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NON LINEAR WAVELET DENSITY ESTIMATION ON THE REAL LINE

MATHIEU SART

Abstract. We investigate the problem of density estimation on the real line R under L1 loss. We

carry out a new way to select the important coefficients in some wavelet expansions. We study

the resulting estimator when the density is smooth with dominated tails. This assumption is very

mild and allows in particular to deal with singularities, spatially inhomogeneous smoothness, and

fat tailed distributions.

1. Introduction.

We consider a real valued random variable X and suppose that its distribution admits a den-
sity f with respect to the Lebesgue measure. Our aim is to estimate f from the observation of n
independent copies X1, . . . ,Xn of X.

The method we use is based on a decomposition of the density in a (bi-orthogonal) wavelet basis.
The challenge lies in the choice of the coefficients to be estimated and those to be set to zero. A
successful choice leads to an estimator f̂ that is neither over-smoothed nor under-smoothed. A way
to check this point mathematically is to consider a class F of functions and to compute

Rℓ(f̂ ,F ) = sup
f∈F

E

[
ℓ(f, f̂)

]
.

In this formula, ℓ is a loss function that is up to the statistician, for instance ℓ = dqq where dq is
the L

q distance. The above maximal risk can then be compared to the minimax risk

Rℓ(F ) = inf
f̃

sup
f∈F

E

[
ℓ(f, f̃)

]
.

Naturally, Rℓ(F ) ≤ Rℓ(f̂ ,F ) and we expect the reverse inequality to be true to within a multi-

plicative factor. If this factor does not depend on n, f̂ is said to be rate optimal (and nearly rate

optimal if the factor grows as logk n).

A wavelet estimator is usually studied under the assumption that f belongs to a ball Bα
p,∞(R) of

a Besov space. The precise definition of this set is recalled in Section 3.1 below. The parameter α
indicates the regularity of f whereas pmeasures, in some sense, the sparsity of its wavelet expansion.
This assumption of regularity is seldom the only one. There are two points to watch out for when
assessing the quality of a wavelet estimator. First, we have to examine the precise set F ⊂ B

α
p,∞(R)

on which it is rate optimal (or at least nearly rate optimal). Second, we have to look at the
conditions on α and p. The larger F is, and the weaker the conditions, the better.

Date: March, 2023.

2010 Mathematics Subject Classification. 62G05, 62G07.

Key words and phrases. Besov classes, minimax rates, non-parametric estimation, wavelet methods.

1



2 MATHIEU SART

The simplest wavelet estimation method is to keep all the coefficients up to a certain resolution
and discard the others. This leads to a linear estimator that is – if the final resolution is properly
chosen – rate optimal for the Lq loss when f is a compactly supported density ofBα

p,∞(R) with p ≥ q.
The case p < q is more delicate and can only be solved with non-linear methods, see [DJKP96].
The two main rules that we know of consist in thresholding the coefficients individually or by
block. For more details about them, we refer to [Aut06, CC05, DJ96, DJKP96, HKP98, HKPT12,
KPT96]. Note that unwanted logarithmic factors may be involved in the rates of these estimators.
Undesirable restrictions on f or on α (such as α > 1/p) may also be assumed. We refer to [Sar21] for
a description of the minimax rates in the compact case, within log factors, but without superfluous
conditions on f or on the parameters.

In the present manuscript, we pay particular attention to the L1 loss. The spatial adaptivity of a
non-linear estimator may be revealed by studying its risk when the density is compactly supported
and in B

α
p,∞(R) with p < 1. The optimal estimation rate in this context is n−α/(2α+1) for all

α > 1/p − 1, see [Bir06a]. A wavelet estimator should therefore reach this rate under the sole
condition that α belongs to an interval of the form (1/p − 1, τ) (this restriction on α ensures the
classical characterisation of Besov spaces in terms of wavelet coefficients). We have not been able
to find in the literature a local or block thresholded wavelet estimator with this property. This will
be the case for the estimator we propose in this paper.

The wavelet approach is less developed in the context of density estimation on the real line R.
The main papers we know on this subject are [JLL04, RBRTM11]. In both cases, the estimator is
term-by-term thresholded. It is also nearly optimal over some balls Bα

p,∞(R) of Besov spaces. More
precisely, the first paper deals with p = ∞ and q > 1 whereas the second one covers the cases p ≥ 1
and q = 2 (under an additional boundedness assumption when p < 2 though). Other solutions to
wavelets have certainly been proposed in the literature to cope with infinite supports. It is beyond
the scope of this introduction to describe all the results already obtained. We simply cite here the
papers of [GL11, GL14, Lep13, LW19]. They contain the most general results we know about the
minimax rates.

Let us mention that difficulties occur when the estimation is performed on R with the L
1 loss.

This distance gives more weight to the estimation errors in the tails of f than the other Lq distances.
It follows that a pure regularity assumption – such as f ∈ Bα∞,∞(R) with R large enough – is not
sufficient to ensure the convergence to 0 of the minimax risk. A way to bypass this problem is to
add a constraint on the tails of f , see the seminal paper of [GL14]. This latter paper also contains
the following important result: the optimal estimation rate of a (bounded) function in a Besov ball
with p ≥ 1 is, within logarithmic factors, n−γ where γ ∈ [0, α/(2α + 1)] depends on the tails of f .

If we ignore these log factors, it means that the usual rate n−α/(2α+1) can be recovered when the
tail of the distribution is not too fat. We will see below that this result can be refined.

We propose in Section 2 a new estimation method based on wavelets. Each coefficient can, a
priori, be retained or discarded at the end of our procedure. However, the decision to keep or delete
a coefficient is not purely local. Instead, it is based on a heuristic assessment of the global L1 risk
of our estimator. The main interest of this reasoning is that it gets rid of undesirable logarithmic
factors in almost all cases. Moreover, the resulting estimator is automatically adaptive as our
method only uses the data to determine the highest resolution and the coefficients to estimate.
No further information is required (such as, for instance, the supremum norm of f or R when
f ∈ B

α
p,∞(R)).
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We study the risk of our estimator under two conditions. The first is that f belongs to a Besov
ball Bα

p,∞(R) with p > 0 and α ∈ ((1/p−1)+, τ) where τ only depends on the choice of the wavelet
basis. The second condition concerns the tails of f . We show that our estimator is always rate
optimal, except possibly at a limit case, where it is, in the worst case scenario, nearly rate optimal.
In particular, we recover the rate n−α/(2α+1) associated with compactly supported densities when
the tails of f are not too fat. The assumption f ∈ B

α
p,∞(R) alone is also sufficient to ensure the

convergence of our estimator when p < 1. This claim contrasts with what happens when p ≥ 1,
where, on the contrary, the minimax risk may not tend to zero. We also investigate the case
α ∈ (0, 1/p−1] and show that the condition α > (1/p−1)+ is, in some sense, necessary to estimate
the density (even if it is compactly supported). A precise formulation of these results may be found
in Sections 3.2, 3.3 and 3.4.

For ease of presentation, we have only discussed balls Bα
p,∞(R) of Besov spaces above. However,

our bounds are slightly more general. The Besov balls can be replaced in almost all cases by subsets
WBαp,∞(R) of weak Besov spaces without changing the convergence rate of our estimator. These
sets are defined in the same section as the Besov balls, i.e. in Section 3.1.

Finally, let us mention that the computational complexity of our procedure is nearly linear in
the number n of observations. We give more details on this point in Section 3.5.

Throughout the paper, we suppose n ≥ 2 and denote by |A| the size of a finite set A. The
letters c, C, c′, . . . stand for quantities that may change from line to line. The proof of our main
result is deferred in Section 4. The appendix contains additional proofs as well as some results used
in Section 4.

2. Estimation procedure

2.1. Bi-orthogonal wavelet basis. Our estimation method relies on a decomposition of the
density in a bi-orthogonal wavelet basis. In such a basis, any square integrable function f takes
the form

f =
∑

k∈Z

αkφ̄k +
∞∑

j=0

∑

k∈Z

βj,kψ̄j,k,(1)

where for any j ≥ 0 and k ∈ Z,

αk =

∫
f(x)φk(x) dx, βj,k =

∫
f(x)ψj,k(x) dx,

where for any x ∈ R,

φk(x) = φ(x− k), ψj,k(x) = 2j/2ψ(2jx− k),

φ̄k(x) = φ̄(x− k), ψ̄j,k(x) = 2j/2ψ̄(2jx− k),

and where φ, φ̄, ψ, ψ̄ stand for dual father and mother wavelets. Equality (1) can be shortened by
setting β−1,k = αk, ψ−1,k = φk, ψ̄−1,k = φ̄k. It then becomes

f =

∞∑

j=−1

∑

k∈Z

βj,kψ̄j,k.(2)

In the following, we suppose that these four wavelets are bounded and compactly supported.
Moreover, we take φ = 1[0,1], and suppose that ψ is piecewise constant.



4 MATHIEU SART

The simplest example of bi-orthogonal basis is the Haar basis where φ̄ = φ and ψ̄ = ψ =
1[0,1/2] − 1[1/2,1] . This basis is even orthogonal. In general, however, φ̄ and ψ̄ are not necessarily
piecewise constant and can instead be smooth. We refer to [CDF92] for the construction of such a
bi-orthogonal basis where φ̄ and ψ̄ are Hölder continuous with exponent τ (τ ∈ N

⋆ is an arbitrary
number to be chosen).

Note that the density f we estimate is not necessarily in L
2(R). Despite this, the series always

converges in L
1 norm and equality (1) remains valid. This result is based on classical techniques

in wavelet analysis, see Appendix H.

2.2. Outline. We present in this section the main ideas of our estimation procedure. It will be
described in detail in Section 2.3.

We consider a collection K = (Kj)j≥−1 of subsets of Z and define the linear wavelet estimator

f̂K =
∞∑

j=−1

∑

k∈Kj

β̂j,kψ̄j,k, where β̂j,k =
1

n

n∑

i=1

ψj,k(Xi)

denotes the empirical version of βj,k.

The quality of this estimator depends on the choice of the collection K by the statistician.
Ideally, K should be chosen in such a way that the risk of the estimator is minimal. Observe that

∥∥∥f̂K − f
∥∥∥
1
≤ c

∞∑

j=−1

{
2−j/2

∑

k∈Z

|βj,k|+ Bj(Kj) + Ej(Kj)

}
,

where c only depends on the wavelet basis, where

Bj(Kj) = −2−j/2
∑

k∈Kj

|βj,k|,

and where

Ej(Kj) = 2−j/2
∑

k∈Kj

|β̂j,k − βj,k|

represents the error due to the estimation of the coefficients indexed by Kj.

The term Bj(Kj) can be estimated by

B̂j(Kj) = −2−j/2
∑

k∈Kj

|β̂j,k|.

The triangle inequality ensures that

|B̂j(Kj)− Bj(Kj)| ≤ Ej(Kj),

and hence
∥∥∥f̂K − f

∥∥∥
1
≤ c

∞∑

j=−1

{
2−j/2

∑

k∈Z

|βj,k|+ B̂j(Kj) + 2Ej(Kj)

}
.(3)

The key to minimizing the L
1 risk (or at least the above upper-bound) is therefore to control the

error Ej(Kj) with high probability. If Êj(Kj) denotes a known upper-bound of Ej(Kj), minimizing

B̂j(Kj) + 2Êj(Kj)(4)
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among all the subsets Kj of Z is a possible strategy to minimize the right-hand side of (3). In

other words, we may consider a subset K̂j of Z minimizing (4). It contains all the indices k of the

coefficients β̂j,k to be kept. We then estimate f by f̂
K̂

where K̂ = (K̂j)j≥−1.

In the very particular case where Êj(Kj) takes the form

Êj(Kj) = 2−1−j/2
∑

k∈Kj

êj(k),(5)

the procedure amounts to keeping only the coefficients above a given threshold:

K̂j =
{
k ∈ Z, |β̂j,k| ≥ êj(k)

}
.

We then recover a local estimation method where the decision of threshold β̂j,k is based solely on

the value of β̂j,k and êj(k).

But the interesting point of the above reasoning is that it can be applied to any bound Êj(Kj),
and not only those satisfying (5). This makes it possible to control the error more accurately. The
resulting procedure may not be a term-by-term hard thresholding rule though.

2.3. Estimation procedure. The aim of this section is to define our estimator f̂ of f . We refer
to Sections 3.2 and 3.3 for the study of its statistical properties and to Section 3.5 for informations
on more computational aspects.

We sort the sample in increasing order: X(1) < X(2) < · · · < X(n). We define the smallest

integer Ĵ ≥ 0 satisfying

min
1≤i≤n−1

(
X(i+1) −X(i)

)
> 21−ĴLψ,

where Lψ ≥ 1 is such that supp ψ ⊂ [−Lψ, Lψ]. For each resolution j ∈ {−1, . . . , Ĵ}, we determine

a set K̂j of integers by using an algorithm similar to the one described in the previous section. This
yields our estimator

f̂ =

Ĵ∑

j=−1

∑

k∈K̂j

β̂j,kψ̄j,k(6)

of f .

We define for j ≥ −1 and k ∈ Z,

σ̂2j,k =

{
1
n

∑n
i=1 φ

2(Xi − k) if j = −1,
1
n

∑n
i=1 ψ

2(2jXi − k) if j ≥ 0.

Let then

Ẑj =
{
k ∈ Z, σ̂2j,k 6= 0

}

be the set of integers k for which ψj,k(Xi) 6= 0 for at least one observation.

We define for ℓj ∈ N and r ≥ ℓj + j + 1,

Ẑj,r(ℓj) =
{
k ∈ Z, 2−r−1 < σ̂2j,k ≤ 2−r

}

Ẑj,ℓj+j(ℓj) =
{
k ∈ Z, σ̂2j,k > 2−ℓj−j−1

}
.
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To each value of ℓj corresponds therefore the partition of Ẑj defined by

Ẑj =
⋃

r≥ℓj+j

Ẑj,r(ℓj).(7)

We now explain which coefficients to retain among those indexed by Ẑj,r(ℓj). By gathering all these

coefficients and by choosing ℓj appropriately, we obtain the set K̂j.

We introduce some positive numbers ρ−1, ς−1, ρ0, ς0 > 0 that will be specified later on, and set

ςj = ς0, ρj = ρ0 for j ≥ 1. We define the map Êj,r,ℓj(·) for r = ℓj + j and x > 0 by

Êj,r,ℓj(x) =
√
x

n
+ x

log+(2
r+1/x)

n
+

√
log((j + 2)(r + 1)n)

n
+

log((j + 2)(r + 1)n)

n
,

where log+(x) = log(e+ x).When r ≥ ℓj + j + 1, Êj,r,ℓj(·) is rather defined for x > 0 by

Êj,r,ℓj(x) = x

√√√√2−r log+

(
λ̂j,r/x

)

n
+ x

log+

(
λ̂j,r/x

)

n

+

√
x
2−r log((j + 2)(r + 1)n)

n
+

log((j + 2)(r + 1)n)

n
,

where

λ̂j,r =




min

{(
|Ẑj|+ 2(2Lψ + 1)(log(j + 2) + 2 log n+ 1)

)
, 2r+1

}
if 2r > ςjn/ log((j + 2)n)

min
{
|Ẑ′
j,r|, 2r+1

}
if 2r ≤ ςjn/ log((j + 2)n)

and where

Ẑ
′
j,r =

{
k ∈ Z, 2−r−2 < σ̂2j,k ≤ 2−r+1

}
.

It is extended by continuity at x = 0.

We define the criterion γj,r,ℓj(·) for Kj,r,ℓj ⊂ Ẑj,r(ℓj) by

γj,r,ℓj(Kj,r,ℓj) = −2−j/2
∑

k∈Kj,r,ℓj

|β̂j,k|+ ρj Êj,r,ℓj(|Kj,r,ℓj |).

We pick out K̂j,r,ℓj ⊂ Ẑj,r(ℓj) such that

γj,r,ℓj
(
K̂j,r,ℓj

)
= min

Kj,r,ℓj
⊂Ẑj,r(ℓj)

γj,r,ℓj
(
Kj,r,ℓj

)
.(8)

Since Ẑj,r(ℓj) is finite, the set K̂j,r,ℓj does exist. If several sets minimize this criterion, K̂j,r,ℓj
denotes any of them.

The value of ℓj that we will keep in the following is the smallest value ℓ̂j satisfying

∞∑

r=ℓ̂j+j

γj,r,ℓ̂j

(
K̂j,r,ℓ̂j

)
= min

ℓj∈N

∞∑

r=ℓj+j

γj,r,ℓj
(
K̂j,r,ℓj

)
.(9)

Such a value does exist (for ℓj large enough, the partition given by (7) remains the same).
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We finally set

K̂j =

∞⋃

r=ℓ̂j+j

K̂j,r,ℓ̂j

and define our estimator f̂ by (6).

3. Theoretical results.

We study in this section the properties of our estimator f̂ .

3.1. Classes of functions. We begin by introducing classes of functions corresponding to as-
sumptions on the density to be estimated.

For this purpose, the following notations will be convenient. We denote for p ∈ (0,+∞] and
x = (xk)k∈Z the (quasi) ℓp norm of x by

‖x‖p =
{(∑

k∈Z |xk|p
)1/p

if p <∞
supk∈Z |xk| if p = ∞.

The weak (quasi) ℓp norm of x is defined by

‖x‖p,∞ =

{
supt>0 t

(∑
k∈Z 1|xk |≥t

)1/p
if p <∞

supk∈Z |xk| if p = ∞.

We recall that ‖x‖p,∞ ≤ ‖x‖p but that the converse is not true in general.

3.1.1. Besov classes. The classical Besov spaces Bαp,∞ possess a characterisation in terms of
wavelets coefficients. It follows from [DJ97] that Bαp,∞ may be defined when p ∈ [0,+∞] and

α ∈ ((1/p − 1)+, τ) as the set of functions f of Lmax{p,1}(R) satisfying ‖f‖Bα
p,∞

<∞ where

‖f‖Bα
p,∞

= sup
j≥−1

{
2j(α+1/2−1/p)‖βj,·‖p

}
.

The value of τ is an integer depending on the wavelet basis. It is equal to 1 for the Haar basis.
It stands for the smoothness of φ̄ and ψ̄ when the basis is the bi-orthogonal basis of [CDF92] (see
Section 2.1).

We define the Besov ball Bα
p,∞(R) as the set of functions f ∈ Bαp,∞ satisfying ‖f‖Bα

p,∞
≤ R. This

set is slightly smaller than the set composed of functions f ∈ Bαp,∞ satisfying

sup
j≥0

{
2j(α+1/2−1/p)‖βj,·‖p

}
≤ R.

This latter set is denoted by Bαp,∞(R) and is called a strong Besov class. The adjective “strong” is
added to avoid any ambiguity with what is below. The difference between a (strong) Besov class
and a Besov ball lies therefore in the starting point of the index j.

