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Predicting microbial cell composition and
diauxic growth as optimal control

strategies ⋆

Agust́ın G. Yabo ∗
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Montpellier, France (e-mail: agustin.yabo@inrae.fr).

Abstract: Bacteria have evolved internal regulatory mechanisms allowing them to allocate
resources to different cellular functions while dealing with the physiological limitations of the
cell. In this preliminary work, we present a simple mathematical model of bacteria growing on
n substitutable substrates aiming to capture these principles, focusing on the trade-off between
metabolism and gene expression. The model is also able to capture a behavior known as diauxic
growth, which is the sequential consumption of the nutrients in the environment resulting
from the limitation of resources of the metabolic machinery. Under the hypothesis that cell
regulatory mechanisms are tuned to maximize bacterial growth, we study the optimal allocation
strategies through Optimal Control theory, by means of the Pontryagin’s Maximum Principle.
The optimal solutions are characterized by classical bang-singular-bang control structures, and
can be expressed as feedback control laws, in accordance with previous results. We conclude the
paper with numerical optimal trajectories of the model representing an environment with three
substrates with different associated yields coefficients.
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1. INTRODUCTION

A novel perspective in investigating the governing princi-
ples of microbial growth is to study the phenomenon from
a resource allocation perspective. The approach is able to
yield models accounting for the main cellular functions,
while considering the intrinsic physical and biological limi-
tations of cell physiology. There are numerous fundamental
compromises arising from resource limitation. A widely
studied problem is the trade-off between metabolism and
gene expression (Weiße et al., 2015). Mathematical models
of steady-state growth were able to reproduce empiric rela-
tions between cell composition and growth rate in steady-
state conditions (Scott et al., 2010; Hui et al., 2015).
In dynamical environments, Optimal Control theory al-
lowed to predict natural resource allocation strategies from
mathematical models in changing environments (Giordano
et al., 2016; Yabo et al., 2022a,c), by assuming bacteria
have evolved regulatory mechanisms to maximize growth
rate (Dekel and Alon, 2005). The same approach has
been applied to study from a theoretical perspective the
synthesis of chemical compounds of interest by engineering
synthetic pathways in microbial cells (Yegorov et al., 2018;
Cinquemani et al., 2019; Yabo and Gouzé, 2020; Yabo
et al., 2020, 2022b).

Another well-known behavior arising from resource limi-
tation is a phenomenon called diauxie. The latter is the
sequential (instead of simultaneous) consumption of nu-
trients in environments containing multiple substitutable
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substrates. Diauxic growth is a natural uptake pattern
that bacteria have developed through evolution, which im-
plies that it could be predicted as an optimal behavior with
respect to a certain criterion (or cost function). Among the
pioneering works in the subject, Dhurjati et al. (1985) and
Ramakrishna et al. (1996) have developed simple math-
ematical models able to predict diauxie. More recently,
there has also been numerical studies comparing different
modelling techniques that were able to account for the phe-
nomenon (Kremling et al., 2015, 2018). Mandli and Modak
(2014) used Optimal Control theory to obtain feedback
substrate uptake strategies using a bacterial growth model
based on the classical work of Monod (1949). The study
focuses on the case with two substitutable substrates, and
proposes a very simple mathematical model where no cell
composition is considered.

In this work, we extend these results by proposing a simple
mathematical model of a microbial population growing
on n substitutable substrates, which is a generalization
of previous self-replicator bacterial growth models con-
sidering cell composition (Giordano et al., 2016; Yabo
et al., 2022a). The paper starts with a definition of the
model—in Section 2—including n metabolic controls that
represent the distribution of proteins of the metabolic
machinery over the n substrates, which are subject to a
constraint accounting for the availability of enzymatic pro-
teins. Additionally, the model considers the mass fractions
of the cell dedicated to gene expression and metabolism,
and thus it can account for the trade-off arising between
these two cellular functions. As hypothesized in many
bacterial growth studies, the natural objective is to maxi-
mize the biomass, which yields an OCP (Optimal Control
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Fig. 1. Scheme of the bacterial growth model. The i-th
substrate si is consumed by the bacterial population
at rate vi and transformed into precursor metabolites
p, which are then used to produce proteins m, r
and others at rate vR. Proteins m are in charge of
the absorption of nutrients from the medium, while
proteins r are responsible for protein synthesis from
the precursor metabolites.

