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FLUCTUATIONS FOR MEAN FIELD LIMITS OF INTERACTING SYSTEMS OF

SPIKING NEURONS

EVA LÖCHERBACH

Abstract. We consider a system of N neurons, each spiking randomly with rate depending on its
membrane potential. When a neuron spikes, its potential is reset to 0 and all other neurons receive

an additional amount h/N of potential, where h > 0 is some fixed parameter. In between successive

spikes, each neuron’s potential follows a deterministic flow with drift b expressing both the attraction
to an equilibrium potential and some leakage factors. While the propagation of chaos of the system,

as N → ∞, to a limit nonlinear jumping stochastic differential equation has already been established

in a series of papers, see [7], [13], [17], the present paper is devoted to the associated central limit

theorem. More precisely we study the measure valued process of fluctuations at scale N−1/2 of

the empirical measures of the membrane potentials, centered around the associated limit. We show

that this fluctuation process, interpreted as càdlàg process taking values in a suitable weighted
Sobolev space, converges in law to a limit process characterized by a system of stochastic differential

equations driven by Gaussian white noise. We complete this picture by studying the fluctuations, at

scale N−1/2, of the membrane potential processes around their associated limit quantities, giving rise
to a mesoscopic approximation of the membrane potentials that take into account the correlations

within the finite system.
Keywords: Convergence of fluctuations, weighted Sobolev spaces, systems of interacting neu-

rons, Piecewise deterministic Markov processes, Mean field interactions.

AMS Classification 2010: 60G55; 60F05; 60G57; 92B20

1. Introduction

In the present paper we study the fluctuations for the mean field limits of systems of interacting
and spiking neurons as the number of neurons tends to infinity. For any fixed size N, the system is
characterized by the vector of potential values of the N neurons, XN = (XN

t )t≥0. Here, for any time

t ≥ 0, XN
t = (XN,1

t , . . . , XN,N
t ) and XN,i

t ≥ 0 denotes the membrane potential of neuron i at time t.
The process XN is a Markov process having generator LN given by

(1) LNϕ(x) =

N∑
i=1

b(xi)∂xiϕ(x) +

N∑
i=1

f(xi)

ϕ(x+
∑
j 6=i

h

N
ej − xiei)− ϕ(x)

 ,

for any smooth test function ϕ. In the above equation, x = (x1, . . . , xN ) ∈ RN+ , and ei, 1 ≤ i ≤ N,

denotes the i−th unit vector in RN . h > 0 is a positive constant, the synaptic weight, and b : R+ → R,
b(0) ≥ 0, is the drift function defining the deterministic evolution of the membrane potential in between
successive spikes of the system: the attraction to an equilibrium potential value right after the spike
and some general leakage phenomena. The function f : R+ → R+ is the jump rate function. Since
h > 0, we are working in the purely excitatory case, such that all membrane potentials take values in
R+.

The above system of interacting neurons (or slight variations of it) and its mean field limits have
been studied in a series of papers, starting with [7], [13] and [18], followed by [5]–[6] which are
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devoted to the longtime behavior of the associated nonlinear limit process. Spatially structured
versions of these convergence results have moreover been obtained in [8] and [4]. All these papers
establish the propagation of chaos property implying that, in the limit model, different neurons are
independent. The present paper completes this study by presenting the associated central limit
theorem. In particular we will be able to present a mesoscopic approximation for each neuron’s
potential that takes care of the correlations between different neurons within finite, but large, systems,
giving a precise form of the factor of common noise.

Up to our knowledge, this is the first time the precise fluctuations for such systems of interacting
and spiking neurons are studied. Let us mention however the recent paper [19] proposing an adhoc
mesoscopic model to describe finite size neuronal population equations, taking into account the finite
size fluctuations. While the model proposed in [19], which is based on [20], is shown to give an
accurate numerical approximation to the dynamics of finite-size networks of spiking neurons, this
model is however not a precise extension of the original model around its large population limit, in
the sense of a precise limit theorem.

Finally the two recent papers [9] and [10] shed a different light on this topic, by studying a related
problem in which the spiking neuron distributes a centered random synaptic weight to its postsynaptic
partners, which is renormalized by 1/

√
N. In this way this model automatically leads to the study

of fluctuations, the associated limit process is close to the one found in the present paper, but with
the notable difference that it is driven by a single Brownian motion and that the fluctuations of the
spiking rate do not have to be taken into account.

1.1. The model. To introduce the precise model, consider a family of i.i.d. Poisson measures
(πi(ds, dz))i≥1 on R+ × R+ having intensity measure dsdz each, as well as an i.i.d. family (Xi

0)i≥1

of R+-valued random variables, independent of the Poisson measures, distributed according to some
probability measure g0 on R. Then we may represent each neuron’s potential as

(2) XN,i
t = Xi

0 +

∫ t

0

b(XN,i
s )ds+

h

N

N∑
j=1,j 6=i

∫
[0,t]×R+

1{z≤f(XN,js− )}π
j(ds, dz)

−
∫

[0,t]×R+

XN,i
s− 1{z≤f(XN,is− )}π

i(ds, dz), 1 ≤ i ≤ N.

It has been shown in [7], [13] and [18] that under appropriate assumptions on b, f and g0, the
asymptotic evolution, as N → ∞, of the membrane potential processes can be described as solution
of the following infinite i.i.d. system of non-linear stochastic differential equations

(3) X̄i
t = Xi

0 +

∫ t

0

b(X̄i
s)ds+ h

∫ t

0

E(f(X̄i
s))ds−

∫
[0,t]×R+

X̄i
s−1{z≤f(X̄is−)}π

i(ds, dz), i ≥ 1.

In this paper, we rely mainly on the approach proposed in [13] to prove and quantify the convergence
of the finite system (2) to the limit system (3). We think of spiking rate functions of the form
f(x) = (x/x0)α for some (possibly large) α > 0 and some fixed value x0 > 0. This means that
whenever the membrane potential x of a neuron is below x0, the spiking rate f(x) is very low, while
for values x > x0, the rate is very large, such that x0 can be interpreted as soft threshold.

Throughout this paper we strengthen and adapt the conditions of [13] to the present frame and impose
the following conditions.
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Assumption 1. (1) f ∈ C4(R+,R+) is convex and non-decreasing such that f(x) > 0 for all
x > 0 and f(0) = 0.

(2) There exists some α ≥ 1 such that for all 0 ≤ k ≤ 4, supx∈R+

|f(k)(x)|
(1+|x|α) <∞.

(3) supx≥1[f ′/f + f ′′/f ′](x) <∞.
(4) Moreover, there exists a constant Cf such that f(x+y) ≤ Cf (1+f(x)+f(y)) for all x, y ≥ 0.

Concerning the drift function, we think of functions of the type b(x) = b − λx for b ≥ 0, λ > 0,
expressing the attraction to some equilibrium potential value b/λ in absence of any spike of the
system. More precisely, we impose the following condition.

Assumption 2. (1) b ∈ C4(R+,R+) is of linear growth, bounded from above by a positive con-
stant and satisfies b(0) ≥ 0.

(2) For all 1 ≤ k ≤ 4, supx∈R+
|b(k)(x)| <∞.

Let us mention that Items (1) and (2) of Assumptions 1 and 2 are natural in this context. We will be
obliged to work with test functions being four times continuously differentiable, and we need some a
priori controls on the membrane potential values. Items (3) and (4) of Assumption 1 are technical.
They are used to obtain a quantified propagation of chaos result, see (7) below, the first main building
block upon which we construct our fluctuation result.

Concerning the distribution of the initial potential values we impose

Assumption 3. We suppose that g0 is compactly supported and possesses a probability density g0(x)
which belongs to C1(R+,R+).

Then by [7] and [13], there exists a unique strong solution both for (2) and for (3). Moreover, by
Theorem 7 of [13], constructing XN,i and X̄i using the same underlying Poisson random measure πi,
we have for any T > 0 and for any 1 ≤ i ≤ N,

(4) sup
t≤T

E(|XN,i
t − X̄i

t |) ≤
CT√
N
,

where the constant CT does not depend on N. Introducing

(5) gt = L(X̄1
t ),

and the empirical measure of the finite system together with the associated projection onto time t,

(6) µN =
1

N

N∑
i=1

δXN,i , µ
N
t =

1

N

N∑
i=1

δXN,it
,

we also have, due to a generalization of Theorem 7 of [13] to our frame (see the Appendix for details),

(7) sup
t≤T

E(W1(µNt , gt)) ≤
CT√
N
.

Here, the Monge-Kantorovich-Wasserstein distanceW1(µ, ν) between two probability measures µ and
ν on R+ with finite expectations is defined by W1(µ, ν) = inf{E[|U − V |], L(U) = µ and L(V ) = ν}.
Finally, let us mention that gt = L(X̄i

t) is solution of a nonlinear PDE which in its strong form reads
as

∂tgt(x) = [−b(x)− hgt(f)]∂xgt(x)− [b′(x) + f(x)]gt(x), t ≥ 0, x > 0,

where we note gt(f) =
∫∞

0
f(x)gt(dx). The above PDE starts from the initial value g0 at time t = 0,

and we have the boundary condition gt(0) = gt(f)
b(0)+hgt(f) for all t > 0.
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As a consequence of (7), interpreting µNt as random variable in the space P(R+) of all probability
measures on R+, we have convergence in probability µNt → gt, as N →∞, and the rate of convergence
is at least N−1/2. It is therefore natural to study the associated process of fluctuations, given by

(8) ηNt =
√
N(µNt − gt),

together with the fluctuations of the processes of membrane potentials

(9) UN,it =
√
N(XN,i

t − X̄i
t), i ≥ 1,

where we put UN,i = 0 for any i ≥ N+1. In (9), the processes XN,i and X̄i are constructed according
to the so-called Sznitman coupling (see [21]): They are defined on the same probability space, starting
from the same initial condition Xi

0 and using the same underlying Poisson random measure πi, for
each 1 ≤ i ≤ N. In the sequel, we write for short UN = (UN,i)i≥1.

In the present paper we prove convergence in law of the sequence of processes (UN , ηN ) to a limit
process (Ū , η̄), as N →∞, where Ū = (Ū i)i≥1. The limit process η̄, interpreted as distribution acting
on appropriate test functions, follows an infinite dimensional differential equation stated precisely
in (15) below. Moreover, for each i ≥ 1, the limit process Ū i follows an Ornstein-Uhlenbeck type
dynamic with variable length memory, that is, for any t ≥ 0,

(10) Ū it =

∫ t

0

b′(X̄i
s)Ū

i
sds+ h

∫ t

0

η̄s(f)ds−
∫

[0,t]×R+

Ū is−1{z≤f(X̄is−)}π
i(ds, dz) + hMt.

Here, (Mt)t is a Gaussian martingale having quadratic variation

< M >t=

∫ t

0

gs(f)ds = E
∫ t

0

f(X̄i
s)ds.

In (10), the presence both of this Gaussian martingale and of the integral of the fluctuations of the
spiking rate,

∫ ·
0
η̄s(f)ds, induces a factor of common noise explaining the correlations between different

neurons in the finite system.

As a consequence, we obtain the following second order error correction to the mean field approxima-
tion

(11) XN,i
t = X̄i

t +
1√
N
Ū it , where Ū it = h

∫ t

L̄it

e
∫ t
s
b′(X̄iu)duη̄s(f)ds+ h

∫ t

L̄it

e
∫ t
s
b′(X̄iu)dudMs,

with L̄it = sup{s ≤ t : ∆X̄i
s 6= 0} the last spiking time of neuron i in the limit process, before time t,

with sup ∅ := 0.

While in (10) above the convergence of (UN,i)i≥1 has to be understood as convergence of stochastic

processes with càdlàg trajectories, that is, of random variables taking values in D(R+,R)N
∗
, we did

not specify so far in which space the convergence of the rescaled empirical measures ηN takes place.
Following the Hilbertian approach introduced in [11] and [12] and then applied to the framework of
point processes in [3], throughout this paper we interpret ηN as a stochastic process taking values
in a suitable distributional space which is the dual of some weighted Sobolev space of test functions.
The regularity of test functions we need to impose is related to the order up to which we have to
develop the error terms that appear when replacing the contribution of small jumps (i.e., the last
term appearing in (1)) by the associated limit drift. Moreover, since the finite size process does not
take values in a compact set, we need to work with a Sobolev space supported by R+. Finally, it turns
out that we have to include constant functions into our class of admissible test functions, as well as
the firing rate function f which is of polynomial growth. Therefore we are led to work with weighted
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Sobolev spaces, where the weights are chosen to be polynomial, of power p > α + 1
2 , where α is the

growth rate of f and its derivatives (see Assumption 1).

The approach used in this article follows closely the study of fluctuations for McKean-Vlasov diffusions
in [12] and the adaptation of this work to the framework of age-dependent Hawkes process proposed
in [3]. The main difference with respect to [12] is that, as in [3], the limit processes X̄i and Ū i

remain jump processes; the big jumps induced by spikes survive also in the limit process. The main
difference with respect to [3] is the following. Being interested in age-dependent Hawkes processes,
in [3], the limit process undergoes a deterministic drift given by b(x) = 1. This trivially implies good
coupling properties. In our model however, the time dependent drift of the limit process is given by
b(x) + hgt(f) at time t, where b(x) is e.g. a function of the type b(x) = b− λx. This depends both on
the position x, but also on the average spiking rate of the system. This makes the study of coupling
more complicated, which is one of the main reasons why it is more difficult to prove the uniqueness
of the limit equation in the present frame. In particular, to prove the uniqueness, we do also have to
establish regularity properties of the time inhomogeneous semigroup associated to the limit process
(3) which is non-diffusive and associated to a transport equation. We rely on Girsanov’s theorem for
jump processes to tackle this problem, see Proposition 13 below.

1.2. General notation. The space of bounded functions of class Ck, defined on R+, with bounded
derivatives of each order up to order k, is denoted by Ckb . C

∞
c denotes the space of infinitely differ-

entiable functions defined on R+, having compact support. The space of càdlàg functions defined on
R+ and taking values in some Polish space E is denoted by D(R+, E). If µ is a measure on E and
ϕ : E → R measurable and integrable, we write µ(ϕ) :=

∫
E
ϕdµ. C denotes a constant that may

change from one occurence to another, even within one line.

