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Abstract 

Selecting learning machines such as classifiers is an 

important task when using AI in the clinic. K-fold cross-

validation is a practical technique that allows simple 

inference of such machines. However, the recipe 

generates many models and does not provide a means to 

determine the best one. In this paper, a modified recipe is 

presented, that generates more consistent machines with 

similar on-average performance, but less extra-sample 

loss variance and less feature bias. A use case is provided 

by applying the recipe onto the atrial flutter localization 

problem. 

 

 

1. Introduction 

Artificial intelligence (AI) systems in the healthcare 

industry are increasingly common in recent years due to 

the massive development in computation capacity and 

accessibility. Of note, is the employment of AI in the 

clinic for the aid of clinical diagnosis [1]. 

Learning algorithms constitute a part of the process by 

which AI systems infer knowledge from the available 

data. It is a challenge to obtain good learning machines 

that balances between the assumptions made inside the 

algorithm, and the knowledge provided by the input data. 

This is aggravated when data is scarce and there are many 

input features, and is notably true in the clinical setting 

(e.g. rare diseases characterized using genomic data). 

In practice, learning machines are inferred through a 

process of sample re-use [2]. One such process discussed 

in this paper is the K-fold cross-validation (KFCV). 

KFCV allows practical inference of learning machines 

and works well in small-sample situation. 

In a typical KFCV recipe, the dataset is split into K 

equal partitions or fold, and K models are inferred from 

the union of K-1 leftovers. When selecting a machine, the 

fold is usually selected first (usually the fold with the 

smallest error), and then the feature subset. 

However, because KFCV produces, by design, K 

 different machines, it is a question how one must select 

the best machine and the best feature subset. Even if the 

selection procedure is reversed (i.e. select the best feature 

first, then the best fold), one will have to determine how 

the features have to be selected over the different folds. 

No formal methodology exists, to the authors’ 

knowledge. 

In this paper, an original methodology is proposed that 

adds to the original KFCV recipe and allows one to 

estimate the best learning machine, based on a selection 

of the best feature subset using pooled metrics, and then 

the best fold. This makes the problem of feature selection 

independent of any individual fold. In return, the 

modified KFCV recipe returns a learning machine with a 

more consistent performance as opposed to the original 

KFCV recipe. 

 

2. Materials and Method 

All processing and learning steps and arrangements are 

described below. All work was done using MATLAB 

(Mathworks, USA). 

 

2.1. Context of the research 

Atrial flutter (AFL) is a disease where the atrium 

continuously and regularly depolarizes due to a perpetual 

rotating activation wave (see Figure 1 (a)). They can 

occur in either the right or left atrium. AFL can be cured 

by ablation therapy, which breaks the conduction circuit 

inside the atrium and stops the rotating wave. Classifying 

AFL localization (right or left) helps in improving cost of 

ablation procedure [3]. It has been shown previously that 

localization using variability in the repetitive flutter 

waves allow good localization of AFL prior to ablation 

[4]. 

 



2.1. Dataset preparation 

The main raw data used in this paper were 75 standard 

12-lead digital ECG recordings of atrial flutter, each of 

about 1 minute in duration. These were acquired from a 

recording database at Centre Hospitalier Princesse Grace, 

Monaco with permission. Recordings had been taken 

during catheter ablation procedure, and the right or left 

localization was determined for each recording based on 

the procedure report. After selection, a total of 56 

recordings (31 right, 25 left) were used. 

The general processing of these signals has been 

described in detail in [4]. The objective of this was to 

extract the variability in each F wave and use it to classify 

right or left localization. Briefly, the signals were filtered 

to remove motion artifacts, powerline noise and other 

high-frequency noises. F waves were detected using an 

original detection algorithm and segmented. The number 

of waves obtained per record was 64 ± 48 (mean ± 

standard deviation). 

Each F wave was transformed into a vectorcardiogram 

(VCG) [5]. The vectorcardiogram is a three-lead system 

based on a linear combination of the 12-lead ECG. The 

VCG system is aligned to the anatomical axis (lead X: 

left-right, lead Y: up-down, lead Z: front-back). The F 

waves become a loop in this system. From this loop, 

several characteristic parameters were calculated such as 

its orientation, flatness and circularity (see Figure 1 (b)). 

The result of this step is the obtention of several beat-

to-beat series of VCG loop parameter values, clean of any 

source of artificial variability, and reflecting the beat-to-

beat changes of the AFL circuit. Variability can be 

measured from this series by calculating the following 

higher-order statistics: 1) the mean, 2) the variance, 3) the 

skewness and 4) the kurtosis, for all 4 loop parameters, 

for all 56 recordings. In total, there were 16 variability 

features of AFL (see Figure 1 (c)). 

