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NON LINEAR WAVELET DENSITY ESTIMATION ON THE REAL LINE

MATHIEU SART

Abstract. We investigate the problem of optimal density estimation on the real line R under L1

loss. We carry out a new way to select the important coefficients in some wavelet expansions. We

study the resulting estimator when the density is smooth with dominated tails. This assumption is

very mild and allows in particular to deal with singularities, spatially inhomogeneous smoothness,

and fat tailed distributions.

1. Introduction.

We consider a real valued random variable X and suppose that its distribution admits a den-
sity f with respect to the Lebesgue measure. Our aim is to estimate f from the observation of n
independent copies X1, . . . ,Xn of X.

The method we use is based on a decomposition of the density in a (bi-orthogonal) wavelet basis.
The challenge lies in the choice of the coefficients to be estimated and those to be set to zero. A
successful choice leads to an estimator f̂ that is neither over-smoothed nor under-smoothed. A way
to check this point mathematically is to consider a class F of functions and to compute

Rℓ(f̂ ,F ) = sup
f∈F

E

[
ℓ(f, f̂)

]
.

In this formula, ℓ is a loss function that is up to the statistician, for instance ℓ = dqq where dq is
the L

q distance. The above maximal risk can then be compared to the minimax risk

Rℓ(F ) = inf
f̃

sup
f∈F

E

[
ℓ(f, f̃)

]
.

Naturally, Rℓ(F ) ≤ Rℓ(f̂ ,F ) and we expect the reverse inequality to be true to within a multi-

plicative factor. If this factor does not depend on n, f̂ is said to be rate optimal (and nearly rate

optimal if the factor may grow as logk n).

A wavelet estimator is usually studied under the assumption that f belongs to a ball Bα
p,∞(R) of

a Besov space. The precise definition of this set is recalled in Section 3.1 below. The parameter α
indicates the regularity of f whereas pmeasures, in some sense, the sparsity of its wavelet expansion.
This assumption of regularity is seldom the only one. There are two points to watch out for when
assessing the quality of a wavelet estimator. First, we have to examine the precise set F ⊂ B

α
p,∞(R)

on which it is rate optimal (or at least nearly rate optimal). Second, we have to look at the
conditions on α and p. The larger F is, and the weaker the conditions, the better.
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2 MATHIEU SART

The simplest wavelet estimation method is to keep all the coefficients up to a certain resolution
and discard the others. This leads to a linear estimator that is – if the final resolution is properly
chosen – rate optimal for the Lq loss when f is a compactly supported density ofBα

p,∞(R) with p ≥ q.
The case p < q is more delicate and can only be solved with non-linear methods, see [DJKP96]. The
two main rules that we know of consist in thresholding the coefficients individually or by block. For
more details about them, we refer to [Aut06, CC05, DJ96, DJKP96, HKP98, HKPT12, KPT96].
Note, however, that the resulting estimators are usually studied under somewhat restrictive addi-
tional assumptions (for instance α > 1/p, which imposes the continuity of f). These additional
assumptions can significantly modify the minimax rates. A description of these in the compact
case, to within log factors but without superfluous conditions, can be found in [Sar21b]. We would
also like to mention an important point: in the 8 references above, 5 of them involve undesirable
log factors in the convergence rates. The three exceptions, [CC05, HKP98] and [DJ96], rely on very
strong additional assumptions and therefore do not, unfortunately, solve the problem of optimal
estimation on a Besov ball, even in the compact case. More generally, we were unable to find in the
literature an optimal estimator (based on wavelets or not) when p < q, α < 1/p, and f compactly
supported but not bounded, no matter q ∈ (1,∞). Log factors separate the upper-bounds from
minimax lower-bounds in the best of cases.

In the present manuscript, we pay particular attention to the L
1 loss. The spatial adaptivity

of a non-linear estimator may be revealed by studying its risk when the density is compactly
supported and in B

α
p,∞(R) with p < 1. The optimal estimation rate in this context is n−α/(2α+1)

for all α > 1/p − 1. The only previous paper we know of that achieves this result is [Bir06a]. His
estimator is based on a “theoretical” construction though (the term theoretical means that we do

not know how to make his procedure computationally feasible). This rate n−α/(2α+1) is nevertheless
a benchmark that should be reached by a wavelet estimator under the sole condition that α belongs
to an interval of the form (1/p − 1, τ). This restriction on α ensures the classical characterisation
of Besov spaces in terms of wavelet coefficients. We have not been able to find in the literature
a local or block thresholded wavelet estimator with this property. This will be the case for our
wavelet estimator.

The wavelet approach is less developed in the context of density estimation on the real line R.
The main papers we know on this subject are [JLL04, RBRTM11]. In both cases, the estimator
is term-by-term thresholded. It is also nearly optimal over some balls B

α
p,∞(R) of Besov spaces.

More precisely, the first paper deals with p = ∞ and q > 1 whereas the second one covers the
cases p ≥ 1 and q = 2 (under an additional boundedness assumption when p < 2 though). Other
solutions to wavelets have certainly been proposed in the literature to cope with infinite supports.
It is beyond the scope of this introduction to describe them all. We simply cite here the papers
of [GL11, GL14, Lep13, LW19]. They contain the most general results we know about the minimax
rates.

Let us mention that difficulties occur when the estimation is performed on R with the L
1 loss.

This distance gives more weight to the estimation errors in the tails of f than the other Lq distances.
It follows that a pure regularity assumption – such as f ∈ Bα∞,∞(R) with R large enough – is not
sufficient to ensure the convergence to zero of the minimax risk. A way to bypass this problem
is to add a constraint on the tails of f , see the seminal paper of [GL14]. They show that the
optimal estimation rate of a (bounded) function in a Besov ball with p ≥ 1 is, within logarithmic
factors, n−γ where γ ∈ [0, α/(2α + 1)] depends on the tails of f . If we ignore these log factors, it

means that the usual rate n−α/(2α+1) can be recovered when the tails of the distribution are not
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too fat. In the present paper, we aim to refine this result. We intend to explore cases they do not
cover (p < 1 and f not bounded for instance), and tackle the tricky question of log factors in the
convergence rates.

It is therefore difficult in statistics to perform optimal estimation under smoothness constraints
without making assumptions about the density which greatly simplify the mathematics. By “opti-
mal”, we mean that no logarithmic factors are lost. The assumptions we wish to avoid are “p ≥ q”,
“f bounded”, “f compactly supported”. None of the aforementioned papers satisfactorily solves
this problem, no matter q ∈ [1,∞). The aim of our work is to shed new light on this subject and
provide some answers.

The choice of the L
1 distance as loss function may induce some difficulties in the non-compact

case as explained above, but has a considerable advantage over the other L
q distances. Indeed,

a density inevitably lies in L
1(R) as opposed to L

q(R) when q ∈ (1,∞). We can therefore assess
the risk of the estimator even when f 6∈ L

q(R), and work with collection of densities for which
the minimax L

q risk does not tend to zero. This is the case for instance when the collection is
composed of compactly supported densities of B

1/p−1/q
p,∞ (R) on [0, 1] with p < q and R large enough.

The precise lower minimax bound may be found in [Sar21b]. Here, an optimal estimator converges

at the classical rate n−(1/p−1/q)/(2(1/p−1/q)+1) for the L
1 loss.

We propose in Section 2 a new estimation method of the density. It is based on a decomposition
of f in a wavelet basis. Our method estimates only some of the coefficients and sets the others
to zero. Each coefficient can, a priori, be retained or discarded. It is kept only if its estimation
improves a heuristic assessment of the estimator global risk. The latter depends on an error term
that is unobserved but that can be controlled with high probability. Thus, the way in which the
coefficients are thresholded depends on how this error is controlled. If we control this error too
roughly, we end up with a loss of logarithmic factors, see Section 2.2 for more details. Fortunately,
the error can be controlled very precisely using appropriate tools from the concentration of measure
and empirical processes theories (Talagrand’s inequality, Poissonian inequality for self-bounding
functionals, chaining arguments, VC subgraph, universal entropy. . . ). This allows us to get rid of
log factors in almost all cases (see below). The downside of our approach is that it leads to lengthy
and rather technical proofs.

We study the global L1 risk of our estimator in Section 3 under two conditions. The first is
that f belongs to a Besov ball Bα

p,∞(R) with p > 0 and α ∈ ((1/p − 1)+, τ) where τ only depends
on the choice of the wavelet basis. The second condition concerns the tails of f . It is described
in detail in Section 3.1.2. To put it simply here, we can say that it allows densities to be fat
tailed, i.e. it allows f(x) to be bounded from above by something of the order of |x|−1/θ where

θ ∈ (0, p) ∩ (0, 1). We show that our estimator achieves the classical rate n−α/(2α+1) associated
with compactly supported densities when the tails of f are not too fat, that is when θ < θ0 where
θ0 depends on α, p. When θ > θ0, the rate is rather of the form n−γ for some γ ∈ (0, α/(2α + 1)).

It is still optimal. In the limiting case θ = θ0, our estimator reaches the rate (log n)γ
′

n−α/(2α+1)

where γ′ depends on α, p. This logarithmic factor cannot be ruled out, and our estimator is once
again rate optimal.

We also examine the risk of our estimator under the sole condition that f ∈ B
α
p,∞(R) with p < 1

and α ∈ ((1/p − 1)+, τ). This assumption turns out to be sufficient to ensure the convergence of
our estimator. It is moreover always rate optimal, except possibly when α = (1 − p)/(2p − 1),
where it could be, in the worst possible scenario, only near optimal. This result contrasts with
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what happens when p ≥ 1, where, on the contrary, the minimax risk may not tend to zero. We
also investigate the case α ∈ (0, 1/p − 1] and show that the condition α > (1/p − 1)+ is, in some
sense, necessary to estimate the density (even if it is compactly supported). A precise formulation
of these results may be found in Sections 3.2, 3.3 and 3.4.

For ease of presentation, we have only discussed balls Bα
p,∞(R) of Besov spaces above. However,

our bounds are slightly more general. The Besov balls can be replaced in almost all cases by subsets
WBαp,∞(R) of weak Besov spaces without changing the convergence rate of our estimator. These
sets are defined in the same section as the Besov balls, i.e. in Section 3.1.

Finally, let us mention that the computational complexity of our procedure is nearly linear in
the number n of observations. We give more details on this point in Section 3.5.

Throughout the paper, we suppose n ≥ 2 and denote by |A| the size of a finite set A. The
letters c, C, c′, . . . stand for quantities that may change from line to line. The proof of our main
result is deferred in Section 4. The appendix contains additional proofs as well as some results used
in Section 4.

2. Estimation procedure

2.1. Bi-orthogonal wavelet basis. Our estimation method relies on a decomposition of the
density in a bi-orthogonal wavelet basis. In such a basis, any square integrable function f takes
the form

f =
∑

k∈Z

αkφ̄k +
∞∑

j=0

∑

k∈Z

βj,kψ̄j,k,(1)

where for any j ≥ 0 and k ∈ Z,

αk =

∫
f(x)φk(x) dx, βj,k =

∫
f(x)ψj,k(x) dx,

where for any x ∈ R,

φk(x) = φ(x− k), ψj,k(x) = 2j/2ψ(2jx− k),

φ̄k(x) = φ̄(x− k), ψ̄j,k(x) = 2j/2ψ̄(2jx− k),

and where φ, φ̄, ψ, ψ̄ stand for dual father and mother wavelets. Equality (1) can be shortened by
setting β−1,k = αk, ψ−1,k = φk, ψ̄−1,k = φ̄k. It then becomes

f =
∞∑

j=−1

∑

k∈Z

βj,kψ̄j,k.(2)

In the following, we suppose that these four wavelets are bounded and compactly supported.
Moreover, we take φ = 1[0,1], and suppose that ψ is piecewise constant.

The simplest example of bi-orthogonal basis is the Haar basis where φ̄ = φ and ψ̄ = ψ =
1[0,1/2] − 1[1/2,1] . This basis is even orthogonal. In general, however, φ̄ and ψ̄ are not necessarily
piecewise constant and can instead be smooth. We refer to [CDF92] for the construction of such a
bi-orthogonal basis where φ̄ and ψ̄ are Hölder continuous with exponent τ (τ ∈ N

⋆ is an arbitrary
number to be chosen).
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Note that the density f we estimate is not necessarily in L
2(R). Despite this, the series always

converges in L
1 norm and equality (1) remains valid. This result is based on classical techniques

in wavelet analysis, see Appendix H.

2.2. Outline. We begin by presenting the underlying ideas of our estimation procedure. It will
be described in detail in Section 2.3.

2.2.1. Heuristic. We consider a collection K = (Kj)j≥−1 of subsets of Z and define the linear
wavelet estimator

f̂K =
∞∑

j=−1

∑

k∈Kj

β̂j,kψ̄j,k, where β̂j,k =
1

n

n∑

i=1

ψj,k(Xi)

denotes the empirical version of βj,k.

The quality of this estimator depends on the choice of the collection K by the statistician.
Ideally, K should be chosen in such a way that the risk of the estimator is minimal. Observe that

∥∥∥f̂K − f
∥∥∥
1
≤ c

∞∑

j=−1

{
2−j/2

∑

k∈Z

|βj,k|+ Bj(Kj) + Ej(Kj)

}
,

where c only depends on the wavelet basis, where

Bj(Kj) = −2−j/2
∑

k∈Kj

|βj,k|,

and where

Ej(Kj) = 2−j/2
∑

k∈Kj

|β̂j,k − βj,k|(3)

represents the error due to the estimation of the coefficients indexed by Kj.

The term Bj(Kj) can be estimated by

B̂j(Kj) = −2−j/2
∑

k∈Kj

|β̂j,k|.

The triangle inequality ensures that

|B̂j(Kj)− Bj(Kj)| ≤ Ej(Kj),

and hence
∥∥∥f̂K − f

∥∥∥
1
≤ c

∞∑

j=−1

{
2−j/2

∑

k∈Z

|βj,k|+ B̂j(Kj) + 2Ej(Kj)

}
.(4)

The key to minimizing the L
1 risk (or at least the above upper-bound) is therefore to control the

error Ej(Kj) with high probability. If Êj(Kj) denotes a known upper-bound of Ej(Kj), minimizing

B̂j(Kj) + 2Êj(Kj)(5)

among all the subsets Kj of Z is a possible strategy to minimize the right-hand side of (4). In

other words, we may consider a subset K̂j of Z minimizing (5). It contains all the indices k of the

coefficients β̂j,k to be kept. We then estimate f by f̂
K̂

where K̂ = (K̂j)j≥−1. The interpretation
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of K̂ is therefore relatively simple: it is obtained by minimizing a criterion (5) that aims to estimate
the L

1 error of the estimator.

2.2.2. Local thresholding. The point of view we have just discussed is flexible enough to re-
discover, and therefore reinterpret, some existing rules of literature. All we have to do is play

with Êj(Kj).

For instance, we may choose an estimated error term Êj(Kj) of the form

Êj(Kj) = 2−1−j/2
∑

k∈Kj

êj(k).(6)

The procedure then becomes purely local. It only keeps the coefficients above a given threshold.
To be more precise:

K̂j =
{
k ∈ Z, |β̂j,k| ≥ êj(k)

}
.

We now propose to reason a little more formally to clarify what êj(k) can be. We set the

coefficients to zero when j is large, say j ≥ Ĵ for some Ĵ , and minimize the criterion only when j

is smaller. This decision necessarily induces a bias. The larger Ĵ is, the smaller it is. Anyway, a
risk bound can be obtained for the resulting estimator on the event E defined by

“∀j ≤ Ĵ , ∀Kj ⊂ Z, Êj(Kj) ≥ Ej(Kj)”.

If we require Êj(Kj) to be of the form (6), a possible choice for êj(k) is

êj(k) = c12
j/2

[√
log n

n
E [ψ2(2jX − k)] +

log n

n

]
.(7)

This result is valid with probability 1 − 1/nc for some c > 1, and all j ∈ {0, . . . , n}, k ∈ Z (when
j = −1, replace ψ by φ, and when j ≥ n replace log n by log(jn)). We omit the case j ≥ n as the
coefficients are usually set to zero in the literature (the classical conditions are even often stronger).
Formula (7) can be obtained, for example, by using our Lemma 2 page 20 (with some elementary
maths). Naturally, its right-hand side is unknown in practice. The old way out is to replace the
expectation by a deterministic upper-bound such as c2‖f‖∞2−j . This gives a threshold of the order

of
√

‖f‖∞ log n/n when j is not too large, say 2j ≤ n/ log n. It is barely larger than the classic

threshold
√

‖f‖∞j/n proposed in [DJKP96] (see below for more details). When f is not bounded,
or when we do not know an upper-bound on its supremum norm, the foregoing is pointless. An
alternative solution is to replace the expectation by a probabilist upper-bound roughly of the order
of

1

n

n∑

i=1

ψ2(2jXi − k).

The threshold then becomes random, and the resulting procedure is quite similar to what can be
found in literature, see [JLL04, RBRTM11] for instance. The main difference with these two papers
is that they estimate the variance of ψ(2jX − k) instead of its moment of order 2. But it doesn’t
matter: in all of the above, the factor log n/n appears in the threshold. It therefore seems difficult
to avoid in the convergence rates.

It should be noted that the bound (7) is not necessarily the most accurate. In the special case
where f is compactly supported, we only need to control êj(k) for all k ∈ {−A2j , . . . , A2j} for
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some A > 0 depending on the support (and the wavelets), as the coefficients βj,k are zero for the
other k. We can then take

êj(k) = c32
j/2

[√
j

n
E [ψ2(2jX − k)] +

j

n

]
,

see our Lemma 3 (for instance). Bounding E
[
ψ2(2jX − k)

]
from above by c2‖f‖∞2−j then leads

to the famous threshold
√

‖f‖∞j/n, at least when j is not too large (say j2j ≤ n). The procedures
we are aware of that are based on this threshold still involve undesirable log factors in the rates
though.

2.2.3. Bounds from empirical process theory. One way to avoid log factors is to better
control the error term Ej(Kj). There are several ways to get a bound that makes the event E true
with high probability, say 1 − 1/nc for some c > 1. For the sake of simplicity, we suppose in this
section that j ∈ {0, . . . , n}.

The simplest bound is as follows:

Êj(Kj) = c4

[√
|Kj |
n

+

√
log n

n

]
,(8)

see our Lemma 2. It turns out that correct use of this result already leads to optimal rates in the
compact case. We do not go into detail here, as it unfortunately seems too rough to deal with
infinite supports.

The first term may indeed be too large. This is especially true when the numbers σ2j,k =

E[ψ2(2jX − k)] are small. We recall that σ2j,k somehow rules the estimation error between βj,k

and β̂j,k. A solution to bypass this problem is to group the integers k for which the σ2j,k are ap-

proximately the same. Let for r ∈ Z, Zj,r be the set of k such that σ2j,k is of the order of 2−r. We

deduce from our Lemmas 2 and 3 that we may take a bound on Ej(Kj) when Kj ⊂ Zj,r whose
leading term is of the order of

|Kj |2−r/2√
n

min





√
log+

( |Zj,r|
|Kj |

)
,

√
log+

(
2r

|Kj |

)
 ,

where log+(·) = log(e + ·). There are a few simple conditions for the above to be truly leading.
Details are omitted.

So, the main idea of our procedure is to try to work with similar errors σ2j,k, and to juggle the two
formulas. We use the first when r is small, and the second when r is larger. Naturally, the second
formula introduces the troublesome condition Kj ⊂ Zj,r as well as |Zj,r| (the σ2j,k are unknown).

The problematic set Zj,r can, however, be estimated in some way, or replaced by a larger set. We
refer to Section 2.3 for further details.

2.2.4. About an optimal thresholding procedure. We can find in the literature a term-by-
term thresholding rule that eliminates log factors. We refer here to [DJ96]. It is nevertheless
worth noting that it relies on strong assumptions: f is bounded (with known sup norm) and f is
compactly supported on [0, 1]. It also requires knowledge of the smoothness of the function to be
estimated (the regularity index and the Besov (quasi-) norm). As explained above, our approach
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can be simplified in the compact case [0, 1]. Formula (8) is then sufficient to obtain the right rates
of convergence (adaptively and without extra assumptions).

It is also possible to draw on our setup to recover their procedure. All it takes is the right formula

for Êj(Kj). For example, we can use the one given by our Lemma 3 (with a set Cj,r whose cardinality
is of the order of 2j as f is compactly supported for [DJ96]). By using the rough upper-bound
E
[
ψ2(2jX − k)

]
≤ c2‖f‖∞2−j , we get:

Êj(Kj) = c5

[
|Kj |

√
2−j‖f‖∞

log+(2
j/|Kj |)
n

+
|Kj | log+(2j/|Kj |)

n

+

√
2−j‖f‖∞|Kj |

log n

n
+

log n

n

]
.

This equality can be taken on an event of probability 1 − 1/nc, uniformly for j ∈ {0, . . . , n} and
for all non-empty sets Kj ⊂ {−A2j , . . . , A2j} (the term A depends on the wavelets).

We recall that the threshold of [DJ96] is applied only when j ∈ {j0+1, . . . , j1} where j0 is of the
order of log n and where 2j1 is of the order of n/ log n. By doing elementary maths, we obtain for
all j ∈ {j0 + 1, . . . , j1},

Êj(Kj) ≤ c6

[
(|Kj |+ 2j0)

√
2−j‖f‖∞

log+(2
j/(|Kj |+ 2j0))

n

+
(|Kj |+ 2j0) log+(2

j/(|Kj |+ 2j0))

n
+

√
‖f‖∞

log n

n

]

≤ c7

[
|Kj |2−j/2

√
‖f‖∞

j − j0
n

+ 2j0−j/2
√

‖f‖∞
j − j0
n

+

√
‖f‖∞

log n

n

]
.

This leads straight to their threshold that is of the order of
√

‖f‖∞(j − j0)/n (the last two terms
in the right-hand side of this inequality do not depend on Kj and do not come into play when
selecting coefficients by minimizing (5). They do, however, contribute to the estimator risk. This
contribution is of the right order of magnitude when j0 is chosen carefully in line with the properties
of f , see [DJ96] for further details).

