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Abstract: We are interested in the invasion phase for stochastic processes with interactions.
A single mutant with positive fitness arrives in a resident population at equilibrium. By a now
classical approach, the first stage of the invasion is well approximated by a branching process. The
macroscopic phase, when the mutant population is of the same order as the resident population,
is described by the limiting dynamical system. We capture the intermediate mesoscopic phase
for the invasive population and obtain sharp approximations in the different phases. It allows
us to describe the fluctuations of the hitting times of thresholds, which inherit a large variance
from the first stage. These issues are in particular motivated by the quantification of the hitting
times of critical values for cancer cell populations or epidemics.
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1. Introduction and main results

We aim to finely quantify a mutant invasion in a resident population at equilibrium. Such situation is
standard in eco-evolution, in cancer emergence or in epidemiology when a single individual particularly
well adapted can develop its own subpopulation and invade the global population. After a certain
amount of time, the number of mutants becomes non negligible with respect to the resident population
size, allowing to summarize the dynamics of the stochastic population processes by their deterministic
approximations. In Champagnat [15], a systematic approach was introduced to quantify the mutant
invasion success, based on the properties of the mutant birth and death process and its coupling
with branching processes for which the survival probability was easily computed. That allowed to
characterize the probability for the mutant process to attain a certain fixed threshold. This approach
has been used by many authors, see e.g. [16, 8, 2, 9, 13].

To go in details in this invasion process, we introduce some scaling parameter K characterizing
the macroscopic population sizes and allowing to quantify each invasion step. We consider a bi-type
birth and death process modeling the population size dynamics of interacting resident and mutant
individuals. We denote by NK

R (t) (resp. NK
M (t)) the number of resident individuals (resp. mutant

individuals) at time t and the density of populations are defined by

XK(t) = (XK
R (t), XK

M (t)) := (NK
R (t)/K,NK

M (t)/K).

The interaction is modeled through density dependence of individual birth and death rates, respectively
b•(X

K), d•(X
K) for • ∈ {R,M}. This dependence may model for instance competition for resources,

which can make the death rates increase or the birth rates decrease.

The processes (NK
R , N

K
M ) are defined on a probability space (Ω,F ,P) , as solutions of the stochas-

tic differential systems driven by Poisson point measures N b
R,N d

R,N b
M ,N d

M with Lebesgue measure
intensity on R+ × R+:

NK
• (t) = NK

• (0) +

∫
[0,t]×R+

1{u≤NK• (s−)b•(XK(s−))}N b
• (ds, du) (1.1)

−
∫

[0,t]×R+

1{u≤NK• (s−)d•(XK(s−))}N d
• (ds, du),

1
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for • ∈ {R,M}, K > 0 and t ≥ 0. We assume that N b
R and N d

R are independent and that N b
M and

N d
M are independent too. But (N b

R,N d
R) and (N b

M ,N d
M ) are not necessarily independent. We refer to

Section 5.1 for an application in evolution where all these Poisson point processes are independent and
to Section 5.2 for an example in epidemiology where they are dependent.
The individual growth rates are defined on R+ × R+ by

FR(xR, xM ) = bR(xR, xM )− dR(xR, xM ); FM (xR, xM ) = bM (xR, xM )− dM (xR, xM ).

It is well known (cf [24, 25, 20]) that under suitable assumptions on the parameters and when initial
conditions of the branching processes are of order K, the stochastic process ((XK

R (t), XK
M (t)) : t ≥ 0)

converges in probability (when K tends to infinity), on any finite time interval. The limit is the solution
(xR, xM ) of the dynamical system{

x′R = xR FR(xR, xM ) = GR(xR, xM );

x′M = xM FM (xR, xM ) = GM (xR, xM ).
(1.2)

We assume the existence of some (non-necessary unique) equilibrium x?R > 0 satisfying

FR(x?R, 0) = bR(x?R, 0)− dR(x?R, 0) = 0.

In this work, we start from one mutant inside a resident population closed to the equilibrium :

NK(0) = (NK
R (0), 1), NK

R (0) ∼ x?RK. (1.3)

Thus XK(0) is close to (x?R, 0) and the mutant process (NK
M (t), t ≥ 0) will firstly be close to the

branching process Z with individual birth and death rates respectively

b? = bM (x?R, 0) ; d? = dM (x?R, 0).

We assume that the initial growth rate of this process is positive

r? = b? − d? > 0. (1.4)

This ensures that the mutant population process attains values of order K with positive probability,
at a time scale logK.

We consider the hitting times of successive levels n of the mutant population process when the
initial condition is NK(0) = n0 ∈ N2:

TKM (n0, n) = inf{t ≥ 0 : NK
M (t) ≥ n} = inf{t ≥ 0 : XK

M (t) ≥ n/K}. (1.5)

Our ambition is to finely capture the dynamics of the invasion process until macroscopic levels, and
to focus in particular on the intermediate scale, where the mutation process is large but negligible
compared to K.

Our first result proves that the mutation process is equivalent to the branching process Z before
reaching macroscopic level of order K, in the following sense, see Section 2. For any ξK � K/(logK)a

and η > 0, we show that

lim
K→+∞

P
(

sup
t≤TKM (NK(0),ξK)

∣∣∣∣NK
M (t)

Z(t)
− 1

∣∣∣∣ > η ; Z(TKM (NK(0), ξK)) > 0

)
= lim
T→∞

lim sup
K→∞

P
(

sup
T≤t≤TKM (NK(0),ξK)

∣∣∣∣NK
M (t)

Wer?t
− 1

∣∣∣∣ > η ; W > 0

)
= 0,
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where
W = lim

t→∞
Z(t)e−r?t ∈ [0,∞) a.s.

is an exponential variable with an additional atom in 0 corresponding to the extinction event. The
value of a is 1 or 2 depending on the exponential stability of the equilibrium of the resident population
alone, see forthcoming Theorem 2.2 for a precise statement. These two cases correspond to a hyperbolic
or a partially hyperbolic equilibrium. For the proof of the theorem, we use a coupling of the mutant
process and the branching process and we need to control the distance between them. We use that
individuals belonging to one of the two populations but not to the other in the coupling can be seen
as a branching structure with an additional immigration whose intensity increases with the value of Z
or NK

M .
This approach is inspired and complements previous works. Exact couplings have been proved both

in the context of invasion of mutants in evolutionary biology and in epidemiology, where the models
lead to a resident population with a hyperbolic or a partially hyperbolic equilibrium. For the SIR
model in continuous time, we refer in particular to Ball and Donnelly [4] for a proof of exact coupling
before the population reaches the order of magnitude

√
K. Barbour and al [7] prove that exact coupling

holds before the mutant population reaches order K2/3 for multidimensional models in evolutionary
biology. Complementary results have been obtained for epidemiological models in [5, 6]. Our result
allows to compare the original mutant process and the branching process until sub-macroscopic levels,
more precisely before the mutant population reaches the order K/(logK)a.

When the population of mutants becomes large but is not yet macroscopic, we prove that the
deterministic approximation by the dynamical system is already valid in the following sense:

sup
t≤TKM (NK(0),vK)

∣∣∣∣XK
M (t)

xKM (t)
− 1

∣∣∣∣ −→K→∞
0, in probability,

where v > 0, 1 � NK
M (0) = KXK

M (0) � K is the initial number of mutant and xKM is the solution
of (1.2) with the corresponding initial condition 1/K � xKM (0) = XK

M (0)� 1 and xKR (0) close to x?R.
The boundary of (R+)2 is invariant for the dynamical system but the latter is unstable around R+×{0}
in the invasion regime. This makes the problem delicate when controlling the stochastic flow. In the
time window [0, TKM (NK(0), vK)] whose size is of order of magnitude logK, XK goes from XK

M (0)� 1
to v. This requires to deal with a long time scale and escape an unstable equilibrium, as in [7]. We
consider in this paper different scales and techniques, which allow us to capture the expected renor-
malization XK

M (t)/xKM (t) from low density until any reachable macroscopic value. We refer to Section
3.2 for a precise statement which gives the admissible values of v and quantitative estimates for the
convergence. This yields the main novelty of this work.

The simulations of Figure 1 illustrate the different approximations corresponding to the SIR exam-
ple of Section 5.2, both by the branching process (from the initial time) and by the dynamical system
(from hitting times of large levels).

As a byproduct, we obtain in Theorem 4.1 the following convergence in law of hitting times when
K tends to infinity, on the survival event of NK

M . Under Condition (1.3), for (ζK)K going to infinity
such that ζK/K → v ≥ 0, we show the following convergence in law when K →∞

TKM (NK(0), ζK)− log(ζK)

r?
=⇒ τ(v)− logW ?

r?
,

where the function τ is continuous, τ(0) = 0 and W ? is an exponential random variable with pa-
rameter r?/b?. We refer to Section 3.1 for the definition of τ and the characterization of admissible
values [0, v?) of the level v. This result is illustrated in Figure 2 corresponding to the SIR example of
Section 5.2. Thus, the hitting times of mesoscopic or macroscopic levels have Gumbel laws translated
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Fig 1. The black curve represents a trajectory of the process XK
M (t) = NK

M (t)/K, the blue curve a trajectory of

Z(t)/K, and the red curve is the deterministic function xKM (t) starting at time TK
M (NK(0), ξK). Both figures represent

the simulations of the same trajectory in different scales (standard scale on the left, logarithmic scale on the right).
These simulations have been done with the following parameters: K = 100000, FR(xR, xM ) = −1.5xM , FM (xR, xM ) =
1.5xR − 1, x?R = 1, ξK =

√
K and v = 0.055.

by (log ζK)/r? + τ(v). We refer to [6, 7] for related results on the random time needed to see the
deterministic macroscopic curve.
In the situations when K is very large, as for huge cohorts of microorganisms (bacteria, cells),
(log ζK)/r? gives a good approximation of the hitting times. But in many other cases, K is not so
large. We refer to the modeling of hematopoiesis and leukemias [11, 12] where K is the number of
sain stem cells, of order 105. This is the original motivation for this work. The intermediate phase and
hitting times are indeed involved in the emergence and detection of cancer.

Assumptions. We consider the following assumptions on the birth and death rates. They ensure in
particular that the resident population alone has a positive equilibrium point (which may be unstable)
and that the mutant population can invade.

Assumption 1.1.

(R) Regularity: the functions bR, dR, bM , dM are C2(R+ × R+,R+).
(E) Equilibrium: there exists x?R > 0 such that FR(x?R, 0) = 0 and ∂RFR(x?R, 0) ≤ 0.
(I) Invasion: FM (x?R, 0) > 0.

Under Assumption (R), the bi-type birth and death process XK is well defined until its explosion
time, which may be finite with positive probability. In our framework, the process is studied before
hitting times of fixed levels, clearly smaller than the explosion time.
In the eco-evolutionary framework, FM (x?R, 0) is called invasion fitness. It quantifies the individual
growth rate for a small mutant population in a resident population at the equilibrium.
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Fig 2. The histogram represents the values of TK
M (NK(0), vK) (conditionally to the non-extinction of NK

M ). The
simulations have been done with the following parameters: K = 100000, FR(xR, xM ) = −1.5xM , FM (xR, xM ) =
1.5xR − 1, x?R = 1 and v = 0.055. The size of the sample to draw the histogram is 10000. The curve is the
density f of the random variable log(vK)/r? + τ(v) − log(W ?)/r?, where the density of −log(W ?)/r? is equal to
r2?/b? exp(−r?t) exp(−r?/b?e−r?t).

Notation.

• We write x? = (x?R, 0).
• For f : (xR, xM ) ∈ R2 7→ f(xR, xM ), we denote ∂Rf (resp. ∂Mf) the derivative w.r.t. the first

(resp. second) variable.

• If N (dx) is a Poisson point measure with intensity λ(dx), we denote Ñ (dx) := N (dx) − λ(dx)
the compensated measure.

• Throughout the paper, C denotes any positive constant depending only on the model parame-
ters. The value of C can change from line to line. If a constant depends on some (non-model)
parameter θ we write Cθ.

2. Approximation by branching processes

In this section, we assume that at the initial time, the resident population is close to its equilibrium
and a single mutant individual appears.

Assumption 2.1. There exists C > 0 such that for any K > 0,∣∣∣∣NK
R (0)

K
− x?R

∣∣∣∣ ≤ C

K
and NK

M (0) = 1 a.s.

We introduce the branching process (Z(t) : t ≥ 0) with individual birth rate b? = bM (x?) and
(individual) death rate d? = dM (x?), defined on the same probability space as NK

M and coupled with
NK
M in the following way:

Z(t) =1 +

∫
[0,t]×R+

1{u≤b? Z(s−)}N b
M (ds, du)−

∫
[0,t]×R+

1{u≤d? Z(s−)}N d
M (ds, du),
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where the Poisson point measures N b
M and N d

M have been introduced in (1.1).

