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aUniversité Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, Laboratoire de
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Abstract

Artificial neural networks are widely used to develop models able to predict
properties of interest by learning and establishing relationships between inputs
and outputs of a system. It is particularly relevant for the inversion process in
the framework of Non-Destructive Testing (NDT) involving strongly non-linear
and non-monotonic behavior and/or saturations. The case-study considered in
this work is a magnetic material subjected to uniaxial mechanical stress, plas-
tic strain and magnetic field. An Artificial Neural Networks (ANN) model is
proposed to predict the corresponding remanent magnetization, coercive field
and the maximum magnetization as target properties. A series of experimental
data made of various magneto-mechanical measurements are used to train, eval-
uate and validate the ANN model. The proposed model suitably predicts the
magnetic properties of a second specimen of the material in the same magnetic
field, plastic strain and stress ranges as the first specimen. An inverse ANN is
then proposed to evaluate the mechanical loading and the plastic strain from
the magnetic signature. Unique and accurate solutions are found that proves
the relevance of machine learning approach in such NDT application.

1. Introduction

The non-destructive testing process of materials and structures usually in-
volves the evaluation of a target state through the measurement of another
physical quantity. For example, magnetic behavior is known to be sensitive to
any mechanical loading depending on the loading level (elastic, plastic), the
loading sign (tension, compression) and loading multiaxiality and heterogeneity
(first or second order residual stress) [1, 2, 3, 4, 5, 6]. The correlation between
mechanical, metallurgical and magnetic states has received increasing attention
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these last years because improving the performance of materials and structures
(mechanical thresholds, fatigue lifetime, etc.) requires a better knowledge of
their mechanical state (residual stress, microstructure after thermomechanical
treatment)[7, 8, 9]. Besides well-known techniques like variation of electromag-
netic circuit impedance (Eddy current set-up) or flux lines modification, some
new non-destructive testing (NDT) or monitoring (NDM) techniques have been
developed to measure magnetic indicators of the mechanical state. In particular,
indicators of hysteresis magnetic cycle like the coercive field or the remanent
magnetization are interesting quantities. The measurement of other indicators
like hysteresis losses, incremental permeability obtained at variable frequencies
or even magnetostriction can be used as well for NDT process.
The coercive field is for example easily evaluated by the Barkhausen noise
method. In [10] the magnetic Barkhausen noise method is employed for eval-
uating the change of microstructure induced by creep/aging of high chromium
steel subjected to different creep test conditions as stress and temperature. Some
other more recent NDT methods have been developed to detect very small varia-
tions in the magnetic field surrounding a massive ferromagnetic structure, such
as a tank [11] or pipe [12]. In particular, the detection of damage in buried
pipelines becomes possible [13]. The local plastic deformation and the creation
of long range residual stresses lead to a significant change of remanent magne-
tization of the material that can be detected by fluxgate sensors.

However, reverse identification requires models allowing for the association
of magnetic quantities to mechanical state. This process remains an open prob-
lem since it faces major difficulties. The most classic way consists in getting
a fully coupled magneto-elastic or magneto-plastic modeling defined at the ap-
propriate scale and in setting up an inverse identification procedure. The most
advanced magneto-elastic coupling models (i.e. taking into account the multi-
axial stress state or the Villari reversal) derive their precision from an accurate
description of the microstructure including appropriate scale transitions [14].
However, these models are too slow and lead to more qualitative than quantita-
tive estimations to allow for an efficient identification process. Some simplified
approches have been therefore proposed in the recent years. The most success-
ful macroscopic model, since it is based on a rigorous magneto-elastic approach,
are the so-called Simplified Multiscale Modeling (SMM) and multidomain mod-
eling (MMD) [15, 16]. Even if the physical content of these models is strong,
gaps between model and experiments remain significant, making any inverse
identification process fail. Mostly anhysteretic, they rarely, or unconvincingly,
include a satisfactory description of the evolution of hysteresis under stress.
Models including plasticity are even rarer. Most of them are plastic strain
(scalar description) parameters dependent models (e.g. Jiles-Atherton-Sablik
model [17]). A more recent macroscopic approach for the modeling of the influ-
ence of plastic deformation on the magnetic behavior of ferromagnetic materials
have been proposed by [18]. The main assumption is that the material must
be considered as a two-phase material, with a mechanically hard phase and a
mechanically soft phase. This model brings advantage of considering not only a
plastic state but also of being able to deal with a superposition between plastic
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state and multiaxial stress state, a situation often met in deformed structures.
As for models of the same family, description of hysteresis remains a weak point.

As the prediction of the magnetic hysteresis depending on the mechanical
state is complex, the inverse procedure is still out of reach. The problem lends
itself to being solved using Artificial Neural Networks (ANN), which decouples
the physics from the problem and relates a set of input parameters directly to
a set of output parameters. Interest in artificial intelligence (AI) to model the
behavior of material (i.e. a physical response to a physical loading) has grown
in the recent years. ANN is one of the most known algorithms used for AI.
ANN uses an architecture of basic mathematical functions that try to simulate
a brain neuron mechanism. Such approaches attempted to mimic relationships
between inputs and outputs (experimental data) using computing systems with
learning capabilities. ANN knows various applications in materials science in
general and particularly for magnetic materials. It is especially interesting for
the modeling of complex problems involving non linear relationships between in-
puts and outputs. For example, [19] used ANN to predict the magnetostriction
characteristics of transformer core material and showed good ability to fit ex-
periments. Similarly, a Genetic Algorithm (GA) based Back-Propagation (BP)
neural network was used to characterize the crack depth and width in a ferro-
magnetic material in [20]. In [21] a computational model for dynamic hysteresis
in laminated SiFe alloys was proposed. In [22] an ANN inverse model has been
developed to predict microstructure for desired material properties in Galfenol.

In this paper a new approach for the modeling of the influence of plastic de-
formation on the magnetic behavior of ferromagnetic materials based on AI is
proposed. This approach uses ANN as a method for predicting magnetic behav-
ior including nonlinear and non-monotonous phenomena. Parameters addressed
are the remanent magnetizationMr, the coercive fieldHc and the maximal mag-
netization Mmax. They evolve as function of the maximal magnetic field Hmax,
uniaxial stress σ and plastic strain level ϵp carried out by tensile strengthening.
The first part of the paper presents the results of an experimental study where
the variation of magnetic behavior with stress and plastic strain is addressed.
ANN modeling is then presented in the second part. The third part presents the
inverse model allowing for the prediction of the mechanical state (applied stress
and plastic deformation level) from magnetic data (namely maximal magnetic
field strength, maximal magnetization, coercive field and remanent magnetiza-
tion). Performances of the procedure are evaluated.