We define the weak Besov class WBαp,∞(R) when p is finite as the set of functions f ∈ L
1(R)

satisfying

sup
j≥0

{
2j(α+1/2−1/p)‖βj,·‖p,∞

}
≤ R.
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When p is infinite, we set WBα∞,∞(R) = Bα∞,∞(R). The main difference with the strong Besov
classes is therefore the use of the (quasi) weak ℓp norm in place of the standard ℓp (quasi) norm.

3.1.2. Tail dominance condition. We define two sets Tθ(M) and WT θ(M) corresponding to
strong and weak conditions on the tails of f .

We set for j ≥ 0 and k ∈ Z,

Fj,k =

∫ 2−j(k+1/2)

2−j(k−1/2)
f(x) dx.(10)

We define forM > 0 and θ ∈ (0, 1), the set Tθ(M) gathering the integrable non-negative functions f
satisfying

sup
j≥0

{
2−j(1−θ) ‖Fj,·‖θθ

}
≤M.(11)

We say that the “strong tail dominance condition” is met when f ∈ Tθ(M). This terminology “tail
dominance condition” is directly borrowed from [GL14] although their condition differs a little from
this one (see the next section for more details).

Inequality (11) can be softened by replacing the (quasi) norm with its weak version. This leads
to the set WT θ(M) and the “weak tail dominance condition” f ∈ WT θ(M). By definition, it
contains therefore all the integrable non-negative functions f such that

sup
j≥0

{
2−j(1−θ) ‖Fj,·‖θθ,∞

}
≤M.

These two conditions are satisfied when there are not too many mass in the tails of the distribu-
tion. The parameters M and θ tune this amount of mass allowed. The larger θ is, the heavier the
tails can be.

The above conditions are defined only when θ 6= 0. The limit case θ = 0 corresponds to compactly
supported functions. More precisely, we define T0(M) = WT 0(M) as the collection of integrable
functions f satisfying

sup
j≥0

{
2−j |{k ∈ Z, Fj,k > 0}|

}
≤M.

We show in Appendix G the elementary proposition below.

Proposition 1. The following assertions hold true:

1. If M < 1, the set Tθ(M) does not contain any density.
2. Let p ∈ (0, 1), R > 0, α ∈ (1/p−1, τ). If f ∈ B

α
p,∞(R), then f ∈ Tp(c1Rp) where c1 only depends

on the wavelet basis and α, p. Conversely, if f ∈ Bαp,∞(R) ∩ Tp(Rp), then f ∈ B
α
p,∞(c2R) where

c2 only depends on the wavelet basis and α, p.
3. If f is a compactly supported density on [−L,L], then f belongs to T0(2L+ 2).
4. If f is a density satisfying f(x) ≤ Ab|x|−b for all |x| ≥ 1 and some A > 0, b > 1, then f belongs

to WT 1/b(M) with M = c3(1 +A) and some c3 only depending on b.
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3.2. Minimax rates. We evaluate in this section the risk of our estimator f̂ when f is smooth
with dominated tails. More precisely, we consider R > 0, M ≥ 1, p ∈ (0,+∞], α ∈ ((1/p− 1)+, τ),
θ ∈ [0, 1) ∩ [0, p], and

Fα,p,θ(R,M) =

{
WBαp,∞(R) ∩WT θ(M) if p 6= 1

Bαp,∞(R) ∩WT θ(M) if p = 1.

We then give an upper-bound of the maximal risk of our estimator when f lies in Fα,p,θ(R,M). It
involves the following quantities:

γ =

{
α/(2α + 1) if θ ≤ α/(2α + 1− 1/p)

α(1− θ)/(α+ 1− θ/p) if θ > α/(2α + 1− 1/p)

νn =





log n if θ = α/(2α + 1− 1/p) and p 6= 1

(log n)2γ if θ = α/(2α + 1− 1/p) and p = 1

1 otherwise

β1 =

{
1/(2α + 1) if θ ≤ α/(2α + 1− 1/p)

(1− θ)/(1 + α− θ/p) if θ > α/(2α + 1− 1/p)

β2 =

{
(α+ 1− 1/p)/((1 − θ)(2α+ 1)) if θ ≤ α/(2α + 1− 1/p)

(α+ 1− 1/p)/(α + 1− θ/p) if θ > α/(2α + 1− 1/p).

Our main result is proved in Section 4 and is as follows:

Theorem 2. Let p ∈ (0,∞], α ∈ ((1/p − 1)+, τ), θ ∈ [0, 1) ∩ [0, p], R > 0, M ≥ 1. Then, there

exist ¯̺−1, ς−1, ¯̺0, ς0 and n0 such that for all n ≥ n0, ρ−1 ≥ ¯̺−1, ρ0 ≥ ¯̺0, our estimator f̂ defined
in Section 2.3 satisfies

sup
f∈Fα,p,θ(R,M)

E

[
d1(f, f̂)

]
≤ c

[
Rβ1Mβ2 +M1γ=1−θ

]
νnn

−γ .(12)

Moreover, ¯̺−1, ς−1 are universal and ¯̺0, ς0 only depends on ψ. The term c only depends on
α, p, φ̄, ψ, ψ̄, θ, ρ−1, ρ0, and n0 only depends on p, α, θ,R,M .

We would like to highlight that the construction of our estimator f̂ does not involve the param-
eters α, p, θ,R,M of the class Fα,p,θ(R,M). They can therefore be unknown.

For pedagogical reasons, let us consider the case where f is compactly supported in [−L,L] with
L ≥ 1. Proposition 1 entails that f ∈ Fα,p,0(R, 4L). In particular, there is n0 only depending on
R,M,L, α, p such that for all n ≥ n0,

E

[
d1(f, f̂)

]
≤ c′R1/(2α+1)L(α+1−1/p)/(2α+1)n−α/(2α+1).

This is the classical estimation rate. It is however attained here under very mild conditions on p
and α. This result essentially says that our estimator adapts to local variations of the density
(the algorithm can increase the number of coefficients βj,k to estimate at the locations where the
function varies a lot and on the contrary decrease it at the locations where the function is more
flat). Note that there is no requirement that the density be bounded or even in L

2(R). We do not

know of any wavelet estimator that achieves the standard rate n−α/(2α+1) under our assumptions.

In the non compact case, the usual rate of convergence n−α/(2α+1) applies when θ is sufficiently
small, that is when the (weak) tail dominance condition is stringent enough. When θ is larger,
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however, the estimation rate deteriorates. It becomes particularly slow when θ comes close to 1.
We recall that is not possible to estimate a density on R under the sole assumption that f belongs
to a ball Bα

p,∞(R) of a Besov space with p ≥ 1 and R large enough when the loss is the L
1 norm

(see [GL14, IK81, JLL04]).

However, the assumption “f belongs to a ball of a Besov space” is sufficient to ensure the
convergence of our estimator when p < 1 and α > 1/p − 1. Indeed, our tail dominance condition
is fulfilled in this case with θ = p. The above theorem can therefore be applied. This gives: for all
p ∈ (0, 1), α ∈ (1/p − 1, τ), R ≥ 1, and n large enough,

sup
f∈Bα

p,∞(R)
E

[
d1(f, f̂)

]
≤ c′′Rβ3νnn

−γ ,(13)

where

γ =

{
α/(2α + 1) if p ∈ (0, 1/2] or α < (1− p)/(2p − 1)

1− p if p ∈ (1/2, 1) and α ≥ (1− p)/(2p − 1)

νn =

{
log n if p ∈ (1/2, 1) and α = (1− p)/(2p − 1)

1 otherwise

β3 =

{
α/((2α + 1)(1/p − 1)) if p ∈ (0, 1/2] or α < (1− p)/(2p − 1)

p if p ∈ (1/2, 1) and α ≥ (1− p)/(2p − 1)

and where c′′ only depends on α, p, ψ, ψ̄, φ̄, ρ−1, ρ0.

As far as we know, only the case p ≥ 1 has been studied in the literature of density estimation
with infinite support under L

1 loss. The only papers we are aware of that deal with the subject
are the two mentioned below.

First, the authors of [GL14] proposed to estimate the density pointwise. The global risk is
then obtained by integrating the pointwise risk. This reasoning has the merit of not depending
on a particular loss and of leading to results for all Lq losses. The downside is that it may lead
to undesirable logarithmic factors in the convergence rates. We do not have any here, except at
the boundary. Their tail dominance condition is more or less the same as our strong condition.
Rigorously, it is at least as stringent as our strong condition (see Proposition 1 of [CL20]). We do
not know whether it is equivalent. Note that they also impose a condition on the supremum norm
of f . Besides, they restricted themselves to balls of Besov spaces and were not interested in weak
Besov classes.

Second, wavelets were used in [CL20] to estimate the density under the same tail condition as
our strong condition. Unfortunately, the convergence rate of their estimator is slower than ours
and is hence not optimal (their exponent in n is, in absolute value, smaller than ours as soon as
θ 6= 0).

Although our result is stated for the L
1 loss, it can easily be checked that (12) remains true for

the distance induced by the Besov norm ‖ · ‖B0
1,1

defined by

‖f‖B0
1,1

=
∑

j≥−1

2−j/2‖βj,·‖1.
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The proposition below shows not only that our rate is optimal (except possibly at the boundary),
but also that the dependency in R and M is the right one. It completes the minimax lower bound
of [GL14] and is proved in Appendix E.

Proposition 3. Let p ∈ (0,∞], α ∈ ((1/p−1)+, τ) and θ ∈ (0, 1)∩ [0, p]. There exist some R0,M0

such that: for all R ≥ R0, M ≥M0 and all n large enough,

inf
f̃

sup
f∈Bα

p,∞(R)∩Tθ(M)
E

[
d1(f, f̃)

]
≥ c

[
Rβ1Mβ2 +M1γ=1−θ

]
n−γ ,

where c only depends on α, p, θ, ψ, ψ̄, φ̄. Moreover, R0,M0 only depend on α, p, θ, ψ, ψ̄, φ̄.

3.3. Minimax rates over a class of fat tailed distributions. We illustrate here the interest
of the weak tail dominance condition compared to its strong version. We consider A ≥ 1, α ∈
((1/p − 1)+, τ), p ∈ [0,∞], b > 1, b ≥ 1/p, and the class

D(α, p,R,A, b) =
{
f ∈ Bαp,∞(R), such that f(x) ≤ Ab|x|−b for all |x| ≥ 1

}
.

Proposition 1 says that the weak tail dominance condition is met with θ = 1/b and M = c(1 +A).

We deduce from Theorem 2 that for n large enough,

sup
f∈D(α,p,R,A,b)

E

[
d1(f, f̂)

]
≤ Cνnn

−γ ,

where

γ =

{
α/(2α + 1) if b ≥ 2 + (1− 1/p)/α

α(1 − 1/b)/(α + 1− 1/(pb)) if b < 2 + (1− 1/p)/α

νn =





log n if b = 2 + (1− 1/p)/α and p 6= 1

(log n)2γ if b = 2 + (1− 1/p)/α and p = 1

1 if b 6= 2 + (1− 1/p)/α

and where C only depends on A,R,α, p, b, ψ, ψ̄, φ̄, ρ−1, ρ0.

The parameter γ, which governs the estimation rate of our estimator, depends on α, b and p.
When b is sufficiently large, we recover the usual rate of convergence. The rate is otherwise slower
but still minimax (at least when A,R are large enough, and to within log factors in the two limiting
cases). This statement can be checked by reviewing the proof of Proposition 3 above.

Let us now observe that the strong tail dominance condition is not fulfilled for θ = 1/b (what-
ever M). We rather have D(α, p,R,A, b) ⊂ Tθ(Mθ) for all θ > 1/b and Mθ depending on θ (and
b,A). If the theorem were shown only for the strong condition, we could apply it only with values
of θ larger than 1/b. If done correctly, it gives the right rate of convergence when b > 2+(1−1/p)/α.
However, this causes problems when b ≤ 2+(1−1/p)/α as the exponent then depends on θ. Using
a value of θ larger than 1/b leads to a slower convergence rate.

Note that a bounded and unimodal density f belongs to B1
1,∞(R) for some R depending on ‖f‖∞

and the wavelet basis only. Such a density belongs therefore to D(1, 1, R,A, b) if it satisfies f(x) ≤
Ax−b for all |x| ≥ 1. We deduce that f̂ converges to f at the rate n−1/3 when b > 2. We thus recover
the optimal estimation rate of a bounded unimodal density with compact support although f can
be infinitely supported here.
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3.4. About the condition α > 1/p−1 when p < 1. In the previous sections, we always assumed
that α > (1/p−1)+. This condition is empty if p ≥ 1 but not otherwise. Note that it is used in the
result of [DJ97] to characterize the Besov balls in terms of wavelet coefficients. To explore what
happens in the opposite case, we need therefore to redefine these balls.

We consider some α, p > 0 and an arbitrary integer r larger than α. We set for t, h > 0,

∆r
hf(t) =

r∑

k=0

(
r

k

)
(−1)r−kf(t+ kh).

We define the modulus of smoothness

ωp(f, x) = sup
0<h≤x

[∫
|∆r

hf(t)|p dt

]1/p
,

and define the Besov ball Bα
p,∞(R) as the collection of functions f ∈ L

p such that

‖f‖Bα
p,∞

= ‖f‖p + sup
x>0

x−αωp(f, x),

is not larger than R.

The above (quasi) norm depends a priori on the choice of r. Changing r leads however to an
equivalent (quasi) norm, see [DL93]. It is also equivalent to the (quasi) norm that we defined in
Section 3.1.1 when α ∈ ((1/p − 1)+, τ). To avoid adding unnecessary notations, we have used the
same symbol to designate the Besov ball and the (quasi) norm. However, since the (quasi) norms
are not equal, but equivalent, there is a slight ambiguity about what ‖ · ‖Bα

p,∞
and R are. This has

no impact on our results though.

The proposition below shows that it is not possible to obtain a convergent estimator for the
L
1 loss under the sole assumption that f is a compactly supported density of B

α
p,∞(R) when

α ≤ 1/p − 1. It is proved in Appendix F.

Proposition 4. Let p ∈ (0, 1), α ∈ (0, 1/p − 1] and R > 0. Then,

inf
f̃

sup
f∈Bα

p,∞(R)

supp f⊂[0,1]

E

[
d1(f, f̃)

]
≥ 1/4.

This result can be compared with what exists in the literature of estimation of a compactly
supported density under the L

q loss with q > 1. The minimax risk does not tend to 0 either when
α = 1/p − 1/q, see [Sar21]. However, the optimal estimation rate can be made arbitrarily slow by
choosing α very close to 1/p − 1/q when q > 1. This phenomenon does not occur here, since the

optimal estimation rate is n−α/(2α+1), whatever p > 0 and α > 1/p − 1.

3.5. Computational complexity. An estimator is not always derived from a computationally
tractable procedure. For example, we have not been able to find in the literature a computationally
tractable algorithm that would lead to an optimal estimator in the minimax L

1 sense when f is
compactly supported on [0, 1] and in B

α
p,∞(R) with p < 1. There are admittedly computationally

acceptable solutions in the literature to deal with this case, but they seem to be optimal only to
within log factors, see [Sar21]. We recall that the case p < 1 is very different from the case p ≥ 1.
The latter is straightforward to solve in the compact case as a simple linear estimator works.
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Let us also mention that there are computational difficulties with Kernel estimators. Indeed,
the bandwidth should vary with the location so that the estimator adapts to the inhomogeneous
smoothness of the density. In this context, procedures that lead to rate optimal estimators have
been developed by [Lep15] in the Gaussian white noise model. His solution is based on an algorithm
that seems quite difficult to implement though (see his Problem II Section 4.2). Things are a bit
simpler when we allow the estimator to be rate optimal within log factors (see [GL14, LW19]).

We show below that the computational complexity of our procedure is nearly linear in the
number n of observations.

We consider some j ∈ {−1, . . . , Ĵ} and assume that the wavelets functions φ̄, ψ̄ and ψ have been
preprocessed. We put ψj = ψ if j ≥ 0 and ψ−1 = φ.

We begin by sorting the observations in increasing order X(1) < · · · < X(n). We remark
that ψj(R) is finite as ψj is piecewise constant. We consider some y ∈ ψj(R) \ {0}. Then, we
find for each i ∈ {1, . . . , n}, the few integers k such that ψj(2

jXi − k) = y. We gather all these
elements into a vector of size O(n). By counting in this vector the number of repetitions, we

determine the family (β̂j,k(y))k∈Z where

β̂j,k(y) =
y

n

n∑

i=1

1ψj (2jXi−k)=y.

In particular, we deduce

β̂j,k =
∑

y∈ψj(R)\{0}

β̂j,k(y).

The reasoning is the same for obtaining (σ̂2j,k)k∈Z. So far, the number of calculations performed is

at most O(n log n).

We consider some ℓj ∈ N, r ≥ ℓj + j, find the indices in Ẑj,r(ℓj) and the size of Ẑ′
j,r. We sort the

wavelet coefficients (β̂j,k)k∈Ẑj,r(ℓj)
in descending order of importance: |β̂j,[1]| ≥ |β̂j,[2]| ≥ |β̂j,[3]| . . .

Finding K̂j,r,ℓj ⊂ Ẑj,r(ℓj) that minimizes (8) amounts to selecting the s most important coefficients
where s minimizes

−2−j/2
s∑

k=1

|β̂j,[k]|+ ρj Êj,r,ℓj(s).

This set can therefore be built in O(n+ |Ẑj,r(ℓj)| log |Ẑj,r(ℓj)|) elementary operations.

Note that the number of r to consider is at most O(log n). Moreover, the values of ℓj of interest
are those between 0 and O(log n) since the partition given by (7) remains the same when ℓj is

higher. Since
∑

r≥ℓj+j
|Ẑj,r(ℓj)| = O(n), we deduce that all the sets K̂j,r,ℓj (when r ≥ ℓj + j,

ℓj ∈ N, j ∈ {1, . . . , Ĵ} vary) can be obtained in at most O((Ĵ + 1)n log2 n) operations. The

computation of ℓ̂j is fast as it requires less than O(log2 n) additional operations. To sum up,

O((Ĵ +1)n log2 n) is the maximal number of operations needed to find all the selected coefficients,

that is to find the sets (K̂j)−1≤j≤Ĵ .

The computational complexity of our procedure is random but can be bounded from above either
with high probability or in expectation. We only present the second possibility. We deduce from

Lemma 17 page 24 that E
[
Ĵ
]
≤ O(log n) when f belongs to L

q for some q > 1. This assumption
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is fulfilled when f ∈ Fα,p,θ(R,M) (see Lemma 25 page 32 if needed). More precisely, we have for
all p ∈ (0,∞], α ∈ ((1/p − 1)+, τ), θ ∈ [0, 1) ∩ [0, p], R > 0, M ≥ 1,

sup
f∈Fα,p,θ(R,M)

E
[
Ĵ
]
≤ O(log n).

In average, the computational complexity is therefore at most O(n log3 n).

