four different users performing
the same trajectory. Then, we fit the aforementioned two
parameters to each user.

To measure our system’s performance at each user-made
timestamp, we compute the Euclidean distance from the
average weighed position P̄t to the landmark lt for land-
marks count, K:

E =

K∑
t=1

Et
K
| Et =

√(
lt − P̄t

)2 (14)

And the Mahalanobis distance of the landmark lt to the
N particles’ positions Pt ∈ RN×2 with weights Wt ∈ RN
and weighed average P̄t presented in equation (9).

M =

K∑
t=1

Mt

K
| Mt = (lt − P̄t)× S−1t × (lt − P̄t)T (15)

With S ∈ R2×2 being the covariance matrix of the parti-
cles where each particle has two components: Pt = (xt, yt):

St = E
[(

WT
t Pt − P̄t

)
×
(
WT

t Pt − P̄t
)T]

(16)

It is important to notice that the weighted average posi-
tion P̄t differs from the one presented in section 4.1. It is
not the closest valid particle but the statistically weighted
average of the particles. This makes our measure take into
account the worst-case scenario for the PF.

The parametric study must be done over several runs
over the same data due to the random nature of the Monte
Carlo sequence. Then, these runs are averaged to obtain
the curves shown below. We performed an average over
ten runs. The success rate of a trajectory is defined as
completed runs/total runs with a run considered completed if
it has as many user timestamps as landmarks there are, and
a return to initial position error defined as Efinal ≤ 2.5m
inspired by [21]. An example of a run is given in Fig. 8.

7 Results, analysis, and discussions

We are interested in showing how the integrity of the system
evolves and the impact of the human motion likelihood grid

that we conceptualized in section 5.2.2. The available data
and code can recreate the results and cover how to obtain
them in more details. The first step is to determine Wein-
berg’s gain and acceleration threshold experimentally. This
is simply done by making users walk a measured distance,
count their steps, and then empirically reverse engineer each
parameter for each user.

Figure 8: An estimated trajectory of a run. Red dots are
the steps when the user pressed on the timestamp in Fig.
7b.

7.1 Optimal particles count

In order to discuss results, we first need to determine how
many particles our system requires to model the hypotheses
space correctly. For that, we proceed to compute both aver-
age E and M for the same trajectory, same data, and same
user for a given number of particles: N . The Fig. 9 shows
that the system converges for at least 200 particles. Counts
beyond this number do not significantly change either met-
ric but increase the necessary computing resources. We will
be using 200 particles for the remaining experiments.

Figure 9: Measured distances as a function of particles
count.

We also give the particles’ propagation noise used in equa-
tion (7) in table 2.

7



This preprint paper was submitted to The IEEE Sensors Journal in November 2022. Please cite the related paper

Figure 10: Measured distances as a function of Weinberg
gain.

Gaussian distribution N mean (µ) standard deviation (σ)
Step noise δ [meters] 0 0.15
Angle noise α [rad] 0 π/45

Table 2: PF’s propagation noise distributions.

7.2 Weinberg’s functional interval

Starting from the empirical Weinberg’s gain value from sec-
tion 7, we figure out the optimal value for a user. The Fig.
10 shows that both E andM (red and yellow curves) reach a
minimum value close to the empirical Weinberg gain’s value.
Since this value is never supposed to change for a user, we
make them walk the exact trajectory but in reverse order
to obtain the blue and cyan curves. We also compute the
success rate of each trajectory to understand the impact of
this parameter.

We first notice that the two trajectories do not have op-
timal Weinberg gain value. Nevertheless, an interval ex-
ists where the success rates overlap and keep the errors to
a minimal value. Table 3 shows the comparison between
the empirically found and statistically computed Weinberg
gain’s value. This implies that the step noise δ introduced
in equation (6) corrects the errors in step length predictions.

User 1’s Weinberg gain empirical statistical
forward 1.07 [1.05, 1.09]
reverse 1.07 [1.05, 1.110]

Table 3: Weinberg gain: empirical vs statistical values.

7.3 Grid effect and integrity

By measuring the signed error in the position of all particles
relative to a landmark: el and its standard deviation σel ,
we can observe the effect of the grid on the distribution of
particles throughout the whole experiment. The errors in
X and Y, exl

and eyx are respectively surrounded by ±3σex
and ±3σey . We compare the performance of the system for
the same data and parameters with a scenario where the

likelihood grid is enabled and disabled on an average
of 10 runs each time. This is equivalent to a comparison
between [12] and our system.