Throughout this paper we work with the canonical filtration (Ft)t≥0 where F0 = σ{Xi
0, i ≥ 1} and

Ft = σ{Xi
0, i ≥ 1, πj(A) : A ⊂ [0, t]× R+, j ≥ 1}.

2. Main results

The aim of this section is to state the convergence in law of the sequence of processes (UN , ηN )N ,
UN = (UN,i)i≥1, defined by

(12) UN,it :=
√
N(XN,i

t − X̄i
t) for any 1 ≤ i ≤ N, and ηNt =

√
N(µNt − gt),

where we interpret ηN as stochastic process with values in a suitable space of distributions. Here
we put UN,i = 0 for all i ≥ N + 1. In the above definition, XN,i and X̄i are constructed according
to the Sznitman coupling (see [21]), that is, using the same initial value Xi

0 and driven by the same
underlying Poisson random measure πi.

We start gathering some basic definitions and results on weighted Sobolev spaces.

2.1. Weighted Sobolev spaces. Since we are working in the purely excitatory case and the mem-
brane potentials take values in R+, in what follows, all test functions that we consider are defined
on R+. Fixing an integer k and a positive real number p ≥ 0, we introduce the norm ‖ψ‖k,p for all
functions ψ ∈ C∞c given by

‖ψ‖k,p :=

(
k∑
l=0

∫ ∞
0

|ψ(l)(x)|2

1 + |x|2p
dx

)1/2

and define the space Wk,p
0 to be the completion of C∞c with respect to this norm.
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The space Wk,p
0 is a separable Hilbert space, and we denote W−k,p0 its dual space, equipped with the

norm ‖ · ‖−k,p defined for any η ∈ W−k,p0 by

‖η‖−k,p = sup{| < η,ψ > | : ψ ∈ Wk,p
0 , ‖ψ‖k,p = 1}.

Finally, Ck,p is the space of all Ck−functions such that for all l ≤ k, supx∈R+
|ψ(l)(x)|/(1+ |x|p) <∞.

This space is equipped with the norm

‖ψ‖Ck,p :=

k∑
l=0

sup
x∈R+

|ψ(l)(x)|
1 + |x|p

<∞.

The most important facts about Sobolev spaces that we use throughout this paper are collected in
the Appendix Section 7.1.

2.2. Weak convergence of the fluctuation process. Given the knowledge of the function t 7→
gt(f), the non-Markovian limit process (3) is described by the time dependent infinitesimal generator
given by

(13) Lsϕ(x) = b(x)ϕ′(x) + hgs(f)ϕ′(x) + f(x)Sϕ(x), Sϕ(x) = ϕ(0)− ϕ(x),

for all s ≥ 0 and ϕ ∈ C1
b , where gs is given by (5). Our main result reads as follows.

Theorem 4. Under Assumptions 1, 2 and 3, for any p > α + 1
2 , we have convergence in law of

(UN , ηN ) in D(R+,R)N
∗ × D(R+,W−4,p

0 ) to the limit process (Ū , η̄) taking values in D(R+,R)N
∗ ×

C(R+,W−4,p
0 ), which is solution of the system of stochastic differential equations

(14) Ū it =

∫ t

0

b′(X̄i
s)Ū

i
sds+ h

∫ t

0

η̄s(f)ds−
∫

[0,t]×R+

Ū is−1{z≤f(X̄is−)}π
i(ds, dz) + hWt(1), i ≥ 1,

and

(15) η̄t(ϕ) = η̄0(ϕ) +

∫ t

0

η̄s(Lsϕ)ds+ h

∫ t

0

gs(ϕ
′)η̄s(f)ds+Wt(Sϕ) + h

∫ t

0

gs(ϕ
′)dWs(1),

where the above equation holds for all ϕ ∈ W5,p
0 , and where, for any ψ ∈ W4,p

0 ,

(16) Wt(ψ) =

∫ t

0

∫
R

√
f(x)ψ(x)dM(s, x),

with M(dt, dx) an orthogonal martingale measure on R+ × R with intensity dtgt(dx).

If in addition to the above assumptions we have p > 2α+ 1
2 and we suppose moreover that f ∈ C6,α,

b ∈ C6 having all derivatives up to order 6 bounded and b(x) ≥ −λx for all x ≥ 0, where λ > 0, then
the limit process solving (14) and (15) is unique.

Remark 5. Notice that by construction,

< W (ϕ),W (ψ) >t=

∫ t

0

∫
R
gs(dx)ϕ(x)ψ(x)f(x)ds =

∫ t

0

gs(fϕψ)ds = E
∫ t

0

(fϕψ)(X̄i
s)ds.



FLUCTUATIONS FOR MEAN FIELD LIMITS OF INTERACTING NEURONS 7

2.3. Plan of the paper. The remainder of this paper is devoted to the proof of Theorem 4. Section
3 starts with useful a priori bounds on the finite size process and its limit, before establishing the
uniqueness of any solution of (14) and (15) in Theorem 10. We then continue, in Section 4 by
establishing a decomposition of the finite size fluctuations in Proposition 23 which is the starting
point of the proof of our main result. We prove the tightness of (UN , ηN ) in Theorem 25 of Section 5.
Theorem 31 in Section 6 then states that any possible limit (Ū , η̄) of (UN , ηN ) is necessarily solution
of the system of differential equations of Theorem 4. The Appendix section collects some useful results
about the limit process together with some technical results.

3. Uniqueness of the limit equation

3.1. Preliminaries. We first investigate the mappings that appear in the generator of the limit
process. These are the linear mapping S associated to the spikes of a given neuron and defined by
Sϕ := ϕ(0)− ϕ, the mapping bD : ϕ 7→ [x 7→ b(x)ϕ′(x)] and the mapping D : ϕ 7→ ϕ′.

Lemma 6. S is a continuous mapping from Wk,p
0 to itself, for any k ≥ 1 and p > 1

2 . If we suppose

moreover that Assumptions 1 and 2 hold, then for any p > α+ 1
2 , and any k ≤ 4,

‖fSϕ‖k,p ≤ C‖f‖Ck,α‖Sϕ‖k,p−α ≤ C‖f‖Ck,α‖ϕ‖k,p−α.

Finally, for any k ≥ 2, D : Wk,p
0 → Wk−1,p

0 and bD : Wk,p
0 → Wk−1,p+1

0 are continuous mappings
satisfying ‖Dϕ‖k−1,p ≤ C‖ϕ‖k,p and ‖bDϕ‖k−1,p+1 ≤ C‖ϕ‖k,p.
If in addition to the above assumptions we suppose moreover that f ∈ C6,α and b ∈ C6 such that all
derivatives up to order 6 are bounded, recalling moreover that α ≥ 1, then the application Ls introduced

in (13) is a linear continuous mapping from Wk,p
0 to Wk−1,p+α

0 , for any p > 1
2 , k ≤ 6, and for all

ψ ∈ Wk,p
0 ,

sup
s≤T

‖Lsψ‖2k−1,p+α

‖ψ‖2k,p
<∞.

The proof of the above lemma is given in the Appendix. In the sequel we shall also rely on the
following result.

Lemma 7. For any x ∈ R+ and any p > 0, the mapping δx : W1,p
0 → R, ψ 7→ ψ(x) is continuous.

Moreover there exists a constant C not depending on x such that

(17) ‖δx‖−1,p ≤ C(1 + |x|p).

Similarly, D∗δx :W2,p
0 → R, ψ 7→ ψ′(x) is continuous and there exists a constant C not depending on

x such that

‖D∗δx‖−2,p ≤ C(1 + |x|p).

Proof. We only show the second assertion. We have for any ψ ∈ W2,p
0 ,

| < D∗δx, ψ > | = |ψ′(x)| ≤ ‖ψ‖C1,p(1 + |x|p).

Moreover, using the Sobolev embedding theorem (see (62) below), there exists a constant C not
depending on x, such that ‖ψ‖C1,p ≤ C‖ψ‖2,p. This implies the assertion.

The following a priori bounds on (2) and (3) will be used throughout this paper.
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Lemma 8. Under Assumptions 1, 2 and 3, for any 1 ≤ i ≤ N and N ≥ 1, there exists a constant c0
only depending on g0 such that

(18) XN,i
t ≤ c0 + 4b̄t+ 4hNN

t ,

where NN
t := N−1

∑N
j=1

∫
[0,t] ×R+

1{z≤f(2h)}π
j(ds, dz) and where b̄ > 0 is such that b(x) ≤ b̄ for all

x ≥ 0. In particular, for any T, p > 0,

(19) sup
N

E(sup
t≤T
|XN,i

t |p) ≤ CT (p)

for a constant depending only on T, p, b and g0. Introducing the set

(20) GNT =

{
N∑
i=1

∫
[0,T ]×R+

1{z≤f(2h)}π
i(ds, dz) ≤ 2f(2h)NT

}
,

we also have the upper bound

(21) 1GNT

(
sup
t≤T

sup
1≤i≤N

|XN,i
t |

)
≤ c0 + 4b̄T + 8hf(2h)T and the control P((GNT )c) ≤ c1e−c2NT ,

for some constants c1, c2. Finally there exists a constant C̄T only depending on g0 and on b̄, such that

(22) sup
t≤T
|X̄i

t | ≤ C̄T .

The proof of this lemma is given in the Appendix. We immediately state a useful corollary. Introducing

(23) ZN,it =

∫
[0,t]×R+

1{z≤f(XN,is− )}π
i(ds, dz) and Z̄it =

∫
[0,t]×R+

1{z≤f(X̄is−)}π
i(ds, dz)

and the total variation distance

‖ZN,i − Z̄i‖TV,[0,T ] := #{t ≤ T : t is a jump of ZN,i or of Z̄i but not of both},
we have that

Corollary 9. Under Assumptions 1, 2 and 3,

(24) E‖ZN,i − Z̄i‖TV,[0,T ] = E
∫ T

0

|f(XN,i
s )− f(X̄i

s)|ds ≤ CTN−1/2,

for a constant CT only depending on T, but not on N.

Proof. Clearly,
√
NE‖ZN,i − Z̄i‖TV,[0,T ]

=
√
NE

∫
[0,T ]×R+

∣∣∣1{z≤f(XN,is− )} − 1{z≤f(X̄is−)}

∣∣∣πi(ds, dz) =
√
NE

∫ T

0

| f(XN,i
s )− f(X̄i

s)|ds

≤
√
N

∫ T

0

E[| f(XN,i
s )− f(X̄i

s)|1GNT ]ds+
√
NTf(C̄T )P((GNT )c)

+C
√
NTE

(
1(GNT )c [1 + (c0 + 4b̄t+ 4hNN

T )α]
)
,

where we have used that by (18) and since f is non-decreasing,

f(XN,i
s ) ≤ C(1 + (c0 + 4b̄t+ 4hNN

T )α) and f(X̄i
s) ≤ f(C̄T )

for all s ≤ T.
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Due to (21), on GNT , X
N,i
t ≤ c0 +4b̄t+8hf(2h)T for all i, and all t ≤ T. Therefore, using the Lipschitz

continuity of f on [0, c0 + 4b̄t+ 8hf(2h)T ) ∨ C̄T ] and (4), we have

sup
N

√
N

∫ T

0

E[| f(XN,i
s− )− f(X̄i

s−)|1GNT ]ds ≤ CT .

Using the deviation estimate on P((GNT )c) together with Hölder’s inequality implies moreover that

sup
N

(√
NTf(C̄T )P((GNT )c) + C

√
NTE

(
1(GNT )c [1 + (c0 + 4b̄t+ 4hNN

T )α]
))
≤ CT

such that

sup
N

√
NE‖ZN,i − Z̄i‖TV,[0,T ] = sup

N

√
NE

∫ T

0

| f(XN,i
s )− f(X̄i

s)|ds ≤ CT <∞,

implying the assertion.

After these preliminary results, we now turn to the proof of our first main result which is the uniqueness
of the limit equation.

3.2. Uniqueness. This section is devoted to the proof of the following

Theorem 10. Grant Assumptions 1, 2 and 3 and suppose moreover that f ∈ C6,α, b ∈ C6 having
all derivatives up to order 6 bounded and b(x) ≥ −λx for all x ≥ 0, where λ > 0. Then for any fixed
initial condition (η̄0) and driving underlying noise πi, i ≥ 1, and W, the system (14)–(15) has at most

one solution in D(R+,R)N
∗ × C(R+,W−4,p

0 ), for any p > 2α+ 1
2 .

Since given X̄i, η̄ and W, the equation for Ū i is linear, it is sufficient to prove uniqueness for η̄.

Suppose η̄ and η̂ are both solution of (15), driven by the same underlying W and starting from the
same initial condition. Then η̃t := η̄t − η̂t satisfies

(25) < η̃t, ϕ >=

∫ t

0

< η̃s, Lsϕ > ds+ h

∫ t

0

gs(ϕ
′)η̃s(f)ds,

where we recall that

Lsϕ(x) = b(x)ϕ′(x) + hgs(f)ϕ′(x) + f(x)Sϕ(x).

Traditionally, to prove uniqueness we have to deduce from (25) that η̃ = 0, that is, ‖η̃t‖−k,p = 0 for

suitable k and p. However, when applying ‖·‖−k,p to (25), we have to treat the term
∫ t

0
< η̃s, Lsϕ > ds

which involves a derivative and multiplication with f and therefore gives rise to ‖η̃s‖−k+1,p+α which
cannot be compared to the norm ‖η̃s‖−k,p since it is greater. The same problem arises when treating

the last term
∫ t

0
gs(ϕ

′)η̃s(f)ds.

Of course, this problem has already appeared – and solved – both in [12] and [3], yet in a simpler
framework, since in [12], the underlying diffusion generates regularity of the associated semigroup,
while in [3] the underlying flow is particularly simple, having drift ≡ 1. In what follows we show how
to adapt these ideas to the present frame and propose severals tricks to get rid of the above derivatives
by using integration by parts or by solving directly the flow associated to Ls.