We recall from (1.4) that r? = b? − d? > 0 and the branching process Z is supercritical. The
survival event has positive probability and as t tends to infinity, the martingale W (t) = Z(t) exp(−r?t)
converges a.s. to a finite random variable W which is positive on the survival event :

{W > 0} = {∀t > 0 : Z(t) > 0}.

The random variable W is exponentially distributed with an additional atom in 0 :

W
d
=
d?
b?
δ0 +

r?
b?
µr?/b? ,

where δ0 is a Dirac mass in 0 and µa(dx) = 1R+
(x)ae−axdx and dx is the Lebesgue measure. We refer

to [1] Chapter 3 or [19]-Theorem 1 for such results.

Let us study the coupling between the processes Z and NK
M . First, when the branching process Z be-

comes extinct, so does the mutant process NM and we have the following result. Under Assumptions 1.1
and 2.1,

lim
K→∞

P(∀t ≥ 0 : NK
M (t) = Z(t)|W = 0) = 1.

Indeed, the two processes coincide by coupling on a time window whose size goes to infinity with
probability 1 as K goes to infinity. Besides, Z is a.s. absorbed at 0 in finite time on the event {W = 0}.
Such arguments are classical for epidemiological models and can be adapted to our context. We refer
to [4].

Let us turn our attention to the survival event and state the main result of the section. It compares
the mutant process and its branching approximation as long as the process is not too close from
macroscopic scales. We prove that the ratio of the two processes converges to 1 in probability, with
an explicit speed, before time TKM (NK(0), n) when the population size of mutants reaches a certain
threshold n (conveniently chosen), see (1.5) for definition.

Theorem 2.2. Under Assumptions 1.1 and 2.1, there exists C > 0 such that the following result holds
for any η > 0 and K ≥ 1.

i) if ∂RFR(x?) < 0, there exist L,C > 0 such that for any K ≥ 2 and n ≤ K/ log(K), we have

P
(

sup
t≤TKM (NK(0),Ln)

∣∣∣∣NK
M (t)

Z(t)
− 1

∣∣∣∣ > η ; W > 0

)
≤ C

(√
K logK

n
+

1

K1/3
+

1

η1/4

(
n logK

K

)1/10
)
,

ii) if ∂RFR(x?) = 0, there exist L,C > 0 such that for any K ≥ 2 and n ≤ LK/(logK)2, we have

P
(

sup
t≤TKM (NK(0),n)

∣∣∣∣NK
M (t)

Z(t)
− 1

∣∣∣∣ > η ; W > 0

)
≤ C

(√
logK

n
+

1

K1/3
+

1

η1/4

(
logK

√
n

K

)1/10
)
.

Let us state the immediate corollary which will be used in Section 4.

Corollary 2.3. If ∂RFR(x?) < 0, let us consider sequences (ξK)K such that 1 � ξK � K/(logK).
Then NK

M/Z − 1 converges to 1 in probability as K goes to infinity, uniformly on the time interval
[0, TKM (NK(0), ξK)].

If ∂RFR(x?) = 0, a similar results holds for sequences (ξK)K such that 1� ξK � K/(logK)2.
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We refer to Section 4 for the asymptotic behavior of TKM (NK(0), ξK).

The statement depends on the value of ∂RFR(x?). Indeed, the proof is based on a comparison
between TKM (NK(0), n) and the first time where the resident population exits a neighborhood of its
equilibrium. The choice of this neighborhood depends on ∂RFR(x?). If ∂RFR(x?) < 0, the manifold
{xR = 0} is stable around the fixed point (x?R, 0). This stability helps for the control of the resident
population and guarantees that the distance of the resident population process to its equilibrium
remains smaller than n (up to some well chosen constant). If ∂RFR(x?) = 0, exponential (local)
stability of residents is lost and we can (only) prove that the distance is smaller than

√
Kn. We refer

to Lemma 2.8 for details.

The proof of Theorem 2.2 will be obtained in several steps that we develop below. We first consider a
classical coupling to compare NK

M and Z. Let us introduce a decomposition with the processes realizing
the coupling and the additional part. The two subpopulations will be indexed respectively by q and r.
We introduce

mK(s) = min(NK
M,q(s)bM (XK(s)), Zq(s)b?), pK(s) = max(NK

M,q(s)dM (XK(s)), Zq(s)d?),

where (NK
M,q, N

K
M,r) and (Zq, Zr) are defined as follows:

NK
M,q(t) = 1 +

∫ t

0

∫
R+

1u≤mK(s−)N b
M (ds, du)−

∫ t

0

∫
R+

1u≤pK(s−)N d
M (ds, du)

NK
M,r(t) =

∫ t

0

∫
R+

1mK(s−)<u≤NKM,q(s−)bM (XK(s−))N b
M (ds, du)

+

∫ t

0

∫
R+

1NKM,q(s−)dM (XK(s−))<u≤pK(s−)N d
M (ds, du)

+

∫ t

0

∫
R+

10≤u−NKM,q(s−)bM (XK(s−))≤NKM,r(s−)bM (XK(s−))N b
M (ds, du)

−
∫ t

0

∫
R+

10≤u−pK(s−)≤NKM,r(s−)dM (XK(s−))N d
M (ds, du)

and in a similar way,

ZKq (t) = NK
M,q(t)

ZKr (t) =

∫ t

0

∫
R+

1mK(s−)<u≤ZKq (s−)b? N
b
M (ds, du)

+

∫ t

0

∫
R+

1ZKq (s−)d?<u≤pK(s−)N d
M (ds, du)

+

∫ t

0

∫
R+

10≤u−ZKq (s−)b?≤ZKr (s−)b? N
b
M (ds, du)

−
∫ t

0

∫
R+

10≤u−pK(s−)≤ZKr (s−)d? N
d
M (ds, du).

We can easily check that

Lemma 2.4. The following equalities of processes hold, almost surely:

NK
M = NK

M,q +NK
M,r, Z = ZKq + ZKr .

Proof. That results from the fact that NK
M,q + NK

M,r and NK
M are solutions of the same stochastic

differential equation for which pathwise uniqueness holds. A similar argument also holds for Z.
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Let us introduce the time when the gap to the equilibrium for resident population goes beyond some
level n ≥ 0 starting from the initial condition NK(0) = n0 ∈ N2:

TKR (n0, n) = inf
{
t > 0 : |NK

R (t)− x?RK| > n
}

= inf
{
t > 0 : |XK

R (t)− x?R| > n/K
}
.

We consider the (potentially random) initial population size NK(0) and introduce the stopping time

TKR,M (m,n) = TKM (NK(0),m) ∧ TKR (NK(0), n) ∧ 4 logK

3r?
. (2.1)

The residual processes NK
r , Z

K
r will be compared to an inhomogeneous branching process and proved

to be negligible until TKR,M (m,n), with m and n suitably chosen.

Remark 2.5. This stopping time considers the first time when the population of mutants goes beyond
m or the population of residents has moved of n from its equilibrium value. It is also truncated at a
deterministic value of order logK. For this truncation, we can consider any time λ logK/r? (with
λ > 1). We choose λ := 4/3 in definition (2.1) to optimize the convergence speed of Theorem 2.2. This
particular choice only matters in the proof of Lemma 2.8.

Lemma 2.6. Under Assumptions 1.1 and 2.1,

i) If ∂RFR(x?) < 0, for any L > 0, there exists CL > 0 such that for any n ≤ K,

E

[
sup

t≤TKR,M (n,Ln)

(ZKr (t) +NK
M,r(t))e

−r?t

]
≤ CL

(
n logK

K

)1/2

exp

(
CL

n logK

K

)
.

ii) If ∂RFR(x?) = 0, there exists C ≥ 0 such that for any n ≤ K,

E

 sup
t≤TKR,M (n,

√
Kn)

(ZKr (t) +NK
M,r(t))e

−r?t

 ≤ C (logK

√
n

K

)1/2

exp

(
C logK

√
n

K

)
.

Proof. Since bM and dM are locally Lipschitz, there exists CL > 0 (which may change from line to
line) such that for any s ≤ TKR,M (n,Ln) and n ≤ K,

ZKq (s)|bM (XK(s))− b?|+ ZKq (s)|dM (XK(s))− d?| ≤ CLZKq (s)
n

K
(2.2)

almost surely. Then

ZKq (s)b? −mK(s) + pK(s)− ZKq (s)d? ≤ CLZKq (s)
n

K
.

Therefore, the process ZKr can be stochastically dominated on the time window [0, TKR,M (n,Ln)] by a
branching process with inhomogeneous immigration Y , solution of

Y (t) =

∫ t

0

∫
R+

1u≤CLZKq (s−) nK
N I(ds, du)

+

∫ t

0

∫
R+

10≤u≤Y (s−)b? N
b
M (ds, du)−

∫ t

0

∫
R+

10≤u≤Y (s−)d? N
d
M (ds, du),

where N I is a Poisson point measure with Lebesgue intensity on R+, independent of N b
M and N d

M .
We can easily note that for any t ≥ 0,

E
[
ZKn (t)

]
≤ E [Z(t)] = er?t
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and straightforward computation leads to

E
[
Y (t ∧ TKR,M (n,Ln))

]
≤ CL

n

K
e2r?t.

Let M(t) be the martingale part of the semimartingale Y (t), with quadratic variation process given
by

〈M〉(t) =

∫ t

0

(
CLZ

K
q (s)

n

K
+ Y (s)(b∗ + d∗)

)
ds.

Using Doob and Cauchy Schwarz inequalities and TKR,M (n,Ln) ≤ 4(logK)/3 by (2.1), we obtain from
the previous estimates

E

(
sup

t≤TKR,M (n,Ln)

∣∣∣∣∫ t

0

e−r?sdM(s)

∣∣∣∣
)
≤ CE

(∫ TKR,M (n,Ln)

0

e−2r?sd〈M〉(s)
)1/2

≤ CL

√
n logK

K
.

We compute now

Y (t)e−r?t =

∫ t

0

e−r?sdM(s) +

∫ t

0

e−r?s
(
CLZ

K
q (s)

n

K
+ Y (s)(b∗ − d∗)− Y (s)(b∗ − d∗)

)
ds

=

∫ t

0

e−r?sdM(s) +

∫ t

0

e−r?s CLZ
K
q (s)

n

K
ds.

Combining the previous estimates and using again TKR,M (n,Ln) ≤ 4 logK/(3r?), we get

E

(
sup

t≤TKR,M (n,Ln)

Y (t)e−r?t

)
≤ CL

(√
n logK

K
+
n logK

K

)
.

Using the domination of ZKr by Y , we obtain

E

(
sup

t≤TKR,M (n,Ln)

ZKr (t)e−r?t

)
≤ CL

√
logK

n

K
,

which proves the first estimate i) for Zr.

The assertion i) for NK
M,r can be proved in a similar way. Indeed the individual birth and death rates

are respectively upper-bounded by b?+CLn/K and lower-bounded by d?+CLn/K for t ≤ TKR,M (n,Ln).

So NK
M,r is dominated on the time window [0, TKR,M (n,Ln)] by the process Ỹ defined by

Ỹ (t) =

∫ t

0

∫
R+

1u≤CLZq(s−)n/K N I(ds, du)

+

∫ t

0

∫
R+

10≤u≤Y (s−)(b?+CLn/K)N b
M (ds, du)−

∫ t

0

∫
R+

10≤u≤Y (s−)(d?−CLn/K)N d
M (ds, du).

The conclusion follows as above by considering Ỹ (t) exp(−(r? + 2CLn/K)t) for t ≤ TKR,M (n,Ln).

For the second case ii), we proceed similarly and (2.2) becomes

ZKq (s)|bM (XK(s))− b?|+ ZKq (s)|dM (XK(s))− d?| ≤ CZKq (s)

√
n

K
,



V. Bansaye et al./Sharp approximation for invasion processes 10

almost surely for s ≤ TKR,M (n,
√
K n), since n ≤ K. Following Step 1 yields

E

 sup
t≤TKR,M (n,

√
Kn)

ZKr (t)e−r?t

 ≤ C (logK

√
n

K

)1/2

.

Proceeding similarly for NK
M,r ends the proof.