In order to do this comparison, we need to find the optimal
values of the two parameters min range and max range
from section 5.2.2. To find the optimal values of both pa-
rameters, we perform a parametric study on the grid. The
goal is to maximise the score of the grid version vs no-grid
version, defined as:

score =
1

K

K∑
t=1

σelt no−grid − σelt grid (17)

Equation (17) is analogous to computing the area differ-
ence of incertitude ellipsoids at each key-point between the
no grid and grid version in Fig. 14 and 13. In addition,
equation (17) allows a balance of the centering constraint
from section 5.2.2. We make sure that the system keeps its
integrity by ensuring that the ground truth is still bounded
by the error i.e. that the 0 y-axis is included in the purple
corridor for Fig. 11. This is expressed as:

scoret =

{
0 if (et + σt)× (et − σt) ≥ 0
scoret else ;

(18)

We compute the score for each combination of the two
parameters according to these two equations. We obtain
the heat map presented in Fig. 12. We first notice that, if
min > max, the system cannot work because the forbidden
area includes the allowed area, and all the particles receive
a weight of 0. Secondly, the blue area shows that the score
was at its maximum for those corresponding values of pa-
rameters. Thirdly, We notice that beyond a min value of 14
cells (70 cm), the forbidden area from a wall is too big and
cuts the path for the particles. This is explainable because,
in our path, some corridors are 150 cm wide. This means
that we would have a forbidden area of 70 cm on each side
with an error due to the discretization of the map into a
grid. We will pick: min range = 11 and max range = 13
(one of the darkest blue cells in the Fig. 12).

In Fig. 11, the 0 on y-axis is always included between
±3σ for both version. This means that in 99.7% of cases,
the system includes the ground truth position inside the
uncertainty ellipsoid. This expresses its integrity, i.e., how
faithfully it can always contain the correct positive in its
hypotheses space.

Another aspect to note is the impact of the usage of the
grid. We do notice that enabling the grid (with both its pa-
rameters, see section 5.2.2) makes the area imprisoned be-
tween ±3σ narrower than without the likelihood grid. This
means that the likelihood grid, in that configuration, com-
presses the particles to the center of the corridor, which
means that, on average more particles are closer to the cor-
rect position (landmark).

If we compare the ellipsoid of the particles’ distribution
at each landmark for an enabled and disabled grid as shown
in Fig. 14. We notice that the ellipsoids are constrained
by the walls and rarely go through them when the grid is
enabled. This shows that the grid has an ameliorative effect

8
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Figure 11: Measured signed errors on each key-points.

Figure 12: Score heat map for both grid parameters.

on the localization for these indoor configurations. The col-
ors of the particles indicate their weights. In the case of the
disabled grid, all particles have the same weight (color) 1/N.

The system’s behavior is interesting at some particular
points that we encounter in the building during the walk,
namely: 8, 12, and 24. By observing Fig. 8, 11 and 14,
we notice that landmark 8 comes after a walk of ≈ 10m in
a semi-open space. Thus, non-constrained particles tend to
spread and uniformly pave the hypotheses spaces. Land-
mark 12 shows an interesting compression of the particles’
ellipsoid. It comes after a 90◦ turn with some semi-open
space, yet the grid version achieves an important compres-
sion and has no particles in the adjacent rooms like landmark
9 in Fig. 13. Landmark 24 is an edge case as it combines
both difficulties of 8 and 12. It comes to a semi-open hyafter
a 90◦ turn. Particles easily spread to fill the space. Then,
they get funneled into the tight corridor. This makes the
ellipsoid spread to its maximum and then fold back into the
corridor. All of these physical phenomenons are correctly
displayed by spikes in error et and std σt on both axis X
and Y in the Fig. 11.

Figure 13: Incertitude ellipsoids with likelihood grid dis-
abled.

Figure 14: Incertitude ellipsoids with likelihood grid en-
abled.