We start gathering known results about the marginal law gs of the limit process X̄1
s of (3), starting

from X̄1
0 ∼ g0, that is, gs = L(X̄1

s ). We introduce the associated flow defined by

(26) ϕs,t(x) = x+

∫ t

s

b(ϕs,u (x))du+ h

∫ t

s

gu(f)du,
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for any s ≤ t, representing the evolution of X̄1 in between the successive jumps.

Proposition 11. Under Assumptions 1, 2 and 3, for all t ≥ 0, gt(dy) = gt(y)dy is absolutely
continuous having Lebesgue density gt(y), and for all t ≤ T, gt is compactly supported, that is, gt(y) = 0
for all y ≥ C̄T , where C̄T is as in (22). Moreover, for all y 6= ϕ0,t(0), gt is differentiable in y having
derivative g′t which is continuous on (0, ϕ0,t(0)) ∪ (ϕ0,t(0),∞). Finally,

t 7→
∫ ∞

0

(1 + |x|p)|g′t(x)|dx is locally bounded,

for all p ≥ 0.

The proof of the above result is postponed to the Appendix.

Using integration by parts this implies that we may rewrite the last term appearing in (25) as follows.

gs(ϕ
′) =

∫ ϕ0,s(0)

0

ϕ′(x)gs(x)dx+

∫ ∞
ϕ0,s(0)

ϕ′(x)gs(x)dx

= gs(ϕ0,s(0)−)ϕ(ϕ0,s(0))− gs(0)ϕ(0)− gs(ϕ0,s(0)+)ϕ(ϕ0,s(0))−
∫ ∞

0

ϕ(x)g′s(x)dx

= − gs(f)

b(0) + hgs(f)
ϕ(0)−∆gs(ϕ0,s(0))ϕ(ϕ0,s(0))−

∫ ∞
0

ϕ(x)g′s(x)dx,

for any s > 0, where we used the identity gs(0) = gs(f)
b(0)+hgs(f) which follows from (67) stated in the

Appendix below, and where

∆gs(ϕ0,s(0)) = gs(ϕ0,s(0)+)− gs(ϕ0,s(0)−) = e−
∫ s
0

(f(ϕ0,u(0))+b′(ϕ0,u(0)))du[g0(0)− gs(f)

b(0) + hgs(f)
],

such that

h

∫ t

0

gs(ϕ
′)η̃s(f)ds =

∫ t

0

hs(ϕ)ds,

where

hs(ϕ) = − hgs(f)

b(0) + hgs(f)
ϕ(0)η̃s(f)− hϕ(ϕ0,s(0))∆gs(ϕ0,s(0))η̃s(f)− h(

∫ ∞
0

ϕ(x)g′s(x)dx)η̃s(f).

Relying on Proposition 11, we deduce

Proposition 12. Let ψ ∈ Wk,q
0 , for some k ≥ 1, q ≥ 0. Fix T > 0. Then for all 0 ≤ t ≤ T, and for

all p > α+ 1
2 ,

|ht(ψ)| ≤ CT ‖ψ‖k,q‖η̃t‖−4,p‖f‖4,p.

Proof. We use that by the Sobolev embedding,

|ψ(x)| ≤ ‖ψ‖C0,q (1 + |x|q) ≤ C‖ψ‖k,q(1 + |x|q),

since k ≥ 1, such that

|ψ(0)| ≤ C‖ψ‖k,q and |ψ(ϕ0,t(0))∆gt(ϕ0,t(0))| ≤ CT ‖ψ‖k,q
and moreover ∫ ∞

0

|ψ(x)g′s(x)|dx ≤ C‖ψ‖k,q
∫ ∞

0

(1 + |x|q)|g′s(x)|dx ≤ CT |ψ‖k,q,
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where we have used the bound of Proposition 11. The conclusion follows from

|η̃t(f)| ≤ ‖η̃t‖−4,p‖f‖4,p,

since f ∈ W4,p
0 by Assumption 1, due to the fact that C4,α ⊂ W4,p

0 for any p > α+ 1
2 .

We now turn to the study of the action of Ls. Given the fixed function t 7→ gt(f), t ≥ 0, we introduce
the time inhomogeneous Markov process Ys,t(x), for any 0 ≤ s ≤ t and x ∈ R+, which is solution of

Ys,t(x) = x+

∫ t

s

(hgu(f) + b(Ys,u(x))) du−
∫

]s,t]×R+

Ys,u−(x)1{z≤f(Ys,u−(x))}π
1(du, dz).

Clearly, since h
∫ t

0
gs(f)ds ≤ C̄T for all t ≤ T, by (22), and since b is bounded by a positive constant,

Ys,t(x) ≤ x + C̄T , for all s ≤ t ≤ T, such that the above process is well-defined. We denote Ps,t the
associated semigroup, that is, Ps,tψ(x) = Eψ(Ys,t(x)), for any measurable test function.

Proposition 13. Under the assumptions of Theorem 10, we have that for any 0 ≤ s ≤ t and any
p ≥ 0, Ps,t is a continuous mapping from W6,p

0 →W6,p
0 , and

‖Ps,tψ‖k,p ≤ CT ‖ψ‖k,p,

for all k ≤ 6, s ≤ t ≤ T.
Moreover, for any ψ ∈ C∞c , Ps,tψ belongs to C6

b and is rapidly decreasing, that is, for all γ > 0 and
all k ≤ 6,

(27) lim
x→∞

xγ |(Ps,tψ)(k))(x)| = 0.

The proof of this result is also postponed to the Appendix.

We notice that Ls is the time dependent infinitesimal generator associated to the time inhomogeneous
semigroup Ps,t, that is,

d

ds
Ps,tψ = −LsPs,tψ and

d

dt
Ps,tψ = Ps,tLtψ,

whenever the above quantities are well-defined.

Now we proceed further with our proof. Let 0 ≤ s ≤ t ≤ T be fixed. Consider a test function ψ ∈ C∞c .
Then we have that

Ps,tψ(x) = ψ(x)−
∫ t

s

∂

∂v
Pv,tψ(x)dv = ψ(x) +

∫ t

s

LvPv,tψ(x)dv

such that

(28) Ps,tψ = ψ +

∫ t

s

LvPv,tψdv.

Plugging this into (25) and observing that ψ and Ps,tψ, and thus, a posteriori, also
∫ t
s
LvPv,tψdv are

valid test functions, we obtain

(29)

∫ t

0

< η̃s, Lsψ > ds =

∫ t

0

< η̃s, LsPs,tψ > ds−
∫ t

0

∫ t

s

< η̃s, LsLuPu,tψ > duds.

Let us consider the double integral appearing in the above expression. By the definition of Ls and
using equation (27) of Proposition 13, we know that

(30) Ψs,u,t := LsLuPu,tψ ∈ C4,2α.
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This implies that for all p > 2α+ 1
2 ,

sup
s≤u≤t≤T

‖LsLuPu,tψ‖4,p = CT <∞

such that
| < η̃s, LsLuPu,tψ > | ≤ ‖η̃s‖−4,p‖LsLuPu,tψ‖4,p ≤ CT ‖η̃s‖−4,p.

Since η̃ takes values in C(R+,W−4,p
0 ), sups≤t ‖η̃s‖−4,p <∞, and therefore we may use Fubini’s theorem

and obtain

(31)

∫ t

0

∫ t

s

< η̃s, LsLuPu,tψ > duds =

∫ t

0

∫ u

0

< η̃s, LsLuPu,tψ > dsdu.

Now we apply (25) to the admissible test function ϕ := LuPu,tψ, for fixed u < t, at time u. Then

< η̃u, ϕ >=

∫ u

0

< η̃s, Lsϕ > ds+Hu(LuPu,tψ),

where we write for short

(32) Hu(·) :=

∫ u

0

hs(·)ds.

We deduce that the double integral in (31) can be rewritten as

(33)

∫ t

0

∫ u

0

< η̃s, LsLuPu,tψ > dsdu =

∫ t

0

< η̃u, LuPu,tψ > du−
∫ t

0

Hu(LuPu,tψ)du.

(29) together with (33) now implies that∫ t

0

< η̃s, Lsψ > ds =

∫ t

0

Hu(LuPu,tψ)du.

Using the same trick as above,

Ht(ψ) =

∫ t

0

hs(ψ)ds =

∫ t

0

hs(Ps,tψ)ds−
∫ t

0

∫ t

s

hs(LvPv,tψ)dvds.

Proposition 12, with k = 1, q = 2α together with Lemma 6 implies

|hs(LvPv,tψ)| ≤ Ct‖LvPv,t ψ‖1,2α‖ η̃s‖−4,p‖f‖4,p ≤ Ct‖Pv,t ψ‖2,α‖ η̃s‖−4,p‖f‖4,p,
which is bounded uniformly in 0 ≤ s ≤ v ≤ t, due to Proposition 13, since ψ ∈ C∞c . Therefore, we
may use Fubini’s theorem once more to deduce that∫ t

0

∫ t

s

hs(LvPv,tψ)dvds =

∫ t

0

Hv(LvPv,t ψ)dv.

Gathering all these terms, we end up with

(34) < η̃t, ψ >=

∫ t

0

hs(Ps,tψ)ds.

We are now ready to finish this proof. Equality (34) together with Proposition 12 applied with k = 4
and q = p and Proposition 13 imply that for all t ≤ T and all ψ ∈ C∞c ,

| < η̃t, ψ > | ≤ CT ‖ ψ‖4,p‖f‖4,p
∫ t

0

‖η̃s‖−4,pds.

Since C∞c is dense in W4,p
0 , this implies ‖η̃t‖−4,p ≤ CT

∫ t
0
‖η̃s‖−4,pds, and Gronwall’s lemma implies

‖η̃t‖−4,p = 0 for all t ≥ 0. .
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4. Decomposition of the fluctuations

We now turn to the second main part of this paper and propose a first decomposition of the fluctuation
measure ηN for a fixed system size N. The following purely discontinuous martingale, defined for any
measurable bounded test function ϕ, will play a key role in our study.

(35) WN
t (ϕ) =

1√
N

N∑
i=1

∫
[0,t]×R+

ϕ(XN,i
s− )1{z≤f(XN,is− )}π̃

i(ds, dz),

where π̃i(ds, dz) = πi(ds, dz)−dsdz is the compensated Poisson random measure. Clearly, (WN
t (ϕ))t≥0

is a real valued martingale with angle bracket given by

(36) < WN (ϕ) >t=

∫ t

0

µNs (fϕ2)ds.

We obtain the following first decomposition of ηNt (ϕ), for sufficiently smooth test functions ϕ.

Proposition 14. Grant Assumptions 1, 2 and 3. Then for any test function ϕ ∈ C2
b and t ≥ 0,

(37) ηNt (ϕ) = ηN0 (ϕ) +

∫ t

0

ηNs (Lsϕ)ds+WN
t (Sϕ)

+ h

∫ t

0

µNs−(ϕ′)dWN
s (1) + h

∫ t

0

ηNs (f)µNs (ϕ′)ds+RN,1t (ϕ),

where the remainder term is given by

(38) RN,1t (ϕ) =
h

N3/2

N∑
i=1

∫
[0,t]×R+

1{z≤f(XN,is− )}

 N∑
j=1,j 6=i

∫ 1

0

(ϕ′(XN,j
s− + ϑ

h

N
)− ϕ′(XN,j

s− ))dϑ

− ϕ′(XN,i
s− )

πi(ds, dz).

Proof. Using Taylor’s formula at order two, we obtain for any ϕ ∈ C2
b ,

µNt (ϕ) = µN0 (ϕ)− α
∫ t

0

µNs (ϕ′ · x)ds+
1√
N
WN
t (Sϕ) +

∫ t

0

µNs (fSϕ)ds

+
h√
N

∫
[0,t]

µNs−(ϕ′)dWN
s (1) +

∫ t

0

µNs (f)hµNs (ϕ′)ds+
1√
N
RN,1t (ϕ)

= µN0 (ϕ) +

∫ t

0

µNs (Lsϕ)ds+
1√
N
WN
t (Sϕ)

+
h√
N

∫ t

0

µNs−(ϕ′)dWN
s (1) + h

∫ t

0

(µNs (f)− gs(f))µNs (ϕ′)ds+
1√
N
RN,1t (ϕ).

In the above development we have used that

1

N

N∑
i=1

∫
[0,t]×R+

1{z≤f(XN,is− )}

 h

N

N∑
j=1

ϕ′(XN,j
s− )

 π̃i(ds, dz) =
h√
N

∫ t

0

µNs−(ϕ′)dWN
s (1).

Using that gt(ϕ) = g0(ϕ) +
∫ t

0
gs(Lsϕ)ds, we obtain the result.
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We now give estimates of the terms ηN ,WN , RN,1 appearing in (37) above, interpreted as elements

of W−k,p0 , for the smallest possible k, p. This will be useful later to deduce the tightness of these
processes.

Proposition 15. Grant Assumptions 1, 2 and 3. Then for any p > 1/2 and any T > 0,

sup
t≤T

sup
N

E(‖ηNt ‖−2,p) <∞.

Remark 16. We stress that we obtain a weaker result than the corresponding Proposition 3.5 in [12]
or Proposition 4.7 in [3] since we are not able to control the expectation of the square of the norm
E(‖ηNt ‖2−2,p). This is due to two facts.

Fact 1. We are working in the framework of point processes, not of diffusions. Therefore, the control

E|X̄i
t −X

N,i
t | ≤ CTN−1/2

given in (4) cannot be improved to higher order moments of the strong error as in [12]. This intrinsic
difficulty is common to any study of point processes.

Fact 2. Julien Chevallier in [3] proposes to remediate this difficulty by considering rather higher order
moments of the total variation distance; that is, proving and exploiting the fact that

P(‖ZN,i − Z̄i‖TV,[0,T ] 6= 0 for all 1 ≤ i ≤ k) ≤ CTN−k/2.