Lemma 2.7. Under Assumptions 1.1 and 2.1,
i) If ∂RFR(x?) < 0, for any L > 0, there exists CL > 0 such that for any η > 0 and n ≤ K,

P
(

sup
t≤TKR,M (n,Ln)

∣∣∣∣NK
M (t)

Z(t)
− 1

∣∣∣∣ > η ; W > 0

)
≤ CL
η1/4

(
n logK

K

)1/10

exp

(
CL

n logK

K

)
. (2.3)

ii) If ∂RFR(x?) = 0, there exists C > 0 such that for any η > 0 and n ≤ K,

P
(

sup
t≤TKR,M (n,

√
Kn)

∣∣∣∣NK
M (t)

Z(t)
− 1

∣∣∣∣ > η ; W > 0

)
≤ C

η1/4

(
logK

√
n

K

)1/10

exp

(
C logK

√
n

K

)
. (2.4)

Proof. Let us prove i) and focus on the survival event {W > 0} where the process Z stays positive.
On this event, using Lemma 2.4, we obtain

|NK
M (t)− Z(t)|
Z(t)

=
|NK

M,r(t)− ZKr (t)|
Z(t)

=
|NK

M,r(t)− ZKr (t)|e−r?t

W (t)
,

where W (t) = Z(t)e−r?t is the classical martingale associated with Z.
We use now Lemma 2.6 i) and the the fact that W (t) converges to W a.s. as t tends to infinity.

We deduce that for t ≤ TKR,M (n,Ln), |NK
M,r(t) − ZKr (t)|/Z(t) tends to 0 in probability on the event

W > 0, as K tends to infinity.

Let us now obtain an explicit convergence speed. For convenience we define

UK = sup
t≤TKR,M (n,Ln)

Zr(t)e
−r?t + sup

t≤TKR,M (n,Ln)

NK
M,r(t)e

−r?t.

The previous computations ensure that

|NK
M (t)− Z(t)|
Z(t)

≤ UK

inft≥0W (t)

a.s. on the event W > 0. Moreover, choosing ε = n logK/K, for any η > 0

P
(
UK ≥ η inf

t≥0
W (t) ; W > 0

)
≤ P

(
UK ≥ ε2/5

)
+ P

(
inf
t≥0

W (t) ≤ 1

η
ε2/5 ; W > 0

)
.

By Markov’s inequality and Lemma 2.6,

P
(
UK ≥ ε2/5

)
≤ CL ε1/2−2/5eCLε = CLε

1/10eCLε.

On the other hand, by Lemma 6.2 in Appendix,

P
(

inf
t≥0

W (t) ≤ 1

η
ε2/5 ; W > 0

)
≤ C 1

η1/4
ε2/5×1/4 = C

1

η1/4
ε1/10.

This proves the result in the case i). Case ii) is proven similarly.
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Let us now compare the times when mutant and resident population processes reach their threshold.

Lemma 2.8. We note sK = 4(logK)/(3r?). Under Assumptions 1.1 and 2.1,

i) If ∂RFR(x?) < 0, then there exists L,C > 0 such that for any K ≥ 2 and n ≤ K/ logK,

P
(
TKM (NK(0), n) ≥ TKR (NK(0), Ln) ∧ sK ; W > 0

)
≤ C

(√
K logK

n
+

1

K1/3
+

(
n logK

K

)1/10
)
.

ii) If ∂RFR(x?) = 0, then there exists L,C > 0 such that for any K ≥ 2 and n ≤ LK/ log(K)2,

P
(
TKM (NK(0), n) ≥ TKR (NK(0),

√
Kn) ∧ sK ; W > 0

)
≤ C

(√
logK

n
+

1

K1/3
+

(
logK

√
n

K

)1/10
)
.

Observe that {TKM (NK(0), n) ≥ TKR (NK(0),m) ∧ sK} = {TKM (NK(0), n) = TKR,M (n,m)}. We are
using the result for sequences with m = ξK which make the right hand side go to zero. This will ensure
that the mutant population process reaches its threshold before the resident population process.

Proof of case i). Let us note TK = TKR,M (n,Ln) for convenience. The first step consists in controlling
the resident population. Let us prove that there exist L,C > 0 such that for any K ≥ 2 and n ≤
K/ logK,

P
(
TKR (NK(0), Ln) ≤ TKM (NK(0), n) ∧ sK

)
= P

(
sup
t≤TK

∣∣XK
R (t)− x?R

∣∣ ≥ L n
K

)
≤ C
√
K logK

n
, (2.5)

For that purpose, we first notice that, for any t ≤ TK and K ≥ 2,

XK
M (t) ≤ n

K
≤ 1

logK
and XK

R (t) ≤ x?R + L
n

K
≤ x?R +

L

logK
. (2.6)

Hence, the processes XK
M and XK

R are bounded up to time TK , uniformly for K ≥ 2.
We define

MK(t) =
1

K

∫
[0,t]×R+

1{u≤NKR (s−)bR(XK(s−))}Ñ
b
R(ds, du)

− 1

K

∫
[0,t]×R+

1{u≤NKR (s−)dR(XK(s−))}Ñ
d
R(ds, du),

where Ñ b
R and Ñ d

R are the compensated Poisson martingale measures of N b
R and N d

R. We obtain

XK
R (t) =XK

R (0) +MK(t) +

∫ t

0

GR(XK(s))ds,

where we recall that GR(xR, xM ) = xR(bR − dR)(xR, xM ) = xR FR(xR, xM ). The quadratic variation
process of the martingale part MK is the following

〈MK〉(t) =
1

K

∫ t

0

XK
R (s)

(
bR(XK(s)) + dR(XK(s))

)
ds. (2.7)

Observing that GR(x?) = 0 by definition of x?R, we rewrite the dynamics above as

XK
R (t) =XK

R (0) +MK(t) +HK
1 (t) +HK

2 (t) +

∫ t

0

(XK
R (s)− x?R)∂RGR(x?)ds,
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where

HK
1 (t) =

∫ t

0

XK
M (s)∂MGR(x?)ds

and

HK
2 (t) =

∫ t

0

(
GR(XK(s−))−GR(x?)− (XK

R (s)− x?R)∂RGR(x?)−XK
M (s)∂MGR(x?)

)
ds.

Denoting
Y KR (t) := XK

R (t)− x?R,

we have

Y KR (t) = (XK
R (0)− x?R) +HK(t) +

∫ t

0

Y KR (s)∂RGR(x?)ds, (2.8)

where
HK(t) := MK(t) +HK

1 (t) +HK
2 (t).

Recall that ∂RFR(x?) < 0 and so ∂RGR(x?) < 0. Then Lemma 6.3 ensures that for any K

sup
0≤s≤TK

∣∣Y KR (s)
∣∣ ≤ Γ

∣∣XK
R (0)− x?R

∣∣+ Γ sup
0≤s≤TK

∣∣HK(s)−HK(bsc)
∣∣ ,

with

Γ := (1 + |∂RFR(x?)|) 1

1− e∂RFR(x?)
.

Using that HK = MK +HK
1 +HK

2 and

sup
t≤TK

∣∣HK
1 (t)−HK

1 (btc)
∣∣ ≤ n

K
|∂MGR(x?)|, sup

t≤TK

∣∣HK
2 (t)−HK

2 (btc)
∣∣ ≤ C ( n

K

)2

almost surely for some constant C > 0, by definition of TK and HK
1 , H

K
2 , we get

sup
0≤s≤TK

∣∣Y KR (s)
∣∣ ≤ Γ

(
sup
t≤TK

∣∣MK(t)−MK(btc)
∣∣+ C

n

K

)
.

Besides, using (2.6) and (2.7) and TK ≤ C logK, we get E
[
〈MK〉TK

]
≤ C(logK)/K. By Markov’s

and Burkholder-Davis-Gundy’s inequalities, we then obtain

P

(
sup
t≤TK

∣∣MK(t)−MK(btc)
∣∣ ≥ n

K

)
≤CK

n
E

[
sup
t≤TK

|MK(t)|

]

≤CK
n
E
[
〈MK〉TK

]1/2
≤CK

n

(
logK

K

)1/2

≤ C
√
K logK

n
.

Recalling that Y KR (t) = XK
R (t) − x?R and n ≤ K and combining these two last estimates yields the

expected inequality (2.5) and ends the first step.

We turn to the second step and prove that

P
(
TKM (NK(0), ξK) ∧ TKR (NK(0), LξK) ≥ sK ; W > 0

)
≤ CK−1/3 +

C

η1/4

(
logK

√
ξK
K

)1/10

. (2.9)
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Let us notice that, a.s. on the event {W > 0},{
TKM (NK(0), n) ∧ TKR (NK(0), n) ≥ sK

}
⊆
({

NK
M (sK) ≤ n+ 1

}
∩
{

Z(sK)

NK
M (sK)

≤ 2

})
∪

{
sup
t≤TK

∣∣∣∣NK
M (t)

Z(t)
− 1

∣∣∣∣ > 1

2

}

⊆ {Z(sK) ≤ K + 1} ∪

{
sup
t≤TK

∣∣∣∣NK
M (t)

Z(t)
− 1

∣∣∣∣ > 1

2

}
.

Hence, using Z(sK) = W (sK)er?sK = W (sK)K4/3 (by definition of sK),

P
(
TKM (NK(0), n) ∧ TKR (NK(0), n) ≥ sK ;W > 0

)
≤ P

(
W (sK) ≤ 2K−1/3 ; W > 0

)
+ P

(
sup
t≤TK

∣∣∣∣NK
M (t)

Z(t)
− 1

∣∣∣∣ > 1

2
; W > 0

)
.

The first term of the right hand side involves an estimate on the infimum of a single type branching
process which we state and prove in Lemma 6.1 in forthcoming Appendix. The second term of the sum
in the right hand side has been controlled in Lemma 2.7 i). Observing that the exponential term in
Lemma 2.7 is bounded since n ≤ K/ logK and combining these estimates yields (2.9).

We can now conclude the case i) combining the two steps. More precisely we use that for any
x, y, z ∈ R, (x ≥ y ∧ z)⇐⇒ (x ∧ y ≥ z or x ∧ z ≥ y). The result follows then from (2.9) and (2.5).

Proof of the case ii). We prove a similar result under the hypothesis ∂RFR(x?) = 0. Let us prove that
there exists L > 0 such that for any K ≥ 1 and n ≤ L.K/(logK)2

P

(
sup
t≤TK

∣∣XK
R (t)− x?R

∣∣ ≥ L√n/K) ≤ C√ logK

n
, (2.10)

where now TK := TKR,M (n,
√
nK).

For that purpose, we use again (2.8) and get directly

sup
t≤TK

∣∣XK
R (t)− x?R

∣∣ = sup
s≤TK

|Y KR (t)| (2.11)

≤|XK
R (0)− x?R|+ sup

t≤TK
|MK(t)|+ sup

t≤TK
|HK

1 (t)|+ sup
t≤TK

|HK
2 (t)|.

We recall that TK ≤ 4(logK)/(3r?) and proceeding as in the case i), the following estimates hold

P

(
sup
t≤TK

∣∣MK(t)
∣∣ ≥ 1

2

√
n

K

)
≤ C

√
K

n
·
√

logK

K
= C

√
logK

n
, (2.12)

sup
t≤TK

∣∣HK
1 (t)

∣∣+ sup
t≤TK

∣∣HK
2 (t)

∣∣ ≤ C
n

K
TK ≤ C n

K
logK = C

√
n

K

√
n(logK)2

K
.

For any n ≤ K/(2C log(K))2, we get

sup
t≤TK

∣∣HK
1 (t)

∣∣+ sup
t≤TK

∣∣HK
2 (t)

∣∣ ≤ 1

2

√
K

n
.

Then (2.11) guarantees{
sup
t≤TK

∣∣XK
R (t)− x?R

∣∣ ≥√ n

K

}
⊂

{
sup
t≤TK

|MK(t)| ≥ 1

2

√
n

K

}
.

and (2.12) yields (2.10) with L = 1/(4C2). The proof is concluded as for the case i).
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Theorem 2.2 becomes now a consequence of the two previous lemmas.

Proof of Theorem 2.2. We recall that sK = 4(logK)/(3r?) and in the case i) we use

P

(
sup

t≤TKM (NK(0),n)

∣∣∣∣NK
M (t)

Z(t)
− 1

∣∣∣∣ > η ; W > 0

)
≤ P

(
TKM (NK(0), n) > TKR (NK(0), Ln) ∧ sK ,W > 0

)
+ P

(
sup

t≤TKR,M (n,Ln)

∣∣∣∣NK
M (t)

Z(t)
− 1

∣∣∣∣ > η ; W > 0

)
.

The two terms of the right hand side can be controlled using respectively Lemmas 2.8 to choose L
and 2.7. This completes the proof for i) and ii) is proved similarly.

3. Approximation by dynamical systems

The goal of this section is to approximate the process XK = (XK
R , X

K
M ) defined in Section 1 by the

dynamical system defined by (1.2) under degenerate initial conditions. Usually such an approximation
is proved when the initial conditions are of order of magnitude one (cf. for example [20]). Here, we
focus on a small deterministic initial density of mutants, 1/K � xM = NK

M (0)/K � 1 and an initial
density of residents xR = NK

R (0)/K close to the equilibrium value x?R. The initial mutant density
may be very small regarding K but we still enjoy a large number of mutants allowing to compare the
stochastic process to its expected deterministic behavior. Starting from such sub-macroscopic level of
mutants, the time for them to reach macroscopic levels will be of order logK. We will compare the
density process and its deterministic approximation on this time scale of invasion. They are both small
at the beginning and we will show that their ratio remains close to 1 on the full time window allowing
to reach macroscopic density of mutants.

