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, the present paper is devoted to the associated central limit theorem. More precisely we study the measure valued process of fluctuations at scale N -1/2 of the empirical measures of the membrane potentials, centered around the associated limit. We show that this fluctuation process, interpreted as càdlàg process taking values in a suitable weighted Sobolev space, converges in law to a limit process characterized by a system of stochastic differential equations driven by Gaussian white noise. We complete this picture by studying the fluctuations, at scale N -1/2 , of the membrane potential processes around their associated limit quantities, giving rise to a mesoscopic approximation of the membrane potentials that take into account the correlations within the finite system.

Introduction

In the present paper we study the fluctuations for the mean field limits of systems of interacting and spiking neurons as the number of neurons tends to infinity. For any fixed size N, the system is characterized by the vector of potential values of the N neurons, X N = (X N t ) t≥0 . Here, for any time t ≥ 0, X N t = (X N,1 t , . . . , X N,N t ) and X N,i t ≥ 0 denotes the membrane potential of neuron i at time t. The process X N is a Markov process having generator L N given by (1)

L N ϕ(x) = N i=1 b(x i )∂ x i ϕ(x) + N i=1 f (x i )   ϕ(x + j =i h N e j -x i e i ) -ϕ(x)   ,
for any smooth test function ϕ. In the above equation, x = (x 1 , . . . , x N ) ∈ R N + , and e i , 1 ≤ i ≤ N, denotes the i-th unit vector in R N . h > 0 is a positive constant, the synaptic weight, and b : R + → R, b(0) ≥ 0, is the drift function defining the deterministic evolution of the membrane potential in between successive spikes of the system: the attraction to an equilibrium potential value right after the spike and some general leakage phenomena. The function f : R + → R + is the jump rate function. Since h > 0, we are working in the purely excitatory case, such that all membrane potentials take values in R + .

The above system of interacting neurons (or slight variations of it) and its mean field limits have been studied in a series of papers, starting with [START_REF] De Masi | Hydrodynamic limit for interacting neurons[END_REF], [START_REF] Fournier | On a toy model of interacting neurons[END_REF] and [START_REF] Robert | On the dynamics of random neuronal networks[END_REF], followed by [START_REF] Cormier | Long time behavior of a mean-field model of interacting neurons[END_REF]- [START_REF] Cormier | Hopf bifurcation in a Mean-Field model of spiking neurons Electron[END_REF] which are devoted to the longtime behavior of the associated nonlinear limit process. Spatially structured versions of these convergence results have moreover been obtained in [START_REF] Duarte | Hydrodynamic Limit for Spatially Structured Interacting Neurons[END_REF] and [START_REF] Chevallier | Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels[END_REF]. All these papers establish the propagation of chaos property implying that, in the limit model, different neurons are independent. The present paper completes this study by presenting the associated central limit theorem. In particular we will be able to present a mesoscopic approximation for each neuron's potential that takes care of the correlations between different neurons within finite, but large, systems, giving a precise form of the factor of common noise.

Up to our knowledge, this is the first time the precise fluctuations for such systems of interacting and spiking neurons are studied. Let us mention however the recent paper [START_REF] Schmutz | On a finite-size neuronal population equation[END_REF] proposing an adhoc mesoscopic model to describe finite size neuronal population equations, taking into account the finite size fluctuations. While the model proposed in [START_REF] Schmutz | On a finite-size neuronal population equation[END_REF], which is based on [START_REF] Schwalger | Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size[END_REF], is shown to give an accurate numerical approximation to the dynamics of finite-size networks of spiking neurons, this model is however not a precise extension of the original model around its large population limit, in the sense of a precise limit theorem.

Finally the two recent papers [START_REF] Erny | Conditional propagation of chaos for mean field systems of interacting neurons[END_REF] and [START_REF] Erny | Strong error bounds for the convergence to its mean field limit for systems of interacting neurons in a diffusive scaling[END_REF] shed a different light on this topic, by studying a related problem in which the spiking neuron distributes a centered random synaptic weight to its postsynaptic partners, which is renormalized by 1/ √ N . In this way this model automatically leads to the study of fluctuations, the associated limit process is close to the one found in the present paper, but with the notable difference that it is driven by a single Brownian motion and that the fluctuations of the spiking rate do not have to be taken into account.

1.1. The model. To introduce the precise model, consider a family of i.i.d. Poisson measures (π i (ds, dz)) i≥1 on R + × R + having intensity measure dsdz each, as well as an i.i.d. family (X i 0 ) i≥1 of R + -valued random variables, independent of the Poisson measures, distributed according to some probability measure g 0 on R. Then we may represent each neuron's potential as

(2) X N,i t = X i 0 + t 0 b(X N,i s )ds + h N N j=1,j =i [0,t]×R+
1 {z≤f (X N,j s-)} π j (ds, dz)

- [0,t]×R+
X N,i s-1 {z≤f (X N,i s-)} π i (ds, dz), 1 ≤ i ≤ N.

It has been shown in [START_REF] De Masi | Hydrodynamic limit for interacting neurons[END_REF], [START_REF] Fournier | On a toy model of interacting neurons[END_REF] and [START_REF] Robert | On the dynamics of random neuronal networks[END_REF] that under appropriate assumptions on b, f and g 0 , the asymptotic evolution, as N → ∞, of the membrane potential processes can be described as solution of the following infinite i.i.d. system of non-linear stochastic differential equations

(3) Xi t = X i 0 + t 0 b( Xi s )ds + h t 0 E(f ( Xi s ))ds - [0,t]×R+ Xi s-1 {z≤f ( Xi s-)} π i (ds, dz), i ≥ 1.
In this paper, we rely mainly on the approach proposed in [START_REF] Fournier | On a toy model of interacting neurons[END_REF] to prove and quantify the convergence of the finite system (2) to the limit system [START_REF] Chevallier | Fluctuations for mean-field interacting age-dependent Hawkes processes[END_REF]. We think of spiking rate functions of the form f (x) = (x/x 0 ) α for some (possibly large) α > 0 and some fixed value x 0 > 0. This means that whenever the membrane potential x of a neuron is below x 0 , the spiking rate f (x) is very low, while for values x > x 0 , the rate is very large, such that x 0 can be interpreted as soft threshold.

Throughout this paper we strengthen and adapt the conditions of [START_REF] Fournier | On a toy model of interacting neurons[END_REF] to the present frame and impose the following conditions.

Assumption 1.

(1) f ∈ C 4 (R + , R + ) is convex and non-decreasing such that f (x) > 0 for all x > 0 and f (0) = 0.

(2) There exists some α ≥ 1 such that for all 0 ≤ k ≤ 4, sup x∈R+

|f (k) (x)| (1+|x| α ) < ∞. (3) sup x≥1 [f /f + f /f ](x) < ∞.
(4) Moreover, there exists a constant C f such that f (x + y) ≤ C f (1 + f (x) + f (y)) for all x, y ≥ 0.

Concerning the drift function, we think of functions of the type b(x) = b -λx for b ≥ 0, λ > 0, expressing the attraction to some equilibrium potential value b/λ in absence of any spike of the system. More precisely, we impose the following condition.

Assumption 2.

(1) b ∈ C 4 (R + , R + ) is of linear growth, bounded from above by a positive constant and satisfies b(0) ≥ 0.

(2) For all

1 ≤ k ≤ 4, sup x∈R+ |b (k) (x)| < ∞.
Let us mention that Items (1) and (2) of Assumptions 1 and 2 are natural in this context. We will be obliged to work with test functions being four times continuously differentiable, and we need some a priori controls on the membrane potential values. Items (3) and ( 4) of Assumption 1 are technical. They are used to obtain a quantified propagation of chaos result, see [START_REF] De Masi | Hydrodynamic limit for interacting neurons[END_REF] below, the first main building block upon which we construct our fluctuation result.

Concerning the distribution of the initial potential values we impose Assumption 3. We suppose that g 0 is compactly supported and possesses a probability density g 0 (x) which belongs to C 1 (R + , R + ).

Then by [START_REF] De Masi | Hydrodynamic limit for interacting neurons[END_REF] and [START_REF] Fournier | On a toy model of interacting neurons[END_REF], there exists a unique strong solution both for [START_REF] Billingsley | Convergence of probability measures[END_REF] and for [START_REF] Chevallier | Fluctuations for mean-field interacting age-dependent Hawkes processes[END_REF]. Moreover, by Theorem 7 of [START_REF] Fournier | On a toy model of interacting neurons[END_REF], constructing X N,i and Xi using the same underlying Poisson random measure π i , we have for any T > 0 and for any 1 ≤ i ≤ N, [START_REF] Chevallier | Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels[END_REF] sup

t≤T E(|X N,i t -Xi t |) ≤ C T √ N ,
where the constant C T does not depend on N. Introducing (5) g t = L( X1 t ), and the empirical measure of the finite system together with the associated projection onto time t, (6)

µ N = 1 N N i=1 δ X N,i , µ N t = 1 N N i=1 δ X N,i t ,
we also have, due to a generalization of Theorem 7 of [START_REF] Fournier | On a toy model of interacting neurons[END_REF] to our frame (see the Appendix for details), [START_REF] De Masi | Hydrodynamic limit for interacting neurons[END_REF] sup

t≤T E(W 1 (µ N t , g t )) ≤ C T √ N .
Here, the Monge-Kantorovich-Wasserstein distance W 1 (µ, ν) between two probability measures µ and ν on R + with finite expectations is defined by

W 1 (µ, ν) = inf{E[|U -V |], L(U ) = µ and L(V ) = ν}.
Finally, let us mention that g t = L( Xi t ) is solution of a nonlinear PDE which in its strong form reads as

∂ t g t (x) = [-b(x) -hg t (f )]∂ x g t (x) -[b (x) + f (x)]g t (x), t ≥ 0, x > 0, where we note g t (f ) = ∞ 0 f (x)g t (dx).
The above PDE starts from the initial value g 0 at time t = 0, and we have the boundary condition

g t (0) = gt(f ) b(0)+hgt(f ) for all t > 0.
As a consequence of [START_REF] De Masi | Hydrodynamic limit for interacting neurons[END_REF], interpreting µ N t as random variable in the space P(R + ) of all probability measures on R + , we have convergence in probability µ N t → g t , as N → ∞, and the rate of convergence is at least N -1/2 . It is therefore natural to study the associated process of fluctuations, given by ( 8)

η N t = √ N (µ N t -g t ),
together with the fluctuations of the processes of membrane potentials

(9) U N,i t = √ N (X N,i t -Xi t ), i ≥ 1
, where we put U N,i = 0 for any i ≥ N +1. In [START_REF] Erny | Conditional propagation of chaos for mean field systems of interacting neurons[END_REF], the processes X N,i and Xi are constructed according to the so-called Sznitman coupling (see [START_REF] Sznitman | Topics in propagation of chaos[END_REF]): They are defined on the same probability space, starting from the same initial condition X i 0 and using the same underlying Poisson random measure π i , for each 1 ≤ i ≤ N. In the sequel, we write for short U N = (U N,i ) i≥1 .

In the present paper we prove convergence in law of the sequence of processes (U N , η N ) to a limit process ( Ū , η), as N → ∞, where Ū = ( Ū i ) i≥1 . The limit process η, interpreted as distribution acting on appropriate test functions, follows an infinite dimensional differential equation stated precisely in (15) below. Moreover, for each i ≥ 1, the limit process Ū i follows an Ornstein-Uhlenbeck type dynamic with variable length memory, that is, for any t ≥ 0, [START_REF] Erny | Strong error bounds for the convergence to its mean field limit for systems of interacting neurons in a diffusive scaling[END_REF] Ū

i t = t 0 b ( Xi s ) Ū i s ds + h t 0 ηs (f )ds - [0,t]×R+ Ū i s-1 {z≤f ( Xi s-)} π i (ds, dz) + hM t .
Here, (M t ) t is a Gaussian martingale having quadratic variation

< M > t = t 0 g s (f )ds = E t 0 f ( Xi s )ds.
In [START_REF] Erny | Strong error bounds for the convergence to its mean field limit for systems of interacting neurons in a diffusive scaling[END_REF], the presence both of this Gaussian martingale and of the integral of the fluctuations of the spiking rate,

• 0 ηs (f )ds, induces a factor of common noise explaining the correlations between different neurons in the finite system.

As a consequence, we obtain the following second order error correction to the mean field approximation

(11) X N,i t = Xi t + 1 √ N Ū i t , where Ū i t = h t Li t e t s b ( Xi u )du ηs (f )ds + h t Li t e t s b ( Xi u )du dM s ,
with Li t = sup{s ≤ t : ∆ Xi s = 0} the last spiking time of neuron i in the limit process, before time t, with sup ∅ := 0.

While in [START_REF] Erny | Strong error bounds for the convergence to its mean field limit for systems of interacting neurons in a diffusive scaling[END_REF] above the convergence of (U N,i ) i≥1 has to be understood as convergence of stochastic processes with càdlàg trajectories, that is, of random variables taking values in D(R + , R) N * , we did not specify so far in which space the convergence of the rescaled empirical measures η N takes place. Following the Hilbertian approach introduced in [START_REF] Ferland | Compactness of the fluctuations associated with some generalized nonlinear Boltzmann equations[END_REF] and [START_REF] Fernandez | A Hilbertian approach for fluctuations on the McKean-Vlasov model[END_REF] and then applied to the framework of point processes in [START_REF] Chevallier | Fluctuations for mean-field interacting age-dependent Hawkes processes[END_REF], throughout this paper we interpret η N as a stochastic process taking values in a suitable distributional space which is the dual of some weighted Sobolev space of test functions. The regularity of test functions we need to impose is related to the order up to which we have to develop the error terms that appear when replacing the contribution of small jumps (i.e., the last term appearing in (1)) by the associated limit drift. Moreover, since the finite size process does not take values in a compact set, we need to work with a Sobolev space supported by R + . Finally, it turns out that we have to include constant functions into our class of admissible test functions, as well as the firing rate function f which is of polynomial growth. Therefore we are led to work with weighted Sobolev spaces, where the weights are chosen to be polynomial, of power p > α + 1 2 , where α is the growth rate of f and its derivatives (see Assumption 1).