 

2.2. Learning setup 

    The initial dataset comprises of 56 data samples. This 

initial set is then split using a stratified holdout scheme, 

with 30% of the data (16 data samples) held out for test. 

The remaining 40 data samples are then split using a 

stratified 5-fold cross-validation scheme. Each fold 

contains 8 data samples. One fold will be left out as the 

validation set, whereas the remaining four folds become 

the training set. 

Due to the limited amount of training data (ideally 16 

data samples per class), it is not reasonable to use 

advanced classifiers such as neural networks or trees. 

Therefore, in this paper, a linear classifier is considered. 

The support vector machine (SVM) classifier with linear 

kernel was used as the learning machine, with a box 

constraint set to 1. 

The objective of the KFCV recipe is to find the best 

fold and feature subset. The evaluation metric used here is 

the zero-one loss. The selection is commonly performed 

by taking the best fold for a fixed subset of features. The 

question of which fold to select is easy: take the one with 

the smallest validation loss. However, this does not 

guarantee the optimality of the feature subset as it is 

related to the fold (i.e. a function of the fold). 

Instead, the validation losses should be pooled over all 

the K folds. This allows us to obtain a single loss value 

for each feature subset. Then, it is easy to select the best 

feature subset (e.g. taking the one with the smallest 

number of features and the smallest loss). Selection of the 

 

Figure 1. Flow of data processing. (a) ECG signal from a single lead with AFL, with F waves marked. (b) 

Characterization of AFL VCG loops using several parameters. (c) Calculation of variability features from the beat-to-

beat series. 
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best fold is then made as usual. The modified recipe can 

be seen in Figure 2. Note that in the classic KFCV recipe, 

the best fold is selected first, before the feature. 

Once the best model is selected, the held-out portion of 

the initial dataset is used to test the classifier performance 

and to obtain the final performance metric. To ensure the 

consistency of the comparison, the recipe is repeated for 

30 iterations. In each iteration, the initial dataset is 

randomly split again, as with the cross-validation split. 

 

 
 

Figure 2. Modified KFCV algorithm for model selection. 

The green boxes represent the original contribution of this 

paper. 

 

3. Results 

For the purpose of comparison, the common portions 

of the recipe, as detailed in Figure 2 in white boxes, is 

performed in tandem for the two recipes. This way, the 

randomness in data splitting and model training is 

avoided. The selection process technically differs only by 

the pooling of the validation loss and the selection 

criteria. 

3.1. Analysis of extra-sample loss 

 
Figure 3. Boxplot of normalized zero-one loss for each 

recipe. 

 

Figure 3 illustrates the normalized zero-one loss, 

obtained from applying the best classifier on the test set, 

for 30 repetitions. Table 1 summarizes the statistics of the 

repetitions. It can be seen that the median loss is similar 

in both cases (0.44 vs. 0.42, classic vs. pooled, p=NS 

using Mann-Whitney U test), indicating that the two 

recipes produce similar on-average performance. 

However, it can be seen that the spread of the loss is 

smaller in the case of pooled KFCV (interquartile range 

0.17 vs. 0.09, classic vs. pooled). This suggests that the 

process returns classifiers with a consistently similar 

performance. 

 

Table 1. Summary statistics of the test loss 

 

 Classic Pooled 

Max 0.76 0.56 

75th quantile 0.50 0.46 

Median 0.44 0.42 

25th quantile 0.33 0.38 

Min 0.19 0.19 

Mean 0.44 0.42 

Interquantile range 0.17 0.09  

Standard deviation 0.13 0.10 

 

3.2. Feature selection bias 

The best feature subset is analyzed. It was found that 

over the 30 repetitions, the classic recipe produces 24 

unique subsets. The pooled recipe produces only 18 

unique subsets. This shows the classifier consistency 

when using pooled KFCV. 

Each of the 16 features are assigned a feature score, 

defined as the number of times the feature was used over 

the entire unique set of feature subsets, divided by the 

number of unique feature subsets. This measure illustrates 

partly the relevance of the feature in the classification. 

This strategy is similar to the one employed in [4] but not 

equivalent. The scores are shown in Table 2. The all train 
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score shown is for the linear SVM. 