This section emphasizes the role of (small) initial conditions and we introduce the flow notation for
convenience. The process XK(x, .) started from x is defined for any K and time t by

XK
• (x, t) =x• +

1

K

∫
[0,t]×R+

1{u≤KXK• (x,s−)b•(XK(x,s−))}N b
• (ds, du) (3.1)

− 1

K

∫
[0,t]×R+

1{u≤KXK• (x,s−)d•(XK(x,s−))}N d
• (ds, du).

for • ∈ {R,M}. The flow φ(x, t) = (φR(x, t), φM (x, t)) is the solution of (1.2) starting from initial
value x, i.e. the unique solution of

φ(x, 0) = x,
∂

∂t
φ(x, t) = G(φ(x, t)),

where we recall that
G•(x) = x•(b•(x)− d•(x)).

In this section we assume that the flow φ satisfies a boundedness assumption: the solution remains in
a compact set if it starts close to the equilibrium x?.

Assumption 3.1. There exists a compact domain D of R2
+ such that

∃ε > 0, (x?R − ε, x?R + ε)× [0, ε) ⊂ D and {φ(x, t) : x ∈ D, t ≥ 0} is bounded.

.
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3.1. Properties of the dynamical system and hitting times

Let us consider the hitting time for the mutant population starting from x

τM (x, v) = inf{t ≥ 0 : φM (x, t) = v},

where by convention inf ∅ = ∞ and in that case the hitting time is infinite. The following result
quantifies the hitting time τM (x, v) in function of the two variables x and v, starting close to the
equilibrium x? = (x?R, 0). Let us define, for η > 0,

C(x, η) = sup{φM (x, t) : t ≤ τM (x, η)}

where τM (x, η) is the first time when the growth rate of mutants is smaller than η:

τM (x, η) = inf{t ≥ 0 : FM (φ(x, t)) ≤ η}.

We set
vη = lim

r↓0
inf

x∈Br(x?)∩(R∗+)2
C(x, η),

where Br(x
?) denotes the ball of radius r centered in x?. Observing that vη is decreasing with η, we

let η go to zero and define v? as the upper-bound of the values of mutants which can be reached in
the increasing phase, starting from the neighborhood of the equilibrium:

v? := lim
η↓0

vη.

The next result guarantees that v? is positive and finite. It also quantifies the hitting times τM (x, v)
when x goes close to x? and v is smaller than v?.

Proposition 3.2. Under Assumptions 1.1 and 3.1, the value v? is positive and finite.
Besides there exists a continuous increasing function τ : [0, v?)→ R+ such that τ(0) = 0 and for any
v̄ ∈ (0, v?),

lim
x→x∗

sup
v∈(xM ,v̄]

∣∣τM (x, v)− 1

r?
log(v/xM )− τ(v)

∣∣ = 0,

where the limit is taken for x ∈ (R∗+)2 if ∂RFR(x?) < 0, and for

x ∈ D(η) =
{

(xR, xM ) ∈ (R∗+)2 : |xR − x?R| log(1/xM ) ≤ η
}

for some η > 0 if ∂RFR(x?) = 0.

The proof of this proposition necessitates the three next lemmas, which guarantee the resident
process to remain close to its equilibrium value as long as the mutant process remains small.

Lemma 3.3. i) If ∂RFR(x?) < 0, then there exists u0 ∈ (0, 1) and C > 0 such that for any u ≤ u0

and x = (xR, xM ) ∈ Bu(x?),
sup

t≤τM (x,u)

|φR(x, t)− x?R| ≤ Cu.

ii) If ∂RFR(x?) = 0, then there exist u0 ∈ (0, 1) and η0 > 0 such that, for all u ≤ u0 and x ∈
Bu(x?) ∩D(η0),

sup
t≤τM (x,u)

|φR(x, t)− x?R| ≤ Cu.

iii) In both cases, for all u ≤ u0 and x ∈ Bu(x?) ∩D(η0),

τM (x, u) ≤ 2

r?
log(1/xM ).
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Proof. We begin by proving i). As ∂RFR(x?) < 0, we can find r > 0 such that for any x ∈ Br(x?),

∂RFR(x) ≤ ∂RFR(x?)/2 < 0. (3.2)

For convenience we introduce the gap with initial position for the resident population dynamics and
the first time when the flow leaves Br(x

?):

yR(t) := φR(x, t)− xR, sr(x) := inf{t ≥ 0 : φ(x, t) 6∈ Br(x?)}. (3.3)

Let us use that by definition of the flow φR

yR(t) =

∫ t

0

φR(x, s)FR(φ(x, s))ds = H(t) +

∫ t

0

φR(x, s)yR(s)∂RFR(xR, φM (x, s))ds, (3.4)

where

H(t) =

∫ t

0

φR(x, s)(FR(φ(x, s))− yR(s)∂RFR(xR, φM (x, s)))ds.

Recalling Assumption 1.1 (R) and using Taylor expansion, there exists Cr > 0 such that∣∣FR(φ(x, s))− FR(xR, φM (x, s))− yR(s)∂RFR(xR, φM (x, s))
∣∣ ≤ Cr|yR(s)|2

for s ≤ sr(x). Using that FR(x?) = 0, we get also |FR(xR, φM (x, s))| ≤ Cr (|xR − x?R|+ |φM (x, s)|)
and

sup
t≤T∧sr(x)

|H(t)−H(btc)| ≤ Cr

(
|xR − x?R|+ | sup

t≤T∧sr(x)

(
|φM (x, s)|+ |yR(s)|2

))
.

Thanks to (3.2), we can use Lemma 6.3 for (3.4) and we get any T > 0,

sup
t≤T∧sr(x)

|yR(t)| ≤Cr

(
sup

t≤sr(x)∧T
|H(t)−H(btc)|

)
(3.5)

≤Cr

(
|xR − x?R|+ sup

t≤T∧sr(x)

(
|φM (x, s)|+ |yR(s)|2

))
.

We work now for times when yR is also smaller that 1/(2Cr) and introduce

sr(x) = inf

{
t ≥ 0 : |yR(s)| ≥ 1

2Cr

}
∧ sr(x).

Then for s ≤ sr(x), this yields Cr|yR(s)|2 ≤ |yR(s)|/2 and gathering terms with yR,

sup
t≤T∧sr(x)

|yR(t)| ≤2Cr

(
|xR − x?R|+ | sup

t≤T∧sr(x)

|φM (x, s)|

)
.

For any u > 0 and x ∈ Bu(x?),

sup
t≤τM (x,u)∧sr(x)

|yR(t)| ≤ 4Cru. (3.6)

Thus, setting ur = (r/2) ∧ r/(8Cr) ∧ 1/(8C2
r ) ensures that for any x ∈ Bur (x?),

sup
t≤τM (x,ur)∧sr(x)

|yR(t)| ≤ (r/2) ∧ 1/(4Cr),



V. Bansaye et al./Sharp approximation for invasion processes 17

which guarantees sr(x) > τM (x, ur). Thus for u ≤ ur, sr(x) > τM (x, u) and (3.6) becomes

sup
t≤τM (x,u)

|yR(t)| ≤4Cru,

since τM (x, u) ≤ τM (x, ur) < sr(x).

We prove now (ii) and consider the case ∂RFR(x?) = 0. Recalling that the flow is bounded
from Assumption 3.1, a Taylor expansion in x? yields now |FR(φ(x, t))| = |FR(φ(x, t)) − FR(x?)| ≤
C(|φR(x, t)− x?R|2 + |φM (x, t)|) and recalling that yR(t) = φR(x, t)− xR,

|y′R(t)| = |φR(x, t)FR(φ(x, t)| ≤C
[
|xR − x?R|2 + yR(t)2 + φM (x, t)

]
. (3.7)

Let us now introduce the first time when the quadratic contribution may become dominant :

s(x) = inf{t ≥ 0 : yR(t)2 ≥ |xR − x?R|2 + φM (x, t)}.

Before this time, we can use |y′R(t)| ≤ 2C
[
|xR − x?R|2 + φM (x, t)

]
and we get for t ≤ s(x),

|yR(t)| =
∣∣∣∣∫ t

0

y′R(s)

∣∣∣∣ ≤ C [|xR − x?R|2t+

∫ t

0

φM (x, s)ds

]
.

Let us use again the notation sr(x) introduced at (3.3), and fix r > 0 to some small enough value
such that for t ≤ sr(x), FM (φ(x, t)) ≥ r?/2. Hence, for t ≤ sr(x),∫ t

0

φM (x, s)ds =

∫ t

0

∂sφM (x, s)
1

FM (φ(x, s))
ds ≤ 2

r?

∫ t

0

∂sφM (x, s)ds ≤ 2

r?
φM (x, t). (3.8)

We obtain for t ≤ s(x) ∧ sr(x),

|yR(t)| =
∣∣ ∫ t

0

y′R(s)
∣∣ ≤ C [|xR − x?R|2 log(1/xM ) + φM (x, t)

]
. (3.9)

Let now x ∈ D := D(1/(4C2)) = {(xR, xM ) : |xR−x?R| log(1/xM ) ≤ 1/(4C2)} and t ≤ τM (x, 1/(4C2))∧
s(x) ∧ sr(x) such that φM (x, t) ≤ 1/(4C2). We get

|yR(t)|2 ≤ 2C2
[
(|xR − x?R| log(1/xM )2|xR − x?R|2 + φM (x, t)2

]
≤ 1

2

[
|xR − x?R|2 + φM (x, t)

]
.

This implies that for any x ∈ D, s(x) > τM (x, 1/(4C2)) ∧ sr(x) and (3.9) becomes

sup
t≤τM (x,1/(4C2))∧sr(x)

|yR(t)| ≤ C [|xR − x?R|+ φM (x, t)] .

Finally choosing some u0 ≤ 1/(4C2)∧ r/(4C), the inequality above implies that τM (x, u0) < sr(x),
which proves the result.

Proof of iii). For all t ≤ τM (x, u),

∂tφM (x, t) ≥ φM (x, t)
r?
2
,

whence, for all t ≤ τM (x, u),
φM (x, t) ≥ xMet·r?/2.

The inequality above implies that τM (x, u) is finite. On the other hand, since t 7→ φM (x, t) is
continuous, we know that φM (x, τM (x, u)) = u. Consequently

u ≥ xMeτM (x,u)·r?/2,

which implies

τM (x, u) ≤ 2

r?
log(u/xM ).

Considering u smaller than one, this proves the result.
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We also need an estimate of the cumulated gap :

Lemma 3.4. i) Assume that ∂RFR(x?) < 0. Then there exist u0 ∈ (0, 1) and η0 > 0 such that for all
u ≤ u0, η ≤ η0 and x ∈ Bu(x?) ∩D(η),∫ τM (x,u)

0

sup
s≤t
|φR(x, s)− x?R| dt ≤ C(u+ η).

ii) Assume that ∂RFR(x?) = 0. Then there exist some u0 ∈ (0, 1) and η0 > 0 such that for all u ≤ u0,
and η ≤ η0 and x ∈ Bu(x?) ∩D(η),∫ τM (x,u)

0

sup
s≤t
|φR(x, s)− x?R| dt ≤ C(u+ η2).

Proof. Here again, x ∈ Bu(x?) and we will choose u small enough to have the following estimates.
Firstly, let us prove the result under the assumption ∂RFR(x?) < 0. Using (3.5) and noting

z(t) = sup
s≤t
|yR(s)|

we have for all t ≤ τM (x, u),

z(t) ≤C
(
|xR − x?R|+ φM (x, t) + z(t)2

)
,

since the function t 7→ φM (x, t) is non-decreasing on [0, τM (x, u)] for u small enough. As a consequence,∫ τM (x,u)

0

z(s) ds ≤C
(
τM (x, u)|xR − x?R|+

∫ τM (x,u)

0

φM (x, s)ds+ z(τM (x, u))

∫ τM (x,u)

0

z(s)ds

)
.

We use Lemma 3.3 to estimate z(τM (x, u)). Moreover (3.8) gives a bound for
∫ τM (x,u)

0
φM (x, s)ds.

Adding that τM (x, u) ≤ 2 log(1/xM )/r? (see Lemma 3.3 iii)), we obtain for any x ∈ D(η),∫ τM (x,u)

0

z(s) ds ≤ C

(
η + u + u

∫ τM (x,u)

0

z(s) ds

)
.

Then for u ∈ (0, 1/(2C)], for x ∈ D(η),∫ τM (x,u)

0

z(s)ds ≤ 2C(η + u).