The approach used in this article follows closely the study of fluctuations for McKean-Vlasov diffusions in [START_REF] Fernandez | A Hilbertian approach for fluctuations on the McKean-Vlasov model[END_REF] and the adaptation of this work to the framework of age-dependent Hawkes process proposed in [START_REF] Chevallier | Fluctuations for mean-field interacting age-dependent Hawkes processes[END_REF]. The main difference with respect to [START_REF] Fernandez | A Hilbertian approach for fluctuations on the McKean-Vlasov model[END_REF] is that, as in [START_REF] Chevallier | Fluctuations for mean-field interacting age-dependent Hawkes processes[END_REF], the limit processes Xi and Ū i remain jump processes; the big jumps induced by spikes survive also in the limit process. The main difference with respect to [START_REF] Chevallier | Fluctuations for mean-field interacting age-dependent Hawkes processes[END_REF] is the following. Being interested in age-dependent Hawkes processes, in [START_REF] Chevallier | Fluctuations for mean-field interacting age-dependent Hawkes processes[END_REF], the limit process undergoes a deterministic drift given by b(x) = 1. This trivially implies good coupling properties. In our model however, the time dependent drift of the limit process is given by b(x) + hg t (f ) at time t, where b(x) is e.g. a function of the type b(x) = b -λx. This depends both on the position x, but also on the average spiking rate of the system. This makes the study of coupling more complicated, which is one of the main reasons why it is more difficult to prove the uniqueness of the limit equation in the present frame. In particular, to prove the uniqueness, we do also have to establish regularity properties of the time inhomogeneous semigroup associated to the limit process (3) which is non-diffusive and associated to a transport equation. We rely on Girsanov's theorem for jump processes to tackle this problem, see Proposition 13 below.

1.2. General notation. The space of bounded functions of class C k , defined on R + , with bounded derivatives of each order up to order k, is denoted by C k b . C ∞ c denotes the space of infinitely differentiable functions defined on R + , having compact support. The space of càdlàg functions defined on R + and taking values in some Polish space E is denoted by D(R + , E). If µ is a measure on E and ϕ : E → R measurable and integrable, we write µ(ϕ) := E ϕdµ. C denotes a constant that may change from one occurence to another, even within one line.

Throughout this paper we work with the canonical filtration (F t ) t≥0 where F 0 = σ{X i 0 , i ≥ 1} and

F t = σ{X i 0 , i ≥ 1, π j (A) : A ⊂ [0, t] × R + , j ≥ 1}.

Main results

The aim of this section is to state the convergence in law of the sequence of processes (U

N , η N ) N , U N = (U N,i ) i≥1 , defined by (12) U N,i t := √ N (X N,i t -Xi t ) for any 1 ≤ i ≤ N, and η N t = √ N (µ N t -g t ),
where we interpret η N as stochastic process with values in a suitable space of distributions. Here we put U N,i = 0 for all i ≥ N + 1. In the above definition, X N,i and Xi are constructed according to the Sznitman coupling (see [START_REF] Sznitman | Topics in propagation of chaos[END_REF]), that is, using the same initial value X i 0 and driven by the same underlying Poisson random measure π i .

We start gathering some basic definitions and results on weighted Sobolev spaces.

2.1. Weighted Sobolev spaces. Since we are working in the purely excitatory case and the membrane potentials take values in R + , in what follows, all test functions that we consider are defined on R + . Fixing an integer k and a positive real number p ≥ 0, we introduce the norm ψ k,p for all functions ψ ∈ C ∞ c given by

ψ k,p := k l=0 ∞ 0 |ψ (l) (x)| 2 1 + |x| 2p dx 1/2
and define the space W k,p 0 to be the completion of C ∞ c with respect to this norm.

The space W k,p 0 is a separable Hilbert space, and we denote W -k,p 0 its dual space, equipped with the norm • -k,p defined for any η ∈ W -k,p 0 by

η -k,p = sup{| < η, ψ > | : ψ ∈ W k,p 0 , ψ k,p = 1}.
Finally, C k,p is the space of all C k -functions such that for all l ≤ k,

sup x∈R+ |ψ (l) (x)|/(1 + |x| p ) < ∞.
This space is equipped with the norm

ψ C k,p := k l=0 sup x∈R+ |ψ (l) (x)| 1 + |x| p < ∞.
The most important facts about Sobolev spaces that we use throughout this paper are collected in the Appendix Section 7.1.

2.2.

Weak convergence of the fluctuation process. Given the knowledge of the function t → g t (f ), the non-Markovian limit process (3) is described by the time dependent infinitesimal generator given by ( 13)

L s ϕ(x) = b(x)ϕ (x) + hg s (f )ϕ (x) + f (x)Sϕ(x), Sϕ(x) = ϕ(0) -ϕ(x),
for all s ≥ 0 and ϕ ∈ C 1 b , where g s is given by [START_REF] Cormier | Long time behavior of a mean-field model of interacting neurons[END_REF]. Our main result reads as follows.

Theorem 4. Under Assumptions 1, 2 and 3, for any p > α + 1 2 , we have convergence in law of

(U N , η N ) in D(R + , R) N * × D(R + , W -4,p 0 ) to the limit process ( Ū , η) taking values in D(R + , R) N * × C(R + , W -4,p 0 
), which is solution of the system of stochastic differential equations

(14) Ū i t = t 0 b ( Xi s ) Ū i s ds + h t 0 ηs (f )ds - [0,t]×R+ Ū i s-1 {z≤f ( Xi s-)} π i (ds, dz) + hW t (1), i ≥ 1, and (15) ηt 
(ϕ) = η0 (ϕ) + t 0 ηs (L s ϕ)ds + h t 0 g s (ϕ )η s (f )ds + W t (Sϕ) + h t 0 g s (ϕ )dW s (1),
where the above equation holds for all ϕ ∈ W 5,p 0 , and where, for any ψ ∈ W 4,p 0 ,

W t (ψ) = t 0 R f (x)ψ(x)dM (s, x), (16) 
with M (dt, dx) an orthogonal martingale measure on R + × R with intensity dtg t (dx).

If in addition to the above assumptions we have p > 2α + 1 2 and we suppose moreover that f ∈ C 6,α , b ∈ C 6 having all derivatives up to order 6 bounded and b(x) ≥ -λx for all x ≥ 0, where λ > 0, then the limit process solving [START_REF] Jacod | Multivariate point processes: predictable projection, Radon-Nikodym derivates, representation of martingales[END_REF] and (15) is unique.

Remark 5. Notice that by construction,

< W (ϕ), W (ψ) > t = t 0 R g s (dx)ϕ(x)ψ(x)f (x)ds = t 0 g s (f ϕψ)ds = E t 0 (f ϕψ)( Xi s )ds.
2.3. Plan of the paper. The remainder of this paper is devoted to the proof of Theorem 4. Section 3 starts with useful a priori bounds on the finite size process and its limit, before establishing the uniqueness of any solution of ( 14) and ( 15) in Theorem 10. We then continue, in Section 4 by establishing a decomposition of the finite size fluctuations in Proposition 23 which is the starting point of the proof of our main result. We prove the tightness of (U N , η N ) in Theorem 25 of Section 5. Theorem 31 in Section 6 then states that any possible limit ( Ū , η) of (U N , η N ) is necessarily solution of the system of differential equations of Theorem 4. The Appendix section collects some useful results about the limit process together with some technical results.

3. Uniqueness of the limit equation 3.1. Preliminaries. We first investigate the mappings that appear in the generator of the limit process. These are the linear mapping S associated to the spikes of a given neuron and defined by Sϕ := ϕ(0) -ϕ, the mapping bD : ϕ → [x → b(x)ϕ (x)] and the mapping D : ϕ → ϕ .

Lemma 6. S is a continuous mapping from W k,p 0 to itself, for any k ≥ 1 and p > 1 2 . If we suppose moreover that Assumptions 1 and 2 hold, then for any p > α + 1 2 , and any

k ≤ 4, f Sϕ k,p ≤ C f C k,α Sϕ k,p-α ≤ C f C k,α ϕ k,p-α . Finally, for any k ≥ 2, D : W k,p 0 → W k-1,p 0 and bD : W k,p 0 → W k-1,p+1 0 are continuous mappings satisfying Dϕ k-1,p ≤ C ϕ k,p and bDϕ k-1,p+1 ≤ C ϕ k,p .
If in addition to the above assumptions we suppose moreover that f ∈ C 6,α and b ∈ C 6 such that all derivatives up to order 6 are bounded, recalling moreover that α ≥ 1, then the application L s introduced in (13) is a linear continuous mapping from W k,p 0 to W k-1,p+α 0 , for any p > 1 2 , k ≤ 6, and for all ψ ∈ W k,p 0 ,

sup s≤T L s ψ 2 k-1,p+α ψ 2 k,p < ∞.
The proof of the above lemma is given in the Appendix. In the sequel we shall also rely on the following result.

Lemma 7. For any x ∈ R + and any p > 0, the mapping δ x : W 1,p 0 → R, ψ → ψ(x) is continuous. Moreover there exists a constant C not depending on x such that

(17) δ x -1,p ≤ C(1 + |x| p ).
Similarly,

D * δ x : W 2,p 0 → R, ψ → ψ (x)
is continuous and there exists a constant C not depending on x such that

D * δ x -2,p ≤ C(1 + |x| p ).
Proof. We only show the second assertion. We have for any

ψ ∈ W 2,p 0 , | < D * δ x , ψ > | = |ψ (x)| ≤ ψ C 1,p (1 + |x| p ).
Moreover, using the Sobolev embedding theorem (see (62) below), there exists a constant C not depending on x, such that ψ C 1,p ≤ C ψ 2,p . This implies the assertion.

The following a priori bounds on (2) and (3) will be used throughout this paper. Lemma 8. Under Assumptions 1, 2 and 3, for any 1 ≤ i ≤ N and N ≥ 1, there exists a constant c 0 only depending on g 0 such that (18)

X N,i t ≤ c 0 + 4 bt + 4hN N t , where N N t := N -1 N j=1 [0,t] ×R+ 1 {z≤f (2h)} π j (ds, dz) and where b > 0 is such that b(x) ≤ b for all x ≥ 0. In particular, for any T, p > 0, [START_REF] Schmutz | On a finite-size neuronal population equation[END_REF] sup

N E(sup t≤T |X N,i t | p ) ≤ C T (p)
for a constant depending only on T, p, b and g 0 . Introducing the set

(20) G N T = N i=1 [0,T ]×R+ 1 {z≤f (2h)} π i (ds, dz) ≤ 2f (2h)N T ,
we also have the upper bound

(21) 1 G N T sup t≤T sup 1≤i≤N |X N,i t | ≤ c 0 + 4 bT + 8hf (2h)T and the control P((G N T ) c ) ≤ c 1 e -c2N T ,
for some constants c 1 , c 2 . Finally there exists a constant CT only depending on g 0 and on b, such that

(22) sup t≤T | Xi t | ≤ CT .
The proof of this lemma is given in the Appendix. We immediately state a useful corollary. Introducing

(23) Z N,i t = [0,t]×R+ 1 {z≤f (X N,i s-)} π i (ds, dz) and Zi t = [0,t]×R+ 1 {z≤f ( Xi s-)} π i (ds, dz)
and the total variation distance Z N,i -Zi T V,[0,T ] := #{t ≤ T : t is a jump of Z N,i or of Zi but not of both}, we have that Corollary 9. Under Assumptions 1, 2 and 3,

(24) E Z N,i -Zi T V,[0,T ] = E T 0 |f (X N,i s ) -f ( Xi s )|ds ≤ C T N -1/2 ,
for a constant C T only depending on T, but not on N.

Proof. Clearly, √ N E Z N,i -Zi T V,[0,T ] = √ N E [0,T ]×R+ 1 {z≤f (X N,i s-)} -1 {z≤f ( Xi s-)} π i (ds, dz) = √ N E T 0 | f (X N,i s ) -f ( Xi s )|ds ≤ √ N T 0 E[| f (X N,i s ) -f ( Xi s )|1 G N T ]ds + √ N T f ( CT )P((G N T ) c ) +C √ N T E 1 (G N T ) c [1 + (c 0 + 4 bt + 4hN N T ) α ] ,
where we have used that by [START_REF] Robert | On the dynamics of random neuronal networks[END_REF] and since f is non-decreasing,

f (X N,i s ) ≤ C(1 + (c 0 + 4 bt + 4hN N T ) α ) and f ( Xi s ) ≤ f ( CT ) for all s ≤ T.
Due to [START_REF] Sznitman | Topics in propagation of chaos[END_REF], on G N T , X N,i t ≤ c 0 + 4 bt + 8hf (2h)T for all i, and all t ≤ T. Therefore, using the Lipschitz continuity of f on [0, c 0 + 4 bt + 8hf (2h)T ) ∨ CT ] and (4), we have sup

N √ N T 0 E[| f (X N,i s-) -f ( Xi s-)|1 G N T ]ds ≤ C T .
Using the deviation estimate on P((G N T ) c ) together with Hölder's inequality implies moreover that sup

N √ N T f ( CT )P((G N T ) c ) + C √ N T E 1 (G N T ) c [1 + (c 0 + 4 bt + 4hN N T ) α ] ≤ C T such that sup N √ N E Z N,i -Zi T V,[0,T ] = sup N √ N E T 0 | f (X N,i s ) -f ( Xi s )|ds ≤ C T < ∞,
implying the assertion.