However, in our model, even on {‖ZN,i − Z̄i‖TV,[0,T ] = 0}, the two processes do not couple since they
are driven by two different drift terms. This is a crucial difference with the age-structured Hawkes
process where the drift is always ≡ 1, independently of anything else (compare more precisely to
(A.10) of [3]). It is for the same reason that we have to take test functions that are twice continuously

differentiable, such that we work in W−2,p
0 .

Corollary 17. Since f ∈ C2,α ⊂ W2,p
0 for any p > α + 1

2 , such that |ηNt (f)| ≤ ‖ηNt ‖−2,p ‖f‖2,p, we
deduce from Proposition 15 the useful upper bound

(39) sup
t≤T

sup
N

E(|ηNt (f)|) <∞.

Proof of Proposition 15. Let X̄i,, 1 ≤ i ≤ N, be independent copies of the limit system (3), driven by
the same Poisson random measures as XN,i, 1 ≤ i ≤ N, and starting from the same initial positions
Xi

0, 1 ≤ i ≤ N, as the finite system. We decompose, for any ψ ∈ W2,p
0 ,

ηNt (ψ) =
√
N

(
1

N

N∑
i=1

[ψ(XN,i
t )− ψ(X̄i

t)] + [ψ(X̄i
t)− E(ψ(X̄i

t))]

)
=: ηN,1t (ψ) + ηN,2t (ψ),

such that ‖ηNt ‖−2,p ≤ ‖ηN,1t ‖−2,p + ‖ηN,2t ‖−2,p.

Step 1. We take an orthonormal basis (ψk)k composed of C∞c − functions of W2,p
0 such that

‖ηN,2t ‖2−2,p =
∑
k

< ηN,2t , ψk >
2
.

Using the independence of the X̄i, i ≥ 1, we have

E(< ηN,2t , ψk >
2) = E(

1

N

N∑
i=1

[ψk(X̄i
t)− E(ψk(X̄i

t))]
2) = E([ψk(X̄1

t )− E(ψk(X̄1
t ))]2) ≤ E(ψ2

k(X̄1
t )).
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Observing that E(ψ2
k(X̄1

t )) = E(< δX̄1
t
, ψk >

2), we obtain by monotone convergence

E‖ηN,2t ‖2−2,p = E

(∑
k

(< ηN,2t , ψk >
2)

)
=
∑
k

E(< ηN,2t , ψk >
2) ≤

∑
k

E(ψ2
k(X̄1

t ))

=
∑
k

E(< δX̄1
t
, ψk >

2) = E

(∑
k

< δX̄1
t
, ψk >

2

)
= E‖δX̄1

t
‖2−2,p.

Thanks to (17) together with (61), we have that ‖δX̄1
t
‖−2,p ≤ C(1 + |X̄1

t |p) ≤ C̄T , where we have used

the a priori estimate (22). As a consequence,

sup
t≤T

sup
N

E‖ηN,2t ‖−2,p ≤ CT ‖ψ‖2,p.

Step 2. We now study the first term. For any ψ ∈ W2,p
0 , using that for any x, y ≥ 0, by Taylor’s

formula and the Sobolev embedding,

| ψ(x)− ψ(y)| ≤ C‖ ψ‖C1,p(1 + |x|p + |y|p)|x− y| ≤ C‖ψ‖2,p(1 + |x|p + |y|p)|x− y|,

we obtain, using the upper bound (22),

|ψ(XN,i
t )− ψ(X̄i

t)| ≤ C̄T ‖ψ‖2,p(1 + |XN,i
t |p)|X

N,i
t − X̄i

t |,

such that

‖ ηN,1t ‖−2,p = sup
ψ:‖ψ‖2,p=1

|ηN,1t (ψ)| ≤ C̄T
1√
N

N∑
i=1

(1 + |XN,i
t |p)|X

N,i
t − X̄i

t |.

Recall the set GNT introduced in (20) above. On the set GNT , using (21), we have that supt≤T |X
N,i
t |p ≤

CT , whence

E(‖ηN,1t ‖−2,p1GNT ) ≤ CT√
N

N∑
i=1

E(|XN,i
t − X̄i

t |).

We then deduce from (4) that

E(‖ηN,1t ‖−2,p1GNT ) ≤ CT .

Moreover, on (GNT )c, we simply upper bound, using once more (22),

‖ ηN,1t ‖−2,p ≤ C̄T
1√
N

N∑
i=1

(1 + |XN,i
t |p)

(
XN,i
t + C̄T

)
≤ CT

1√
N

N∑
i=1

(1 + |XN,i
t |p+1),

where we recall that constants may change from one appearance to another and where we have used
that (1 + xp)(1 + x) ≤ C(1 + xp+1), for a suitable constant. Therefore,

E(‖ ηN,1t ‖−2,p1(GNT )c) ≤ CT
√
NE((1 + |XN,i

t |p+1)1(GNT )c).

Using (19) with 2(p + 1) and the Cauchy-Schwarz inequality together with P((GNT )c) ≤ ac1e
−c2NT ,

this gives

E(‖ηN,1t ‖−2,p; (GNT )c) ≤ CT
√
Ne−(c2/2)NT .

All in all we therefore get

sup
N

sup
t≤T

E‖ηN,1t ‖−2,p ≤ CT ,

and this concludes the proof.
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Proposition 18. Under Assumptions 1, 2 and 3, for any p > 1/2, the process WN
t is a (Ft)t≥0−martingale

with paths in D(R+,W−1,p
0 ) almost surely. Furthermore,

(40) sup
N

E
(

sup
t≤T
‖WN

t ‖2−1,p

)
<∞.

Proof. Take an orthonormal basis (ψk)k≥1 of W1,p
0 , composed of C∞c −functions, and use that

sup
t≤T
‖WN

t ‖2−1,p = sup
t≤T

∑
k≥1

(WN
t (ψk))2 ≤

∑
k

sup
t≤T

(WN
t (ψk))2.

As a consequence, by Doob’s inequality and monotone convergence, and relying on (36),

E(sup
t≤T
‖WN

t ‖2−1,p) ≤ 4
∑
k

E(WN
T (ψk))2 = 4

∑
k

E
∫ T

0

µNs (fψ2
k)ds = 4

∑
k

E
∫ T

0

f(XN,1
s )ψ2

k(XN,1
s )ds

= 4E
∫ T

0

f(XN,1
s )

∑
k

ψ2
k(XN,1

s )ds = 4E
∫ T

0

f(XN,1
s )‖δXN,1s

‖2−1,pds,

where we have used the exchangeability of the finite system to obtain the last term of the first line.

By Lemma 7, there exists a constant not depending on XN,1
s such that ‖δXN,1s

‖2−1,p ≤ C(1+ |XN,1
s |2p).

Moreover, f(XN,1
s ) ≤ C(1 + |XN,1

s |α). Using (19) with 2p+ α, this implies (40).

Once (40) is checked, the remainder of the proof follows the lines of the proof of Proposition 4.7, item
(ii) of [3].

We now check that

Proposition 19. Grant Assumptions 1, 2 and 3. For all p > 1/2 we have

sup
N

√
NE(sup

t≤T
‖RN,1t ‖−3,p) <∞.

Proof. Let ψ ∈ W3,p
0 and recall that, by Taylor’s formula and the Sobolev embedding, for all ϑ ∈ [0, 1],

|ψ′(x+ ϑ
h

N
)− ψ′(x)| ≤ C‖ ψ‖C2,p(1 + xp)

h

N
≤ C‖ψ‖3,p(1 + xp)

h

N
.

Therefore,

√
N |RN,1t (ψ)| ≤ C‖ψ‖3,p

h

N

N∑
i=1

∫
[0,T ]×R+

1{z≤f(XN,is− )}

 h

N

N∑
j=1

(1 + |XN,j
s− |p) + |XN,i

s− |p
 ,

where we have also used that |ψ′(x)| ≤ C‖ψ‖C1,b(1 + |x|p) ≤ C‖ψ‖3,p(1 + |x|p). This implies
√
N sup

t≤T
‖RN,1t ‖−3,p = sup

t≤T
sup

ψ:‖ψ‖3,p=1

√
N |RN,1t (ψ)| ≤

C
h

N

N∑
i=1

∫
[0,T ]×R+

1{z≤f(XN,is− )}

 h

N

N∑
j=1

(1 + |XN,j
s− |p) + |XN,i

s− |p
 .

Taking expectation and using the a priori bound (19) together with f(x) ≤ C(1 + xα) yields the
result.

Finally, recall that D : ψ → ψ′ denotes the differential operator, and D∗ the associated dual.
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Lemma 20. Fix p > 1/2. Then underAssumptions 1, 2 and 3, the mapping defined by ψ 7→
ηNs (f)D∗µNs (ψ) is almost surely continuous from W2,p

0 → R and satisfies

sup
N

sup
t≤T

E(‖ηNt (f)D∗µNt ‖−2,p) <∞.

Proof. The result follows from

|ηNt (f)D∗µNt (ψ)| ≤ | ηNt (f)| 1

N

N∑
i=1

|ψ′(XN,i
t )| ≤ C‖ψ‖2,p|ηNt (f)| 1

N

N∑
i=1

(1 + | XN,i
t |p ).

The conclusion is then similar as in the proof of Proposition 15.

We now turn to the study of the last stochastic integral appearing in (37).

Proposition 21. For any p > 1/2, the process
∫ t

0
D∗µNs−dW

N
s (1) is a (Ft)t≥0−martingale with paths

in D(R+,W−2,p
0 ) almost surely. Furthermore,

(41) sup
N

E
(

sup
t≤T
‖
∫ t

0

D∗µNs−dW
N
s (1)|2−2,p

)
<∞.

Proof. The proof is similar to the proof of Proposition 15. As there, we take an orthonormal basis
(ψk)k≥1, now of W2,p

0 , composed of C∞c −functions. We have

sup
t≤T
‖
∫ t

0

D∗µNs−dW
N
s (1)‖2−2,p = sup

t≤T

∑
k≥1

(

∫ t

0

µNs (ψ′k)dWN
s (1))2 ≤

∑
k≥1

sup
t≤T

(

∫ t

0

µNs (ψ′k)dWN
s (1))2.

Applying first Doob’s and then Jensen’s inequality and finally monotone convergence,

E(sup
t≤T
‖
∫ t

0

D∗µNs−dW
N
s (1)‖2−2,p) ≤ 4

∑
k

E
∫ T

0

µNs (f)(µNs (ψ′k))2ds ≤ 4
∑
k

E
∫ T

0

µNs (f)µNs ((ψ′k)2))ds

= 4E
∫ T

0

µNs (f)

[
1

N

N∑
i=1

∑
k

(ψ′k)2(XN,i
s )

]
ds.

Now we rely on Lemma 7 and use that

‖δx ◦D‖2−2,p =
∑
k

(δx ◦D(ψk))2 =
∑
k

(ψ′k(x))2

to identify ∑
k

(ψ′k)2(XN,i
s ) = ‖δXN,is

◦D‖2−2,p ≤ C(1 + |XN,i
s |2p)

such that

E(sup
t≤T
‖
∫ t

0

D∗µNs−dW
N
s (1)‖2−2,p) ≤ CE

∫ T

0

µNs (f)(1 + µNs (| · |2p))ds,

which, together with our a priori estimate (19), using similar arguments as in the end of the proof of
Proposition 18, allows to conclude that

E(sup
t≤T
‖
∫ t

0

D∗µNs−dW
N
s (1)‖2−2,p) ≤ CT .
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The remainder of the assertion follows once more along the lines of the proof of item (ii) of Proposition
4.7 in [3]

To close this section, we state the following

Lemma 22. Under Assumptions 1, 2 and 3, for any p > 1
2 , the integrals∫ t

0

L∗sη
N
s ds and

∫ t

0

ηNs (f)D∗µNs ds

(where L∗s and D∗ denote the dual operators of Ls and of D) are almost surely well defined as Bochner

integrals in W−3,p
0 . Furthermore, t 7→

∫ t
0
L∗sη

N
s ds and t 7→

∫ t
0
ηNs (f)D∗µNs ds are almost surely strongly

continuous in W−3,p
0 .

The proof of the above lemma is sketched in the beginning of the proof of Proposition 3.5 in [12].

Resuming what we have done so far, we conclude that

Proposition 23. Grant Assumptions 1, 2 and 3. Then for any p > α+ 1
2 , we have the decomposition

in W−3,p
0

(42) ηNt = ηN0 +

∫ t

0

L∗sη
N
s ds+ S∗WN

t + h

∫ t

0

D∗µNs−dW
N
s (1) + h

∫ t

0

ηNs (f)D∗µNs ds+RN,1t ,

where S∗ denotes the dual operator of S : ψ 7→ ψ(0)− ψ(·) and where RN,1t is given in (38).

Moreover,

(43) sup
N

E(sup
t≤T
‖ηNt ‖−3,p) <∞

and t 7→ ηNt belongs to D(R+,W−3,p
0 ) almost surely. In particular,

(44) sup
N

E(sup
t≤T
|ηNt (f)|) <∞.

Remark 24. The above decomposition is stated in W−3,p
0 for any p > α+ 1

2 . This lower bound comes

from the fact that we have to apply ηNt to the jump rate function f which belongs to C4,α, hence to

C3,α ⊂ W3,p
0 under the condition p > α+ 1

2 .

Proof. Decomposition (42) follows from our previous results Proposition 14–21. It implies that

sup
t≤T
‖ηNt ‖−3,p ≤ ‖ηN0 ‖ −3,p +

∫ T

0

‖L∗sηNs ‖−3,pds+ |h|
∫ T

0

‖ηNs (f)D∗µNs ‖−3,pds+ sup
t≤T
‖S∗WN

t ‖−3,p

+ | h| sup
t≤T
‖
∫ t

0

D∗µNs−dW
N
s (1)‖−3,p + sup

t≤T
‖RN,1t ‖−3,p.