4. Proof of Theorem 2.

We begin by carrying out and proving a non-asymptotic risk bound.

Theorem 5. Suppose that f ∈ L
q for some q > 1. Then, there exist universal constants ¯̺−1, ς−1

and terms ¯̺0, ς0 depending on ψ only such that if ρ−1 ≥ ¯̺−1 and ρ0 ≥ ¯̺0, the estimator f̂ defined
in Section 2.3 satisfies

E

[
‖f − f̂‖1

]
≤c1E




Ĵ∑

j=−1

inf
ℓj∈N

∞∑

r=ℓj+j

inf
Kj,r,ℓj

⊂Ẑj,r(ℓj)∩Zj

{
B̂j,r,ℓj(Kj,r,ℓj) + ρj Êj,r,ℓj(|Kj,r,ℓj |)

}
1A




+ c1T1 + c1T2 + c2
log n

n2
,(14)

where

Zj = {k ∈ Z, fj,k ≥ 1/n} ,(15)

fj,k =

∫
f(x)1supp ψj,k

(x) dx,(16)

B̂j,r,ℓj(Kj,r,ℓj) = 2−j/2
∑

k∈(Ẑj,r(ℓj)∩Zj)\Kj,r,ℓj

|βj,k|,(17)

T1 =
∞∑

j=−1

2−j/2
∑

k 6∈Zj

|βj,k|,(18)

T2 = n

∞∑

j=−1

2−j/2
∑

k∈Zj

|βj,k|fj,k(1− fj,k)
n−1,(19)

where c1 only depends on ψ, ψ̄, φ̄, and where c2 only depends on ψ, ψ̄, φ̄, q, ‖f‖q. Moreover, A is an

event on which Ĵ ≤ c0 log n for some c0 only depending on q, ‖f‖q, and on which

|Ẑj| ≤ 2E
[
|Ẑj|

]
+ (7/3)(2Lψ + 1) (log(j + 2) + 2 log n+ 1)(20)

for all j ≥ −1. Furthermore, on A we have for all j ≥ −1, k ∈ Z,

σ2j,k ≤ 2σ̂2j,k + c3 log((j + 2)n)/n,(21)

where σ2j,k = E[σ̂2j,k] and where c3 only depends on ψ. We also have on A:

Ẑj,r(ℓj) ⊂ Z̆j,r ⊂ Ẑ
′
j,r ⊂ Z̆

′
j,r.(22)

This embedding is valid for all j ≥ −1, ℓj ∈ N, r ≥ ℓj + j + 1 such that

2r ≤ ςj
n

log((j + 2)n)
,
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and Z̆j,r, Z̆
′
j,r are defined by

Z̆j,r =
{
k ∈ Z, 2−r−3/2 < σ2j,k ≤ 2−r+1/2

}
,(23)

Z̆
′
j,r =

{
k ∈ Z, 2−r−5/2 < σ2j,k ≤ 2−r+3/2

}
.(24)

By convention, the infimum over Kj,r,ℓj in (14) is equal to 0 if Ẑj,r(ℓj) ∩ Zj = ∅.

4.1. Proof of Theorem 5. For all j ≥ −1, subset K ⊂ Z, we define

σ̂2j (K) =
∑

k∈K

σ̂2j,k,

and

σ2j (K) = E
[
σ̂2j (K)

]
=
∑

k∈K

σ2j,k.(25)

The proof of the theorem ensues from a succession of lemmas. The first one is classical and is the
following:

Lemma 1. For all K ⊂ Z, j ≥ 0, and x ∈ R,
(
∑

k∈K

|ψ(2jx− k)|
)2

≤ c
∑

k∈K

ψ2(2jx− k),

where c only depends on ψ.

Proof of Lemma 1. We use that ψ is compactly supported and apply Cauchy-Schwarz inequality.
�

Lemma 2. Let for all j ≥ −1, Cj be a subset of Z. There is an event of probability 1 − 1/n4 on
which: for all j ≥ −1, all finite subset Kj of Cj,

2−j/2
∑

k∈Kj

∣∣∣β̂j,k − βj,k

∣∣∣ ≤ cjVj(Kj , Cj),(26)

where

Vj(Kj , Cj) =

√
|Kj |σ2j (Kj) log+(σ

2
j (Cj)/σ2j (Kj))

n
+

|Kj | log+(nσ2j (Cj)/|Kj |)
n

+

√
σ2j (Kj)

log((j + 2)n)

n
+

log((j + 2)n)

n
.

Moreover, cj is universal if j = −1 and only depends on ψ if j ≥ 0.

Proof of Lemma 2. We only show the lemma when j ≥ 0. The proof when j = −1 is similar
(replace ψ by φ). We consider some c1 > 0 only depending on ψ such that

∥∥∥∥∥
∑

k∈Z

∣∣ψ(2j · −k)
∣∣
∥∥∥∥∥
∞

≤ 1/c1.
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We then consider d ≥ 1 and define the at most countable collection

Fj(d) =



c1

∑

k∈Kj

ψ(2j · −k), Kj ⊂ Cj, |Kj | ≤ d





of functions. These functions take values in [−1, 1] and are piecewise constant on at most c2d
pieces where c2 only depends on ψ. Therefore, Fj(d) is VC subgraph and its dimension is not
larger than d, up to a multiplicative factor depending on ψ only (see [BB18] for instance).

Let now Kj ⊂ Cj such that |Kj | ≤ d. Elementary computations entail

∑

k∈Kj

∣∣∣β̂j,k − βj,k

∣∣∣ ≤ 2 sup
K ′

j⊂Kj

∣∣∣∣∣∣

∑

k∈K ′

j

(
β̂j,k − βj,k

)
∣∣∣∣∣∣
.

We introduce the map ψK ′

j
(·) defined for x ∈ R by

ψK ′

j
(x) = c1

∑

k∈K ′

j

ψ(2jx− k).

The preceding inequality can then be rewritten as

2−j/2
∑

k∈Kj

∣∣∣β̂j,k − βj,k

∣∣∣ ≤ (2/c1) sup
K ′

j⊂Kj

∣∣∣∣∣
1

n

n∑

i=1

[
ψK ′

j
(Xi)− E

(
ψK ′

j
(Xi)

)]
∣∣∣∣∣ .

Note that

f̄(x) = c1
∑

k∈Cj

∣∣ψ(2jx− k)
∣∣

is an envelope function of Fj(d). Moreover, Lemma 1 gives when K ′
j ⊂ Kj ,

E[ψ2
K ′

j
(X)] ≤ c3σ

2
j (K

′
j) ≤ c3σ

2
j (Kj),

and E[f̄2(X)] ≤ c3σ
2
j (Cj). We apply the probabilistic result given by Proposition 6 in Appen-

dix A.We then use that x 7→ x log+(a/x) is non-decreasing for all a > 0, and conclude by a union
bound. �

Lemma 3. Let for all j ≥ −1, r ∈ N, Cj,r be a finite subset of Z. There is an event of probability
1− 1/n4 on which: for all j ≥ −1, r ∈ N, all subset Kj,r of Cj,r,

2−j/2
∑

k∈Kj,r

∣∣∣β̂j,k − βj,k

∣∣∣ ≤ cjWj,r(Kj,r, Cj,r),(27)

where

Wj,r(Kj,r, Cj,r) =

√
|Kj,r|σ2j (Kj,r) log+(|Cj,r|/|Kj,r|)

n
+

|Kj,r| log+(|Cj,r|/|Kj,r|)
n

+

√
σ2j (Kj,r)

log((j + 2)(r + 1)n)

n
+

log((j + 2)(r + 1)n)

n
.

Moreover, cj is universal if j = −1 and only depends on ψ if j ≥ 0.
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Sketch of the proof of Lemma 3. The proof is a slight variant to that of Lemma 2. The main
difference is that we use (69) in Appendix A in place of (68). We restrict to the case j ≥ 0, and
define the collection Fj,r(d) for d ∈ [1, |Cj,r|] by

Fj,r(d) =



c1

∑

k∈Kj,r

ψ(2j · −k), Kj,r ⊂ Cj,r, |Kj,r| ≤ d



 .

We have

|Fj,r(d)| ≤
d∑

i=0

(|Cj,r|
i

)
.

Proposition 2.5 of [Mas07] entails |Fj,r(d)| ≤ (e|Cj,r|/d)d . The result follows from Proposition 6
and a union bound. �

We omit the (easy) proof of the lemma below:

Lemma 4. Let fj,· = (fj,k)k∈Z be defined by (16). Then, for all j ≥ −1, ‖fj,·‖1 ≤ c, where c only
depends on ψ if j ≥ 0 and is universal if j = −1.

We now state:

Lemma 5. We define for all j ≥ −1, r ∈ N, m ∈ {0, 1, 2}, and all finite subset Kj,r of Z,

Ej,r(Kj,r,m) =

√
|Kj,r|σ2j (Kj,r) log+(sj,r(Kj,r,m))

n
+

|Kj,r| log+(s′j,r(Kj,r,m))

n

+

√
σ2j (Kj,r)

log((j + 2)(r + 1)n)

n
+

log((j + 2)(r + 1)n)

n
,

where

sj,r(Kj,r, 0) = E[|Ẑj|]/|Kj,r| and s′j,r(Kj,r, 0) = E[|Ẑj|]/|Kj,r|
sj,r(Kj,r, 1) = 1/σ2j (Kj,r) and s′j,r(Kj,r, 1) = n/|Kj,r|
sj,r(Kj,r, 2) = |Z̆j,r|/|Kj,r| and s′j,r(Kj,r, 2) = |Z̆j,r|/|Kj,r|.

Then, there is an event of probability 1−4/n4 on which: for all j ≥ −1, r ∈ N, all finite subset Kj,r

of Z, and all m ∈ {0, 1},

2−j/2
∑

k∈Kj,r

∣∣∣β̂j,k − βj,k

∣∣∣ ≤ cjEj,r(Kj,r,m).(28)

Moreover, if Kj,r ⊂ Z̆j,r where Z̆j,r is defined by (23), the left-hand side of (28) is also not larger
than cjEj,r(Kj,r, 2). Here, cj is universal if j = −1 and only depends on ψ if j ≥ 0.

Proof of Lemma 5. We only show the lemma when |Kj,r| ≥ 1. Note first that σ2j (Z) is bounded
from above by a numerical value when j = −1 and by a term only depending on ψ when j ≥ 0
(use Lemma 4 and ‖ψ‖∞ < ∞). The proof that (28) holds true with m = 1 follows therefore
from Lemma 2 (with Cj = Z). The proof that it is also true with m = 2 is due to Lemma 3 (with

Cj,r = Z̆j,r).
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We now suppose that m = 0. Let g be the map defined for x ∈ [0, 1] by g(x) = 1 − (1 − x)n.
Note that σ̂2j,k > 0 if and only if ψj,k(Xi) 6= 0 for some i. Therefore,

E[|Ẑj|] =
∑

k∈Z

g(fj,k),(29)

where fj,k is defined by (16) by fj,k =
∫
supp ψj,k

f . Note that g is increasing and x 7→ g(x)/x is

decreasing. Recall that Zj is defined in (15). We deduce,

E[|Ẑj|] =
∑

k∈Zj

g(fj,k) +
∑

k 6∈Zj

g(fj,k)

fj,k
fj,k

≥ |Zj|g(1/n) +
∑

k 6∈Zj

g(1/n)

1/n
fj,k.

Note that

σ2j (Z
c
j) ≤ max

{
1, ‖ψ‖2∞

} ∑

k 6∈Zj

fj,k,

and hence

E[|Ẑj|] ≥ c1
[
|Zj|+ nσ2j (Z

c
j)
]
,(30)

where c1 only depends on ψ. We deduce from Lemmas 2 and 3 that with probability 1− 2/n4,

2−j/2
∑

k∈Kj,r

∣∣∣β̂j,k − βj,k

∣∣∣ ≤ c2
[
Vj(Kj,r ∩ Z

c
j ,Z

c
j) +Wj,r(Kj,r ∩ Zj,Zj)

]
.

Elementary computations give

Vj(Kj,r ∩ Z
c
j ,Z

c
j) ≤ c3

[
|Kj,r| log+(nσ2j (Z

c
j)/|Kj,r|)

n
+

log((j + 2)n)

n

]
.

We conclude using (30). �

Lemma 6. There is an event of probability 1 − 4/n4 on which: for all j ≥ −1, ε > 0, and finite
subset Kj of Z,

σ̂2j (Kj) ≤ (1 + ε)σ2j (Kj) + cj

[
|Kj | log+(E[|Ẑj |]/|Kj |)

n
+

log((j + 2)n)

n

]
,(31)

σ2j (Kj) ≤ (1 + ε)σ̂2j (Kj) + cj

[
|Kj | log+(E[|Ẑj |]/|Kj |)

n
+

log((j + 2)n)

n

]
,(32)

where cj depends only on ε if j = −1 and only depends on ε, ψ if j ≥ 0.

Sketch of the proof of Lemma 6. We may replace ψ in the previous proofs by ψ2. Hence,
∑

k∈Kj

∣∣σ̂2j,k − σ2j,k
∣∣ ≤ c′jEj,0(Kj , 0),

where c′j is universal if j = −1 and only depends on ψ if j ≥ 0. We conclude using the elementary

inequality 2
√
xy ≤ α−1x+ αy valid for all α > 0. �
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Lemma 7. For all j ≥ −1, E
[
|Ẑj |

]
≤ c n, where c only depends on ψ when j ≥ 0 and is universal

if j = −1.

Proof of Lemma 7. We suppose that j ≥ 0 and note that σ̂2j,k > c1/n when σ̂2j,k 6= 0 as ψ is
piecewise constant. Therefore,

E
[
|Ẑj |

]
≤ (n/c1)

∑

k∈Z

σ2j,k.

Since ψ is bounded above, σ2j,k ≤ c2fj,k. We then use Lemma 4. �

Lemma 8. There exist a universal constant ς−1, a term ς0 only depending on ψ and an event of
probability 1− 4/n4 (the same as that of Lemma 6) on which: for all j ≥ −1, ℓj ∈ N, r ≥ ℓj + j+1
such that

2r ≤ ςj
n

log((j + 2)n)
,

where ςj = ς−11j=−1 + ς01j≥0, the embedding (22) holds true. We also have (21) on this event for
all j ≥ −1 and k ∈ Z.

Proof of Lemma 8. The result follows from Lemma 6 with ε small enough and Lemma 7. �

Lemma 9. We define for all j ≥ −1, r ∈ N, ℓj ∈ N, m ∈ {0, 1, 2}, and all finite subset Kj,r,ℓj
of Z,

Ẽj,r,ℓj(Kj,r,ℓj ,m) =

√
|Kj,r,ℓj |σ̂2j (Kj,r,ℓj) log+(s̃j,r,ℓj(Kj,r,ℓj))

n
+

|Kj,r,ℓj | log+(s̃′j,r,ℓj(Kj,r,ℓj))

n

+

√
σ̂2j (Kj,r,ℓj)

log((j + 2)(r + 1)n)

n
+

log((j + 2)(r + 1)n)

n
,

where

s̃j,r,ℓj(Kj,r,ℓj , 0) = E[|Ẑj|]/|Kj,r,ℓj | and s̃′j,r,ℓj(Kj,r,ℓj , 0) = E[|Ẑj|]/|Kj,r,ℓj |
s̃j,r,ℓj(Kj,r,ℓj , 1) = 1/σ̂2j (Kj,r,ℓj) and s̃′j,r,ℓj(Kj,r,ℓj , 1) = n/|Kj,r,ℓj |
s̃j,r,ℓj(Kj,r,ℓj , 2) = |Ẑ′

j,r|/|Kj,r,ℓj | and s̃′j,r,ℓj(Kj,r,ℓj , 2) = |Ẑ′
j,r|/|Kj,r,ℓj |.

Then, there is an event of probability 1− 8/n4 on which: for all j ≥ −1, ℓj ∈ N, r ≥ ℓj + j, finite
subset Kj,r,ℓj of Z, and m ∈ {0, 1},

2−j/2
∑

k∈Kj,r,ℓj

∣∣∣β̂j,k − βj,k

∣∣∣ ≤ cj Ẽj,r,ℓj(Kj,r,ℓj ,m).

Moreover, if Kj,r,ℓj ⊂ Ẑj,r(ℓj) for some r ≥ ℓj + j + 1 and

2r ≤ ςj
n

log((j + 2)n)
,

where ςj is given by Lemma 8, the inequality holds true with m = 2. Furthermore, cj is universal
if j = −1 and only depends on ψ if j ≥ 0.

Proof of Lemma 9. The case m = 0 is merely due to Lemma 5 and (32).The proof when m = 2

follows from Lemma 5, from the inclusions Ẑj,r(ℓj) ⊂ Z̆j,r ⊂ Ẑ
′
j,r and from the double inequality

1/
√
2 ≤

σ2j (Kj,r,ℓj)

σ̂2j (Kj,r,ℓj)
≤

√
2
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valid for all Kj,r,ℓj ⊂ Ẑj,r(ℓj). The casem = 1 essentially follows from elementary computations: let

σ2 be the right-hand side of (32) (with Kj = Kj,r,ℓj and ε = 1). Then, using that x 7→ x log+(1/x)
is non-decreasing,

σ2j (Kj,r,ℓj) log+(1/σ
2
j (Kj,r,ℓj)) ≤ σ2 log+(1/σ

2)

≤ c
[
σ̂2j (Kj,r,ℓj) log+(1/σ̂

2
j (Kj,r,ℓj))

+(|Kj,r,ℓj |/n) log+(E[|Ẑj |]/|Kj,r,ℓj |) log+(n/|Kj,r,ℓj |)
+(log((j + 2)n)/n) log+(n/|Kj,r,ℓj |)

]
.

Lemma 7 ends the proof. �

Lemma 10. Lemma 9 holds true (up to an increase of cj) with s̃′j,r,ℓj(Kj,r,ℓj , 1) replaced by

s̃′j,r,ℓj(Kj,r,ℓj , 1) = 1/σ̂2j (Kj,r,ℓj).

Proof of Lemma 10. We set

Aj =

√
|Kj,r,ℓj |σ̂2j (Kj,r,ℓj) log+(1/σ̂

2
j (Kj,r,ℓj))

n

Bj =
|Kj,r,ℓj | log+(1/σ̂2j (Kj,r,ℓj))

n

B′
j =

|Kj,r,ℓj | log+(n/|Kj,r,ℓj |)
n

.

We observe that x 7→ x log+(1/x) is non-decreasing and
√

log+(x/ log+(x)) ≥ 0.8
√

log+(x). We
deduce that if

σ̂2j (Kj,r,ℓj) ≥
|Kj,r,ℓj | log+(n/|Kj,r,ℓj |)

n
,

then Aj ≥ 0.8B′
j . If now

σ̂2j (Kj,r,ℓj) <
|Kj,r,ℓj | log+(n/|Kj,r,ℓj |)

n
,

then Bj ≥ 0.82B′
j.