After these preliminary results, we now turn to the proof of our first main result which is the uniqueness of the limit equation.

3.2.

Uniqueness. This section is devoted to the proof of the following Theorem 10. Grant Assumptions 1, 2 and 3 and suppose moreover that f ∈ C 6,α , b ∈ C 6 having all derivatives up to order 6 bounded and b(x) ≥ -λx for all x ≥ 0, where λ > 0. Then for any fixed initial condition (η 0 ) and driving underlying noise π i , i ≥ 1, and W, the system ( 14)-( 15) has at most one solution in

D(R + , R) N * × C(R + , W -4,p 0 
), for any p > 2α + 1 2 .

Since given Xi , η and W, the equation for Ū i is linear, it is sufficient to prove uniqueness for η.

Suppose η and η are both solution of [START_REF] Jacod | Limit theorems for stochastic processes[END_REF], driven by the same underlying W and starting from the same initial condition. Then ηt := ηt -ηt satisfies

(25) < ηt , ϕ >= t 0 < ηs , L s ϕ > ds + h t 0 g s (ϕ )η s (f )ds,
where we recall that

L s ϕ(x) = b(x)ϕ (x) + hg s (f )ϕ (x) + f (x)Sϕ(x).
Traditionally, to prove uniqueness we have to deduce from (25) that η = 0, that is, ηt -k,p = 0 for suitable k and p. However, when applying • -k,p to (25), we have to treat the term t 0 < ηs , L s ϕ > ds which involves a derivative and multiplication with f and therefore gives rise to ηs -k+1,p+α which cannot be compared to the norm ηs -k,p since it is greater. The same problem arises when treating the last term t 0 g s (ϕ )η s (f )ds. Of course, this problem has already appeared -and solved -both in [START_REF] Fernandez | A Hilbertian approach for fluctuations on the McKean-Vlasov model[END_REF] and [START_REF] Chevallier | Fluctuations for mean-field interacting age-dependent Hawkes processes[END_REF], yet in a simpler framework, since in [START_REF] Fernandez | A Hilbertian approach for fluctuations on the McKean-Vlasov model[END_REF], the underlying diffusion generates regularity of the associated semigroup, while in [START_REF] Chevallier | Fluctuations for mean-field interacting age-dependent Hawkes processes[END_REF] the underlying flow is particularly simple, having drift ≡ 1. In what follows we show how to adapt these ideas to the present frame and propose severals tricks to get rid of the above derivatives by using integration by parts or by solving directly the flow associated to L s .

We start gathering known results about the marginal law g s of the limit process X1 s of (3), starting from X1 0 ∼ g 0 , that is, g s = L( X1 s ). We introduce the associated flow defined by

(26) ϕ s,t (x) = x + t s b(ϕ s,u (x))du + h t s g u (f )du,
for any s ≤ t, representing the evolution of X1 in between the successive jumps.

Proposition 11. Under Assumptions 1, 2 and 3, for all t ≥ 0, g t (dy) = g t (y)dy is absolutely continuous having Lebesgue density g t (y), and for all t ≤ T, g t is compactly supported, that is, g t (y) = 0 for all y ≥ CT , where CT is as in (22). Moreover, for all y = ϕ 0,t (0), g t is differentiable in y having derivative g t which is continuous on (0, ϕ 0,t (0)) ∪ (ϕ 0,t (0), ∞). Finally,

t → ∞ 0 (1 + |x| p )|g t (x)|dx is locally bounded, for all p ≥ 0.
The proof of the above result is postponed to the Appendix.

Using integration by parts this implies that we may rewrite the last term appearing in (25) as follows.

g s (ϕ ) = ϕ 0,s (0) 0 ϕ (x)g s (x)dx + ∞ ϕ 0,s (0) ϕ (x)g s (x)dx = g s (ϕ 0,s (0)-)ϕ(ϕ 0,s (0)) -g s (0)ϕ(0) -g s (ϕ 0,s (0)+)ϕ(ϕ 0,s (0)) - ∞ 0 ϕ(x)g s (x)dx = - g s (f ) b(0) + hg s (f ) ϕ(0) -∆g s (ϕ 0,s (0))ϕ(ϕ 0,s (0)) - ∞ 0 ϕ(x)g s (x)dx,
for any s > 0, where we used the identity g s (0) = gs(f ) b(0)+hgs(f ) which follows from (67) stated in the Appendix below, and where

∆g s (ϕ 0,s (0)) = g s (ϕ 0,s (0)+) -g s (ϕ 0,s (0)-) = e -s 0 (f (ϕ 0,u (0))+b (ϕ 0,u (0)))du [g 0 (0) - g s (f ) b(0) + hg s (f ) ],
such that

h t 0 g s (ϕ )η s (f )ds = t 0 h s (ϕ)ds,
where

h s (ϕ) = - hg s (f ) b(0) + hg s (f ) ϕ(0)η s (f ) -hϕ(ϕ 0,s (0))∆g s (ϕ 0,s (0))η s (f ) -h( ∞ 0 ϕ(x)g s (x)dx)η s (f ).
Relying on Proposition 11, we deduce

Proposition 12. Let ψ ∈ W k,q 0 , for some k ≥ 1, q ≥ 0. Fix T > 0.
Then for all 0 ≤ t ≤ T, and for

all p > α + 1 2 , |h t (ψ)| ≤ C T ψ k,q ηt -4,p f 4,p .
Proof. We use that by the Sobolev embedding,

|ψ(x)| ≤ ψ C 0,q (1 + |x| q ) ≤ C ψ k,q (1 + |x| q ), since k ≥ 1, such that |ψ(0)| ≤ C ψ k,q and |ψ(ϕ 0,t (0))∆g t (ϕ 0,t (0))| ≤ C T ψ k,q
and moreover

∞ 0 |ψ(x)g s (x)|dx ≤ C ψ k,q ∞ 0 (1 + |x| q )|g s (x)|dx ≤ C T |ψ k,q ,
where we have used the bound of Proposition 11. The conclusion follows from

|η t (f )| ≤ ηt -4,p f 4,p , since f ∈ W 4,p 0
by Assumption 1, due to the fact that C 4,α ⊂ W 4,p 0 for any p > α + 1 2 .

We now turn to the study of the action of L s . Given the fixed function t → g t (f ), t ≥ 0, we introduce the time inhomogeneous Markov process Y s,t (x), for any 0 ≤ s ≤ t and x ∈ R + , which is solution of

Y s,t (x) = x + t s (hg u (f ) + b(Y s,u (x))) du - ]s,t]×R+ Y s,u-(x)1 {z≤f (Ys,u-(x))} π 1 (du, dz).
Clearly, since h t 0 g s (f )ds ≤ CT for all t ≤ T, by ( 22), and since b is bounded by a positive constant, Y s,t (x) ≤ x + CT , for all s ≤ t ≤ T, such that the above process is well-defined. We denote P s,t the associated semigroup, that is, P s,t ψ(x) = Eψ(Y s,t (x)), for any measurable test function.

Proposition 13. Under the assumptions of Theorem 10, we have that for any 0 ≤ s ≤ t and any p ≥ 0, P s,t is a continuous mapping from W 6,p 0 → W 6,p 0 , and

P s,t ψ k,p ≤ C T ψ k,p , for all k ≤ 6, s ≤ t ≤ T.
Moreover, for any ψ ∈ C ∞ c , P s,t ψ belongs to C 6 b and is rapidly decreasing, that is, for all γ > 0 and all k ≤ 6, ( 27) lim

x→∞ x γ |(P s,t ψ) (k) )(x)| = 0.
The proof of this result is also postponed to the Appendix.

We notice that L s is the time dependent infinitesimal generator associated to the time inhomogeneous semigroup P s,t , that is, d ds P s,t ψ = -L s P s,t ψ and d dt P s,t ψ = P s,t L t ψ, whenever the above quantities are well-defined.

Now we proceed further with our proof. Let 0 ≤ s ≤ t ≤ T be fixed. Consider a test function ψ ∈ C ∞ c . Then we have that

P s,t ψ(x) = ψ(x) - t s ∂ ∂v P v,t ψ(x)dv = ψ(x) + t s L v P v,t ψ(x)dv such that (28) P s,t ψ = ψ + t s L v P v,t ψdv.
Plugging this into (25) and observing that ψ and P s,t ψ, and thus, a posteriori, also

t s L v P v,t ψdv are valid test functions, we obtain (29) t 0 < ηs , L s ψ > ds = t 0 < ηs , L s P s,t ψ > ds - t 0 t s < ηs , L s L u P u,t ψ > duds.
Let us consider the double integral appearing in the above expression. By the definition of L s and using equation (27) of Proposition 13, we know that

(30) Ψ s,u,t := L s L u P u,t ψ ∈ C 4,2α .
This implies that for all p > 2α + 1 2 ,

sup s≤u≤t≤T L s L u P u,t ψ 4,p = C T < ∞ such that | < ηs , L s L u P u,t ψ > | ≤ ηs -4,p L s L u P u,t ψ 4,p ≤ C T ηs -4,p .
Since η takes values in C(R + , W -4,p 0

), sup s≤t ηs -4,p < ∞, and therefore we may use Fubini's theorem and obtain (31)

t 0 t s < ηs , L s L u P u,t ψ > duds = t 0 u 0 < ηs , L s L u P u,t ψ > dsdu.
Now we apply (25) to the admissible test function ϕ := L u P u,t ψ, for fixed u < t, at time u. Then

< ηu , ϕ >= u 0 < ηs , L s ϕ > ds + H u (L u P u,t ψ),
where we write for short

(32) H u (•) := u 0 h s (•)ds.
We deduce that the double integral in (31) can be rewritten as

(33) t 0 u 0 < ηs , L s L u P u,t ψ > dsdu = t 0 < ηu , L u P u,t ψ > du - t 0 H u (L u P u,t ψ)du.
(29) together with (33) now implies that

t 0 < ηs , L s ψ > ds = t 0 H u (L u P u,t ψ)du.
Using the same trick as above,

H t (ψ) = t 0 h s (ψ)ds = t 0 h s (P s,t ψ)ds - t 0 t s h s (L v P v,t ψ)dvds.
Proposition 12, with k = 1, q = 2α together with Lemma 6 implies

|h s (L v P v,t ψ)| ≤ C t L v P v,t ψ 1,2α ηs -4,p f 4,p ≤ C t P v,t ψ 2,α ηs -4,p f 4,p ,
which is bounded uniformly in 0 ≤ s ≤ v ≤ t, due to Proposition 13, since ψ ∈ C ∞ c . Therefore, we may use Fubini's theorem once more to deduce that

t 0 t s h s (L v P v,t ψ)dvds = t 0 H v (L v P v,t ψ)dv.
Gathering all these terms, we end up with (34) < ηt , ψ >= t 0 h s (P s,t ψ)ds.

We are now ready to finish this proof. Equality (34) together with Proposition 12 applied with k = 4 and q = p and Proposition 13 imply that for all t ≤ T and all ψ ∈ C ∞ c ,

| < ηt , ψ > | ≤ C T ψ 4,p f 4,p t 0 ηs -4,p ds.
Since C ∞ c is dense in W 4,p 0 , this implies ηt -4,p ≤ C T t 0 ηs -4,p ds, and Gronwall's lemma implies ηt -4,p = 0 for all t ≥ 0. .

Decomposition of the fluctuations

We now turn to the second main part of this paper and propose a first decomposition of the fluctuation measure η N for a fixed system size N. The following purely discontinuous martingale, defined for any measurable bounded test function ϕ, will play a key role in our study.

(35)

W N t (ϕ) = 1 √ N N i=1 [0,t]×R+ ϕ(X N,i s-)1 {z≤f (X N,i s-)} πi (ds, dz),
where πi (ds, dz) = π i (ds, dz)-dsdz is the compensated Poisson random measure. Clearly, (W N t (ϕ)) t≥0 is a real valued martingale with angle bracket given by (36)

< W N (ϕ) > t = t 0 µ N s (f ϕ 2 )ds.
We obtain the following first decomposition of η N t (ϕ), for sufficiently smooth test functions ϕ. Proposition 14. Grant Assumptions 1, 2 and 3. Then for any test function ϕ ∈ C 2 b and t ≥ 0,

(37) η N t (ϕ) = η N 0 (ϕ) + t 0 η N s (L s ϕ)ds + W N t (Sϕ) + h t 0 µ N s-(ϕ )dW N s (1) + h t 0 η N s (f )µ N s (ϕ )ds + R N,1 t (ϕ),
where the remainder term is given by

(38) R N,1 t (ϕ) = h N 3/2 N i=1 [0,t]×R+ 1 {z≤f (X N,i s-)}     N j=1,j =i 1 0 (ϕ (X N,j s-+ ϑ h N ) -ϕ (X N,j s-))dϑ   -ϕ (X N,i s-)   π i (ds, dz).
Proof. Using Taylor's formula at order two, we obtain for any ϕ ∈ C 2 b ,

µ N t (ϕ) = µ N 0 (ϕ) -α t 0 µ N s (ϕ • x)ds + 1 √ N W N t (Sϕ) + t 0 µ N s (f Sϕ)ds + h √ N [0,t] µ N s-(ϕ )dW N s (1) + t 0 µ N s (f )hµ N s (ϕ )ds + 1 √ N R N,1 t (ϕ) = µ N 0 (ϕ) + t 0 µ N s (L s ϕ)ds + 1 √ N W N t (Sϕ) + h √ N t 0 µ N s-(ϕ )dW N s (1) + h t 0 (µ N s (f ) -g s (f ))µ N s (ϕ )ds + 1 √ N R N,1 t (ϕ).
In the above development we have used that

1 N N i=1 [0,t]×R+ 1 {z≤f (X N,i s-)}   h N N j=1 ϕ (X N,j s-)   πi (ds, dz) = h √ N t 0 µ N s-(ϕ )dW N s (1).
Using that g t (ϕ) = g 0 (ϕ) + t 0 g s (L s ϕ)ds, we obtain the result.