We conclude using that φR(x, s)− x?R = yR(s) + xR − x?R .

We can proceed similarly under the assumption ∂RFR(x?) = 0, using now (3.7) and∫ T

0

∫ t

0

z(s)2dsdt ≤
∫ T

0

z(t)

∫ t

0

z(s)dsdt ≤

(∫ T

0

z(t)dt

)2

.

The proof is completed.

Lemma 3.5. For all v ∈ (0, v?), there exist η ∈ (0, r?) and r > 0 such that, for all x ∈ Br(x?)∩(R∗+)2

and t ≤ τM (x, v), FM (φ(x, t)) ≥ η.

Proof. Since v < v?, there exists η ∈ (0, r?) such that v < vη. Hence there exists r > 0 such that

v < inf
x∈Br(x?)∩(R∗+)2

C(x, η).

Let x belong to Br(x
?) ∩ (R∗+)2. Then v < C(x, η) = sup{φM (x, t) : t ≤ τM (x, η)} and we get

FM (φ(x, t)) ≥ η for t ≤ τM (x, v) by continuity of t→ FM (φ(x, t)).
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We can now prove Proposition 3.2.

Proof of Proposition 3.2. Recall that r? = FM (x?). We consider the case ∂RFR(x?) < 0 and the other
case can be treated similarly. Thanks to Lemma 3.3, we can choose u0 > 0 and η0 > 0 such that, for
all u ≤ u0, and x ∈ Bu(x?),

|φR(x, τM (x, u))− x?R| ≤ sup
t≤τM (x,u)

|φR(x, t)− x?R| ≤ Cu. (3.10)

Then
{φ(x, t) : t ≤ τM (x, u)} ⊂ ([x?R − Cu, x?R + Cu]× [0, u]) ∩ (R∗+)2.

Since FM (x?) > 0, we can choose u1 ∈ (0, u0] such that

η := inf {FM (φ(x, t)) : t ≤ τM (x, u1), x ∈ Bu1
(x?)} > 0.

This ensures that v? ≥ u1 > 0. Besides, starting close to the neighborhood of x?, the flow is bounded
by Assumption 3.1. This ensures that v? is finite.

Let us now prove the second part of the proposition. We start by proving the result for small
values of v using the first part which guarantees a lowerbound for the growth rate of mutants. For any
v ∈ (0, u1] and x ∈ Bv(x?) and t ≤ τM (x, v),

FM (φ(x, t)) ≥ η.

Furthermore
τM (x, φM (x, t)) = t

and
∂tφM (x, t) = φM (x, t)FM (φR(x, τM (x, φM (x, t))), φM (x, t)).

By separation of variables (put u = φM (x, t)) and integration on the time interval [0, τM (x, v)], we get

τM (x, v) =

∫ v

xM

1

uFM (φR(x, τM (x, u)), u)
du =

1

r?
log(v/xM ) +Rv(x),

for any v ∈ (0, u1] and x ∈ Bu1
(x?) (with xM ≤ v) and t ≤ τM (x, v), where

Rv(x) =

∫ v

xM

1

u

(
1

FM (φR(x, τM (x, u)), u))
− 1

r?

)
du.

To get the expected estimate, we need to evaluate the term inside the integral for u close to 0. Using
that FM is locally Lipschitz and r? = FM (x?) and (3.10), and we obtain that for any u ∈ (0, u1] and
x ∈ Bu1

(x?) (with xM ≤ u),

1

u

(
1

FM (φR(x, τM (x, u)), u))
− 1

r?

)
≤ C.

The integral of the right hand side is convergent at 0 and we get

lim
v→0

sup
x∈Bu1 (x?):xM≤v

Rv(x) = 0.

Besides, for any u0 ∈ (0, u1], (x, u)→ FM (φR(x, τM (x, u)), u) is uniformly continuous on {(x, u) : x ∈
Bu1

(x?), xM ≤ u, u ∈ [u0, u1]}. It can be shown by a linearization argument at the equilibrium x?

(Hartman Grobman Theorem). Combining both facts and splitting the interval [xm, v] = [xm, u0] ∪
[u0, v] yields

sup
{
|Rv(x)−Rv(x′)| : x, x′ ∈ Br(x?) ∩ (R∗+)2, v ∈ [max(xM , x

′
M ), u1]

}
−→
r→0

0.
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The uniform Cauchy criterion ensures then that Rv(x) converges, uniformly for v ∈ [v0, v1], to a real
number τ(v) as x goes to x?. Therefore,

τ(v) = lim
x→x?

∫ v

xM

1

u

(
1

FM (φR(x, τM (x, u)), u))
− 1

r?

)
du (3.11)

and the previous estimates also guarantee that τ is continuous on (0, u1] and that τ(v) goes to 0 as v
goes to 0. This ends the proof for v ∈ (0, u1].

To deal with v ∈ [u1, v?), we can split the time to reach v using the time to reach first u1 :

τM (x, v) = τM (x, u1) + τM (x, u1, v),

where τM (x, u1, v) yields the time to go from u1 to v:

τM (x, u1, v) = τM ((φR(x, τM (x, u1)), u1), v) =

∫ v

u1

1

u

1

FM (φR(x, τM (x, u)), u))
du. (3.12)

It remains to check that this term converges as x goes to x∗ (uniformly for u ∈ [u1, u2] where u2 < v?).
This can be achieved as above using uniform continuity of (x, u) ∈ {(x, u) : x ∈ Bu1(x?), u ∈ [u1, u2]} →
FM (φR(x, τM (x, u)), u). It ensures that the limit is continuous and increasing with respect to v.
The case ∂RFR(x?) = 0 is treated in similar way. The linearization argument for proving uniform
continuity is more subtle in that partially hyperbolic case and we can use [28].

3.2. Quantitative approximation of the stochastic process

The main result can now be stated. We consider a large number of mutants but authorize this number
to be small compared to initial resident population size. This makes the limiting process to be null on
finite time intervals and we look at large time intervals τM (xK , v) and renormalized values to describe
how the mutant density escapes from the absorbing and unstable boundary. Thus the initial density
of mutants is small, and the initial density of residents is close to the equilibrium.

Theorem 3.6. Under Assumptions 1.1 and 3.1, for all xK = (xKR , x
K
M ) ∈ (R∗+)2, satisfying

1/K � xKM � 1 and |xKR − x?R| log
(
1/xKM

)
� 1,

there exists η0 > 0 such that, for any v ∈ (0, v?), η ∈ (0, η0), there exists some C > 0 satisfying for all
K ∈ N∗,

P

(
sup

t≤τM (xK ,v)

∣∣∣∣XK
M (xK , t)

φM (xK , t)
− 1

∣∣∣∣ > η

)
≤ C√

KxKM

.

Observe that our initial conditions are satisfied as soon as the initial number of mutants NK
M (0)

goes to infinity but remains negligible compared to K and the initial density of mutants XK
R (0) is close

to the equilibrium value up to a term of order of magnitude 1/ logK. Our result stops at hitting times
τM (xK , v) but could be easily extended on finite time intervals and with initial conditions of order
one, following classical results of [24, 25].

In all this subsection, the hypotheses of Theorem 3.6 are in force, and we denote, for • ∈ {R,M},

XK
• (t) := XK

• (xK , t) , x
K
• (t) := φ•(xK , t)

and
Y K• (t) := XK

• (t)− xK• (t).
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In addition, we introduce the following stopping times: for • ∈ {R,M},

θK• := inf

{
t > 0 :

XK
• (t)

xK• (t)
≥ 2

}
, θK := θKR ∧ θKM ,

σKη := inf

{
t > 0 :

∫ t

0

sup
r≤s
|Y KR (r)|ds ≥ η

}
for η > 0,

σ̃Kε := inf

{
t > 0 : sup

s≤t
|Y KR (s)| ≥ ε

}
for ε > 0.

In order to prove Theorem 3.6, we need the following result providing a control in probability when
K goes to infinity of the stopping times θKR , σKη and σ̃Kε .

Lemma 3.7. There exist L, η0 > 0 such that for all 0 < η ≤ η0,

P
(
σKη ≤ τM (xK , Lη) ∧ θK

)
≤C
η
K−1/2

(
log
(
1/xKM

))1/2
, (3.13)

P
(
σ̃KLη ≤ τM (xK , Lη) ∧ θK ∧ σKη

)
≤C
η
K−1/2

(
log
(
1/xKM

))1/2
, (3.14)

P
(
θKR ≤ τM (xK , Lη) ∧ θKM

)
≤C
η
K−1/2

(
log
(
1/xKM

))1/2
. (3.15)

Proof. To begin with, let us prove (3.13). For the sake of notation, let us denote

SK := τM (xK , Lη) ∧ θK ∧ σKη .

By definition of σKη ,

{
σKη ≤ τM (xK , Lη) ∧ θK

}
=

{∫ SK

0

sup
r≤s

∣∣Y KR (r)
∣∣ ds ≥ η} .

To control the probability of this event, we use that

Y KR (t) = HK(t) +

∫ t

0

Y KR (s)∂RGR(xK(s))ds (3.16)

for all t > 0, where

HK(t) := MK(t) +RK(t) +

∫ t

0

Y KM (s)∂MGR(xK(s))ds,

MK(t) :=
1

K

∫
[0,t]×R+

1{z≤KXKR (s−)bR(XK(s−))}Ñ
b
R(ds, dz)

− 1

K

∫
[0,t]×R+

1{z≤KXKR (s−)dR(XK(s−))}Ñ
d
R(ds, dz),

RK(t) :=

∫ t

0

[
GR(XK(s))−GR(xK(s))− Y KM (s)∂MGR(xK(s))− Y KR (s)∂RGR(xK(s))

]
dr,

In a first time, let us treat the case ∂RGR(x?) = x?R∂RFR(x?) < 0. Thanks to Lemma 6.3 we have

sup
s≤t

∣∣Y KR (s)
∣∣ ≤ sup

s≤t

∣∣HK(s)−HK(bsc)
∣∣ ≤ 2 sup

s≤t
|HK(t)|.

On the other hand, if ∂RGR(x?) = x?R∂RFR(x?) = 0,∫ τM (xK ,Lη)

0

|∂RGR(xK(r))| ≤ C
∫ τM (xK ,Lη)

0

(
xKM (r) + |xKR (r)− x?R|

)
dr ≤ CLη,



V. Bansaye et al./Sharp approximation for invasion processes 22

using respectively Assumption 1.1 (R) and Lemma 3.4. Besides, by Gronwall’s lemma,

|Y KR (t)| ≤ sup
s≤t
|HK(s)| exp

(∫ t

0

|∂RGR(xK(r))|dr
)
.

Combining these two estimates, Lemma 3.3 implies that

|Y KR (t)| ≤ sup
s≤t
|HK(s)|eCLη ≤ 2 sup

s≤t
|HK(s)|,

for η ≤ η0 fixed to some small enough value.
Gathering the two cases, we have proved that if ∂RFR(x?) ≤ 0, for t ≤ τM (xK , Lη) ∧ θK ,

sup
s≤t

∣∣Y KR (s)
∣∣ ≤2 sup

s≤t
|HK(s)|

≤2 sup
s≤t
|MK(s)|+ 2 sup

s≤t
|RK(s)|+ 2

∫ t

0

|Y KM (s)| · |∂MGR(xK(s))|ds. (3.17)

In addition, for t ≤ τM (xK , Lη),∫ t

0

xKM (s)ds =

∫ t

0

1

FM (xK(s))
(xKM )′(s)ds

≤ C
∫ t

0

(xKM )′(s)ds = C(xKM (t)− xKM (0)) ≤ CxKM (t). (3.18)

Using twice this inequality and |Y KM (r)| = xKM (r)|XK
M (r)/xKM (r)− 1| ≤ 2xKM (r) for r ≤ θK ,∫ SK

0

∫ s

0

|Y KM (r)| · |∂MGR(xK(r))|drds ≤ C
∫ SK

0

∫ s

0

xKM (r)drds ≤ CxKM (SK) ≤ CLη. (3.19)

By Taylor-Lagrange’s inequality and Lemma 3.3 (which guarantees that the process xK is bounded
up to time SK), we also have∫ SK

0

sup
r≤s
|RK(r)|ds ≤ C

∫ SK

0

∫ s

0

(
|Y KM (r)|2 + |Y KM (r)| · |Y KR (r)|+ |Y KR (r)|2

)
drds.

Since SK ≤ τM (xK , Lη), and using the same computation as (3.19),∫ SK

0

∫ s

0

|Y KM (r)|2drds ≤ Lη
∫ SK

0

∫ s

0

|Y KM (r)|drds ≤ C(Lη)2.