7.4 Discussions

7.4.1 Map Filtering and Aiding

[12] deployed a backtracking procedure to ensure that the
particle’s life was coherent and did not cross walls over the
last 20 steps. This seems redundant to us as our map filter-
ing, presented in section 5.2.1, guarantees by construction
that a particle dies if it hits a wall. The comparison to [12]’s
system is made by comparing the presence and absence of
our grid in section 7.3. In Fig. 15, we show the comparison
of 3 methods: a fully deterministic PDR (no wall filtering),
the prediction of the already trained RoNIN [31] and finally,
our system. The resulting trajectory shows that map filter-
ing is mandatory for indoor environments because it maps
the physical displacement more faithfully than sheer statis-
tical methods. It is also important to note that RoNIN relies
on Android’s orientation (Game Rotation Vector) which it-
self leverages the faulty indoor magnetometer data. To fur-
ther show the difference between the 3 approaches, Table
4 gives the computed RMSE for each system. We also re-
solved some edge cases like the weighted average of particles
in section 4.1.

System RMSE[m]
Ours 0.811

RoNIN 7.534
deterministic PDR 4.671

Table 4: RMSE of comparison of Fig.15.
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Figure 15: Comparison between 3 different approaches: Our
system, RoNIN [31] and a deterministic PDR on the same
trajectory.

7.4.2 Human Motion Likelihood Grid

At first, there seemed to be no enhancement in terms of
accuracy. However, we showed that the integrity of the sys-
tem and its ability to map the hypotheses space in the in-
door environment more accurately are enhanced. Neverthe-
less, although the users were told to "walk as they like" and
"follow the path of the crosses", they will tend to walk in
segments from one landmark to another. Which makes for
corridor walks to seem more accurate. However, this isn’t
true for landmarks 8, 12, 16 and 24 in Fig. 14. We notice
that those configurations differ from simple corridors. How-
ever, the grid reinforces the system’s integrity by preventing
the propagation of deceptive particles in the previous steps,
making the localization at those difficult spots more reliable.
Nevertheless, this comes at some cost of flexibility. The Fig.
12 showed that there is a balance in how constraining the
grid is and how relaxed it is. Thus, the choice of the likeli-
hood function presented in section 5.2.2 has a key role.

Our hypothesis remains valid as long as we suppose a
single pedestrian is walking alone in a building. It begs
how this likelihood evolves if more pedestrians were walking
either in the same, opposite direction, or even at a stop.

7.5 Processing Time

Our system is offline processing on CPU: Intel i5-
9500(6)@4.400GHz. The floor map from Fig.3 is composed
of nearly 300 segments that represent walls. The grid is
made of 5x5 cm2 cells for a total of 1400 × 720 ≈ 106 cells
(see Fig.7a), with each cell containing a floating value. This
grid is built only once per floor. It is then a read-only mem-
ory object.

The particles count was set to be 200 particles in Sec-
tion7.1. The implementation is done on Python with an av-
erage step processing speed of 4.5 steps/s. With the knowl-
edge that a human can walk between 1 to 3 steps a second,
the current offline processing is satisfactory even before op-
timization.

Optimization can be done in several ways in future stud-
ies. The most straightforward one is to change the imple-
mentation language from an interpreted one to a compiled

one (C++, C#, Java/Kotlin for Android). This change will
reduce memory usage and execution time.

8 Conclusion

This paper presents an indoor localization system based on
a phone that the pedestrian carries. We have based our
work on [12]. Then, we have detailed the prediction and
estimation functions that we set up. Then, we have intro-
duced the human motion likelihood representation as a grid
in the PF. This grid allowed to weigh the particles. We have
also defined an experiment and evaluation method with re-
liable ground truth for the pedestrian’s indoor movement.
We have proceeded to the analysis of the results of the ex-
periments.

Furthermore, we have given a qualitative appreciation for
the metrics we have defined. These metrics showed that the
integrity of our system is more important with the enabled
grid. We compared our system to a variant of [12] and to
[31].

In the future, we wish to experiment on multi-agent rep-
resentation of different behaviors. More semantic elements
will be added into the map to enhance indoor localization’s
integrity and robustness.

9 Data Transparency and Experi-
ment Reproducibility

We declare that the used data is from real-world subjects
and was collected with anonymity and integrity. The build-
ing’s map is delivered as a numerical object with faithful
measured dimensions of a frequently busy physical building.
Any sensitive pieces of information that are not required for
the experiments have been censored without compromising
the integrity of the data or its ground truth.
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