2.2.5. Generalization. The heuristic of Section 2.2.1 only involves the wavelet coefficients βj,k

and their empirical versions β̂j,k. There is therefore nothing to prevent it from being used in a
more general context than that of this paper. For example, we can remain within the density
model framework, but assume that the data are mixing instead of independent. The hard part is
finding a sharp upper-bound on the estimation error Ej(Kj), which is already lengthy and technical
when the data are independent. More generally, we may consider the estimation of the intensity
of a random measure. In other words, we observe, for any measurable set A ⊂ R, a random
variable M(A) satisfying

E[M(A)] =

∫

A
f(x) dx.

In this inequality, f is the target function. It is relatively well known that this setup encompasses
different classical statistical frameworks, see [BB09, Aka17, Sar21a] for further details. Section 2.2.1
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can then be used with the following definition of empirical wavelet coefficient:

β̂j,k =

∫
ψj,k dM.

The formulas of βj,k, Ej(Kj), and the general idea of the procedure remain unchanged. What needs

to be done is to find a bound Êj(Kj) of this error Ej(Kj). It will naturally depends on the statistical
framework considered.

2.3. Estimation procedure. The aim of this section is to define our estimator f̂ of the density f .
We refer to Sections 3.2 and 3.3 for the study of its statistical properties and to Section 3.5 for
informations on more computational aspects.

We sort the sample in increasing order: X(1) < X(2) < · · · < X(n). We define the smallest

integer Ĵ ≥ 0 satisfying

min
1≤i≤n−1

(
X(i+1) −X(i)

)
> 21−ĴLψ,

where Lψ ≥ 1 is such that supp ψ ⊂ [−Lψ, Lψ]. For each resolution j ∈ {−1, . . . , Ĵ}, we determine

a set K̂j of integers by using an algorithm similar to the one described in Section 2.2.1. This yields
our estimator

f̂ =

Ĵ∑

j=−1

∑

k∈K̂j

β̂j,kψ̄j,k(9)

of f .

The integer Ĵ therefore specifies the highest resolution with which we work. Note that the β̂j,k
are based on very few observations when j ≥ Ĵ + 1 (at most one). They therefore make little
contribution to the estimation of f .

We define for j ≥ −1 and k ∈ Z,

σ̂2j,k =





1

n

n∑

i=1

φ2(Xi − k) if j = −1,

1

n

n∑

i=1

ψ2(2jXi − k) if j ≥ 0.

The role of σ̂2j,k is to evaluate empirically the quality of the estimate β̂j,k.

Let then

Ẑj =
{
k ∈ Z, σ̂2j,k 6= 0

}

be the set of integers k for which ψj,k(Xi) 6= 0 for at least one observation. We define for ℓj ∈ N

and r ≥ ℓj + j + 1,

Ẑj,r(ℓj) =
{
k ∈ Z, 2−r−1 < σ̂2j,k ≤ 2−r

}

Ẑj,ℓj+j(ℓj) =
{
k ∈ Z, σ̂2j,k > 2−ℓj−j−1

}
.



10 MATHIEU SART

To each value of ℓj corresponds therefore the partition of Ẑj defined by

Ẑj =
⋃

r≥ℓj+j

Ẑj,r(ℓj).(10)

We now explain which coefficients to retain among those indexed by Ẑj,r(ℓj). As described in
Section 2.2.3, the aim of this reasoning is to group together coefficients whose estimation errors
seem similar. The number ℓj indicates the point at which formula (8) becomes too rough. By

gathering all these coefficients and by choosing ℓj appropriately, we obtain the set K̂j .

We now introduce the terms and parameters that appear in our control of the error term. We
consider some positive numbers ρ−1, ς−1, ρ0, ς0 > 0 that will be specified later on, and set ςj = ς0,

ρj = ρ0 for j ≥ 1. We define the map Êj,r,ℓj(·) for r = ℓj + j and x > 0 by

Êj,r,ℓj(x) =
√
x

n
+ x

log+(2
r+1/x)

n
+

√
log((j + 2)(r + 1)n)

n
+

log((j + 2)(r + 1)n)

n
,

where log+(x) = log(e+ x).When r ≥ ℓj + j + 1, Êj,r,ℓj(·) is rather defined for x > 0 by

Êj,r,ℓj(x) = x

√√√√2−r log+

(
λ̂j,r/x

)

n
+ x

log+

(
λ̂j,r/x

)

n

+

√
x
2−r log((j + 2)(r + 1)n)

n
+

log((j + 2)(r + 1)n)

n
,

where

λ̂j,r = min
{(

|Ẑj|+ 2(2Lψ + 1)(log(j + 2) + 2 log n+ 1)
)
, 2r+1

}
,

if 2r > ςjn/ log((j + 2)n), and where

λ̂j,r = min
{
|Ẑ′
j,r|, 2r+1

}

if 2r ≤ ςjn/ log((j + 2)n). In this equality,

Ẑ
′
j,r =

{
k ∈ Z, 2−r−2 < σ̂2j,k ≤ 2−r+1

}
.

The map Êj,r,ℓj(·) is extended by continuity at x = 0.

We define the criterion γj,r,ℓj(·) for Kj,r,ℓj ⊂ Ẑj,r(ℓj) by

γj,r,ℓj(Kj,r,ℓj) = −2−j/2
∑

k∈Kj,r,ℓj

|β̂j,k|+ ρj Êj,r,ℓj(|Kj,r,ℓj |).

Thereby, the last term of this equality can be seen as an upper-bound of the error Ej(Kj,r,ℓj)

introduced by (3) in Section 2.2.1. According to the previous heuristics, we pick out K̂j,r,ℓj ⊂
Ẑj,r(ℓj) such that

γj,r,ℓj
(
K̂j,r,ℓj

)
= min

Kj,r,ℓj
⊂Ẑj,r(ℓj)

γj,r,ℓj
(
Kj,r,ℓj

)
.(11)

Since Ẑj,r(ℓj) is finite, the set K̂j,r,ℓj does exist. If several sets minimize this criterion, K̂j,r,ℓj
denotes any of them.
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Moreover, the value of ℓj that we will keep in the following is the smallest value ℓ̂j satisfying

∞∑

r=ℓ̂j+j

γj,r,ℓ̂j

(
K̂j,r,ℓ̂j

)
= min

ℓj∈N

∞∑

r=ℓj+j

γj,r,ℓj
(
K̂j,r,ℓj

)
.(12)

Such a value does exist (for ℓj large enough, the partition given by (10) remains the same).

We finally set

K̂j =
∞⋃

r=ℓ̂j+j

K̂j,r,ℓ̂j

and define our estimator f̂ by (9).

3. Theoretical results.

We study in this section the properties of our estimator f̂ .

3.1. Classes of functions. We begin by introducing classes of functions corresponding to as-
sumptions on the density to be estimated.

For this purpose, the following notations will be convenient. We denote for p ∈ (0,+∞] and
x = (xk)k∈Z the (quasi) ℓp norm of x by

‖x‖p =





(
∑

k∈Z

|xk|p
)1/p

if p <∞

sup
k∈Z

|xk| if p = ∞.

The weak (quasi) ℓp norm of x is defined by

‖x‖p,∞ =





sup
t>0

t

(
∑

k∈Z

1|xk |≥t

)1/p

if p <∞

sup
k∈Z

|xk| if p = ∞.

We recall that ‖x‖p,∞ ≤ ‖x‖p but that the converse is not true in general.

3.1.1. Besov classes. The classical Besov spaces Bαp,∞ possess a characterisation in terms of
wavelets coefficients. It follows from [DJ97] that Bαp,∞ may be defined when p ∈ [0,+∞] and

α ∈ ((1/p − 1)+, τ) as the set of functions f of Lmax{p,1}(R) satisfying ‖f‖Bα
p,∞

<∞ where

‖f‖Bα
p,∞

= sup
j≥−1

{
2j(α+1/2−1/p)‖βj,·‖p

}
.

The value of τ is an integer depending on the wavelet basis. It is equal to 1 for the Haar basis.
It stands for the smoothness of φ̄ and ψ̄ when the basis is the bi-orthogonal basis of [CDF92] (see
Section 2.1).
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We define the Besov ball Bα
p,∞(R) as the set of functions f ∈ Bαp,∞ satisfying ‖f‖Bα

p,∞
≤ R. This

set is slightly smaller than the set composed of functions f ∈ Bαp,∞ satisfying

sup
j≥0

{
2j(α+1/2−1/p)‖βj,·‖p

}
≤ R.

This latter set is denoted by Bαp,∞(R) and is called a strong Besov class. The adjective “strong” is
added to avoid any ambiguity with what is below. The difference between a (strong) Besov class
and a Besov ball lies therefore in the starting point of the index j.

We define the weak Besov class WBαp,∞(R) when p is finite as the set of functions f ∈ L
1(R)

satisfying

sup
j≥0

{
2j(α+1/2−1/p)‖βj,·‖p,∞

}
≤ R.

When p is infinite, we set WBα∞,∞(R) = Bα∞,∞(R). The main difference with the strong Besov
classes is therefore the use of the (quasi) weak ℓp norm in place of the standard ℓp (quasi) norm.

3.1.2. Tail dominance condition. We define two sets Tθ(M) and WT θ(M) corresponding to
strong and weak conditions on the tails of f .

We set for j ≥ 0 and k ∈ Z,

Fj,k =

∫ 2−j(k+1/2)

2−j(k−1/2)
f(x) dx.(13)

We define forM > 0 and θ ∈ (0, 1), the set Tθ(M) gathering the integrable non-negative functions f
satisfying

sup
j≥0

{
2−j(1−θ) ‖Fj,·‖θθ

}
≤M.(14)

We say that the “strong tail dominance condition” is met when f ∈ Tθ(M). This terminology “tail
dominance condition” is directly borrowed from [GL14] although their condition differs a little from
this one (see the next section for more details).

Inequality (14) can be softened by replacing the (quasi) norm with its weak version. This leads
to the set WT θ(M) and the “weak tail dominance condition” f ∈ WT θ(M). By definition, it
contains therefore all the integrable non-negative functions f such that

sup
j≥0

{
2−j(1−θ) ‖Fj,·‖θθ,∞

}
≤M.

These two conditions are satisfied when there are not too many mass in the tails of the distribu-
tion. The parameters M and θ tune this amount of mass allowed. The larger θ is, the heavier the
tails can be.

The above conditions are defined only when θ 6= 0. The limit case θ = 0 corresponds to compactly
supported functions. More precisely, we define T0(M) = WT 0(M) as the collection of integrable
functions f satisfying

sup
j≥0

{
2−j |{k ∈ Z, Fj,k > 0}|

}
≤M.

We show in Appendix G the elementary proposition below.

Proposition 1. The following assertions hold true:
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1. If M < 1, the set Tθ(M) does not contain any density.
2. Let p ∈ (0, 1), R > 0, α ∈ (1/p−1, τ). If f ∈ B

α
p,∞(R), then f ∈ Tp(c1Rp) where c1 only depends

on the wavelet basis and α, p. Conversely, if f ∈ Bαp,∞(R) ∩ Tp(Rp), then f ∈ B
α
p,∞(c2R) where

c2 only depends on the wavelet basis and α, p.
3. If f is a compactly supported density on [−L,L], then f belongs to T0(2L+ 2).
4. If f is a density satisfying f(x) ≤ Ab|x|−b for all |x| ≥ 1 and some A > 0, b > 1, then f belongs

to WT 1/b(M) with M = c3(1 +A) and some c3 only depending on b.

3.2. Minimax rates. We evaluate in this section the risk of our estimator f̂ when f is smooth
with dominated tails. More precisely, we consider R > 0, M ≥ 1, p ∈ (0,+∞], α ∈ ((1/p− 1)+, τ),
θ ∈ [0, 1) ∩ [0, p], and

Fα,p,θ(R,M) =

{
WBαp,∞(R) ∩WT θ(M) if p 6= 1

Bαp,∞(R) ∩WT θ(M) if p = 1.

We then give an upper-bound of the maximal risk of our estimator when f lies in Fα,p,θ(R,M). It
involves the following quantities:

γ =

{
α/(2α + 1) if θ ≤ α/(2α + 1− 1/p)

α(1− θ)/(α+ 1− θ/p) if θ > α/(2α + 1− 1/p)

νn =





log n if θ = α/(2α + 1− 1/p) and p 6= 1

(log n)2γ if θ = α/(2α + 1− 1/p) and p = 1

1 otherwise

β1 =

{
1/(2α + 1) if θ ≤ α/(2α + 1− 1/p)

(1− θ)/(1 + α− θ/p) if θ > α/(2α + 1− 1/p)

β2 =

{
(α+ 1− 1/p)/((1 − θ)(2α+ 1)) if θ ≤ α/(2α + 1− 1/p)

(α+ 1− 1/p)/(α + 1− θ/p) if θ > α/(2α + 1− 1/p).

Our main result is proved in Section 4 and is as follows:

Theorem 2. Let p ∈ (0,∞], α ∈ ((1/p − 1)+, τ), θ ∈ [0, 1) ∩ [0, p], R > 0, M ≥ 1. Then, there

exist ¯̺−1, ς−1, ¯̺0, ς0 and n0 such that for all n ≥ n0, ρ−1 ≥ ¯̺−1, ρ0 ≥ ¯̺0, our estimator f̂ defined
in Section 2.3 satisfies

sup
f∈Fα,p,θ(R,M)

E

[
d1(f, f̂)

]
≤ c

[
Rβ1Mβ2νn +M1γ=1−θ

]
n−γ .(15)

Moreover, ¯̺−1, ς−1 are universal and ¯̺0, ς0 only depends on ψ. The term c only depends on
α, p, φ̄, ψ, ψ̄, θ, ρ−1, ρ0, and n0 only depends on p, α, θ,R,M .

We would like to highlight that the construction of our estimator f̂ does not involve the param-
eters α, p, θ,R,M of the class Fα,p,θ(R,M). They can therefore be unknown.

For pedagogical reasons, let us consider the case where f is compactly supported in [−L,L] with
L ≥ 1. Proposition 1 entails that f ∈ Fα,p,0(R, 4L). In particular, there is n0 only depending on
R,M,L, α, p such that for all n ≥ n0,

E

[
d1(f, f̂)

]
≤ c′R1/(2α+1)L(α+1−1/p)/(2α+1)n−α/(2α+1).
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This is the classical estimation rate. It is however attained here under very mild conditions on p
and α. This result essentially says that our estimator adapts to local variations of the density
(the algorithm can increase the number of coefficients βj,k to estimate at the locations where the
function varies a lot and on the contrary decrease it at the locations where the function is more
flat). Note that there is no requirement that the density be bounded or even in L

2(R). We do not
know of any wavelet estimator that achieves the standard rate n−α/(2α+1) under our assumptions.

In the non compact case, the usual rate of convergence n−α/(2α+1) applies when θ is sufficiently
small, that is when the (weak) tail dominance condition is stringent enough. When θ is larger,
however, the estimation rate deteriorates. It becomes particularly slow when θ comes close to 1.
We recall that is not possible to estimate a density on R under the sole assumption that f belongs
to a ball Bα

p,∞(R) of a Besov space with p ≥ 1 and R large enough when the loss is the L
1 norm

(see [GL14, IK81, JLL04]).

However, the assumption “f belongs to a ball of a Besov space” is sufficient to ensure the
convergence of our estimator when p < 1 and α > 1/p − 1. Indeed, our tail dominance condition
is fulfilled in this case with θ = p. The above theorem can therefore be applied. This gives: for all
p ∈ (0, 1), α ∈ (1/p − 1, τ), R ≥ 1, and n large enough,

sup
f∈Bα

p,∞(R)
E

[
d1(f, f̂)

]
≤ c′′Rβ3νnn

−γ ,(16)

where

γ =

{
α/(2α + 1) if p ∈ (0, 1/2] or α < (1− p)/(2p − 1)

1− p if p ∈ (1/2, 1) and α ≥ (1− p)/(2p − 1)

νn =

{
log n if p ∈ (1/2, 1) and α = (1− p)/(2p − 1)

1 otherwise

β3 =

{
α/((2α + 1)(1/p − 1)) if p ∈ (0, 1/2] or α < (1− p)/(2p − 1)

p if p ∈ (1/2, 1) and α ≥ (1− p)/(2p − 1)

and where c′′ only depends on α, p, ψ, ψ̄, φ̄, ρ−1, ρ0.

Naturally, the rate (16) can be improved if the tail condition is more stringent, i.e. θ < p.
It is worth noticing that our Theorem 2 also makes explicitly the dependency in M and R. If
f ∈ Fα,p,θ(R,M) with θ = p but M much smaller than Rp, the factor in front of n is actually far
better than the one shown just above. This explains why we draw the distinction between a Besov
class and a Besov ball. The quantity ‖βj,·‖p may play a very different role in the minimax results
when j = −1 and when j ≥ 0. The parameter R not only constrains the spatial variations of f
when p < 1. It also controls the massiveness of its tails.

As far as we know, only the case p ≥ 1 has been studied in the literature of density estimation
with infinite support under L

1 loss. The only papers we are aware of that deal with the subject
are the two mentioned below.

First, the authors of [GL14] proposed to estimate the density pointwise. The global risk is
then obtained by integrating the pointwise risk. This reasoning has the merit of not depending
on a particular loss and of leading to results for all Lq losses. The downside is that it may lead
to undesirable logarithmic factors in the convergence rates. We do not have any here, except at
the boundary. Their tail dominance condition is more or less the same as our strong condition.
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Rigorously, it is at least as stringent as our strong condition (Proposition 1 of [CL20]). We do not
know whether it is equivalent. Note that they also impose a condition on the supremum norm of f .
Besides, they restricted themselves to balls of Besov spaces and were not interested in weak Besov
classes.

Second, wavelets were used in [CL20] to estimate the density under the same tail condition as
our strong condition. Unfortunately, the convergence rate of their estimator is slower than ours
and is hence not optimal (their exponent in n is, in absolute value, smaller than ours as soon as
θ 6= 0).

Although our result is stated for the L
1 loss, it can easily be checked that (15) remains true for

the distance induced by the Besov norm ‖ · ‖B0
1,1

defined by

‖f‖B0
1,1

=
∑

j≥−1

2−j/2‖βj,·‖1.

The proposition below shows the rate (15) is optimal, even when logarithmic factors appear. It
also shows that the dependency in R and M is the right one. It completes and refines the minimax
lower bound of [GL14] and is proved in Appendix E.

Proposition 3. Let p ∈ (0,∞], α ∈ ((1/p − 1)+, τ), θ ∈ (0, 1) ∩ [0, p], and µn ∈ {1, νn}. There
exist some R0,M0 such that: for all R ≥ R0, M ≥M0 and all n large enough,

inf
f̃

sup
f∈F

E

[
d1(f, f̃)

]
≥ c

[
Rβ1Mβ2µn +M1γ=1−θ

]
n−γ,

where F is a subset of Bαp,∞(R) ∩ WT θ(M), where c only depends on α, p, θ, ψ, ψ̄, φ̄, and where

R0,M0 only depend on α, p, θ, ψ, ψ̄, φ̄. Moreover, any density f of F satisfies

sup
|x|≥1

|x|1/θf(x) ≤M1/θ.

The set F is also included in Tθ(M) when µn = 1.

This result is a little more precise than a lower minimax bound on Fα,p,θ(R,M). We may
for instance observe that the minimax rates on WBαp,∞(R) ∩ WT θ(M) and Bαp,∞(R) ∩ WT θ(M)
coincide when p 6= 1. Replacing a strong Besov class with a weak one has no impact on the
optimal rates in this case. Similarly, a weak or strong tail condition leads to the same results when
θ 6= α/(2α + 1− 1/p). This is not necessarily true otherwise.

To illustrate this point, let us take p = 1, θ = α/(2α + 1 − 1/p) = 1/2 and J of the order of
n1/(2α+1). It is fairly easy to see that the linear estimator

f̃ =

J∑

j=−1

∑

k∈Z

β̂j,kψ̄j,k

achieves the rate n−α/(2α+1) when f ∈ Bα1,∞(R) ∩ T1/2(M). This is faster than the minimax rate

on Bα1,∞(R) ∩WT 1/2(M).

Proposition 3 also ensures the optimality of (16) when p < 1 and α 6= (1 − p)/(2p − 1). We do
not know whether the rate is optimal when α = (1− p)/(2p − 1) though (due to the log factor).
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3.3. Minimax rates over a class of fat tailed distributions. We illustrate here the interest
of the weak tail dominance condition compared to its strong version. We consider A ≥ 1, α ∈
((1/p − 1)+, τ), p ∈ [0,∞], b > 1, b ≥ 1/p, and the class

D(α, p,R,A, b) =
{
f ∈ Bαp,∞(R), such that f(x) ≤ Ab|x|−b for all |x| ≥ 1

}
.

Proposition 1 says that the weak tail dominance condition is met with θ = 1/b and M = c(1 +A).

We deduce from Theorem 2 that for n large enough,

sup
f∈D(α,p,R,A,b)

E

[
d1(f, f̂)

]
≤ c′

[
Rβ1Aβ2νn +A1γ=1−1/b

]
n−γ ,

where

γ =

{
α/(2α + 1) if b ≥ 2 + (1− 1/p)/α

α(1− 1/b)/(α + 1− 1/(pb)) if b < 2 + (1− 1/p)/α

νn =





log n if b = 2 + (1− 1/p)/α and p 6= 1

(log n)2γ if b = 2 + (1− 1/p)/α and p = 1

1 if b 6= 2 + (1− 1/p)/α

β1 =

{
1/(2α + 1) if b ≥ 2 + (1− 1/p)/α

(1− 1/b)/(α + 1− 1/(pb)) if b < 2 + (1− 1/p)/α

β2 =

{
(α+ 1− 1/p)/((1 − 1/b)(2α + 1)) if b ≥ 2 + (1− 1/p)/α

(α+ 1− 1/p)/(α + 1− 1/(pb)) if b < 2 + (1− 1/p)/α

and where c′ only depends on α, p, b, ψ, ψ̄, φ̄, ρ−1, ρ0.