Problem)—described in Section 3—with n + 1 degrees of
freedom representing the n metabolic controls and cell
composition. The resulting optimal strategies behind the
studied regulatory mechanisms are characterized by bang-
singular-bang structures, which can be written as functions
of the state of the system. By application of Pontryagin’s
Maximum Principle (PMP), it is possible to predict the
sequential uptake pattern as an optimal strategy in envi-
ronments with multiple substrates, as well as the fractions
of the cell allocated to gene expression and metabolism.
These results—shown in Section 4—constitute an addi-
tional mathematical argument supporting the theory that
regulatory mechanisms in bacteria are geared towards
optimality. Finally, we provide numerical simulations—
in Section 5—performed with Bocop (Team Commands,
2017), an optimal control solver, verifying the analytical
results obtained.

2. MODEL DEFINITION

Based on Mandli and Modak (2014); Giordano et al.
(2016); Yabo et al. (2022a), we write a dynamical model
representing cell metabolism and gene expression in its
minimal form, growing on n substitutable substrates.
The model considers si(t) as the concentration of the
i-th substrate in the medium [g L−1], the intracellular
concentration of precursor metabolites p(t) in the bacterial
population [g L−1], and the non-dimensional fraction of the
culture volume occupied by the bacterial population V(t).
Reaction rates in the system depend on the time-varying
quantities:

• m(t): the fraction of the cell dedicated to proteins of
the metabolic machinery, responsible for the uptake of
substrates from the environment and the production
of precursor metabolites.

• r(t): the fraction of the cell dedicated to active
proteins of the gene expression machinery, responsible
for the synthesis of biomass V.

Figure 1 shows a scheme of the model. The dynamical
system writes


ṡi = −vi(si,m)V, i = 1, 2, . . . , n

ṗ =

n∑
i=1

Yivi(si,m)− vR(p, r)(p+ 1),

V̇ = vR(p, r)V.

where vi [h
−1] is the uptake rate and precursor synthesis

rate associated to the i-th substrate—catalyzed by m—
and vR [h−1] is the bacterial growth rate—catalyzed by r.
Following (Scott et al., 2010; Hui et al., 2015), we suppose:

• The substrate uptake rate vi is linear in m.
• The growth rate vR is linear in r.
• The mass fraction m+ r is fixed.

According to empirical observations of microbial cells, m+
r ≈ 0.43, while the remainder of the cell (indicated in
the Figure as others) corresponds to proteins that are not
directly linked to growth (Hui et al., 2015). Without loss of
generality, by rescaling mass fractions we can fixm+r = 1,
and so the system can be rewritten as

ṡi = −wi(si)(1− r)V, i = 1, 2, . . . , n

ṗ =
n∑

i=1

Yiwi(si)(1− r)− wR(p)r(p+ 1),

V̇ = wR(p)rV.
where functions vi and vR have been expressed by taking
into account the aforementioned linear relationships, and
m has been replaced by 1−r. The functions wI satisfy the
following properties:

Assumption 1. Function wI(x) : R+ → R+ is C2 and it
satisfies:

• wI(0) = 0,
• w′

I(x) > 0,∀x ≥ 0,
• w′′

I (x) < 0,∀x ≥ 0,
• limx→∞ wI(x) = kI .

2.1 Controlled dynamics

In order to be able to predict the optimal distribution
of resources of the metabolic machinery, we define n
time-varying functions δi ≥ 0 describing the fraction of
enzymatic proteins assigned to the uptake of the i-th
substrate. Thus, the controlled system becomes

ṡi = −δiwi(si)(1− r)V, i = 1, 2, . . . , n

ṗ =

n∑
i=1

Yiδiwi(si)(1− r)− wR(p)r(p+ 1),

V̇ = wR(p)rV,

(S)

where each individual function δi multiplies the fraction
of proteins of the metabolic machinery m (or, in the new
formulation, 1 − r). Apart from the positivity constraint
aforementioned δi ≥ 0, the metabolic controls are also
subject to the availability constraint

n∑
i=1

δi ≤ 1, (C)

representing the fact that the enzymatic proteins are
limited to the fraction of the cell occupied by the metabolic
machinery.