We now give estimates of the terms η N , W N , R N,1 appearing in (37) above, interpreted as elements of W -k,p 0 , for the smallest possible k, p. This will be useful later to deduce the tightness of these processes.

Proposition 15. Grant Assumptions 1, 2 and 3. Then for any p > 1/2 and any T > 0,

sup t≤T sup N E( η N t -2,p ) < ∞.
Remark 16. We stress that we obtain a weaker result than the corresponding Proposition 3.5 in [START_REF] Fernandez | A Hilbertian approach for fluctuations on the McKean-Vlasov model[END_REF] or Proposition 4.7 in [3] since we are not able to control the expectation of the square of the norm

E( η N t 2 -2,p
). This is due to two facts. Fact 1. We are working in the framework of point processes, not of diffusions. Therefore, the control

E| Xi t -X N,i t | ≤ C T N -1/2
given in (4) cannot be improved to higher order moments of the strong error as in [START_REF] Fernandez | A Hilbertian approach for fluctuations on the McKean-Vlasov model[END_REF]. This intrinsic difficulty is common to any study of point processes.

Fact 2. Julien Chevallier in [START_REF] Chevallier | Fluctuations for mean-field interacting age-dependent Hawkes processes[END_REF] proposes to remediate this difficulty by considering rather higher order moments of the total variation distance; that is, proving and exploiting the fact that

P( Z N,i -Zi T V,[0,T ] = 0 for all 1 ≤ i ≤ k) ≤ C T N -k/2 .
However, in our model, even on { Z N,i -Zi T V,[0,T ] = 0}, the two processes do not couple since they are driven by two different drift terms. This is a crucial difference with the age-structured Hawkes process where the drift is always ≡ 1, independently of anything else (compare more precisely to (A.10) of [START_REF] Chevallier | Fluctuations for mean-field interacting age-dependent Hawkes processes[END_REF]). It is for the same reason that we have to take test functions that are twice continuously differentiable, such that we work in W -2,p 0 . 

Corollary 17. Since f ∈ C 2,α ⊂ W
t≤T sup N E(|η N t (f )|) < ∞.
Proof of Proposition 15. Let Xi, , 1 ≤ i ≤ N, be independent copies of the limit system (3), driven by the same Poisson random measures as X N,i , 1 ≤ i ≤ N, and starting from the same initial positions X i 0 , 1 ≤ i ≤ N, as the finite system. We decompose, for any ψ ∈ W 2,p 0 ,

η N t (ψ) = √ N 1 N N i=1 [ψ(X N,i t ) -ψ( Xi t )] + [ψ( Xi t ) -E(ψ( Xi t ))] =: η N,1 t (ψ) + η N,2 t (ψ), such that η N t -2,p ≤ η N,1 t -2,p + η N,2 t -2,p . Step 1. We take an orthonormal basis (ψ k ) k composed of C ∞ c -functions of W 2,p 0 such that η N,2 t 2 -2,p = k < η N,2 t , ψ k > 2 .
Using the independence of the Xi , i ≥ 1, we have

E(< η N,2 t , ψ k > 2 ) = E( 1 N N i=1 [ψ k ( Xi t ) -E(ψ k ( Xi t ))] 2 ) = E([ψ k ( X1 t ) -E(ψ k ( X1 t ))] 2 ) ≤ E(ψ 2 k ( X1 t )).
Observing that

E(ψ 2 k ( X1 t )) = E(< δ X1 t , ψ k > 2 )
, we obtain by monotone convergence

E η N,2 t 2 -2,p = E k (< η N,2 t , ψ k > 2 ) = k E(< η N,2 t , ψ k > 2 ) ≤ k E(ψ 2 k ( X1 t )) = k E(< δ X1 t , ψ k > 2 ) = E k < δ X1 t , ψ k > 2 = E δ X1 t 2 -2,p .
Thanks to [START_REF] Löcherbach | Metastability for systems of interacting neurons[END_REF] together with (61), we have that

δ X1 t -2,p ≤ C(1 + | X1 t | p ) ≤ CT
, where we have used the a priori estimate (22). As a consequence,

sup t≤T sup N E η N,2 t -2,p ≤ C T ψ 2,p .
Step 2. We now study the first term. For any ψ ∈ W 2,p 0 , using that for any x, y ≥ 0, by Taylor's formula and the Sobolev embedding,

| ψ(x) -ψ(y)| ≤ C ψ C 1,p (1 + |x| p + |y| p )|x -y| ≤ C ψ 2,p (1 + |x| p + |y| p )|x -y|,
we obtain, using the upper bound (22),

|ψ(X N,i t ) -ψ( Xi t )| ≤ CT ψ 2,p (1 + |X N,i t | p )|X N,i t -Xi t |, such that η N,1 t -2,p = sup ψ: ψ 2,p =1 |η N,1 t (ψ)| ≤ CT 1 √ N N i=1 (1 + |X N,i t | p )|X N,i t -Xi t |.
Recall the set G N T introduced in (20) above. On the set G N T , using (21), we have that sup t≤T |X N,i t | p ≤ C T , whence

E( η N,1 t -2,p 1 G N T ) ≤ C T √ N N i=1 E(|X N,i t -Xi t |).
We then deduce from (4) that

E( η N,1 t -2,p 1 G N T ) ≤ C T . Moreover, on (G N T ) c
, we simply upper bound, using once more (22),

η N,1 t -2,p ≤ CT 1 √ N N i=1 (1 + |X N,i t | p ) X N,i t + CT ≤ C T 1 √ N N i=1 (1 + |X N,i t | p+1 ),
where we recall that constants may change from one appearance to another and where we have used that (1

+ x p )(1 + x) ≤ C(1 + x p+1
), for a suitable constant. Therefore,

E( η N,1 t -2,p 1 (G N T ) c ) ≤ C T √ N E((1 + |X N,i t | p+1 )1 (G N T ) c
). Using [START_REF] Schmutz | On a finite-size neuronal population equation[END_REF] with 2(p + 1) and the Cauchy-Schwarz inequality together with P((G N T ) c ) ≤ ac 1 e -c2N T , this gives

E( η N,1 t -2,p ; (G N T ) c ) ≤ C T √ N e -(c2/2)N T .
All in all we therefore get sup

N sup t≤T E η N,1 t -2,p ≤ C T ,
and this concludes the proof.

Proposition 18. Under Assumptions 1, 2 and 3, for any p > 1/2, the process W N t is a (F t ) t≥0 -martingale with paths in D(R + , W -1,p 0 ) almost surely. Furthermore, (40) sup

N E sup t≤T W N t 2 -1,p < ∞.
Proof. Take an orthonormal basis (ψ k ) k≥1 of W 1,p 0 , composed of C ∞ c -functions, and use that sup

t≤T W N t 2 -1,p = sup t≤T k≥1 (W N t (ψ k )) 2 ≤ k sup t≤T (W N t (ψ k )) 2 .
As a consequence, by Doob's inequality and monotone convergence, and relying on (36),

E(sup t≤T W N t 2 -1,p ) ≤ 4 k E(W N T (ψ k )) 2 = 4 k E T 0 µ N s (f ψ 2 k )ds = 4 k E T 0 f (X N,1 s )ψ 2 k (X N,1 s )ds = 4E T 0 f (X N,1 s ) k ψ 2 k (X N,1 s )ds = 4E T 0 f (X N,1 s ) δ X N,1 s 2 -1,p ds,
where we have used the exchangeability of the finite system to obtain the last term of the first line.

By Lemma 7, there exists a constant not depending on [START_REF] Schmutz | On a finite-size neuronal population equation[END_REF] with 2p + α, this implies (40).

X N,1 s such that δ X N,1 s 2 -1,p ≤ C(1+|X N,1 s | 2p ). Moreover, f (X N,1 s ) ≤ C(1 + |X N,1 s | α ). Using
Once (40) is checked, the remainder of the proof follows the lines of the proof of Proposition 4.7, item (ii) of [START_REF] Chevallier | Fluctuations for mean-field interacting age-dependent Hawkes processes[END_REF].

We now check that Proposition 19. Grant Assumptions 1, 2 and 3. For all p > 1/2 we have

sup N √ N E(sup t≤T R N,1 t -3,p ) < ∞.
Proof. Let ψ ∈ W 3,p 0 and recall that, by Taylor's formula and the Sobolev embedding, for all ϑ ∈ [0, 1],

|ψ (x + ϑ h N ) -ψ (x)| ≤ C ψ C 2,p (1 + x p ) h N ≤ C ψ 3,p (1 + x p ) h N .
Therefore,

√ N |R N,1 t (ψ)| ≤ C ψ 3,p h N N i=1 [0,T ]×R+ 1 {z≤f (X N,i s-)}   h N N j=1 (1 + |X N,j s-| p ) + |X N,i s-| p   ,
where we have also used that |ψ

(x)| ≤ C ψ C 1,b (1 + |x| p ) ≤ C ψ 3,p (1 + |x| p ). This implies √ N sup t≤T R N,1 t -3,p = sup t≤T sup ψ: ψ 3,p =1 √ N |R N,1 t (ψ)| ≤ C h N N i=1 [0,T ]×R+ 1 {z≤f (X N,i s-)}   h N N j=1 (1 + |X N,j s-| p ) + |X N,i s-| p   .
Taking expectation and using the a priori bound [START_REF] Schmutz | On a finite-size neuronal population equation[END_REF] together with f (x) ≤ C(1 + x α ) yields the result.

Finally, recall that D : ψ → ψ denotes the differential operator, and D * the associated dual.

Lemma 20. Fix p > 1/2. Then underAssumptions 1, 2 and 3, the mapping defined by

ψ → η N s (f )D * µ N s (ψ) is almost surely continuous from W 2,p 0 → R and satisfies sup N sup t≤T E( η N t (f )D * µ N t -2,p ) < ∞.
Proof. The result follows from

|η N t (f )D * µ N t (ψ)| ≤ | η N t (f )| 1 N N i=1 |ψ (X N,i t )| ≤ C ψ 2,p |η N t (f )| 1 N N i=1 (1 + | X N,i t | p ).
The conclusion is then similar as in the proof of Proposition 15.

We now turn to the study of the last stochastic integral appearing in (37).

Proposition 21. For any p > 1/2, the process

t 0 D * µ N s-dW N s (1) is a (F t ) t≥0 -martingale with paths in D(R + , W -2,p 0 ) almost surely. Furthermore, (41) 
sup

N E sup t≤T t 0 D * µ N s-dW N s (1)| 2 -2,p < ∞.
Proof. The proof is similar to the proof of Proposition 15. As there, we take an orthonormal basis

(ψ k ) k≥1 , now of W 2,p 0 , composed of C ∞ c -functions. We have sup t≤T t 0 D * µ N s-dW N s (1) 2 -2,p = sup t≤T k≥1 ( t 0 µ N s (ψ k )dW N s (1)) 2 ≤ k≥1 sup t≤T ( t 0 µ N s (ψ k )dW N s (1)) 2 .
Applying first Doob's and then Jensen's inequality and finally monotone convergence,

E(sup t≤T t 0 D * µ N s-dW N s (1) 2 -2,p ) ≤ 4 k E T 0 µ N s (f )(µ N s (ψ k )) 2 ds ≤ 4 k E T 0 µ N s (f )µ N s ((ψ k ) 2 ))ds = 4E T 0 µ N s (f ) 1 N N i=1 k (ψ k ) 2 (X N,i s ) ds.
Now we rely on Lemma 7 and use that

δ x • D 2 -2,p = k (δ x • D(ψ k )) 2 = k (ψ k (x)) 2 to identify k (ψ k ) 2 (X N,i s ) = δ X N,i s • D 2 -2,p ≤ C(1 + |X N,i s | 2p ) such that E(sup t≤T t 0 D * µ N s-dW N s (1) 2 -2,p ) ≤ CE T 0 µ N s (f )(1 + µ N s (| • | 2p ))ds,
which, together with our a priori estimate (19), using similar arguments as in the end of the proof of Proposition 18, allows to conclude that

E(sup t≤T t 0 D * µ N s-dW N s (1) 2 -2,p ) ≤ C T .
The remainder of the assertion follows once more along the lines of the proof of item (ii) of Proposition 4.7 in [START_REF] Chevallier | Fluctuations for mean-field interacting age-dependent Hawkes processes[END_REF] To close this section, we state the following Lemma 22. Under Assumptions 1, 2 and 3, for any p > The proof of the above lemma is sketched in the beginning of the proof of Proposition 3.5 in [START_REF] Fernandez | A Hilbertian approach for fluctuations on the McKean-Vlasov model[END_REF].