The parameter γ, which governs the estimation rate of our estimator, depends on α, b and p.
When b is sufficiently large, we recover the usual rate of convergence. The rate is otherwise slower
but still minimax (at least when A,R are large enough).

Let us now observe that the strong tail dominance condition is not fulfilled for θ = 1/b (what-
ever M). We rather have D(α, p,R,A, b) ⊂ Tθ(Mθ) for all θ > 1/b and Mθ depending on θ (and
b,A). If the theorem were shown only for the strong condition, we could apply it only with values
of θ larger than 1/b. If done correctly, it gives the right rate of convergence when b > 2+(1−1/p)/α.
However, this causes problems when b ≤ 2+(1−1/p)/α as the exponent then depends on θ. Using
a value of θ larger than 1/b leads to a slower convergence rate.

Note that a bounded and unimodal density f belongs to B1
1,∞(R) for some R depending on ‖f‖∞

and the wavelet basis only. Such a density belongs therefore to D(1, 1, R,A, b) if it satisfies f(x) ≤
Ax−b for all |x| ≥ 1. We deduce that f̂ converges to f at the rate n−1/3 when b > 2. We thus recover
the optimal estimation rate of a bounded unimodal density with compact support although f can
be infinitely supported here.

3.4. About the condition α > 1/p−1 when p < 1. In the previous sections, we always assumed
that α > (1/p−1)+. This condition is empty if p ≥ 1 but not otherwise. Note that it is used in the
result of [DJ97] to characterize the Besov balls in terms of wavelet coefficients. To explore what
happens in the opposite case, we need therefore to redefine these balls.
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We consider some α, p > 0 and an arbitrary integer r larger than α. We set for t, h > 0,

∆r
hf(t) =

r∑

k=0

(
r

k

)
(−1)r−kf(t+ kh).

We define the modulus of smoothness

ωp(f, x) = sup
0<h≤x

[∫
|∆r

hf(t)|p dt

]1/p
,

and define the Besov ball Bα
p,∞(R) as the collection of functions f ∈ L

p such that

‖f‖Bα
p,∞

= ‖f‖p + sup
x>0

x−αωp(f, x),

is not larger than R.

The above (quasi) norm depends a priori on the choice of r. Changing r leads however to an
equivalent (quasi) norm, see [DL93]. It is also equivalent to the (quasi) norm that we defined in
Section 3.1.1 when α ∈ ((1/p − 1)+, τ). To avoid adding unnecessary notations, we have used the
same symbol to designate the Besov ball and the (quasi) norm. However, since the (quasi) norms
are not equal, but equivalent, there is a slight ambiguity about what ‖ · ‖Bα

p,∞
and R are. This has

no impact on our results though.

The proposition below shows that it is not possible to obtain a convergent estimator for the
L
1 loss under the sole assumption that f is a compactly supported density of B

α
p,∞(R) when

α ≤ 1/p − 1. It is proved in Appendix F.

Proposition 4. Let p ∈ (0, 1), α ∈ (0, 1/p − 1] and R > 0. Then,

inf
f̃

sup
f∈Bα

p,∞(R)

supp f⊂[0,1]

E

[
d1(f, f̃)

]
≥ 1/4.

This result can be compared with what exists in the literature of estimation of a compactly
supported density under the L

q loss with q > 1. The minimax risk does not tend to 0 either when
α = 1/p− 1/q, see [Sar21b]. However, the optimal estimation rate can be made arbitrarily slow by
choosing α very close to 1/p − 1/q when q > 1. This phenomenon does not occur here, since the

optimal estimation rate is n−α/(2α+1), whatever p > 0 and α > 1/p − 1.

3.5. Computational complexity. An estimator is not always derived from a computationally
tractable procedure. For example, we have not been able to find in the literature a computationally
tractable algorithm that would lead to an optimal estimator in the minimax L

1 sense when f is
compactly supported on [0, 1] and in B

α
p,∞(R) with p < 1. There are admittedly computationally

acceptable solutions in the literature to deal with this case, but they seem to be optimal only to
within log factors, see [Sar21b]. We recall that the case p < 1 is very different from the case p ≥ 1.
The latter is straightforward to solve in the compact case as a simple linear estimator works.

Let us also mention that there are computational difficulties with Kernel estimators. Indeed,
the bandwidth should vary with the location so that the estimator adapts to the inhomogeneous
smoothness of the density. In this context, procedures that lead to rate optimal estimators have
been developed by [Lep15] in the Gaussian white noise model. His solution is based on an algorithm
that seems quite difficult to implement though (see his Problem II Section 4.2). Things are a bit
simpler when we allow the estimator to be rate optimal within log factors (see [GL14, LW19]).
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We show below that the computational complexity of our procedure is nearly linear in the
number n of observations.

We consider some j ∈ {−1, . . . , Ĵ} and assume that the wavelets functions φ̄, ψ̄ and ψ have been
preprocessed. We put ψj = ψ if j ≥ 0 and ψ−1 = φ.

We begin by sorting the observations in increasing order X(1) < · · · < X(n). We remark
that ψj(R) is finite as ψj is piecewise constant. We consider some y ∈ ψj(R) \ {0}. Then, we
find for each i ∈ {1, . . . , n}, the few integers k such that ψj(2

jXi − k) = y. We gather all these
elements into a vector of size O(n). By counting in this vector the number of repetitions, we

determine the family (β̂j,k(y))k∈Z where

β̂j,k(y) =
y

n

n∑

i=1

1ψj (2jXi−k)=y.

In particular, we deduce

β̂j,k =
∑

y∈ψj(R)\{0}

β̂j,k(y).

The reasoning is the same for obtaining (σ̂2j,k)k∈Z. So far, the number of calculations performed is

at most O(n log n).

We consider some ℓj ∈ N, r ≥ ℓj + j, find the indices in Ẑj,r(ℓj) and the size of Ẑ′
j,r. We sort the

wavelet coefficients (β̂j,k)k∈Ẑj,r(ℓj)
in descending order of importance: |β̂j,[1]| ≥ |β̂j,[2]| ≥ |β̂j,[3]| . . .

Finding K̂j,r,ℓj ⊂ Ẑj,r(ℓj) that minimizes (11) amounts to selecting the smost important coefficients
where s minimizes

−2−j/2
s∑

k=1

|β̂j,[k]|+ ρj Êj,r,ℓj(s).

This set can therefore be built in O(n+ |Ẑj,r(ℓj)| log |Ẑj,r(ℓj)|) elementary operations.

Note that the number of r to consider is at most O(log n). Moreover, the values of ℓj of interest
are those between 0 and O(log n) since the partition given by (10) remains the same when ℓj is

higher. Since
∑

r≥ℓj+j
|Ẑj,r(ℓj)| = O(n), we deduce that all the sets K̂j,r,ℓj (when r ≥ ℓj+j, ℓj ∈ N,

j ∈ {1, . . . , Ĵ} vary) can be obtained in at most O((Ĵ + 1)n log2 n) operations. The computation

of ℓ̂j is fast as it requires less than O(log2 n) additional operations. To sum up, O((Ĵ +1)n log2 n)
is the maximal number of operations needed to find all the selected coefficients, that is to find the

sets (K̂j)−1≤j≤Ĵ .

The computational complexity of our procedure is random but can be bounded from above either
with high probability or in expectation. We only present the second possibility. We deduce from

Lemma 17 page 29 that E
[
Ĵ
]
≤ O(log n) when f belongs to L

q for some q > 1. This assumption
is fulfilled when f ∈ Fα,p,θ(R,M) (see Lemma 25 page 37 if needed). More precisely, we have for
all p ∈ (0,∞], α ∈ ((1/p − 1)+, τ), θ ∈ [0, 1) ∩ [0, p], R > 0, M ≥ 1,

sup
f∈Fα,p,θ(R,M)

E
[
Ĵ
]
≤ O(log n).

In average, the computational complexity is therefore at most O(n log3 n).
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4. Proof of Theorem 2.

We begin by carrying out and proving a non-asymptotic risk bound.

Theorem 5. Suppose that f ∈ L
q for some q > 1. Then, there exist universal constants ¯̺−1, ς−1

and terms ¯̺0, ς0 depending on ψ only such that if ρ−1 ≥ ¯̺−1 and ρ0 ≥ ¯̺0, the estimator f̂ defined
in Section 2.3 satisfies

E

[
‖f − f̂‖1

]
(17)

≤ c1E




Ĵ∑

j=−1

inf
ℓj∈N

∞∑

r=ℓj+j

inf
Kj,r,ℓj

⊂Ẑj,r(ℓj)∩Zj

{
B̂j,r,ℓj(Kj,r,ℓj) + ρj Êj,r,ℓj(|Kj,r,ℓj |)

}
1A




+ c1T1 + c1T2 + c2
log n

n2
,

where

Zj = {k ∈ Z, fj,k ≥ 1/n} ,(18)

fj,k =

∫
f(x)1supp ψj,k

(x) dx,(19)

B̂j,r,ℓj(Kj,r,ℓj) = 2−j/2
∑

k∈(Ẑj,r(ℓj)∩Zj)\Kj,r,ℓj

|βj,k|,(20)

T1 =

∞∑

j=−1

2−j/2
∑

k 6∈Zj

|βj,k|,(21)

T2 = n

∞∑

j=−1

2−j/2
∑

k∈Zj

|βj,k|fj,k(1− fj,k)
n−1,(22)

where c1 only depends on ψ, ψ̄, φ̄, and where c2 only depends on ψ, ψ̄, φ̄, q, ‖f‖q. Moreover, A is an

event on which Ĵ ≤ c0 log n for some c0 only depending on q, ‖f‖q, and on which

|Ẑj| ≤ 2E
[
|Ẑj|

]
+ (7/3)(2Lψ + 1) (log(j + 2) + 2 log n+ 1)(23)

for all j ≥ −1. Furthermore, on A we have for all j ≥ −1, k ∈ Z,

σ2j,k ≤ 2σ̂2j,k + c3 log((j + 2)n)/n,(24)

where σ2j,k = E[σ̂2j,k] and where c3 only depends on ψ. We also have on A:

Ẑj,r(ℓj) ⊂ Z̆j,r ⊂ Ẑ
′
j,r ⊂ Z̆

′
j,r.(25)

This embedding is valid for all j ≥ −1, ℓj ∈ N, r ≥ ℓj + j + 1 such that

2r ≤ ςj
n

log((j + 2)n)
,

and Z̆j,r, Z̆
′
j,r are defined by

Z̆j,r =
{
k ∈ Z, 2−r−3/2 < σ2j,k ≤ 2−r+1/2

}
,(26)

Z̆
′
j,r =

{
k ∈ Z, 2−r−5/2 < σ2j,k ≤ 2−r+3/2

}
.(27)
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By convention, the infimum over Kj,r,ℓj in (17) is equal to 0 if Ẑj,r(ℓj) ∩ Zj = ∅.

4.1. Proof of Theorem 5. For all j ≥ −1, subset K ⊂ Z, we define

σ̂2j (K) =
∑

k∈K

σ̂2j,k,

and

σ2j (K) = E
[
σ̂2j (K)

]
=
∑

k∈K

σ2j,k.(28)

The proof of the theorem ensues from a succession of lemmas. The first one is classical and is the
following:

Lemma 1. For all K ⊂ Z, j ≥ 0, and x ∈ R,
(
∑

k∈K

|ψ(2jx− k)|
)2

≤ c
∑

k∈K

ψ2(2jx− k),

where c only depends on ψ.

Proof of Lemma 1. We use that ψ is compactly supported and apply Cauchy-Schwarz inequality.
�

Lemma 2. Let for all j ≥ −1, Cj be a subset of Z. There is an event of probability 1 − 1/n4 on
which: for all j ≥ −1, all finite subset Kj of Cj,

2−j/2
∑

k∈Kj

∣∣∣β̂j,k − βj,k

∣∣∣ ≤ cjVj(Kj , Cj),(29)

where

Vj(Kj , Cj) =

√
|Kj |σ2j (Kj) log+(σ

2
j (Cj)/σ2j (Kj))

n
+

|Kj | log+(nσ2j (Cj)/|Kj |)
n

+

√
σ2j (Kj)

log((j + 2)n)

n
+

log((j + 2)n)

n
.

Moreover, cj is universal if j = −1 and only depends on ψ if j ≥ 0.

Proof of Lemma 2. We only show the lemma when j ≥ 0. The proof when j = −1 is similar
(replace ψ by φ). We consider some c1 > 0 only depending on ψ such that

∥∥∥∥∥
∑

k∈Z

∣∣ψ(2j · −k)
∣∣
∥∥∥∥∥
∞

≤ 1/c1.

We then consider d ≥ 1 and define the at most countable collection

Fj(d) =



c1

∑

k∈Kj

ψ(2j · −k), Kj ⊂ Cj, |Kj | ≤ d





of functions. These functions take values in [−1, 1] and are piecewise constant on at most c2d
pieces where c2 only depends on ψ. Therefore, Fj(d) is VC subgraph and its dimension is not
larger than d, up to a multiplicative factor depending on ψ only (see [BB18] for instance).
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Let now Kj ⊂ Cj such that |Kj | ≤ d. Elementary computations entail

∑

k∈Kj

∣∣∣β̂j,k − βj,k

∣∣∣ ≤ 2 sup
K ′

j⊂Kj

∣∣∣∣∣∣

∑

k∈K ′

j

(
β̂j,k − βj,k

)
∣∣∣∣∣∣
.

We introduce the map ψK ′

j
(·) defined for x ∈ R by

ψK ′

j
(x) = c1

∑

k∈K ′

j

ψ(2jx− k).

The preceding inequality can then be rewritten as

2−j/2
∑

k∈Kj

∣∣∣β̂j,k − βj,k

∣∣∣ ≤ (2/c1) sup
K ′

j⊂Kj

∣∣∣∣∣
1

n

n∑

i=1

[
ψK ′

j
(Xi)− E

(
ψK ′

j
(Xi)

)]
∣∣∣∣∣ .

Note that

f̄(x) = c1
∑

k∈Cj

∣∣ψ(2jx− k)
∣∣

is an envelope function of Fj(d). Moreover, Lemma 1 gives when K ′
j ⊂ Kj ,

E[ψ2
K ′

j
(X)] ≤ c3σ

2
j (K

′
j) ≤ c3σ

2
j (Kj),

and E[f̄2(X)] ≤ c3σ
2
j (Cj). We apply the probabilistic result given by Proposition 6 in Appen-

dix A.We then use that x 7→ x log+(a/x) is non-decreasing for all a > 0, and conclude by a union
bound. �

Lemma 3. Let for all j ≥ −1, r ∈ N, Cj,r be a finite subset of Z. There is an event of probability
1− 1/n4 on which: for all j ≥ −1, r ∈ N, all subset Kj,r of Cj,r,

2−j/2
∑

k∈Kj,r

∣∣∣β̂j,k − βj,k

∣∣∣ ≤ cjWj,r(Kj,r, Cj,r),(30)

where

Wj,r(Kj,r, Cj,r) =

√
|Kj,r|σ2j (Kj,r) log+(|Cj,r|/|Kj,r|)

n
+

|Kj,r| log+(|Cj,r|/|Kj,r|)
n

+

√
σ2j (Kj,r)

log((j + 2)(r + 1)n)

n
+

log((j + 2)(r + 1)n)

n
.

Moreover, cj is universal if j = −1 and only depends on ψ if j ≥ 0.

Sketch of the proof of Lemma 3. The proof is a slight variant to that of Lemma 2. The main
difference is that we use (72) in Appendix A in place of (71). We restrict to the case j ≥ 0, and
define the collection Fj,r(d) for d ∈ [1, |Cj,r|] by

Fj,r(d) =



c1

∑

k∈Kj,r

ψ(2j · −k), Kj,r ⊂ Cj,r, |Kj,r| ≤ d



 .
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We have

|Fj,r(d)| ≤
d∑

i=0

(|Cj,r|
i

)
.

Proposition 2.5 of [Mas07] entails |Fj,r(d)| ≤ (e|Cj,r|/d)d . The result follows from Proposition 6
and a union bound. �

We omit the (easy) proof of the lemma below:

Lemma 4. Let fj,· = (fj,k)k∈Z be defined by (19). Then, for all j ≥ −1, ‖fj,·‖1 ≤ c, where c only
depends on ψ if j ≥ 0 and is universal if j = −1.

We now state:

Lemma 5. We define for all j ≥ −1, r ∈ N, m ∈ {0, 1, 2}, and all finite subset Kj,r of Z,

Ej,r(Kj,r,m) =

√
|Kj,r|σ2j (Kj,r) log+(sj,r(Kj,r,m))

n
+

|Kj,r| log+(s′j,r(Kj,r,m))

n

+

√
σ2j (Kj,r)

log((j + 2)(r + 1)n)

n
+

log((j + 2)(r + 1)n)

n
,

where

sj,r(Kj,r, 0) = E[|Ẑj|]/|Kj,r| and s′j,r(Kj,r, 0) = E[|Ẑj|]/|Kj,r|
sj,r(Kj,r, 1) = 1/σ2j (Kj,r) and s′j,r(Kj,r, 1) = n/|Kj,r|
sj,r(Kj,r, 2) = |Z̆j,r|/|Kj,r| and s′j,r(Kj,r, 2) = |Z̆j,r|/|Kj,r|.

Then, there is an event of probability 1−4/n4 on which: for all j ≥ −1, r ∈ N, all finite subset Kj,r

of Z, and all m ∈ {0, 1},

2−j/2
∑

k∈Kj,r

∣∣∣β̂j,k − βj,k

∣∣∣ ≤ cjEj,r(Kj,r,m).(31)

Moreover, if Kj,r ⊂ Z̆j,r where Z̆j,r is defined by (26), the left-hand side of (31) is also not larger
than cjEj,r(Kj,r, 2). Here, cj is universal if j = −1 and only depends on ψ if j ≥ 0.

Proof of Lemma 5. We only show the lemma when |Kj,r| ≥ 1. Note first that σ2j (Z) is bounded
from above by a numerical value when j = −1 and by a term only depending on ψ when j ≥ 0
(use Lemma 4 and ‖ψ‖∞ < ∞). The proof that (31) holds true with m = 1 follows therefore
from Lemma 2 (with Cj = Z). The proof that it is also true with m = 2 is due to Lemma 3 (with

Cj,r = Z̆j,r).

We now suppose that m = 0. Let g be the map defined for x ∈ [0, 1] by g(x) = 1 − (1 − x)n.
Note that σ̂2j,k > 0 if and only if ψj,k(Xi) 6= 0 for some i. Therefore,

E[|Ẑj|] =
∑

k∈Z

g(fj,k),(32)
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where fj,k is defined by (19) by fj,k =
∫
supp ψj,k

f . Note that g is increasing and x 7→ g(x)/x is

decreasing. Recall that Zj is defined in (18). We deduce,

E[|Ẑj|] =
∑

k∈Zj

g(fj,k) +
∑

k 6∈Zj

g(fj,k)

fj,k
fj,k

≥ |Zj|g(1/n) +
∑

k 6∈Zj

g(1/n)

1/n
fj,k.

Note that

σ2j (Z
c
j) ≤ max

{
1, ‖ψ‖2∞

} ∑

k 6∈Zj

fj,k,

and hence

E[|Ẑj|] ≥ c1
[
|Zj|+ nσ2j (Z

c
j)
]
,(33)

where c1 only depends on ψ. We deduce from Lemmas 2 and 3 that with probability 1− 2/n4,

2−j/2
∑

k∈Kj,r

∣∣∣β̂j,k − βj,k

∣∣∣ ≤ c2
[
Vj(Kj,r ∩ Z

c
j ,Z

c
j) +Wj,r(Kj,r ∩ Zj,Zj)

]
.

Elementary computations give

Vj(Kj,r ∩ Z
c
j ,Z

c
j) ≤ c3

[
|Kj,r| log+(nσ2j (Z

c
j)/|Kj,r|)

n
+

log((j + 2)n)

n

]
.

We conclude using (33). �

Lemma 6. There is an event of probability 1 − 4/n4 on which: for all j ≥ −1, ε > 0, and finite
subset Kj of Z,

σ̂2j (Kj) ≤ (1 + ε)σ2j (Kj) + cj

[
|Kj | log+(E[|Ẑj |]/|Kj |)

n
+

log((j + 2)n)

n

]
,(34)

σ2j (Kj) ≤ (1 + ε)σ̂2j (Kj) + cj

[
|Kj | log+(E[|Ẑj |]/|Kj |)

n
+

log((j + 2)n)

n

]
,(35)

where cj depends only on ε if j = −1 and only depends on ε, ψ if j ≥ 0.

Sketch of the proof of Lemma 6. We may replace ψ in the previous proofs by ψ2. Hence,
∑

k∈Kj

∣∣σ̂2j,k − σ2j,k
∣∣ ≤ c′jEj,0(Kj , 0),

where c′j is universal if j = −1 and only depends on ψ if j ≥ 0. We conclude using the elementary

inequality 2
√
xy ≤ α−1x+ αy valid for all α > 0. �

Lemma 7. For all j ≥ −1, E
[
|Ẑj |

]
≤ c n, where c only depends on ψ when j ≥ 0 and is universal

if j = −1.
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Proof of Lemma 7. We suppose that j ≥ 0 and note that σ̂2j,k > c1/n when σ̂2j,k 6= 0 as ψ is
piecewise constant. Therefore,

E
[
|Ẑj |

]
≤ (n/c1)

∑

k∈Z

σ2j,k.

Since ψ is bounded above, σ2j,k ≤ c2fj,k. We then use Lemma 4. �

Lemma 8. There exist a universal constant ς−1, a term ς0 only depending on ψ and an event of
probability 1− 4/n4 (the same as that of Lemma 6) on which: for all j ≥ −1, ℓj ∈ N, r ≥ ℓj + j+1
such that

2r ≤ ςj
n

log((j + 2)n)
,

where ςj = ς−11j=−1 + ς01j≥0, the embedding (25) holds true. We also have (24) on this event for
all j ≥ −1 and k ∈ Z.