We know by Lemma 6 that

E
∫ T

0

‖L∗sηNs ‖−3,pds ≤ CT sup
s≤T

E‖ηNs ‖−2,p+α

which is finite by Proposition 15. Moreover, by Lemma 20,

E
∫ T

0

‖ηNs (f)D∗µNs ‖−3,pds <∞.
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By continuity of the application S, the stochastic integral terms have already been treated in Propo-
sitions 18 and 21 and the remainder term in Proposition 19 such that the conclusion follows. The
proof of the fact that almost surely t 7→ ηNt belongs to D(R+,W−3,p

0 ) is analogous to the proof of
Proposition 4.10 in [3]. Finally we use that | ηNt (f)| ≤ ‖ηNt ‖−3,p‖f‖3,p to deduce (44).

5. Tightness

This section is devoted to the proof of the tightness of the laws of ηN interpreted as stochastic processes
with càdlàg paths taking values in W−4,p

0 , for some p > α + 1
2 . Although the above decomposition

(42) is stated in W−3,p
0 , we shall see in Remark 26 below why we have to add one degree of regularity

and consider the process as process taking values in the bigger space W−4,p
0 .

As it is classically done, we rely on the tightness criterion of Aldous for Hilbert space valued stochastic
processes that we quote from [16]. This criterion reads as follows. A sequence (XN )N≥1 of processes

in D(R+,W−4,p
0 ), defined on a filtered probability space (Ω, (Ft)t≥0,P), is tight if

(1) For every t ≥ 0 and every ε > 0 there exists a Hilbert space H0 such that the embedding

H0 ↪→W−4,p
0 is Hilbert-Schmidt and such that for all t ≥ 0,

(45) sup
N

E(‖XN
t ‖H0

) <∞.

(2) For all ε1, ε2 > 0 and T ≥ 0 there exist δ∗ > 0 and N0 such that for all (Ft)t≥0−stopping
times τN ≤ T,

(46) sup
N≥N0

sup
δ≤δ∗

P(‖XN
τN+δ −XN

τN ‖−4,p ≥ ε1) ≤ ε2.

Theorem 25. Grant Assumptions 1, 2 and 3. Then the sequences of laws of ηN , of WN and of∫ ·
0
D∗µNs−dW

N
s (1) are tight in D(R+,W−4,p

0 ), for any p > α+ 1
2 .

Proof. Step 1. We start studying Condition (45). It is satisfied with H0 = W−2,p+1
0 for ηN as a

consequence of Proposition 15 since the embedding W−2,p+1
0 ↪→W−4,p

0 is of Hilbert-Schmidt type, by

Maurin’s theorem, see Section 7.1 in the Appendix. For WN it even holds with H0 = W−1,p+1
0 , by

Proposition 18, and for
∫ ·

0
D∗µNs−dW

N
s (1), it follows from Proposition 21, with H0 =W−2,p+1

0 .

Step 2. We now check Condition (46) for WN . By Rebolledo’s theorem (see [16], page 40), it is
sufficient to show that it holds for the trace of the processes << WN >> where each << WN >> is the
linear continuous mapping from W4,p

0 to W−4,p
0 given for all ϕ1, ϕ2 ∈ W

4,p
0 by

<<< WN >>t (ϕ1), ϕ2 >=

∫ t

0

µNs (fϕ1ϕ2)ds.
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We take an orthonormal basis (ψk)k of W4,p
0 . Fix some δ∗ > 0. Then for all δ ≤ δ∗,

|Tr << WN >>τN+δ −Tr << WN >>τN |
= |
∑
k

<<< WN >>τN+δ (ψk), ψk > − <<< WN >>τN (ψk), ψk > |

=
∑
k

∫ τN+δ

τN

µNs (fψ2
k)ds =

∫ τN+δ

τN

∑
k

µNs (fψ2
k)ds

=

∫ τN+δ

τN

1

N

N∑
i=1

f(XN,i
s )

∑
k

ψ2
k(XN,i

s )ds =

∫ τN+δ

τN

1

N

N∑
i=1

f(XN,i
s )‖δXN,is

‖2−4,pds.

By Lemma 7, there exists a constant C with ‖δXN,is
‖2−4,p ≤ C(1 + |XN,i

s |2p) such that we may upper
bound the above expression by

Cδ
1

N

N∑
i=1

sup
s≤T+δ

(1 + |XN,i
s |2p)(1 + |XN,i

s |α)

having expectation which is upper bounded uniformly in N by CT δ
∗ thanks to our a priori estimates

(19). This implies (46) for WN .

We now turn to the study of Condition (46) for the martingale MN :=
∫ ·

0
D∗µNs−dW

N
s (1). We have

<<< MN >>t (ψ1), ψ2 >=

∫ t

0

µNs (f)µNs (ψ′1)µNs (ψ′2)ds

such that, using Jensen’s inequality,

|Tr << MN >>τN+δ −Tr << MN >>τN |

= |
∑
k

<<< MN >>τN+δ (ψk), ψk > − <<< MN >>τN (ψk), ψk > |

=
∑
k

∫ τN+δ

τN

µNs (f)(µNs (ψ′k))2ds ≤
∫ τN+δ

τN

µNs (f)
∑
k

µNs ((ψ′k)2)ds,

and the conclusion follows similarly.

Finally, using decomposition (42) and the fact that the sequence of laws of S∗WN (by continuity of
S) and of MN have already been shown to be tight, to show the tightness of ηN , it suffices to check
condition (46) for the remaining terms

T Nt = ηN0 +

∫ t

0

L∗sη
N
s ds+ h

∫ t

0

ηNs (f)D∗µNs ds+RN,1t .

We have

‖T NτN+δ − T NτN ‖−4,p ≤ δ sup
s≤T+δ∗

(
‖L∗sηNs ‖−4,p + |h| ‖ηNs (f)D∗µNs ‖−4,p

)
+

1√
N

sup
t≤T+δ∗

‖
√
NRN,1t ‖−4,p.
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The last term above is controlled thanks to Proposition 19 above, choosing N ≥ N0 for N0 sufficiently
large. Using the same arguments as in the proof of Proposition 15, we have

sup
s≤T+δ∗

‖ηNs (f)D∗µNs ‖−4,p ≤ CT+δ∗ sup
t≤T+δ∗

|ηNt (f)|

+ CT
√
N

(
1

N

N∑
i=1

(1 + sup
t≤T+δ∗

|XN,i
t |p)

)(
1

N

N∑
i=1

(1 + sup
t≤T+δ∗

|XN,i
t |α)

)
1(GNT )c .

Recalling that by (44), supN E supt≤T+δ∗ |ηNt (f)| <∞, we deduce that

sup
N

E sup
s≤T+δ∗

‖ηs(f)D∗µNs ‖−4,p ≤ CT+δ∗.

We conclude the proof recalling that by Lemma 6,

(47) ‖L∗sηNs ‖−4,p ≤ CT+δ∗ sup
s≤T+δ∗

‖ηNs ‖−3,p+α,

which, together with (43) implies the assertion.

Remark 26. The above proof relies on the decomposition (42) and on the uniform in time upper bound

(43) which have been stated in W−3,p
0 . However, the presence of the integral

∫ t
0
L∗sη

N
s ds, canceling one

order of derivative and the fact that (43) does only hold inW−3,p
0 imply that we have to work in W−4,p

0

to be able to obtain the tightness of all terms. This is a crucial difference with respect to [12] and [3].
They both use the upper bound

E
∫ τN+δ

τN

‖L∗sηNs ‖−k,pds ≤ δE
∫ τN+δ

τN

‖L∗sηNs ‖2−k,pds

and are hence able to use a non-uniform in time bound on the expectation of the square of the operator
norm of ηNt . Since we are not able to control the square of the operator norm within our framework,
see Remark 16 above, the prize to pay is to impose one degree of regularity more, as we did here.

Proposition 27. Under Assumptions 1, 2 and 3, for any p > 1/2, the limit laws of ηN , of WN and

of
∫ ·

0
D∗µNs−dW

N
s (1) are supported in C(R+,W−4,p

0 ).

Proof. Following [2], Theorem 13.4, it suffices to show that the maximal jump size within a fixed
time interval converges to 0 almost surely. Let us check this for WN

t , for t ∈ [0, T ]. We have for any

ψ ∈ W4,p
0 ,

(48) ∆WN
t (ψ) =

1√
N

N∑
i=1

ψ(XN,i
t− )∆ZN,it , where ZN,it =

∫
[0,t]×R+

1{z≤f(XN,is− )}π
i(ds, dz).

As a consequence, for all ψ ∈ W4,p
0 with ‖ψ‖4,p = 1, since at each jump time t, only one of the

processes ZN,i has a jump,

sup
t≤T
|∆WN

t (ψ)| ≤ (C/
√
N)(1 + sup

1≤i≤N
sup
t≤T
|XN,i

t |p).

Thanks to Assumption 3, using (18), sup1≤i≤N supt≤T |X
N,i
t |p ≤ C(1 + |NN

T |p). By the strong law of
large numbers, almost surely,

lim
N→∞

|NN
T |p = T pf(2h)p <∞
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such that almost surely,

lim
N→∞

sup
t≤T
|∆WN

t (ψ)| = 0.

Similarly, since ∆ηNt =
√
N ∆µNt ,

∆ηNt (ψ) =
1√
N

N∑
i=1

Sψ(XN,i
t− ) +

h

N

∑
j 6=i

∫ 1

0

ψ′(XN,j
t− + θ

h

N
)dθ

∆ZN,it

and

∆

∫ t

0

µNs−(ψ′)dWN
s (1) =

1√
N

N∑
i=1

 1

N

∑
j

ψ′(XN,j
t− )

∆ZN,it ,

and these terms are treated analogously.

We close this section with the following

Theorem 28. Grant Assumptions 1, 2 and 3. Then the sequence of laws of (UN,i)i≥1 is tight in

D(R+,R)N
∗
.

Proof. Step 1. We first prove that for any fixed n ≥ 1, the sequence of laws of (UN,i)1≤i≤n is
tight in D(R+,Rn). To do so, we rely once more on the criterion of Aldous, now stated for Rn−valued
processes having càdlàg paths, see Jacod and Shiryaev [15, Theorem VI. 4.5 page 356]. More precisely,
writing for short UN = (UN,1, . . . , UN,n) and ‖u‖ =

∑n
i=1 |ui| for the L1− norm on Rn, we shall

prove that

(a) for all T > 0, all ε > 0, limδ↓0 lim supN→∞ sup(S,S′)∈Aδ,T P(‖UNS′ − UNS ‖ > ε) = 0, where Aδ,T is

the set of all pairs of stopping times (S, S′) such that 0 ≤ S ≤ S′ ≤ S + δ ≤ T a.s.,

(b) for all T > 0, limK↑∞ supN P(supt∈[0,T ] ‖UNt ‖ ≥ K) = 0.

To show (b), we start with the decomposition

(49) UN,it =

∫ t

0

b′(X̄i
s)U

N,i
s ds+ hWN

t (1) + h

∫ t

0

ηNs (f)ds

−
∫

[0,t]×R+

UN,is− 1{z≤f(X̄is−)}π
i(ds, dz) +RN,2,it ,

for all 1 ≤ i ≤ n, where

(50)

RN,2,it =

∫ t

0

(∫ 1

0

b′(X̄i
s +

ϑ√
N
UN,is )− b′(X̄i

s)dϑ

)
UN,is ds− h√

N

∫
[0,t]×R+

1{z≤f(X̄is−)}π̃
i(ds, dz)

−
√
N

∫
[0,t]×R+

XN,i
s−

(
1{z≤f(XN,is− )} − 1{z≤f(X̄is−)}

)
πi(ds, dz).

We first show that (49) implies

(51) sup
N

E(sup
s≤T

‖UNs ‖ ) <∞;

once (51) is shown, (b) follows immediately.
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To prove (51), notice that (49) implies

sup
s≤T

‖UNs ‖ ≤ ‖b′‖∞
∫ T

0

‖UNs ‖ds+ h n sup
s≤T

|WN
s (1)|+ h n

∫ T

0

|ηNs (f)|ds

+

n∑
i=1

∫
[0,T ] ×R+

|UN,is− |1{z≤f(X̄is−)}π
i(ds, dz) + sup

s≤T

n∑
i=1

|RN,2,is |.

By (4),

(52) sup
N

E
∫ T

0

‖UNs ‖ds ≤ nTCT .

Moreover, by Burkholder-Davis-Gundy’s inequality for discontinuous martingales and (19) once more,

E sup
s≤T
|WN

s (1)|2 ≤ CE
∫ T

0

µNs (f)ds ≤ CT , such that sup
N

E sup
s≤T
|WN

s (1)| ≤
√
CT .

We also use the upper bound |ηs(f)| ≤ ‖ηNs ‖−3,α+1‖f‖3,α+1 and (44) to deal with the term hn
∫ T

0
|ηNs (f)|ds.

Moreover, since for all s ≤ T and for all 1 ≤ i ≤ n, X̄i
s− ≤ C̄T by (22) such that f(X̄i

s−) ≤ f(C̄T ),

n∑
i=1

E
∫

[0,T ] ×R+

|UN,is− |1{z≤f(X̄is−)}π
i(ds, dz) ≤ f(C̄T )E

∫ T

0

|UNs |ds

which is treated using (52).

Finally to deal with supt≤T |R
N,2,i
t |, the first term appearing in the decomposition of RN,2,i is upper

bounded by

‖b′′‖∞N −1/2

∫ T

0

|UN,is |ds,

having expectation bounded by CT /
√
N.

Concerning the second term appearing in the decomposition of RN,2,i, using once more that f(X̄i
s−) ≤

f(C̄T ), for all s ≤ T, we have that

E| h√
N

∫
[0,T ]×R+

1{z≤f(X̄is−)}π̃
i(ds, dz)| ≤ Tf(C̄T )2h/

√
N.

Moreover, using the set GNT introduced in (20) above and the fact that sups≤T |XN,i
s | ≤ CT on GNT ,

we have the upper bound for the last term appearing in the decomposition of RN,2,i

sup
t≤T
|
√
N

∫
[0,T ]×R+

XN,i
s−

(
1{z≤f(XN,is− )} − 1{z≤f(X̄is−)}

)
πi(ds, dz)|

≤ CT
√
N

∫
[0,T ]×R+

∣∣∣1{z≤f(XN,is− )} − 1{z≤f(X̄is−)}

∣∣∣πi(ds, dz)+
1(GNT )c sup

s≤T
|XN,i

s |
√
N

∫
[0,T ]×R+

[1{z≤f(XN,is− )} + 1{z≤f(C̄T )}]π
i(ds, dz).

