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Introduction and de…nitions

One of the objectives of experimental mathematics is to look for hidden, unexpected patterns or structures using modern computational techniques. Of course, these experiments are not as valuable as the rigorous and immutable proofs that have been the goal and attribute of mathematics for centuries. But they can sometimes lead to the right track and suggest speci…c, useful directions for theoretical research -in the spirit of an ambitious program formulated as a kind of manifesto by Jonathan Borwein, an enthusiast and ardent propagator of experimental mathematics. In particular, Borwein recommends using computers to gain insight and intuition as well as discover new patterns and relationships ([4], page 2). And this is what we intend to do in this paper.

Here we will describe such an approach based on a speci…c example taken from analytic number theory. But …rst, let us recall some de…nitions and the notation adopted.

Function (s) introduced by Riemann in his fundamental paper [START_REF] Riemann | Ueber die Anzahl der Primzahlen unter eine gegebenen Grösse, Monatsberichte Königl[END_REF] (see also [START_REF] Harold | Riemann's Zeta Function[END_REF], p.16-21, for a detailed exposition):

(s) = 2(s 1)

s=2 1 + s 2 (s) (1) 
is related to the zeta function (s), having the same complex (nontrivial) zeros n . All the so-called trivial zeros of the zeta function located at the negative even integers have been "annihilated" by the simple poles of the gamma function. (s) is an entire function 1 and satis…es simple functional equation:

(s) = (1 s) (2) 
There are di¤erent conventions concerning the trivial factor in the de…nition of (s). Here we have chosen such that seems the most natural: (0) = (1) = 1.

Let us further de…ne:

f (s) = ln (s) (3) 
This function is of crucial importance since it appears in the de…nition of certain real coe¢cients:

n = 1 (n) lim s!1 d n ds n s n 1 f (s) (4) 
As was outlined by Keiper in 1992 [START_REF] Keiper | Power Series Expansion of Riemann's Function[END_REF] and rigorously proved by Li in 1997 [START_REF] Li | The Positivity of a Sequence of Numbers and the Riemann Hypothesis[END_REF] the celebrated Riemann hypothesis (RH) [START_REF] Riemann | Ueber die Anzahl der Primzahlen unter eine gegebenen Grösse, Monatsberichte Königl[END_REF] is equivalent to nonnegativity of coe¢cients (4):

RH () n 0 (5) 
Of course, criterion [START_REF] Harold | Riemann's Zeta Function[END_REF], while deceptively simple, at least in its concise notation, is as di¢cult to settle as the Riemann hypothesis itself. Nevertheless it is worth detailed investigations, see [START_REF] Bombieri | Complements to Li's criterion for the Riemann hypothesis[END_REF], [START_REF] Johansson | Rigorous High-precision Computation of the Hurwitz Zeta Function and its Derivatives[END_REF], [START_REF] Je¤rey | Li coe¢cients for automorphic L-functions[END_REF], [START_REF] Maślanka | Li's Criterion for the Riemann Hypothesis -Numerical Approach[END_REF], [START_REF] Arias De Reyna | Asymptotics of Keiper-Li Coe¢cients[END_REF], [START_REF] Voros | From Asymptotic to Closed Forms for the Keiper/Li Approach to the Riemann Hypothesis[END_REF]. It should be emphasized that the coe¢cients n in the form (4), although important from theoretical point of view, are practically useless for numerical estimates.

Introducing function ' (s):

' (s) := 1 1 s (6) 
one can easily show that n are power series coe¢cients of the logarithmic derivative of ' (s) (see [START_REF] Li | The Positivity of a Sequence of Numbers and the Riemann Hypothesis[END_REF] for details): '0 (s)

' (s) = 1 X n=0 n+1 s n jsj < 1 (7) 
The third formula for n coe¢cients involves explicitly complex zeros of the Riemann zeta function located within the critical strip:

n = X 1 1 1 n ( 8 
)
where the summation is taken over all these zeros with and 1 being paired together. A detailed inspection of the formula [START_REF] Je¤rey | Li coe¢cients for automorphic L-functions[END_REF] leads to a rather pessimistic conclusion: any attempt to locate a counterexample for RH by …nding a negative n is hopeless. Note that if = 1=2 + i y (for real y) then j1 1 j = 1. However, if the deviates from the critical line then j1 1 j is slightly di¤erent from one. Then n should be extremely great, especially for high , to make n negative.