Resuming what we have done so far, we conclude that Proposition 23. Grant Assumptions 1, 2 and 3. Then for any p > α + 1 2 , we have the decomposition in W -3,p 0 (42)

η N t = η N 0 + t 0 L * s η N s ds + S * W N t + h t 0 D * µ N s-dW N s (1) + h t 0 η N s (f )D * µ N s ds + R N,1 t ,
where S * denotes the dual operator of S : ψ → ψ(0) -ψ(•) and where R N,1 t is given in (38).

Moreover, Remark 24. The above decomposition is stated in W -3,p 0 for any p > α + 1 2 . This lower bound comes from the fact that we have to apply η N t to the jump rate function f which belongs to C 4,α , hence to C 3,α ⊂ W 3,p 0 under the condition p > α + 1 2 .

Proof. Decomposition (42) follows from our previous results Proposition 14-21. It implies that sup

t≤T η N t -3,p ≤ η N 0 -3,p + T 0 L * s η N s -3,p ds + |h| T 0 η N s (f )D * µ N s -3,p ds + sup t≤T S * W N t -3,p + | h| sup t≤T t 0 D * µ N s-dW N s (1) -3,p + sup t≤T R N,1 t -3,p .
We know by Lemma 6 that

E T 0 L * s η N s -3,p ds ≤ C T sup s≤T E η N s -2,p+α
which is finite by Proposition 15. Moreover, by Lemma 20,

E T 0 η N s (f )D * µ N s -3,p ds < ∞.
By continuity of the application S, the stochastic integral terms have already been treated in Propositions 18 and 21 and the remainder term in Proposition 19 such that the conclusion follows. The proof of the fact that almost surely t → η N t belongs to D(R + , W -3,p

0

) is analogous to the proof of Proposition 4.10 in [START_REF] Chevallier | Fluctuations for mean-field interacting age-dependent Hawkes processes[END_REF]. Finally we use that | η N t (f )| ≤ η N t -3,p f 3,p to deduce (44).

Tightness

This section is devoted to the proof of the tightness of the laws of η N interpreted as stochastic processes with càdlàg paths taking values in W -4,p 0 , for some p > α + 1 2 . Although the above decomposition (42) is stated in W -3,p 0 , we shall see in Remark 26 below why we have to add one degree of regularity and consider the process as process taking values in the bigger space W -4,p 0 .

As it is classically done, we rely on the tightness criterion of Aldous for Hilbert space valued stochastic processes that we quote from [START_REF] Joffe | Weak convergence of sequences of semimartingales with applications to multitype branching processes[END_REF]. This criterion reads as follows. A sequence (X N ) N ≥1 of processes in D(R + , W -4,p 0 ), defined on a filtered probability space (Ω, (F t ) t≥0 , P), is tight if (1) For every t ≥ 0 and every ε > 0 there exists a Hilbert space H 0 such that the embedding H 0 → W -4,p 0 is Hilbert-Schmidt and such that for all t ≥ 0,

N E( X N t H0 ) < ∞. (45) sup 
(2) For all ε 1 , ε 2 > 0 and T ≥ 0 there exist δ * > 0 and N 0 such that for all (F t ) t≥0 -stopping

times τ N ≤ T, (46) sup 
N ≥N0 sup δ≤δ * P( X N τ N +δ -X N τ N -4,p ≥ ε 1 ) ≤ ε 2 .
Theorem 25. Grant Assumptions 1, 2 and 3. Then the sequences of laws of η N , of W N and of

• 0 D * µ N s-dW N s (1) are tight in D(R + , W -4,p 0 
), for any p > α + 1 2 .

Proof.

Step 1. We start studying Condition (45). It is satisfied with H 0 = W -2,p+1 0 for η N as a consequence of Proposition 15 since the embedding W -2,p+1 0 → W -4,p 0 is of Hilbert-Schmidt type, by Maurin's theorem, see Section 7.1 in the Appendix. For W N it even holds with H 0 = W -1,p+1 0 , by Proposition 18, and for

• 0 D * µ N s-dW N s (1)
, it follows from Proposition 21, with H 0 = W -2,p+1 0 .

Step 2. We now check Condition (46) for W N . By Rebolledo's theorem (see [START_REF] Joffe | Weak convergence of sequences of semimartingales with applications to multitype branching processes[END_REF], page 40), it is sufficient to show that it holds for the trace of the processes < < W N > > where each < < W N > > is the linear continuous mapping from W 4,p 0 to W -4,p 0 given for all ϕ 1 , ϕ 2 ∈ W 4,p 0 by

<< < W N > > t (ϕ 1 ), ϕ 2 >= t 0 µ N s (f ϕ 1 ϕ 2 )ds.
We take an orthonormal basis (ψ k ) k of W 4,p 0 . Fix some δ * > 0. Then for all δ ≤ δ * , 

|T r < < W N > > τ N +δ -T r < < W N > > τ N | = | k << < W N > > τ N +δ (ψ k ), ψ k > -<< < W N > > τ N (ψ k ), ψ k > | = k τ N +δ τ N µ N s (f ψ 2 k )ds = τ N +δ τ N k µ N s (f ψ 2 k )ds = τ N +δ τ N 1 N N i=1 f (X N,i s ) k ψ 2 k (X N,i s )ds = τ N +δ τ N 1 N N i=1 f (X N,i s ) δ X N,
(1 + |X N,i s | 2p )(1 + |X N,i s | α )
having expectation which is upper bounded uniformly in N by C T δ * thanks to our a priori estimates [START_REF] Schmutz | On a finite-size neuronal population equation[END_REF]. This implies (46) for W N .

We now turn to the study of Condition (46) for the martingale

M N := • 0 D * µ N s-dW N s (1) 
. We have

<< < M N > > t (ψ 1 ), ψ 2 >= t 0 µ N s (f )µ N s (ψ 1 )µ N s (ψ 2 )ds
such that, using Jensen's inequality,

|T r < < M N > > τ N +δ -T r < < M N > > τ N | = | k << < M N > > τ N +δ (ψ k ), ψ k > -<< < M N > > τ N (ψ k ), ψ k > | = k τ N +δ τ N µ N s (f )(µ N s (ψ k )) 2 ds ≤ τ N +δ τ N µ N s (f ) k µ N s ((ψ k ) 2 )ds,
and the conclusion follows similarly.

Finally, using decomposition (42) and the fact that the sequence of laws of S * W N (by continuity of S) and of M N have already been shown to be tight, to show the tightness of η N , it suffices to check condition (46) for the remaining terms

T N t = η N 0 + t 0 L * s η N s ds + h t 0 η N s (f )D * µ N s ds + R N,1 t .
We have

T N τ N +δ -T N τ N -4,p ≤ δ sup s≤T +δ * L * s η N s -4,p + |h| η N s (f )D * µ N s -4,p + 1 √ N sup t≤T +δ * √ N R N,1 t
The last term above is controlled thanks to Proposition 19 above, choosing N ≥ N 0 for N 0 sufficiently large. Using the same arguments as in the proof of Proposition 15, we have sup

s≤T +δ * η N s (f )D * µ N s -4,p ≤ C T +δ * sup t≤T +δ * |η N t (f )| + C T √ N 1 N N i=1 (1 + sup t≤T +δ * |X N,i t | p ) 1 N N i=1 (1 + sup t≤T +δ * |X N,i t | α ) 1 (G N T ) c .
Recalling that by (44), sup

N E sup t≤T +δ * |η N t (f )| < ∞, we deduce that sup N E sup s≤T +δ * η s (f )D * µ N s -4,p ≤ C T +δ * .
We conclude the proof recalling that by Lemma 6, (47)

L * s η N s -4,p ≤ C T +δ * sup s≤T +δ * η N s -3,p+α ,
which, together with (43) implies the assertion.

Remark 26. The above proof relies on the decomposition (42) and on the uniform in time upper bound (43) which have been stated in W -3,p 0 . However, the presence of the integral t 0 L * s η N s ds, canceling one order of derivative and the fact that (43) does only hold in W -3,p 0 imply that we have to work in W -4,p 0 to be able to obtain the tightness of all terms. This is a crucial difference with respect to [START_REF] Fernandez | A Hilbertian approach for fluctuations on the McKean-Vlasov model[END_REF] and [START_REF] Chevallier | Fluctuations for mean-field interacting age-dependent Hawkes processes[END_REF]. They both use the upper bound

E τ N +δ τ N L * s η N s -k,p ds ≤ δE τ N +δ τ N L * s η N s 2 -k,p ds
and are hence able to use a non-uniform in time bound on the expectation of the square of the operator norm of η N t . Since we are not able to control the square of the operator norm within our framework, see Remark 16 above, the prize to pay is to impose one degree of regularity more, as we did here.

Proposition 27. Under Assumptions 1, 2 and 3, for any p > 1/2, the limit laws of η N , of W N and of

• 0 D * µ N s-dW N s (1) are supported in C(R + , W -4,p 0 ).
Proof. Following [START_REF] Billingsley | Convergence of probability measures[END_REF], Theorem 13.4, it suffices to show that the maximal jump size within a fixed time interval converges to 0 almost surely. Let us check this for W N t , for t ∈ [0, T ]. We have for any ψ ∈ W 4,p 0 ,

(48) ∆W N t (ψ) = 1 √ N N i=1 ψ(X N,i t-)∆Z N,i t , where Z N,i t = [0,t]×R+ 1 {z≤f (X N,i s-)} π i (ds, dz).
As a consequence, for all ψ ∈ W 4,p 0 with ψ 4,p = 1, since at each jump time t, only one of the processes Z N,i has a jump,

sup t≤T |∆W N t (ψ)| ≤ (C/ √ N )(1 + sup 1≤i≤N sup t≤T |X N,i t | p ).
Thanks to Assumption 3, using [START_REF] Robert | On the dynamics of random neuronal networks[END_REF],

sup 1≤i≤N sup t≤T |X N,i t | p ≤ C(1 + |N N T | p ).
By the strong law of large numbers, almost surely, lim

N →∞ |N N T | p = T p f (2h) p < ∞ such that almost surely, lim N →∞ sup t≤T |∆W N t (ψ)| = 0. Similarly, since ∆η N t = √ N ∆µ N t , ∆η N t (ψ) = 1 √ N N i=1   Sψ(X N,i t-) + h N j =i 1 0 ψ (X N,j t-+ θ h N )dθ   ∆Z N,i t and ∆ t 0 µ N s-(ψ )dW N s (1) = 1 √ N N i=1   1 N j ψ (X N,j t-)   ∆Z N,i t ,
and these terms are treated analogously.

We close this section with the following Theorem 28. Grant Assumptions 1, 2 and 3. Then the sequence of laws of (U N,i ) i≥1 is tight in

D(R + , R) N * .
Proof.

Step 1. We first prove that for any fixed n ≥ 1, the sequence of laws of (U N,i ) 1≤i≤n is tight in D(R + , R n ). To do so, we rely once more on the criterion of Aldous, now stated for R n -valued processes having càdlàg paths, see Jacod and Shiryaev [15, Theorem VI. 

(49) U N,i t = t 0 b ( Xi s )U N,i s ds + hW N t (1) + h t 0 η N s (f )ds - [0,t]×R+ U N,i s-1 {z≤f ( Xi s-)} π i (ds, dz) + R N,2,i t , for all 1 ≤ i ≤ n, where (50) 
R N,2,i t = t 0 1 0 b ( Xi s + ϑ √ N U N,i s ) -b ( Xi s )dϑ U N,i s ds - h √ N [0,t]×R+ 1 {z≤f ( Xi s-)} πi (ds, dz) - √ N [0,t]×R+ X N,i s- 1 {z≤f (X N,i s-)} -1 {z≤f ( Xi s-)} π i (ds, dz).
We first show that (49) implies

(51) sup N E(sup s≤T U N s ) < ∞;
once (51) is shown, (b) follows immediately.

To prove (51), notice that (49) implies

sup s≤T U N s ≤ b ∞ T 0 U N s ds + h n sup s≤T |W N s (1)| + h n T 0 |η N s (f )|ds + n i=1 [0,T ] ×R+ |U N,i s-|1 {z≤f ( Xi s-)} π i (ds, dz) + sup s≤T n i=1 |R N,2,i s |.
By ( 4), ( 52) sup

N E T 0 U N s ds ≤ nT C T .
Moreover, by Burkholder-Davis-Gundy's inequality for discontinuous martingales and ( 19) once more,

E sup s≤T |W N s (1)| 2 ≤ CE T 0 µ N s (f )ds ≤ C T , such that sup N E sup s≤T |W N s (1)| ≤ C T .
We also use the upper bound |η s (f )| ≤ η N s -3,α+1 f 3,α+1 and (44) to deal with the term hn T 0 |η N s (f )|ds. Moreover, since for all s ≤ T and for all 1

≤ i ≤ n, Xi s-≤ CT by (22) such that f ( Xi s-) ≤ f ( CT ), n i=1 E [0,T ] ×R+ |U N,i s-|1 {z≤f ( Xi s-)} π i (ds, dz) ≤ f ( CT )E T 0 |U N s |ds
which is treated using (52). Concerning the second term appearing in the decomposition of R N,2,i , using once more that f ( Xi s-) ≤ f ( CT ), for all s ≤ T, we have that

E| h √ N [0,T ]×R+ 1 {z≤f ( Xi s-)} πi (ds, dz)| ≤ T f ( CT )2h/ √ N .
Moreover, using the set G N T introduced in (20) above and the fact that sup s≤T |X N,i s | ≤ C T on G N T , we have the upper bound for the last term appearing in the decomposition of R N,2,i

sup t≤T | √ N [0,T ]×R+ X N,i s- 1 {z≤f (X N,i s-)} -1 {z≤f ( Xi s-)} π i (ds, dz)| ≤ C T √ N [0,T ]×R+ 1 {z≤f (X N,i s-)} -1 {z≤f ( Xi s-)} π i (ds, dz)+ 1 (G N T ) c sup s≤T |X N,i s | √ N [0,T ]×R+ [1 {z≤f (X N,i s-)} + 1 {z≤f ( CT )} ]π i (ds, dz).
The first line of the rhs is treated using (24), the second using the a priori estimates [START_REF] Schmutz | On a finite-size neuronal population equation[END_REF] and the deviation estimate on P((G N T ) c ). All in all this implies

n i=1 sup N E sup t≤T | √ N [0,t]×R+ X N,i s- 1 {z≤f (X N,i s-)} -1 {z≤f ( Xi s-)} π i (ds, dz)| ≤ C T < ∞,
and we have just finished the proof of (51).