2. Influence of stress and plastic strain on magnetic behavior of a
pipeline steel

2.1. Experimental procedure and material

A pipeline steel (wt%C=0.19, wt%Mn=0.85, wt%Si=0.2, Fe: bal.) has been
used for this study. Its microstructure consists in about 40%vol. pearlite islands
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dispersed in a α-iron matrix. Combination of phases leads to a soft ferromag-
netic material [12]. Specimens are taken from a 150mm diameter pipeline. They
consist of 180 mm long, 12 mm wide, and 4 mm thick strips. A MTS uniax-
ial electro-hydraulic machine (displacement controlled) has been used to apply
plastic strain and to control stress at different loading levels. The experimental
magnetic device enables magnetic measurements on plastically strained samples
with or without applied stress using quasi-static triangular magnetic field con-
ditions. Set-up is composed of a primary coil to magnetize the sample and a
pick-up coil (B-coil) to measure the electromotive force. The magnetic field is
estimated by applying Ampere’s law to the magnetic circuit. Two high perme-
ability ferrite yokes have been assembled with the sample to close the magnetic
circuit and reduce the macroscopic demagnetizing field, making the magnetic
field linearly dependent on electrical current. The bench used is illustrated in
figure 1, a 3D illustration of the bench is given in figure ??. Measurements
have been first performed on unstrained samples providing reference magnetic
behavior. Measurements have been next performed on samples submitted to an
increasing plastic deformation level and under increasing tensile stress. Mea-
surements have been conducted using two specimens referenced as A and B
specimens, machined in the same pipeline tube. Experimental results carried
out with specimen A are presented and discussed in the core of manuscript. A
large part of these results are used for the ANN training. Experimental results
carried out with specimen B are gathered in Appendix A. They are used for
the ANN validation step.

2.2. Experimental results

Figure 3 illustrates the reference first magnetization curve and hysteresis
loop of the material. The loop can be characterized by three magnetic pa-
rameters: the remanent magnetization Mr defined as the magnetization that
remains in a ferromagnetic material after the removal of applied magnetic field,
the coercive field Hc which indicates the external magnetic field required to
demagnetize a material (also seen as the magnetic field that must be overcome
to initiate irreversible displacement of magnetic domain walls in a material);
finally, the maximum magnetization Mmax that is the magnetization reached at
the maximum magnetic field strength Hmax. We will focus in particular on the
evolution of these parameters according to the applied stresses and the plastic
strain level.

Figure 4 illustrates the stress-strain curve of the material obtained by ap-
plying a mechanical loading-unloading at increasing plastic strain levels. The
yield stress is close to 300MPa (where a first non-linearity can be detected).
It is immediately followed by a stress plateau underlining a first strengthening
process within the material (usually inhomogeneous). A classical hyperbolic ho-
mogeneous strengthening is next observed until stress saturation (not plotted)
for a maximal deformation level reaching 20%.

Figures 5a-d gather different magnetic characteristics obtained with speci-
men A. Figure 5a illustrates the first magnetization curves obtained at different
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Fixed jaw

Mobile jaw

Figure 1: Set-up used to mesure the magneto-mechanical behavior.

stress levels remaining in the elastic domain of the material (ϵp = 0). Results
are in agreement with what is expected for a standard steel [1]: a uniaxial ten-
sion leads to an increase of the permeability of the material for a wide magnetic
field range. This increasing gradually saturates at higher stress (curve M(H)
at 200 MPa lies under curve M(H) at 120 MPa). This non-monotony has re-
cently been interpreted as a stress second-order phenomenon (morphic effect)
[23]. At a higher magnetic field, curves meet and can even cross. This crossing
point is known as the Villari reversal [2] (observation would have been easier
for a higher magnetic field strength range). This phenomenon is directly re-
lated to the rotation of the magnetic moments at high field [1]. The effect of
the magnetostrictive constant λ111 < 0 becomes dominant in the magnetoe-
lastic component of the material free energy [24]. Magnetic hysteresis cycles
presented in figure 5b undergo the same effect. Two cycle crossing zones are
also highlighted for magnetic field levels close to the coercive field. Readers
can refer to the works of [25] for more information about this singular point.
We observe on these cycles a strong variation of the coercive field and of the
remanent magnetization.
Figure 5c shows the evolution of the first magnetization curve of the material
with plastic deformation at zero applied stress. Plastic deformation leads to a
strong reduction of magnetic permeability from the first percentages of deforma-
tion, concurring with conclusions of many other authors [1, 2, 3, 5]. This effect
is also highly non-linear: the variation in magnetization between 0% and 5% is
for example much greater than between 10% and 15%. Curves meet gradually
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Figure 2: 3D presentation of the magneto-mechanical system
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Figure 3: Initial magnetization curve (red), hysteresis loop (blue) and magnetic parameters
(black).
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Figure 4: Quasistatic stress-strain curve of pipeline steel exhibiting the different unloadings
at different plastic strain levels (ϵ̇ = 1.0× 10−4s−1).

at higher magnetic field. However, no crossing is observed in the magnetic field
range of experiments. The associated hysteresis cycles are presented in figure 5d
showing the same evolution. Coercive field and remanent magnetization present
variations close to those observed under compressive stress and consistent with
literature [4]. The two crossing zones are a consequence of the opposite varia-
tions of coercive field and remanent magnetization with plastic strain.
Two major theories are proposed to explain the effect of plasticity on magnetic
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Figure 5: (a) First magnetization curves for different applied stress levels (elastic domain);
(b) hysteresis loops for different applied stress levels (elastic domain); (c) first magnetization
curves for different plastic strain levels at the unloaded state; (d) hysteresis loops for different
plastic strain levels at the unloaded state.

behavior. Some authors incriminate the defects density (dislocations, dislo-
cation clusters and tangles) which increases drastically with plasticity and its
effects on the mobility of the magnetic microstructure (magnetic walls, magnetic
domains) under magnetic field [26, 27]. Other authors have observed that plas-
ticity is generally accompanied by a displacement of the elastic domain in the
stress space: after tensile testing, most of metallic materials exhibits an asym-
metry of new yield stresses in tension and in compression. This phenomenon
is called the Baushinger effect [28] or kinematic hardening (backstress term is
sometimes employed). It reflects the existence of internal stress fields in the
material. Hug and Hubert [29, 3] were thus the first to show that magnetic pa-
rameters such as the initial permeability or the coercive field evolve linearly with
the kinematic hardening whereas it presents a strongly nonlinear evolution with
the plastic deformation or dislocations density. The effect of plasticity would
thus be similar to a local magneto-elastic effect, which explains the proximity
of the effects observed with those due to a macroscopic applied stress remaining
in the elastic domain.
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Figure 6: Magnetic indicators for specimen A - Remanent magnetization according to mechan-
ical stress (a) Hmax = 230A/m, (b) Hmax = 2250A/m; coercive field according to mechanical
stress (c) Hmax = 230A/m, (d) Hmax = 2250A/m; maximum magnetization according to
mechanical stress (e) Hmax = 230A/m, (f) Hmax = 2250A/m.