Besides |Y KM (r)| · |Y KR (r)| ≤ |Y KM (r)|sup
r′≤s
|Y KR (r′)| for r ≤ s,

∫ SK

0

∫ s

0

|Y KM (r)| · |Y KR (r)|drds ≤ CLη
∫ SK

0

sup
r′≤s
|Y KR (r′)|ds ≤ CLη2.

Similarly,
∫ SK

0
|Y KR (r)|2drds ≤ Cη

∫ SK
0

sup
r′≤s
|Y KR (r′)|ds ≤ Cη2. Combining these estimates yields

∫ SK

0

sup
r≤s
|RK(r)|ds ≤ Cη2. (3.20)
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Plugging (3.19) and (3.20) in (3.17), we can choose L > 0 small enough and get

P

(∫ τM (xK ,Lη)∧θK

0

|Y KR (s)|ds > η

)
≤P

(∫ τM (xK ,Lη)∧θK

0

|MK(s)|ds > η

4

)
.

Using again Doob and Cauchy-Schwarz inequalities,

E

[
sup

t≤τM (xK ,Lη)∧θK

∣∣MK(t)
∣∣] ≤ CE [〈MK〉τM (xK ,Lη)∧θK

]1/2
≤ CK−1/2E

[∫ τM (xK ,Lη)∧θK

0

XK
R (s)(bR + dR)(XK(s))ds

]1/2

≤ CK−1/2τM (xK , Lη)1/2.

Using Markov’s inequality and the comparison of τM (xK , Lη) with log
(
1/xKM

)
(see Section 3.1), we

get

P

(∫ τM (xK ,Lη)∧θK

0

|Y KR (s)|ds > η

)
≤ C

η
K−1/2

(
log
(
1/xKM

))1/2
.

This proves (3.13).

Now we prove (3.14). By definition of σ̃KLη,{
σ̃KLη ≤ τM (xK , Lη) ∧ θK ∧ σKη

}
=

{
sup

s≤SK∧σ̃KLη
|Y KR (s)| > (Lη)1/2

}
.

For the sake of readability, let us denote

TK := SK ∧ σ̃KLη.

To control the probability of the event above, we use (3.17) again. We have that∫ TK

0

|Y KM (s)| · |∂MGR(xK(s))|ds

≤ C
∫ TK

0

xKM (s)
|Y KM (s)|
xKM (s)

ds ≤ C
∫ τM (xK ,Lη)

0

xKM (s)ds

≤ C
∫ τM (xK ,Lη)

0

1

FM (xK(s))
(xKM )′(s)ds ≤ C(xKM (τM (xK , Lη))− xKM (0)) ≤ CLη,

and

sup
s≤TK

|RK(s)| ≤C
∫ TK

0

|XK
M (s)− xKM (s)|2ds+ C

∫ TK

0

|Y KR (s)|2ds+ C

∫ TK

0

|Y KR (s)| · |Y KM (s)|ds

≤C(Lη)2 + CLη2 + C(Lη)2 ≤ Cη2.

Since η is arbitrary small, we have

P

(
sup
s≤TK

|Y KR (s)| > Lη

)
≤P

(
sup
s≤TK

∣∣MK
s

∣∣ > Lη/4

)
≤Cη−1E

[
〈MK〉TK

]1/2 ≤ Cη−1K−1/2
(
log
(
1/xKM

))1/2
,
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which proves (3.14).
Finally, we prove (3.15) using (3.13) and (3.14). Notice that

{
θKR ≤ τM (xK , Lη) ∧ θKM

}
⊆

{
sup

t≤τM (xK ,Lη)∧θK

|Y KR (t)|
xKr (t)

≥ 1

}
.

Then, by Lemma 3.3, we know that for all t ≤ τM (xK , Lη),

xKR (t) ≥ x?R − CLη ≥ x?R/2,

if η > 0 is small enough. Hence, for η > 0 small enough,{
θKR ≤ τM (xK , Lη) ∧ θKM

}
⊆

{
sup

t≤τM (xK ,Lη)∧θK
|Y KR (t)| ≥ x?R/2

}
⊆
{
σ̃KLη ≤ τM (xK , Lη) ∧ θK

}
⊆
{
σKη ≤ τM (xK , Lη) ∧ θK

}
∪
{
σ̃KLη ≤ τM (xK , Lη) ∧ θK ∧ σKη

}
.

Since the probabilities of the two last events above are controlled respectively by (3.13) and (3.14),
the result is proved.

Proof of Theorem 3.6. We decompose the proof of Theorem 3.6 in three steps. The first step is the
approximation of XK

M by xKM until the level of the mutant population dynamics reaches some small
macroscopic value. The second step is more classical and consists in showing that the approximation
still holds true during an additional time length T > 0. In the last step, we show that within these
time intervals the mutant population dynamics reached levels v0 < v∗.

Step 1. In this first step, we prove that there exist C,L, η0 > 0 such that for any η ∈ (0, η0),

P

(
sup

t≤τM (xK ,Lη)

∣∣∣∣XK
M (t)

xKM (t)
− 1

∣∣∣∣ > η

)
≤ C · 1

η
· 1√

KxKM (0)
. (3.21)

We use that

XK
M (t)

xKM (t)
=1−

∫ t

0

XK
M (s)

xKM (s)
(bM − dM )(xK(s)) ds

+

∫
[0,t]×R+

1

KxKM (s)
1{u≤K·XKM (s−)·bM (XK(s−))}N

b
M (ds, du)

−
∫

[0,t]×R+

1

KxKM (s)
1{u≤K·XKM (s−)·dM (XK(s−))}N

d
M (ds, du).

Writing Ñ b
M and Ñ d

M the compensated measure of N b
M and N d

M , and introducing the locally square
integrable martingale

EKM (t) :=

∫
[0,t]×R+

1

KxKM (s)
1{u≤K·XKM (s−)·bM (XK(s−))}Ñ

b
M (ds, du)

−
∫

[0,t]×R+

1

KxKM (s)
1{u≤K·XKM (s−)·dM (XK(s−))}Ñ

d
M (ds, du),

we have
XK
M (t)

xKM (t)
= 1 + EKM (t) +

∫ t

0

XK
M (s)

xKM (s)

(
FM (XK(s))− FM (xK(s))

)
ds.
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Let us denote TK = τM (xK , Lη) ∧ θK for convenience. We observe that

〈EKM 〉TK =

∫ TK

0

1

KxKM (s)
· X

K
M (s)

xKM (s)
· (bM + dM )(XK(s)) ds ≤ 2C

K

∫ TK

0

1

xKM (s)
ds.

Consequently,

sup
t≤TK

∣∣∣∣XK
M (t)

xKM (t)
− 1

∣∣∣∣
≤ sup
t≤TK

∣∣EKM (t)
∣∣+ C

∫ TK

0

(∣∣XK
M (s)− xKM (s)

∣∣+
∣∣XK

R (s)− xKR (s)
∣∣) ds

≤ sup
t≤TK

∣∣EKM (t)
∣∣+ C

∫ TK

0

xKM (s) · sup
r≤s

∣∣∣∣XK
M (r)

xKM (r)
− 1

∣∣∣∣ ds+

∫ TK

0

∣∣XK
R (s)− xKR (s)

∣∣ ds.
So, by Gronwall’s lemma, for any T ≤ τM (xK , Lη) ∧ θK ,

sup
t≤TK

∣∣∣∣XK
M (t)

xKM (t)
− 1

∣∣∣∣ ≤
(

sup
t≤TK

|EKM (t)|+ C

∫ T

0

∣∣XK
R (s)− xKR (s)

∣∣ ds) eC ∫ T
0
xKM (s)ds. (3.22)

Besides, by Burkholder-Davis-Gundy’s inequality,

E

[
sup
t≤TK

|EKM (t)|

]
≤ E

[
〈EKM 〉

1/2

TK

]
≤ CK−1/2E

[∫ TK

0

1

xKM (s)
ds

]1/2

.

Besides FM (xK(t)) is lower-bounded on [0, τM (xK , Lη)] by some κ > 0 thanks to Lemma 3.3 since
FM (x?) > 0 if η is chosen small enough. Then xKM (s) ≥ eκsxKM (0) and

E

[
sup
t≤TK

|EKM (t)|

]
≤ C · 1

κ
· 1√

KxKM (0)
, (3.23)

where the value of C has changed in the last inequality, but is still independent of K.
Let us recall that, thanks to (3.18), we have∫ τM (xK ,Lη)

0

xKM (s)ds ≤ CLη.

So, (3.22) can be rewritten as

sup
t≤τM (xK ,Lη)∧θK

∣∣∣∣XK
M (t)

xKM (t)
− 1

∣∣∣∣ ≤ C sup
t≤τM (xK ,Lη)∧θK

|EKM (t)|+ C

∫ τM (xK ,Lη)∧θK

0

∣∣Y KR (s)
∣∣ ds.

By Markov’s inequality and (3.23),

P

(
sup
t≤TK

|EKM (t)| > η

2C

)
≤ C

η
√
KxKM (0)

.

Besides, by (3.13) from Lemma 3.7,

P

(∫ TK

0

∣∣Y KR (s)
∣∣ ds > η

2C

)
≤ C

η
K−1/2

(
log

(
1

xKM (0)

))1/2

.
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We obtain from the three last inequalities that

P

(
sup
t≤TK

∣∣∣∣XK
M (t)

xKM (t)
− 1

∣∣∣∣ > η

)
≤ C

η
· 1√

KxKM (0)
.

Using now that for η ∈ (0, 1), we obtain

{
θKM <∞, θKM ≤ τM (xK , Lη)

}
⊆

{
sup
t≤TK

∣∣∣∣XK
M (t)

xKM (t)
− 1

∣∣∣∣ > η

}
,

and (3.15) proves (3.21).

Step 2. We fix T > 0 and we prove now that the approximation of XK
M by xKM is still valid on the

time interval [τM (xK , Lη), τM (xK , Lη) + T ]. The fact that the mutant population dynamics has left
the neighborhood of 0 makes such estimates more classical. More precisely, we denote

X̃K
• (t) := XK

• (t+ τM (xK , Lη)), x̃K• (t) := xK• (t+ τM (xK , Lη))

for • ∈ {R,M}. First, we observe that

γT,η = inf
t≤T,K≥1

x̃KM (t) > 0,

since the boundary R+ × {0} is stable for the flow φ, which is continuous, and the initial value x̃K(0)
belongs to a compact set of (R∗+)2 (thanks to Lemma 3.3)). Then

P

sup
t≤T

∣∣∣X̃K
M (t)− x̃KM (t)

∣∣∣
x̃KM (t)

> η

 ≤ P
(

sup
t≤T

∣∣∣X̃K
M (t)− x̃KM (t)

∣∣∣ > η γT,η

)
,

and it remains to prove that for any η > 0,

P
(

sup
t≤T

∣∣∣X̃K
M (t)− x̃KM (t)

∣∣∣ > η

)
−→
K→∞

0. (3.24)

This result is a classical approximation of population processes by dynamical systems on finite time
intervals, see Ethier-Kurtz [20]. For sake of completeness and to give explicit bounds, let us prove the
result here. We use again a stopping time which ensures boundedness :

θ̃K := inf
{
t > 0 : X̃K

M (t) > 2x̃KM (t) or X̃K
R (t) > 2x̃KR (t)

}
.

We have, for any t ≤ θ̃K ,∣∣∣X̃K
• (t)− x̃K• (t)

∣∣∣ ≤ ∣∣MK
• (t)

∣∣+ C

∫ t

0

(
|X̃K

R (s)− x̃KR (s)|+ |X̃K
M (s)− x̃KM (s)|

)
ds,

where MK
R ,M

K
M are locally square integrable martingales satisfying

〈MK
• 〉t∧θ̃K ≤ CtK

−1.

Then, Gronwall’s lemma implies that

sup
t≤T∧θ̃K

(∣∣∣X̃K
M (t)− x̃KM (t)

∣∣∣+
∣∣∣X̃K

R (t)− x̃KR (t)
∣∣∣) ≤ ( sup

t≤T∧θ̃K
|MK

R (t)|+ sup
t≤T∧θ̃K

|MK
M (t)|

)
eCT .
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Hence, using Markov’s and Burkholder-Davis-Gundy’s inequalities, we obtain

P

(
sup

t≤T∧θ̃K

(∣∣∣X̃K
M (t)− x̃KM (t)

∣∣∣+
∣∣∣X̃K

R (t)− x̃KR (t)
∣∣∣) > η′

)
≤ 1

η′
CTK

−1/2. (3.25)

Finally, let us now dismiss the stopping time θ̃K . Let AKη′(T ) be the event

AKη′(T ) :=

{
sup
t≤T

(∣∣∣X̃K
M (t)− x̃KM (t)

∣∣∣+
∣∣∣X̃K

R (t)− x̃KR (t)
∣∣∣) > η′

}
.