Proof of Lemma 8. The result follows from Lemma 6 with ε small enough and Lemma 7. �

Lemma 9. We define for all j ≥ −1, r ∈ N, ℓj ∈ N, m ∈ {0, 1, 2}, and all finite subset Kj,r,ℓj
of Z,

Ẽj,r,ℓj(Kj,r,ℓj ,m) =

√
|Kj,r,ℓj |σ̂2j (Kj,r,ℓj) log+(s̃j,r,ℓj(Kj,r,ℓj ,m))

n

+
|Kj,r,ℓj | log+(s̃′j,r,ℓj(Kj,r,ℓj ,m))

n
+

√
σ̂2j (Kj,r,ℓj)

log((j + 2)(r + 1)n)

n

+
log((j + 2)(r + 1)n)

n
,

where

s̃j,r,ℓj(Kj,r,ℓj , 0) = E[|Ẑj|]/|Kj,r,ℓj | and s̃′j,r,ℓj(Kj,r,ℓj , 0) = E[|Ẑj|]/|Kj,r,ℓj |
s̃j,r,ℓj(Kj,r,ℓj , 1) = 1/σ̂2j (Kj,r,ℓj) and s̃′j,r,ℓj(Kj,r,ℓj , 1) = n/|Kj,r,ℓj |
s̃j,r,ℓj(Kj,r,ℓj , 2) = |Ẑ′

j,r|/|Kj,r,ℓj | and s̃′j,r,ℓj(Kj,r,ℓj , 2) = |Ẑ′
j,r|/|Kj,r,ℓj |.

Then, there is an event of probability 1− 8/n4 on which: for all j ≥ −1, ℓj ∈ N, r ≥ ℓj + j, finite
subset Kj,r,ℓj of Z, and m ∈ {0, 1},

2−j/2
∑

k∈Kj,r,ℓj

∣∣∣β̂j,k − βj,k

∣∣∣ ≤ cj Ẽj,r,ℓj(Kj,r,ℓj ,m).

Moreover, if Kj,r,ℓj ⊂ Ẑj,r(ℓj) for some r ≥ ℓj + j + 1 and

2r ≤ ςj
n

log((j + 2)n)
,

where ςj is given by Lemma 8, the inequality holds true with m = 2. Furthermore, cj is universal
if j = −1 and only depends on ψ if j ≥ 0.

Proof of Lemma 9. The case m = 0 is merely due to Lemma 5 and (35).The proof when m = 2

follows from Lemma 5, from the inclusions Ẑj,r(ℓj) ⊂ Z̆j,r ⊂ Ẑ
′
j,r and from the double inequality

1/
√
2 ≤

σ2j (Kj,r,ℓj)

σ̂2j (Kj,r,ℓj)
≤

√
2
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valid for all Kj,r,ℓj ⊂ Ẑj,r(ℓj). The casem = 1 essentially follows from elementary computations: let

σ2 be the right-hand side of (35) (with Kj = Kj,r,ℓj and ε = 1). Then, using that x 7→ x log+(1/x)
is non-decreasing,

σ2j (Kj,r,ℓj) log+(1/σ
2
j (Kj,r,ℓj)) ≤ σ2 log+(1/σ

2)

≤ c
[
σ̂2j (Kj,r,ℓj) log+(1/σ̂

2
j (Kj,r,ℓj))

+(|Kj,r,ℓj |/n) log+(E[|Ẑj|]/|Kj,r,ℓj |) log+(n/|Kj,r,ℓj |)
+(log((j + 2)n)/n) log+(n/|Kj,r,ℓj |)

]
.

Lemma 7 ends the proof. �

Lemma 10. Lemma 9 holds true (up to an increase of cj) with s̃′j,r,ℓj(Kj,r,ℓj , 1) replaced by

s̃′j,r,ℓj(Kj,r,ℓj , 1) = 1/σ̂2j (Kj,r,ℓj).

Proof of Lemma 10. We set

Aj =

√
|Kj,r,ℓj |σ̂2j (Kj,r,ℓj) log+(1/σ̂

2
j (Kj,r,ℓj))

n

Bj =
|Kj,r,ℓj | log+(1/σ̂2j (Kj,r,ℓj))

n

B′
j =

|Kj,r,ℓj | log+(n/|Kj,r,ℓj |)
n

.

We observe that x 7→ x log+(1/x) is non-decreasing and
√

log+(x/ log+(x)) ≥ 0.8
√

log+(x).

We deduce that if

σ̂2j (Kj,r,ℓj) ≥
|Kj,r,ℓj | log+(n/|Kj,r,ℓj |)

n
,

then Aj ≥ 0.8B′
j . If now

σ̂2j (Kj,r,ℓj) <
|Kj,r,ℓj | log+(n/|Kj,r,ℓj |)

n
,

then Bj ≥ 0.82B′
j.

We therefore get some c > 0 such that

Aj +B′
j ≤ c(Aj +Bj),

which concludes the proof. �

Lemma 11. For all j ≥ −1, ξ > 0, and probability 1− e−ξ,

E
[
|Ẑj|

]
≤ 2|Ẑj|+ 2(2Lψ + 1)ξ.

Proof of Lemma 11. This result derives from a Poissonian inequality for self-bounding functionals
and more precisely from equation (7) of [BLM00]. We set for k ∈ Z,

Ij(k) = {x ∈ R, ψj,k(x) 6= 0}
⊂
[
2−j(k − Lψ), 2

−j(k + Lψ)
]
,



26 MATHIEU SART

and remark

|Ẑj | =
∑

k∈Z

1∃i∈{1,...,n}, Xi∈Ij(k).

We introduce for r ∈ {1, . . . , n} the random variable

|Ẑj(r)| =
∑

k∈Z

1∃i∈{1,...,n}\{r}, Xi∈Ij(k).

We have |Ẑj(r)| ≤ |Ẑj |. Moreover,

|Ẑj| − |Ẑj(r)| =
∑

k∈Z

1Xr∈Ij(k)1∀i∈{1,...,n}\{r}, Xi 6∈Ij(k)

≤
∑

k∈Z

1Xr∈Ij(k)

≤ 2Lψ + 1.

Besides,

n∑

r=1

(
|Ẑj| − |Ẑj(r)|

)
=
∑

k∈Z

n∑

r=1

1Xr∈Ij(k)1∀i∈{1,...,n}\{r}, Xi 6∈Ij(k)

≤
∑

k∈Z

1∃i∈{1,...,n}, Xi∈Ij(k)

≤ |Ẑj|.

Now, equation (7) of [BLM00] gives for all ξ > 0, and probability 1− e−ξ,

E
[
|Ẑj |

]
≤ |Ẑj|+

√
2(2Lψ + 1)E

[
|Ẑj|

]
ξ.

We conclude by using the elementary inequality
√
ab ≤ a/2 + b/2. �

Lemma 12. For all j ≥ −1, ξ > 0, and probability 1− e−ξ,

|Ẑj| ≤ 2E
[
|Ẑj |

]
+ (7/6)(2Lψ + 1)ξ.

Proof of Lemma 12. The proof is similar to that of Lemma 12. We merely use (6) of [BLM00] to
get for all ξ > 0, and probability 1− e−ξ,

|Ẑj | ≤ E
[
|Ẑj|

]
+

√
2(2Lψ + 1)E

[
|Ẑj |

]
ξ + 2

2Lψ + 1

3
ξ.

We conclude as in the preceding proof. �

Lemma 13. With probability 1− 1/n4, we have for all j ≥ −1,

E
[
|Ẑj|

]
≤ 2|Ẑj |+ 4(2Lψ + 1) (log(j + 2) + 2 log n+ 1) ,

and

|Ẑj| ≤ 2E
[
|Ẑj |

]
+ (7/3)(2Lψ + 1) (log(j + 2) + 2 log n+ 1) .

Proof of Lemma 13. The proof follows from Lemmas 11, 12 and a union bound. �
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Lemma 14. There exist a universal constant ¯̺−1, a term ¯̺0 depending only on ψ, and an event of

probability 1−9/n4 on which: for all j ≥ −1, ℓj ∈ N, r ≥ ℓj+j, and finite subset Kj,r,ℓj of Ẑj,r(ℓj),

2−j/2
∑

k∈Kj,r,ℓj

∣∣∣β̂j,k − βj,k

∣∣∣ ≤ (¯̺j/2)Êj,r,ℓj(|Kj,r,ℓj |),

where ¯̺j = ¯̺0 if j ≥ 1. Moreover, (23), (24), and (25) hold true on this event.

Proof of Lemma 14. The lemma is a direct result of Lemmas 8, 9, 10 and 13 when r ≥ ℓj + j + 1
(the event of Lemma 8 contains the one of Lemma 9). When r = ℓj + j, we use

σ̂2j (Kj,r,ℓj) ≤ κ̄j(2Lψ + 1),

with κ̄j = 1j=−1 + ‖ψ‖2∞1j≥0. Moreover,

σ̂2j (Kj,r,ℓj) ≥ 2−r−1 |Kj,r,ℓj |.

We conclude by using Lemma 9 and the fact that x 7→ x log+(1/x) is non-decreasing. �

Lemma 15. There exist terms ς0, ¯̺0 only depending on ψ and universal constants ς−1, ¯̺−1 such

that if ρ−1 ≥ ¯̺−1 and ρ0 ≥ ¯̺0, the estimator f̂ defined by (9) satisfies with probability 1 − 9/n4:

for all (ℓj)j≥−1 ∈ N
{−1}∪N,

∥∥∥f − f̂
∥∥∥
1
≤ cT̂

+ c
Ĵ∑

j=−1

∞∑

r=ℓj+j

inf
Kj,r,ℓj

⊂Ẑj,r(ℓj)∩Zj




2−j/2

∑

k∈(Ẑj,r(ℓj)∩Zj)\Kj,r,ℓj

|βj,k|+ ρj Êj,r,ℓj(|Kj,r,ℓj |)




,

where

T̂ =

Ĵ∑

j=−1

2−j/2
∑

k 6∈Ẑj

|βj,k|+
Ĵ∑

j=−1

2−j/2
∑

k 6∈Zj

|βj,k|+
∞∑

j=Ĵ+1

2−j/2
∑

k∈Z

|βj,k|,(36)

where Zj is given by (18) and where c only depends on φ̄, ψ̄. Moreover, (23), (24), and (25) hold
true on this event.

Proof of Lemma 15. We observe that for all j ≥ −1 and ℓj ∈ N,

Ẑj =

∞⋃

r=ℓj+j

Ẑj,r(ℓj).(37)

In particular,

Z =

∞⋃

r=ℓ̂j+j

Ẑj,r(ℓ̂j)
⋃

Ẑ
c
j.
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We deduce from (2) that
∥∥f − f̂

∥∥
1
≤ cT̃ + cÂ where

T̃ =

Ĵ∑

j=−1

2−j/2
∑

k 6∈Ẑj

|βj,k|+
∞∑

j=Ĵ+1

2−j/2
∑

k∈Z

|βj,k|

Â =

Ĵ∑

j=−1

2−j/2
∞∑

r=ℓ̂j+j





∑

k∈Ẑj,r(ℓ̂j)\K̂j,r,ℓ̂j

|βj,k|+
∑

k∈K̂
j,r,ℓ̂j

∣∣∣β̂j,k − βj,k

∣∣∣




.

Note that

Â ≤
Ĵ∑

j=−1

2−j/2





∞∑

r=ℓ̂j+j

∑

k∈Ẑj,r(ℓ̂j)

|βj,k|+
∞∑

r=ℓ̂j+j




−
∑

k∈K̂
j,r,ℓ̂j

|βj,k|+
∑

k∈K̂
j,r,ℓ̂j

∣∣∣β̂j,k − βj,k

∣∣∣








.

The triangle inequality and Lemma 14 entail: on an event of probability 1− 9/n4,

− 2−j/2
∑

k∈K̂
j,r,ℓ̂j

|βj,k|+ 2−j/2
∑

k∈K̂
j,r,ℓ̂j

∣∣∣β̂j,k − βj,k

∣∣∣

≤ −2−j/2
∑

k∈K̂
j,r,ℓ̂j

|β̂j,k|+ 21−j/2
∑

k∈K̂
j,r,ℓ̂j

∣∣∣β̂j,k − βj,k

∣∣∣

≤ −2−j/2
∑

k∈K̂j,r,ℓ̂j

|β̂j,k|+ ¯̺j Êj,r,ℓ̂j(|K̂j,r,ℓ̂j
|).

By gathering all these results, and by using ρj ≥ ¯̺j ,

Â ≤
Ĵ∑

j=−1

2−j/2
∑

k∈Ẑj

|βj,k|+
Ĵ∑

j=−1

∞∑

r=ℓ̂j+j

γj,r,ℓ̂j

(
K̂j,r,ℓ̂j

)
.

We use (12), (11), triangle inequality and Lemma 14. This leads to the two following inequalities
valid for all ℓj ∈ N:

Â ≤
Ĵ∑

j=−1

2−j/2
∑

k∈Ẑj

|βj,k|

+

Ĵ∑

j=−1

∞∑

r=ℓj+j

inf
Kj,r,ℓj

⊂Ẑj,r(ℓj)



−2−j/2

∑

k∈Kj,r,ℓj

|β̂j,k|+ ρj Êj,r,ℓj(|Kj,r,ℓj |)





≤
Ĵ∑

j=−1

2−j/2
∑

k∈Ẑj

|βj,k|

+

Ĵ∑

j=−1

∞∑

r=ℓj+j

inf
Kj,r,ℓj

⊂Ẑj,r(ℓj)



−2−j/2

∑

k∈Kj,r,ℓj

|βj,k|+ (3/2)ρj Êj,r,ℓj(|Kj,r,ℓj |)



 .
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We use (37) and the triangle inequality to conclude. �

Lemma 16. Let T̂ be defined by (36). Then,

E[T̂ ] ≤ 3T1 + 2T2,

where T1 and T2 are defined by (21) and (22).

Proof of Lemma 16. There is at most one observation Xi such that ψj,k(Xi) 6= 0 when j ≥ Ĵ + 1.

Moreover, no observation Xi satisfies ψj,k(Xi) 6= 0 when k 6∈ Ẑj, no matter j. We deduce,

E[T̂ ] ≤ T1 +
∞∑

j=−1

2−j/2
∑

k∈Z

|βj,k|
(
(1− fj,k)

n + nfj,k(1− fj,k)
n−1
)
,

where fj,k is given by (19). We conclude by noticing that (1 − fj,k)
n + nfj,k(1 − fj,k)

n−1 ≤ 2 if
fj,k ≤ 1/n and (1− fj,k)

n ≤ nfj,k(1− fj,k)
n−1 if fj,k > 1/n. �

Lemma 17. Let ξ > 0. The following assertion holds true with probability 1 − ξ/n: for all q > 1
and f ∈ L

q,

2Ĵ ≤ max
{
1, 8Lψ

(
n2‖f‖q/ξ

) q
q−1

}
.

In particular, for all k ≥ 1, E[Ĵk] ≤ C logk n where C depends on k, q, ‖f‖q and Lψ only.

Proof of Lemma 17. The proof of this lemma is deferred to Appendix D. �

Proof of Theorem 5. There exists c1 only depending on φ̄, ψ̄ such that

‖f̂‖1 ≤ c1
n

n∑

i=1



∑

k∈Z

∣∣φ(2jXi − k)
∣∣+

Ĵ∑

j=0

∑

k∈Z

∣∣ψ(2jXi − k)
∣∣



≤ c2(Ĵ + 2).

We deduce from Lemma 17 an event A1 of probability 1− 1/n4 on which Ĵ ≤ c0 log n. This lemma

also gives E[Ĵ2] ≤ c3 log
2 n and hence E[‖f̂‖21] ≤ c4 log

2 n.

Let A2 be the event of probability 1 − 9/n4 that appears in Lemma 15. We set A = A1 ∩ A2

and get

E

[
‖f − f̂‖1

]
≤ E

[
‖f − f̂‖11A

]
+ E

[
‖f − f̂‖11Ac

]
.

The first term can be bounded from above by using Lemmas 15 and 16. As to the second term, we
use the triangle and Cauchy-Schwarz inequalities to get

E

[
‖f − f̂‖11Ac

]
≤ P (Ac) + E

[
‖f̂‖21

]1/2
P (Ac)1/2

≤ c5
log n

n2
.

�
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4.2. Proof of Theorem 2: intermediate lemmas. We first recall the following result. We
refer to [CVNRF15] for its proof (see their Propositions 3.2 and 4.5).

Lemma 18. Let Λ be an at most countable set, and x = (xλ)λ∈Λ ∈ R
Λ
+. For all 0 < p < q <∞,

‖x‖qq ≤
q

q − p
‖x‖q−p∞ ‖x‖pp,∞.(38)

Moreover, for all p > 1, and finite subset Γ of Λ,
∑

λ∈Γ

xλ ≤ p

p− 1
‖x‖p,∞ |Γ|1−1/p.(39)

The lemma below is elementary.

Lemma 19. Suppose that f ∈ WT θ(M) for some θ ∈ (0, 1) and let fj,· = (fj,k)k∈Z be defined
by (19). Then, for all j ≥ −1,

‖fj,·‖θθ,∞ ≤ cM2j(1−θ),

where c only depends on ψ and θ if j ≥ 0 and only depends on θ if j = −1.

We now show:

Lemma 20. Let p ∈ (0,∞], α ∈ ((1/p− 1)+, τ), θ ∈ [0, 1)∩ [0, p], R > 0, M ≥ 1. Consider υn > 0
and define

T1(υn) =

∞∑

j=−1

2−j/2
∑

k∈Z
fj,k≤υn

|βj,k|.

Then, for all f ∈ Fα,p,θ(R,M),

T1(υn) ≤ c
[
R(1−θ)/(1+α−θ/p)M (α+1−1/p)/(α+1−θ/p)υα(1−θ)/(α+1−θ/p)

n +Mυ1−θn

]
,(40)

where c only depends on p, α, θ, ψ.

Proof of Lemma 20. We define for r ≥ 0, j ≥ −1,

Zj,r =
{
k ∈ Z, 2−r−1 < fj,k ≤ 2−r

}
.

Since f ∈ WT θ(M), Lemma 19 implies when θ ∈ (0, 1),

|Zj,r| ≤ 2(r+1)θ ‖fj,·‖θθ,∞ ≤ c1M2rθ2j(1−θ),(41)

where c1 only depends on ψ. We can check that this result remains true when θ = 0. We also
remark that 2−j/2|βj,k| ≤ c2fj,k as ψ is bounded and hence

T1(υn) ≤ A+ T ′
1(υn),

where

A = c2
∑

2r≥1/υn

2−r|Z−1,r|

T ′
1(υn) =

∞∑

j=0

∑

2r≥1/υn

∑

k∈Zj,r

min
{
c22

−r, 2−j/2|βj,k|
}
.
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Note that

A ≤ c1c2M2−(1−θ)
∑

2r≥1/υn

2−r(1−θ) ≤ c3Mυ1−θn .

We now focus on T ′
1(υn).

We first suppose that p > 1. By using (39),

2−j/2
∑

k∈Zj,r

|βj,k| ≤ c42
−j/2‖βj,·‖p,∞|Zj,r|1−1/p,

and f ∈ WBαp,∞(R), we get

T ′
1(υn) ≤ c5

∞∑

j=0

∑

2r≥1/υn

min
{
2−r|Zj,r|, R2−j(α+1−1/p)|Zj,r|1−1/p

}

≤ c6

∞∑

j=0

∑

2r≥1/υn

min
{
M2−(r−j)(1−θ), RM1−1/p2r(1−1/p)θ2−j[(1−1/p)θ+α]

}

≤ c7R
(1−θ)/(1+α−θ/p)M (α+1−1/p)/(α+1−θ/p)

∑

2r≥1/υn

2−rα(1−θ)/(α+1−θ/p)

≤ c8R
(1−θ)/(1+α−θ/p)M (α+1−1/p)/(α+1−θ/p)υα(1−θ)/(α+1−θ/p)

n .

We now suppose p ≤ 1 and consider j0 ∈ N. We have T ′
1(υn) ≤ T ′

1,1(υn) + T ′
1,2(υn) where

T ′
1,1(υn) =

j0−1∑

j=0

2−j/2
∑

k∈Z
fj,k≤υn

|βj,k|

T ′
1,2(υn) =

∞∑

j=j0

2−j/2
∑

k∈Z
fj,k≤υn

|βj,k|.

By using 2−j/2|βj,k| ≤ c2fj,k, we get when θ 6= 0,

T ′
1,1(υn) ≤ c9

j0−1∑

j=0

∑

k∈Z
fj,k≤υn

fj,k

≤ c10υ
1−θ
n

j0−1∑

j=0

‖fj,·‖θθ,∞ thanks to (38)

≤ c11υ
1−θ
n M2j0(1−θ) thanks to Lemma 19.

This last inequality remains true when θ = 0. Moreover, by using (38) when p 6= 1,

T ′
1,2 ≤ c12υ

1−p
n

∞∑

j=j0

2−jp/2‖βj,·‖pp,∞

≤ c13υ
1−p
n

∞∑

j=j0

2−jp/2Rp2−jp(α+1/2−1/p) as f ∈ WBαp,∞(R).
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Note that this inequality also holds true when p = 1 and f ∈ Bα1,∞(R). Therefore, in both cases,

T ′
1,2 ≤ c14υ

1−p
n Rp2−j0p(α+1−1/p).

We conclude by choosing j0 appropriately. �

Lemma 21. Let p ∈ (0,∞], α ∈ ((1/p − 1)+, τ), θ ∈ [0, 1) ∩ [0, p], R > 0, M ≥ 1. Then, for all
f ∈ Fα,p,θ(R,M),

T1 + T2 ≤ c
[
R(1−θ)/(1+α−θ/p)M (α+1−1/p)/(α+1−θ/p)n−α(1−θ)/(α+1−θ/p)(42)

+Mn−(1−θ)
]
,

where T1 and T2 are defined by (21) and (22), and where c only depends on p, α, θ, ψ.

Proof of Lemma 21. We focus on T2 as a bound on T1 may be obtained via the preceding lemma.
We first consider the case p ≥ 1. Since f ∈ WT θ(M), we have when θ 6= 0.

|Zj | ≤ nθ ‖fj,·‖θθ,∞ ≤ c1Mnθ2j(1−θ),(43)

where c1 only depends on ψ (Lemma 19). This inequality remains true when θ = 0.