We finish this step with the observation that sup t≤T |R N,2,i t | converges to 0 in probability, as N → ∞, for any 1 ≤ i ≤ n. We only need to consider

sup t≤T | √ N [0,t]×R+ X N,i s- 1 {z≤f (X N,i s-)} -1 {z≤f ( Xi s-)} π i (ds, dz)| ≤ √ N sup t≤T |X N,i t | Z N,i -Zi T V,[0,T ] ,
such that for any ε > 0, (53) P(sup

t≤T | √ N [0,t]×R+ X N,i s- 1 {z≤f (X N,i s-)} -1 {z≤f ( Xi s-)} π i (ds, dz)| ≥ ε) ≤ P( Z N,i -Zi T V,[0,T ] ≥ 1) ≤ E Z N,i -Zi T V,[0,T ] ≤ C T N -1/2 → 0
as N → ∞, where we have used once more (24).

Finally, (a) follows from the fact that (49) implies

U N S -U N S ≤ Cδ sup s≤T U N s + n sup s≤T |η s (f )| + n i=1 [S,S ]×R+ |U N,i s-|1 {z≤f ( Xi s-)} π i (ds, dz) + sup t≤T n i=1 |R N,2,i t | + hn|W N S (1) -W N S (1)|.
The first line of the rhs is treated using (51) and (44). To deal with the second line we use that 

E|W N S (1) -W N S (1)| 2 = E S S µ N s (f )ds ≤ δE sup s≤T f (X N,1 s ) = C T δ.
This concludes the proof of the fact that the sequence of laws of (U

N,i ) 1≤i≤n is tight in D(R + , R n ).
Step 2. As a consequence of the first step we obtain the weaker result that for all n ≥ 1, the sequence of laws of (U N,i ) 1≤i≤n is tight in D(R + , R) n . As a consequence, the sequence of laws of (U N,i ) i≥1 is tight in D(R + , R) N * .

Characterization of the limit

In this section we study the possible limits of the sequence of η N . Recall the definition of W in [START_REF] Joffe | Weak convergence of sequences of semimartingales with applications to multitype branching processes[END_REF]. We start with the following preliminary result.

Proposition 29. Grant Assumptions 1, 2 and 3. Then for any p > α + 1 2 , the sequence of processes

W N converges in D(R + , W -4,p 0 ) to W.
Proof. We have already proven the tightness of W N . To identify any possible limit, consider, for any ψ 1 , ψ 2 ∈ W 4,p 0 , the difference

< < < W N > > t (ψ 1 ), ψ 2 > - t 0 < g s , ψ 1 ψ 2 f > ds = t 0 < µ N s -g s , ψ 1 ψ 2 f > ds.
We have that

E| t 0 < µ N s -g s , ψ 1 ψ 2 f > ds| = 1 √ N E| t 0 < η N s , ψ 1 ψ 2 f > ds| → 0
as N → ∞, where this last convergence follows from Proposition 23 and Sobolev's embedding theorem. More precisely, since f ∈ C 3,α and

ψ 1 ∈ W 4,p 0 ⊂ C 3,p , we have ψ 1 ψ 2 f ∈ W 3,2p+α 0 such that | < η N s , ψ 1 ψ 2 f > | ≤ sup s≤t η N s 3,2p+α ψ 1 ψ 2 f 3,2p+α .
Moreover we have already shown that the maximal jump size of W N converges to 0 almost surely. Then the result follows from Rebolledo's central limit theorem for local martingales, following the lines of the proof of Prop. 5.3 in [START_REF] Chevallier | Fluctuations for mean-field interacting age-dependent Hawkes processes[END_REF].

Coming back to the decomposition of η N in (42), we see that we need to consider the joint convergence of S * W N and

• 0 µ N s-dW N s (1) 
since both martingales depend on the same underlying Poisson noise.

Proposition 30. Grant Assumptions 1, 2 and 3 and fix p > α + 1 2 . Then we have convergence in law in

D(R + , W -4,p 0 × W 4,p 0 ) of (S * W N , • 0 D * µ N s-dW N s (1) 
) to the limit process

(S * W, • 0 D * g s dW s (1)).
Proof. We have already shown the tightness of (S * W N ,

• 0 D * µ N s-dW N s (1)
), and we know that we have convergence in law W N → W. To prove the above convergence we first decompose

• 0 D * µ N s-dW N s (1) = • 0 D * g s dW N s (1) + R N,3 , where (54) R N,3 = • 0 D * (µ N s--g s )dW N s (1). 
Step 1. We show that

E[sup t≤T R N,3 t 2 -4,p ] → 0 as N → ∞. For that sake, let (ψ k ) k be an orthonormal basis of W 4,p 0 , composed of C ∞ c -functions. We have that sup t≤T R N,3 t 2 -4,p ≤ k sup t≤T t 0 (µ N s--g s )(ψ k )dW N s (1) 2 , 
such that

E sup t≤T R N,3 t 2 -4,p ≤ 4 k E T 0 µ N s (f )[(µ N s -g s )(ψ k )] 2 ds ≤ CE T 0 µ N s (f ) D * (µ N s -g s ) 2 -4,p ds. On G N T , we upper bound D * (µ N s -g s ) 2 -4,p ≤ C µ N s -g s 2 -3,p ≤ C µ N s -g s -3,p sup s≤T µ N s -3,p + g s -3,p
and use that on

G N T , sup s≤T µ N s (f ) µ N s -3,p + g s -3,p ≤ C T such that E sup t≤T R N,3 t 2 -4,p 1 G N T ≤ C T E T 0 µ N s -g s -3,p ds = C T √ N E T 0 η N s -3,p ds,
which converges to 0 as N → ∞ thanks to Proposition 15. Moreover, on (G N T ) c , we upper bound

D * (µ N s -g s ) 2 -4,p ≤ C µ N s -g s 2 -3,p ≤ C T (1 + µ N s 2 -3,p
). Using [START_REF] Robert | On the dynamics of random neuronal networks[END_REF], we have

µ N s 2 -3,p ≤ C 1 + N N T 2p .
Together with a similar bound for µ N s (f ), we obtain

E sup t≤T R N,3 t 2 -4,p 1 (G N T ) c ≤ C T e -(c2/2)N T → 0 as N → ∞.
As a consequence of this step, it suffices to prove the convergence in law

(S * W N , • 0 D * g s dW N s (1)) → (S * W, • 0 D * g s dW s (1)),
as N → ∞.

Step 2. We now replace the process D * g s serving as integrand by a process which is piecewise constant over time intervals of step-size ε > 0. We put g ε s := g δ(s) , δ(s) = kε for all kε ≤ s < (k + 1)ε, k ≥ 0, and let

M ε := • 0 D * (g ε s -g s )dW s (1).
Using similar arguments as in Step 1, we have

E sup s≤T M ε s 2 -4,p ≤ C k T 0 g s (f )[(g ε s -g s )(ψ k )] 2 ds ≤ C T T 0 g ε s -g s 2 -3,p ds.
Using Lemma 34 stated in the Appendix below, this last expression is upper bounded by C T ε 2 .

We introduce similarly

M N,ε := • 0 D * (g ε s -g s )dW N s (1) 
and have, since sup

N E sup s≤T µ N s (f ) ≤ C T , E sup s≤T M N,ε s 2 -4,p ≤ C k E T 0 µ N s (f )[(g ε s -g s )(ψ k )] 2 ds ≤ C T T 0 g ε s -g s 2 -3,p ds ≤ C T ε 2 ,
where the constant C T does not depend on N. As a consequence of this step, it suffices to prove the joint convergence of

(S * W N , • 0 D * g ε s dW N s (1)) → S * W, • 0 D * g ε s dW s (1)),
as N → ∞, for each fixed ε > 0.

Step 3. To do so, it suffices to prove convergence of the marginal laws

(55) ((S * W N t1 , t1 0 D * g ε s dW N s (1)), . . . , (S * W N t k , t k 0 D * g ε s dW N s (1)))
to the associated limit

(56) ((S * W t1 , t1 0 D * g ε s dW s (1)), . . . , (S * W t k , t k 0 D * g ε s dW s (1))), for any k ≥ 1, t 1 ≤ t 2 ≤ . . . ≤ t k ≤ T. Note that we can rewrite t 0 D * g ε s dW N s (1) = k:kε≤t D * g ε kε W N (k+1)ε∧t (1) -W N kε (1) 
.

Since we have convergence in law in D(R + , R) of W N (1) to the limit process W (1) which is continuous, the above expression converges in law to

k:kε≤t D * g ε kε W (k+1)ε∧t (1) -W kε (1) = t 0 D * g ε s dW s (1),
such that the convergence in law of (55) to ( 56) is indeed implied. Finally, letting ε → 0, the convergence of the finite dimensional distributions

((S * W N t1 , t1 0 D * g s dW N s (1)), . . . , (S * W N t k , t k 0 D * g s dW N s (1))) 
to the associated limit

((S * W t1 , t1 0 D * g s dW s (1)), . . . , (S * W t k , t k 0 D * g s dW s (1)))
follows, and this concludes the proof.

We close this section with the following partial result.

Theorem 31. For any fixed n ≥ 1, under Assumptions 1, 2 and 3 and for any p > α + 1 2 , any limit

(( Ū i ) 1≤i≤n , η) of ((U N,i ) 1≤i≤n , η N ) is solution in D(R + , R n ) × C(R + , W -4,p 0
) of the following system of stochastic differential equations (57)

Ū i t = t 0 b ( Xi s ) Ū i s ds + h t 0 ηs (f )ds - [0,t]×R+ Ū i s-1 {z≤f ( Xi s-)} π i (ds, dz) + hW t (1), t ≥ 0, 1 ≤ i ≤ n,
and for any ϕ ∈ W 5,p 0 ,

(58) ηt (ϕ) = η0 (ϕ) + t 0 ηs (L s ϕ)ds + h t 0 g s (ϕ )η s (f )ds + W t (Sϕ) + h t 0 g s (ϕ )dW s (1), t ≥ 0.
Remark 32. We have stated the decomposition (42) in W -4,p 0 . However, the operator L s appearing in (58) above reduces regularity by one, such that test functions ϕ ∈ W 4,p 0 are reduced to test functions in W 3,p+α 0 . Yet, we have proven tightness of (η N ) N only in W -4,p 0 , such that we have to state the above decomposition in W -5,p 0 , although the limit process η takes values in the smaller space W 4,p 0 . This is analogous to Remark 5.7 in [START_REF] Chevallier | Fluctuations for mean-field interacting age-dependent Hawkes processes[END_REF].

Proof. Step 1. We have already proven the tightness of the sequence of laws of (U N,i ) 1≤i≤n . To characterize the dependencies between Ū i , Xi and π i in the limit, we now consider the càdlàg process

Y N := (U N,i , Xi , [0,•] ×R+ U N,i s-1 {z≤f ( Xi s-)} π i (ds, dz)) 1≤i≤n
which belongs to D(R + , R 3n ).

Using analogous arguments as those in the proof of Theorem 28 allows to deduce the tightness of the sequence of processes Y N in D(R + , R 3n ). Details of the proof are omitted.

Step 2. Due to the previous step and the continuity of any limit law of (η N , W N ,

• 0 D * g s dW N s (1)), we know that   U N,i , Xi , [0,•] ×R+ U N,i s-1 {z≤f ( Xi s-)} π i (ds, dz) 1≤i≤n , η N , W N , • 0 D * g s dW N s (1)   is tight in D(R + , R 3n × W -4,p 0 × W -4,p 0 × W -4,p 0 
). In what follows we assume without loss of generality that the above sequence converges to some limit

( Ū i , Xi , V i ) 1≤i≤n , η, W, • 0 D * g s dW s (1) ,
where, to simplify notation, we use the same letter Xi to denote the limit process as well as the one defining the second coordinates of Y N .

To identify the limit, let (ψ k ) k be an orthonormal basis of W 4,p 0 , composed of C ∞ c -functions. Define for any k the functional

F k : D(R + , W -4,p 0 × W -4,p 0 × W -4,p 0 ) → D(R + , R) by F k (f 1 , f 2 , f 3 ) t =< f 1 t , ψ k > -< f 1 0 , ψ k > - t 0 < f 1 s , L s ψ k > ds -h t 0 < f 1 s , f >< g s , ψ k > ds -< f 2 t , Sψ k > -h < f 3 t , ψ k > and G : D(R + , R × R × W -4,p 0 × W -4,p 0 ) → D(R + , R) by G(g 1 , g 2 , f 1 , f 2 ) t = g 1 t -g 1 0 - t 0 b (g 2 s )g 1 s ds -h t 0 < f 1 s , f > ds -h < f 2 t , 1 > .
Then the system (57)-( 58) is equivalent to

F k (η, W, h • 0 D * g s dW s (1)) = 0, G( Ū i , Xi , η, W ) = - [0,•]×R+ Ū i s-1 {z≤f ( Xi s-)} π i (ds, dz),
for all k ≥ 1 and for all i ≥ 1.