We therefore get some c > 0 such that

Aj +B′
j ≤ c(Aj +Bj),

which concludes the proof. �

Lemma 11. For all j ≥ −1, ξ > 0, and probability 1− e−ξ,

E
[
|Ẑj|

]
≤ 2|Ẑj|+ 2(2Lψ + 1)ξ.

Proof of Lemma 11. This result derives from a Poissonian inequality for self-bounding functionals
and more precisely from equation (7) of [BLM00]. We set for k ∈ Z,

Ij(k) = {x ∈ R, ψj,k(x) 6= 0}
⊂
[
2−j(k − Lψ), 2

−j(k + Lψ)
]
,
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and remark

|Ẑj | =
∑

k∈Z

1∃i∈{1,...,n}, Xi∈Ij(k).

We introduce for r ∈ {1, . . . , n} the random variable

|Ẑj(r)| =
∑

k∈Z

1∃i∈{1,...,n}\{r}, Xi∈Ij(k).

We have |Ẑj(r)| ≤ |Ẑj |. Moreover,

|Ẑj| − |Ẑj(r)| =
∑

k∈Z

1Xr∈Ij(k)1∀i∈{1,...,n}\{r}, Xi 6∈Ij(k)

≤
∑

k∈Z

1Xr∈Ij(k)

≤ 2Lψ + 1.

Besides,

n∑

r=1

(
|Ẑj| − |Ẑj(r)|

)
=
∑

k∈Z

n∑

r=1

1Xr∈Ij(k)1∀i∈{1,...,n}\{r}, Xi 6∈Ij(k)

≤
∑

k∈Z

1∃i∈{1,...,n}, Xi∈Ij(k)

≤ |Ẑj|.

Now, equation (7) of [BLM00] gives for all ξ > 0, and probability 1− e−ξ,

E
[
|Ẑj |

]
≤ |Ẑj|+

√
2(2Lψ + 1)E

[
|Ẑj|

]
ξ.

We conclude by using the elementary inequality
√
ab ≤ a/2 + b/2. �

Lemma 12. For all j ≥ −1, ξ > 0, and probability 1− e−ξ,

|Ẑj| ≤ 2E
[
|Ẑj |

]
+ (7/6)(2Lψ + 1)ξ.

Proof of Lemma 12. The proof is similar to that of Lemma 12. We merely use (6) of [BLM00] to
get for all ξ > 0, and probability 1− e−ξ,

|Ẑj | ≤ E
[
|Ẑj|

]
+

√
2(2Lψ + 1)E

[
|Ẑj |

]
ξ + 2

2Lψ + 1

3
ξ.

We conclude as in the preceding proof. �

Lemma 13. With probability 1− 1/n4, we have for all j ≥ −1,

E
[
|Ẑj|

]
≤ 2|Ẑj |+ 4(2Lψ + 1) (log(j + 2) + 2 log n+ 1) ,

and

|Ẑj| ≤ 2E
[
|Ẑj |

]
+ (7/3)(2Lψ + 1) (log(j + 2) + 2 log n+ 1) .

Proof of Lemma 13. The proof follows from Lemmas 11, 12 and a union bound. �
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Lemma 14. There exist a universal constant ¯̺−1, a term ¯̺0 depending only on ψ, and an event of

probability 1−9/n4 on which: for all j ≥ −1, ℓj ∈ N, r ≥ ℓj+j, and finite subset Kj,r,ℓj of Ẑj,r(ℓj),

2−j/2
∑

k∈Kj,r,ℓj

∣∣∣β̂j,k − βj,k

∣∣∣ ≤ (¯̺j/2)Êj,r,ℓj(|Kj,r,ℓj |),

where ¯̺j = ¯̺0 if j ≥ 1. Moreover, (20), (21), and (22) hold true on this event.

Proof of Lemma 14. The lemma is a direct result of Lemmas 8, 9, 10 and 13 when r ≥ ℓj + j + 1
(the event of Lemma 8 contains the one of Lemma 9). When r = ℓj + j, we use

σ̂2j (Kj,r,ℓj) ≤ κ̄j(2Lψ + 1),

with κ̄j = 1j=−1 + ‖ψ‖2∞1j≥0. Moreover,

σ̂2j (Kj,r,ℓj) ≥ 2−r−1 |Kj,r,ℓj |.

We conclude by using Lemma 9 and the fact that x 7→ x log+(1/x) is non-decreasing. �

Lemma 15. There exist terms ς0, ¯̺0 only depending on ψ and universal constants ς−1, ¯̺−1 such

that if ρ−1 ≥ ¯̺−1 and ρ0 ≥ ¯̺0, the estimator f̂ defined by (6) satisfies with probability 1 − 9/n4:

for all (ℓj)j≥−1 ∈ N
{−1}∪N,

∥∥∥f − f̂
∥∥∥
1
≤ cT̂

+ c
Ĵ∑

j=−1

∞∑

r=ℓj+j

inf
Kj,r,ℓj

⊂Ẑj,r(ℓj)∩Zj




2−j/2

∑

k∈(Ẑj,r(ℓj)∩Zj)\Kj,r,ℓj

|βj,k|+ ρj Êj,r,ℓj(|Kj,r,ℓj |)




,

where

T̂ =

Ĵ∑

j=−1

2−j/2
∑

k 6∈Ẑj

|βj,k|+
Ĵ∑

j=−1

2−j/2
∑

k 6∈Zj

|βj,k|+
∞∑

j=Ĵ+1

2−j/2
∑

k∈Z

|βj,k|,(33)

where Zj is given by (15) and where c only depends on φ̄, ψ̄. Moreover, (20), (21), and (22) hold
true on this event.

Proof of Lemma 15. We observe that for all j ≥ −1 and ℓj ∈ N,

Ẑj =

∞⋃

r=ℓj+j

Ẑj,r(ℓj).(34)

In particular,

Z =

∞⋃

r=ℓ̂j+j

Ẑj,r(ℓ̂j)
⋃

Ẑ
c
j.
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We deduce from (2) that
∥∥f − f̂

∥∥
1
≤ cT̃ + cÂ where

T̃ =
Ĵ∑

j=−1

2−j/2
∑

k 6∈Ẑj

|βj,k|+
∞∑

j=Ĵ+1

2−j/2
∑

k∈Z

|βj,k|

Â =

Ĵ∑

j=−1

2−j/2
∞∑

r=ℓ̂j+j





∑

k∈Ẑj,r(ℓ̂j)\K̂j,r,ℓ̂j

|βj,k|+
∑

k∈K̂j,r,ℓ̂j

∣∣∣β̂j,k − βj,k

∣∣∣




.

Note that

Â ≤
Ĵ∑

j=−1

2−j/2





∞∑

r=ℓ̂j+j

∑

k∈Ẑj,r(ℓ̂j)

|βj,k|+
∞∑

r=ℓ̂j+j




−

∑

k∈K̂j,r,ℓ̂j

|βj,k|+
∑

k∈K̂j,r,ℓ̂j

∣∣∣β̂j,k − βj,k

∣∣∣








.

The triangle inequality and Lemma 14 entail: on an event of probability 1− 9/n4,

− 2−j/2
∑

k∈K̂j,r,ℓ̂j

|βj,k|+ 2−j/2
∑

k∈K̂j,r,ℓ̂j

∣∣∣β̂j,k − βj,k

∣∣∣

≤ −2−j/2
∑

k∈K̂
j,r,ℓ̂j

|β̂j,k|+ 21−j/2
∑

k∈K̂
j,r,ℓ̂j

∣∣∣β̂j,k − βj,k

∣∣∣

≤ −2−j/2
∑

k∈K̂
j,r,ℓ̂j

|β̂j,k|+ ¯̺j Êj,r,ℓ̂j(|K̂j,r,ℓ̂j
|).

By gathering all these results, and by using ρj ≥ ¯̺j ,

Â ≤
Ĵ∑

j=−1

2−j/2
∑

k∈Ẑj

|βj,k|+
Ĵ∑

j=−1

∞∑

r=ℓ̂j+j

γj,r,ℓ̂j

(
K̂j,r,ℓ̂j

)
.

We use (9), (8), triangle inequality and Lemma 14. This leads to the two following inequalities
valid for all ℓj ∈ N:

Â ≤
Ĵ∑

j=−1

2−j/2
∑

k∈Ẑj

|βj,k|+
Ĵ∑

j=−1

∞∑

r=ℓj+j

inf
Kj,r,ℓj

⊂Ẑj,r(ℓj)



−2−j/2

∑

k∈Kj,r,ℓj

|β̂j,k|+ ρj Êj,r,ℓj(|Kj,r,ℓj |)





≤
Ĵ∑

j=−1

2−j/2
∑

k∈Ẑj

|βj,k|+
Ĵ∑

j=−1

∞∑

r=ℓj+j

inf
Kj,r,ℓj

⊂Ẑj,r(ℓj)



−2−j/2

∑

k∈Kj,r,ℓj

|βj,k|+ (3/2)ρj Êj,r,ℓj(|Kj,r,ℓj |)



 .

We use (34) and the triangle inequality to conclude. �

Lemma 16. Let T̂ be defined by (33). Then,

E[T̂ ] ≤ 3T1 + 2T2,

where T1 and T2 are defined by (18) and (19).
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Proof of Lemma 16. There is at most one observation Xi such that ψj,k(Xi) 6= 0 when j ≥ Ĵ + 1.

Moreover, no observation Xi satisfies ψj,k(Xi) 6= 0 when k 6∈ Ẑj, no matter j. We deduce,

E[T̂ ] ≤ T1 +

∞∑

j=−1

2−j/2
∑

k∈Z

|βj,k|
(
(1− fj,k)

n + nfj,k(1− fj,k)
n−1
)
,

where fj,k is given by (16). We conclude by noticing that (1 − fj,k)
n + nfj,k(1 − fj,k)

n−1 ≤ 2 if
fj,k ≤ 1/n and (1− fj,k)

n ≤ nfj,k(1− fj,k)
n−1 if fj,k > 1/n. �

Lemma 17. Let ξ > 0. The following assertion holds true with probability 1 − ξ/n: for all q > 1
and f ∈ L

q,

2Ĵ ≤ max
{
1, 8Lψ

(
n2‖f‖q/ξ

) q
q−1

}
.

In particular, for all k ≥ 1, E[Ĵk] ≤ C logk n where C depends on k, q, ‖f‖q and Lψ only.

Proof of Lemma 17. The proof of this lemma is deferred to Appendix D. �

Proof of Theorem 5. There exists c1 only depending on φ̄, ψ̄ such that

‖f̂‖1 ≤ c1
n

n∑

i=1


∑

k∈Z

∣∣φ(2jXi − k)
∣∣+

Ĵ∑

j=0

∑

k∈Z

∣∣ψ(2jXi − k)
∣∣



≤ c2(Ĵ + 2).

We deduce from Lemma 17 an event A1 of probability 1− 1/n4 on which Ĵ ≤ c0 log n. This lemma

also gives E[Ĵ2] ≤ c3 log
2 n and hence E[‖f̂‖21] ≤ c4 log

2 n.

Let A2 be the event of probability 1 − 9/n4 that appears in Lemma 15. We set A = A1 ∩ A2

and get

E

[
‖f − f̂‖1

]
≤ E

[
‖f − f̂‖11A

]
+ E

[
‖f − f̂‖11Ac

]
.

The first term can be bounded from above by using Lemmas 15 and 16. As to the second term, we
use the triangle and Cauchy-Schwarz inequalities to get

E

[
‖f − f̂‖11Ac

]
≤ P (Ac) + E

[
‖f̂‖21

]1/2
P (Ac)1/2

≤ c5
log n

n2
.

�

4.2. Proof of Theorem 2: intermediate lemmas. We first recall the following result. We
refer to [CVNRF15] for its proof (see their Propositions 3.2 and 4.5).

Lemma 18. Let Λ be an at most countable set, and x = (xλ)λ∈Λ ∈ R
Λ
+. For all 0 < p < q <∞,

‖x‖qq ≤
q

q − p
‖x‖q−p∞ ‖x‖pp,∞.(35)

Moreover, for all p > 1, and finite subset Γ of Λ,
∑

λ∈Γ

xλ ≤ p

p− 1
‖x‖p,∞ |Γ|1−1/p.(36)
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The lemma below is elementary.

Lemma 19. Suppose that f ∈ WT θ(M) for some θ ∈ (0, 1) and let fj,· = (fj,k)k∈Z be defined
by (16). Then, for all j ≥ −1,

‖fj,·‖θθ,∞ ≤ cM2j(1−θ),

where c only depends on ψ and θ if j ≥ 0 and only depends on θ if j = −1.

We now show:

Lemma 20. Let p ∈ (0,∞], α ∈ ((1/p− 1)+, τ), θ ∈ [0, 1)∩ [0, p], R > 0, M ≥ 1. Consider υn > 0
and define

T1(υn) =

∞∑

j=−1

2−j/2
∑

k∈Z
fj,k≤υn

|βj,k|.

Then, for all f ∈ Fα,p,θ(R,M),

T1(υn) ≤ c
[
R(1−θ)/(1+α−θ/p)M (α+1−1/p)/(α+1−θ/p)υα(1−θ)/(α+1−θ/p)

n +Mυ1−θn

]
,(37)

where c only depends on p, α, θ, ψ.

Proof of Lemma 20. We define for r ≥ 0, j ≥ −1,

Zj,r =
{
k ∈ Z, 2−r−1 < fj,k ≤ 2−r

}
.

Since f ∈ WT θ(M), Lemma 19 implies when θ ∈ (0, 1),

|Zj,r| ≤ 2(r+1)θ ‖fj,·‖θθ,∞ ≤ c1M2rθ2j(1−θ),(38)

where c1 only depends on ψ. We can check that this result remains true when θ = 0. We also
remark that 2−j/2|βj,k| ≤ c2fj,k as ψ is bounded and hence

T1(υn) ≤ A+ T ′
1(υn),

where

A = c2
∑

2r≥1/υn

2−r|Z−1,r|

T ′
1(υn) =

∞∑

j=0

∑

2r≥1/υn

∑

k∈Zj,r

min
{
c22

−r, 2−j/2|βj,k|
}
.

Note that

A ≤ c1c2M2−(1−θ)
∑

2r≥1/υn

2−r(1−θ) ≤ c3Mυ1−θn .

We now focus on T ′
1(υn).

We first suppose that p > 1. By using (36),

2−j/2
∑

k∈Zj,r

|βj,k| ≤ c42
−j/2‖βj,·‖p,∞|Zj,r|1−1/p,
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and f ∈ WBαp,∞(R), we get

T ′
1(υn) ≤ c5

∞∑

j=0

∑

2r≥1/υn

min
{
2−r|Zj,r|, R2−j(α+1−1/p)|Zj,r|1−1/p

}

≤ c6

∞∑

j=0

∑

2r≥1/υn

min
{
M2−(r−j)(1−θ), RM1−1/p2r(1−1/p)θ2−j[(1−1/p)θ+α]

}

≤ c7R
(1−θ)/(1+α−θ/p)M (α+1−1/p)/(α+1−θ/p)

∑

2r≥1/υn

2−rα(1−θ)/(α+1−θ/p)

≤ c8R
(1−θ)/(1+α−θ/p)M (α+1−1/p)/(α+1−θ/p)υα(1−θ)/(α+1−θ/p)

n .

We now suppose p ≤ 1 and consider j0 ∈ N. We have T ′
1(υn) ≤ T ′

1,1(υn) + T ′
1,2(υn) where

T ′
1,1(υn) =

j0−1∑

j=0

2−j/2
∑

k∈Z
fj,k≤υn

|βj,k|

T ′
1,2(υn) =

∞∑

j=j0

2−j/2
∑

k∈Z
fj,k≤υn

|βj,k|.

By using 2−j/2|βj,k| ≤ c2fj,k, we get when θ 6= 0,

T ′
1,1(υn) ≤ c9

j0−1∑

j=0

∑

k∈Z
fj,k≤υn

fj,k

≤ c10υ
1−θ
n

j0−1∑

j=0

‖fj,·‖θθ,∞ thanks to (35)

≤ c11υ
1−θ
n M2j0(1−θ) thanks to Lemma 19.

This last inequality remains true when θ = 0. Moreover, by using (35) when p 6= 1,

T ′
1,2 ≤ c12υ

1−p
n

∞∑

j=j0

2−jp/2‖βj,·‖pp,∞

≤ c13υ
1−p
n

∞∑

j=j0

2−jp/2Rp2−jp(α+1/2−1/p) as f ∈ WBαp,∞(R).

Note that this inequality also holds true when p = 1 and f ∈ Bα1,∞(R). Therefore, in both cases,

T ′
1,2 ≤ c14υ

1−p
n Rp2−j0p(α+1−1/p).

We conclude by choosing j0 appropriately. �
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Lemma 21. Let p ∈ (0,∞], α ∈ ((1/p − 1)+, τ), θ ∈ [0, 1) ∩ [0, p], R > 0, M ≥ 1. Then, for all
f ∈ Fα,p,θ(R,M),

T1 + T2 ≤ c
[
R(1−θ)/(1+α−θ/p)M (α+1−1/p)/(α+1−θ/p)n−α(1−θ)/(α+1−θ/p)(39)

+Mn−(1−θ)
]
,

where T1 and T2 are defined by (18) and (19), and where c only depends on p, α, θ, ψ.

Proof of Lemma 21. We focus on T2 as a bound on T1 may be obtained via the preceding lemma.
We first consider the case p ≥ 1. Since f ∈ WT θ(M), we have when θ 6= 0.

|Zj | ≤ nθ ‖fj,·‖θθ,∞ ≤ c1Mnθ2j(1−θ),(40)

where c1 only depends on ψ (Lemma 19). This inequality remains true when θ = 0.

We consider j0 ∈ N and decompose T2 as T2 = T2,1 + T2,2 where

T2,1 = n

j0−1∑

j=−1

2−j/2
∑

k∈Zj

|βj,k|fj,k(1− fj,k)
n−1,

T2,2 = n

∞∑

j=j0

2−j/2
∑

k∈Zj

|βj,k|fj,k(1− fj,k)
n−1.

We use 2−j/2|βj,k| ≤ c2fj,k to get

T2,1 ≤ c2n

j0−1∑

j=−1

∑

k∈Zj

f2j,k(1− fj,k)
n−1.

Since x2(1− x)n−1 ≤ c3/n
2 for all x ∈ [0, 1],

T2,1 ≤
c4
n

j0−1∑

j=−1

|Zj|

≤ c5Mn−(1−θ)2j0(1−θ) thanks to (40).(41)

As to T2,2, we deduce from (36), f ∈ WBαp,∞(R), and (40) that if p > 1,

2−j/2
∑

k∈Zj

|βj,k| ≤ c6RM
1−1/p2−j(α+θ(1−1/p))n(1−1/p)θ,

and hence, using that x(1− x)n−1 ≤ c7/n,

T2,2 ≤ c8RM
1−1/p2−j0(α+θ(1−1/p))n(1−1/p)θ.