Note that (8) can be thought of as an analytical extension of the coe¢cients n to an entire function (n), since n need not be an integer at all -it can be negative, rational, or even complex. The summation in [START_REF] Je¤rey | Li coe¢cients for automorphic L-functions[END_REF] would still converge over the entire complex plane. Unfortunately, this convergence is very slow -so slow that, for example, numerical calculation of the position of zeros of the entire function (n) is practically impossible.

Several important results on such an analytical extension of the Keiper-Li coe¢cients are contained in [START_REF] Je¤rey | Li coe¢cients for automorphic L-functions[END_REF], chapter 7. In this paper Lagarias rigorously proved its existence and also showed some of its properties.

There is yet another representation of these important constants, which we will give here just for the sake of completeness. Let

1 X j=0 a j s j (9) 
where coe¢cients a j are all positive (see [START_REF] Li | The Positivity of a Sequence of Numbers and the Riemann Hypothesis[END_REF] for the proof). Then

n = n 1 X i=0 ( 1) i 1 i X a k1 :::a ki ( 10 
)

Interpolation with nonequidistant nodes

Now our goal is to construct an interpolating polynomial convergent to f (s) ln (s) in the closed interval [0; 1]. To achieve this we choose as interpolation nodes the following set of points:

u = f1; 1 2 ; 1 3 ; 1 4 ; 1 5 
; :::g

together with:

v = f0; 1 2 ; 2 3 ; 3 4 ; 4 5 
; :::g

These nodes are obviously unequally spaced and get denser towards the edges of the interval [0; 1] on which we want to interpolate f (s). Note that with such choice, point 1 2 is doubled. Also note that each number from the set ( 11) is equal to one minus the corresponding number from the set [START_REF] Maślanka | Li's Criterion for the Riemann Hypothesis -Numerical Approach[END_REF], and vice versa which, of course, is intentionally related to the functional equation [START_REF] Philip Boas | Entire Functions[END_REF].

In the case of interpolation attempts, typical phenomenon is the so-called Runge e¤ect [START_REF] Trefethen | Approximation Theory and Approximation Practice[END_REF], which for equidistant nodes occurs even for some perfectly smooth (on the real axis) functions. These are undesirable oscillations between the nodes, growing with increasing order of the interpolating function. The remedy for this is the appropriate choice of unequally spaced nodes, e.g. so called Chebyshev nodes, which get denser towards the edges of the interval on which we want to interpolate a given function. It is this uneven distribution of nodal points that guarantees the convergence of the interpolation along the entire interval, and even in its neighborhood, but, of course, not the global convergence.

But …rst recall the de…nition and properties of the Pochhammer symbol (x) k which we shall need soon:

(x) k (k + x) (x) = k 1 Y i=0 (x + i) = ( 1) k k X i=0 ( 1) i S (i) 
k x i = k X i=0 S (i) k x i (13) 
where x is complex and k is a nonnegative integer. Let us now introduce the following family of polynomials of the variable s:

k (s) k Y i=1 s 1 i = s k k! s 1 s k = s k k! k X i=0 S (i) k s 1 s i (14) ! k (s) = k (s) k (1 s) = 1 (k!) 2 k X i;j=1 S (i) k S (j) k s k+i j (1 s) k+j i (15) 
where

S (i)
k are (signed) Stirling numbers of the …rst kind (see [START_REF]Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF] and [25]). The degree of the polynomial ! k (s) is 2k. As usual in such situations, we assume that if in [START_REF] Platt | The Riemann hypothesis is true up to 3 10 12[END_REF] any of the exponents is zero then the corresponding power is taken to be one. It is evident that ! k (s) is zero in k initial nodes (11) and [START_REF] Maślanka | Li's Criterion for the Riemann Hypothesis -Numerical Approach[END_REF]. Also, by construction, ! k (s) = ! k (1 s), i.e. for each k the functions ! k (s) have the same symmetry (2) as and f . Also, by construction the nodes (11), [START_REF] Maślanka | Li's Criterion for the Riemann Hypothesis -Numerical Approach[END_REF] are taken in pairs in [START_REF] Platt | The Riemann hypothesis is true up to 3 10 12[END_REF]. This is realized as follows: Such an interpolation mechanism is realized by taking a linear combination of polynomials [START_REF] Platt | The Riemann hypothesis is true up to 3 10 12[END_REF]:

k th order nodes 0 (0; 1) 1 (0; 1); (
F m (s) = m X k=1 ( 1) k k ! k (s) (16) 
where m tends to in…nity and k are some coe¢cients that have yet to be determined. The condition from which we calculate them is F m (s) = f (s) if s takes the value of any of the nodes (11) or [START_REF] Maślanka | Li's Criterion for the Riemann Hypothesis -Numerical Approach[END_REF]. (Due to symmetry f (s) = f (1 s) nodes ( 11) and ( 12) are equivalent.) This condition leads to a system of linear equations: ::: ::: ::: ::: ::: :::

m F m (u m+1 ) or F m (v m+1 ) 1 1 4 1 = f 1 2 2 2 9 1 1 162 2 = f 2
1 C C C C C C C C C C C A = 0 B B B B B B B B B B B @
1 C C C C C C C C C C C A 0 B B B B B B B B B B B @ f 1 2 f 2 3 f 3 4 f 4 5 f 5 6 
:::

1 C C C C C C C C C C C A (17) 
Rational coe¢cients c kj which form the triangular matrix in [START_REF] Riemann | Ueber die Anzahl der Primzahlen unter eine gegebenen Grösse, Monatsberichte Königl[END_REF] were simply guessed which took some time and also required some intuition2 :

c kj = k j k!(k + 1) 2 j k (j + 1) 2k 2 1 j k k j 1 j j (18) 
Finally we have:

k = k X j=1 c kj f j j + 1 (19) 
As usual (cf. [START_REF] Maślanka | The High Precision Numerical Calculation of Stieltjes Constants. Simple and Fast Algorithm[END_REF]) the most e¢cient way to obtain numerical values of k with high precision consists in tabulating at …rst appropriate values of f in the nodes with high precision (typically at least 10000 digits). In this way we avoid unnecessary, repetitive and time-consuming calculations of f in the nodes. A small but highly e¤ective program PARI/GP [START_REF][END_REF] is most appropriate to achieve this. Having these values one can use [START_REF] Trefethen | Approximation Theory and Approximation Practice[END_REF] to calculate k . It turns out that they decrease very quickly to zero as k grows, and their signs alternate (at least for the values available for numerical experiments, cf. Fig. 1.) Figure 1: Real coe¢cients k (19) diminish quickly to zero when k grows which guarantees fast convergence of series [START_REF] Arias De Reyna | Asymptotics of Keiper-Li Coe¢cients[END_REF]. Numerical calculations suggest that ( 1) k+1 k are all positive, at least if the Riemann hypothesis is true.

Numerically e¤ective formula for n

We are now ready to …nd numerically e¢cient expression for the Keiper-Li coe¢cients (4). Substituting the interpolating polynomial [START_REF] Arias De Reyna | Asymptotics of Keiper-Li Coe¢cients[END_REF] together with [START_REF] Platt | The Riemann hypothesis is true up to 3 10 12[END_REF] in place of f (s) in ( 4) and letting m ! 1 we get:

n = 1 (n) lim s!1 d n ds n 2 4 s n 1 1 X k=1 ( 1) k k (k!) 2 k X i;j=0 S (i) k S (j)
k s k+i j (1 s)

k+j i 3 5 = (20) = 1 (n) 1 X k=1 ( 1) k k (k!) 2 k X i;j=0 S (i) k S (j) k lim s!1 d n ds n h s n 1+k+i j (1 s) k+j i i
Using Leibniz' formula:

d n ds n (f (s)g(s)) = n X r=0 n r d r ds r f (s) d n r ds n r g(s) (21) 
we get:

n = 1 (n) 1 X k=1 ( 1) k k (k!) 2 k X i;j=0 S (i) k S (j) k lim s!1 n X r=0 n r d r ds r (1 s) k+j i d n r ds n r s n 1+k+i j
The n th derivative of monomial is:

d n ds n (s c) r = r! (r n)! (s c) r n n r (22) 
so

n = 1 (n) 1 X k=1 k (k!) 2 k X i;j=0 S (i) k S (j) k n X r=0 n r ( 1) 
j i (k + j i)! (k + j i r)! (n 1 + k + i j)! (k + i j + r 1)! lim s!1 (s 1) k+j i r s k+i j+r 1 (23) 
Now, after taking the limit s ! 1, in the summation over r survives only the term for which the exponent in (s 1) k+j i r is zero, i.e. when r = k + j i. Hence:

n = n 1 X k=1 k (k!) 2 k X i;j=0 S (i) k S (j) k ( 1) 
j i 1 (n k j + i)! (n 1 + k + i j)! (2k 1)! = (24) = n 1 X k=1 k (k!) 2 k X i;j=0 S (i) k S (j) k n + k + i j 1 2k 1 
De…ning rational coe¢cients nk :

nk = n (k!) 2 k X i;j=1 S (i) k S (j) k n + k + i j 1 2k 1 (25) 
we …nally have:

n = 1 X k=1 nk k (26) 
The rational coe¢cients nk are positive for integer n and increase with the increase of k. Nevertheless, because the coe¢cients k tend to zero much faster (see Fig. 1), the series representation (26) of n converges quite quickly. Therefore, it can be e¤ectively used to calculate several thousand of initial values of n , provided that we have previously tabulated numerical values of k , according to the procedure outlined above. For instance, if we have precomputed values of f (s) in the nodes with precision 20; 000 digits we can compute k up to k = 3361, since, as usual, precision of k decreases to zero with k. In order to increase this range, one should also (proportionally) increase the precision of the precomputed values of f (s) in the nodes.

The numerical values of coe¢cients n calculated in this way agree perfectly with values obtained by other methods, see e.g. [START_REF] Keiper | Power Series Expansion of Riemann's Function[END_REF], [START_REF] Johansson | Rigorous High-precision Computation of the Hurwitz Zeta Function and its Derivatives[END_REF], [START_REF] Maślanka | Li's Criterion for the Riemann Hypothesis -Numerical Approach[END_REF].

One thing should be stressed out here. In the formula (26), it is enough to sum up to some maximum k, more precisely, to that k for which the precision of k drops to zero. Most importantly, all digits of n obtained from this summation are signi…cant ( [START_REF] Maślanka | The High Precision Numerical Calculation of Stieltjes Constants. Simple and Fast Algorithm[END_REF], for details see comment on formula [START_REF][END_REF] and especially Fig. 9).

Analytic extension of n

In what follows we are going to extend the range of index n from positive integers to arbitrary complex numbers. Simply note that the values of the parameter n in (26) no longer need to be positive integers as in the formula (4); on the contrary: they can be negative, rational and even complex. Thus (26) is in fact an extension of the formula (4) to the whole plane of complex numbers. For example:

(1=2) = 0:005774507219796948948:::

(i) = 0:02310189639985490400::: (1 + i) = 0:00001237486681209165::: + i 0:04619760137033736709:::

Our purpose is to demonstrate that (n) expressed by ( 26) is an entire function, so it has complex zeros that can be investigated numerically. It is also, as we will show, an even function, which is not obvious when looking at (4) or (26).

As mentioned above, the variable n is no longer limited to integers. This is because in the formula (25) it appears in a binomial symbol and not, for example, as an index in the Stirling numbers, where it should be integer by its very nature. Therefore we can use the following identity:

x k = ( 1) k k! ( x) k = 1 k! k X p=0 S (p) k x p (27) 
and put x = n + k + i j 1: After some tedious but elementary calculations we get:

nk = n (k!) 2 1 (2k) 2k 1 
X q=1;3;5;:::

kq n q (28) where kq = k X i;j=1 2k 1 X p=q S (i) k S (j) k S (p) 2k 1 p q (k + i j 1) p q (29) 
(As usual, the power in (29) should be taken 1 when p = q.) It is easy to check that all the coe¢cients kq are integer and form a triangular matrix. Moreover, we see from (28) that nk are actually polynomials in variable n with rational coe¢cients. Below there are several of them labelled by the integer parameter k: In a naturally way, the integer parameter k enumerates consecutive polynomials nk , whereas n is an independent (in general complex) variable. Each nk is of degree 2k and has, of course, 2k roots. The distribution of these complex roots, even if not particularly interesting from the theoretical point of view, is quite aesthetic, see Fig. 2.