We restrict now our study and comments to some specific points, acting
like a NDT controller who can access to a reduced number of key material
parameters, namely, the remanent magnetization, the coercive field and the
maximum magnetization in relation with the tensile stress and the plastic strain.

The following illustrations concern results obtained for at low and high max-
imum magnetic field levels: Hmax= 230 A/m and Hmax = 2250A/m.

Results reported in Figure 6a and 6b show that the remanent magneti-
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zation increases according to stress until a threshold (that increases with in-
creasing plastic strain level) where a remanent magnetization decreasing begins.
This non-monotony is symptomatic of Villari reversal [30]. Even if amplitudes
reached and threshold values do change, variations observed for both maxi-
mal magnetic field strengths are close to each other. A same comment can be
brought for variations of maximal magnetization plotted in figures 6e and 6f:
increasing of Mmax with stress whatever the plastic strain level until a plastic
strain dependent stress threshold where Mmax begins to decrease.

Figures 6c and 6d shows that coercive field variations with stress strongly
depend on the maximum magnetic field. For cycles obtained at low maximal
magnetic field (Hmax=230A/m, figure 6c), coercive field increases with plastic
strain level but decreases according to applied stress. For cycles obtained at
high maximal magnetic field (Hmax=2250A/m, figure 6d), coercive field still
increases with plastic strain level but it increases now according to applied
stress. As for remanent and maximal magnetization, a non-monotony occurs
after a stress threshold. The variation of coercive field with increasing plasticity
is consistent with results of literature. But there are few available results in
literature that show the effect of an applied stress on coercive field at different
maximal magnetic field levels. Coercive field is generally measured from a major
cycle obtained using a high magnetic field amplitude and its decreasing with
stress (figure 6d) is a known result [25]. The change in monotony which takes
place at a lower maximum magnetic field (between 230A/m and 2250A/m) has
to be considered in regards with a generally lower level of magnetization which
is itself stress sensitive. These results show how difficult it can be to identify
a mechanical state from magnetic information, especially when information is
partial. Indeed results easily show that several mechanical states (σ,ϵp) can
correspond to a same remanent or maximum magnetization. The sensitivity
of coercive field to mechanical state that depends strongly on the maximum
magnetic field level is another strong issue. As indicated in introduction, apart
from a few very targeted attempts (based for example on the observation of a
displacement of the remanent magnetization characteristics under stress during
plasticity: see figure 6b and [12]), most phenomenological or physically based
models fail to allow for an inverse identification. We propose in the next sections
of the paper an inverse identification approach using neural networks. The
direct process consists in being able to predict the output quantities (Mr,Hc

and Mmax) according to the mechanical input parameters (σ,ϵp) complemented
by the knowledge of the maximum field level Hmax.

3. Artificial neural network modeling

Artificial Neural Network is a computational model able to extract (learn)
complex, nonlinear relationships between variables from a representative dataset
that describes a given physical phenomenon. This learning method mimics a
biological nerve system by the use of several numbers of neurons (elementar
input/ouput logical schemes) interconnected to each other [31]. This computa-
tional/mathematical technique is especially useful for simulations of any cor-
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Figure 7: General overview of the proposed ANN-based modeling approach.

relation that is difficult to describe with physical models due to its ability to
learn. Thus, the ANN can extract the existing relationship between the various
variables that makes part of the application. Another relevant characteristic is
its generalization ability: after a training process, the network is able to gener-
alize the acquired knowledge, making possible to estimate unknown solutions of
complex problems. ANN has been found to be relevant in many domains such as
fracture mechanics [20], fatigue and failure analysis and detection [32]. Figure
7 depicts the ANN-based approach for the modeling of the influence of plas-
tic deformation and applied stress on the magnetic behavior of ferromagnetic
materials.

3.1. Dataset for ANN

As shown in the previous section, the variation of the remanent magnetiza-
tion, coercive field and the maximum magnetization strongly depends on mag-
netic field strength (especially its maximal value), mechanical stress and plastic
strain level. For that reason, the considered ANN model inputs/outputs are
summarized in table 1. 672 (input,output) couples are provided from specimen
A.
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Table 1: ANN Model parameters

Input/output variable Units
In 1 : Maximal magnetic field Hmax A/m

In 2 : Stress σ MPa
In 3 : Plastic strain ϵp %

Out 1 : Remanent magnetization Mr A/m
Out 2 : Coercive field Hc A/m

Out 3 : Maximal magnetization Mmax A/m

The matrix below represents the entire dataset:

In1 In2 In3 Out1 Out2 Out3
H1max ϵ1p σ1 M1r H1c M1max D1

...
...

...
...

...
...

...

Himax
ϵjp σk Mir Hjc Mkmax

...
...

...
...

...
...

...
...

HImax ϵJp σK MIr HJc MKmax D672


(1)

where :

Himax
∈

 230A/m 450A/m 680A/m 1140A/m 1300A/m
1600A/m 1800A/m 2000A/m 2200A/m 5500A/m
10300A/m

 (2)

and
ϵjp ∈

[
0% 1% 2% 3% 5% 10% 15% 20%

]
(3)

Data are divided into three different subsets:

• The training set composed by 60% of the specimen A dataset;

• The validation set composed by 40% of specimen A the dataset;

• The testing set composed from measurements performed on specimen B
(see Appendix A).