Step 2.1. In this step we show that F k (η, W, h

• 0 D * g s dW s (1)) = 0. We first prove that F k is continuous at every point (f 1 , f 2 , f 3 ) ∈ C(R + , W -4,p 0 × W -4,p 0 × W -4,p 0 
). Indeed, the continuity of

f 1 → t →< f 1 t , ψ k > -< f 1 0 , ψ k > - t 0 < f 1 s , L s ψ k > ds -h t 0 < f 1 s , f >< g s , ψ k > ds at every point f 1 ∈ C(R + , W -4,p 0 
) follows as in the proof of Theorem 5.6 of [START_REF] Chevallier | Fluctuations for mean-field interacting age-dependent Hawkes processes[END_REF]. Similarly, the functionals f 2 → t →< f 2 t , Sψ k > and f 3 → t →< f 3 t , ψ k > are continuous as well at every point f 2 and f 3 belonging to C(R + , W -4,p 0 ).

Step 2.2. Before proceeding further, we rewrite (42) as follows (59)

η N t = η N 0 + t 0 L * s η N s ds + S * W N t + h t 0 D * g s dW N s (1) + h t 0 η N s (f )D * g s ds + R N,4 t ,
where, recalling (54

), R N,4 t = R N,1 t + hR N,3 t + h • 0 η N s (f )D * (µ N s -g s )
ds has already been shown to converge to 0 in W -4,p 0 ; that is, lim

N →∞ E sup t≤T R N,4 t -4,p = 0.
Writing for short M N =

• 0 D * g s dW N s (1), (59) implies that for all t ≥ 0,

F k (η N , W N , M N )(t) = R N,4 t (ψ k ) and E(sup t≤T |R N,4 t |(ψ k )| 2 ) → 0 as N → ∞. Therefore, we have convergence in probability, sup t≤T |F k (η N , W N , M N )(t)| → 0.
On the other hand, by the continuous mapping theorem, we have convergence in law

F k (η N , W N , M N ) → F k (η, W,
• 0 D * g s dW s (1)); this allows to identify the limit which has to equal the zero-process.

Step 2.3. We now turn to the study of G. Firstly, G is continuous at every point (g

1 , g 2 , f 1 , f 2 ) ∈ D(R + , R 2 ) × C(R + , W -4,p 0 × W -4,p 0 
). Indeed we only need to check the continuity of

(g 1 , g 2 ) → t → t 0 b (g 2 s )g 1 s ds
at every point (g 1 , g 2 ) ∈ D(R + , R 2 ), which follows from the basic properties of the Skorokhod topology. From (49) we have that

G(U N,i , Xi , η N , W N ) = R N,2,i - [0,•]×R+ U N,i s-1 {z≤f ( Xi s-)} π i (ds, dz),
and by (53), R N,2,i converges to 0 in probability, for the uniform convergence on finite time intervals, for any fixed i. This implies that

G( Ū i , Xi , η, W ) = -V i .
It remains to identify

(60) V i = [0,•]×R+ Ū i s-1 {z≤f ( Xi s-)} π i (ds, dz), for each 1 ≤ i ≤ n.
In what follows, we write for short V N,i = [0,•]×R+ U N,i s-1 {z≤f ( Xi s-)} π i (ds, dz). We already know that (U N,i , V N,i , Xi ) 1≤i≤n converges in law to ( Ū i , V i , Xi ) 1≤i≤n , where once more, by abuse of notation, we use the same letter Xi for the limit process of the third coordinate. Moreover, (V N,i , Xi ) 1≤i≤n is a semimartingale taking values in R 2n with characteristics

B N,i = • 0 U N,i s f ( Xi s )ds, • 0 [b( Xi s ) -Xi s f ( Xi s ) + hg s (f )]ds , 1 ≤ i ≤ n, C N = 0, ν N (dt, dv, dx) = n i=1 f ( Xi t-)dt   n j=1,j =i δ (0,0) (dv j , dx j ) ⊗ δ (-U N,i t-,-Xi t-) (dv i , dx i )   .
Clearly we have weak convergence (V N,i , Xi , B N,i ) 1≤i≤n → ( V i , Xi , Bi ) 1≤i≤n where Bi =

• 0 Ū i s f ( Xi s )ds, • 0 [b( Xi s ) -Xi s f ( Xi s ) + hg s (f )]ds ,
by the continuity properties of the Skorokhod topology and since (U N,i , Xi ) 1≤i≤n → ( Ū i , Xi ) 1≤i≤n .

It is shown analogously that we have weak convergence g * ν N → g * ν, for any continuous and bounded test function g, where

ν = n i=1 f ( Xi t-)dt   n j=1,j =i δ (0,0) (dv j , dx j ) ⊗ δ (-Ū i t-,-Xi t-) (dv i , dx i )   .
Then 

and V i t = [0,•]×R+ Ū i s-1 {z≤f ( Xi s-)} π i (ds, dz
). This gives the desired identity (60) and thus finishes our proof.

We close this section with the Proof of Theorem 4. Theorem 25 implies the tightness of (η N ) and Theorem 28 the tightness of (U N,i ) 1≤i≤n for any fixed n ≥ 1. Moreover, Theorem 31 implies that any limit (( Ū i ) 1≤i≤n , η) of ((U N,i ) 1≤i≤n , η N ) is solution of the system of differential equations (57)-(58). Finally, under the additional assumption p > 2α+ 1 2 , Theorem 10 implies pathwise uniqueness for this limit system, and the Yamada-Watanabe theorem allows to deduce weak uniqueness and thus the uniqueness of the limit law implying the weak convergence of ((U

N,i ) 1≤i≤n , η N ) in D(R + , R n ) × D(R + , W -4,p 0 
). This implies the weaker convergence of ((U N,i ) 1≤i≤n , η N ) in D(R + , R) n × D(R + , W -4,p 0 ) and thus the convergence of the infinite sequence ((U

N,i ) i≥1 , η N ) in D(R + , R) N * × D(R + , W -4,p 0 ).

Appendix

Useful results on weighted Sobolev spaces.

In what follows we collect the most important facts about weighted Sobolev spaces, see [START_REF] Adams | Pure and Applied Mathematics[END_REF] and also Section 2.1 of [START_REF] Fernandez | A Hilbertian approach for fluctuations on the McKean-Vlasov model[END_REF]. First of all, obviously, for all k ≤ k ,

(61) • k,p ≤ • k ,p , implying that • -k ,p ≤ • -k,p .
We also have that for all p ≤ p ,

• k,p ≤ C • k,p , implying that • -k,p ≤ C • -k,p .
Finally, C k,α ⊂ W k,p 0 for any p > α + 1 2 . In particular, constant functions belong to W k,p 0 for any p > 1 2 . The following embeddings have been used throughout this paper.

(1) Sobolev embedding. There exists a constant C such that for all m ≥ 1, k ≥ 0 and p ≥ 0, (62) ψ C k,p ≤ C ψ m+k,p .

(2) Maurin's theorem. The embedding W m+k,p 0 → W k,p+p 0 is of Hilbert-Schmidt type for any m ≥ 1, k ≥ 0 and p ≥ 0, p > 1/2. This implies that the embedding is compact and that there exists a constant C such that

ψ k,p+p ≤ C ψ k+m,p . (3) The dual embedding W -k,p+p 0 → W -(k+m),p 0 is of Hilbert-Schmidt type.
We have also used several times that for any k, p ≥ 0, there exists an orthonormal basis composed of

C ∞ c -functions (ψ i ) i of W k,p 0 such that for any element w ∈ W -k,p 0 , w 2 -k,p = i < w, ψ i > 2 .
We now give the proof of some of the results stated in Lemma 6. It follows the arguments given in the proof of Lemma 4.1 and Lemma 4.2 in [START_REF] Chevallier | Fluctuations for mean-field interacting age-dependent Hawkes processes[END_REF].

Proof of Lemma 6. We quickly show that S is a continuous mapping from W k,p 0 to itself, following the arguments of [START_REF] Chevallier | Fluctuations for mean-field interacting age-dependent Hawkes processes[END_REF]. Since (Sϕ)(x) = ϕ(0) -ϕ(x), we have that Then for all t ≥ 0, all i = 1, . . . , N ,

Sϕ 2 k,p ≤ 2 ∞ 0 | ϕ(0)| 2 1 + |x| 2p dx + 2 ϕ 2 k,p = C| ϕ(0)| 2 + 2 ϕ 2 k,p , where C = 2 ∞ 0 1 1+|x| 2p dx < ∞ since p > 1/
X N,i t ≤ X N,i 0 + 3 XN 0 + 4 bt + 4hN N t , (63) 1 N 
N j=1 t 0 ∞ 0 (h + X N,j s-)1 {z≤f (X N,j s-)} π j (ds, dz) ≤ 3 XN 0 + 3 bt + 4hN N t , (64) 
where

N N t := N -1 N j=1 [0,t] ×R+ 1 {z≤f (2h)} π j (ds, dz) and where b > 0 is such that b(x) ≤ b for all x ≥ 0.
Proof. For the convenience of the reader we briefly sketch how to adapt the proof of [START_REF] Fournier | On a toy model of interacting neurons[END_REF] to the present frame. Taking the (empirical) mean of (2) and using that b is upper bounded by a positive constant, say b, we find

(65) XN t ≤ XN 0 + bt + 1 N N i=1 [0,t] ×R+ h N -1 N -X N,i s-1 {z≤f (X N,i s-)} π i (ds, dz) which implies 1 N N i=1 [0,t] ×R+ (X N,i s--h)1 {z≤f (X N,i s-)} π i (ds, dz) ≤ XN 0 + bt.
Using that x -h ≥ (x + h)/3 -(4/3)h1 {x≤2h} for all x ≥ 0 and that f is non-decreasing, we deduce that

1 N N i=1 [0,t] ×R+ (h + X N,i s-)1 {z≤f (X N,i s-)} π i (ds, dz) ≤ 3 XN 0 + 3 bt + 4h N N i=1 [0,t] ×R+ 1 {X N,i s-≤2h} 1 {z≤f (X N,i s-)} π i (ds, dz) ≤ 3 XN 0 + 3 bt + 4h N N i=1 [0,t] ×R+ 1 {z≤f (2h)} π i (ds, dz). Now, for all 1 ≤ i ≤ N , starting from (2), X N,i t ≤ X N,i 0 + bt + h N N j=1 [0,t] ×R+ 1 {z≤f (X N,j s-)} π j (ds, dz) ≤ X N,i 0 + 3 XN 0 + 4 bt + 4hN N t ,
which concludes.

The proof of ( 19) then follows from the fact that N N t = U/N where U ∼ P oiss(N tf (2h)) and that g 0 is of compact support.

We finally give the Proof of (22). We adapt the proof of Proposition 14 of [START_REF] Fournier | On a toy model of interacting neurons[END_REF] to the present frame. Since f is nondecreasing, we have that f

(x)(h -x) = -xf (x)/2 + f (x)(h -x/2) ≤ -xf (x)/2 + f (2h)h for all x ≥ 0.
Taking expectation in (3), we therefore obtain that

E( Xi t ) ≤ E( Xi 0 ) + bt + t 0 E(f ( Xi s )(h -Xi ))ds ≤ E( Xi 0 ) + [ b + f (2h)h]t - 1 2 t 0 E( Xi s f ( Xi s ))ds. Since E( Xi t ) ≥ 0, this implies t 0 E( Xi s f ( Xi s ))ds ≤ 2E( Xi 0 ) + 2[ b + f (2h)h]t.
We conclude using that f (x) ≤ C(1 + xf (x)) and observing that Xi

t ≤ Xi 0 + bt + h t 0 E(f ( Xi s ))ds ≤ Xi 0 + bt + h t 0 E(C(1 + Xi s f ( Xi s )))ds.
This finishes the proof of Lemma 8.

7.3. Useful properties of the limit process.

Lemma 34. For any p ≥ 0, g t is continuous in W -2,p 0 , and for all t, t + h ≤ T, we have g t+hg t -2,p ≤ C T h.

Proof. We have for all ψ ∈ W 2,p 0 ,

g t+h (ψ) -g t (ψ) = E[ψ( X1 t+h ) -ψ( X1 t )] = t+h t EL s ψ( X1 s )ds.
Using the Sobolev embedding theorem and Lemma 6, since | Xs | ≤ CT for all s ≤ T,

|L s ψ( Xs )| ≤ L s ψ C 0,p+α (1 + | Xs | p+α ) ≤ C T L s ψ 1,p+α ≤ C T ψ 2,p implying that |g t+h (ψ) -g t (ψ)| ≤ C T h ψ 2,p ,
which concludes the proof.

We continue this section with the Proof of Proposition 11.

Step 1. Firstly, since g 0 is of compact support, g t is of compact support as well, for any fixed t ≥ 0, due to the a priori upper bound (22).