We consider j0 ∈ N and decompose T2 as T2 = T2,1 + T2,2 where

T2,1 = n

j0−1∑

j=−1

2−j/2
∑

k∈Zj

|βj,k|fj,k(1− fj,k)
n−1,

T2,2 = n

∞∑

j=j0

2−j/2
∑

k∈Zj

|βj,k|fj,k(1− fj,k)
n−1.

We use 2−j/2|βj,k| ≤ c2fj,k to get

T2,1 ≤ c2n

j0−1∑

j=−1

∑

k∈Zj

f2j,k(1− fj,k)
n−1.

Since x2(1− x)n−1 ≤ c3/n
2 for all x ∈ [0, 1],

T2,1 ≤
c4
n

j0−1∑

j=−1

|Zj|

≤ c5Mn−(1−θ)2j0(1−θ) thanks to (43).(44)

As to T2,2, we deduce from (39), f ∈ WBαp,∞(R), and (43) that if p > 1,

2−j/2
∑

k∈Zj

|βj,k| ≤ c6RM
1−1/p2−j(α+θ(1−1/p))n(1−1/p)θ,

and hence, using that x(1− x)n−1 ≤ c7/n,

T2,2 ≤ c8RM
1−1/p2−j0(α+θ(1−1/p))n(1−1/p)θ.

We finally choose j0 in a suitable way to conclude the proof when p > 1. Note that the above
reasoning also works with p = 1 if we replace the Lorentz norm ‖ · ‖1,∞ by the L

1 norm.
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We now turn to the case p < 1. We write T2 = T2,1 + T2,2 where

T2,1 = n

j1∑

j=−1

2−j/2
∑

k∈Zj

|βj,k|fj,k(1− fj,k)
n−1

T2,2 = n

∞∑

j=j1

2−j/2
∑

k∈Zj

|βj,k|fj,k(1− fj,k)
n−1.

Note that (44) does not use p > 1 and therefore also holds true when p < 1 (with j0 replaced by j1).

Besides, as 2−j/2|βj,k| ≤ c2fj,k and x2(1− x)n−1 ≤ c3/n
2,

n2−j/2|βj,k|fj,k(1− fj,k)
n−1 ≤ c2nf

2
j,k(1− fj,k)

n−1 ≤ c9/n.

We deduce from (38),

T2,2 ≤ c10n
−(1−p)

∞∑

j=j1

∥∥∥n2−j/2βj,·fj,·(1− fj,·)
n−1
∥∥∥
p

p,∞
.

Yet, x(1− x)n−1 ≤ c7/n for all x ∈ [0, 1] and hence,

T2,2 ≤ c11n
−(1−p)

∞∑

j=j1

2−jp/2 ‖βj,·‖pp,∞

≤ c12n
−(1−p)Rp2−j1p(α+1−1/p).

It then remains to choose j1 to conclude. �

Lemma 22. For all j ≥ −1, ℓj ∈ N, r ≥ ℓj + j, θ ∈ [0, 1), M ≥ 1, f ∈ WT θ(M),

E

[
|Ẑj,r(ℓj) ∩ Zj |

]
≤ cM2rθ2j(1−θ),(45)

where c only depends on ψ and θ.

Proof of Lemma 22. The proof is straightforward when θ = 0 and we assume therefore that θ > 0.
We have,

E

[
|Ẑj,r(ℓj) ∩ Zj|

]
≤

∑

k∈Z
fj,k≥1/n

P
[
σ̂2j,k > 2−r−1

]
.

Set t = 2−r−1 and define
Kt =

{
k ∈ Z, σ2j,k ≥ t/2

}
.

We derive from σ2j,k ≤ max{1, ‖ψ‖2∞}fj,k, Lemma 19, and f ∈ WT θ(M), that |Kt| ≤ c1M2j(1−θ)t−θ.
Moreover,

E

[
|Ẑj,r(ℓj) ∩ Zj|

]
≤ |Kt|+

∑

k 6∈Kt

fj,k≥1/n

P
[
σ̂2j,k ≥ t

]

≤ c1M2j(1−θ)t−θ +
∑

k 6∈Kt

fj,k≥1/n

P
[
σ̂2j,k ≥ σ2j,k + t/2

]
.

We use Bennett’s inequality (and more precisely equation (2.16) of [Mas07]) to get

P
[
σ̂2j,k ≥ σ2j,k + t/2

]
≤ exp

[
−c2nt2/(σ2j,k + t)

]
,
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where c2 only depends on ‖ψ‖∞. Therefore,

E

[
|Ẑj,r(ℓj) ∩ Zj|

]
≤ c12

j(1−θ)Mt−θ +
∑

k 6∈Kt

fj,k≥1/n

e−c3nt.

Note that the number of k such that fj,k ≥ 1/n is bounded from above by c4Mnθ2j(1−θ). Therefore,

E

[
|Ẑj,r(ℓj) ∩ Zj |

]
≤ c52

j(1−θ)Mt−θ
[
1 + (nt)θe−c3nt

]
.

We conclude by remarking that the map x 7→ xθe−c3x is bounded on R. �

Lemma 23. For all j ≥ −1, θ ∈ [0, 1), M ≥ 1, f ∈ WT θ(M),

E

[
|Ẑj |

]
≤ cMnθ2j(1−θ),(46)

where c only depends on ψ and θ.

Proof of Lemma 23. The proof is straightforward when θ = 0 and we assume from now on that
θ ∈ (0, 1). We deduce from Lemma 19,

E

[
|Ẑj ∩ Zj |

]
≤ |Zj| ≤ c1Mnθ2j(1−θ).(47)

We define for r ≥ 0, j ≥ −1,

Zj,r =
{
k ∈ Z, 2−r−1 < fj,k ≤ 2−r

}

and use Lemma 19 to get

|Zj,r| ≤ c2M2rθ2j(1−θ),

where c2 only depends on ψ. Now,

E

[
|Ẑj ∩ Z

c
j|
]
≤ c3n

∑

k∈Z
fj,k≤1/n

fj,k

≤ c3n
∑

2r≥n

|Zj,r|2−r

≤ c4nM2j(1−θ)
∑

2r≥n

2−r(1−θ)

≤ c5M2j(1−θ)nθ.(48)

We group (47) and (48) together to end the proof. �

Lemma 24. Let p ∈ (0,∞], α ∈ ((1/p − 1)+, τ), θ ∈ [0, 1) ∩ [0, p], R > 0, M ≥ 1 and
f ∈ Fα,p,θ(R,M). Let π = 1/min{1,minx∈R, ψ(x)6=0 ψ

2(x)} and ℓ be an integer such that 2ℓ ≤
M1/(1−θ) < 2ℓ+1.

1. For all 2r > πn such that r ≥ ℓ+ j + 1, for some j ≥ −1, Ẑj,r(ℓ) = ∅.
2. If p ≥ 1, then for all j ≥ 0, and r ≥ ℓ+ j,

E

[
B̂j,r,ℓ(∅)

]
≤ cRM1−1/p2−j(α−θ/p+θ)2(1−1/p)rθ.(49)
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3. For all j ≥ −1, r = j + ℓ, and subset Kj,r,ℓ ⊂ Ẑj,r(ℓ) ∩ Zj,

E

[
Êj,r,ℓ(|Kj,r,ℓ|)

]
≤ c

[√
E[|Kj,r,ℓ|]

n
+

log((j + 2)(r + 1)n)√
n

]
.(50)

Moreover,

E

[
Êj,r,ℓ(|Ẑj,r(ℓ) ∩ Zj |)

]
≤ c

[√
M1/(1−θ)2j

n
+

log((j + 2)(r + 1)n)√
n

]
.(51)

4. For all j ≥ −1, r ≥ j + ℓ+ 1, Kj,r,ℓ ⊂ Ẑj,r(ℓ) ∩ Zj , and θ 6= 0,

Êj,r,ℓ(|Kj,r,ℓ|)1A ≤ c


|Kj,r,ℓ|

√
2−r log2+

(
Mnθ2j(1−θ)/|Kj,r,ℓ|

)

n
(52)

+
log((j + 2)(r + 1)n)√

n

]
,

where A is the event appearing in Theorem 5. Moreover,

E

[
Êj,r,ℓ(|Ẑj,r(ℓ) ∩ Zj|)1A

]
≤ c

[
M2rθ+j(1−θ)

√
2−r log+ (n2−r)

n
(53)

+
log((j + 2)(r + 1)n)√

n

]
.

5. For all j ≥ −1, r ≥ j + ℓ+ 1, and Kj,r,ℓ ⊂ Ẑj,r(ℓ) ∩ Zj,

Êj,r,ℓ(|Kj,r,ℓ|) ≤ c


|Kj,r,ℓ|

√
2−r log2+ (2r/|Kj,r,ℓ|)

n
+

log((j + 2)(r + 1)n)√
n


 .(54)

Moreover,

E

[
Êj,r,ℓ(|Ẑj,r(ℓ) ∩ Zj|)

]
≤ c


M2rθ+j(1−θ)

√
2−r log2+

(
2(r−j)(1−θ)/M

)

n
(55)

+
log((j + 2)(r + 1)n)√

n

]
.

6. For all j ≥ −1, r ≥ j + ℓ+ 1 such that 2r ≤ ςjn/ log((j + 2)n),

Êj,r,ℓ(|Ẑj,r(ℓ) ∩ Zj |) ≤ c

[
|Ẑ′
j,r|
√

2−r

n
+

log((j + 2)(r + 1)n)√
n

]
.(56)

Moreover,

E[|Ẑ′
j,r|1A ] ≤ cM2rθ+j(1−θ).(57)

In all these inequalities, c only depends on ψ, p, θ.

Proof of Lemma 24. The first point is true because ψ is piecewise constant. We now assume that
2r ≤ πn in the rest of the proof.
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We turn to the second point. We have,

B̂j,r,ℓ(∅) ≤ 2−j/2
∑

k∈Ẑj,r(ℓ)∩Zj

|βj,k|.

This gives (49) when p = 1 as f ∈ Bα1,∞(R). When p > 1, we use (39) to get

B̂j,r,ℓ(∅) ≤ c12
−j/2‖βj,·‖p,∞|Ẑj,r(ℓ) ∩ Zj |1−1/p.

We then take the expectation, apply Jensen’s inequality and (45) to get (49).

We now show (50). By using Jensen’s inequality,

E

[
Êj,r,ℓ(|Kj,r,ℓ|)

]
≤ c2

[√
E[|Kj,r,ℓ|]

n
+

E[|Kj,r,ℓ|] log+
(
2r+1/E[|Kj,r,ℓ|]

)

n

+

√
log((j + 2)(r + 1)n)

n
+

log((j + 2)(r + 1)n)

n

]
.(58)

Note that |Kj,r,ℓ| ≤ |Ẑj,r(ℓ)| and

|Ẑj,r(ℓ)| ≤ 2r+1
∑

k∈Z

σ̂2j,k ≤ c32
r.(59)

It then follows from the inequality 2r ≤ πn and from elementary computations that the second
term in (58) is not smaller than the first one, up to a multiplicative factor.

As to (51), we remark that (45) becomes

E[|Ẑj,r(ℓ) ∩ Zj |] ≤ c4M
1/(1−θ)2j

when r = j + ℓ. We then use (50) with Kj,r,ℓ = Ẑj,r(ℓ) ∩ Zj .

We now prove (52). Observe that for all 2r ≤ πn, and r ≥ ℓ+ j + 1,

λ̂j,r ≤ c5 min
{
|Ẑj |+ log n, 2r

}
,

where c5 only depends on the wavelet basis (this uses |Ẑ′
j,r| ≤ |Ẑj| when 2r ≤ ςjn/ log((j + 2)n)).

We deduce from (23) that on A,

λ̂j,r ≤ c6(E[|Ẑj |] + log n).

As M ≥ 1, and θ > 0, we deduce from (46),

λ̂j,r ≤ c7Mnθ2j(1−θ),

and using (59),

Êj,r,ℓ(|Kj,r,ℓ|)1A ≤ c8|Kj,r,ℓ|

√
2−r log+

(
Mnθ2j(1−θ)/|Kj,r,ℓ|

)

n
(60)

+ c8|Kj,r,ℓ|
log+

(
Mnθ2j(1−θ)/|Kj,r,ℓ|

)

n
+ c8

log((j + 2)(r + 1)n)√
n

.
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We then use the condition on r to get (52). As to (53), we apply (60) with Kj,r,ℓ = Ẑj,r(ℓ) ∩ Zj .
We take the expectation, apply Jensen’s inequality and (45). This yields

E

[
Êj,r,ℓ(|Ẑj,r(ℓ) ∩ Zj |)1A

]
≤ c9M2rθ+j(1−θ)

√
2−r log+ (n2−r)

n

+ c9M2rθ+j(1−θ)
log+ (n2−r)

n
+ c9

log((j + 2)(r + 1)n)√
n

.

We then remark that the second term is not smaller than the first one thanks to the condition on r
(up to a multiplicative factor).

The proof of (54) is merely based on the inequality λ̂j,r ≤ 2r+1, the condition on r, and on (59).
The proof of (55) then follows from Jensen’s inequality and (45).

We turn to the proof of (56). Here, we use λ̂j,r ≤ |Ẑ′
j,r|. By doing as in the proof of (59),

|Ẑ′
j,r| ≤ c102

r. Note also that the maps x 7→ x
√

log+(a/x) and x 7→ xlog+(a/x) are increasing. By

using moreover Ẑj,r(ℓ) ⊂ Ẑ
′
j,r,

Êj,r,ℓ(|Ẑj,r(ℓ) ∩ Zj|)1A ≤ c11

[
|Ẑ′
j,r|
√

2−r

n
+

|Ẑ′
j,r|
n

+
log((j + 2)(r + 1)n)√

n

]
.

By using the condition on r, the second term in the above inequality is not larger than the first
one, up to a multiplicative factor.

Finally, the proof of (57) comes from the embedding Ẑ
′
j,r ⊂ Z̆

′
j,r (see (25)) valid on A, and from

the following inequalities valid for all t > 0,

∣∣{k ∈ Z, σ2j,k ≥ t
}∣∣ ≤ |{k ∈ Z, fj,k ≥ c12t}|

≤ c13M
θt−θ2j(1−θ)

thanks to Lemma 19. �

Lemma 25.Let p ∈ (0,∞], α ∈ ((1/p − 1)+, τ), R > 0, and f be a density of WBαp,∞(R). Then,
there exist C > 0 and q > 1 such that ‖f‖q ≤ C. Moreover, C only depends on the wavelet basis,
p, α and R.

Proof of Lemma 25. The proof of this lemma is deferred to Appendix C. �

4.3. Proof of Theorem 2. Throughout this section, ℓ denotes an integer such that

2ℓ ≤M1/(1−θ) < 2ℓ+1.

We now introduce for Kj,r,ℓ ⊂ Ẑj,r(ℓ) ∩ Zj,

T̂j,r,ℓ(Kj,r,ℓ) =
{
B̂j,r,ℓ(Kj,r,ℓ) + Êj,r,ℓ(|Kj,r,ℓ|)

}
1A ,



38 MATHIEU SART

where A is the event defined in Theorem 5. It follows from Lemmas 21, 24 and 25 that we only
need to bound

∑

r≥ℓ−1
2r≤πn

E

[
inf

K−1,r,ℓ⊂Ẑ−1,r(ℓ)∩Z−1

T̂−1,r,ℓ(K−1,r,ℓ)

]
(61)

+

c0 logn∑

j=0

E

[
inf

Kj,ℓ+j,ℓ⊂Ẑj,ℓ+j(ℓ)∩Zj

T̂j,ℓ+j,ℓ(Kj,ℓ+j,ℓ)

]

+
∑

j≥0

∑

r≥ℓ+j+1
2r≤πn

E

[
inf

Kj,r,ℓ⊂Ẑj,r(ℓ)∩Zj

T̂j,r,ℓ(Kj,r,ℓ)

]

from above (we take ℓj = ℓ for all j). Here, c0 is a factor depending on α, p,R and the wavelet
basis only. We begin by studying the first term of (61).

Lemma 26. Let p ∈ (0,∞], α ∈ ((1/p − 1)+, τ), θ ∈ [0, 1) ∩ [0, p], R > 0, M ≥ 1 and f ∈
Fα,p,θ(R,M). Then,

∑

r≥ℓ−1
2r≤πn

E

[
inf

K−1,r,ℓ⊂Ẑ−1,r(ℓ)∩Z−1

T̂−1,r,ℓ(K−1,r,ℓ)

]
(62)

≤ c
[
Mn−(1−θ)

[
1θ>1/2 + (log n)1θ=1/2

]
+M1/(2(1−θ))n−1/2 + (log2 n)n−1/2

]
,

where c only depends on ψ, θ, p.

Proof of Lemma 26. Let A be the left-hand side of (62). We take K−1,r,ℓ = Ẑ−1,r(ℓ) ∩ Z−1 and
deduce from (51), and (55) that if θ ∈ [0, 1/2),

A ≤ c1

[√
M1/(1−θ)

n
+

log(ℓn)√
n

]

+ c1
∑

r≥ℓ
2r≤πn


M2r(θ−1/2)

√
log+

(
n2r(1−θ)/M

)

n
+

log((r + 1)n)√
n


 .

We conclude by applying Lemma 30 in Appendix B. If θ ∈ (1/2, 1), we rather use (51) and (53) to
get

A ≤ c2

[√
M1/(1−θ)

n
+

log(ℓn)√
n

]

+ c2
∑

r≥ℓ
2r≤πn

[
M2r(θ−1/2)

√
log+ (n2−r)

n
+

log((r + 1)n)√
n

]
,
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and we apply Lemma 30 again. For θ = 1/2, we use (56) and (57), to get with K−1,r,ℓ = Ẑ−1,r(ℓ)∩
Z−1,

∑

r≥ℓ
2r≤ς−1πn/ logn

E

[
T̂−1,r,ℓ(K−1,r,ℓ)

]
≤ c3

[
M(log n)n−1/2 + (log2 n)n−1/2

]
.

When r is higher, we choose K−1,r,ℓ = ∅ and note:

∑

r≥ℓ
2r≥ς−1πn/ logn

E

[
T̂−1,r,ℓ(K−1,r,ℓ)

]
≤ 21/2

∑

k∈Z

|β−1,k|P
[
σ̂2−1,k ≤ (log n)/(ς−1n) ∩ A

]

≤ 21/2
∑

k∈Z
σ2
−1,k≤c4 logn/n

|β−1,k|.

Therefore, the integers k are such that f−1,k ≤ c5 log n/n and we conclude as in the proof of
Lemma 20. �

The lemma below deals with the second term of (61).

Lemma 27. Let p ∈ (0,∞], α ∈ ((1/p − 1)+, τ), θ ∈ [0, 1) ∩ [0, p], R > 0, M ≥ 1 and f ∈
Fα,p,θ(R,M). Then,

c0 logn∑

j=0

E

[
inf

Kj,ℓ+j,ℓ⊂Ẑj,ℓ+j(ℓ)∩Zj

T̂j,ℓ+j,ℓ(Kj,ℓ+j,ℓ)

]

≤ c1

[
R1/(1+2α)M (α−1/p+1)/((1−θ)(2α+1))n−α/(2α+1)

+ M1/(2(1−θ))n−1/2
]
+ c2(log

2 n)n−1/2,(63)

where c1 only depends on α, p, θ, ψ, and where c2 only depends on α, p, θ, ψ,R.

Proof of Lemma 27. We first suppose that p ≥ 1. We have,

c0 logn∑

j=0

E

[
inf

Kj,ℓ+j,ℓ⊂Ẑj,ℓ+j(ℓ)∩Zj

T̂j,ℓ+j,ℓ(Kj,ℓ+j,ℓ)

]

≤
c0 logn∑

j=0

min
{
E

[
T̂j,ℓ+j,ℓ(∅)

]
,E
[
T̂j,ℓ+j,ℓ(Ẑj,ℓ+j(ℓ) ∩ Zj)

]}
.
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We use (49) and (51) to get

c0 logn∑

j=0

E

[
inf

Kj,ℓ+j,ℓ⊂Ẑj,ℓ+j(ℓ)∩Zj

T̂j,ℓ+j,ℓ(Kj,ℓ+j,ℓ)

]

≤ c1

∞∑

j=0

min

{
RM (1−1/p)/(1−θ)2−jα,

√
M1/(1−θ)2j

n

}
+ c2

log2 n√
n

≤ c3

[
R1/(1+2α)M (α+1−1/p)/((1−θ)(2α+1))n−α/(2α+1) +M1/(2(1−θ))n−1/2

]

+ c2(log
2 n)n−1/2.

We now suppose p < 1 and consider j0 ≥ 0. We deduce from (51),

j0∑

j=0

E

[
T̂j,ℓ+j,ℓ(Ẑj,ℓ+j(ℓ) ∩ Zj)

]
≤ c4

√
M1/(1−θ)

2j0

n
+ c5

log2 n√
n
.

We moreover set η
1/p−1/2
j = R−1/22(j/2)(α+1/2)n−1/(2p) and

Kj,ℓ+j,ℓ =
{
k ∈ Ẑj,ℓ+j(ℓ) ∩ Zj, |βj,k| ≥ ηj

}
.

As f ∈ WBαp,∞(R),

|Kj,ℓ+j,ℓ| ≤ η−pj Rp2−jp(α+1/2−1/p)

≤ R2/(2/p−1)2−2j(α+1−1/p)/(2/p−1)n1/(2/p−1).

Moreover, (38) leads to
∑

k 6∈Kj,ℓ+j,ℓ

2−j/2|βj,k| ≤ c6η
1−p
j Rp2−jp(α+1/2−1/(2p))

≤ c6R
1/(2/p−1)2−j(α+1−1/p)/(2/p−1)n−(1/p−1)/(2/p−1).