We have

P
(
AKη′(T )

)
≤ P

(
AKη′(T ) ∩ {θ̃K ≥ T}

)
+ P

(
AKη′(T ) ∩ {θ̃K < T}

)
≤ P

(
AKη′(T ∧ θ̃K)

)
+ P

(
AKη′(T ∧ θ̃K)

)
≤ 2P

(
AKη′(T ∧ θ̃K)

)
.

Recalling that (3.25) provides a control of P
(
AKη′(T ∧ θ̃K)

)
, (3.24) is proved.

We can now conclude the proof of the theorem using the two steps. Combining the two results yields
the expect control until time τM (xK , Lη) + T , for any η ∈ (0, η0) and T > 0. We just need to check
that Tv can be chosen (independently of K and xK) so that τM (xK , Lη) + Tv ≥ τM (xK , v). This is
indeed the case, as can be seen from (3.12) with u1 = Lη for instance.

4. Thresholds hitting times

In this section, we use the results of the two previous sections to approximate the hitting times of the
process (NK

M (t))t. Let us recall that, for any n ≥ 1, we have defined in (1.5) the stopping time

TKM (n0, n) := inf
{
t > 0 : NK

M (t) ≥ n
}
.

The main result of this section is the following, which complements the results of [6, 7]. We recall that
v? is defined at the beginning of Section 3.1. It gives a quantitative information on the law of hitting
times of thresholds of order K but also for thresholds of size less than K.

Theorem 4.1. Grant Assumptions 1.1, 2.1 and 3.1. Let (ζK)K be some sequence which tends to
infinity and satisfies ζK/K → v as K →∞, for some v ∈ [0, v?). Then, for any ε > 0,

lim
K→∞

P
(∣∣∣∣TKM (NK(0), ζK)− log(ζK/W )

r?
− τ(v)

∣∣∣∣ ≥ ε ; W > 0

)
= 0,

where τ is the increasing continuous function such that τ(0) = 0 defined in (3.11) and

W = lim
t→∞

e−r?tZ(t)
d
=
d?
b?
δ0 +

r?
b?
µr?/b? , µa(dx) = 1R+

(x)ae−axdx.

To prove this result, we first focus on the submacroscopic phase and use the branching process ap-
proximation to determine the asymptotic behavior of the hitting times of the mutant population pro-
cess. For this purpose, we need the following lemma which guarantees the hitting time TKM (NK(0), ξK)
to go to infinity, for suitable sequence (ξK).
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Lemma 4.2. Under Assumptions 1.1 and 2.1, for any sequence ξ tending to infinity and satisfying
ξK � K/ logK (resp. ξK � K/(logK)2) if ∂RFR(x?) < 0 (resp. ∂RFR(x?) = 0), the hitting time
TKM (NK(0), ξK) goes to infinity almost surely as K goes to infinity.

Proof. For the sake of notation, let us write TKM := TKM (NK(0), ξK) in all this proof.
By Lemma 2.8, for any ε > 0, there exists some Kε ∈ N∗ such that, for all K ≥ Kε,

P
(
∀t ≤ TKM , bM (XK(t)) ≤ b? + 1

)
≥ 1− ε.

In particular, we can couple the process NK
M with a branching process Z+ starting at Z+(0) = 1 with

individual birth rate b+ := b? + 1 and without death, such that, for all K ≥ Kε,

P
(
∀t ≤ TKM , NK

M (t) ≤ Z+(t)
)
≥ 1− ε.

It is known that Z+(t)e−b+t is a local martingale converging to some finite r.v. W+ that is finite a.s. As
a consequence W̄+ := sup

t≥0
Z+(t)e−b+t is also finite a.s. Introducing TKZ the hitting time of the value ξK

by the process Z+, we have {
NK
M (TKM ) ≤ Z+(TKM )

}
⊆
{
TKM ≥ TKZ

}
.

Besides, by definition of TKZ , on the event {TKZ <∞},

dξKe = Z(TKZ ) ≤ W̄+e
b+T

K
Z ,

which implies

TKZ ≥
1

b?
log(dξKe/W̄+).

Consequently, for all ε > 0,

P
(
TKM −→

K→∞
+∞

)
≥ 1− ε.

Letting ε go to zero proves the result.

Proposition 4.3. Under Assumptions 1.1 and 2.1, for any ε > 0,

lim
K→∞

P
(∣∣∣∣TKM (NK(0), ξK)− log(ξK/W )

r?

∣∣∣∣ ≥ ε ; W > 0

)
= 0

for any sequence ξ tending to infinity and satisfying ξK � K/ logK (resp. ξK � K/(logK)2) if
∂RFR(x?) < 0 (resp. ∂RFR(x?) = 0).

Proof. Consider the case ∂RFR(x?) < 0 and let (ξK)K be a sequence tending to infinity and satisfying
ξK � K/ logK. We apply Corollary 2.3. Then for ε > 0, there exists K0 such that for any K ≥ K0,

P
(
∀t ∈ [0, TK ], (1− ε)Z(t) ≤ NK

M (t) ≤ (1 + ε)Z(t) | W > 0

)
≥ 1− ε,

where we write TK = TKM (NK(0), ξK) for convenience. Since Z(t) exp(−r?t) converges to W almost
surely as t tends to infinity,

P
(

sup
t≥u

∣∣ Z(t)

exp(r?t)W
− 1
∣∣ ≥ ε |W > 0

)
→ 0

as u goes to infinity, then there exists t0 such that

P
(
∀t ≥ t0, (1− ε)Wer?t ≤ Z(t) ≤ (1 + ε)Wer?t |W > 0

)
≥ 1− ε.
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In addition, by Lemma 4.2, we know that P(TK ≥ t0 |W > 0) ≥ 1− ε for K large enough.
Combining these estimates,

P
(
∀t ∈ [t0, T

K ], (1− ε)2Wer?t ≤ NK
M (t) ≤ (1 + ε)2Wer?t |W > 0

)
≥ 1− 3ε.

Adding that ξK ≤ NK
M (TK) ≤ ξK + 1 by definition of TK , we obtain for t = TK

P
(

(1− ε)2Wer?TK ≤ ξK + 1, ξK ≤ (1 + ε)2Wer?t |W > 0

)
≥ 1− 3ε.

Finally, taking the log inside the last probability yields the result.

Lemma 4.4. Let f, g : [0, t0]→ R. Assume that g is differentiable and

α = inf
[0,t0]

g′ > 0, β = sup
t∈[0,t0]

|f(t)− g(t)|.

Then for any x ∈ [g(0), g(t0)− β], {t ∈ [0, t0] : f(t) ≥ x} is non empty and∣∣ inf{t ≥ 0 : f(t) ≥ x} − inf{t ≥ 0 : g(t) ≥ x}
∣∣ ≤ β

α
.

Proof. Let t(x) ∈ [0, t0] be the (unique) time when g(t(x)) = x. Then for t ≤ t(x)− ε,

f(t) ≤ g(t) + β ≤ g(t(x))− εα+ β = x− εα+ β < x

where the last inequality holds for any ε > β/α. This forces inf{t ≥ 0 : f(t) ≥ x} ≥ t(x)− ε. Similarly
for t ∈ [t(x) + ε, t0] and ε ≥ β/α,

f(t) ≥ g(t)− β ≥ g(t(x)) + εα− β ≥ x.

This yields inf{t ≥ 0 : f(t) ≥ x} ≤ t(x) + ε and completes the proof since ε can be chosen arbitrarily
close to β/α.

We can now capture the behavior of the hitting time when XK
M (0) is large compared to 1/K using

the approximation by the dynamical system. For x ∈ (R+)2 and v ∈ R+, we consider the hitting times

τM (x, v) = inf{t > 0 : xM (t) ≥ v}, SKM (x, v) = inf{t > 0 : XK
M (t) ≥ v}, (4.1)

where x(0) = XK(0) = x.

Lemma 4.5. Under Assumptions 1.1 and 3.1, assume

1/K � XK
M (0)� 1 and |XK

R (0)− x?R| log(1/XK
M (0))� 1

in probability as K → ∞. For any sequence of positive vK ≥ XK
M (0) upper-bounded by some constant

v < v?, for any ε > 0,

lim
K→∞

P
(∣∣SKM (XK(0), vK)− τM (XK(0), vK)

∣∣ ≥ ε) = 0.

Proof. There exists C > 0 such that for any ε ∈ (0, 1/2] and u ∈ [1−ε, 1+ε], | log(u)| ≤ C|u−1| ≤ Cε.
Using Theorem 3.6, we have

lim
K→∞

P

(
sup

t≤τM (XK(0),vK)

∣∣∣∣ log

(
XK
M (t)

xKM (t)

) ∣∣∣∣ ≥ Cε
)

= 0.
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We apply now Lemma 4.4 with

f(t) = log(XK
M (t)), g(t) = log(xKM (t)).

By Lemma 3.5, there exist some η > 0 and K0 ∈ N∗ such that, for all K ≥ K0,

P
(
∀t ≤ τM (XK(0), vK), FM (xK(t)) ≥ η

)
≥ 1− ε.

Then, noticing that g′(t) = FM (xK(t)) and that |f(t)−g(t)| = | log(XK
M (t)/xKM (t))| allows to conclude.

Finally, we end this section with the proof of the main result.

Proof of Theorem 4.1. To begin with, if ζK � K/(logK)2, then v = 0 and the result has been proved
in Proposition 4.3 above.

Otherwise, let (ξK)K be any sequence such that

ξK < ζK and ξK � K/(logK)2,

and let vK := ζK/K. Writing X̃K(t) := XK(t+ TKM (NK(0), ξK)), and using the notation of (4.1),

TKM (NK(0), ζK) = TKM (NK(0), ξK) + SKM (X̃K(0), vK).

Finally, since X̃K(0) satisfies the assumption of Lemma 4.5 (cf Lemma 2.8), the result is a direct
consequence of Proposition 4.3 and Lemma 4.5.

In this part, we have obtained an approximation of hitting times which allows to quantify the
stochastic effects. Developing more deeply our approach, we could study the speed of convergence in
Theorems 3.6 and 4.1. This is left for a future work.

5. Examples : competitive and epidemiological models

5.1. Lotka-Volterra competitive model

We consider the dynamics of a two-dimensional population composed of resident and mutant individ-
uals, which have their own demographic parameters and interact in a competitive way, for example in
sharing resources or niche areas. This model is included in the framework of the paper, with constant
individual birth rates

b•(X
K(s−)) = b•

and individual death rates of the Lotka Volterra form :

dR(XK(s)) = dR + c1,1X
K
R (s) + c1,2X

K
M (s),

dM (XK(s)) = dM + c2,1X
K
R (s) + c2,2X

K
M (s),

with the individual birth and death rates bR, bM ≥ 0 and dR, dM ≥ 0 and the competition matrix
(ci,j)1≤i,j≤2 with non-negative coefficients. We assume that the coefficients bR−dR, bM −dM , c1,1 and
c2,2 are positive.

The corresponding dynamical system is the competitive Lotka-Volterra system. The limiting ODE
is (1.2) with

FR(xR, xM ) = bR − dR − c1,1xR − c1,2xM , FM (xR, xM ) = bM − dM − c2,1xR − c2,2xM .

Then

x?R =
bR − dR
c1,1

.
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Let us check that the previous results can be applied. First, we observe that the regularity in Assump-
tion 1.1 is satisfied. Second, (x?R, 0) is an equilibrium and

∂RFR(x?R, 0) = −c2,2 < 0.

This means that the first part of Assumption 1.1 is satisfied for (x?R, 0). Moreover, x?R is a stable
equilibrium for the resident population alone, which corresponds to the first case considered in the
branching process approximation.
Finally, we start from a population with only one mutant, NK

R (0) = K−1, NK
M (0) = 1 and we consider

x∗R = 1. So the invasion condition FM (x∗R, 0) > 0 reads bM − dM − (bR − dR)
c2,1
c1,1

> 0. It is then easy

to compute v?, which is

x?M =
bM − dM
c2,2

if FR(0, x?M ) < 0, or v? =
(bM − dM )c1,1 − (bR − dR)c2,1

c1,1c2,2 − c1,2c2,1
if FR(0, x?M ) > 0.

The branching process Z is a birth and death process with individual birth rate bM and individual
death rate dM + c2,1x

?
R.

5.2. SIR model

Let β > 0 be the infection rate (per pair of individuals) in a mixed population and γ > 0 the individual
recovery rate. Let K ≥ 1 be the total population size. At time t, the number of susceptible individuals
is denoted by SK(t), the number of infected individuals is denoted by IK(t) and K − SK(t) − IK(t)
yields the number of recovered individuals. Each susceptible becomes infected at time t with rate
βIK(t)/K. Starting from one infected individual, the process NK = (NK

R , N
K
M ) = (SK , IK) is the

unique strong solution of

SK(t) =K − 1−
∫

[0,t]×R+

1{u≤βSK(s−)IK(s−)/K}NI(ds, du).