We finally choose j0 in a suitable way to conclude the proof when p > 1. Note that the above
reasoning also works with p = 1 if we replace the Lorentz norm ‖ · ‖1,∞ by the L

1 norm.
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We now turn to the case p < 1. We write T2 = T2,1 + T2,2 where

T2,1 = n

j1∑

j=−1

2−j/2
∑

k∈Zj

|βj,k|fj,k(1− fj,k)
n−1

T2,2 = n

∞∑

j=j1

2−j/2
∑

k∈Zj

|βj,k|fj,k(1− fj,k)
n−1.

Note that (41) does not use p > 1 and therefore also holds true when p < 1 (with j0 replaced by j1).

Besides, as 2−j/2|βj,k| ≤ c2fj,k and x2(1− x)n−1 ≤ c3/n
2,

n2−j/2|βj,k|fj,k(1− fj,k)
n−1 ≤ c2nf

2
j,k(1− fj,k)

n−1 ≤ c9/n.

We deduce from (35),

T2,2 ≤ c10n
−(1−p)

∞∑

j=j1

∥∥∥n2−j/2βj,·fj,·(1− fj,·)
n−1
∥∥∥
p

p,∞
.

Yet, x(1− x)n−1 ≤ c7/n for all x ∈ [0, 1] and hence,

T2,2 ≤ c11n
−(1−p)

∞∑

j=j1

2−jp/2 ‖βj,·‖pp,∞

≤ c12n
−(1−p)Rp2−j1p(α+1−1/p).

It then remains to choose j1 to conclude. �

Lemma 22. For all j ≥ −1, ℓj ∈ N, r ≥ ℓj + j, θ ∈ [0, 1), M ≥ 1, f ∈ WT θ(M),

E

[
|Ẑj,r(ℓj) ∩ Zj |

]
≤ cM2rθ2j(1−θ),(42)

where c only depends on ψ and θ.

Proof of Lemma 22. The proof is straightforward when θ = 0 and we assume therefore that θ > 0.
We have,

E

[
|Ẑj,r(ℓj) ∩ Zj|

]
≤

∑

k∈Z
fj,k≥1/n

P
[
σ̂2j,k > 2−r−1

]
.

Set t = 2−r−1 and define
Kt =

{
k ∈ Z, σ2j,k ≥ t/2

}
.

We derive from σ2j,k ≤ max{1, ‖ψ‖2∞}fj,k, Lemma 19, and f ∈ WT θ(M), that |Kt| ≤ c1M2j(1−θ)t−θ.
Moreover,

E

[
|Ẑj,r(ℓj) ∩ Zj|

]
≤ |Kt|+

∑

k 6∈Kt

fj,k≥1/n

P
[
σ̂2j,k ≥ t

]

≤ c1M2j(1−θ)t−θ +
∑

k 6∈Kt

fj,k≥1/n

P
[
σ̂2j,k ≥ σ2j,k + t/2

]
.

We use Bennett’s inequality (and more precisely equation (2.16) of [Mas07]) to get

P
[
σ̂2j,k ≥ σ2j,k + t/2

]
≤ exp

[
−c2nt2/(σ2j,k + t)

]
,
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where c2 only depends on ‖ψ‖∞. Therefore,

E

[
|Ẑj,r(ℓj) ∩ Zj|

]
≤ c12

j(1−θ)Mt−θ +
∑

k 6∈Kt

fj,k≥1/n

e−c3nt.

Note that the number of k such that fj,k ≥ 1/n is bounded from above by c4Mnθ2j(1−θ). Therefore,

E

[
|Ẑj,r(ℓj) ∩ Zj |

]
≤ c52

j(1−θ)Mt−θ
[
1 + (nt)θe−c3nt

]
.

We conclude by remarking that the map x 7→ xθe−c3x is bounded on R. �

Lemma 23. For all j ≥ −1, θ ∈ [0, 1), M ≥ 1, f ∈ WT θ(M),

E

[
|Ẑj |

]
≤ cMnθ2j(1−θ),(43)

where c only depends on ψ and θ.

Proof of Lemma 23. The proof is straightforward when θ = 0 and we assume from now on that
θ ∈ (0, 1). We deduce from Lemma 19,

E

[
|Ẑj ∩ Zj |

]
≤ |Zj| ≤ c1Mnθ2j(1−θ).(44)

We define for r ≥ 0, j ≥ −1,

Zj,r =
{
k ∈ Z, 2−r−1 < fj,k ≤ 2−r

}

and use Lemma 19 to get

|Zj,r| ≤ c2M2rθ2j(1−θ),

where c2 only depends on ψ. Now,

E

[
|Ẑj ∩ Z

c
j|
]
≤ c3n

∑

k∈Z
fj,k≤1/n

fj,k

≤ c3n
∑

2r≥n

|Zj,r|2−r

≤ c4nM2j(1−θ)
∑

2r≥n

2−r(1−θ)

≤ c5M2j(1−θ)nθ.(45)

We group (44) and (45) together to end the proof. �

Lemma 24. Let p ∈ (0,∞], α ∈ ((1/p − 1)+, τ), θ ∈ [0, 1) ∩ [0, p], R > 0, M ≥ 1 and
f ∈ Fα,p,θ(R,M). Let π = 1/min{1,minx∈R, ψ(x)6=0 ψ

2(x)} and ℓ be an integer such that 2ℓ ≤
M1/(1−θ) < 2ℓ+1.

1. For all 2r > πn such that r ≥ ℓ+ j + 1, for some j ≥ −1, Ẑj,r(ℓ) = ∅.
2. If p ≥ 1, then for all j ≥ 0, and r ≥ ℓ+ j,

E

[
B̂j,r,ℓ(∅)

]
≤ cRM1−1/p2−j(α−θ/p+θ)2(1−1/p)rθ.(46)
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3. For all j ≥ −1, r = j + ℓ, and subset Kj,r,ℓ ⊂ Ẑj,r(ℓ) ∩ Zj,

E

[
Êj,r,ℓ(|Kj,r,ℓ|)

]
≤ c

[√
E[|Kj,r,ℓ|]

n
+

log((j + 2)(r + 1)n)√
n

]
.(47)

Moreover,

E

[
Êj,r,ℓ(|Ẑj,r(ℓ) ∩ Zj |)

]
≤ c

[√
M1/(1−θ)2j

n
+

log((j + 2)(r + 1)n)√
n

]
.(48)

4. For all j ≥ −1, r ≥ j + ℓ+ 1, Kj,r,ℓ ⊂ Ẑj,r(ℓ) ∩ Zj , and θ 6= 0,

Êj,r,ℓ(|Kj,r,ℓ|)1A ≤ c


|Kj,r,ℓ|

√
2−r log2+

(
Mnθ2j(1−θ)/|Kj,r,ℓ|

)

n
(49)

+
log((j + 2)(r + 1)n)√

n

]
,

where A is the event appearing in Theorem 5. Moreover,

E

[
Êj,r,ℓ(|Ẑj,r(ℓ) ∩ Zj|)1A

]
≤ c

[
M2rθ+j(1−θ)

√
2−r log+ (n2−r)

n
(50)

+
log((j + 2)(r + 1)n)√

n

]
.

5. For all j ≥ −1, r ≥ j + ℓ+ 1, and Kj,r,ℓ ⊂ Ẑj,r(ℓ) ∩ Zj,

Êj,r,ℓ(|Kj,r,ℓ|) ≤ c


|Kj,r,ℓ|

√
2−r log2+ (2r/|Kj,r,ℓ|)

n
+

log((j + 2)(r + 1)n)√
n


 .(51)

Moreover,

E

[
Êj,r,ℓ(|Ẑj,r(ℓ) ∩ Zj|)

]
≤ c


M2rθ+j(1−θ)

√
2−r log2+

(
2(r−j)(1−θ)/M

)

n
(52)

+
log((j + 2)(r + 1)n)√

n

]
.

6. For all j ≥ −1, r ≥ j + ℓ+ 1 such that 2r ≤ ςjn/ log((j + 2)n),

Êj,r,ℓ(|Ẑj,r(ℓ) ∩ Zj |) ≤ c

[
|Ẑ′
j,r|
√

2−r

n
+

log((j + 2)(r + 1)n)√
n

]
.(53)

Moreover,

E[|Ẑ′
j,r|1A ] ≤ cM2rθ+j(1−θ).(54)

In all these inequalities, c only depends on ψ, p, θ.

Proof of Lemma 24. The first point is true because ψ is piecewise constant. We now assume that
2r ≤ πn in the rest of the proof.
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We turn to the second point. We have,

B̂j,r,ℓ(∅) ≤ 2−j/2
∑

k∈Ẑj,r(ℓ)∩Zj

|βj,k|.

This gives (46) when p = 1 as f ∈ Bα1,∞(R). When p > 1, we use (36) to get

B̂j,r,ℓ(∅) ≤ c12
−j/2‖βj,·‖p,∞|Ẑj,r(ℓ) ∩ Zj |1−1/p.

We then take the expectation, apply Jensen’s inequality and (42) to get (46).

We now show (47). By using Jensen’s inequality,

E

[
Êj,r,ℓ(|Kj,r,ℓ|)

]
≤ c2

[√
E[|Kj,r,ℓ|]

n
+

E[|Kj,r,ℓ|] log+
(
2r+1/E[|Kj,r,ℓ|]

)

n

+

√
log((j + 2)(r + 1)n)

n
+

log((j + 2)(r + 1)n)

n

]
.(55)

Note that |Kj,r,ℓ| ≤ |Ẑj,r(ℓ)| and

|Ẑj,r(ℓ)| ≤ 2r+1
∑

k∈Z

σ̂2j,k ≤ c32
r.(56)

It then follows from the inequality 2r ≤ πn and from elementary computations that the second
term in (55) is not smaller than the first one, up to a multiplicative factor.

As to (48), we remark that (42) becomes

E[|Ẑj,r(ℓ) ∩ Zj |] ≤ c4M
1/(1−θ)2j

when r = j + ℓ. We then use (47) with Kj,r,ℓ = Ẑj,r(ℓ) ∩ Zj .

We now prove (49). Observe that for all 2r ≤ πn, and r ≥ ℓ+ j + 1,

λ̂j,r ≤ c5 min
{
|Ẑj |+ log n, 2r

}
,

where c5 only depends on the wavelet basis (this uses |Ẑ′
j,r| ≤ |Ẑj| when 2r ≤ ςjn/ log((j + 2)n)).

We deduce from (20) that on A,

λ̂j,r ≤ c6(E[|Ẑj |] + log n).

As M ≥ 1, and θ > 0, we deduce from (43),

λ̂j,r ≤ c7Mnθ2j(1−θ),

and using (56),

Êj,r,ℓ(|Kj,r,ℓ|)1A ≤ c8|Kj,r,ℓ|

√
2−r log+

(
Mnθ2j(1−θ)/|Kj,r,ℓ|

)

n
(57)

+ c8|Kj,r,ℓ|
log+

(
Mnθ2j(1−θ)/|Kj,r,ℓ|

)

n
+ c8

log((j + 2)(r + 1)n)√
n

.
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We then use the condition on r to get (49). As to (50), we apply (57) with Kj,r,ℓ = Ẑj,r(ℓ) ∩ Zj .
We take the expectation, apply Jensen’s inequality and (42). This yields

E

[
Êj,r,ℓ(|Ẑj,r(ℓ) ∩ Zj|)1A

]
≤ c9M2rθ+j(1−θ)

√
2−r log+ (n2−r)

n
+ c9M2rθ+j(1−θ)

log+ (n2−r)

n

+ c9
log((j + 2)(r + 1)n)√

n
.

We then remark that the second term is not smaller than the first one thanks to the condition on r
(up to a multiplicative factor).

The proof of (51) is merely based on the inequality λ̂j,r ≤ 2r+1, the condition on r, and on (56).
The proof of (52) then follows from Jensen’s inequality and (42).

We turn to the proof of (53). Here, we use λ̂j,r ≤ |Ẑ′
j,r|. By doing as in the proof of (56),

|Ẑ′
j,r| ≤ c102

r. Note also that the maps x 7→ x
√

log+(a/x) and x 7→ xlog+(a/x) are increasing. By

using moreover Ẑj,r(ℓ) ⊂ Ẑ
′
j,r,

Êj,r,ℓ(|Ẑj,r(ℓ) ∩ Zj|)1A ≤ c11

[
|Ẑ′
j,r|
√

2−r

n
+

|Ẑ′
j,r|
n

+
log((j + 2)(r + 1)n)√

n

]
.

By using the condition on r, the second term in the above inequality is not larger than the first
one, up to a multiplicative factor.

Finally, the proof of (54) comes from the embedding Ẑ
′
j,r ⊂ Z̆

′
j,r (see (22)) valid on A, and from

the following inequalities valid for all t > 0,

∣∣{k ∈ Z, σ2j,k ≥ t
}∣∣ ≤ |{k ∈ Z, fj,k ≥ c12t}|

≤ c13M
θt−θ2j(1−θ)

thanks to Lemma 19. �

Lemma 25. Let p ∈ (0,∞], α ∈ ((1/p − 1)+, τ), R > 0, and f be a density of WBαp,∞(R). Then,
there exist C > 0 and q > 1 such that ‖f‖q ≤ C. Moreover, C only depends on the wavelet basis,
p, α and R.

Proof of Lemma 25. The proof of this lemma is deferred to Appendix C. �

4.3. Proof of Theorem 2. Throughout this section, ℓ denotes an integer such that

2ℓ ≤M1/(1−θ) < 2ℓ+1.

We now introduce for Kj,r,ℓ ⊂ Ẑj,r(ℓ) ∩ Zj,

T̂j,r,ℓ(Kj,r,ℓ) =
{
B̂j,r,ℓ(Kj,r,ℓ) + Êj,r,ℓ(|Kj,r,ℓ|)

}
1A ,
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where A is the event defined in Theorem 5. It follows from Lemmas 21, 24 and 25 that we only
need to bound

∑

r≥ℓ−1
2r≤πn

E

[
inf

K−1,r,ℓ⊂Ẑ−1,r(ℓ)∩Z−1

T̂−1,r,ℓ(K−1,r,ℓ)

]
(58)

+

c0 logn∑

j=0

E

[
inf

Kj,ℓ+j,ℓ⊂Ẑj,ℓ+j(ℓ)∩Zj

T̂j,ℓ+j,ℓ(Kj,ℓ+j,ℓ)

]

+
∑

j≥0

∑

r≥ℓ+j+1
2r≤πn

E

[
inf

Kj,r,ℓ⊂Ẑj,r(ℓ)∩Zj

T̂j,r,ℓ(Kj,r,ℓ)

]

from above (we take ℓj = ℓ for all j). Here, c0 is a factor depending on α, p,R and the wavelet
basis only. We begin by studying the first term of (58).

Lemma 26. Let p ∈ (0,∞], α ∈ ((1/p − 1)+, τ), θ ∈ [0, 1) ∩ [0, p], R > 0, M ≥ 1 and f ∈
Fα,p,θ(R,M). Then,

∑

r≥ℓ−1
2r≤πn

E

[
inf

K−1,r,ℓ⊂Ẑ−1,r(ℓ)∩Z−1

T̂−1,r,ℓ(K−1,r,ℓ)

]
(59)

≤ c
[
Mn−(1−θ)

[
1θ>1/2 + (log n)1θ=1/2

]
+M1/(2(1−θ))n−1/2 + (log2 n)n−1/2

]
,

where c only depends on ψ, θ, p.

Proof of Lemma 26. Let A be the left-hand side of (59). We take K−1,r,ℓ = Ẑ−1,r(ℓ) ∩ Z−1 and
deduce from (48), and (52) that if θ ∈ [0, 1/2),

A ≤ c1

[√
M1/(1−θ)

n
+

log(ℓn)√
n

]

+ c1
∑

r≥ℓ
2r≤πn


M2r(θ−1/2)

√
log+

(
n2r(1−θ)/M

)

n
+

log((r + 1)n)√
n


 .

We conclude by applying Lemma 30 in Appendix B. If θ ∈ (1/2, 1), we rather use (48) and (50) to
get

A ≤ c2

[√
M1/(1−θ)

n
+

log(ℓn)√
n

]

+ c2
∑

r≥ℓ
2r≤πn

[
M2r(θ−1/2)

√
log+ (n2−r)

n
+

log((r + 1)n)√
n

]
,
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and we apply Lemma 30 again. For θ = 1/2, we use (53) and (54), to get with K−1,r,ℓ = Ẑ−1,r(ℓ)∩
Z−1,

∑

r≥ℓ
2r≤ς−1πn/ logn

E

[
T̂−1,r,ℓ(K−1,r,ℓ)

]
≤ c3

[
M(log n)n−1/2 + (log2 n)n−1/2

]
.

When r is higher, we choose K−1,r,ℓ = ∅ and note:

∑

r≥ℓ
2r≥ς−1πn/ logn

E

[
T̂−1,r,ℓ(K−1,r,ℓ)

]
≤ 21/2

∑

k∈Z

|β−1,k|P
[
σ̂2−1,k ≤ (log n)/(ς−1n) ∩ A

]

≤ 21/2
∑

k∈Z
σ2
−1,k≤c4 logn/n

|β−1,k|.

Therefore, the integers k are such that f−1,k ≤ c5 log n/n and we conclude as in the proof of
Lemma 20. �

The lemma below deals with the second term of (58).

Lemma 27. Let p ∈ (0,∞], α ∈ ((1/p − 1)+, τ), θ ∈ [0, 1) ∩ [0, p], R > 0, M ≥ 1 and f ∈
Fα,p,θ(R,M). Then,

c0 logn∑

j=0

E

[
inf

Kj,ℓ+j,ℓ⊂Ẑj,ℓ+j(ℓ)∩Zj

T̂j,ℓ+j,ℓ(Kj,ℓ+j,ℓ)

]

≤ c1

[
R1/(1+2α)M (α−1/p+1)/((1−θ)(2α+1))n−α/(2α+1)

+ M1/(2(1−θ))n−1/2
]
+ c2(log

2 n)n−1/2,(60)

where c1 only depends on α, p, θ, ψ, and where c2 only depends on α, p, θ, ψ,R.

Proof of Lemma 27. We first suppose that p ≥ 1. We have,

c0 logn∑

j=0

E

[
inf

Kj,ℓ+j,ℓ⊂Ẑj,ℓ+j(ℓ)∩Zj

T̂j,ℓ+j,ℓ(Kj,ℓ+j,ℓ)

]

≤
c0 logn∑

j=0

min
{
E

[
T̂j,ℓ+j,ℓ(∅)

]
,E
[
T̂j,ℓ+j,ℓ(Ẑj,ℓ+j(ℓ) ∩ Zj)

]}
.
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We use (46) and (48) to get

c0 logn∑

j=0

E

[
inf

Kj,ℓ+j,ℓ⊂Ẑj,ℓ+j(ℓ)∩Zj

T̂j,ℓ+j,ℓ(Kj,ℓ+j,ℓ)

]

≤ c1

∞∑

j=0

min

{
RM (1−1/p)/(1−θ)2−jα,

√
M1/(1−θ)2j

n

}
+ c2

log2 n√
n

≤ c3

[
R1/(1+2α)M (α+1−1/p)/((1−θ)(2α+1))n−α/(2α+1) +M1/(2(1−θ))n−1/2

]

+ c2(log
2 n)n−1/2.