k nk 1 n 2 2 1 12 n 2 1 + 2n
Since kq = 0 for even values of q we have only even exponents of n q in (28). Introducing real coe¢cients q :

q = 1 X k=1 k;q 1 (2k) k (k!) 2 (30)
we …nally have (n) in the form of a "polynomial of in…nite order", i.e. the entire function (n) that interpolates n at integer values:

(n) = 1 X q=1 2q n 2q (31) 
One can easily prove that coe¢cients q (30) with even q = 2; 4; 6; ::: have alternating signs and tend quickly to zero whereas those with odd q = 1; 3; 5; ::: are all exactly zero: In the summary of the considerations made so far, it can be stated that formula (31) works well for complex variable n. It is also clear that n = (n) is an entire even function, where n, as mentioned above, no longer needs to be limited to integers. Therefore, from now on, we will make change in the notation: n ! s.

We are quite aware that with extensions of this type there always exists a subtle problem of unambiguity: is the proposed extension unique? For instance, it is well-known that in the relatively simple case of extension of the ordinary factorial to an analytic function there are in…nitely many possibilities. However, the integral proposed by Euler is the simplest, most natural.

So quite consciously, we will remain faithful to numerical experiments that e¤ectively support intuition, in the spirit of the program presented by Jonathan Borwein. And, for the time being, we will leave the question of mathematical rigor.

Distribution of zeros

According to the general theory of entire functions [START_REF] Yakovlevich | Distribution of Zeros of Entire Functions[END_REF] expression (31) has complex zeros which may be investigated numerically. To achieve this the function FindRoot implemented in Wolfram's Mathematica is particularly useful as well as rich graphical capabilities of this remarkable program. For example, choosing the appropriate starting point s 0 in FindRoot[ (s),{s; s 0 },WorkingPrecision ! 100] one can …nd several thousand complex zeros of (s) (see Appendix below).

The …rst glance at the distribution of complex zeros of (s) reveals four symmetrical branches plus one double zero in the center (Fig. 3). However, logarithmic rescaling of the real axis makes the four branches almost straight lines (Fig. 4). The mechanism of the formation of a few initial zeros is shown in Figs. 5 and6. Numerical experiments clearly suggests that the growth of Re k with k is nearly linear while growth of Im k is almost perfectly logarithmic. Combining these dependencies we obtain simple formula:

Im k 16 log(Re k ) (32) 
(Factor 16 is from the …tting procedure.) More detailed inspection of these zeros reveals certain surprising structure in their distribution (Figs. 7 and8). Another unexpected e¤ect which can be grasped only by computer experiments is certain strong, long-range correlation between values of the real and imaginary part of the zeros. This can be demonstrated by simply taking high-order …nite di¤erences, e.g. of the order of 700 or more. We'll give just two examples here. These are described in details below, in Figs. 9 and 10. Many other examples of such correlations can also be given, which is currently being investigated and will be the subject of another publication. Using Jensen's theorem, an independent test of the numerical correctness of several dozen initial zeros was carried out. By n(r) we denote the number of zeros of a given integer function:

f (s) = 1 X n=0 c n s n (33)
in a disk of radius r, jsj r, and by N (r) the integral:

N (r) = r Z 0 n(t) t dt with n(0) = 0 (34) 
Jensen's theorem (cf. [START_REF] Philip Boas | Entire Functions[END_REF], §1.2.1) relates the distribution of zeros of an entire function to its growth. It states that: Both surfaces intersect the plane (x; y) (green color) along certain complicated curves. These curves in turn intersect themselves in certain de…nite points marked by vertical dark red lines, that is, in the complex zeros of (s). By elementary calculations we get that for (33) the following relation holds:

N (r) = 1 2 2 Z 0 ln f re i' d' ln jf (0)j (35) 
n(r) = r 2 2 Z 0 h(r; ')d' (36) 
where h(r; ') 1 2

d dr ln f (r; ') 2 + g(r; ') 2 (37) 
and

f (r; ') 1 X k=1 c k r 2k 2 cos [2(k 1)'] (38) 
g(r; ')

1 X k=1 c k r 2k 2 sin [2(k 1)'] (39) 
Figure 11 illustrates how the formula (36) works. (Of course, in (38) and (39) the coe¢cients c k have been replaced by (30). In order to satisfy condition n(0) = 0 the series (31) has been divided by n 2 .)