3. PROBLEM STATEMENT

We start by fixing the initial conditions of the system as

si(0) = si0 > 0, i = 1, 2, . . . , n (IC)

p(0) = p0 > 0,

V(0) = V0 > 0.

Then, we write the dynamical optimization problem where
the objective function to maximize is the biomass at final
time tf (for a fixed tf > 0). The latter writes

maximize V(tf ),

subject to dynamics of (S),

initial conditions (IC),

maximum control constraint (C),

r(·) ∈ R,

δi(·) ∈ D, i = 1, 2, . . . , n

(OCP)

where R and D are the sets of admissible controllers,
described by Lebesgue measurable real-valued functions
defined on the interval [0, tf ] and satisfying the constraints
associated to each control. We proceed to the study of the
solutions of (OCP).

4. RESULTS

4.1 Application of the Pontryagin’s Maximum Principle

Given that the optimal control problem has no terminal
conditions, the controllability of the system is not relevant
to problem (OCP). As the system is bounded, and the
controls are included in compact and convex sets, Filip-
pov’s theorem ensures the existence of solutions (Agrachev
and Sachkov, 2013). The state x ∈ Rn+2, adjoint state
λ ∈ Rn+2 and control vector u ∈ Rn+1 are defined as

x
.
= (s1, . . . , sn, p,V),

λ
.
= (λs1 , . . . , λsn , λp, λV),

u
.
= (δ1, . . . , δn, r).

For this class of OCPs, PMP ensures that there exist
λ0 ≤ 0 and a piecewise absolutely continuous mapping
λ(·) : [0, tf ] → Rn, with (λ(·), λ0) ̸= (0, 0), such that the
extremal (x, λ, λ0, u) satisfies the generalized Hamiltonian
system

ẋ =
∂

∂λ
H(φ, λ, λ0, u),

λ̇ = − ∂

∂x
H(φ, λ, λ0, u),

H(x, λ, λ0, ũ) = max
u

H(x, λ, λ0, u),

(PMP)

for almost every t ∈ [0, tf ]. For this particular case, the
Hamiltonian can be obtained by computing ⟨λ, F (x, u)⟩,
where F is the right-hand side of system (S), which yields

H =

(
n∑

i=1

Hiδi

)
+

(
Hr −

n∑
i=1

Hiδi

)
r (H)

where

Hi(x, λ)
.
= wi(si)(Yiλp − Vλsi), i = 1, 2, . . . , n

Hr(x, λ)
.
= wR(p)(VλV − (p+ 1)λp).

The transversality conditions are given by the objective
function as

λ(tf ) = (0, 0, . . . , 0, 0,−λ0), (TC)

and the dynamics of the adjoint system writes

λ̇si = −δi
w′

i(si)

wi(si)
(1− r)Hi, i = 1, 2, . . . , n

λ̇p = wR(p)r

(
λp −

w′
R(p)

w2
R(p)

Hr

)
,

λ̇V =

(
n∑

i=1

δiwi(si)

)
(1− r)λsi − wR(p)rλV .

(AS)

As the set of controls should maximize the Hamiltonian,
and the Hamiltonian is linear in the control r, it follows
that the optimal cellular composition is given by

r =


0 if Hr <

n∑
i=1

Hiδi,

1 if Hr >

n∑
i=1

Hiδi.

(1)

If Hr =
∑n

i=1 Hiδi over a subinterval of time, the arc is
called a singular arc and the control law (1) given by the
Hamiltonian does not provide enough information on the
value of r. It is rather classical for this class of OCPs—
where the Hamiltonian is linear in the control—that the
optimal control solutions are concatenations of bang arcs
(r = 0 and r = 1) and singular arcs. To further describe
the structure of the solutions, we define the three possible
arcs that can be found along the solutions:

• G (pure-growth arc): given by Hr >
∑n

i=1 Hiδi, and
thus r = 1.