We now suppose p < 1 and consider j0 ≥ 0. We deduce from (48),

j0∑

j=0

E

[
T̂j,ℓ+j,ℓ(Ẑj,ℓ+j(ℓ) ∩ Zj)

]
≤ c4

√
M1/(1−θ)

2j0

n
+ c5

log2 n√
n
.

We moreover set η
1/p−1/2
j = R−1/22(j/2)(α+1/2)n−1/(2p) and

Kj,ℓ+j,ℓ =
{
k ∈ Ẑj,ℓ+j(ℓ) ∩ Zj, |βj,k| ≥ ηj

}
.

As f ∈ WBαp,∞(R),

|Kj,ℓ+j,ℓ| ≤ η−pj Rp2−jp(α+1/2−1/p)

≤ R2/(2/p−1)2−2j(α+1−1/p)/(2/p−1)n1/(2/p−1).

Moreover, (35) leads to
∑

k 6∈Kj,ℓ+j,ℓ

2−j/2|βj,k| ≤ c6η
1−p
j Rp2−jp(α+1/2−1/(2p))

≤ c6R
1/(2/p−1)2−j(α+1−1/p)/(2/p−1)n−(1/p−1)/(2/p−1).

Therefore, (47) gives

E

[
T̂j,ℓ+j,ℓ(Kj,ℓ+j,ℓ)

]
≤ c7

[
n−(1/p−1)/(2/p−1)R1/(2/p−1)2−j(α+1−1/p)/(2/p−1) +

log n√
n

]

and hence
c0 logn∑

j=j0

E

[
T̂j,ℓ+j,ℓ(Kj,ℓ+j,ℓ)

]
≤ c8n

−(1/p−1)/(2/p−1)R1/(2/p−1)2−j0(α+1−1/p)/(2/p−1)

+ c9
log2 n√

n
.

We conclude by choosing j0 appropriately. �

It then remains to deal with the last term in (58), namely,

∑

j≥0

∑

r≥ℓ+j+1
2r≤πn

E

[
inf

Kj,r,ℓ⊂Ẑj,r(ℓ)∩Zj

T̂j,r,ℓ(Kj,r,ℓ)

]
.(61)
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We distinguish different cases in the sections below.

4.4. Proof of Theorem 2 when p ≥ 1 and θ 6= α/(2α + 1 − 1/p). To make the proof more
concise, we assume temporarily that θ 6= 0. We deduce from (46), (50), (52) that for c1 large
enough

− log3 n√
n

+
1

c1

∞∑

j=0

∑

r≥ℓ+j+1
2r≤πn

min
{
E

[
T̂j,r,ℓ(∅)

]
,E
[
T̂j,r,ℓ(Ẑj,r(ℓ) ∩ Zj)

]}

≤
∞∑

j=0

∑

r≥ℓ+j+1
2r≤πn

min

{
RM1−1/p2−j(α−θ/p+θ)2(1−1/p)rθ,M2rθ+j(1−θ)

√
2−r log+ (n2−r)

n
,

M2rθ+j(1−θ)

√
2−r log2+

(
2(r−j)(1−θ)/M

)

n



 .

Hence,

− log3 n√
n

+
1

c1

∞∑

j=0

∑

r≥ℓ+j+1
2r≤πn

min
{
E

[
T̂j,r,ℓ(∅)

]
,E
[
T̂j,r,ℓ(Ẑj,r(ℓ) ∩ Zj)

]}

≤
∑

r≥1

∑

j≥0
2j≤πn21−rM−1/(1−θ)

min
{
RM (1−1/p)/(1−θ)2−jα2(1−1/p)rθ,

M1/(2(1−θ))2r(θ−1/2)+j/2

√
log+

(
n2−r−jM−1/(1−θ)

)
√
n

,

M1/(2(1−θ))2r(θ−1/2)+j/2 r√
n

}
.

This expression is not larger than B1 +B2 where

B1 = RM (1−1/p)/(1−θ)
∑

r≥1

∑

j≥0
2j≤πn21−rM−1/(1−θ)

πR2M−(2/p−1)/(1−θ)n2r(1−2θ/p)≤2j(1+2α)

2−jα2(1−1/p)rθ

B2 =M1/(2(1−θ))
∑

r≥1

∑

j≥0
2j≤πn21−rM−1/(1−θ)

πR2M−(2/p−1)/(1−θ)n2r(1−2θ/p)>2j(1+2α)

min



2r(θ−1/2)+j/2

√
log+

(
n2−r−jM−1/(1−θ)

)
√
n

,

2r(θ−1/2)+j/2 r√
n

}
.

Note that if 2j ≤ πn21−rM−1/(1−θ) and if πR2M−(2/p−1)/(1−θ)n2r(1−2θ/p) ≤ 2j(1+2α), then

2jα ≥ 2−1/2RM (1−1/p)/(1−θ)2r(1−θ/p).
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We deduce,

B1 ≤ c2RM
(1−1/p)/(1−θ)

∑

r≥1

2(1−1/p)rθmin
{
R−1M−(1−1/p)/(1−θ)2−r(1−θ/p),

[
R2M−(2/p−1)/(1−θ)n2r(1−2θ/p)

]−α/(2α+1)
}
.

This sum is not larger than c2[B1,1 +B1,2], where

B1,1 =
∑

r≥r0

2−r(1−θ)

B1,2 =
∑

r<r0

ar

where

ar = R1/(2α+1)M (α+1−1/p)/((2α+1)(1−θ))2
r
2α+1−1/p

2α+1

[
θ− α

2α+1−1/p

]

n−α/(2α+1),(62)

and where r0 ≥ 1 is the smallest integer such that

2r0(α+1−θ/p) ≥ R−1M−(α+1−1/p)/(1−θ)nα.

Note that

B1,1 ≤ c32
−r0(1−θ)

≤ c3R
(1−θ)/(1+α−θ/p)M (α+1−1/p)/(α+1−θ/p)n−α(1−θ)/(α+1−θ/p).

As to B1,2, we remark that B1,2 = 0 if r0 = 1. We may therefore assume that r0 ≥ 2, which implies
the reverse inequality

2(r0−1)(α+1−θ/p) ≤ R−1M−(α+1−1/p)/(1−θ)nα.

Note now that the exponent in the sum is negative when θ < α/(2α + 1− 1/p), and hence

B1,2 ≤ c4a1

≤ c5R
1/(2α+1)M (α+1−1/p)/((2α+1)(1−θ))n−α/(2α+1).

When θ > α/(2α + 1− 1/p), the exponent is positive and

B1,2 ≤ c6ar0

≤ c7R
(1−θ)/(1+α−θ/p)M (α+1−1/p)/(α+1−θ/p)n−α(1−θ)/(α+1−θ/p).

By gathering these results, we obtain the desired bound on B1.
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We now deal with B2. Lemma 30 in Appendix B gives

B2 ≤ c8
∑

r≥1

min
{
2−r(1−θ),

M1/(2(1−θ))2r(θ−1/2)
(
R2M−(2/p−1)/(1−θ)n2r(1−2θ/p)

)1/2/(2α+1)
×

√
log+

(
n2−r(R2M−(2/p−1)/(1−θ)n2r(1−2θ/p))−1/(2α+1)M−1/(1−θ)

)
√
n

,

M1/(2(1−θ))2r(θ−1/2)
(
R2M−(2/p−1)/(1−θ)n2r(1−2θ/p)

)1/2/(2α+1) r√
n

}

≤ c9
∑

r≥1

min
{
2−r(1−θ), ar

√
log+Cr, arr

}

≤ c9 [B2,1 +B2,2]

where

Cr = R−2/(2α+1)M−2(α+1−1/p)/((2α+1)(1−θ))n2α/(2α+1)2−2r(α+1−θ/p)/(2α+1) ,(63)

and where B2,1 and B2,2 are defined when θ < α/(2α + 1− 1/p) by

B2,1 =
∞∑

r=1

rar

B2,2 = 0.

When θ > α/(2α + 1− 1/p), we rather set

B2,1 =
∑

r≥r0

2−r(1−θ)

and

B2,2 =
∑

r<r0

ar
√

log+ Cr.

When θ < α/(2α + 1− 1/p),

B2,1 ≤ c10a1

≤ c11R
1/(2α+1)M (α+1−1/p)/((2α+1)(1−θ))n−α/(2α+1).

When θ > α/(2α+ 1− 1/p), the sum B2,1 is equal to B1,1 and has already been bounded, see the
above. Moreover, we deduce from Lemma 30,

B2,2 ≤ c12ar0

√
log+(Cr0)

≤ c13R
(1−θ)/(1+α−θ/p)M (α+1−1/p)/(α+1−θ/p)n−α(1−θ)/(α+1−θ/p).

It then remains to group all these results to obtain the wished bound on B2.

Let us now remark that the condition θ 6= 0 was made in the proof in order to use (50) when
θ > α/(2α + 1− 1/p). It is not necessary when θ < α/(2α + 1− 1/p), which is obviously the case
when θ = 0. The proof remains therefore valid when θ = 0.
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4.5. Proof of Theorem 2 when p > 1 and θ = α/(2α+1−1/p). The previous proof can easily
be adapted to deal with θ = α/(2α + 1 − 1/p). However, it would lead to additional logarithmic
factors. A slight refinement can be obtained thanks to (53). We deduce from Lemma 24 that for
c1 large enough,

− log3 n√
n

+
1

c1

∞∑

j=0

∑

r≥ℓ+j+1
2r≤πn

2r≤ςjn/ log((j+2)n)

min
{
E

[
T̂j,r,ℓ(∅)

]
,E
[
T̂j,r,ℓ(Ẑj,r(ℓ) ∩ Zj)

]}

≤
∑

r≥1

∑

j≥0
2j≤πn21−rM−1/(1−θ)

2j≤2ςj(n/ logn)2
−rM−1/(1−θ)

min

{
RM (1−1/p)/(1−θ)2−jα2(1−1/p)rθ,

M1/(2(1−θ))2r(θ−1/2)+j/2

√
n

}
.

We may now bound the right-hand side of this inequality by B1 + B2 where B1 has been defined
in the preceding section by

B1 = RM (1−1/p)/(1−θ)
∑

r≥1

∑

j≥0
2j≤πn21−rM−1/(1−θ)

R2M−(2/p−1)/(1−θ)n2r(1−2θ/p)≤2j(1+2α)

2−jα2(1−1/p)rθ

and where

B2 =M1/(2(1−θ))
∑

r≥1

∑

j≥0
2j≤πn21−rM−1/(1−θ)

R2M−(2/p−1)/(1−θ)n2r(1−2θ/p)>2j(1+2α)

2r(θ−1/2)+j/2

√
n

corresponds to the definition of the preceding section, up to log factors. Similar computations then
lead to

B1 +B2 ≤ c2R
1/(2α+1)M (α+1−1/p)/((2α+1)(1−θ))n−α/(2α+1) log n.

It then remains to deal with

∑

j≥0

∑

r≥ℓ+j+1
2r≤πn

2r>ςjn/ log((j+2)n)

E

[
inf

Kj,r,ℓ⊂Ẑj,r(ℓ)∩Zj

T̂j,r,ℓ(Kj,r,ℓ)

]

≤
∑

j≥0

∑

r≥ℓ+j+1
2r>ςjn/ logn

E

[
T̂j,r,ℓ(∅)

]

≤
∑

j≥0

2−j/2
∑

k∈Z

|βj,k|P
[
σ̂2j,k ≤ (log n)/(ςjn) ∩ A

]

≤
∑

j≥0

2−j/2
∑

k∈Z
σ2j,k≤c3 logn/n

|βj,k|

≤
∑

j≥0

2−j/2
∑

k∈Z
fj,k≤c4 logn/n

|βj,k|.
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We conclude by applying Lemma 20.

4.6. Proof of Theorem 2 when p = 1 and θ = α/(2α + 1− 1/p). Since f ∈ Bα1,∞(R),
∑

r≥ℓ+j+1

B̂j,r,ℓ(∅) ≤ 2−j/2
∑

r≥ℓ+j+1

∑

k∈Ẑj,r(ℓ)∩Zj

|βj,k|

≤ 2−j/2
∑

k∈Z

|βj,k|

≤ R2−jα.(64)

Let us remark that the boundary θ = α/(2α + 1 − 1/p) is θ = 1/2 here. We deduce from (53)
and (54) that if 2r ≤ ςjn/ log((j + 2)n),

E

[
Êj,r,ℓ(|Ẑj,r(ℓ) ∩ Zj |)1A

]
≤ c1

[
M2j/2√

n
+

log((j + 2)(r + 1)n)√
n

]
.

Therefore,

∑

r≥ℓ+j+1
2r≤ςjn/ log((j+2)n)

E

[
Êj,r,ℓ(|Ẑj,r(ℓ) ∩ Zj |)1A

]
≤ c2

[
M2j/2 log n√

n
+

log2 n

n

]
.(65)

We put (65) and (64) together and conclude the proof as in the preceding section.

4.7. Proof of Theorem 2 when p < 1 and θ 6= α/(2α + 1 − 1/p). As in Section 4.4, we first
suppose that θ 6= 0. We define for r ≥ ℓ+ j + 1,

Kj,r,ℓ =
{
k ∈ Ẑj,r(ℓ) ∩ Zj , |βj,k| ≥ 2−(r−j)/2n−1/2

}
.

As f ∈ WBαp,∞(R) and (35), we get |Kj,r,ℓ| ≤ kj,r and
∑

k 6∈Kj,r,ℓ

2−j/2 |βj,k| ≤ c1kj,r2
−r/2n−1/2(66)

where kj,r = Rpnp/22−jp(α+1−1/p)2rp/2.

We consider r and j such that 2r ≤ πn, and j ≤ r− ℓ− 1. We deduce from (49), (51), and the
conditions on r, j,

T̂j,r,ℓ(Kj,r,ℓ) ≤ c2kj,r2
−r/2n−1/2log+

(
Mnθ−p/22−rp/22jp(α+1−θ/p)/Rp

)
+ c3(log n)n

−1/2

T̂j,r,ℓ(Kj,r,ℓ) ≤ c4kj,r2
−r/2n−1/2log+

(
n−p/22r(1−p/2)2jp(α+1−1/p)/Rp

)
+ c5(log n)n

−1/2.

We derive from these two inequalities, from (50) and (52),

− log3 n√
n

+
1

c6

∑

j≥0

∑

r≥ℓ+j+1
2r≤πn

E

[
inf

Kj,r,ℓ⊂Ẑj,r(ℓ)∩Zj

T̂j,r,ℓ(Kj,r,ℓ)

]

≤
∑

r≥1

∑

j≥0
2j≤πn21−rM−1/(1−θ)

min{Aj,r, A′
j,r, Bj,r, B

′
j,r}
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where

Aj,r = RpM−(1−p)/(2(1−θ))n−(1−p)/22−r(1−p)/22−jp(α−1/(2p)+1/2)

× log+

(
M1−p/(2(1−θ))nθ−p/22−rp/22jp(α+1/2−θ/p)/Rp

)

A′
j,r = RpM−(1−p)/(2(1−θ))n−(1−p)/22−r(1−p)/22−jp(α−1/(2p)+1/2)

× log+

(
M (1−p/2)/(1−θ)n−p/22r(1−p/2)2jp(α+1/2)/Rp

)

Bj,r =M1/(2(1−θ))2r(θ−1/2)+j/2

√
log+

(
n2−r−jM−1/(1−θ)

)

n

B′
j,r =M1/(2(1−θ))2r(θ−1/2)+j/2 r√

n
.

Let jr be the smallest (possibly negative) integer such that

R2M−(2/p−1)/(1−θ)n2−r(2θ/p−1) ≤ 2jr(2α+1).

Lemma 30 entails when jr ≥ 0:
∑

j≥0
2j≤πn21−rM−1/(1−θ)

min{Aj,r, Bj,r}

≤ c7

{
RpM−(1−p)/(2(1−θ))n−(1−p)/22−r(1−p)/22−jrp(α−1/(2p)+1/2)

×log+

(
M1−p/(2(1−θ))nθ−p/22−rp/22jrp(α+1/2−θ/p)/Rp

)

+M1/(2(1−θ))2r(θ−1/2)+jr/2

√
log+

(
n2−r−jrM−1/(1−θ)

)

n





≤ c8ar log+ Cr,

where ar and Cr have been defined in Section 4.4 by (62) and (63). The same results holds true
when jr < 0 since then

∑

j≥0
2j≤πn21−rM−1/(1−θ)

min{Aj,r, Bj,r} ≤
∑

j≥0

Aj+jr,r

≤ c9R
pM−(1−p)/(2(1−θ))n−(1−p)/22−r(1−p)/22−jrp(α−1/(2p)+1/2)

×log+

(
M1−p/(2(1−θ))nθ−p/22−rp/22jrp(α+1/2−θ/p)/Rp

)

≤ c10ar log+Cr.

Likewise, by supposing without loss of generality that jr ≥ 0,
∑

j≥0
2j≤πn21−rM−1/(1−θ)

min{A′
j,r, B

′
j,r}

≤ c11

{
RpM−(1−p)/(2(1−θ))n−(1−p)/22−r(1−p)/22−jrp(α−1/(2p)+1/2)

× log+

(
M (1−p/2)/(1−θ)n−p/22r(1−p/2)2jrp(α+1/2)/Rp

)
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+M1/(2(1−θ))2r(θ−1/2)+jr/2 r√
n

}

≤ c12rar.

We also have,
∑

j≥0
2j≤πn21−rM−1/(1−θ)

Bj,r ≤ c132
−r(1−θ).

Therefore,

∑

r≥1

∑

j≥0
2j≤πn21−rM−1/(1−θ)

min{Aj,r, A′
j,r, Bj,r, B

′
j,r} ≤ c14

∞∑

r=1

min
{
ar log+Cr, rar, 2

−r(1−θ)
}
.

We conclude the proof as in the end of Section 4.4 (by noticing, as previously, that the reasoning
does not need (49) and (50) when θ < α/(2α + 1− 1/p) and is therefore also valid when θ = 0).

4.8. Proof of Theorem 2 when p < 1 and θ = α/(2α+1− 1/p). We define the same set Kj,r,ℓ

and the same real number kj,r as in the preceding section. When 2r ≤ ςjn/ log((j+2)n), λ̂j,r ≤ |Ẑ′
j,r|

and hence

Êj,r,ℓ(|Kj,r,ℓ|)−
log((j + 2)(r + 1)n)√

n
≤ c1kj,r




√√√√2−r log+

(
|Ẑ′
j,r|/kj,r

)

n
+

log+

(
|Ẑ′
j,r|/kj,r

)

n




≤ c2kj,r

√√√√2−r log2+

(
|Ẑ′
j,r|/kj,r

)

n
.