Before an ANN can be trained, all input and output data must be acquired
and normalized. Indeed large input values combined with small ones in a learn-
ing algorithm can undermine the training phase. A normalization criterion
shown in equation (4) has been used for input data, where y is the normal-
ized input value and x the original value. The normalization interval used is
[0.01, 0.99]. This criterion allows a normalization for both negative and positive
values [33, 34].

y = ymin +
x− xmin

xmax − xmin
(ymax − ymin) (4)
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Normalization of output data x′ is made by dividing the actual value by its
maximum value as shown in the equation below:

y′ =
x′

max(x′)
(5)

3.2. ANN architecture

The analysis is conducted using the Keras library in Python 3.6. A paramet-
ric study is performed to determine the number of hidden layers and the number
of neurons in each layer to be used to get an architecture which produces the
lowest prediction error. Each hidden layer contains the same number of neurons.
This choice allows for the reduction of parameters number that can be changed
in the model [35]. In our system, the ANN is trained under mean-square-error
(MSE) criterion with feed forward back-propagation algorithm (BP). Detailed
description of the training process is given in Appendix B.
The gradient descent method could be used to optimize the cost function J(X, d)
(X: input data; d: desired output) with respect to weight vectors Wi (in ex-
ample below, two weight vectors are considered). This method computes the
derivative of the cost function as function of a given parameter for the entire
training set. The weight vector that is used for the next step is calculated by :

Wi(n+ 1) = Wi(n)− η
∂J(X, d)

∂Wi(n)
i = 1, 2 (6)

where η is the learning rate of the algorithm (chosen between 0 and 1).
This method requires computing the gradient of the whole training set to per-
form only one update step. A huge computational time is required to train the
ANN for a large dataset. To reduce the computation time, the stochastic gra-
dient descent (SGD) method could be adopted since it performs one parameter
update for only one training example. The updating rule is given in Eq 7 :

Wi(n+ 1) = Wi(n)− η
∂J(X(n), d(n))

∂Wi(n)
i = 1, 2 (7)

However, SGD performs frequent updates with a high variance that causes
the objective function to fluctuate dramatically [36]. Mini-batch gradient de-
scent [37] finally takes the best of the two methods and performs an update at
each mini-batch of one training example:

Wi(n+ 1) = Wi(n)− η
∂J(X(n : n+ l), d(n : n+ l))

∂Wi(n)
i = 1, 2 (8)

The batch size for this example is l. The parameter variance is reduced by this
way at each update, which can lead to a more stable convergence. Nevertheless,
this method has some limits that we need to be addressed. The choice of the
learning rate η is difficult in many applications. Additionally, the same learning
rate applies to all parameter updates, although we do not need to update all of
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them the same way. It could be preferable to perform a larger update for rarely
occurring features.
Adaptive Moment estimation (ADAM)[38] is an algorithm for gradient optimiza-
tion that computes adaptive learning rates for each parameter. The algorithm
updates exponential moving averages of the gradient (mt

i) and the squared gra-
dient (vti) where the hyper-parameters β1, β2 ∈ [0, 1] control the exponential
decay rates of these moving averages. We compute mt

i and vti as follows:

mt
i = β1m

t−1
i + (1− β1)g

t
i i = 1, 2 (9)

vti = β2v
t−1
i + (1− β2)(g

t
i)

2 i = 1, 2 (10)

where :

gti =
∂J(X(n : n+ l), d(n : n+ l))

∂Wi(n)
i = 1, 2 (11)

mt
i and vti are estimates of the first moment (average) and of the second

moment (uncentered variance) of gradients. These biases are counteracted by
computing bias-corrected first and second moment estimates as follows:

m̂t
i =

mt
i

1− (β1)t
i = 1, 2 (12)

v̂ti =
vti

1− (β2)t
i = 1, 2 (13)

The updating rule is then :

Wi(n+ 1) = Wi(n)−
η√
v̂ti + ϵ

m̂t
i i = 1, 2 (14)

ϵ is numerical parameter avoiding 0 at denominator (ϵ = 10−8). In this work,
the ADAM algorithm is used to optimize the following objective function :

MAPE =
1

n

n∑
i=1

∣∣∣∣Yi −Ri

Ri

∣∣∣∣ (15)

MSE = 1
n

∑n
i=1(Y

2
i −R2

i )(16)
Where Yi are the experimental values and Ri are the predicted ones.

Many tests have been performed to find the best configuration. We con-
ducted tests using softplus and softsign activation functions which are given for
input data x by :

Softplus(x) = ln(1 + ex) (17)

Softsign(x) =
1

1 + |x|
(18)
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Table 2: Examples of tested ANNs configurations

training data testing data
Config. Number of Number of Epochs MAPE MSE MAPE MSE
number neurons hidden layers

1 8 1 500 34.21 0.022 28.38 0.03
2 16 1 500 33.87 0.021 27.27 0.02
3 64 1 500 33.03 0.019 24.77 0.02
4 16 2 500 24.71 0.0086 18.23 0.01
5 16 2 1000 18.53 0.0059 14.91 0.01
6 64 2 1000 15.20 0.004 12.88 0.008
7 64 3 1000 9.32 0.0018 7.60 0.003
8 64 3 1500 5.57 0.001 6.32 0.0027
9 64 4 1500 5.26 6.7e-04 3.71 8.8e-04

Three hyper parameters (number of hidden layers, number of neurons in
each layer and Epochs) have been adjusted in order to get an optimized ANN.

Table 2 illustrates a set of tested configurations and associated errors calcu-
lated from training and testing data. The fourth column indicates the number
of Epochs. It is the number of times the ANN trains the weights for each neuron
to optimize the outputs from the given input sets In each epoch the ANN is
trained with all the training data.

9 configurations are gathered in this table using the same activation func-
tion Softplus. We see that the 9th configuration gives a significant error re-
duction. This configuration requires nevertheless 1500 Epochs and we observe
that MAPE objective function is lower for testing data than for training data,
which corresponds to an under-fitting situation. A so-called early stopping pro-
cedure has been applied to choose the number of Epochs: early stopping is a
method that allows for the specification of an arbitrary large number of training
Epochs. A stop number is activated once no error improvement is observed for
a validation dataset The optimized architecture that has been chosen is finally
composed of three hidden layers and 64 neurons per layer. Figure 8 shows the
architecture of the final ANN.

3.3. ANN asymptotic conditions

Some physical constraints have been added. They allow solutions to remain
in an acceptable range whatever the loading. For example, magnetization should
not exceed the saturation magnetization of the material which is a physical limit.
We then propose the following constraints:

• concerning magnetic loading, we define:

M(H) ≈ Mc for Hmax → ∞ (19)
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Figure 8: Architecture of the adopted MLP ANN.

Table 3: boundary conditions

@ Plastic strain interval σmax,ϵp (MPa)
ϵp <3% 600

3 < ϵp < 10% 800
10 < ϵp% 1000

where Mc is a magnetization level, high enough to be considered as the
magnetization at saturated state. We choose the magnetization obtained
for Hmax = 10300A/m. The following behavior is added to ANN process
:

M(H, ϵp, σ) = M(10300, ϵp, σ) when H > 10300A/m (20)

• In addition, experiments show that magnetization tends to a different
limit according to the mechanical loading. Some stress thresholds σmax,ϵp

depending on plastic strain level have been defined that allows a correct
magnetization prediction to be obtained when σ → ∞ :

M(H, ϵp, σ) = M(H, ϵp, σmax,ϵp) when σ > σmax,ϵp (21)

σmax,ϵp values are gathered in table 3.