Moreover, we obtain similarly to Lemma 24 in [START_REF] Fournier | On a toy model of interacting neurons[END_REF] the representation (66) Xi t = ϕ 0,t ( Xi 0 )1 {τ t=0} + ϕ τ t,t (0)1 {τ t>0} , where τ t = sup{s ≤ t : ∆ Xi s = 0} = t -Li t is the last jump time of neuron i, before time t. Here we put sup ∅ := 0 if no such jump has happened. Using similar arguments as those in Proposition 25 in [START_REF] Fournier | On a toy model of interacting neurons[END_REF], the law of τ t is given by

L(τ t )(ds) = E(e -t 0 f (ϕ 0,u (X i 0 ))du )δ 0 (ds) + g s (f )e -t s f (ϕ s,u (0))du ds.
Since Xi 0 ∼ g 0 (x)dx, clearly Xi 0 > 0 almost surely, which implies that ϕ 0,t ( Xi 0 ) > 0 almost surely as well, by the properties of the deterministic flow. Since P(τ t = 0) > 0, this implies, using (66), that g t (f ) ≥ E(f (ϕ 0,t ( Xi 0 ))1 {τ t=0} ) > 0 for all t ≥ 0 since f (x) > 0 for all x > 0. Having this established, using a change of variables relying on the regularity of the initial law g 0 for the first term of (66) and a change of variables relying on the density of τ t on (0, t) within the second term of (66), we deduce the explicit form (67) g t (y) = g t (f ) b(0) + hg t (f ) e -t β t (y) (b (ϕ β t (y),s (0)))+f (ϕ β t (y),s (0)))ds 1 {y<ϕ 0,t (0)} + e -t 0 (b (ϕ -1 s,t (y))+f (ϕ -1 s,t (y)))ds g 0 • ϕ -1 0,t (y)1 {y≥ϕ 0,t (0)} , where ϕ -1 0,t (y) denotes the inverse flow satisfying ϕ -1 0,t (ϕ 0,t (y)) = y and where ϕ -1 s,t (y) = ϕ 0,s • ϕ -1 0,t (y). In the above formula, β t (y) denotes the unique real in ]0, t] satisfying (68) ϕ β t (y),t (0) = y, for any y < ϕ 0,t (0).

Step 2. Standard arguments show that

∂ϕ s,t (0) ∂s = -(hg s (f ) + b(0))e t s b (ϕ s,u (0))du < 0 since g s (f ) > 0 and b(0) ≥ 0. Thus, the function [0, t] s → ϕ s,t ( 
0) is strictly decreasing. The function s → g s (f ) being continuous, the function [0, t] s → ϕ s,t (0) also differentiable. As a consequence, its inverse function β t is differentiable as well.

Therefore, for any fixed t > 0, the Lebesgue density g t (y) is differentiable at every point y = ϕ 0,t (0). The fact that s → ∞ 0

(1 + x p )|g s (x)|dx is locally bounded follows easily from the above explicit representation.

We finally give the Proof of Proposition 13.

Step 1. Before starting the proof, let us first mention that a simple change of variables formula implies that for any fixed s < t, the mapping ψ → [x → ψ • ϕ s,t (x)] is continuous from W 6,p 0 → W 6,p 0 for any p ≥ 0, where we recall that ϕ s,t (x) = x + t s b(ϕ s,u (x))du + h t s g u (f )du. This follows from the fact that b is bounded by a positive constant and that all derivatives of b up to order 6 are bounded. Moreover we have ψ • ϕ s,t 6,p ≤ C T ψ 6,p , for all s ≤ t ≤ T.

Step 2. Introduce now for any 0 ≤ s ≤ t and x ≥ 0 the process that is, Ȳs,t (x) follows the same dynamic as Y s,t (x), but jumps occur at constant rate 1. We still have the upper bound (70) Ȳs,t (x) ≤ x + CT , for all s ≤ t ≤ T.

Let us write for short

Π t = [0,t]×R+ 1 {z≤1} π 1 (du, dz),
that is, (Π t ) t is the Poisson process having intensity 1 governing the jumps of Ȳ . Write T 1 < T 2 < . . . < T n < . . . for the successive jumps of (Π t ) t . Then Girsanov's theorem for jump processes, see [START_REF] Jacod | Multivariate point processes: predictable projection, Radon-Nikodym derivates, representation of martingales[END_REF], implies that We notice that for all t < T 1 (s) := inf{T n : T n > s}, Ȳs,t (x) = ϕ s,t (x). Therefore, P s,t ψ(x) = ψ(ϕ s,t (x))e -t s (f (ϕ s,u (x))-1)du P(t < T 1 (s))

+ e t-s E f (ϕ s,T1(s) (x))e -T 1 (s) s f (ϕ s,u (x))du Q 1 T1(s),t (ψ); t ≥ T 1 (s) , where Q 1 T1(s),t (ψ) = ψ( Ȳs,t (x))

n:Tn∈]T1(s),t] f ( Ȳs,Tn-(x))e -t T 1 (s) f ( Ȳs,u(x))du .

Using the strong Markov property at time T 1 (s) and the fact that at time T 1 (s), Ȳs,T1(s) (x) = 0 is reset to 0 and thus forgets its starting position x at this time, we obtain E f (ϕ s,T1(s) (x))e -T 1 (s) s f (ϕ s,u (x))du Q , having a support that depends on s and t.

Step 3. We now investigate the dependence on x of the first six derivatives of P s,t ψ(x) with respect to x. Firstly, recalling (71) and observing that t-s 0 e -v f (ϕ s,s+v (x))e -s+v s f (ϕ s,u (x))du ≤ 1, P s,t ψ 0,p ≤ C t ψ 1,p .

Let us now study the successive derivatives of P 1 s,t ψ. We have Therefore, e -t s f (ϕ(s,u(x))du ≤ e -ce -λT (t-s)x 1 {x≥e λT } + 1 {x<e λT } , implying sup s,t (x)| = 0 such that P 2 s,t ψ 6,p ≤ C t ψ 6,p and even x γ P 2 s,t ψ 6,p ≤ C t (γ) ψ 6,p , where x γ P 2 s,t ψ denotes the function x → x γ P 2 s,t ψ(x). This concludes the proof.

∂ ∂x P 1 s,t ψ(x) = ψ (ϕ s,t (x) 
7.4. Some hints on the proof of [START_REF] De Masi | Hydrodynamic limit for interacting neurons[END_REF]. The proof of the quantified propagation of chaos result [START_REF] De Masi | Hydrodynamic limit for interacting neurons[END_REF] relies mainly on the introduction of a convenient distance function H(x) that allows to compare neurons in the finite system and the associated ones in the limit system. As in [START_REF] Fournier | On a toy model of interacting neurons[END_REF], we take H(x) = f (x) + arctan(x). The main goal of this distance function is to be able to deal with the big jump terms (the reset terms -xf (x) appearing when a neuron having potential value x spikes-these terms are not Lipschitz since f is of polynomial growth) and to control both the usual L 1 -distance |x -y| and the distance |f (x) -f (y)| which naturally appears when controlling the asynchronous jumps of two neurons, one having potential x and the other having potential y.

The function H(x) = f (x) + arctan(x) is a sort of Lyapunov-function in the sense that the following properties hold.

Proposition 35 (Proposition 18 of [START_REF] Fournier | On a toy model of interacting neurons[END_REF]). Grant Assumptions 1, 2 and 3. Then there exists a constant C such that for all x, y ∈ R + , we have Proof. We only have to check point (iii), all other points have already been proven in Proposition 18 of [START_REF] Fournier | On a toy model of interacting neurons[END_REF]. To do so, let y ≤ x such that the left hand side of (iii) is given by x y f (z)dz, which is once more controlled using (ii).

Once these properties fixed, Theorem 7 of [START_REF] Fournier | On a toy model of interacting neurons[END_REF] gives that from which it is easy to conclude that (7) holds as well.

0 )

 0 p ) < ∞ and t → η N t belongs to D(R + , W -3,p almost surely. In particular,

4 . 5

 45 page 356]. More precisely, writing for short U N = (U N,1 , . . . , U N,n ) and u = n i=1 |u i | for the L 1 -norm on R n , we shall prove that (a) for all T > 0, all ε > 0, lim δ↓0 lim sup N →∞ sup (S,S )∈A δ,T P( U N S -U N S > ε) = 0, where A δ,T is the set of all pairs of stopping times (S, S ) such that 0 ≤ S ≤ S ≤ S + δ ≤ T a.s., (b) for all T > 0, lim K↑∞ sup N P(sup t∈[0,T ] U N t ≥ K) = 0. To show (b), we start with the decomposition

Finally to deal with

  sup t≤T |R N,2,i t |, the first term appearing in the decomposition of R N,2,i is upper bounded by b ∞ N -1/2 T 0 |U N,i s |ds, having expectation bounded by C T / √ N .

|

  |1 {z≤f ( Xi s-)} π i (ds, dz) ≤ f ( CT )E converges to 0 in probability. Finally,

2 . 7 . 2 .

 272 The conclusion then follows from |ϕ(0)| ≤ ϕ C 0,p ≤ C ϕ k,p for any k ≥ 1, by the Sobolev embedding theorem. The other points of the lemma follow similarly. Proof of Lemma 8. A straightforward adaptation of [13, Prop.15] yields Proposition 33. Grant Assumptions 1 and 2.

  f ) + b( Ȳs,u (x))) du -]s,t]×R+ Y s,u-(x)1 {z≤1} π 1 (du, dz);

P

  s,t ψ(x) = Eψ(Y s,t (x)) = E   ψ( Ȳs,t (x)) n:Tn∈]s,t] f ( Ȳs,Tn-(x))e -t s [f ( Ȳs,u(x))-1]du   .

  )e t s b (ϕ s,u (x))du -ψ(ϕ s,t (x))( t s f (ϕ s,u (x))e u s b (ϕ s,r (x))dr ) e -t s f (ϕ s,u (x))du .Since by Step 1, ψ • ϕ s,t 1,p ≤ C T ψ 1,p , we only have to investigate the second term of the above expression. We use the following facts. The function f is non-decreasing and we have f (x) ≤ C(1 + x α ), f (x) ≥ cx1 {x≥1} by convexity, since f (0) = 0. Moreover, b(x) ≥ -λx implies that for all s ≤ u ≤ t ≤ T, ϕ s,u (x) ≥ e -λT x such that f (ϕ s,u (x)) ≥ f (e -λT x) ≥ ce -λT x1 {x≥e λT } .

6 b

 6 s,u (x))|e u s b (ϕ s,r (x))dr du e -t s f (ϕ s,u (x))du = C T < ∞ and thus P 1 s,t ψ 1,p ≤ C T ψ 1,p . Similar arguments give P 1 s,t ψ 6,p ≤ C T ψ 6,p .Finally, the same arguments as above give that for all s ≤ t,x → t-s 0 e -v f (ϕ s,s+v (x))e -s+v s (f (ϕ s,u (x))du =: F s,t (x) ∈ Cand for all γ > 0 and all 0 ≤ k ≤ 6, lim x→∞ x γ |F (k)

( 0 )

 0 |H (x)| ≤ CH (x), (i) x + H (x) ≤ C(1 + f (x)), (ii) |x -y| + |H (x) -H (y)| + |f (x) -f (y)| ≤ C|H(x) -H(y)|, (iii) sign(x -y)(b(x)H (x) -b(y)H (y)) ≤ C|H(x) -H(y)|, (iv) -(f (x) ∧ f (y))|H(x) -H(y)| + |f (x) -f (y)|(H(x) ∧ H(y) -|H(x) -H(y)|) ≤ C|H(x) -H(y)|.

b 1 + x 2 -b(y) 1 + y 2 := T 1 + T 2 .

 121212 (x)f (x) -b(y)f (y) + b(x) Since b(x)/1 + x 2 is Lipschitz by the properties of the function b, clearly |T 2 | ≤ C|x -y| ≤ C| H(x) -H(y)| by item (ii). Moreover, T 1 = x y b (z)f (z)dz + x y b(z)f (z)dz =: T 11 + T 12 . Let us start dealing with T 12 . Since f is positive and b is upper bounded by a positive constant b, we have that b(z)f (z) ≤ bf (z) ≤ C(1 + f (z)) ≤ C(1 + H (z)) which is then controlled thanks to item (ii). Moreover, |b (z)f (z)| ≤ Cf (z) such that |T 11 | ≤ C

  Jacod and Shiryaev [15, Theorem 2.4 page 528] implies that necessarily ( V i , Xi ) 1≤i≤n is a semimartingale with characteristics ( B, 0, ν). Finally, the representation theorem [15, Theorem III.2.26 page 157] implies that there exist n independent Poisson random measures which, by abuse of notation, we still denote π i (ds, dz), having Lebesgue intensity, such that

		t		t			
	Xi t = Xi 0 +	0	b( Xi s )ds +	0	hg s (f )ds -	[0,•]×R+	Xi s-1 {z≤f ( Xi s-)} π i (ds, dz)

  Summarizing, we haveP s,t ψ(x) = ψ(ϕ s,t (x))e -t s f (ϕ s,u (x))du + e t-s |Q 2 s,v,t (ψ)| ≤ C t ψ 1,p .Clearly, ψ ∈ C 6 implies that P s,t ψ ∈ C 6 as well, since f ∈ C 6 . It is also clear at this stage that ψ ∈ C 6

			t-s	e -v f (ϕ s,s+v (x))e -s+v s	f (ϕ s,u (x))du Q 2 s,v,t (ψ)dv
			0	
	:= P 1 s,t ψ(x) + P 2 s,t ψ(x),		
	where, using (70),			
	(71)	sup		
		v≤t-s		
	implies P 1 s,t ψ ∈ C 6 c				c
		1 T1(s),t (ψ); t ≥ T 1 (s)
		=	t-s	e -v f (ϕ s,s+v (x))e -s+v s	f (ϕ s,u (x))du Q 2 s,v,t (ψ)dv,
		0		
	where			
				
	Q 2 s,v,t (ψ) = E	 ψ( Ȳs+v,t (0))		

n:Tn∈]s+v,t] f ( Ȳs+v,Tn-(0))e -t s+v f ( Ȳs+v,u(0))du   .
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