Jensen’s inequality, (54) and (66) imply

E

[
T̂j,r,ℓ(Kj,r,ℓ)

]
− log((j + 2)(r + 1)n)√

n
≤ c3kj,r

√
2−r log2+

(
MR−p2r(θ−p/2)n−p/22jp(α+1−θ/p)

)

n
.

Note that (53) and (54) entail

E

[
T̂j,r,ℓ(Ẑj,r(ℓ) ∩ Zj)

]
≤ c4

[
M2r(θ−1/2)+j(1−θ)

√
n

+
log((j + 2)(r + 1)n)√

n

]
.

We deduce,

− log3 n√
n

+
1

c5

∑

j≥0

∑

r≥ℓ+j+1
2r≤πn

2r≤ςjn/ log((j+2)n)

E

[
inf

Kj,r,ℓ⊂Ẑj,r(ℓ)∩Zj

T̂j,r,ℓ(Kj,r,ℓ)

]

≤
∑

r≥1

∑

j≥0
2j≤πn21−rM−1/(1−θ)

min{Aj,r, Bj,r},
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where

Aj,r = RpM−(1−p)/(2(1−θ))n−(1−p)/22−r(1−p)/22−jp(α−1/(2p)+1/2)

× log+

(
M (1−p/2)/(1−θ)R−p2r(θ−p/2)n−p/22jp(α+1/2)

)

Bj,r =M1/(2(1−θ))2r(θ−1/2)+j/2
√

1/n.

By doing as in the preceding section,
∑

j≥0
2j≤πn21−rM−1/(1−θ)

min{Aj,r, Bj,r} ≤ c6n
−α/(2α+1)R1/(2α+1)M (α+1−1/p)/((2α+1)(1−θ)) .

Moreover, this sum is equal to 0 if 2r > 2πnM−1/(1−θ). Thus,
∑

r≥1

∑

j≥0
2j≤πn21−rM−1/(1−θ)

min{Aj,r, Bj,r} ≤ c7(log n)n
−α/(2α+1)R1/(2α+1)M (α+1−1/p)/((2α+1)(1−θ)) .

Note finally that we may bound

∑

j≥0

∑

r≥ℓ+j+1
2r≤πn

2r>ςjn/ log((j+2)n)

E

[
inf

Kj,r,ℓ⊂Ẑj,r(ℓ)∩Zj

T̂j,r,ℓ(Kj,r,ℓ)

]

from above as we did at the end of Section 4.5.
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[CVNRF15] René Erlin Castillo, Fabio Andrés Vallejo Narvaez, and Julio C. Ramos Fernández.
Multiplication and composition operators on weak lp spaces. Bulletin of the Malaysian
Mathematical Sciences Society, 38(3):927–973, Jul 2015.



44 MATHIEU SART

[DJ96] Bernard Delyon and Anatoli Juditsky. On minimax wavelet estimators. Applied and
Computational Harmonic Analysis, 3(3):215–228, 1996.

[DJ97] Bernard Delyon and Anatoli Juditsky. On the computation of wavelet coefficients.
Journal of Approximation Theory, 88(1):47–79, 1997.

[DJKP96] David L Donoho, Iain M Johnstone, Gérard Kerkyacharian, and Dominique Picard.
Density estimation by wavelet thresholding. The Annals of Statistics, pages 508–539,
1996.

[DL93] Ronald A DeVore and George G Lorentz. Constructive approximation, volume 303.
Springer Berlin, Heidelberg, 1993.
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A. A probability inequality.

The following proposition is based on standard results in empirical processes. It uses the notion
of VC subgraph classes, see [vdV13] for their definitions and properties.

Proposition 6. Let F be an at most countable VC subgraph class of functions f defined on R

and with values in [−1, 1]. We suppose that the VC dimension of F is not larger than d ≥ 1. We
consider f̄ such that |f(x)| ≤ f̄(x) ≤ 1 for all x ∈ R. We further consider a map σ2(·) defined
on F ∪ {f̄} and satisfying σ2(f) ≥ E[f2(X)] for all f ∈ F ∪ {f̄}.

Then, there exists for all ξ > 0 an event of probability 1− e−ξ on which: for all f ∈ F ,

1

n

∣∣∣∣∣

n∑

i=1

(f(Xi)− E[f(Xi)])

∣∣∣∣∣ ≤ Cmin{R1(f), R2(f)},(67)

where

R1(f) =

√
d

n
σ2(f) log+

(
σ2(f̄)/σ2(f)

)
+
d

n
log+

(
nσ2(f̄)/d

)
+

√
σ2(f)

ξ + log n

n
(68)

+
ξ + log n

n
,

R2(f) =

√
1

n
σ2(f) log+ (|F|) + 1

n
log+(|F|) +

√
σ2(f)

ξ + log n

n
+
ξ + log n

n
,(69)

and where C is a numerical value. In the above inequality, R2(f) = +∞ if F is infinite.

Proof of Proposition 6. We need the two following lemmas (see Theorem 3.1 of [GK06] for the first,
and [Mas07] for the second).

Lemma 28. Let F be an at most countable VC subgraph class of functions f defined on R and
with values in [−1, 1]. We suppose that the VC dimension of F is not larger than d ≥ 1. We
consider a map f̄ such that |f(x)| ≤ f̄(x) ≤ 1 for all x ∈ R. Let σ2(f̄) be a real number such that
σ2(f̄) ≥ E[f̄2(X)]. Let moreover σ2 > 0 be such that supf∈F E[f2(X)] ≤ σ2. Then,

E

[
sup
f∈F

1

n

∣∣∣∣∣

n∑

i=1

(f(Xi)− E[f(Xi)])

∣∣∣∣∣

]
≤ C

[√
d

n
σ2 log+(σ

2(f̄)/σ2) +
d

n
log+(σ

2(f̄)/σ2)

]
,

where C is a numerical value.

Lemma 29. Let F be a finite class of functions f defined on R and with values in [−1, 1]. Let σ2 > 0
such that supf∈F E[f2(X)] ≤ σ2. Then,

E

[
sup
f∈F

1

n

∣∣∣∣∣

n∑

i=1

(f(Xi)− E[f(Xi)])

∣∣∣∣∣

]
≤ C

[√
1

n
σ2 log+(|F|) + 1

n
log+(|F|)

]
,

where C is a numerical value.

We only prove the inequality with R1(f), the proof with R2(f) is similar (use Lemma 29 instead
of Lemma 28 and set j0 below as the smallest integer such that 2j0−1 ≥ n). We may assume
without loss of generality that d ≤ n and σ2(f) ∈ (0, 1] for all f ∈ F . Let j0 be the smallest integer
such that 2j0−1 ≥ n/d. We define for j ∈ [1, j0 − 1],

Fj =
{
f ∈ F , 2−j < σ2(f) ≤ 2−j+1

}
,
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and set

Fj0 =
{
f ∈ F , σ2(f) ≤ 2−j0+1

}
.

Let then for all j ∈ [1, j0],

σ2j = 2−j+1

Zj = sup
f∈Fj

∣∣∣∣∣
1

n

n∑

i=1

(f(Xi)− E[f(Xi)])

∣∣∣∣∣ .

We consider some ξ0 > 0 and deduce from Talagrand’s inequality (see the second equation on
page 170 of [Mas07]) that on an event Ωj(ξ0) of probability 1− e−ξ0 ,

Zj ≤ 2E[Zj ] + 2

√[
2σ2j /n+ 16E[Zj ]/n

]
ξ0 + 2ξ0/n.

Therefore, by using the elementary inequalities
√
x+ y ≤ √

x+
√
y and 2

√
xy ≤ x+ y,

Zj ≤ 6E[Zj ] + 2
√

2(σ2j /n)ξ0 + 6ξ0/n.

We now set for all σ2 > 0,

A(σ2) =

√
d

n
σ2 log+(σ

2(f̄)/σ2) +
d

n
log+(σ

2(f̄)/σ2).

Any σ2(f) belongs to [(1/2)σ2j , σ
2
j ] when f ∈ Fj with j ≤ j0 − 1. We deduce from Lemma 28 that

for all such j,

E[Zj ] ≤ CA(σ2j )

≤ C

[
√
2

√
d

n
σ2(f) log+(σ

2(f̄)/σ2(f)) +
d

n
log+

(
2nσ2(f̄)/d

)
]
.

We deduce that on Ωj(ξ0): for all f ∈ Fj,
∣∣∣∣∣
1

n

n∑

i=1

(f(Xi)− E[f(Xi)])

∣∣∣∣∣ ≤ C ′

[√
d

n
σ2(f) log+(σ

2(f̄)/σ2(f))

+
d

n
log+

(
nσ2(f̄)/d

)
+
√

(σ2(f)/n)ξ0 + ξ0/n

]
,

where C ′ is universal. When j = j0, we rather have

E[Zj ] ≤ CA(d/n)

≤ C

[
d

n

√
log+(nσ

2(f̄)/d) +
d

n
log+

(
nσ2(f̄)/d

)]

≤ 2C
d

n
log+

(
nσ2(f̄)/d

)
.
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Hence, on Ωj0(ξ0): for all f ∈ Fj0 ,∣∣∣∣∣
1

n

n∑

i=1

(f(Xi)− E[f(Xi)])

∣∣∣∣∣ ≤ C ′′

[
d

n
log+

(
nσ2(f̄)/d

)
+
√

(d/n2)ξ0 + ξ0/n

]

≤ C ′′′

[
d

n
log+

(
nσ2(f̄)/d

)
+ ξ0/n

]
,

where C ′′′ is universal. We now set ξ0 = ξ + log j0 < ξ + 1.4 + log n and conclude using a union
bound. �

B. An elementary lemma

Lemma 30. For all a1, a2, b > 0, k ∈ [0, 1], and r0 ≥ 1,

r0∑

r=1

2ra1 logk+
(
b2−ra2

)
≤ c2r0a1 logk+

(
b2−r0a2

)
,

and
∞∑

r=r0

2−ra1 logk+ (b2ra2) ≤ c2−r0a1 logk+ (b2r0a2) ,

where c only depends on a1, a2, k.

Proof of Lemma 30. We only show the first inequality. The proof of the second inequality follows
the same line. When k = 1, we write

r0∑

r=1

2ra1 log+
(
b2−ra2

)
≤ c1




∑

1≤r≤r0
2(r+1)a2≥be−a2/(a1+1)

2ra1 +
∑

1≤r≤r0
2(r+1)a2<be−a2/(a1+1)

2ra1 log
(
b2−ra2

)



≤ c2


2

r0a1 +
∑

1≤r≤r0
2(r+1)a2<be−a2/(a1+1)

2−rf(2−r)


 ,(70)

where f denotes the map defined for x > 0 by f(x) = x−a1−1 log(bxa2). Let r1 be the largest

integer such that 2(r1+1)a2 < be−a2/(a1+1). The proof when k = 1 is complete if r1 ≤ 0 and we
assume from now on that r1 ≥ 1. We set r2 = min{r0, r1}. Since f is decreasing and non negative

when bxa2 ≥ ea2/(a1+1), we get

∑

1≤r≤r0
2(r+1)a2<be−a2/(a1+1)

2−rf(2−r) ≤ 2

r2∑

r=1

∫ 2−r

2−r−1

f(x) dx

≤ 2

∫ ∞

2−r2−1
f(x) dx

≤ c32
r2a1 log+(b2

−a2r2)

≤ c42
r0a1 log+(b2

−a2r0).
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By putting this result in (70), we get the lemma when k = 1. The proof when k 6= 1 then follows
from Hölder inequality:

r0∑

r=1

2ra1 logk+
(
b2−ra2

)
=

r0∑

r=1

2rka1 logk+
(
b2−ra2

)
2r(1−k)a1

≤
[
r0∑

r=1

2ra1 log+
(
b2−ra2

)
]k [ r0∑

r=1

2ra1

]1−k

≤ c52
r0ka1 logk+

(
b2−r0a2

)
× 2r0(1−k)a1

≤ c52
r0a1 logk+

(
b2−r0a2

)
.

�

C. Proof of Lemma 25

Proof of Lemma 25. Suppose that p <∞ and consider an arbitrary real number q in (1, p(α+1)).
We use (35) to get

‖βj,·‖qq ≤ q

q − p
‖βj,·‖q−p∞ . ‖βj,·‖pp,∞ .

Moreover, as ψ is bounded, ‖βj,·‖∞ ≤ c12
j/2. Therefore, using f ∈ WBαp,∞(R), we obtain for all

j ≥ 0

‖βj,·‖qq ≤ c22
j(1−p(α+1)+q/2),

where c2 only depends on ψ, q,R. We deduce,

∞∑

j=0

2j(q/2−1)
∑

k∈Z

|βj,k|q <∞.(71)

Suppose that p = ∞ and take q > 1. Then, using that |βj,k| ≤ c32
j/2fj,k,

∑
k∈Z fj,k ≤ c4 (Lemma 4),

and ‖βj,·‖∞ ≤ c52
−j(α+1/2),

‖βj,·‖qq ≤ c62
j(1+α−(1/2+α)q),

and the sum (71) is finite.

Note that |αk| ≤ 1 and
∑

k∈Z |αk| ≤ 1 and hence ‖β−1,·‖qq ≤ 1. Now, for all j ≥ 0,
∥∥∥∥∥
∑

k∈Z

βj,kψj,k

∥∥∥∥∥

q

q

= 2j(q/2−1)

∫ ∣∣∣∣∣
∑

k∈Z

βj,kψ(t− k)

∣∣∣∣∣

q

dt

≤ 2j(q/2−1)

∫ ∣∣∣∣∣
∑

k∈Z

|βj,k||ψ(t− k)|1/q|ψ(t− k)|1−1/q

∣∣∣∣∣

q

dt

≤ 2j(q/2−1)

∫ (∑

k∈Z

|βj,k|q|ψ(t− k)|
)(

∑

k∈Z

|ψ(t− k)|
)q−1

dt

≤ 2j(q/2−1)

∫ (∑

k∈Z

|βj,k|q|ψ(t− k)|
)∥∥∥∥∥
∑

k∈Z

|ψ(t− k)|
∥∥∥∥∥

q−1

∞

dt
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≤ C2j(q/2−1)
∑

k∈Z

|βj,k|q.

The same result holds true when j = −1. Let

πJ(f) =

J∑

j=−1

∑

k∈Z

βj,kψj,k.

The above ensures that (πJ(f))J≥1 is a Cauchy sequence in (Lq, ‖ · ‖q) and converges therefore to
a map that must be f . In particular,

‖f‖q ≤
∞∑

j=−1

∥∥∥∥∥
∑

k∈Z

βj,kψj,k

∥∥∥∥∥
q

,

hence the result. �

D. Proof of Lemma 17

Proof of Lemma 17. For all u > 0,

P

[
min

1≤i≤n−1
(X(i+1) −X(i)) ≤ u

]
≤ n sup

1≤i≤n−1
P
[
X(i+1) −X(i) ≤ u

]
.(72)

The density of X(i+1) −X(i) is given for x ≥ 0 by

ϕi(x) =
n!

(i− 1)!(n − i− 1)!

∫

R

F (t)i−1(1− F (t+ x))n−i−1f(t)f(t+ x) dt,

where F denotes the cumulative distribution function of X. We have for all u > 0,

P
[
X(i+1) −X(i) ≤ u

]
=

n!

(i− 1)!(n − i− 1)!

∫

R

F (t)i−1f(t)

[∫ u

0
(1− F (t+ x))n−i−1f(t+ x) dx

]
dt

=
n!

(i− 1)!(n − i− 1)!
E
[
F (X1)

i−1(1− F (X2))
n−i−1

1X1≤X2≤X1+u

]

≤ n!

(i− 1)!(n − i− 1)!
E
[
F (X2)

i−1(1− F (X2))
n−i−1

1X1≤X2≤X1+u

]

≤ n!

(i− 1)!(n − i− 1)!
E

[
F (X2)

i−1(1− F (X2))
n−i−1

∫ X2

X2−u
f(t) dt

]
.

By using Hölder inequality, ∫ X2

X2−u
f(t) dt ≤ ‖f‖qu1−1/q.

Moreover, F (X2) obeys to a uniform distribution on [0, 1] as F is continuous and hence

E
[
F (X2)

i−1(1− F (X2))
n−i−1

]
=

(i− 1)!(n − i− 1)!

n!
.

We use (72) to get

P

[
min

1≤i≤n−1
(X(i+1) −X(i)) ≤ u

]
≤ n‖f‖qu1−1/q.
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We conclude by setting u such that n‖f‖qu1−1/q = ξ/n and by using

2Ĵ ≤ max

{
1, 4Lψ min

1≤i≤n−1

(
X(i+1) −X(i)

)−1
}
.

�

E. Proof of Proposition 3.

We consider some k̄ ≥ 1 and endow {0, 1}2k̄+1 with the Hamming distance ∆ defined for δ, δ′ ∈
{0, 1}2k̄+1 by

∆(δ, δ′) =

k̄∑

k=−k̄

|δk − δ′k|.

Our proof relies on the classical Varshamov-Gilbert bound and Theorem 2.5 of [Tsy08].

Lemma 31. For all integer k̄ ≥ 8, there exists a subset D of {0, 1}2k̄+1 such that

log |D | ≥ 0.08k̄,(73)

and such that
k̄∑

k=−k̄

δk = k̄

for all δ ∈ D . Moreover, for all δ′ ∈ D \ {δ}, ∆(δ, δ′) ≥ k̄/4.

Sketch of the proof. We use Lemma 2.9 of [Tsy08] with m = k̄. This leads to a subset Ω of {0, 1}k̄
and we set

D =
{
(δ1, . . . , δ2k̄, 0), (δ1, . . . , δk̄) ∈ Ω, ∀k ∈ {1, . . . , k̄}, δk̄+k = 1− δk

}
.

�

Lemma 32. Let D be a subset of {0, 1}2k̄+1 containing at least 3 elements. We consider η > 0
and a family of densities F = {fδ, δ ∈ D} satisfying

d1(fδ, fδ′) ≥ η(74)

for all δ 6= δ′ ∈ D . Moreover, we suppose

K(fδ, fδ′) ≤
log |D |
16n

(75)

for all δ, δ′ ∈ D such that δ 6= δ′, where K(·, ·) denotes the Kullback Leibler divergence defined by

K(fδ, fδ′) =

∫
fδ(x) log (fδ(x)/fδ′(x)) dx.

Then,

inf
f̃

sup
f∈F

E

[
d1(f, f̃)

]
≥ 0.13η,(76)

where the infimum is taken over all estimators f̃ .
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We consider k̄ ≥ 14 and the set D given by Lemma 31. The whole point of the proof is to build
a family F = {fδ, δ ∈ D} of densities satisfying the requirements of the preceding lemma. Note
that we already have |D | ≥ 3.