4. Inversion of Feedforward Neural Networks

An efficient ANN is a very interesting tool because it makes an inversion
of the process possible: to obtain a set of inputs from the knowledge of the
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outputs. Applied to the data of the problem, it would become possible to es-
timate a mechanical state from magnetic measurements, reaching the possible
objectives of a magnetic NDT procedure.

The neural network model is shown in figure 8. Outputs are given by the
following set of equations:

L1,k = f1(

R∑
r=1

xrwrk + b1,k) =

∑R
r=1 xrwrk + b1,k

1 +
∣∣∣∑R

r=1 xrwrk + b1,k

∣∣∣ (22)

L2,k = f1(

S∑
s=1

L1,swsk + b2,k) =

∑S
s=1 L1,swsk + b2,k

1 +
∣∣∣∑S

s=1 L1,swsk + b2,k

∣∣∣ (23)

L3,k = f2(

S∑
s=1

L2,swsk + b3,k) = ln(1 + e
∑S

s=1 L2,swsk+b3,k) (24)

L4,k = f2(

S∑
s=1

L3,swsk + b4,k) = ln(1 + e
∑S

s=1 L3,swsk+b4,k) (25)

yi = f2(

S∑
s=1

L4,swsk + b5,i) = ln(1 + e
∑S

s=1 L4,swsk+b5,i) (26)

Subscript R is the number of neurons in the input layer. Subscript S is the
number of neurons in the hidden layers. f1 is the Softsign transfer function; f2
is the Softplus transfer function; w and b are weights and the biases respectively.

In order to calculate the input vector X(x1, x2, x3) = (σ, ϵ,Hmax) corre-
sponding to the output vector Y (y1, y2, y3) = (Mr, Hc,Mmax), we need to de-
fine an objective function to optimize the input vector and an optimization
algorithm. We then define the variable Z as the absolute value of the dif-
ference between the output of the ANN Yout and the desired magnetic vector
d(d1, d2, d3).

Zi = |yi − ci| i ∈ [1, 2, 3] (27)

The objective function F is then :

F (X) =
√
Z2
1 + Z2

2 + Z2
3 =

√
(y1 − d1)2 + (y2 − d2)2 + (y3 − d3)2 (28)

It can be rewritten as:

F (x1, x2, x3) =

√√√√i=3∑
i=1

(ln(1 + e
∑S

s=1 L4,swsk+b5,i)− ci)2 (29)

the third variable x3 which represents the maximum magnetic field is considered
known. The optimization is then restricted to x1 and x2 which are the stress
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and the plastic strain, respectively. The optimization problem can be stated as
follows :

(ϵp, σ)opt = argmin F (X)
subject to :− 300 ⩽ σ(i) ⩽ 800 (MPa)

0 ⩽ ϵp(i) ⩽ 25%,∀i ∈ N
(30)

The Nelder-mead method (NM) and the Genetic algorithm (GA) are used
to optimize this function. Those algorithms have the particularity to minimize
a function without calculating the gradient of the function, which is time con-
suming because of the complexity of the objective function.

5. Methodology for multivariable function optimization

As shown in equation (26), ANN model can be expressed as a multivariable
function. This section describes thus the meta-heuristic algorithms used to solve
this multivariable function.

5.1. Nelder-mead algorithm

The Nelder-Mead (NM) method is a widely used nonlinear optimization
algorithm. This numerical method allows for the minimization of an objective
function in a multi-dimensional space [39]. This algorithm is a direct search
method that does not use numerical or analytic gradient [40]. NM method
involves 5 steps: sorting, reflection, expansion, contraction and finally shrinkage
[41]. Figure 9 illustrates the algorithm flowchart.

In this algorithm, the initial n+1 vertices are first generated (X1, X2, .., Xn+1)
where Xi = (σ, ϵp)i and the objective function values F (Xi) are evaluated. The
computed fitting functions are then compared and sorted and the following
states are determined : the best Xb, the worst Xh, the next worst Xnw and
the centroid points X̄. These points are calculated using four adjustment scalar
coefficients named as reflexion (α), expansion (γ), contraction (β). After the
initializing and sorting steps, the reflexion point Xr is calculated as follows:

Xr = X̄ + α(X̄ −Xh) (31)

Similarly, the expansion point Xe is determined as follows :

Xe = X̄ + γ(Xr − X̄) (32)

Xe replaces the worst value Xh if the lowest value of the expansion point is
smaller than that of the reflexion point (Xr replaces Xh). If F (Xr) > F (Xnm),
the contraction step is applied. An outside contraction (oc) is applied when
F (Xr) < F (Xh) and Xoc is calculated as :

Xoc = X̄ + β(Xr − X̄) (33)

If F (Xoc) < F (Xr), Xh is replaced by Xoc and this completes the iteration.
Otherwise, we move to next step which is denoted as shrinkage.
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Figure 9: Nealder Mead flowchart [42]

19



Table 4: Nealder-mead algorithm parameters

n Reflexion (α) Contraction (β) Expension (γ)
3 1 0.5 2

If F (Xh) < F (Xr), the inside contraction (ic) is applied and Xic is calculated
using the equation below:

Xic = X̄ + β(Xh − X̄) (34)

If F (Xic) < F (Xh) then Xh is replaced by Xic. Else, the shrinkage occurs. The
shrinkage is the final step in NM algorithm which uses the equation below to
construct new points by shrinking them.

Xi = Xi + γ(Xb −Xi) i = 2, 3, .., n+ 1 (35)

The numerical algorithm of the NM simplex method has been described in detail
by Nelder and Mead [43]. Table 4 gathers the chosen NM parameters.

5.2. Genetic algorithm

Genetic Algorithms (GAs) are a set of computational algorithms inspired by
the evolution of species. These algorithms encode the potential solutions for a
specific problem in an individual data structure. This possible solution looks
like a chromosome to which a recombination is applied by the genetic operators,
conserving genetic information as a possible solution in the individuals of the
next generation [44]. The GA is organized by three operators: reproduction,
crossover, and mutation. The new population is created after the application
of the three steps. This process is iterated until attending the chromosome
which minimizes the objective function and can consequently be considered as
the optimal solution.
The process is started by creating randomly a population with N individuals.
Each individual is called chromosome Xi = (x1, x2, .., xn) where n is the number
of parameters to be optimized (in our case, Xi = (σ, ϵp)i). Next, population
is evaluated using the objective function; this evaluation constitutes the initial
fitting vector. Let define P as the population :

P = [X1, X2, .., XN ] (36)

For each chromosome Xi in population P , three other vectors Xj , Xk and Xl

are selected with j ̸= k ̸= l ̸= i. Xi is the target vector. The three vectors are
randomly chosen from the population without replacement. The three vectors
(Xj , Xk and Xl) are combined to create a new chromosome called the mutant
chromosome. The mutant vector is calculated as :