(s) as a product over its zeros

Note that the complex zeros k of the lambda function introduced in this work are in a sense "dual" to the complex zeros n of the Riemann zeta function (or the xi function ( 1)) in the sense that both these families of zeros contain the same and complete information about this extremely important function.

Since (s) is an entire function, we can represent it, by Weierstrass's theorem, as an in…nite product over its zeros:

(s) = const s 2 Y all zeros 1 s (40) 
(No additional prime factors are needed here because (s) is of …nite order [START_REF] Je¤rey | Li coe¢cients for automorphic L-functions[END_REF].) Remembering that lambda zeros come in fours (complex conjugate, di¤erent signs, i.e. k ; k ; k ; k ) we have:

(s) = const s 2 1 Y k=1 1 s k 1 + s k 1 s k 1 + s k = (41) = const s 2 1 Y k=1 0 @ 1 + s 4 2s 2 (Re k ) 2 (Im k ) 2 j k j 4 1 A
The constant in (41) can be calculated with high accuracy. Note that it is fairly close to (but of course di¤erent from) the …rst Keiper-Li coe¢cient: const = 0:023098802283424104776762431610::: This is because the …rst zero is relatively large: j 1 j = 104:7027678::: Formula (41) is based on the assumption that zeros k occur in fours. At least this is the case for small values of these zeros. Of course, we do not know if such distribution of zeros will persist on the global scale. In any case, this con…guration of zeros guarantees that the Riemann hypothesis will be true. Its violation, as we shall see, is associated with a radical deviation from the logarithmic dependence (32). Then, instead of complex fours of zeros, there will only be pairs of real zeros di¤ering in sign.

Violation of the Riemann hypothesis?

Finally, by analyzing the formula (41) from the point of view of the arrangement of complex zeros k , we can consider a hypothetical violation of the RH. As mentioned before, all attempts to use the Li's criterion [START_REF] Harold | Riemann's Zeta Function[END_REF] for this purpose are rather hopeless: in order to determine that the k th zero of Riemann zeta deviates from the critical line, one would have to …nd a negative coe¢cient n . As estimated by Oesterle [START_REF] Oesterlé | Régions sans zéros de la fonction zêta de Riemann[END_REF], such n would be of the order k 2 . Since it is known that there is no counterexample to the RH up to k 1; 236 10 13 (i.e. height of the zero 3 10 12 ) [START_REF] Platt | The Riemann hypothesis is true up to 3 10 12[END_REF], and most probably much higher, that means that all n up to n 1; 528 10 26 are nonnegative. It is then clear that direct searching for the breaking of the RH using Keiper-Li criterion is a hopeless task 3 . Such a hypothetical negative coe¢cient n would clearly mean that some factor in the product (41) should also be negative. It is easy to check by elementary calculations that this is impossible as long as we have four symmetrical zeros: k ; k ; k ; k (cf. Figures 3 and4). But if the logarithmic relationship Im k 16 log(Re k ) were broken, then -as the numerical experiments clearly suggest -zeros k would come closer to the real axis and ultimately there would be only two kinds of them: + k and k . This behavior would cause the coe¢cient n to become negative for some large index n due to oscillations increasing with n. This phenomenon is illustrated in Figures 12 and13.

Anyway, the resolution of Riemann's hypothesis is still as far away as it was when it was formulated over a century and a half ago.

Figure 12: The distribution of zeros k in the case of the truth of the Riemann hypothesis is marked with red dots. (Only one quarter of the complex plane is visible here.) Suppose, however, that somewhere far away there is a complex zero of the Riemann zeta function n that deviates from the critical line. (Of course, there would then be 4 such zeros: n , 1 n , n , 1 n .) The distribution of zeros of the function (s) in this (extremely) hypothetical situation is illustrated by blue points. For the initial values of n the distribution of blue points does not di¤er much from the distribution of red points. But as n increases, there will appear oscillations, followed by a sudden drop of the zeros k to the real axis. Eventually, starting with some k, all zeros will line up exactly on the real axis. Then there will be only two types of them: + k and k .