Let ℓ ≥ 1 be the smallest integer such that supp ψ̄ and supp φ̄ are both included in (−2ℓ, 2ℓ).
We consider integers j ≥ −1, j0 ≥ 0 such that 2j0+j−ℓ ≥ 29. We define k̄ as the largest integer
satisfying k̄ ≤ (2j0+j−ℓ − 1)/2. Note that k̄ ≥ 14 since 2j0+j−ℓ ≥ 29.

We consider b > 0 and introduce the map hδ for δ ∈ D and x ∈ R by

hδ(x) = b

k̄∑

k=−k̄

δkψ̄j,2ℓ+1k(x).

There exists a compactly supported density g0 on [−2, 2] satisfying infx∈[−1,1] g0(x) ≥ 1/4, ‖g0‖∞ ≤
1, and belonging to Bαp,∞(Rg0) for some Rg0 > 0. We then set for x ∈ R,

g(x) = 15−1/θM1/θ2−j0/θg0(2
−j0x).

When R is large enough, we may consider a density ζ ∈ Bαp,∞(R/max{31/p, 3}), bounded by 1,

vanishing on [−2j0+1, 2j0+1], and compactly supported on an interval of length 2. We have ζ ∈
Tθ(M/3) for M large enough. We set

q = 15−1/θM1/θ2j0(1−1/θ) + bk̄1j=−1,

and define for δ ∈ D and x ∈ R,

fδ(x) = (1− q)ζ(x) + g(x) + hδ(x).

We show after the present proof:

Lemma 33. Suppose that the parameters j ≥ −1, j0 ≥ 0, b > 0 are chosen in such a way that
2j0+j−ℓ ≥ 29, and such that

b2j0/p2j(α+1/2)
1j≥0 ≤ a1R(77)

M1/θ2j0(1/p−1/θ−α) ≤ a2R(78)

b2j/22j0/θ ≤ a3M
1/θ(79)

2j0/θb2 ≤ a4M
1/θn−1(80)

q ≤ 1.(81)

In the above conditions, a1, a2, a3, a4 are suitable terms depending only on p, θ, g0 and the wavelet
basis.

Then, F = {fδ, δ ∈ D} is a collection of densities included in Bαp,∞(R)∩Tθ(M). It satisfies (75)

and (74) with η = cb2j0+j/2 and c depending on the wavelet basis only. In particular,

inf
f̃

sup
Bα
p,∞(R)∩Tθ(M)

E

[
d1(f, f̃)

]
≥ 0.13cb2j0+j/2.(82)

We first prove when θ < p

inf
f̃

sup
f∈Bα

p,∞(R)∩Tθ(M)
E

[
d1(f, f̃)

]
(83)

≥ cR(1−θ)/(1+α−θ/p)M (α+1−1/p)/(α+1−θ/p)n−α(1−θ)/(α+1−θ/p).
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For this, we define j0 as the smallest integer such that

2
j0
[
1
p
−α+1

θ

]

≤ R

M
α+1
θ nα

.

Note that j0 tends to infinity when n grows up. Therefore the condition 2j0+j−ℓ ≥ 29 is satisfied
when n is large enough. We define c1 and c2 small enough so that cα+1

1 c2 ≤ a1, c1c
2
2 ≤ a4, c1c2 ≤ a3.

Since θ < p, we may take n large enough and define the largest integer j ≥ 0 such that

2j ≤ c1M
1/θn2−j0/θ.

We define

b = c22
j/2n−1.

We may check that (77), (78), (79) and (80) are fulfilled. Note that q tends to 0 when n grows up
and is therefore smaller than 1 when n is large enough. We then deduce (83) from (82).

When θ = p, the above reasoning works when Rp ≥M/cαp1 . This condition ensures the existence
of j ≥ 0. It is worth mentioning that the lower bound

R(1−θ)/(1+α−θ/p)M (α+1−1/p)/(α+1−θ/p)n−α(1−θ)/(α+1−θ/p).

follows from

inf
f̃

sup
f∈Bα

p,∞(R)∩Tθ(M)
E

[
d1(f, f̃)

]
≥ cM1γ=1−θn

−γ .(84)

when θ = p and Rp < M/cαp1 . The proof of which is given below.

We now show (84). We set j = −1, consider c1, c2 such that c2 ≤ a4 and
√
c1c2/2 ≤ a3, define j0

as the largest integer such that

2j0/θ ≤ c1M
1/θn,

and b2 such that

2j0/θb2 = c2M
1/θn−1.

We may check that the conditions of the lemma are met hence the result.

We finally prove

inf
f̃

sup
f∈Bα

p,∞(R)∩Tθ(M)
E

[
d1(f, f̃)

]

≥ cR1/(2α+1)M (α+1−1/p)/((1−θ)(2α+1))n−α/(2α+1).

We define j0 ≥ 0 such that 2j0−1 ≤ c
θ/(1−θ)
1 M1/(1−θ) ≤ 2j0 where c1 = 2 · 15−1/θ. We define j as

the smallest integer such that

M−1/θR22−j(2α+1) ≤ n−12j0(2/p−1/θ).

Since j tends to +∞ when n grows up, the condition 2j0+j−ℓ ≥ 29 is fulfilled when n is large
enough. Besides, q ≤ 1/2 and (78) holds true if R0,M0 are large enough. Moreover, we set

b = c2R2
−j0/p2−j(α+1/2)

where c2 = min
{
a1,

√
a4
}
. We conclude by applying Lemma 33 as above. �
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E.1. Proof of Lemma 33.

Lemma 34. For all δ ∈ D , the map hδ is compactly supported on [−2j0 , 2j0 ] and belongs to

Bαp,∞
(
bk̄1/p2j(α+1/2−1/p)

1j≥0

)
.

Moreover, |hδ| ∈ Tθ
(
c1b

θ2jθ/22j0
)
, where c1 depends on θ and the wavelet basis only,

∫
hδ(x) dx = bk̄1j=−1(85)

and

‖hδ‖∞ ≤ c2b2
j/2,

where c2 only depends on the wavelet basis.

Sketch of proof of Lemma 34. We remark that the supports of ψ̄j,2ℓ+1k and ψ̄j,2ℓ+1k′ are disjoint
when k 6= k′. Therefore,

‖hδ‖∞ ≤ b sup
k∈Z

‖ψ̄j,2ℓ+1k‖∞ ≤ bmax{‖φ̄‖∞, 2j/2‖ψ̄‖∞}.

We then deduce from Lemma 2.1 of [CL20],

|hδ| ∈ Tθ
(
‖hδ‖θ∞(2j0+1 + 1)

)
,

which shows |hδ | ∈ Tθ
(
c1b

θ2(j/2)θ2j0
)
.

We get (85) by noticing that
∫
φ̄ = 1 and

∫
ψ̄ = 0 as the wavelet basis is bi-orthogonal and that

φ = 1[0,1]. �

Lemma 35. The map g is compactly supported on [−2j0+1, 2j0+1]. It satisfies
∫
g(x) dx = 15−1/θM1/θ2j0(1−1/θ).

Besides, for all x ∈ [−2j0 , 2j0 ]

g(x) ≥
(
4 · 151/θ

)−1
M1/θ2−j0/θ.

It belongs to

Bαp,∞
(
c3M

1/θ2j0(1/p−1/θ−α)
)⋂

Tθ(M/3),

where c3 only depends on g0, θ.

Sketch of the proof of of Lemma 35. We only prove that g ∈ Bαp,∞
(
c3M

1/θ2j0(1/p−1/θ−α)
)
. The

wavelet coefficient of g is denoted for j′ ≥ 0 and k′ ∈ Z by

β′j′,k′ =

∫
g(x)ψj′,k′(x) dx.

Yet,

β′j′,k′ = 15−1/θM1/θ2(1/2−1/θ)j0

∫
g0(x)ψj′+j0,k′ (x) dx.

In particular,

‖β′j′,·‖p ≤ 15−1/θM1/θ2j0(1/p−1/θ−α)Rg02
−j′(α+1/2−1/p)
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hence the result. �

Proof of Lemma 33. By choosing a1 and a2 appropriately, we deduce from (77) and (78) that g
and hδ lie in Bαp,∞(R/max{31/p, 3}). We deduce from (81) and from the (quasi) triangle inequality
for the (quasi) norms ‖ · ‖p that fδ ∈ Bαp,∞(R). Note that (79) yields g(x) ≥ 2‖hδ‖∞ for all

x ∈ [−2j0 , 2j0 ] if a3 is suitably taken. In particular, fδ is non-negative and is therefore a density.
Moreover, (79) implies |hδ | ∈ Tθ(M/3) and hence fδ ∈ Tθ(M). It satisfies

fδ(x) ≥
(
8 · 151/θ

)−1
M1/θ2−j0/θ

for all x ∈ [−2j0 , 2j0 ]. Moreover, fδ(x) = (1− q)ζ(x) + g(x) for all x 6∈ [−2j0 , 2j0 ].

We recall the classical inequality

K(fδ, fδ′) ≤
∫

(fδ(x)− fδ′(x))
2

min{fδ(x), fδ′(x)}
dx.

We deduce that for all δ 6= δ′ ∈ D (note that the supports of ψ̄j,2ℓ+1k are disjoint when k varies),

K(fδ, fδ′) ≤ 8 · 151/θ2j0/θM−1/θ × b2
k̄∑

k=−k̄

|δk − δ′k|2 ×max

{∫
φ̄2(x) dx,

∫
ψ̄2(x) dx

}

≤ 16 · 151/θ2j0/θM−1/θb2k̄max

{∫
φ̄2(x) dx,

∫
ψ̄2(x) dx

}
.

We may therefore fulfil condition (75) by choosing a4 thanks to (80) and (73). Moreover,

d1(fδ, fδ′) = b

k̄∑

k=−k̄

|δk − δk′ |
∫ ∣∣ψ̄j,2ℓ+1k(x)

∣∣ dx

≥ b (k̄/4)min

{
2−j/2

∫
|ψ̄(x)|dx,

∫
|φ̄(x)|dx

}
.

We use the definition of k̄ to conclude. �

F. Proof of Proposition 4

We only need to prove the proposition when α = 1/p − 1, what we assume below. We define
j0 ≥ 2 as the smallest integer such that (np + 1)2−j0 ≤ 1/4 and consider j1 ≥ j0.

We set for j ∈ {j0, . . . , j1}, kj = 2(np + 1)(2j−j0 − 1) and

Kj = {kj , kj + 1, kj + 2, . . . , kj + np} .
We introduce for k ∈ Z, Ij,k =

[
k2−j , (k + 1)2−j

)
. Note that Ij,k ⊂ [0, 1/2] for all j between j0

and j1 and all k ∈ Kj. Moreover, Ij,k ∩ Ij′,k′ = ∅ if j 6= j′, no matter (k, k′) ∈ Kj ×Kj′ .

We set D = (j1 − j0 +1)(np+1) and write the elements δ of {0, 1}D as δ = (δj,k)j∈{j0,...,j1},k∈Kj
.

We endow {0, 1}D with the Hamming distance defined for all δ, δ′ ∈ {0, 1}D by

∆(δ, δ′) =

j1∑

j=j0

∑

k∈Kj

|δj,k − δ′j,k|.
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We set for all δ ∈ {0, 1}D and x ∈ R,

ϕδ(x) =
1

D

j1∑

j=j0

2j
∑

k∈Kj

δj,k1Ij,k (x).

We show below after the present proof:

Lemma 36. For all ε > 0, D large enough, and δ ∈ {0, 1}D, ϕδ belongs to B
α
p,∞(ε).

We define for x ∈ R,

fδ(x) = ϕδ(x) + ϕ1−δ(x− 1/2).

Thereby, fδ is a compactly supported density on [0, 1] lying in B
α
p,∞(R) if D is large enough.

Moreover, for all δ, δ′ ∈ {0, 1}D ,

d1(fδ, fδ′) =
2

D
∆(δ, δ′).

Recall that the square h2 of the Hellinger distance is not larger than half of d1. We conclude by
applying Assouad’s lemma and by choosing j1 large enough (see Lemma 2 of [Bir06b]). �

Proof of Lemma 36. We have for all h > 0,

∫
|ϕδ(t+ h)− ϕδ(t)|p dt ≤ 1

Dp

j1∑

j=j0

2jp
∑

k∈Kj

∫ ∣∣
1Ij,k (t+ h)− 1Ij,k (t)

∣∣ p dt

≤ 2

Dp

j1∑

j=j0

2jp
∑

k∈Kj

min
{
2−j , h

}

≤ 2(np + 1)

Dp

j1∑

j=j0

2jpmin
{
2−j , h

}

≤ c
np + 1

Dp
h1−p

≤ c
np + 1

Dp
hαp.

Consider now some odd number r larger than α and note that

2∆r
h(ϕδ)(t) =

r∑

k=0

(
r

k

)
(−1)k [ϕδ(t+ kh)− ϕδ(t+ (r − k)h)] .

The above entails that for all D large enough,
∫

|∆r
h(ϕδ)(t)|p dt ≤ (ε/2)phαp.

By noticing that

‖ϕδ‖pp ≤
np + 1

Dp

j1∑

j=j0

2−j(1−p) ≤ (ε/2)p

when D is large enough, we conclude that ϕδ belongs to B
α
p,∞(ε). �
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G. Proof of Proposition 1.

If f is a density, Fj,k ≤ 1 and ∑

k∈Z

Fj,k = 1.

We deduce from the elementary inequality
(
∑

k∈Z

F θj,k

)1/θ

≥
∑

k∈Z

Fj,k

that M must satisfy M ≥ 1 if f ∈ Tθ(M). This proves the first assertion.

We now show the first part of the second point. We deduce from (2) that for all j ≥ 0 and k ∈ Z,

Fj,k =

∞∑

j′=−1

∑

k′∈Z

βj′,k′

∫ 2−j(k+1/2)

2−j(k−1/2)
ψ̄j′,k′.

Let L̄ > 0 such that [−L̄, L̄] contains the supports of φ̄ and ψ̄. The above integral is zero if
k 6∈ Kj′,k′ where

Kj′,k′ =
[
−1/2 + 2j−max{j′,0}

(
k′ − L̄

)
, 1/2 + 2j−max{j′,0}

(
k′ + L̄

)]
.

We deduce

Fj,k ≤ c1

∞∑

j′=−1

∑

k′∈Z

∣∣βj′,k′
∣∣
1k∈Kj′ ,k′

2−max{j−j′/2,j′/2},

where c1 depends on φ̄, ψ̄ only. Now, using the same elementary inequality as previously,

∑

k∈Z

F pj,k ≤ cp1
∑

k∈Z

∞∑

j′=−1

∑

k′∈Z

∣∣βj′,k′
∣∣p

1k∈Kj′ ,k′
2−pmax{j−j′/2,j′/2},

≤ cp1

∞∑

j′=−1

∑

k′∈Z

|Kj′,k′ |
∣∣βj′,k′

∣∣p 2−pmax{j−j′/2,j′/2},

≤ c2

∞∑

j′=−1

∑

k′∈Z

∣∣βj′,k′
∣∣p
[
2j(1−p)+j

′(p/2−1) + 2−j
′p/2
]

≤ c2R
p

∞∑

j′=−1

[
2j(1−p)2−j

′pα + 2−j
′p(α+1−1/p)

]

≤ c3R
p2j(1−p),

which gives the first part of the second point.

The proof of the second part of the second point, as well as the proof of the third point is quite
easy, and we move directly to the proof of the fourth point. For all k 6∈ [−2j − 1/2, 2j + 1/2],

Fj,k ≤ Ab
∫ 2−j(k+1/2)

2−j(k−1/2)
|x|−b dx.
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In particular, for all k ≥ 2j + 1/2,

Fj,k ≤ Ab
∫ 2−j(k+1/2)

2−j(k−1/2)

[
2−j(k − 1/2)

]−b
dx ≤ Ab2−j(1−b) [(k − 1/2)]−b

and for all k ≤ −2j − 1/2,

Fj,k ≤ Ab2−j(1−b) [(−k − 1/2)]−b .

The number of k 6∈ [−2j − 1/2, 2j + 1/2] such that Fj,k ≥ t is therefore not larger than

2
[
At−1/b2−j(1/b−1) + 1

]
.

Moreover, the number of k ∈ [−2j − 1/2, 2j + 1/2] such that Fj,k ≥ t is not larger than

t−1/b
∑

k∈[−2j−1/2,2j+1/2]

F
1/b
j,k ≤ t−1/b

(
∑

k∈Z

Fj,k

)1/b [
2j+1 + 2

]1−1/b

≤ t−1/b
[
2j+1 + 2

]1−1/b
.

Now,

sup
t>0

{
t1/b

∑

k∈Z

1Fj,k≥t

}
= sup

t∈(0,1]

{
t1/b

∑

k∈Z

1Fj,k≥t

}

≤
(
2j+1 + 2

)1−1/b
+ 2

(
A2−j(1/b−1) + 1

)
,

which concludes the proof. �

H. Proof of equality (1) in (L1(R), d1).

The following arguments come mainly from [HKPT12]. We introduce the Kernel K defined for
x, y ∈ R by

K(x, y) =
∑

k∈Z

φ̄(x− k)φ(y − k).

We put for J ≥ 0, KJ(x, y) = 2JK(2Jx, 2Jy) and

KJf(x) =

∫

R

KJ(x, y)f(y) dy.

We also set

K ′
Jf =

∑

k∈Z

αkφ̄k +
J∑

j=0

∑

k∈Z

βj,kψ̄j,k.

When f ∈ L
2(R), KJf is the (oblic) projection of f on the space spanned by the basis (φ̄J,k)k∈Z

where φ̄J,k(x) = 2J/2φ̄(2Jx− k). Therefore, KJf = K ′
Jf for all f ∈ L

2(R).

Since φ and φ̄ are two compactly supported bounded functions, there exists an integrable
function F such that |K(x, y)| ≤ F (x − y) for all x, y ∈ R. This entails that KJ is continu-
ous in (L1(R), d1). The same thing holds true for K ′

J and hence, by using a density argument,
KJf = K ′

Jf for all f ∈ L
1(R).
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Since KJf → f in (L2(R), d2), we have for all f ∈ L
2(R)

∫

R

(∫

R

K(x2J , y) dy − 1

)2

f2(x) dx→ 0 when J → +∞.

We deduce (see Lemma 8.4 of [HKPT12]) that
∫
R
K(x, y) dy = 1 for all x ∈ R.

Therefore, we have for all f ∈ L
1(R),

‖KJf − f‖1 ≤
∫

R

|KJ(x, y)| |f(y)− f(x)| dxdy

≤
∫

R

F (t)

(∫

R

∣∣f(x+ 2−J t)− f(x)
∣∣ dx

)
dt.

This entails KJf → f in (L1(R), d1). �
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