• S (singular arc): it occurs when Hr =
∑n

i=1 Hiδi over
a subinterval of time [t1, t2] ⊂ [0, tf ].

• M (pure-metabolism arc): given by Hr <
∑n

i=1 Hiδi,
and so r = 0.

By evaluating the Hamiltonian at final time and using
(TC), we can see that Hi|t=tf = 0 for i = 1, 2, . . . , n
and Hr|t=tf > 0, which indicates that the Hamiltonian
is positive for every t, and thus we obtain the following
result.

Lemma 1. An optimal process should finish with a G arc.

Now, let us analyze the arcs enabling substrate uptake
(S and M arcs). In this case, r < 1, which means
H =

∑n
i=1 Hiδi. As a result, at least one function Hi > 0,

in order to comply with the positivity of the Hamiltonian.
Suppose the general case where

max(H1, H2, . . . ,Hn) = Hi,

for every i in a certain set I .
= {j, . . . , k}, where I ⊂

{1, 2, . . . , n}. This includes the particular case where the
solution of max(H1, H2, . . . ,Hn) is unique, but also the
case where multiple functions Hj = · · · = Hk are maximal.
Then, using the positivity of the Hamiltonian and (C), one
can see that

H =

n∑
i=1

Hiδi = max(H1, H2, . . . ,Hn)

(∑
i∈I

δi

)
.



In the latter expression, it is clear that, in order to
maximize the Hamiltonian, the sum of δi controls should
be equal to 1, and so the Hamiltonian becomes H = Hi

for every i = 1, 2, . . . , n. This leads to a first result related
to substrate uptake control:

Theorem 1. Every optimal control solution satisfies
n∑

i=1

δi = 1

along any arc enabling substrate uptake (i.e. r ̸= 1).

This result implies that every available protein of the
metabolic machinery should be used to metabolize the
available substrates of the medium, which is a rather
natural result. In this context, a i-th control with i ∈ I is
denoted an active control. In next section, we proceed to
analyze the structure of the optimal solutions.

4.2 Summary of the main results

While in this case it is possible to obtain a full description
of the optimal solution in feedback form, the details
of the computations through PMP are not displayed in
this preliminary work. In this section, we provide a brief
summary of the main results regarding the structure of the
optimal control. For notation purposes, let us first define
the following regions of the state space:

max(Y1w1(s1), Y2w2(s2), . . . , Ynwn(sn)) >
w2

R(p)

w′
R(p)

, (S+)

max(Y1w1(s1), Y2w2(s2), . . . , Ynwn(sn)) <
w2

R(p)

w′
R(p)

, (P+)

max(Y1w1(s1), Y2w2(s2), . . . , Ynwn(sn)) =
w2

R(p)

w′
R(p)

, (SP)

Then, we have a main result regarding the structure of the
optimal solutions.

Theorem 2. The only admissible structures of the optimal
control are:

• A single G for any initial conditions
• M− G for initial conditions in (S+)
• M− S − G for initial conditions in (S+)
• G − S − G for initial conditions in (P+)

The first two cases (G and M− G) occur when the state
cannot reach (SP), which can be due to a small tf with
respect to the reaction rates of the system. As the latter
is rather a degenerate case, in this paper we focus on the
solutions allowing singular arcs (M−S−G and G−S−G).
Additionally, the presence of the final arc is optimal for
fixed-horizon bioprocesses, and its duration is reduced as
tf → ∞ (and p → 0 at the end of the singular arc).
Therefore, the final G arc can be neglected in infinite-
time approaches 1 , in particular when aiming to study
the ”long-term” perspective of bacterial growth. In this
context, we can formalize the following result.