Xmut = Xj + µ(Xk −Xl) (37)
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Table 5: Genetic algorithm parameters

Population size (N) Number of parameters (n) µ p
40 2 0.8 0.7

where µ is a mutation factor.
The recombination is the next step after calculating the mutant vector. It
consists in mixing the mutant vector with the current vector to create a new
trial chromosome Xcr. To do that, some elements of the curent vector have
been mixed with elements of the mutant vectors. Considering Yj as the random
variable able to change Xi(j) in the actual vector Xi, Yj follows the Bernoulli
trials with a probability of success p. We then have :

Z = Y1 + Y2 + ...+ Yn (38)

Z follows a binomial distribution with parameters n and p ∈ [0, 1]. The proba-
bility weight function of Z is given by :

f =

(
n

k

)
pk(1− p)n−k k = 0, 1, .., n (39)

After new trial vector obtention, a new F value is calculated: if F (Xcr) >
F (Xi), the target vector Xi is preserved; if F (Xcr) < F (Xi), Xi is replaced by
Xcr. All these steps are repeated for the whole population. This completes the
first iteration of the algorithm. Values of parameters used for our testing case
are gathered in table 5.

6. Results and discussion

6.1. Cross validation

This section gathers some comparisons between experimental Hc, Mr and
Mmax results as function of stress and plastic strain, and the modeling results
from ANN after processing. Figures 11a to 11c allow for a visual comparison
between predicted values and target (experimental) values.This corresponds to
the validation step of the procedure. First the cross validation has been ap-
plied. This validation method is useful for machine learning when data amount
is relatively small [45]. In k-fold cross-validation the data is first partitioned
into k equally sized folders as illustrated in figure 10. Subsequently k training
iterations and validation are performed so that within each iteration, a different
data folder (one of the k folders) is held-out as a testing set while the remaining
k − 1 folders are used for learning. Finally all data are used as a validation set
one time at least [46]. The model accuracy has been evaluated using k = 5.
Table 6 summarizes MAPE obtained for each folder. The model exhibits an
accuracy of about 91% and a MAPE of about 3.7 %.
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Figure 10: Schematic diagram of cross validation method. [46]

Table 6: Accuracy calculated for the five folders

Folder 1 Folder 2 Folder 3 Folder 4 Folder 5
MAPE (%) 4.01 3.01 5.04 3.70 3.43

Accuracy (%) 90.0 92.9 90.0 91.3 91.0

The next step is model evaluation, which is major step in assessing the per-
formance of any machine learning model. The predicted values are compared
with observed ones (in our case observed values are the result of physical ex-
periments using specimen B - see Appendix A). The specimen is loaded in the
same conditions as the previous one. We propose a step-by-step comparison,
making gradually more complex the mechanical loading.

6.2. Effect of applied stress (without plastic strain)

The model was first applied to data collected under stress in the elastic
domain (ϵp = 0). Let FANN be the model function. We then have :{

F i,k,j
ANN = FANN (σi, ϵp = 0, Hmax

j ), i ∈ [1, 7], k ∈ [1, 3], j ∈ [1, L]

with F i,1,j
ANN = Mr, F

i,2,j
ANN = Hc, F

i,3,j
ANN = Mmax

(40)

Input datas are: Hmax
j ∈ [0 : 0.1 : 14e3] A/m, σi ∈ [−200,−40, 0, 40, 120, 200]

MPa, ϵp = 0 and L = length(Hmax) = 140.103. Predicted values of remanent
magnetization, coercive field and maximal magnetization are compared to ex-
perimental values collected from specimen B.

Figure 12a shows the variation of remanent magnetization according to the
maximum applied magnetic field and for seven applied stress levels (-200 MPa,
-40 MPa, 0 MPa, 40 MPa, 120 MPa, 200 MPa). We observe a good gen-
eral agreement between experimental measurements and model. The highest
discrepancies are observed for σ = 120MPa, highlighting some difficulties to
model the Villari reversal. Prediction of remanent magnetization under applied
stress for Hmax > 104A/m seems relevant even if the training data was limited
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(a)

(b)

(c)

Figure 11: Comparison between observed and predicted target data: (a) remanent magneti-
zation; (b) coercive field; (c) maximal magnetization
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(a)

(b)

(c)

Figure 12: Comparison measured-predicted values for specimen B: (a) remanent magnetiza-
tion; (b) coercive field; (c) maximum magnetization
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to Hmax = 104A/m. This highlights the effect of physical constraints that have
been implemented in the algorithm. Figure 12b allows for a comparison be-
tween experimental and modeled coercive field. Coercive field variations seem
accurately modeled for all stress levels. It tends to saturate at high magnetic
field strength. A slight decrease is observed for σ=200MPa curve when mag-
netic field reaches its highest value. Experimental and modeled variations of
maximum magnetization with magnetic field are illustrated in figure 12c. Very
small discrepancies are observed and approach to physical saturation sounds
relevant. This first set of validation comparisons, obtained under applied stress
without plastic strain are very satisfying.
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A 2D representation of modeling results for remanent magnetization, coer-
cive field and maximal magnetization is proposed in figure 13, allowing for a
better observation of variations and gradients. The following range has been
used:

σi ∈ [−300 : 1 : 300]MPa Hmax
j ∈ [0 : 1 : 5000]A/m

We can see in figure 13a that remanent magnetization increases with tensile
stress for a maximum magnetic field higher that 2000A/m until a threshold
is reached. Remanent magnetization then begins a slight decreasing. This
behavior is in accordance with experimental results and seems to correspond
to a Villari effect. The highest remanent magnetization values are obtained
for σ ≈150MPa. In compression, gradients show that remanent magnetization
seems more magnetic field sensitive than stress sensitive. Fig 13b shows that
the strongest variations and strongest values of coercive field are obtained un-
der compression at high magnetic field. Even if this result is in accordance with
experiments attention must be paid to a possible divergence of the model for
higher magnetic field and compression. Hc decreases when σ > 0 and saturation
seems occurring at increasing maximum applied field levels. In tension, gradi-
ents show that coercive field seems more magnetic field sensitive than stress
sensitive. Variations of maximum magnetization plotted in figure 13c look close
to variations of remanent magnetization. The maximum values are reached for
σ ≈50MPa and at high magnetic field. The decreasing of maximum magne-
tization with stress at high magnetic field is symptomatic of Villari reversal.
Variations with magnetic field under compression are stronger than for rema-
nent magnetization.
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(a)

(b)

(c)

Figure 13: (a) Predicted remanent magnetization according to σ and Hmax; (b) predicted
coercive field according to σ and Hmax; (c) predicted maximum magnetization according to
σ and Hmax.
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6.3. Effect of plastic straining (without applied stress)

Data collected for plastic strained sample at the unloaded state (σ = 0 MPa)
are used. We then have :

F i,j
ANN = FANN (σ = 0, ϵpj , H

max
i ), i ∈ [1, 3], j ∈ [1, L] (41)

with ϵpj ∈ [0 : 0.01 : 24]%, Hmax
i ∈ [230, 1000, 2000] A/m and L =

length(ϵp) = 2401

It must be first noticed that plastic strain range is wider than the experi-
mental range used for training (max(ϵp)=20%). This extension can be used as
a test for model learning capacity.