The first line of the rhs is treated using (24), the second using the a priori estimates (19) and the
deviation estimate on P((GNT )c). All in all this implies

n∑
i=1

sup
N

E sup
t≤T
|
√
N

∫
[0,t]×R+

XN,i
s−

(
1{z≤f(XN,is− )} − 1{z≤f(X̄is−)}

)
πi(ds, dz)| ≤ CT <∞,
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and we have just finished the proof of (51).

We finish this step with the observation that supt≤T |R
N,2,i
t | converges to 0 in probability, as N →∞,

for any 1 ≤ i ≤ n. We only need to consider

sup
t≤T
|
√
N

∫
[0,t]×R+

XN,i
s−

(
1{z≤f(XN,is− )} − 1{z≤f(X̄is−)}

)
πi(ds, dz)|

≤
√
N sup

t≤T
|XN,i

t | ‖ZN,i − Z̄i‖TV,[0,T ],

such that for any ε > 0,

(53) P(sup
t≤T
|
√
N

∫
[0,t]×R+

XN,i
s−

(
1{z≤f(XN,is− )} − 1{z≤f(X̄is−)}

)
πi(ds, dz)| ≥ ε)

≤ P(‖ZN,i − Z̄i‖TV,[0,T ] ≥ 1) ≤ E‖ZN,i − Z̄i‖TV,[0,T ] ≤ CTN−1/2 → 0

as N →∞, where we have used once more (24).

Finally, (a) follows from the fact that (49) implies

‖UNS′ − UNS ‖ ≤ Cδ
(

sup
s≤T
‖UNs ‖+ n sup

s≤T
|ηs(f)|

)
+

n∑
i=1

∫
[S,S′]×R+

|UN,is− |1{z≤f(X̄is−)}π
i(ds, dz) + sup

t≤T

n∑
i=1

|RN,2,it |

+ hn|WN
S′ (1)−WN

S (1)|.

The first line of the rhs is treated using (51) and (44). To deal with the second line we use that

n∑
i=1

E
∫

[S,S′] ×R+

|UN,is− |1{z≤f(X̄is−)}π
i(ds, dz) ≤ f(C̄T )E

∫ S′

S

‖UNs ‖ds ≤ f(C̄T )δE sup
s≤T

‖UNs ‖

and that supt≤T
∑n
i=1 |R

N,2,i
t | converges to 0 in probability. Finally,

E|WN
S′ (1)−WN

S (1)|2 = E
∫ S′

S

µNs (f)ds ≤ δE sup
s≤T

f(XN,1
s ) = CT δ.

This concludes the proof of the fact that the sequence of laws of (UN,i)1≤i≤n is tight in D(R+,Rn).

Step 2. As a consequence of the first step we obtain the weaker result that for all n ≥ 1, the sequence
of laws of (UN,i)1≤i≤n is tight in D(R+,R)n. As a consequence, the sequence of laws of (UN,i)i≥1 is

tight in D(R+,R)N
∗
.

6. Characterization of the limit

In this section we study the possible limits of the sequence of ηN . Recall the definition of W in (16).
We start with the following preliminary result.

Proposition 29. Grant Assumptions 1, 2 and 3. Then for any p > α+ 1
2 , the sequence of processes

WN converges in D(R+,W−4,p
0 ) to W.
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Proof. We have already proven the tightness of WN . To identify any possible limit, consider, for any
ψ1, ψ2 ∈ W

4,p
0 , the difference

< << WN >>t (ψ1), ψ2 > −
∫ t

0

< gs, ψ1ψ2f > ds =

∫ t

0

< µNs − gs, ψ1ψ2f > ds.

We have that

E|
∫ t

0

< µNs − gs, ψ1ψ2f > ds| = 1√
N

E|
∫ t

0

< ηNs , ψ1ψ2f > ds| → 0

as N →∞, where this last convergence follows from Proposition 23 and Sobolev’s embedding theorem.
More precisely, since f ∈ C3,α and ψ1 ∈ W

4,p
0 ⊂ C3,p, we have ψ1ψ2f ∈ W

3,2p+α
0 such that

| < ηNs , ψ1ψ2f > | ≤ sup
s≤t
‖ηNs ‖3,2p+α‖ψ1ψ2f‖3,2p+α.

Moreover we have already shown that the maximal jump size of WN converges to 0 almost surely.
Then the result follows from Rebolledo’s central limit theorem for local martingales, following the
lines of the proof of Prop. 5.3 in [3].

Coming back to the decomposition of ηN in (42), we see that we need to consider the joint convergence
of S∗WN and

∫ ·
0
µNs−dW

N
s (1) since both martingales depend on the same underlying Poisson noise.

Proposition 30. Grant Assumptions 1, 2 and 3 and fix p > α+ 1
2 . Then we have convergence in law

in D(R+,W−4,p
0 ×W4,p

0 ) of (S∗WN ,
∫ ·

0
D∗µNs−dW

N
s (1)) to the limit process

(S∗W,

∫ ·
0

D∗gsdWs(1)).

Proof. We have already shown the tightness of (S∗WN ,
∫ ·

0
D∗µNs−dW

N
s (1)), and we know that we have

convergence in law WN →W. To prove the above convergence we first decompose∫ ·
0

D∗µNs−dW
N
s (1) =

∫ ·
0

D∗gsdW
N
s (1) +RN,3,

where

(54) RN,3 =

∫ ·
0

D∗(µNs− − gs)dWN
s (1).

Step 1. We show that E[supt≤T ‖R
N,3
t ‖2−4,p] → 0 as N → ∞. For that sake, let (ψk)k be an

orthonormal basis of W4,p
0 , composed of C∞c −functions. We have that

sup
t≤T
‖RN,3t ‖2−4,p ≤

∑
k

sup
t≤T

(∫ t

0

(µNs− − gs)(ψ
′
k)dWN

s (1)

)2

,

such that

E sup
t≤T
‖RN,3t ‖2−4,p ≤ 4

∑
k

E
∫ T

0

µNs (f)[(µNs − gs)(ψ
′
k)]2ds ≤ CE

∫ T

0

µNs (f)‖D∗(µNs − gs)‖2−4,pds.

On GNT , we upper bound

‖D∗(µNs − gs)‖2−4,p ≤ C‖µNs − gs‖2−3,p ≤ C‖µNs − gs‖−3,p sup
s≤T

(
‖µNs ‖−3,p + ‖gs‖−3,p

)
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and use that on GNT , sups≤T µ
N
s (f)

(
‖µNs ‖−3,p + ‖gs‖−3,p

)
≤ CT such that

E
(

sup
t≤T
‖RN,3t ‖2−4,p1GNT

)
≤ CTE

∫ T

0

‖µNs − gs‖−3,pds =
CT√
N

E
∫ T

0

‖ηNs ‖−3,pds,

which converges to 0 as N →∞ thanks to Proposition 15. Moreover, on (GNT )c, we upper bound

‖D∗(µNs − gs)‖2−4,p ≤ C‖µNs − gs‖2−3,p ≤ CT (1 + ‖µNs ‖2−3,p).

Using (18), we have

‖µNs ‖2−3,p ≤ C
(

1 +
(
NN
T

)2p)
.

Together with a similar bound for µNs (f), we obtain

E
(

sup
t≤T
‖RN,3t ‖2−4,p1(GNT )c

)
≤ CT e−(c2/2)NT → 0

as N →∞.
As a consequence of this step, it suffices to prove the convergence in law

(S∗WN ,

∫ ·
0

D∗gsdW
N
s (1))→ (S∗W,

∫ ·
0

D∗gsdWs(1)),

as N →∞.
Step 2. We now replace the process D∗gs serving as integrand by a process which is piecewise
constant over time intervals of step-size ε > 0. We put

gεs := gδ(s), δ(s) = kε for all kε ≤ s < (k + 1)ε, k ≥ 0,

and let

Mε :=

∫ ·
0

D∗(gεs − gs)dWs(1).

Using similar arguments as in Step 1, we have

E sup
s≤T
‖Mε

s ‖2−4,p ≤ C
∑
k

∫ T

0

gs(f)[(gεs − gs)(ψ
′
k)]2ds ≤ CT

∫ T

0

‖gεs − gs‖2−3,pds.

Using Lemma 34 stated in the Appendix below, this last expression is upper bounded by CT ε
2.

We introduce similarly

MN,ε :=

∫ ·
0

D∗(gεs − gs)dWN
s (1)

and have, since supN E sups≤T µ
N
s (f) ≤ CT ,

E sup
s≤T
‖MN,ε

s ‖2−4,p ≤ C
∑
k

E
∫ T

0

µNs (f)[(gεs − gs)(ψ
′
k)]2ds ≤ CT

∫ T

0

‖gεs − gs‖2−3,pds ≤ CT ε2,

where the constant CT does not depend on N. As a consequence of this step, it suffices to prove the
joint convergence of

(S∗WN ,

∫ ·
0

D∗gεsdW
N
s (1))→ S∗W,

∫ ·
0

D∗gεsdWs(1)),

as N →∞, for each fixed ε > 0.
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Step 3. To do so, it suffices to prove convergence of the marginal laws

(55) ((S∗WN
t1 ,

∫ t1

0

D∗gεsdW
N
s (1)), . . . , (S∗WN

tk
,

∫ tk

0

D∗gεsdW
N
s (1)))

to the associated limit

(56) ((S∗Wt1 ,

∫ t1

0

D∗gεsdWs(1)), . . . , (S∗Wtk ,

∫ tk

0

D∗gεsdWs(1))),

for any k ≥ 1, t1 ≤ t2 ≤ . . . ≤ tk ≤ T. Note that we can rewrite∫ t

0

D∗gεsdW
N
s (1) =

∑
k:kε≤t

D∗gεkε

(
WN

(k+1)ε∧t(1)−WN
kε(1)

)
.

Since we have convergence in law in D(R+,R) of WN (1) to the limit process W (1) which is continuous,
the above expression converges in law to∑

k:kε≤t

D∗gεkε
(
W(k+1)ε∧t(1)−Wkε(1)

)
=

∫ t

0

D∗gεsdWs(1),

such that the convergence in law of (55) to (56) is indeed implied. Finally, letting ε → 0, the
convergence of the finite dimensional distributions

((S∗WN
t1 ,

∫ t1

0

D∗gsdW
N
s (1)), . . . , (S∗WN

tk
,

∫ tk

0

D∗gsdW
N
s (1)))

to the associated limit

((S∗Wt1 ,

∫ t1

0

D∗gsdWs(1)), . . . , (S∗Wtk ,

∫ tk

0

D∗gsdWs(1)))

follows, and this concludes the proof.

We close this section with the following partial result.

Theorem 31. For any fixed n ≥ 1, under Assumptions 1, 2 and 3 and for any p > α+ 1
2 , any limit

((Ū i)1≤i≤n, η̄) of ((UN,i)1≤i≤n, η
N ) is solution in D(R+,Rn)×C(R+,W−4,p

0 ) of the following system
of stochastic differential equations
(57)

Ū it =

∫ t

0

b′(X̄i
s)Ū

i
sds+ h

∫ t

0

η̄s(f)ds−
∫

[0,t]×R+

Ū is−1{z≤f(X̄is−)}π
i(ds, dz) + hWt(1), t ≥ 0, 1 ≤ i ≤ n,

and for any ϕ ∈ W5,p
0 ,

(58) η̄t(ϕ) = η̄0(ϕ) +

∫ t

0

η̄s(Lsϕ)ds+ h

∫ t

0

gs(ϕ
′)η̄s(f)ds+Wt(Sϕ) + h

∫ t

0

gs(ϕ
′)dWs(1), t ≥ 0.

Remark 32. We have stated the decomposition (42) in W−4,p
0 . However, the operator Ls appearing

in (58) above reduces regularity by one, such that test functions ϕ ∈ W4,p
0 are reduced to test functions

in W3,p+α
0 . Yet, we have proven tightness of (ηN )N only in W−4,p

0 , such that we have to state the

above decomposition in W−5,p
0 , although the limit process η̄ takes values in the smaller space W4,p

0 .
This is analogous to Remark 5.7 in [3].
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Proof. Step 1. We have already proven the tightness of the sequence of laws of (UN,i)1≤i≤n. To
characterize the dependencies between Ū i, X̄i and πi in the limit, we now consider the càdlàg process

YN := (UN,i, X̄i,

∫
[0,·] ×R+

UN,is− 1{z≤f(X̄is−)}π
i(ds, dz))1≤i≤n

which belongs to D(R+,R3n).

Using analogous arguments as those in the proof of Theorem 28 allows to deduce the tightness of the
sequence of processes YN in D(R+,R3n). Details of the proof are omitted.

Step 2. Due to the previous step and the continuity of any limit law of (ηN ,WN ,
∫ ·

0
D∗gsdW

N
s (1)),

we know that(UN,i, X̄i,

∫
[0,·] ×R+

UN,is− 1{z≤f(X̄is−)}π
i(ds, dz)

)
1≤i≤n

, ηN ,WN ,

∫ ·
0

D∗gsdW
N
s (1)


is tight in

D(R+,R3n ×W−4,p
0 ×W−4,p

0 ×W−4,p
0 ).

In what follows we assume without loss of generality that the above sequence converges to some limit(
(Ū i, X̄i, V̄ i)1≤i≤n, η̄,W,

∫ ·
0

D∗gsdWs(1)

)
,

where, to simplify notation, we use the same letter X̄i to denote the limit process as well as the one
defining the second coordinates of YN .
To identify the limit, let (ψk)k be an orthonormal basis of W4,p

0 , composed of C∞c −functions. Define

for any k the functional Fk : D(R+,W−4,p
0 ×W−4,p

0 ×W−4,p
0 )→ D(R+,R) by

Fk(f1, f2, f3)t =< f1
t , ψk > − < f1

0 , ψk > −
∫ t

0

< f1
s , Lsψk > ds− h

∫ t

0

< f1
s , f >< gs, ψ

′
k > ds

− < f2
t , Sψk > −h < f3

t , ψk >

and G : D(R+,R× R×W−4,p
0 ×W−4,p

0 )→ D(R+,R) by

G(g1, g2, f1, f2)t = g1
t − g1

0 −
∫ t

0

b′(g2
s)g1

sds− h
∫ t

0

< f1
s , f > ds− h < f2

t , 1 > .