Figure 13: The …gure shows the reaction of coe¢cients n to the behavior of zeros k caused by the deviation of even single complex zero k of the Riemann zeta function from the critical line. The red dots here illustrate the distribution of n in case RH is true. (This distribution is described by an approximate law, see [START_REF] Maślanka | Li's Criterion for the Riemann Hypothesis -Numerical Approach[END_REF], eqn. 6). However, as n increases, rising oscillations appear and eventually n becomes negative. This will happen for n equal exactly to that k, from which the zeros k are already purely real (see previous Figure 11). 9 Appendix: Tables of complex zeros of (s)

Tables attached at the end of this article contain numerical values of the …rst 3520 zeros k with precision of 14 signi…cant digits. Note that each number x + iy in this table represents in fact four complex zeros x iy located symmetrically with respect to both axes of the complex plane. There is also one double zero 0 = 0. 

k k k k k k k k 1 76.010927161420

Figure 2 :

 2 Figure 2: Distribution of complex roots of polynomials nk , labelled by the discrete parameter k, with n as a variable, in the range of k = 1; :::; 100. A given color represents a speci…c value of k, e.g. the outermost red dots correspond to k = 100.

Figure 3 :

 3 Figure 3: Distribution of 3665 zeros k of (s) on the complex plane. The scale on both axes is linear but with di¤erent units.

Figure 4 :

 4 Figure 4: The same points as in the previous Figure 3, but now the horizontal axis has a logarithmic scale.

Figure 5 :

 5 Figure 5: Contour plots of the real (upper) and imaginary (lower) part of (x + iy). Complex zeros k of (s) are marked by red dots.

Figure 6 :

 6 Figure 6: Three-dimensional view of the real (orange) and imaginary (blue) parts of (s) = (x + iy).Both surfaces intersect the plane (x; y) (green color) along certain complicated curves. These curves in turn intersect themselves in certain de…nite points marked by vertical dark red lines, that is, in the complex zeros of (s).

Figure 7 :

 7 Figure 7: Distribution of 3665 complex zeros k of (s). Vertical axis is rescaled as exp(Im( )/16). Amplitude of oscillations is multiplied by a factor of 5 for their better visualization.

Figure 8 :

 8 Figure 8: Unexpected distribution of complex zeros n in the range n = 1500; :::; 3665. It resembles something like "three-phase electric current" or -loosely speaking -a triple helix. In order to visually enhance the e¤ect, the colors of the points were selected accordingly: zeros number 1500; 1503; 15006; ::: are red, 1501; 1504; 15007; ::: are green and 1502; 1505; 15008; ::: are yellow.

Figure 9 :

 9 Figure 9: Another example of long-range correlations among zeros k of the complex function (s).Finite di¤erences of the order of 700 for the sequence of 3665 zeros k (left). On the right side we have the same, but a random perturbation -a complex number with an absolute value of no more than 4 10 5 -has been added to each zero. The destruction of the regular pattern is clearly visible.

Figure 10 :

 10 Figure 10: Finite di¤erences of the order of 700 for the sequence of 3665 zeros k of the entire function (s) but now every second zero was taken (left) or every fourth zero was taken (right).

Figure 11 :

 11 Figure 11: Whenever r exceeds the absolute value of the successive zero j k j, the value of n(r) given by (36) jumps by 4 as expected.

  

Strictly speaking, Riemann considered another function which is related to (1), namely ( 1

+ it). Since it was sometimes confusing, Edmund Landau introduced the present convention.

Explaining in detail how the formula(18) was obtained would be uninformative and, worse, very boring. There was a lot of guesswork, and there was also trial and error. Not very ambitious, but still e¤ective. First, the formula for the numbers from the main diagonal of (17) was guessed. Frequent consultation with the On-Line Encyclopedia of Integer Sequences[START_REF] Sloan | The On-Line Encyclopedia of Integer Sequences[END_REF] was very helpful at this stage.

It should be stressed out that the Oesterle's estimation is only asymptotical. For example, if we consider quite absurd situation that already the …rst zero of zeta is o¤ the critical line, then -depending on how much it deviates from this line -the …rst n that should "feel" this deviation and become negative would be for n equal approx. 7500.