Therefore, (50) gives

E

[
T̂j,ℓ+j,ℓ(Kj,ℓ+j,ℓ)

]
≤ c7

[
n−(1/p−1)/(2/p−1)R1/(2/p−1)2−j(α+1−1/p)/(2/p−1) +

log n√
n

]

and hence
c0 logn∑

j=j0

E

[
T̂j,ℓ+j,ℓ(Kj,ℓ+j,ℓ)

]
≤ c8n

−(1/p−1)/(2/p−1)R1/(2/p−1)2−j0(α+1−1/p)/(2/p−1)

+ c9
log2 n√

n
.

We conclude by choosing j0 appropriately. �

It then remains to deal with the last term in (61), namely,

∑

j≥0

∑

r≥ℓ+j+1
2r≤πn

E

[
inf

Kj,r,ℓ⊂Ẑj,r(ℓ)∩Zj

T̂j,r,ℓ(Kj,r,ℓ)

]
.(64)
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We distinguish different cases in the sections below.

4.4. Proof of Theorem 2 when p ≥ 1 and θ 6= α/(2α + 1 − 1/p). To make the proof more
concise, we assume temporarily that θ 6= 0. We deduce from (49), (53), (55) that for c1 large
enough

− log3 n√
n

+
1

c1

∞∑

j=0

∑

r≥ℓ+j+1
2r≤πn

min
{
E

[
T̂j,r,ℓ(∅)

]
,E
[
T̂j,r,ℓ(Ẑj,r(ℓ) ∩ Zj)

]}

≤
∞∑

j=0

∑

r≥ℓ+j+1
2r≤πn

min

{
RM1−1/p2−j(α−θ/p+θ)2(1−1/p)rθ ,M2rθ+j(1−θ)

√
2−r log+ (n2−r)

n
,

M2rθ+j(1−θ)

√
2−r log2+

(
2(r−j)(1−θ)/M

)

n



 .

Hence,

− log3 n√
n

+
1

c1

∞∑

j=0

∑

r≥ℓ+j+1
2r≤πn

min
{
E

[
T̂j,r,ℓ(∅)

]
,E
[
T̂j,r,ℓ(Ẑj,r(ℓ) ∩ Zj)

]}

≤
∑

r≥1

∑

j≥0
2j≤πn21−rM−1/(1−θ)

min
{
RM (1−1/p)/(1−θ)2−jα2(1−1/p)rθ,

M1/(2(1−θ))2r(θ−1/2)+j/2

√
log+

(
n2−r−jM−1/(1−θ)

)
√
n

,

M1/(2(1−θ))2r(θ−1/2)+j/2 r√
n

}
.

This expression is not larger than B1 +B2 where

B1 = RM (1−1/p)/(1−θ)
∑

r≥1

∑

j≥0
2j≤πn21−rM−1/(1−θ)

πR2M−(2/p−1)/(1−θ)n2r(1−2θ/p)≤2j(1+2α)

2−jα2(1−1/p)rθ

B2 =M1/(2(1−θ))
∑

r≥1

∑

j≥0
2j≤πn21−rM−1/(1−θ)

πR2M−(2/p−1)/(1−θ)n2r(1−2θ/p)>2j(1+2α)

min



2r(θ−1/2)+j/2

√
log+

(
n2−r−jM−1/(1−θ)

)
√
n

,

2r(θ−1/2)+j/2 r√
n

}
.

Note that if 2j ≤ πn21−rM−1/(1−θ) and if πR2M−(2/p−1)/(1−θ)n2r(1−2θ/p) ≤ 2j(1+2α), then

2jα ≥ 2−1/2RM (1−1/p)/(1−θ)2r(1−θ/p).
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We deduce,

B1 ≤ c2RM
(1−1/p)/(1−θ)

∑

r≥1

2(1−1/p)rθmin
{
R−1M−(1−1/p)/(1−θ)2−r(1−θ/p),

[
R2M−(2/p−1)/(1−θ)n2r(1−2θ/p)

]−α/(2α+1)
}
.

This sum is not larger than c2[B1,1 +B1,2], where

B1,1 =
∑

r≥r0

2−r(1−θ)

B1,2 =
∑

r<r0

ar

where

ar = R1/(2α+1)M (α+1−1/p)/((2α+1)(1−θ))2
r
2α+1−1/p

2α+1

[
θ− α

2α+1−1/p

]

n−α/(2α+1),(65)

and where r0 ≥ 1 is the smallest integer such that

2r0(α+1−θ/p) ≥ R−1M−(α+1−1/p)/(1−θ)nα.

Note that

B1,1 ≤ c32
−r0(1−θ)

≤ c3R
(1−θ)/(1+α−θ/p)M (α+1−1/p)/(α+1−θ/p)n−α(1−θ)/(α+1−θ/p).

As to B1,2, we remark that B1,2 = 0 if r0 = 1. We may therefore assume that r0 ≥ 2, which implies
the reverse inequality

2(r0−1)(α+1−θ/p) ≤ R−1M−(α+1−1/p)/(1−θ)nα.

Note now that the exponent in the sum is negative when θ < α/(2α + 1− 1/p), and hence

B1,2 ≤ c4a1

≤ c5R
1/(2α+1)M (α+1−1/p)/((2α+1)(1−θ))n−α/(2α+1).

When θ > α/(2α + 1− 1/p), the exponent is positive and

B1,2 ≤ c6ar0

≤ c7R
(1−θ)/(1+α−θ/p)M (α+1−1/p)/(α+1−θ/p)n−α(1−θ)/(α+1−θ/p).

By gathering these results, we obtain the desired bound on B1.
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We now deal with B2. Lemma 30 in Appendix B gives

B2 ≤ c8
∑

r≥1

min
{
2−r(1−θ),

M1/(2(1−θ))2r(θ−1/2)
(
R2M−(2/p−1)/(1−θ)n2r(1−2θ/p)

)1/2/(2α+1)
×

√
log+

(
n2−r(R2M−(2/p−1)/(1−θ)n2r(1−2θ/p))−1/(2α+1)M−1/(1−θ)

)
√
n

,

M1/(2(1−θ))2r(θ−1/2)
(
R2M−(2/p−1)/(1−θ)n2r(1−2θ/p)

)1/2/(2α+1) r√
n

}

≤ c9
∑

r≥1

min
{
2−r(1−θ), ar

√
log+Cr, arr

}

≤ c9 [B2,1 +B2,2]

where

Cr = R−2/(2α+1)M−2(α+1−1/p)/((2α+1)(1−θ))n2α/(2α+1)2−2r(α+1−θ/p)/(2α+1) ,(66)

and where B2,1 and B2,2 are defined when θ < α/(2α + 1− 1/p) by

B2,1 =
∞∑

r=1

rar

B2,2 = 0.

When θ > α/(2α + 1− 1/p), we rather set

B2,1 =
∑

r≥r0

2−r(1−θ)

and

B2,2 =
∑

r<r0

ar
√

log+ Cr.

When θ < α/(2α + 1− 1/p),

B2,1 ≤ c10a1

≤ c11R
1/(2α+1)M (α+1−1/p)/((2α+1)(1−θ))n−α/(2α+1).

When θ > α/(2α+ 1− 1/p), the sum B2,1 is equal to B1,1 and has already been bounded, see the
above. Moreover, we deduce from Lemma 30,

B2,2 ≤ c12ar0

√
log+(Cr0)

≤ c13R
(1−θ)/(1+α−θ/p)M (α+1−1/p)/(α+1−θ/p)n−α(1−θ)/(α+1−θ/p).

It then remains to group all these results to obtain the wished bound on B2.

Let us now remark that the condition θ 6= 0 was made in the proof in order to use (53) when
θ > α/(2α + 1− 1/p). It is not necessary when θ < α/(2α + 1− 1/p), which is obviously the case
when θ = 0. The proof remains therefore valid when θ = 0.
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4.5. Proof of Theorem 2 when p > 1 and θ = α/(2α+1−1/p). The previous proof can easily
be adapted to deal with θ = α/(2α + 1 − 1/p). However, it would lead to additional logarithmic
factors. A slight refinement can be obtained thanks to (56). We deduce from Lemma 24 that for
c1 large enough,

− log3 n√
n

+
1

c1

∞∑

j=0

∑

r≥ℓ+j+1
2r≤πn

2r≤ςjn/ log((j+2)n)

min
{
E

[
T̂j,r,ℓ(∅)

]
,E
[
T̂j,r,ℓ(Ẑj,r(ℓ) ∩ Zj)

]}

≤
∑

r≥1

∑

j≥0
2j≤πn21−rM−1/(1−θ)

2j≤2ςj(n/ logn)2
−rM−1/(1−θ)

min

{
RM (1−1/p)/(1−θ)2−jα2(1−1/p)rθ,

M1/(2(1−θ))2r(θ−1/2)+j/2

√
n

}
.

We may now bound the right-hand side of this inequality by B1 + B2 where B1 has been defined
in the preceding section by

B1 = RM (1−1/p)/(1−θ)
∑

r≥1

∑

j≥0
2j≤πn21−rM−1/(1−θ)

R2M−(2/p−1)/(1−θ)n2r(1−2θ/p)≤2j(1+2α)

2−jα2(1−1/p)rθ

and where

B2 =M1/(2(1−θ))
∑

r≥1

∑

j≥0
2j≤πn21−rM−1/(1−θ)

R2M−(2/p−1)/(1−θ)n2r(1−2θ/p)>2j(1+2α)

2r(θ−1/2)+j/2

√
n

corresponds to the definition of the preceding section, up to log factors. Similar computations then
lead to

B1 +B2 ≤ c2R
1/(2α+1)M (α+1−1/p)/((2α+1)(1−θ))n−α/(2α+1) log n.

It then remains to deal with

∑

j≥0

∑

r≥ℓ+j+1
2r≤πn

2r>ςjn/ log((j+2)n)

E

[
inf

Kj,r,ℓ⊂Ẑj,r(ℓ)∩Zj

T̂j,r,ℓ(Kj,r,ℓ)

]

≤
∑

j≥0

∑

r≥ℓ+j+1
2r>ςjn/ logn

E

[
T̂j,r,ℓ(∅)

]

≤
∑

j≥0

2−j/2
∑

k∈Z

|βj,k|P
[
σ̂2j,k ≤ (log n)/(ςjn) ∩ A

]

≤
∑

j≥0

2−j/2
∑

k∈Z
σ2j,k≤c3 logn/n

|βj,k|

≤
∑

j≥0

2−j/2
∑

k∈Z
fj,k≤c4 logn/n

|βj,k|.
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We conclude by applying Lemma 20.

4.6. Proof of Theorem 2 when p = 1 and θ = α/(2α + 1− 1/p). Since f ∈ Bα1,∞(R),
∑

r≥ℓ+j+1

B̂j,r,ℓ(∅) ≤ 2−j/2
∑

r≥ℓ+j+1

∑

k∈Ẑj,r(ℓ)∩Zj

|βj,k|

≤ 2−j/2
∑

k∈Z

|βj,k|

≤ R2−jα.(67)

Let us remark that the boundary θ = α/(2α + 1 − 1/p) is θ = 1/2 here. We deduce from (56)
and (57) that if 2r ≤ ςjn/ log((j + 2)n),

E

[
Êj,r,ℓ(|Ẑj,r(ℓ) ∩ Zj |)1A

]
≤ c1

[
M2j/2√

n
+

log((j + 2)(r + 1)n)√
n

]
.

Therefore,

∑

r≥ℓ+j+1
2r≤ςjn/ log((j+2)n)

E

[
Êj,r,ℓ(|Ẑj,r(ℓ) ∩ Zj |)1A

]
≤ c2

[
M2j/2 log n√

n
+

log2 n

n

]
.(68)

We put (68) and (67) together and conclude the proof as in the preceding section.

4.7. Proof of Theorem 2 when p < 1 and θ 6= α/(2α + 1 − 1/p). As in Section 4.4, we first
suppose that θ 6= 0. We define for r ≥ ℓ+ j + 1,

Kj,r,ℓ =
{
k ∈ Ẑj,r(ℓ) ∩ Zj , |βj,k| ≥ 2−(r−j)/2n−1/2

}
.

As f ∈ WBαp,∞(R) and (38), we get |Kj,r,ℓ| ≤ kj,r and
∑

k 6∈Kj,r,ℓ

2−j/2 |βj,k| ≤ c1kj,r2
−r/2n−1/2(69)

where kj,r = Rpnp/22−jp(α+1−1/p)2rp/2.

We consider r and j such that 2r ≤ πn, and j ≤ r− ℓ− 1. We deduce from (52), (54), and the
conditions on r, j,

T̂j,r,ℓ(Kj,r,ℓ) ≤ c2kj,r2
−r/2n−1/2log+

(
Mnθ−p/22−rp/22jp(α+1−θ/p)/Rp

)
+c3(log n)n

−1/2

T̂j,r,ℓ(Kj,r,ℓ) ≤ c4kj,r2
−r/2n−1/2log+

(
n−p/22r(1−p/2)2jp(α+1−1/p)/Rp

)
+c5(log n)n

−1/2.

We derive from these two inequalities, from (53) and (55),

− log3 n√
n

+
1

c6

∑

j≥0

∑

r≥ℓ+j+1
2r≤πn

E

[
inf

Kj,r,ℓ⊂Ẑj,r(ℓ)∩Zj

T̂j,r,ℓ(Kj,r,ℓ)

]

≤
∑

r≥1

∑

j≥0
2j≤πn21−rM−1/(1−θ)

min{Aj,r, A′
j,r, Bj,r, B

′
j,r}
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where

Aj,r = RpM−(1−p)/(2(1−θ))n−(1−p)/22−r(1−p)/22−jp(α−1/(2p)+1/2)

× log+

(
M1−p/(2(1−θ))nθ−p/22−rp/22jp(α+1/2−θ/p)/Rp

)

A′
j,r = RpM−(1−p)/(2(1−θ))n−(1−p)/22−r(1−p)/22−jp(α−1/(2p)+1/2)

× log+

(
M (1−p/2)/(1−θ)n−p/22r(1−p/2)2jp(α+1/2)/Rp

)

Bj,r =M1/(2(1−θ))2r(θ−1/2)+j/2

√
log+

(
n2−r−jM−1/(1−θ)

)

n

B′
j,r =M1/(2(1−θ))2r(θ−1/2)+j/2 r√

n
.

Let jr be the smallest (possibly negative) integer such that

R2M−(2/p−1)/(1−θ)n2−r(2θ/p−1) ≤ 2jr(2α+1).

Lemma 30 entails when jr ≥ 0:

∑

j≥0
2j≤πn21−rM−1/(1−θ)

min{Aj,r, Bj,r}

≤ c7

{
RpM−(1−p)/(2(1−θ))n−(1−p)/22−r(1−p)/22−jrp(α−1/(2p)+1/2)

×log+

(
M1−p/(2(1−θ))nθ−p/22−rp/22jrp(α+1/2−θ/p)/Rp

)

+M1/(2(1−θ))2r(θ−1/2)+jr/2

√
log+

(
n2−r−jrM−1/(1−θ)

)

n





≤ c8ar log+ Cr,

where ar and Cr have been defined in Section 4.4 by (65) and (66). The same results holds true
when jr < 0 since then

∑

j≥0
2j≤πn21−rM−1/(1−θ)

min{Aj,r, Bj,r}

≤
∑

j≥0

Aj+jr,r

≤ c9R
pM−(1−p)/(2(1−θ))n−(1−p)/22−r(1−p)/22−jrp(α−1/(2p)+1/2)

×log+

(
M1−p/(2(1−θ))nθ−p/22−rp/22jrp(α+1/2−θ/p)/Rp

)

≤ c10ar log+Cr.
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Likewise, by supposing without loss of generality that jr ≥ 0,
∑

j≥0
2j≤πn21−rM−1/(1−θ)

min{A′
j,r, B

′
j,r}

≤ c11

{
RpM−(1−p)/(2(1−θ))n−(1−p)/22−r(1−p)/22−jrp(α−1/(2p)+1/2)

× log+

(
M (1−p/2)/(1−θ)n−p/22r(1−p/2)2jrp(α+1/2)/Rp

)

+M1/(2(1−θ))2r(θ−1/2)+jr/2 r√
n

}

≤ c12rar.

We also have,
∑

j≥0
2j≤πn21−rM−1/(1−θ)

Bj,r ≤ c132
−r(1−θ).

Therefore,

∑

r≥1

∑

j≥0
2j≤πn21−rM−1/(1−θ)

min{Aj,r, A′
j,r, Bj,r, B

′
j,r} ≤ c14

∞∑

r=1

min
{
ar log+Cr, rar, 2

−r(1−θ)
}
.

We conclude the proof as in the end of Section 4.4 (by noticing, as previously, that the reasoning
does not need (52) and (53) when θ < α/(2α + 1− 1/p) and is therefore also valid when θ = 0).

4.8. Proof of Theorem 2 when p < 1 and θ = α/(2α+1− 1/p). We define the same set Kj,r,ℓ

and the same real number kj,r as in the preceding section. When 2r ≤ ςjn/ log((j+2)n), λ̂j,r ≤ |Ẑ′
j,r|

and hence

Êj,r,ℓ(|Kj,r,ℓ|)−
log((j + 2)(r + 1)n)√

n

≤ c1kj,r




√√√√2−r log+

(
|Ẑ′
j,r|/kj,r

)

n
+

log+

(
|Ẑ′
j,r|/kj,r

)

n




≤ c2kj,r

√√√√2−r log2+

(
|Ẑ′
j,r|/kj,r

)

n
.

Jensen’s inequality, (57) and (69) imply

E

[
T̂j,r,ℓ(Kj,r,ℓ)

]
− log((j + 2)(r + 1)n)√

n

≤ c3kj,r

√
2−r log2+

(
MR−p2r(θ−p/2)n−p/22jp(α+1−θ/p)

)

n
.
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Note that (56) and (57) entail

E

[
T̂j,r,ℓ(Ẑj,r(ℓ) ∩ Zj)

]
≤ c4

[
M2r(θ−1/2)+j(1−θ)

√
n

+
log((j + 2)(r + 1)n)√

n

]
.

We deduce,

− log3 n√
n

+
1

c5

∑

j≥0

∑

r≥ℓ+j+1
2r≤πn

2r≤ςjn/ log((j+2)n)

E

[
inf

Kj,r,ℓ⊂Ẑj,r(ℓ)∩Zj

T̂j,r,ℓ(Kj,r,ℓ)

]

≤
∑

r≥1

∑

j≥0
2j≤πn21−rM−1/(1−θ)

min{Aj,r, Bj,r},

where

Aj,r = RpM−(1−p)/(2(1−θ))n−(1−p)/22−r(1−p)/22−jp(α−1/(2p)+1/2)

× log+

(
M (1−p/2)/(1−θ)R−p2r(θ−p/2)n−p/22jp(α+1/2)

)

Bj,r =M1/(2(1−θ))2r(θ−1/2)+j/2
√

1/n.

By doing as in the preceding section,
∑

j≥0
2j≤πn21−rM−1/(1−θ)

min{Aj,r, Bj,r} ≤ c6n
−α/(2α+1)R1/(2α+1)M (α+1−1/p)/((2α+1)(1−θ)) .

Moreover, this sum is equal to 0 if 2r > 2πnM−1/(1−θ). Thus,
∑

r≥1

∑

j≥0
2j≤πn21−rM−1/(1−θ)

min{Aj,r, Bj,r}

≤ c7(log n)n
−α/(2α+1)R1/(2α+1)M (α+1−1/p)/((2α+1)(1−θ)) .

Note finally that we may bound

∑

j≥0

∑

r≥ℓ+j+1
2r≤πn

2r>ςjn/ log((j+2)n)

E

[
inf

Kj,r,ℓ⊂Ẑj,r(ℓ)∩Zj

T̂j,r,ℓ(Kj,r,ℓ)

]

from above as we did at the end of Section 4.5.
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A. A probability inequality.

The following proposition is based on standard results in empirical processes. It uses the notion
of VC subgraph classes, see [vdV13] for their definitions and properties.

Proposition 6. Let F be an at most countable VC subgraph class of functions f defined on R

and with values in [−1, 1]. We suppose that the VC dimension of F is not larger than d ≥ 1. We
consider f̄ such that |f(x)| ≤ f̄(x) ≤ 1 for all x ∈ R. We further consider a map σ2(·) defined
on F ∪ {f̄} and satisfying σ2(f) ≥ E[f2(X)] for all f ∈ F ∪ {f̄}.

Then, there exists for all ξ > 0 an event of probability 1− e−ξ on which: for all f ∈ F ,

1

n

∣∣∣∣∣

n∑

i=1

(f(Xi)− E[f(Xi)])

∣∣∣∣∣ ≤ Cmin{R1(f), R2(f)},(70)

where

R1(f) =

√
d

n
σ2(f) log+

(
σ2(f̄)/σ2(f)

)
+
d

n
log+

(
nσ2(f̄)/d

)
+

√
σ2(f)

ξ + log n

n
(71)

+
ξ + log n

n
,

R2(f) =

√
1

n
σ2(f) log+ (|F|) + 1

n
log+(|F|) +

√
σ2(f)

ξ + log n

n
+
ξ + log n

n
,(72)

and where C is a numerical value. In the above inequality, R2(f) = +∞ if F is infinite.

Proof of Proposition 6. We need the two following lemmas (see Theorem 3.1 of [GK06] for the first,
and [Mas07] for the second).

Lemma 28. Let F be an at most countable VC subgraph class of functions f defined on R and
with values in [−1, 1]. We suppose that the VC dimension of F is not larger than d ≥ 1. We
consider a map f̄ such that |f(x)| ≤ f̄(x) ≤ 1 for all x ∈ R. Let σ2(f̄) be a real number such that
σ2(f̄) ≥ E[f̄2(X)]. Let moreover σ2 > 0 be such that supf∈F E[f2(X)] ≤ σ2. Then,

E

[
sup
f∈F

1

n

∣∣∣∣∣

n∑

i=1

(f(Xi)− E[f(Xi)])

∣∣∣∣∣

]
≤ C

[√
d

n
σ2 log+(σ

2(f̄)/σ2) +
d

n
log+(σ

2(f̄)/σ2)

]
,

where C is a numerical value.