Theorem 3. The optimal long-term feedback control law
for cellular composition is

1 See Giordano et al. (2016) for a discussion on infinite horizons and
overtaking optimality

(r,m) =

 (0, 1) if (s, p) ∈ (S+),
(1, 0) if (s, p) ∈ (P+),

(rsing, 1− rsing) if (s, p) ∈ (SP),

with

rsing(sj , . . . , sk, p,V) =
V + ϕwR(p)

w′
R
(p)

V + ϕ
(
p+ 1 + wR(p)

w′
R
(p)

) ,
where ϕ is a function that depends only on the state,
defined as

ϕ(sj , . . . , sk, p)
.
=

(
2w′

R(p)−
wR(p)

w′
R(p)

w′′
R(p)

)
×∑

j∈I

1

w′
i(sj)

−1

;

and the optimal i-th substrate uptake control is

δi =
1∑

j∈I
w′

i(si)

w′
j(sj)

,

for every i-th control satisfying

max(Y1w1(s1), . . . , Ynwn(sn)) = Yiwi(si).

5. NUMERICAL SIMULATIONS

In this section, we show simulations obtained with Bocop
of a system describing a medium with 3 substrates at
the same initial concentration s1(0) = s2(0) = s3(0)
and with different associated yields Y1 > Y2 > Y3. The
discretization algorithm used for the time variable is Gauss
II (implicit, 2-stage, order 4) with 10000 time steps. For the
computations, we define the synthesis rates as Michaelis-
Menten kinetics in terms of the mass fractions as

wR(p) = kR
p

KR + p
, wi(si) = ki

si
Ki + si

,

where KR and Ki are the half-saturation constants of
the synthesis rates measured in g L−1. Model parameters
are fixed to kR = k1 = k2 = 10 h−1, KR = 1 g L−1,
K1 = K2 = 0.05 g L−1, Y1 = 1, Y2 = 0.6 and Y3 = 0.1.
While not entirely accurate, they are selected respecting
the order of magnitude of the parameters of previous
empirical bacterial growth models. Initial conditions are
set to s1(0) = s2(0) = s3(0) = 0.003, p(0) = 0.001 and
V(0) = 0.005. Figure 2 illustrates the resulting optimal
metabolic controls and the optimal resource distribution
(between r and m), while Figure 3 shows the system
states associated to the same trajectory. As expected, the
optimal trajectory exhibits the diauxic growth pattern,
as the substrates are consumed sequentially starting from
the one with the highest yield s1. Moreover, the curve r
shows the optimal mass fraction of ribosomal proteins in
the cell, which follows a M−S−G structure, as the initial
conditions are in (S+). It is noteworthy that these results
are purely theoretical: in real living organisms, cellular
compositions is expected to be a continuous function of
time. However, this approach provides an ideal scenario
which can serve as a gold standard in terms of optimality.
Figure 4 confirms the theoretical findings: the optimal
arc at each time instant is decided by the state, which
is first in (S+) until it reaches (SP) and protein synthesis
starts. The same holds for the metabolic control activation



pattern, where each substrate control δi is activated when
max(Y1w1(s1), . . . , Ynwn(sn)) decreases until it matches
the next maximum value.
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Fig. 2. Optimal metabolic controls and resource distri-
bution control associated to the simulated optimal
trajectory. The initial and final arcs are indicated with
gray shaded areas, while the activation of metabolic
controls is marked with dashed vertical lines.

6. DISCUSSION

We presented an approach capable of predicting the dis-
tribution of resources and exhibiting the diauxie behavior
through a simple mathematical model of microbial cells
growing on n substrates. The main hypothesis of the prob-
lem is that both these features are governed by regulatory
mechanism tuned by natural selection to maximize bacte-
rial growth rate, and thus ”long-term” biomass. This yields
an OCP that can be analyzed by means of PMP. While
all the computations are not detailed in this preliminary
paper, an overview of the main results is provided, as well
as numerical simulations confirming the theoretical results.
An extension of this work is contemplated, including com-
parisons to experimental data and to more complex models
where the fractions of the cell dedicated to gene expression
and metabolism are solutions of differential equations, and
thus cellular composition is described by smooth (and not
discontinuous) functions.
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