Figures 14a-c illustrate the remanent magnetization variations according to
plastic strain for the three maximum magnetic field levels. Remanent magne-
tization decreases as expected and a very good agreement is observed between
experimental points and modeling. Predictions for plastic strain higher than
20% seems relevant too, highlighting a progressive expected saturation.

Figures 15a-c show experimental and modeled variations of coercive field
versus plastic strain for the three maximum magnetic field levels. As previously
discussed, variations of coercive field with plastic strain at low field and high
field are opposite: Hc decreases strongly according to the plastic strain in the
first stages of deformation (0% to 5%) and it tends to saturate for higher plastic
strain. Hc increases on the contrary according to plastic deformation at high
magnetic field (figure 16c), when 0%≤ ϵp ≤5% and it saturates after a small
decreasing. Coercive field vs plastic strain exhibits a non-monotony at interme-
diate magnetic fields: it increases at low plastic strain level then it decreases
drastically at higher levels.

Figures 16a-c show experimental and modeled variations of maximum mag-
netization versus plastic strain ϵp. As for applied stress without plastic strain,
variations of maximum magnetization follows approximately variations of re-
manent magnetization. Some increasing with plastic strain is observed at low
magnetic field (figure 16a). This variation is not reproduced by the modeling
but may be considered as a measurement error. For all magnetic field levels,
the maximum magnetization tends to saturate for ϵp > 20%.

For all situations, the ANN model gives very good estimations, underlining
its ability to model such a very complex behavior.
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Figure 14: Comparison measured/predicted values of the remanent magnetization as function
of plastic strain level at different maximal magnetic field strength: (a) 230A/m; (b) 1000A/m;
(c) 2000A/m - (no applied stress σ = 0).
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(a)

(b)

(c)

Figure 15: Comparison measured/predicted values of coercive field as function of plastic
strain level at different different maximal magnetic field strength:(a) 230A/m; (b) 1000A/m;
(c) 2000A/m - (no applied stress σ = 0).
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(a)

(b)

(c)

Figure 16: Comparison measured/predicted values of maximum magnetization as function of
plastic strain level at different maximal magnetic field strength: (a) 230A/m; (b) 1000A/m;
(c) 2000A/m - (no applied stress σ = 0).
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6.4. Effect of plastic straining under mechanical loading

In this section, the model was evaluated as follows :

F i,l,j
ANN = FANN (σi

j , ϵpi, H
max
l ), i ∈ [1, 8], l ∈ [1, 6], j ∈ [1, Li] (42)

where :
σi
j ∈ [σi

inf : 0.01 : σi
sup]

ϵpi ∈ [0, 1, 2, 3, 5, 10, 15, 20](%)

Hmax
l ∈ [230, 450, 680, 1340, 1560, 2000](A/m)

Li = length(σi
j)

Figures 17a to 17f allow for a comparison between experimental and mod-
eled estimations of remanent magnetization as function of plastic strain level and
stress amplitude at the six maximum magnetization field strength. Each curve
defines the remanent magnetization variation as function of stress for a given
plastic strain level. The modeling accurately follows the remanent magnetiza-
tion variations including the non-monotony at high stress and some crossings.
The model overestimates nevertheless slightly the remanent magnetization at
low plastic strain level for low maximum magnetic field conditions whereas it
is underestimated for high maximum magnetic field conditions. Saturations
for high compressive stress look suitable for all situations. Saturation is not
reached under tension but tendencies seem relevant too, in accordance with
experimental results. Figures 18a to 18f allow for a comparison between ex-
perimental and modeled estimations of remanent magnetization as function of
plastic strain level and stress amplitude at the six maximum magnetization field
strength. The variations of coercive field approximately follow those of the re-
manent magnetization for a maximum magnetic field up to 450A/m (figures 18a
and 18b): increasing of the coercive field under stress up to a threshold where
the coercive field begins to decrease. Plastic deformation gradually reduces the
coercive field leading to relatively parallel curves. As the maximum magnetic
field increases, trends completely change: the gradually increasing stress leads
to a reduction of the coercive field (which results in an increasing number of
curves crossing), but an increasing plastic deformation leads on the contrary to
a higher coercive field. It is very interesting to observe that reversals and grad-
ual shift of stress crossing point to lower values are accurately modeled. The
model thus predicts a reversal of trends under compression for the two highest
maximum magnetic fields (figures 18e and 18f). Figures 19a to 19f illustrate
the predicted maximum magnetization Mmax compared to experimental values.
Each curve define the maximum magnetization variation as function of stress for
a given plastic strain level. Model and experiments look in agreement whatever
the situation. Discrepancies are observed for the same loading conditions as
discrepancies observed for remanent magnetization. Maximum magnetization
variations are indeed very close to remanent magnetization variations, high-
lighting saturation under compression and Villari reversal. These elements of
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Figure 17: Comparison measured-predicted values of remanent magnetization for deformed
specimen B : (a) Hmax = 230A/m; (b) Hmax = 450A/m; (c) Hmax = 680A/m; (d) Hmax =
1340A/m; (e) Hmax = 1560A/m; (f)Hmax = 2000A/m

comparisons make it possible to conclude that the ANN model is quite able to
model the combined influence of plasticity and uniaxial stress. Note that the
model was identified using measurements obtained on a first specimen (spec-
imen A) while the validation tests use measurements obtained with a second
specimen (specimen B). No model to our knowledge can reach such a level of
prediction.
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Figure 18: Comparison between measured and predicted values of coercive field for deformed
specimen B as function of applied stress: (a) Hmax = 230A/m; (b) Hmax = 450A/m; (c)
Hmax = 680A/m; (d) Hmax = 1340A/m; (e) Hmax = 1560A/m; (f)Hmax = 2000A/m
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Figure 19: Comparison between measured and predicted values of maximum magnetization
for deformed specimen B as function of applied stress: (a) Hmax = 230A/m; (b) Hmax =
450A/m; (c) Hmax = 680A/m; (d) Hmax = 1340A/m; (e) Hmax = 1560A/m; (f)Hmax =
2000A/m