Lemma 29. Let F be a finite class of functions f defined on R and with values in [−1, 1]. Let σ2 > 0
such that supf∈F E[f2(X)] ≤ σ2. Then,

E

[
sup
f∈F

1

n

∣∣∣∣∣

n∑

i=1

(f(Xi)− E[f(Xi)])

∣∣∣∣∣

]
≤ C

[√
1

n
σ2 log+(|F|) + 1

n
log+(|F|)

]
,

where C is a numerical value.

We only prove the inequality with R1(f), the proof with R2(f) is similar (use Lemma 29 instead
of Lemma 28 and set j0 below as the smallest integer such that 2j0−1 ≥ n). We may assume
without loss of generality that d ≤ n and σ2(f) ∈ (0, 1] for all f ∈ F . Let j0 be the smallest integer
such that 2j0−1 ≥ n/d. We define for j ∈ [1, j0 − 1],

Fj =
{
f ∈ F , 2−j < σ2(f) ≤ 2−j+1

}
,
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and set

Fj0 =
{
f ∈ F , σ2(f) ≤ 2−j0+1

}
.

Let then for all j ∈ [1, j0],

σ2j = 2−j+1

Zj = sup
f∈Fj

∣∣∣∣∣
1

n

n∑

i=1

(f(Xi)− E[f(Xi)])

∣∣∣∣∣ .

We consider some ξ0 > 0 and deduce from Talagrand’s inequality (see the second equation on
page 170 of [Mas07]), and from the elementary inequalities

√
x+ y ≤ √

x +
√
y, 2

√
xy ≤ x + y,

that on an event Ωj(ξ0) of probability 1− e−ξ0 ,

Zj ≤ c
[
E[Zj] +

√
(σ2j /n)ξ0 + ξ0/n

]
,

where c is universal. We now set for all σ2 > 0,

A(σ2) =

√
d

n
σ2 log+(σ

2(f̄)/σ2) +
d

n
log+(σ

2(f̄)/σ2).

Any σ2(f) belongs to [(1/2)σ2j , σ
2
j ] when f ∈ Fj with j ≤ j0 − 1. We deduce from Lemma 28 that

for all such j,

E[Zj ] ≤ CA(σ2j )

≤ C

[
√
2

√
d

n
σ2(f) log+(σ

2(f̄)/σ2(f)) +
d

n
log+

(
2nσ2(f̄)/d

)
]
.

We deduce that on Ωj(ξ0): for all f ∈ Fj,∣∣∣∣∣
1

n

n∑

i=1

(f(Xi)− E[f(Xi)])

∣∣∣∣∣ ≤ C ′

[√
d

n
σ2(f) log+(σ

2(f̄)/σ2(f))

+
d

n
log+

(
nσ2(f̄)/d

)
+
√

(σ2(f)/n)ξ0 + ξ0/n

]
,

where C ′ is universal. When j = j0, we rather have

E[Zj ] ≤ CA(d/n)

≤ C

[
d

n

√
log+(nσ

2(f̄)/d) +
d

n
log+

(
nσ2(f̄)/d

)]

≤ 2C
d

n
log+

(
nσ2(f̄)/d

)
.

Hence, on Ωj0(ξ0): for all f ∈ Fj0 ,∣∣∣∣∣
1

n

n∑

i=1

(f(Xi)− E[f(Xi)])

∣∣∣∣∣ ≤ C ′′

[
d

n
log+

(
nσ2(f̄)/d

)
+
√

(d/n2)ξ0 + ξ0/n

]

≤ C ′′′

[
d

n
log+

(
nσ2(f̄)/d

)
+ ξ0/n

]
,

where C ′′′ is universal. We now set ξ0 = ξ + log j0 < ξ + 1.4 + log n and conclude using a union
bound. �
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B. An elementary lemma

Lemma 30. For all a1, a2, b > 0, k ∈ [0, 1], and r0 ≥ 1,

r0∑

r=1

2ra1 logk+
(
b2−ra2

)
≤ c2r0a1 logk+

(
b2−r0a2

)
,

and

∞∑

r=r0

2−ra1 logk+ (b2ra2) ≤ c2−r0a1 logk+ (b2r0a2) ,

where c only depends on a1, a2, k.

Proof of Lemma 30. We only show the first inequality. The proof of the second inequality follows
the same line. When k = 1, we write

r0∑

r=1

2ra1 log+
(
b2−ra2

)

≤ c1




∑

1≤r≤r0
2(r+1)a2≥be−a2/(a1+1)

2ra1 +
∑

1≤r≤r0
2(r+1)a2<be−a2/(a1+1)

2ra1 log
(
b2−ra2

)



≤ c2


2

r0a1 +
∑

1≤r≤r0
2(r+1)a2<be−a2/(a1+1)

2−rf(2−r)


 ,(73)

where f denotes the map defined for x > 0 by f(x) = x−a1−1 log(bxa2). Let r1 be the largest

integer such that 2(r1+1)a2 < be−a2/(a1+1). The proof when k = 1 is complete if r1 ≤ 0 and we
assume from now on that r1 ≥ 1. We set r2 = min{r0, r1}. Since f is decreasing and non negative

when bxa2 ≥ ea2/(a1+1), we get

∑

1≤r≤r0
2(r+1)a2<be−a2/(a1+1)

2−rf(2−r) ≤ 2

r2∑

r=1

∫ 2−r

2−r−1

f(x) dx

≤ 2

∫ ∞

2−r2−1
f(x) dx

≤ c32
r2a1 log+(b2

−a2r2)

≤ c42
r0a1 log+(b2

−a2r0).
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By putting this result in (73), we get the lemma when k = 1. The proof when k 6= 1 then follows
from Hölder inequality:

r0∑

r=1

2ra1 logk+
(
b2−ra2

)
=

r0∑

r=1

2rka1 logk+
(
b2−ra2

)
2r(1−k)a1

≤
[
r0∑

r=1

2ra1 log+
(
b2−ra2

)
]k [ r0∑

r=1

2ra1

]1−k

≤ c52
r0ka1 logk+

(
b2−r0a2

)
× 2r0(1−k)a1

≤ c52
r0a1 logk+

(
b2−r0a2

)
.

�

C. Proof of Lemma 25

Proof of Lemma 25. Suppose that p <∞ and consider an arbitrary real number q in (max{1, p}, p(α+
1)). We use (38) to get

‖βj,·‖qq ≤ q

q − p
‖βj,·‖q−p∞ . ‖βj,·‖pp,∞ .

Moreover, as ψ is bounded, ‖βj,·‖∞ ≤ c12
j/2. Therefore, using f ∈ WBαp,∞(R), we obtain for all

j ≥ 0

‖βj,·‖qq ≤ c22
j(1−p(α+1)+q/2),

where c2 only depends on ψ, q,R. We deduce,

∞∑

j=0

2j(q/2−1)
∑

k∈Z

|βj,k|q <∞.(74)

Suppose that p = ∞ and take q > 1. Then, using that |βj,k| ≤ c32
j/2fj,k,

∑
k∈Z fj,k ≤ c4 (Lemma 4),

and ‖βj,·‖∞ ≤ c52
−j(α+1/2),

‖βj,·‖qq ≤ c62
j(1+α−(1/2+α)q),

and the sum (74) is finite.

Note that |αk| ≤ 1 and
∑

k∈Z |αk| ≤ 1 and hence ‖β−1,·‖qq ≤ 1. Now, for all j ≥ 0,
∥∥∥∥∥
∑

k∈Z

βj,kψj,k

∥∥∥∥∥

q

q

= 2j(q/2−1)

∫ ∣∣∣∣∣
∑

k∈Z

βj,kψ(t− k)

∣∣∣∣∣

q

dt

≤ 2j(q/2−1)

∫ ∣∣∣∣∣
∑

k∈Z

|βj,k||ψ(t− k)|1/q|ψ(t− k)|1−1/q

∣∣∣∣∣

q

dt

≤ 2j(q/2−1)

∫ (∑

k∈Z

|βj,k|q|ψ(t− k)|
)(

∑

k∈Z

|ψ(t− k)|
)q−1

dt

≤ 2j(q/2−1)

∫ (∑

k∈Z

|βj,k|q|ψ(t− k)|
)∥∥∥∥∥
∑

k∈Z

|ψ(t− k)|
∥∥∥∥∥

q−1

∞

dt



NON LINEAR WAVELET DENSITY ESTIMATION ON THE REAL LINE 55

≤ C2j(q/2−1)
∑

k∈Z

|βj,k|q.

The same result holds true when j = −1. Let

πJ(f) =
J∑

j=−1

∑

k∈Z

βj,kψj,k.

The above ensures that (πJ(f))J≥1 is a Cauchy sequence in (Lq, ‖ · ‖q) and converges therefore to
a map that must be f . In particular,

‖f‖q ≤
∞∑

j=−1

∥∥∥∥∥
∑

k∈Z

βj,kψj,k

∥∥∥∥∥
q

,

hence the result. �

D. Proof of Lemma 17

Proof of Lemma 17. For all u > 0,

P

[
min

1≤i≤n−1
(X(i+1) −X(i)) ≤ u

]
≤ n sup

1≤i≤n−1
P
[
X(i+1) −X(i) ≤ u

]
.(75)

The density of X(i+1) −X(i) is given for x ≥ 0 by

ϕi(x) =
n!

(i− 1)!(n − i− 1)!

∫

R

F (t)i−1(1− F (t+ x))n−i−1f(t)f(t+ x) dt,

where F denotes the cumulative distribution function of X. We have for all u > 0,

P
[
X(i+1) −X(i) ≤ u

]

=
n!

(i− 1)!(n − i− 1)!

∫

R

F (t)i−1f(t)

[∫ u

0
(1− F (t+ x))n−i−1f(t+ x) dx

]
dt

=
n!

(i− 1)!(n − i− 1)!
E
[
F (X1)

i−1(1− F (X2))
n−i−1

1X1≤X2≤X1+u

]

≤ n!

(i− 1)!(n − i− 1)!
E
[
F (X2)

i−1(1− F (X2))
n−i−1

1X1≤X2≤X1+u

]

≤ n!

(i− 1)!(n − i− 1)!
E

[
F (X2)

i−1(1− F (X2))
n−i−1

∫ X2

X2−u
f(t) dt

]
.

By using Hölder inequality, ∫ X2

X2−u
f(t) dt ≤ ‖f‖qu1−1/q.

Moreover, F (X2) obeys to a uniform distribution on [0, 1] as F is continuous and hence

E
[
F (X2)

i−1(1− F (X2))
n−i−1

]
=

(i− 1)!(n − i− 1)!

n!
.

We use (75) to get

P

[
min

1≤i≤n−1
(X(i+1) −X(i)) ≤ u

]
≤ n‖f‖qu1−1/q.
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We conclude by setting u such that n‖f‖qu1−1/q = ξ/n and by using

2Ĵ ≤ max

{
1, 4Lψ min

1≤i≤n−1

(
X(i+1) −X(i)

)−1
}
.

�

E. Proof of Proposition 3

We need the following version of Assouad’s famous lemma. We do not prove this version here as
it can easily be derived from mild modifications of the classical proof (see [Bir06b] for instance).
We also refer to [Yu97, DJW18] for an almost identical version.

Lemma 31. Let D ≥ 1 and (fδ)δ∈D be a family of densities indexed by D = {0, 1}D. Let κ1, . . . , κD
be D positive numbers and ∆ be the distance defined for all δ, δ′ ∈ D by

∆(δ, δ′) =

D∑

j=1

κj |δj − δ′j |.

For all j ∈ {1, . . . ,D}, and for all δ, δ′ ∈ D satisfying δj 6= δ′j and δk = δ′k for all k 6= j, we suppose
that

h2(fδ, fδ′) ≤ 1/(2n),(76)

where h is the Hellinger distance defined by

h2(fδ, fδ′) =
1

2

∫ (√
fδ(x)−

√
fδ′(x)

)2
dx.

Then, whatever the estimator δ̃ ∈ D,

sup
δ∈D

E

[
∆(δ̃, δ)

]
≥ c

D∑

j=1

κj ,

where c > 0 is universal.

Since Proposition 3 is written for R and M large enough, we only need to build a subset F

of Bαp,∞(C1R) whose densities f satisfy

sup
|x|≥1

|x|1/θf(x) ≤ C3M
1/θ.

When µn = 1, we must also have f ∈ Tθ(C2M). Here, C1, C2, C3 > 0 are positive terms only
depending on α, p, θ and the wavelet basis.

We now introduce some notations. In the following, ζ ∈ B
α
p,∞(R) is a compactly supported

density on (−1, 0) bounded by 1. Likewise, ϕ ∈ B
α
p,∞(ρ) stands for a compactly supported density

on (1/4, 2), bounded from above by 1 and such that infx∈[1/2,1] ϕ(x) ≥ 1/4. The symbol ρ refers to
any number that ensures the existence of ϕ. Finally, L is an arbitrary number larger than 1 such
that supp ψ̄ and supp φ̄ are both included in (−2L, 2L).
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E.1. Case µn = 1. Let j ≥ −1 and j0 ≥ 0 be two integers such that 2j0+j−L ≥ 12. Let k ≥ 1

be the smallest integer satisfying 1 + 2k ≥ 2j0+j−L−1, and k̄ ≥ 1 be the largest integer such

that 4k̄ + 2k + 1 ≤ 2j0+j−L. We endow D = {0, 1}k̄ with the Hamming distance ∆ defined for

δ, δ′ ∈ {0, 1}k̄ by

∆(δ, δ′) =

k̄∑

k=1

|δk − δ′k|.

We consider b > 0 and define hδ(x) for δ ∈ D, x ∈ R by

hδ(x) = b




k̄∑

k=1

δkψ̄j,2L+1(k+k)(x) +
k̄∑

k=1

(1− δk)ψ̄j,2L+1(k+k+k̄)(x)


 .

We also set
g(x) =M1/θ2−j0/θϕ(2−j0x)

and
q =M1/θ2j0(1−1/θ) + bk̄1j=−1.

We then define for δ ∈ D and x ∈ R,

fδ(x) = (1− q)ζ(x) + g(x) + hδ(x).

We show after the present proof:

Lemma 32. Suppose that the parameters j ≥ −1, j0 ≥ 0, b > 0 are chosen in such a way that
2j0+j−L ≥ 12, and such that

b2j0/p2j(α+1/2)
1j≥0 ≤ a1R(77)

M1/θ2j0(1/p−1/θ−α) ≤ a2R(78)

b2j/22j0/θ ≤ a3M
1/θ(79)

2j0/θb2 ≤ a4M
1/θn−1(80)

q ≤ 1.(81)

In the above conditions, a1, a2, a3, a4 are suitable terms depending only on p, θ, ϕ and the wavelet
basis.

Then, F = {fδ, δ ∈ D} is a collection of densities included in Bαp,∞(C1R) ∩ Tθ(C2M). Any
density fδ satisfies

sup
|x|≥1

|x|1/θfδ(x) ≤ C3M
1/θ.

Moreover,

inf
f̃

sup
f∈F

E

[
d1(f, f̃)

]
≥ cb2j0+j/2,(82)

where c only depends on p, θ, ϕ and the wavelet basis.

We first prove when θ < p

inf
f̃

sup
f∈Bα

p,∞(C1R)∩Tθ(C2M)
E

[
d1(f, f̃)

]
(83)

≥ cR(1−θ)/(1+α−θ/p)M (α+1−1/p)/(α+1−θ/p)n−α(1−θ)/(α+1−θ/p).
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For this, we define j0 as the smallest integer such that

2
j0
[
1
p
−α+1

θ

]

≤ R

M
α+1
θ nα

.

Note that j0 tends to infinity when n grows up. Therefore the condition 2j0+j−L ≥ 12 is satisfied
when n is large enough. We define c1 and c2 small enough so that cα+1

1 c2 ≤ a1, c1c
2
2 ≤ a4, c1c2 ≤ a3.

Since θ < p, we may take n large enough and define the largest integer j ≥ 0 such that

2j ≤ c1M
1/θn2−j0/θ.

We define

b = c22
j/2n−1.

We may check that (77), (78), (79) and (80) are fulfilled. Note that q tends to 0 when n grows up
and is therefore smaller than 1 when n is large enough. We then deduce (83) from (82).

When θ = p, the above reasoning works when Rp ≥M/cαp1 . This condition ensures the existence
of j ≥ 0. It is worth mentioning that the lower bound

R(1−θ)/(1+α−θ/p)M (α+1−1/p)/(α+1−θ/p)n−α(1−θ)/(α+1−θ/p)

follows from

inf
f̃

sup
f∈Bα

p,∞(C1R)∩Tθ(C2M)
E

[
d1(f, f̃)

]
≥ cM1γ=1−θn

−γ(84)

when θ = p and Rp < M/cαp1 . The proof of which is given below.

We now show (84). We set j = −1, consider c1, c2 such that c2 ≤ a4 and
√
c1c2/2 ≤ a3, define j0

as the largest integer such that

2j0/θ ≤ c1M
1/θn,

and b2 such that

2j0/θb2 = c2M
1/θn−1.

We may check that the conditions of the lemma are met hence the result.

We finally prove

inf
f̃

sup
f∈Bα

p,∞(C1R)∩Tθ(C2M)
E

[
d1(f, f̃)

]

≥ cR1/(2α+1)M (α+1−1/p)/((1−θ)(2α+1))n−α/(2α+1).

We define j0 ≥ 0 such that 2j0−1 ≤ c
θ/(1−θ)
1 M1/(1−θ) ≤ 2j0 where c1 = 2 · 15−1/θ. We define j as

the smallest integer such that

M−1/θR22−j(2α+1) ≤ n−12j0(2/p−1/θ).

Since j tends to +∞ when n grows up, the condition 2j0+j−L ≥ 12 is fulfilled when n is large
enough. Besides, q ≤ 1/2 and (78) holds true if R0,M0 are large enough. Moreover, we set

b = c2R2
−j0/p2−j(α+1/2)

where c2 = min
{
a1,

√
a4
}
. We conclude by applying Lemma 32 as above. �

Proof of Lemma 32. We begin by showing two lemmas relating to the properties of hδ and g.
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Lemma 33. For all δ ∈ D , the map hδ is compactly supported on [2j0−1, 2j0 ] and belongs to

Bαp,∞
(
bk̄1/p2j(α+1/2−1/p)

1j≥0

)
.

Moreover, |hδ| ∈ Tθ
(
c1b

θ2jθ/22j0
)
,

∫
hδ(x) dx = bk̄1j=−1(85)

and

‖hδ‖∞ ≤ c2b2
j/2.

We therefore also have

sup
|x|≥1

|x|1/θ|hδ(x)| ≤ c3b2
j/22j0/θ.

Here, c1, c2, c3 only depend on the wavelet basis and θ.

Sketch of proof of Lemma 33. We remark that the supports of ψ̄j,2L+1k and ψ̄j,2L+1k′ are disjoint
when k 6= k′. Therefore,

‖hδ‖∞ ≤ b sup
k∈Z

‖ψ̄j,2L+1k‖∞ ≤ bmax{‖φ̄‖∞, 2j/2‖ψ̄‖∞}.

We then deduce from Lemma 2.1 of [CL20],

|hδ| ∈ Tθ
(
‖hδ‖θ∞(2j0+1 + 1)

)
,

which shows |hδ | ∈ Tθ
(
c1b

θ2(j/2)θ2j0
)
.

We get (85) by noticing that
∫
φ̄ = 1 and

∫
ψ̄ = 0 as the wavelet basis is bi-orthogonal and that

φ = 1[0,1]. �

Lemma 34. The map g is compactly supported on [2j0−2, 2j0+2]. It satisfies
∫
g(x) dx =M1/θ2j0(1−1/θ).

Besides, for all x ∈ [2j0−1, 2j0 ],

g(x) ≥ 4−1M1/θ2−j0/θ.

It belongs to

Bαp,∞
(
c4M

1/θ2j0(1/p−1/θ−α)
)⋂

Tθ(c5M),

and satisfies

sup
|x|≥1

|x|1/θ|g(x)| ≤ c6M
1/θ.

Here, c4, c5, c6 only depend on ϕ, θ

Sketch of the proof of of Lemma 34. We only prove that g belongs to the Besov class. The wavelet
coefficient of g is denoted for j′ ≥ 0 and k′ ∈ Z by

β′j′,k′ =

∫
g(x)ψj′,k′(x) dx.
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Yet,

β′j′,k′ =M1/θ2(1/2−1/θ)j0

∫
ϕ(x)ψj′+j0,k′ (x) dx.

In particular,

‖β′j′,·‖p ≤ ρM1/θ2j0(1/p−1/θ−α)2−j
′(α+1/2−1/p)

hence the result. �

We now turn to the proof of Lemma 32. By choosing a1 and a2 appropriately, we deduce from
(77) and (78) that g and hδ lie in Bαp,∞(R). We deduce from (81) and from the (quasi) triangle
inequality for the (quasi) norms ‖ · ‖p that fδ ∈ Bαp,∞(c7R). Note that (79) yields g(x) ≥ 2‖hδ‖∞
for all x ∈ [2j0−1, 2j0 ] if a3 is suitably taken. In particular, fδ is non-negative and is therefore a
density. Moreover, (79) implies |hδ| ∈ Tθ(M) and hence fδ ∈ Tθ(c8M). Besides,

sup
|x|≥1

|x|1/θfδ(x) ≤ c9M
1/θ.

We now observe that fδ(x) = (1−q)ζ(x)+g(x) for all x 6∈ [2j0−1, 2j0 ]. And, for all x ∈ [2j0−1, 2j0 ],
we have

fδ(x) ≥ 8−1M1/θ2−j0/θ.

Consider now j ∈ {1, . . . , k̄} and δ, δ′ ∈ D satisfying δj 6= δ′j and δk = δ′k for all k 6= j. Then,

h2(fδ, fδ′) ≤
1

8

∫
(fδ(x)− fδ′(x))

2

min{fδ(x), fδ′(x)}
dx

≤M−1/θ2j0/θ
∫

(hδ(x)− hδ′(x))
2 dx

≤ 2M−1/θ2j0/θb2.

We may therefore fulfil condition (76) by choosing a4 thanks to (80). Lemma 31 then entails: any

estimator δ̃ ∈ D satisfies

sup
δ∈D

E

[
∆(δ̃, δ)

]
≥ ck̄.