 

Table 2. Feature score on unique feature subsets 

 

Features 

Feature score 

Classic Pooled All train* 

[4] 

Mean(ϕAZ) 0.13 0 0.50 

Variance(ϕAZ) 0.21 0.11 0.56 

Skewness(ϕAZ) 0.25 0.11 0.63 

Kurtosis(ϕAZ) 0.13 0.11 0.56 

Mean(ϕEL) 0.04 0.06 0.63 

Variance(ϕEL) 0.04 0.11 0.75 

Skewness(ϕEL) 0.04 0.17 0.50 

Kurtosis(ϕEL) 0.13 0 0.69 

Mean(ψPL) 0 0 0.81 

Variance(ψPL) 0 0.06 0.69 

Skewness(ψPL) 0.29 0.28 0.94 

Kurtosis(ψPL) 0.04 0.06 0.88 

Mean(ψPG) 0.17 0.33 0.94 

Variance(ψPG) 0.04 0.11 0.19 

Skewness(ψPG) 0.29 0.39 0.50 

Kurtosis(ψPG) 0 0.06 0.56 

*Feature score is calculated differently, and on the whole initial 

dataset. Bold indicates relevant features. 
 

An arbitrary cutoff of 0.8 was used to determine 

relevance, based on the all train feature score. Four 

features are thus found to be relevant. Comparing the 

feature scores calculated from the best subsets from the 

two KFCV recipes, it is seen that two relevant features, 

Skewness(ψPL) and Mean(ψPG), are found to tally well 

with the all train score. This shows that both recipes can 

find the relevant features from the dataset. Two other 

relevant features, Mean(ψPL) and Kurtosis(ψPL), are both 

found irrelevant by the feature score. Upon investigation, 

it is found that these two features were relevant when 

considering feature subsets of size three and above; the 

current paper limits the subset up to size two. 

From the data in Table 2, it can be seen that when the 

feature is irrelevant, classic KFCV tends to 

overemphasize the feature, as opposed to pooled KFCV. 

This may be explained due to the spurious nature of the 

selection process that bases its initial selection on folds 

rather than on features. 

 

4. Discussion and Conclusion 

It is crucial, in employing AI in the clinical diagnosis, 

to obtain learning machines that have good performance. 

In practice this means a careful selection of the training 

data as well as the features it must use. Although K-fold 

cross-validation is a popular and effective technique for 

constructing such machines, it has been shown that the 

standard recipe has some downsides. 

Pooling has been suggested in a reference machine 

learning text [2], although not explicitly demonstrated. 

Here, this paper implements by means of a practical 

recipe, and demonstrates the concept along with a 

comparison. It is worthy of note that the recipe here is not 

exclusive to atrial flutter classification alone, but is 

applicable in all similar situations, regardless of the field 

of study. 

 

Acknowledgments 

The first author would like to thank Dr. D. G. Latcu 

from Centre Hospitalier Princesse Grace for providing the 

clinical data used in this research. 

 

References 

[1] P. Zhang et al., “Automated diagnosis of atrial fibrillation 

in 24-hour Holter recording based on deep learning:a study 

with randomized and real- orld data validation.” 

medRxiv, p. 2021.08.25.21262591, Aug. 29, 2021. doi: 

10.1101/2021.08.25.21262591. 

[2] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements 

of Statistical Learning: Data Mining, Inference, and 

Prediction. Springer, 2009. [Online]. Available: 

https://books.google.com.my/books?id=eBSgoAEACAAJ 

[3] D. E. Krummen et al., “Accurate  C   iagnosis of Atrial 

Tachyarrhythmias Using Quantitative Analysis: A 

Prospective Diagnostic and Cost-   ectiveness  tudy,” 

Journal of Cardiovascular Electrophysiology, vol. 21, no. 

11, pp. 1251–1259, Nov. 2010, doi: 10.1111/j.1540-

8167.2010.01809.x. 

[4] M. H. Ka arul Az an,  .  este,  .  adir,  .  .  aţcu, 

N. Saoudi, and S.- .  un, “ aria ility in the atrial  lutter 

vectorcardiographic loops and non-invasive localization of 

circuits,” Biomedical Signal Processing and Control, vol. 

66, p. 102472, 2021, doi: 

https://doi.org/10.1016/j.bspc.2021.102472. 

[5]  .   AN , “An Accurate, Clinically  ractical  yste   or 

  atial  ectorcardiogra hy,” Circulation, vol. 13, no. 5, 

pp. 737–749, 1956, doi: 10.1161/01.CIR.13.5.737. 

 

Address for correspondence: 

 

Muhammad Haziq Kamarul Azman  

Electrical Engineering Section 

Universiti Kuala Lumpur, British Malaysian Institute 

Jalan Sg Pusu, Batu 8, 

53100 Gombak 

Selangor Darul Ehsan 

Malaysia 