IK(t) =1 +

∫
[0,t]×R+

1{u≤βSK(s−)IK(s−)/K}NI(ds, du)−
∫

[0,t]×R+

1{u≤γIK(s−)}NG(ds, du),

where NI and NG are Poisson point measures on R2
+ with intensity dsdu.

The process NK is a bitype birth and death process as considered in Introduction with NI = N b
M =

N d
R and birth and death rates defined by

bR(xR;xM ) = 0, dR(xR;xM ) = βxM

bM (xR;xM ) = βxR, dM (xR;xM ) = γ.

The ODE describing the limit of NK/K is given by (1.2) with

FR(xR, xM ) = −βxM , FM (xR, xM ) = βxR − γ.

Let us check that our results can be applied to the case where the first derivative of FR with respect
to xR cancels. First, we observe that regularity of Assumption 1.1 is satisfied. Second, for any xR > 0,
(xR, 0) is an equilibrium and

∂RFR(xR, 0) = 0.

This means that the second part of Assumption 1.1 is satisfied for any xR > 0. Moreover, there is no
geometric stability for the resident population alone, which corresponds to the second case considered
in the branching process approximation.
Finally, we start from a population with only one mutant, SK(0) = NK

R (0) = K−1, IK(0) = NK
M (0) = 1
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and we consider x∗R = 1. So the invasion condition FM (x∗R, 0) > 0 reads β > γ. The branching process
Z is a birth and death process with individual birth rate β and individual death rate γ.

In this example, the maximal value of the invasive population is the peak of the epidemic and can
be computed. Indeed, at the peak time, the derivative of xI is zero and adding that γ log(xS) + β(1−
xS − xI) = 0, one can check that

v? = 1− γ

β
+
γ

β
log

(
γ

β

)
.

We obtain the following results when there is an outbreak of the epidemic. The hitting times for
the infected population are defined by

τKI (n) = inf{t ≥ 0, IK(t) ≥ n}.

Proposition 5.1. If β > γ, then
i) for any ξK � K/(logK)2 and η > 0,

lim
K→+∞

P
(

sup
t≤τKI (ξK)

∣∣∣∣IK(t)

I(t)
− 1

∣∣∣∣ > η ; I(τKI (ξK)) > 0

)
= 0,

where I is the unique strong solution of

I(t) =1 +

∫
[0,t]×R+

1{u≤β I(s−)}NI(ds, du)−
∫

[0,t]×R+

1{u≤γ I(s−)}NG(ds, du).

ii) For any v < v? and ε > 0,

lim
T→∞

lim sup
K→∞

P

(
sup

t∈[T,τKI (vK)]

∣∣∣∣ IK(t)

KxT,KI (t)
− 1

∣∣∣∣ ≥ ε; IK(T ) > 0

)
= 0,

where (xK,TS (t), xK,TI (t)) is the solution of{
d
dtx

K,T
S (t) = −βxK,TS (t)xK,TI (t),

d
dtx

K,T
I (t) = (βxK,TS (t)− γ)xK,TI (t).

such that (xK,TS (T ), xK,TI (T )) = (SK(T )/K, IK(T )/K).

Point i) is a consequence of Theorem 2.2 and point ii) comes from Theorem 3.6. These two parts
have an intersection : in the time window when the number of infected individuals is large but negligible
compared to K/(logK)2, we have informally

IK(t) ∼ I(t) ∼We(β−γ)t ∼ xK,TI (t− T ).

We obtain also an approximation of the time when the epidemics reaches a given level :

Corollary 5.2. Let (ζK)K be sequence which tends to infinity and satisfies ζK/K → v as K → ∞,
for some v ∈ [0, v?). Then, for any ε > 0,

lim
K→∞

P
(∣∣∣∣τKI (ζK)− log(ζK/W )

r?
− τ(v)

∣∣∣∣ ≥ ε, W > 0

)
= 0,

where τ is an increasing continuous function such that τ(0) = 0 defined in Proposition 3.2.
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6. Appendix

6.1. Minimum of the martingale associated with the branching process Z

Recalling the notation of Section 2, we are interested in the minimal value of the martingale W (t) :=
Z(t) exp(−r?t). Such object for simple branching processes has already attracted a lot of attention.
We are not aware in the literature of the estimates given here and provide the proof for completeness.
This relies on classical L2 estimates to control the speed of the convergence of the martingale.

Lemma 6.1. For any ε > 0, and any Z−adapted stopping time τ,

P (W (τ) ≤ ε ; W > 0) ≤ C
(
ε+ ε−1E

[
1{τ<∞}e

−r?τ/2
])
,

where W is the almost sure limit of W (t) as t goes to infinity, and C is some positive constant
independent of ε and τ. We use the convention W (+∞) := W for the inequality above to make sense.

Proof. To simplify the proof, we firstly treat the case where τ is deterministic and finite. To begin
with,

W (τ + 1)−W (τ) = e−r?τ

Z(τ)∑
i=1

Nie
−r? − Z(τ)

 ,

where, conditionally on Z(τ), the Ni are i.i.d. with the same distribution as Z(1). This implies that

E
[
(W (τ + 1)−W (τ))

2
]

=e−2r?τE

Var
Z(τ)∑
i=1

(
Nie

−r? − 1
)
|Z(τ)


=e−2r?τE [Z(τ)]Var

[
Nie

−r? − 1
]
≤ Ce−r?τ . (6.1)

On the other hand, we write

P (W (τ) ≤ ε ; W > 0) ≤ P (W ≤ 2ε ; W > 0) + P (W (τ) ≤ ε ; W > 2ε)

≤ P (W ≤ 2ε ; W > 0) + P (W −W (τ) > ε) .

Recalling that, on the event {W > 0}, W follows an exponential distribution, we can bound the first
term of the sum above by 1− e−Cε ≤ Cε.

The second term of the sum can be handled as follows:

P (W −W (τ) > ε) =P

∑
n≥0

W (τ + n+ 1)−W (τ + n) > ε


≤1

ε

∑
n≥0

E [|W (τ + n+ 1)−W (τ + n)|]

≤ε−1
∑
n≥0

E
[
|W (τ + n+ 1)−W (τ + n)|2

]1/2
≤Cε−1e−r?τ/2

∑
n≥0

e−r?n/2 ≤ Cε−1e−r?τ/2.

This ends the proof in the case where τ is deterministic.
Now to prove the result when τ is some almost surely finite Z−adapted stopping time, we just

have to do the same computation conditionally on Fτ . Indeed, since Z(τ) is Fτ−measurable and
Z(τ + 1)− Z(τ) independent of F(τ), (6.1) becomes

E
[
(W (τ + 1)−W (τ))

2 |Fτ
]
≤ Ce−r?τ ,
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and the last computation of the previous case gives

P (W −W (τ) > ε|Fτ ) ≤ Cε−1e−r?τ/2.

The result of the lemma is then proved by taking the expectation in the inequality above.
Finally let us treat the case where τ is not necessary almost surely finite. We write

P (W (τ) ≤ ε ; W > 0) =P (W (τ) ≤ ε ; W > 0 ; τ <∞) + P (W (τ) ≤ ε ; W > 0 ; τ =∞)

≤P (W (τ) ≤ ε ; W > 0 ; τ <∞) + P (0 < W ≤ ε) . (6.2)

Note that, on the event {τ <∞}, we have the almost sure convergence

1{W (τ∧n)≤ε;W>0} −→
n→∞

1{W (τ)≤ε;W>0}.

Hence, by Fatou’s lemma,

P (W (τ) ≤ ε ; W > 0 ; τ <∞) ≤lim inf
n

P (W (τ ∧ n) ≤ ε ; W > 0 ; τ <∞)

≤lim inf
n

P (W (τ ∧ n) ≤ ε ; W > 0) .

Then, applying the result of the lemma with the almost surely finite stopping time τ ∧n, we obtain

P (W (τ) ≤ ε ; W > 0; τ <∞) ≤ C
(
ε+ ε−1lim inf

n
E
[
e−r?(τ∧n)/2

])
.

Noticing that
e−r?(τ∧n)/2 ≤ 1{τ<∞}e

−r?τ/2 + e−r?n/2,

we have
P (W (τ) ≤ ε ; W > 0 ; τ <∞) ≤ C

(
ε+ ε−1E

[
1{τ<∞}e

−r?τ/2
])
.

In addition, to control the second term of the sum in (6.2), we recall that the distribution of W is

d?
b?
δ0 +

r?
b?
E(
r?
b?

).

Hence
P (0 < W ≤ ε) =

r?
b?

(
1− e−

r?
b?
ε
)
≤ (

r?
b?

)2ε.

Recalling (6.2), the result of the lemma is proved.

Lemma 6.2. With the same notation as in Lemma 6.1, for any 0 < ε < 1,

P
(

inf
t≥0

W (t) ≤ ε ; W > 0

)
≤ Cε1/4,

for some positive constant C independent of ε.

Proof. Let us introduce

sε :=
1

r?
log (1/ε) .

On the event {W > 0}, we have Z(t) ≥ 1 for all t ≥ 0 and further, for t < sε, e
−r?t > ε. As a

consequence {
inf
t≥0

W (t) ≤ ε ; W > 0

}
⊆
{

inf
t≥sε

W (t) ≤ ε ; W > 0

}
.
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For some λ > 1 whose value will be fixed later, let us denote

Sε := inf
{
t ≥ sε : W (t) ≤ ε1/λ

}
.

Since λ > 1 and 0 < ε < 1, we have ε < ε1/λ, hence{
inf
t≥sε

W (t) ≤ ε
}
⊆ {Sε <∞} ⊆

{
W (Sε) ≤ ε1/λ

}
.

Note that the last event above is trivially satisfied only if Sε <∞.
Then, thanks to Lemma 6.1,

P
(
W (Sε) ≤ ε1/λ ; W > 0

)
≤ C

(
ε1/λ + ε−1/λE

[
1{Sε<∞}e

−r?Sε/2
])
.

Recall that, by definition of Sε, Sε ≥ sε, and so

E
[
1{Sε<∞}e

−r?Sε/2
]
≤ e−r?sε/2 = ε1/2,

implying that

P
(
W (Sε) ≤ ε1/λ ; W > 0

)
≤ C

(
ε1/λ + ε1/2−1/λ

)
.

Finally, choosing λ := 4 to optimize the bound above proves the result.

6.2. Perturbation of stable dynamical system

We provide a result which is strongly inspired from Lemmas 3.1 and 3.2 in [27]. We consider an
exponential stable dynamical system : y′ ≤ −cy, with c > 0. We add a source term, which acts as a
perturbation given by h. The following result allows to control the value of the dynamical system in
terms of fluctuations of the source term h on a unit time interval.

Lemma 6.3. Assume that there are three measurable and locally bounded functions y, h, φ with h(0) =
0 and satisfying for all t ≥ 0,

y(t) = y(0) + h(t) +

∫ t

0

y(s)φ(s)ds.

Suppose in addition that φ is bounded, upper-bounded by some negative number and

−∞ < inf φ ≤ supφ < 0.

Then, for all t ≥ 0,

sup
s≤t
|y(s)| ≤ Γ

(
|y(0)| ∨ sup

s≤t
|h(s)− h(bsc)|

)
,

where Γ = (1 + ||φ||∞)/(1− exp(supφ)).

Proof. To begin with, we introduce

Φ(t, s) = e
∫ t
s
φ(r)dr ≤ e−C(t−s),

for some positive constant C := − supφ > 0. Then

Φ(t, t) =1 ; Φ(t, s)Φ(s, u) = Φ(t, u),

∂tΦ(t, s) =Φ(t, s)φ(t) ; ∂sΦ(t, s) = −Φ(t, s)φ(s).
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By a standard constant variation argument, one can write

y(t) = Φ(t, 0)y(0) + h(t) +

∫ t

0

Φ(t, s)h(s)φ(s)ds.

Then it results the following decomposition:

y(t) =Φ(t, 0)y(0) +

btc∑
j=1

Φ(t, j)

(
h(j)− h(j − 1) +

∫ j

j−1

Φ(j, s)φ(s) (h(s)− h(j − 1)) ds

)

+ h(t)− h(btc) +

∫ t

btc
Φ(t, s)φ(s) (h(s)− h(btc)) ds.

Using the upperbound of φ, we obtain

|y(t)| ≤e−Ct|y(0)|+
btc∑
j=1

e−C(t−j)
(

sup
j−1≤s≤j

|h(s)− h(j − 1)|Γ′
)

+ sup
btc≤s≤t

|h(s)− h(btc)|Γ′,

with Γ′ := 1 + ||φ||∞. The result is proved by choosing Γ = Γ′
∑∞
j=0 e

−Cj = Γ′/(1− e−C).
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