Then the system (57)–(58) is equivalent to

Fk(η̄,W, h

∫ ·
0

D∗gsdWs(1)) = 0, G(Ū i, X̄i, η̄,W ) = −
∫

[0,·]×R+

Ū is−1{z≤f(X̄is−)}π
i(ds, dz),

for all k ≥ 1 and for all i ≥ 1.

Step 2.1. In this step we show that Fk(η̄,W, h
∫ ·

0
D∗gsdWs(1)) = 0. We first prove that Fk is

continuous at every point (f1, f2, f3) ∈ C(R+,W−4,p
0 ×W−4,p

0 ×W−4,p
0 ). Indeed, the continuity of

f1 7→
(
t 7→< f1

t , ψk > − < f1
0 , ψk > −

∫ t

0

< f1
s , Lsψk > ds− h

∫ t

0

< f1
s , f >< gs, ψ

′
k > ds

)
at every point f1 ∈ C(R+,W−4,p

0 ) follows as in the proof of Theorem 5.6 of [3]. Similarly, the
functionals

f2 7→
(
t 7→< f2

t , Sψk >
)

and f3 7→
(
t 7→< f3

t , ψk >
)

are continuous as well at every point f2 and f3 belonging to C(R+,W−4,p
0 ).
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Step 2.2. Before proceeding further, we rewrite (42) as follows

(59) ηNt = ηN0 +

∫ t

0

L∗sη
N
s ds+ S∗WN

t + h

∫ t

0

D∗gsdW
N
s (1) + h

∫ t

0

ηNs (f)D∗gsds+ RN,4t ,

where, recalling (54), RN,4t = RN,1t + hRN,3t + h
∫ ·

0
ηNs (f)D∗(µNs − gs)ds has already been shown to

converge to 0 in W−4,p
0 ; that is,

lim
N→∞

E sup
t≤T

‖RN,4t ‖−4,p = 0.

Writing for short MN =
∫ ·

0
D∗gsdW

N
s (1), (59) implies that for all t ≥ 0,

Fk(ηN ,WN ,MN )(t) = RN,4t (ψk) and E(sup
t≤T
|RN,4t |(ψk)|2)→ 0

as N →∞. Therefore, we have convergence in probability,

sup
t≤T

|Fk(ηN ,WN ,MN )(t)| → 0.

On the other hand, by the continuous mapping theorem, we have convergence in law Fk(ηN ,WN ,MN )→
Fk(η̄,W,

∫ ·
0
D∗gsdWs(1)); this allows to identify the limit which has to equal the zero-process.

Step 2.3. We now turn to the study of G. Firstly, G is continuous at every point (g1, g2, f1, f2) ∈
D(R+,R2)× C(R+,W−4,p

0 ×W−4,p
0 ). Indeed we only need to check the continuity of

(g1, g2) 7→
(
t 7→

∫ t

0

b′(g2
s)g1

sds

)
at every point (g1, g2) ∈ D(R+,R2), which follows from the basic properties of the Skorokhod topology.
From (49) we have that

G(UN,i, X̄i, ηN ,WN ) = RN,2,i −
∫

[0,·]×R+

UN,is− 1{z≤f(X̄is−)}π
i(ds, dz),

and by (53), RN,2,i converges to 0 in probability, for the uniform convergence on finite time intervals,
for any fixed i. This implies that

G(Ū i, X̄i, η̄,W ) = −V̄ i.

It remains to identify

(60) V̄ i =

∫
[0,·]×R+

Ū is−1{z≤f(X̄is−)}π
i(ds, dz),

for each 1 ≤ i ≤ n.
In what follows, we write for short V N,i =

∫
[0,·]×R+

UN,is− 1{z≤f(X̄is−)}π
i(ds, dz). We already know that

(UN,i, V N,i, X̄i)1≤i≤n converges in law to (Ū i, V̄ i, X̄i)1≤i≤n, where once more, by abuse of notation,
we use the same letter X̄i for the limit process of the third coordinate. Moreover, (V N,i, X̄i)1≤i≤n is
a semimartingale taking values in R2n with characteristics

BN,i =

(∫ ·
0

UN,is f(X̄i
s)ds,

∫ ·
0

[b(X̄i
s)− X̄i

sf(X̄i
s) + hgs(f)]ds

)
, 1 ≤ i ≤ n,

CN = 0, νN (dt, dv, dx) =

n∑
i=1

f(X̄i
t−)dt

 n∏
j=1,j 6=i

δ(0,0)(dv
j , dxj)⊗ δ(−UN,it− ,−X̄it−)(dv

i, dxi)

 .
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Clearly we have weak convergence (V N,i, X̄i, BN,i)1≤i≤n → (V̄ i, X̄i, B̄i)1≤i≤n where

B̄i =

(∫ ·
0

Ū isf(X̄i
s)ds,

∫ ·
0

[b(X̄i
s)− X̄i

sf(X̄i
s) + hgs(f)]ds

)
,

by the continuity properties of the Skorokhod topology and since (UN,i, X̄i)1≤i≤n → (Ū i, X̄i)1≤i≤n.

It is shown analogously that we have weak convergence g∗νN → g∗ ν̄, for any continuous and bounded
test function g, where

ν̄ =

n∑
i=1

f(X̄i
t−)dt

 n∏
j=1,j 6=i

δ(0,0)(dv
j , dxj)⊗ δ(−Ūit−,−X̄it−)(dv

i, dxi)

 .

Then Jacod and Shiryaev [15, Theorem 2.4 page 528] implies that necessarily (V̄ i, X̄i)1≤i≤n is a
semimartingale with characteristics (B̄, 0, ν̄). Finally, the representation theorem [15, Theorem III.2.26
page 157] implies that there exist n independent Poisson random measures which, by abuse of notation,
we still denote πi(ds, dz), having Lebesgue intensity, such that

X̄i
t = X̄i

0 +

∫ t

0

b(X̄i
s)ds+

∫ t

0

hgs(f)ds−
∫

[0,·]×R+

X̄i
s−1{z≤f(X̄is−)}π

i(ds, dz)

and

V̄ it =

∫
[0,·]×R+

Ū is−1{z≤f(X̄is−)}π
i(ds, dz).

This gives the desired identity (60) and thus finishes our proof.

We close this section with the

Proof of Theorem 4. Theorem 25 implies the tightness of (ηN ) and Theorem 28 the tightness of
(UN,i)1≤i≤n for any fixed n ≥ 1. Moreover, Theorem 31 implies that any limit ((Ū i)1≤i≤n, η̄) of
((UN,i)1≤i≤n, η

N ) is solution of the system of differential equations (57)–(58). Finally, under the ad-
ditional assumption p > 2α+ 1

2 , Theorem 10 implies pathwise uniqueness for this limit system, and the
Yamada-Watanabe theorem allows to deduce weak uniqueness and thus the uniqueness of the limit
law implying the weak convergence of ((UN,i)1≤i≤n, η

N ) in D(R+,Rn)×D(R+,W−4,p
0 ). This implies

the weaker convergence of ((UN,i)1≤i≤n, η
N ) in D(R+,R)n×D(R+,W−4,p

0 ) and thus the convergence

of the infinite sequence ((UN,i)i≥1, η
N ) in D(R+,R)N

∗ ×D(R+,W−4,p
0 ).

7. Appendix

7.1. Useful results on weighted Sobolev spaces. In what follows we collect the most important
facts about weighted Sobolev spaces, see [1] and also Section 2.1 of [12]. First of all, obviously, for all
k ≤ k′,
(61) ‖ · ‖k,p ≤ ‖ · ‖k′,p, implying that ‖ · ‖−k′,p ≤ ‖ · ‖−k,p.
We also have that for all p ≤ p′,

‖ · ‖k,p′ ≤ C‖ · ‖k,p, implying that ‖ · ‖−k,p ≤ C‖ · ‖−k,p′ .

Finally, Ck,α ⊂ Wk,p
0 for any p > α + 1

2 . In particular, constant functions belong to Wk,p
0 for any

p > 1
2 .

The following embeddings have been used throughout this paper.
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(1) Sobolev embedding. There exists a constant C such that for all m ≥ 1, k ≥ 0 and p ≥ 0,

(62) ‖ψ‖Ck,p ≤ C‖ψ‖m+k,p.

(2) Maurin’s theorem. The embedding Wm+k,p
0 ↪→Wk,p+p′

0 is of Hilbert-Schmidt type for any
m ≥ 1, k ≥ 0 and p ≥ 0, p′ > 1/2. This implies that the embedding is compact and that there
exists a constant C such that

‖ψ‖k,p+p′ ≤ C‖ψ‖k+m,p.

(3) The dual embedding W−k,p+p
′

0 ↪→W−(k+m),p
0 is of Hilbert-Schmidt type.

We have also used several times that for any k, p ≥ 0, there exists an orthonormal basis composed of

C∞c − functions (ψi)i of Wk,p
0 such that for any element w ∈ W−k,p0 ,

‖w‖2−k,p =
∑
i

< w,ψi >
2 .

We now give the proof of some of the results stated in Lemma 6. It follows the arguments given in
the proof of Lemma 4.1 and Lemma 4.2 in [3].

Proof of Lemma 6. We quickly show that S is a continuous mapping from Wk,p
0 to itself, following

the arguments of [3]. Since (Sϕ)(x) = ϕ(0)− ϕ(x), we have that

‖Sϕ‖2k,p ≤ 2

∫ ∞
0

| ϕ(0)|2

1 + |x|2p
dx+ 2‖ϕ‖2k,p = C| ϕ(0)|2 + 2‖ϕ‖2k,p,

where C = 2
∫∞

0
1

1+|x|2p dx <∞ since p > 1/2. The conclusion then follows from |ϕ(0)| ≤ ‖ϕ‖C0,p ≤
C‖ϕ‖k,p for any k ≥ 1, by the Sobolev embedding theorem. The other points of the lemma follow
similarly.

7.2. Proof of Lemma 8. A straightforward adaptation of [13, Prop.15] yields

Proposition 33. Grant Assumptions 1 and 2. Then for all t ≥ 0, all i = 1, . . . , N ,

XN,i
t ≤ XN,i

0 + 3X̄N
0 + 4b̄t+ 4hNN

t ,(63)

1

N

N∑
j=1

∫ t

0

∫ ∞
0

(h+XN,j
s− )1{z≤f(XN,js− )}π

j(ds, dz) ≤ 3X̄N
0 + 3b̄t+ 4hNN

t ,(64)

where NN
t := N−1

∑N
j=1

∫
[0,t] ×R+

1{z≤f(2h)}π
j(ds, dz) and where b̄ > 0 is such that b(x) ≤ b̄ for all

x ≥ 0.

Proof. For the convenience of the reader we briefly sketch how to adapt the proof of [13] to the present
frame. Taking the (empirical) mean of (2) and using that b is upper bounded by a positive constant,
say b̄, we find

(65) X̄N
t ≤ X̄N

0 + b̄t+
1

N

N∑
i=1

∫
[0,t] ×R+

(
h
N − 1

N
−XN,i

s−

)
1{z≤f(XN,is− )}π

i(ds, dz)

which implies

1

N

N∑
i=1

∫
[0,t] ×R+

(XN,i
s− − h)1{z≤f(XN,is− )}π

i(ds, dz) ≤ X̄N
0 + b̄t.
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Using that x− h ≥ (x+ h)/3− (4/3)h1{x≤2h} for all x ≥ 0 and that f is non-decreasing, we deduce
that

1

N

N∑
i=1

∫
[0,t] ×R+

(h+XN,i
s− )1{z≤f(XN,is− )}π

i(ds, dz)

≤ 3X̄N
0 + 3b̄t+

4h

N

N∑
i=1

∫
[0,t] ×R+

1{XN,is− ≤2h}1{z≤f(XN,is− )}π
i(ds, dz)

≤ 3X̄N
0 + 3b̄t+

4h

N

N∑
i=1

∫
[0,t] ×R+

1{z≤f(2h)}π
i(ds, dz).

Now, for all 1 ≤ i ≤ N , starting from (2),

XN,i
t ≤ XN,i

0 + b̄t+
h

N

N∑
j=1

∫
[0,t] ×R+

1{z≤f(XN,js− )}π
j(ds, dz) ≤ XN,i

0 + 3X̄N
0 + 4b̄t+ 4hNN

t ,

which concludes.

The proof of (19) then follows from the fact that NN
t = U/N where U ∼ Poiss(Ntf(2h)) and that

g0 is of compact support.

We finally give the

Proof of (22). We adapt the proof of Proposition 14 of [13] to the present frame. Since f is non-
decreasing, we have that f(x)(h−x) = −xf(x)/2 + f(x)(h−x/2) ≤ −xf(x)/2 + f(2h)h for all x ≥ 0.
Taking expectation in (3), we therefore obtain that

E(X̄i
t) ≤ E(X̄i

0) + b̄t+

∫ t

0

E(f(X̄i
s)(h− X̄i))ds ≤ E(X̄i

0) + [b̄+ f(2h)h]t− 1

2

∫ t

0

E(X̄i
sf(X̄i

s))ds.

Since E(X̄i
t) ≥ 0, this implies∫ t

0

E(X̄i
sf(X̄i

s))ds ≤ 2E(X̄i
0) + 2[b̄+ f(2h)h]t.

We conclude using that f(x) ≤ C(1 + xf(x)) and observing that

X̄i
t ≤ X̄i

0 + b̄t+ h

∫ t

0

E(f(X̄i
s))ds ≤ X̄i

0 + b̄t+ h

∫ t

0

E(C(1 + X̄i
sf(X̄i

s)))ds.

This finishes the proof of Lemma 8.