6.5. Inverse identification

This part illustrates how it is possible to use the ANN model to reach an
inverse identification of mechanical state M(ϵp, σ) (supposed unknown) based
on the magnetic signature S(Mr, Hc,Mmax, Hmax) (supposed known). Let Finv

defined in eq. (29) be the objective function to optimize. Table 7 gathers
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(a) (b)

(c) (d)

Figure 20: Inverse identification using NelderMead and Genetic algorithm: (a) S1; (b) S2; (c)
S3; (d) S4

four situations (Si) corresponding to four ”virtual” magnetic signatures. Table
8 indicates in the two first columns the target quantities: true plastic stain
and stress levels associated with the magnetic signatures in table 7. The next
columns indicate the results of inverse identification using the GA and NM
algorithms respectively (process is initiated with solutions: ϵp = 0% and σ =
0MPa for NMA; GA does not need any initialization). N indicates the number of
iterations required for identifications. Figures 20a to 20d illustrate the objective
function evaluated for ϵp = [0 : 1 : 25]% and σ = [−300 : 1 : 800]MPa and show
the path used for GA and NMA to obtain the optimized solution for the four
situations. We focus first on figure 20a that shows how Finv evolves for the first
magnetic signature S1. NM algorithm gives (ϵp, σ) = (4.9%, 161.6MPa) after
76 iterations whereas GA gives (ϵp, σ) = (5.5%, 169.0MPa) after 147 iterations.
Both estimations are very close to the target quantities: (5%, 162MPa). NMA
looks however more performant than GA. Figure 20b illustrates the objective
function for signature S2. Both algorithms converge to the exact solution after
62 iterations for GA and after 88 iterations for NMA. GA is more performant
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Table 7: Inverse identification 1rst step - magnetic signatures.

Magnetic signatures Hmax Mr Hc Mmax

S1 230 0.73 43 3.33
S2 674 20.1 324 35.2
S3 1558 34.4 525 66.8
S4 2000 15.6 646 41.2
unit A/m 104A/m A/m 104A/m

Table 8: Inverse identification 2nd step - estimation of mechanical quantities and iterations
number N.

Meas. GA NM
Mechanical quantities ϵp σ ϵp σ N ϵp σ N

S1 0 -120 0 -120 8 0 -120 4
S2 10 381 10 381 62 10 381 88
S3 5 162 5.5 169 115 4.9 162 113
S4 10 0 10 0 72 10 0 48
unit % MPa % MPa - % MPa -

this time. Figures 20c and 20d illustrate the two last situations leading to the
same conclusions: the inverse model is clearly able to predict the mechanical
state (ϵp, σ) accurately from the knowledge of magnetic signature despite the
large domain of possible solutions. The use of GA and NMA optimization
algorithms allowed for a fast convergence and a low calculation cost despite the
high complexity of the objective function.

7. Conclusion

In this paper, an artificial neural networks (ANNs) modeling of the effect of
tensile plastic strain mixed with applied uniaxial stress on magnetic behavior of
a pipeline steel has been proposed.

The ANN model was first built and then its parameters were identified
thanks to learning data made up of measurements carried out on a first spec-
imen (specimen A). About 60% of the randomly chosen data was used. The
remaining 40% were used for a validation step. The model was then tested by
comparing its results to experimental results obtained with a second specimen
(specimen B) subjected to the same mechanical loading conditions as the first
one. The model gives very satisfactory results, going well beyond the possi-
bilities of other phenomenological or physically based models available in the
literature. It should be noticed that the experimental identification data have
been supplemented by a few rules relating in particular to a few physical limits,
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making it possible to obtain solutions outside the experimental range and con-
sistent with general trends. This model gives excellent results for maximal and
remanent magnetization. Discrepancies with experiments are stronger for coer-
cive field since its variations with stress, plastic strain and maximal magnetic
field are strongly non-linear and non-monotonous.

Based on this result, a reverse identification procedure has been imple-
mented. This procedure is using four magnetic input parameters, namely the
maximal magnetic field strength Hmax, maximal magnetization Mmax, coer-
cive field Hc and remanent magnetization Mr. Plastic deformation level ϵp and
tensile stress σ are the output parameters. The procedure has been applied to
find the mechanical state associated with four different magnetic signatures. A
unique and accurate solution has been obtained for all cases.

It must however be recalled that inverse procedure is restricted to uniax-
ial stress and plastic strain obtained by tensile loading. Extension to plastic
compression and more generally to multiaxial stress situations as met in real in-
dustrial applications is a work in progress. Extension to other materials should
be addressed too.
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Appendix A. Experimental results carried out with sample B

Figure A.21 gathers different magnetic indicators for specimen B. Results
are of course close to results obtained with specimen A (see figure 6). But some
differences related to material and testing conditions variability can be observed.
These results have been used for ANN model validation process.
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Figure A.21: Magnetic indicators for specimen B - remanent magnetization according to
mechanical stress (a) Hmax = 230A/m, (b) Hmax = 2250A/m; coercive field according to
mechanical stress (c) Hmax = 230A/m, (d) Hmax = 2250A/m; maximum magnetization
according to mechanical stress (e) Hmax = 230A/m, (f) Hmax = 2250A/m.
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Appendix B. ANN training process

The training process is carried out in two steps. The first step consists in a
forward propagation that calculates the output from the input (feed).{

Y1(n) = f(W1(n)
TX(n))

Yout(n) = f(W2(n)
TY1(n))

(B.1)

where f() is the activation function, X(n) is the input vector (B.2) with M
elements, Y1 is the output of the hidden layer (B.3), Yout(n) is the output of
the system obtained by equation (B.1), W1(n) and W2(n) are weight vectors
illustrated in figure B.22 and defined by equations (B.4) and (B.5).

X(n) = [X1(n)X2(n)...XM (n)]
T

(B.2)

Y1(n) = [y1(n)y2(n)...yK(n)]
T

(B.3)

W1(n) =


w1,11(n) w1,12(n) . . . w1,1M (n)
w1,21(n) w1,22(n) . . . w1,2M (n)

...
...

...
...

w1,K1(n) w1,K2(n) . . . w1,KM (n)



T

(B.4)

W2(n) = [w2,1(n)w2,2(n)...w2,K(n)]
T

(B.5)

The second step is back-propagation. It propagates the calculated error term
from the output layer back to the input layer. The cost function of one training
is defined as :

J(X(n), d(n)) = |Yout(n)− d(n)|2 (B.6)

Where d(n) is the desired output. The cost function for the whole training is
defined as :

J(X, d) =

T∑
n=1

J(X(n), d(n)) (B.7)

Where T is the total number of training sets.
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