We have for all δ, δ′ ∈ D,

d1(fδ, fδ′) = d1(hδ , hδ′)

= c10b2
−j/2∆(δ, δ′)

as the supports of ψ̄j,2L+1k are disjoint when k varies.

Let now f̃ be an estimator of f and δ̃ ∈ D such that

d1(f̃ , fδ̃) = inf
δ∈D

d1(f̃ , fδ).

We have,

sup
δ∈D

E

[
d1(fδ, f̃)

]
≥ 1

2
sup
δ∈D

E
[
d1(fδ, fδ̃)

]

≥ c11b2
−j/2k̄.

We use the definition of k̄ to conclude. �
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E.2. Case µn = νn, p 6= 1, θ = α/(2α+1−1/p). When p > 1, we consider two arbitrary numbers
s1 < s2 in (

1

2α+ 1
,

1

2α+ 1

[
1− 1− 1/p

1− 1/θ

])
.

When p < 1, s1 < s2 are arbitrary numbers lying in
(

1

2α+ 1

[
1− 1− 1/p

1− 1/θ

]
,

1

2α+ 1

)
.

We define the largest integers j0, j1 such that 2j0 ≤ ns1 and 2j1 ≤ ns2 . We set

a
1/p−1
1 = R2α/(2α+1)M−(1+2α−1/p)/(2α+1),

a2 = R1/(2α+1)M (1+2α−1/p)/(2α+1) .

We define for all j ∈ {j0, . . . , j1} the largest integer ℓj ≥ 0 such that

2ℓj ≤ a12
jα/(1−1/p)n−α/((2α+1)(1−1/p)) .

We define when p < 1 the smallest integer t ≥ 1 satisfying 2αt/(1−1/p) < 1/4. When p > 1, t is

rather defined as the smallest integer such that 2αt/(1−1/p) > 4. We consider the subset

J = {j0 + kt, k ∈ N, k ≤ (j1 − j0)/t}
of {j0, . . . , j1} and observe that the intervals [2ℓj−1, 2ℓj ] are disjoint when j varies in J . Besides,
as j1 − j0 is of the order of log n, J is non-empty when n is large enough.

We define for n large enough the smallest integer kj ≥ 1 satisfying 1+ 2kj ≥ 2ℓj+j−L−1, and the

largest integer k̄j ≥ 1 satisfying 2k̄j + 2kj + 1 ≤ 2ℓj+j−L.

We consider a > 0 to be specified later on, and set for j ∈ J , x ∈ R,

gj(x) = aM1/θ2−ℓj/θϕ(2−ℓjx)

g(x) =
∑

j∈J

gj(x).

We show:

Lemma 35. For all ε > 0, there is n0 such that g lies in Bαp,∞ (ε) if n ≥ n0. Moreover, g satisfies

sup
x∈R

|x|1/θg(x) ≤ 22+1/θaM1/θ.(86)

Proof of Lemma 35. We first show that g belongs to the Besov class. We denote for j′ ≥ 0, k′ ∈ Z,
the wavelet coefficient of g by

β′j′,k′ =

∫
g(x)ψj′,k′(x) dx.

It is equal to

β′j′,k′ = aM1/θ
∑

j∈J

2−ℓj/θ2ℓj/2
∫
ϕ(x)ψj′+ℓj ,k′ (x) dx.
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Minkowski’s integral inequality yields when p ≥ 1 is finite:

‖β′j′,·‖p ≤ aM1/θ
∑

j∈J

2−ℓj/θ2ℓj/2

[
∑

k′∈Z

∣∣∣∣
∫
ϕ(x)ψj′+ℓj ,k′ (x) dx

∣∣∣∣
p
]1/p

≤ C ′
1aM

1/θ


∑

j∈J

2−ℓj(α+1/θ−1/p)


 2−j

′(α+1/2−1/p),

as ϕ ∈ B
α
p,∞(ρ) and hence g ∈ Bαp,∞(ε) when n is large enough. This result is also true when p = ∞.

When p < 1, we merely use the inequality (
∑

k xk)
p ≤∑k x

p
k to get

‖β′j′,·‖pp ≤
(
aM1/θ

)p∑

j∈J

2−ℓjp/θ2ℓjp/2
∑

k′∈Z

∣∣∣∣
∫
ϕ(x)ψj′+ℓj ,k′ (x) dx

∣∣∣∣
p

≤ C ′
2

(
aM1/θ

)p

∑

j∈J

2−ℓjp(α+1/θ−1/p)


 2−j

′p(α+1/2−1/p),

which leads to the same result.

We now turn to the proof of (86). Since g is compactly supported on (0,+∞) we may suppose

that x > 0. It is straightforward that ϕ(x) ≤ 21/θx−1/θ
1(1/4,2)(x) for all x > 0. We deduce,

x1/θg(x) ≤ aM1/θ
∑

j∈J

(
2−ℓjx

)1/θ
ϕ(2−ℓjx)

≤ a21/θM1/θ
∑

j∈J

1

[
2ℓj−2,2ℓj+2

](x).

Since the intervals [2ℓj−1, 2ℓj ] are disjoint, the sum is not larger than 4, hence the result. �

We put D =
∑

j∈J k̄j , and identify the set

D =
{
(δj,k)j∈J,k∈{1,...,k̄j}, δj,k ∈ {0, 1}

}
,

with {0, 1}D .
Let now for all j ∈ J ,

bj = a2n
−α/(2α+1)2−ℓj2−j/2.

We also set for all x ∈ R, and δ ∈ D,

hδ,j(x) = bj

k̄j∑

k=1

δj,kψ̄j,2L+1(k+kj)
(x),

hδ(x) =
∑

j∈J

hδ,j(x).

We show:

Lemma 36. For all j ∈ J , supp hδ,j ⊂ [2ℓj−1, 2ℓj ]. Moreover, hδ belongs to Bαp,∞ (c1R) , and for
all n ≥ n0, 2|hδ(x)| ≤ g(x). Here, c1 only depends on the wavelet basis and α, p.
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Sketch of the proof of Lemma 36. We only show that 2|hδ(x)| ≤ g(x). Since the supports of hδ,j
are disjoint when j varies, we have

sup
x∈[2ℓj−1,2ℓj ]

|hδ(x)|
inf

x∈[2ℓj−1,2ℓj ]
g(x)

≤
sup

x∈[2ℓj−1,2ℓj ]
|hδ,j(x)|

inf
x∈[2ℓj−1,2ℓj ]

gj(x)

≤ 4
‖ψ̄‖∞bj2j/2
aM1/θ2−ℓj/θ

.

We conclude by noting that the right-hand side of this inequality tends to 0 with n (uniformly
in j). �

We introduce

q =

∫
(g(x) + hδ(x)) dx.

This term does not depend on δ as the integrate of hδ is zero. It is equal to

q = aM1/θ
∑

j∈J

2ℓj(1−1/θ),

and tends therefore to 0 when n grows up. We then consider the density fδ defined for all δ ∈ D
and x ∈ R,

fδ(x) = (1− q)ζ(x) + g(x) + hδ(x)

= (1− q)ζ(x) +
∑

j∈J

{gj(x) + hδ,j(x)} .

The two preceding lemmas ensure fδ ∈ Bαp,∞ (c2R) and

sup
x∈R

|x|1/θfδ(x) ≤ c3M
1/θ.

We set F = {fδ, δ ∈ D} , and endow D with the distance ∆ defined for δ, δ′ ∈ D by

∆(δ, δ′) =
∑

j∈J

2−j/2bj

k̄j∑

k=1

|δj,k − δ′j,k|.

Note that the supports of ψ̄j,2L+1(k+kj)
are pairwise disjoint when k ∈ {1, . . . , k̄j} and j ∈ J . In

particular, for all δ, δ′ ∈ D,

‖fδ − fδ′‖1 =
(∫

|ψ̄|
)
∆(δ, δ′).

Consider now an estimator f̃ of f and define δ̃ ∈ D such that

d1(fδ̃, f̃) = inf
δ∈D

d1(fδ, f̃).

The triangle inequality entails

sup
f∈F

E

[
d1(f, f̃)

]
≥ (1/2) sup

δ∈D
E
[
d1(fδ, fδ̃)

]
.(87)
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We now check that the assumptions of Lemma 31 are met. We consider δ, δ′ ∈ D, j ∈ J , k ∈
{1, . . . , k̄j}, and suppose that δj′,k′ = δ′j′,k′ for all (j

′, k′) 6= (j, k). We have,

h2(fδ, fδ′) ≤
2ℓj/θ

2aM1/θ

∫
(fδ(x)− fδ′(x))

2 dx

≤ c4
2ℓj/θ

aM1/θ
b2j

≤ c4a
2
2

2ℓj(1/θ−2)

aM1/θ
n−2α/(2α+1)2−j ,

≤ c5a
−1n−1.

The right-hand side of this inequality is smaller than 1/(2n) if a is large enough. We deduce from

Lemma 31 and (87) that any estimator f̃ satisfies

sup
f∈F

E

[
d1(f, f̃)

]
≥ c6

∑

j∈J

2−j/2bj k̄j ,

≥ c7a2|J |n−α/(2α+1).

We conclude by noticing that |J | ≥ c8 log n where c8 > 0 only depends on α, p, s1, s2. �

E.3. Case µn = νn , p = 1, θ = α/(2α + 1 − 1/p). We consider a > 0 and define the largest j
such that

2j ≤ a−1/(2α+1)R2/(2α+1)M−2/(1+2α)n1/(2α+1)(log n)−2/(2α+1).

We introduce two arbitrary numbers s1 < s2 in (0, α/(4α + 2)). We define the smallest integer r0
and the largest integer r1 satisfying

ns1 ≤ 2r0 ≤ 2r1 ≤ ns2 .

We define for all r ∈ {r0, . . . , r1}, the smallest integer kr ≥ 1 satisfying 1 + 2kr ≥ 22r+j−L−1, and
the largest integer k̄r ≥ 1 satisfying 2k̄r + 2kr + 1 ≤ 22r+j−L.

We set for all x ∈ R,

gr(x) = aM22−4rϕ(2−2rx)

g(x) =

r1∑

r=r0

gr(x),

where ϕ is the density introduced at the beginning of Section E. The lemma below gathers the
properties of g and is proved as Lemma 35.

Lemma 37. For all ε > 0, there is n0 such that g belongs to Bαp,∞(ε) when n ≥ n0. It moreover
satisfies

sup
x∈R

x2g(x) ≤ 16aM2.

Let

D =

{
(δk,r)k∈{1,...,k̄r},

r∈{r0,...,r1}

, δk,r ∈ {0, 1}
}
,

which we identify with {0, 1}D where D =
∑r1

r=r0
k̄r.
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Moreover, we define for all x ∈ R, r ∈ {r0, . . . , r1}, δ ∈ D,

hδ,r(x) = br

k̄r∑

k=1

δk,rψ̄j,2L+1(k+kr)
(x),

where

br = R1/(2α+1)M2α/(2α+1)2−j/22−2r(log n)−1/(2α+1)n−α/(2α+1).

We then set

hδ(x) =

r1∑

r=r0

hδ,r(x)

and have:

Lemma 38. For all r ∈ {r0, . . . , r1}, supp hδ,r ⊂ [22r−1, 22r]. Moreover, hδ belongs to Bαp,∞ (c1R) ,
and satisfies 2|hδ(x)| ≤ g(x) for all x ∈ R and n ≥ n0. Here, c1 only depends on the wavelet basis
and α, a.

We introduce

q =

∫
(g(x) + hδ(x)) dx

= aM2
r1∑

r=r0

2−2r.

We then set for all δ ∈ D and x ∈ R,

fδ(x) = (1− q)ζ(x) + g(x) + hδ(x).

As q tends to 0 when n grows up, it is smaller than 1 if n is large enough and fδ is a density.

We gather all the fδ in the set F = {fδ, δ ∈ D} , and endow it with the distance ∆ defined for
δ, δ′ ∈ D by

∆(δ, δ′) =

r1∑

r=r0

br

k̄r∑

k=1

|δk,r − δ′k,r|.

We have for all δ, δ′ ∈ D,

‖fδ − fδ′‖1 = c22
−j/2∆(δ, δ′)

as the supports of ψ̄j,2L+1(k+kr)
are pairwise disjoint when k ∈ {1, . . . , k̄r} and r ∈ {r0, . . . , r1}.

We consider δ, δ′ ∈ D, r ∈ {r0, . . . , r1}, k ∈ {1, . . . , k̄r}, and suppose that δk′,r′ = δ′k′,r′ for all

(k′, r′) 6= (k, r). We have,

h2(fδ, fδ′) ≤ a−1M−224r
∫

(fδ(x)− fδ′(x))
2 dx

≤ c3a
−1M−224rb2r

≤ c4a
−1R2/(2α+1)M−2/(2α+1)(log n)−2/(2α+1)n−2α/(2α+1)2−j

≤ c5a
−2α/(2α+1)n−1.

The right-hand side of this inequality is smaller than 1/(2n) if a is large enough.
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We deduce from Assouad’s Lemma 31 that any estimator f̃ satisfies

sup
f∈F

E

[
d1(f, f̃)

]
≥ c62

−j/2
r1∑

r=r0

brk̄r,

≥ c7(r1 − r0 + 1)R1/(2α+1)M2α/(2α+1)(log n)−1/(2α+1)n−α/(2α+1).

It then remains to notice that r1 − r0 + 1 is of the order of log n. �

F. Proof of Proposition 4

We only need to prove the proposition when α = 1/p − 1, what we assume below. We define
j0 ≥ 2 as the smallest integer such that (np + 1)2−j0 ≤ 1/4 and consider j1 ≥ j0.

We set for j ∈ {j0, . . . , j1}, kj = 2(np + 1)(2j−j0 − 1) and

Kj = {kj , kj + 1, kj + 2, . . . , kj + np} .

We introduce for k ∈ Z, Ij,k =
[
k2−j , (k + 1)2−j

)
. Note that Ij,k ⊂ [0, 1/2) for all j between j0

and j1 and all k ∈ Kj. Moreover, Ij,k ∩ Ij′,k′ = ∅ if j 6= j′, no matter (k, k′) ∈ Kj ×Kj′ .

We set D = (j1 − j0 +1)(np+1) and write the elements δ of {0, 1}D as δ = (δj,k)j∈{j0,...,j1},k∈Kj
.

We endow {0, 1}D with the Hamming distance defined for all δ, δ′ ∈ {0, 1}D by

∆(δ, δ′) =

j1∑

j=j0

∑

k∈Kj

|δj,k − δ′j,k|.

We set for all δ ∈ {0, 1}D and x ∈ R,

ϕδ(x) =
1

D

j1∑

j=j0

2j
∑

k∈Kj

δj,k1Ij,k (x).

We show below after the present proof:

Lemma 39. For all ε > 0, D large enough, and δ ∈ {0, 1}D, ϕδ belongs to B
α
p,∞(ε).

We define for x ∈ R,

fδ(x) = ϕδ(x) + ϕ1−δ(x− 1/2).

Thereby, fδ is a compactly supported density on [0, 1] lying in B
α
p,∞(R) if D is large enough.

Moreover, for all δ, δ′ ∈ {0, 1}D ,

d1(fδ, fδ′) =
2

D
∆(δ, δ′).

Recall that the square h2 of the Hellinger distance is not larger than half of d1. We conclude by
applying Assouad’s lemma and by choosing j1 large enough. �
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Proof of Lemma 39. We have for all h > 0,

∫
|ϕδ(t+ h)− ϕδ(t)|p dt ≤ 1

Dp

j1∑

j=j0

2jp
∑

k∈Kj

∫ ∣∣
1Ij,k (t+ h)− 1Ij,k (t)

∣∣ p dt

≤ 2

Dp

j1∑

j=j0

2jp
∑

k∈Kj

min
{
2−j , h

}

≤ 2(np + 1)

Dp

j1∑

j=j0

2jpmin
{
2−j , h

}

≤ c
np + 1

Dp
h1−p

≤ c
np + 1

Dp
hαp.

Consider now some odd number r larger than α and note that

2∆r
h(ϕδ)(t) =

r∑

k=0

(
r

k

)
(−1)k [ϕδ(t+ kh)− ϕδ(t+ (r − k)h)] .

The above entails that for all D large enough,
∫

|∆r
h(ϕδ)(t)|p dt ≤ (ε/2)phαp.

By noticing that

‖ϕδ‖pp ≤
np + 1

Dp

j1∑

j=j0

2−j(1−p) ≤ (ε/2)p

when D is large enough, we conclude that ϕδ belongs to B
α
p,∞(ε). �

G. Proof of Proposition 1.

If f is a density, Fj,k ≤ 1 and ∑

k∈Z

Fj,k = 1.

We deduce from the elementary inequality
(
∑

k∈Z

F θj,k

)1/θ

≥
∑

k∈Z

Fj,k

that M must satisfy M ≥ 1 if f ∈ Tθ(M). This proves the first assertion.

We now show the first part of the second point. We deduce from (2) that for all j ≥ 0 and k ∈ Z,

Fj,k =

∞∑

j′=−1

∑

k′∈Z

βj′,k′

∫ 2−j(k+1/2)

2−j(k−1/2)
ψ̄j′,k′.
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Let L̄ > 0 such that [−L̄, L̄] contains the supports of φ̄ and ψ̄. The above integral is zero if
k 6∈ Kj′,k′ where

Kj′,k′ =
[
−1/2 + 2j−max{j′,0}

(
k′ − L̄

)
, 1/2 + 2j−max{j′,0}

(
k′ + L̄

)]
.

We deduce

Fj,k ≤ c1

∞∑

j′=−1

∑

k′∈Z

∣∣βj′,k′
∣∣
1k∈Kj′ ,k′

2−max{j−j′/2,j′/2},

where c1 depends on φ̄, ψ̄ only. Now, using the same elementary inequality as previously,

∑

k∈Z

F pj,k ≤ cp1
∑

k∈Z

∞∑

j′=−1

∑

k′∈Z

∣∣βj′,k′
∣∣p

1k∈Kj′ ,k′
2−pmax{j−j′/2,j′/2},

≤ cp1

∞∑

j′=−1

∑

k′∈Z

|Kj′,k′ |
∣∣βj′,k′

∣∣p 2−pmax{j−j′/2,j′/2},

≤ c2

∞∑

j′=−1

∑

k′∈Z

∣∣βj′,k′
∣∣p
[
2j(1−p)+j

′(p/2−1) + 2−j
′p/2
]

≤ c2R
p

∞∑

j′=−1

[
2j(1−p)2−j

′pα + 2−j
′p(α+1−1/p)

]

≤ c3R
p2j(1−p),

which gives the first part of the second point.

The proof of the second part of the second point, as well as the proof of the third point is quite
easy, and we move directly to the proof of the fourth point. For all k 6∈ [−2j − 1/2, 2j + 1/2],

Fj,k ≤ Ab
∫ 2−j(k+1/2)

2−j(k−1/2)
|x|−b dx.

In particular, for all k ≥ 2j + 1/2,

Fj,k ≤ Ab
∫ 2−j(k+1/2)

2−j(k−1/2)

[
2−j(k − 1/2)

]−b
dx ≤ Ab2−j(1−b) [(k − 1/2)]−b

and for all k ≤ −2j − 1/2,

Fj,k ≤ Ab2−j(1−b) [(−k − 1/2)]−b .

The number of k 6∈ [−2j − 1/2, 2j + 1/2] such that Fj,k ≥ t is therefore not larger than

2
[
At−1/b2−j(1/b−1) + 1

]
.

Moreover, the number of k ∈ [−2j − 1/2, 2j + 1/2] such that Fj,k ≥ t is not larger than

t−1/b
∑

k∈[−2j−1/2,2j+1/2]

F
1/b
j,k ≤ t−1/b

(
∑

k∈Z

Fj,k

)1/b [
2j+1 + 2

]1−1/b

≤ t−1/b
[
2j+1 + 2

]1−1/b
.
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Now,

sup
t>0

{
t1/b

∑

k∈Z

1Fj,k≥t

}
= sup

t∈(0,1]

{
t1/b

∑

k∈Z

1Fj,k≥t

}

≤
(
2j+1 + 2

)1−1/b
+ 2

(
A2−j(1/b−1) + 1

)
,

which concludes the proof. �

H. Proof of equality (1) in (L1(R), d1).

The following arguments come mainly from [HKPT12]. We introduce the Kernel K defined for
x, y ∈ R by

K(x, y) =
∑

k∈Z

φ̄(x− k)φ(y − k).

We put for J ≥ 0, KJ(x, y) = 2JK(2Jx, 2Jy) and

KJf(x) =

∫

R

KJ(x, y)f(y) dy.

We also set

K ′
Jf =

∑

k∈Z

αkφ̄k +

J∑

j=0

∑

k∈Z

βj,kψ̄j,k.

When f ∈ L
2(R), KJf is the (oblic) projection of f on the space spanned by the basis (φ̄J,k)k∈Z

where φ̄J,k(x) = 2J/2φ̄(2Jx− k). Therefore, KJf = K ′
Jf for all f ∈ L

2(R).

Since φ and φ̄ are two compactly supported bounded functions, there exists an integrable
function F such that |K(x, y)| ≤ F (x − y) for all x, y ∈ R. This entails that KJ is continu-
ous in (L1(R), d1). The same thing holds true for K ′

J and hence, by using a density argument,
KJf = K ′

Jf for all f ∈ L
1(R).

Since KJf → f in (L2(R), d2), we have for all f ∈ L
2(R)

∫

R

(∫

R

K(x2J , y) dy − 1

)2

f2(x) dx→ 0 when J → +∞.

We deduce (see Lemma 8.4 of [HKPT12]) that
∫
R
K(x, y) dy = 1 for all x ∈ R.

Therefore, we have for all f ∈ L
1(R),

‖KJf − f‖1 ≤
∫

R

|KJ(x, y)| |f(y)− f(x)| dxdy

≤
∫

R

F (t)

(∫

R

∣∣f(x+ 2−J t)− f(x)
∣∣ dx

)
dt.

This entails KJf → f in (L1(R), d1). �
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