7.3. Useful properties of the limit process.

Lemma 34. For any p ≥ 0, gt is continuous in W−2,p
0 , and for all t, t + h ≤ T, we have ‖gt+h −

gt‖−2,p ≤ CTh.

Proof. We have for all ψ ∈ W2,p
0 ,

gt+h(ψ)− gt(ψ) = E[ψ(X̄1
t+h)− ψ(X̄1

t )] =

∫ t+h

t

ELsψ(X̄1
s )ds.

Using the Sobolev embedding theorem and Lemma 6, since |X̄s| ≤ C̄T for all s ≤ T,
|Lsψ(X̄s)| ≤ ‖Lsψ‖C0,p+α(1 + |X̄s|p+α) ≤ CT ‖Lsψ‖1,p+α ≤ CT ‖ψ‖2,p
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implying that

|gt+h(ψ)− gt(ψ)| ≤ CTh‖ψ‖2,p,
which concludes the proof.

We continue this section with the

Proof of Proposition 11. Step 1. Firstly, since g0 is of compact support, gt is of compact support as
well, for any fixed t ≥ 0, due to the a priori upper bound (22).

Moreover, we obtain similarly to Lemma 24 in [13] the representation

(66) X̄i
t = ϕ0,t(X̄

i
0)1{τt=0} + ϕτt,t(0)1{τt>0},

where τ t = sup{s ≤ t : ∆X̄i
s 6= 0} = t − L̄it is the last jump time of neuron i, before time t. Here we

put sup ∅ := 0 if no such jump has happened. Using similar arguments as those in Proposition 25 in
[13], the law of τ t is given by

L(τ t)(ds) = E(e−
∫ t
0
f(ϕ0,u(Xi0))du)δ0(ds) + gs(f)e−

∫ t
s
f(ϕs,u(0))duds.

Since X̄i
0 ∼ g0(x)dx, clearly X̄i

0 > 0 almost surely, which implies that ϕ0,t(X̄
i
0) > 0 almost surely as

well, by the properties of the deterministic flow. Since P(τ t = 0) > 0, this implies, using (66), that
gt(f) ≥ E(f(ϕ0,t(X̄

i
0))1{τt=0}) > 0 for all t ≥ 0 since f(x) > 0 for all x > 0.

Having this established, using a change of variables relying on the regularity of the initial law g0 for
the first term of (66) and a change of variables relying on the density of τ t on (0, t) within the second
term of (66), we deduce the explicit form

(67) gt(y) =
gt(f)

b(0) + hgt(f)
e
−

∫ t
βt(y)

(b′(ϕβt(y),s(0)))+f(ϕβt(y),s(0)))ds
1{y<ϕ0,t(0)}

+ e−
∫ t
0

(b′(ϕ−1
s,t(y))+f(ϕ−1

s,t(y)))dsg0 ◦ ϕ−1
0,t (y)1{y≥ϕ0,t(0)},

where ϕ−1
0,t (y) denotes the inverse flow satisfying ϕ−1

0,t (ϕ0,t(y)) = y and where ϕ−1
s,t (y) = ϕ0,s ◦ ϕ−1

0,t (y).

In the above formula, βt(y) denotes the unique real in ]0, t] satisfying

(68) ϕβt(y),t(0) = y,

for any y < ϕ0,t(0).

Step 2. Standard arguments show that

∂ϕs,t(0)

∂s
= −(hgs(f) + b(0))e

∫ t
s
b′(ϕs,u(0))du < 0

since gs(f) > 0 and b(0) ≥ 0. Thus, the function [0, t] 3 s 7→ ϕs,t(0) is strictly decreasing. The function
s 7→ gs(f) being continuous, the function [0, t] 3 s 7→ ϕs,t(0) also differentiable. As a consequence, its
inverse function βt is differentiable as well.

Therefore, for any fixed t > 0, the Lebesgue density gt(y) is differentiable at every point y 6= ϕ0,t(0).
The fact that

s 7→
∫ ∞

0

(1 + xp)|g′s(x)|dx is locally bounded

follows easily from the above explicit representation.

We finally give the
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Proof of Proposition 13. Step 1. Before starting the proof, let us first mention that a simple change
of variables formula implies that for any fixed s < t, the mapping ψ 7→ [x 7→ ψ ◦ϕs,t(x)] is continuous

from W6,p
0 → W6,p

0 for any p ≥ 0, where we recall that ϕs,t(x) = x+
∫ t
s
b(ϕs,u(x))du+ h

∫ t
s
gu(f)du.

This follows from the fact that b is bounded by a positive constant and that all derivatives of b up to
order 6 are bounded. Moreover we have

‖ψ ◦ ϕs,t‖6,p ≤ CT ‖ψ‖6,p,

for all s ≤ t ≤ T.
Step 2. Introduce now for any 0 ≤ s ≤ t and x ≥ 0 the process

(69) Ȳs,t(x) = x+

∫ t

s

(
hgu(f) + b(Ȳs,u(x)))

)
du−

∫
]s,t]×R+

Ys,u−(x)1{z≤1}π
1(du, dz);

that is, Ȳs,t(x) follows the same dynamic as Ys,t(x), but jumps occur at constant rate 1. We still have
the upper bound

(70) Ȳs,t(x) ≤ x+ C̄T , for all s ≤ t ≤ T.

Let us write for short

Πt =

∫
[0,t]×R+

1{z≤1}π
1(du, dz),

that is, (Πt)t is the Poisson process having intensity 1 governing the jumps of Ȳ . Write T1 < T2 <
. . . < Tn < . . . for the successive jumps of (Πt)t. Then Girsanov’s theorem for jump processes, see
[14], implies that

Ps,tψ(x) = Eψ(Ys,t (x)) = E

ψ(Ȳs,t (x))
∏

n:Tn∈]s,t]

f(Ȳs,Tn−(x))e−
∫ t
s

[f(Ȳs,u(x))−1]du

 .

We notice that for all t < T1(s) := inf{Tn : Tn > s}, Ȳs,t (x) = ϕs,t(x). Therefore,

Ps,tψ(x) = ψ(ϕs,t(x))e−
∫ t
s

(f(ϕs,u(x))−1)duP(t < T1(s))

+ et−sE
(
f(ϕs,T1(s)(x))e−

∫ T1(s)
s

f(ϕs,u(x))duQ1
T1(s),t(ψ); t ≥ T1(s)

)
,

where

Q1
T1(s),t(ψ) = ψ(Ȳs,t(x))

∏
n:Tn∈]T1(s),t]

f(Ȳs,Tn−(x))e
−

∫ t
T1(s)

f(Ȳs,u(x))du
.

Using the strong Markov property at time T1(s) and the fact that at time T1(s), Ȳs,T1(s)(x) = 0 is
reset to 0 and thus forgets its starting position x at this time, we obtain

E
(
f(ϕs,T1(s)(x))e−

∫ T1(s)
s

f(ϕs,u(x))duQ1
T1(s),t(ψ); t ≥ T1(s)

)
=

∫ t−s

0

e−vf(ϕs,s+v(x))e−
∫ s+v
s

f(ϕs,u(x))duQ2
s,v,t(ψ)dv,

where

Q2
s,v,t(ψ) = E

ψ(Ȳs+v,t(0))
∏

n:Tn∈]s+v,t]

f(Ȳs+v,Tn−(0))e−
∫ t
s+v

f(Ȳs+v,u(0))du

 .
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Summarizing, we have

Ps,tψ(x) = ψ(ϕs,t(x))e−
∫ t
s
f(ϕs,u(x))du + et−s

∫ t−s

0

e−vf(ϕs,s+v(x))e−
∫ s+v
s

f(ϕs,u(x))duQ2
s,v,t(ψ)dv

:= P 1
s,tψ(x) + P 2

s,tψ(x),

where, using (70),

(71) sup
v≤t−s

|Q2
s,v,t(ψ)| ≤ Ct‖ψ‖1,p.

Clearly, ψ ∈ C6 implies that Ps,tψ ∈ C6 as well, since f ∈ C6. It is also clear at this stage that ψ ∈ C6
c

implies P 1
s,tψ ∈ C6

c , having a support that depends on s and t.

Step 3. We now investigate the dependence on x of the first six derivatives of Ps,tψ(x) with respect

to x. Firstly, recalling (71) and observing that
∫ t−s

0
e−vf(ϕs,s+v(x))e−

∫ s+v
s

f(ϕs,u(x))du ≤ 1,

‖Ps,tψ‖0,p ≤ Ct‖ψ‖1,p.

Let us now study the successive derivatives of P 1
s,tψ. We have

∂

∂x
P 1
s,tψ(x) =[

ψ′(ϕs,t(x))e
∫ t
s
b′(ϕs,u(x))du − ψ(ϕs,t(x))(

∫ t

s

f ′(ϕs,u(x))e
∫ u
s
b′(ϕs,r(x))dr)

]
e−

∫ t
s
f(ϕs,u(x))du.

Since by Step 1, ‖ψ ◦ ϕs,t‖1,p ≤ CT ‖ψ‖1,p, we only have to investigate the second term of the above
expression. We use the following facts. The function f is non-decreasing and we have f ′(x) ≤
C(1 + xα), f(x) ≥ cx1{x≥1} by convexity, since f(0) = 0. Moreover, b(x) ≥ −λx implies that for all
s ≤ u ≤ t ≤ T,

ϕs,u(x) ≥ e−λTx such that f(ϕs,u(x)) ≥ f(e−λTx) ≥ ce−λTx1{x≥eλT }.

Therefore,

e−
∫ t
s
f(ϕ(s,u(x))du ≤ e−ce

−λT (t−s)x1{x≥eλT } + 1{x<eλT },

implying

sup
x

((∫ t

s

|f ′(ϕs,u(x))|e
∫ u
s
b′(ϕs,r(x))drdu

)
e−

∫ t
s
f(ϕs,u(x))du

)
= CT <∞

and thus

‖P 1
s,tψ‖1,p ≤ CT ‖ψ‖1,p.

Similar arguments give ‖P 1
s,tψ‖6,p ≤ CT ‖ψ‖6,p.

Finally, the same arguments as above give that for all s ≤ t,

x 7→
∫ t−s

0

e−vf(ϕs,s+v(x))e−
∫ s+v
s

(f(ϕs,u(x))du =: Fs,t(x) ∈ C6
b

and for all γ > 0 and all 0 ≤ k ≤ 6,

lim
x→∞

xγ |F (k)
s,t (x)| = 0

such that

‖P 2
s,tψ‖6,p ≤ Ct‖ψ‖6,p and even ‖xγP 2

s,tψ‖6,p ≤ Ct(γ)‖ψ‖6,p,
where xγP 2

s,tψ denotes the function x 7→ xγP 2
s,tψ(x). This concludes the proof.
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7.4. Some hints on the proof of (7). The proof of the quantified propagation of chaos result
(7) relies mainly on the introduction of a convenient distance function H(x) that allows to compare
neurons in the finite system and the associated ones in the limit system. As in [13], we take H(x) =
f(x)+arctan(x). The main goal of this distance function is to be able to deal with the big jump terms
(the reset terms −xf(x) appearing when a neuron having potential value x spikes–these terms are
not Lipschitz since f is of polynomial growth) and to control both the usual L1−distance |x− y| and
the distance |f(x) − f(y)| which naturally appears when controlling the asynchronous jumps of two
neurons, one having potential x and the other having potential y.

The function H(x) = f(x) + arctan(x) is a sort of Lyapunov-function in the sense that the following
properties hold.

Proposition 35 (Proposition 18 of [13]). Grant Assumptions 1, 2 and 3. Then there exists a constant
C such that for all x, y ∈ R+, we have

(0) |H ′′(x)| ≤ CH ′(x),

(i) x+H ′(x) ≤ C(1 + f(x)),

(ii) |x− y|+ |H ′(x)−H ′(y)|+ |f(x)− f(y)| ≤ C|H(x)−H(y)|,

(iii) sign(x− y)(b(x)H ′(x)− b(y)H ′(y)) ≤ C|H(x)−H(y)|,

(iv) −(f(x) ∧ f(y))|H(x)−H(y)|+ |f(x)− f(y)|(H(x) ∧H(y)− |H(x)−H(y)|) ≤ C|H(x)−H(y)|.

Proof. We only have to check point (iii), all other points have already been proven in Proposition 18
of [13]. To do so, let y ≤ x such that the left hand side of (iii) is given by

b(x)f ′(x)− b(y)f ′(y) +
b(x)

1 + x2
− b(y)

1 + y2
:= T1 + T2.

Since b(x)/1 + x2 is Lipschitz by the properties of the function b, clearly |T2| ≤ C|x−y| ≤ C| H(x)−
H(y)| by item (ii). Moreover,

T1 =

∫ x

y

b′(z)f ′(z)dz +

∫ x

y

b(z)f ′′(z)dz =: T11 + T12.

Let us start dealing with T12. Since f ′′ is positive and b is upper bounded by a positive constant b̄, we
have that b(z)f ′′(z) ≤ b̄f ′′(z) ≤ C(1 + f ′(z)) ≤ C(1 +H ′(z)) which is then controlled thanks to item
(ii). Moreover, |b′(z)f ′(z)| ≤ Cf ′(z) such that |T11| ≤ C

∫ x
y
f ′(z)dz, which is once more controlled

using (ii).

Once these properties fixed, Theorem 7 of [13] gives that

sup
t≤T

E(|H(XN,i
t )−H(X̄i

t)|) ≤ CT /
√
N,

implying, together with item (ii) of the above proposition that

sup
t≤T

E(|XN,i
t − X̄i

t |) ≤ CT /
√
N,

from which it is easy to conclude that (7) holds as well.
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[10] Erny, X., Löcherbach, E. and Loukianova, D. Strong error bounds for the convergence to its mean field limit
for systems of interacting neurons in a diffusive scaling. Ann. Appl. Probab 2022, to appear.

[11] Ferland, R., Fernique, X. and Giroux, G. Compactness of the fluctuations associated with some generalized

nonlinear Boltzmann equations. Canadian Journal of Mathematics 44, 1192–1205, 1992.
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