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Abstract: We are interested in the invasion phase for stochastic processes with interactions
when a single mutant with positive fitness arrives in a resident population at equilibrium. By
a now classic approach, the first stage of the invasion is well approximated by a branching
process. The macroscopic phase, when the mutant population is of the same order of the resident
population, is described by the limiting dynamical system. We obtain sharper estimates and
capture the intermediate mesoscopic phase for the invasive population. It allows us to characterize
the hitting times of thresholds, which inherit a large variance from the first stages. These issues
are motivated in particular by quantifying times to reach critical values for cancer population or
epidemics.
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1. Introduction and main results

We aim to finely quantify a mutant invasion in a resident population at equilibrium. Such situation is
standard in eco-evolution, in cancer emergence or in epidemiology when a single individual particularly
well adapted can develop its own subpopulation and invade the global population. After a certain
amount of time, the number of mutants becomes non negligible with respect to the resident population
size, allowing to summarize the dynamics of the stochastic population processes by their deterministic
approximations. In Champagnat [14], a systematic approach was introduced to quantify the mutant
invasion success, based on the fine properties of the mutant birth and death process and its coupling
with branching processes for which the survival probability was easily computed. That allowed to
characterize the probability for the mutant process to attain a certain fixed threshold. This approach
has been used by many authors [15], [7], [2], [8], [12].

To go in details in this invasion process, it is necessary to introduce some scaling parameter K char-
acterizing the macroscopic population sizes and allowing to quantify each invasion step. We consider
a bi-type birth and death process modeling the population size dynamics of resident and mutant indi-
viduals which are interacting. We denote by NK

R (t) (resp. NK
M (t)) the number of resident individuals

(resp. mutant individuals) at time t. The interaction is modeled through density dependence of birth
and death rates. For that purpose, we introduce the scaled processes

XK(t) = (XK
R (t), XK

M (t)) := (NK
R (t)/K,NK

M (t)/K).

The processes (NK
R , N

K
M ) are defined on a probability space (Ω,F ,P) , as solutions of the stochas-

tic differential systems driven by Poisson point measures N b
R,N d

R,N b
M ,N d

M with Lebesgue measure
intensity on R+ × R+: for • ∈ {R,M}, for any K and time t,

NK
• (t) =NK

• (0) +

∫
[0,t]×R+

1{u≤NK• (s−)b•(XK(s−))}N b
• (ds, su) (1.1)

−
∫

[0,t]×R+

1{u≤NK• (s−)d•(XK(s−))}N d
• (ds, du).

We assume that, for • ∈ {R,M}, N b
• and Nd

• are independent, but (N b
R,N d

R) and (N b
M ,N d

M ) are not
necessarily independent. We refer to Section 5.1 for an application where independence holds and 5.2
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for an example where it does not.
The individual birth and death rates of resident and mutant individuals denoted by b•, d• are func-
tions of the scaled resident and mutant population sizes XK

K and XK
M . This dependence models the

interaction between both populations, as competition for resources, which for example may impact the
death rates. The individual growth rates are defined on R+ × R+ by

FR(xR, xM ) = bR(xR, xM )− dR(xR, xM ); FM (xR, xM ) = bM (xR, xM )− dM (xR, xM ).

It is well known (cf [19]) that under suitable assumptions on the parameters and when initial
conditions of the branching processes are of order K, the stochastic process ((XK

R (t), XK
M (t)) : t ≥ 0)

converges in probability, on any finite time interval, to the dynamical system{
x′R = xR FR(xR, xM ) = GR(xR, xM );

x′M = xM FM (xR, xM ) = GM (xR, xM ).
(1.2)

The dynamics of the macroscopic resident population (NK
R (t), t ≥ 0) is then approximated by (K xR(t), t ≥

0). We assume the existence of an equilibrium x?R > 0 satisfying

FR(x?R, 0) = bR(x?R, 0)− dR(x?R, 0) = 0.

When a mutation appears in the population at the equilibrium, the mutant process (NK
M (t), t ≥ 0)

will firstly be close to a branching process with birth and death rates respectively

b? = bM (x?R, 0) ; d? = dM (x?R, 0).

We assume that the initial growth rate of this process is positive

r? = b? − d? > 0. (1.3)

This ensures that with positive probability the mutant population invade.
The invasion success can be characterized by the fact that the mutant process attains a threshold

of order of magnitude K with a positive probability when K tends to infinity. Let us introduce the
hitting times

τKM (n) = inf{t ≥ 0 : NK
M (t) ≥ n} = inf{t ≥ 0 : XK

M (t) ≥ n/K}. (1.4)

When such levels are reached, Champagnat [14] proved that the time τKM (εK) needed is of order of
magnitude logK. Its proof is based on coupling between the process of interest and two branching
processes, respectively Z+

ε and Z−ε above and below:

Z−ε (t) ≤ NK
M (t) ≤ Z+

ε (t) a.s.

as long as NK
M is smaller that εK. The Malthusian parameters of these branching processes are respec-

tively λ−(ε) and λ+(ε) satisfying λ−(ε) ≤ r? ≤ λ+(ε) and converging both to r? when ε tends to 0.
For branching processes, it is known that the population size grows a.s. exponentially on the survival
event, more precisely

Z−ε (t) ∼t→∞ W−ε e
λ−(ε)t, Z+

ε (t) ∼t→∞ W+
ε e

λ+(ε)t a.s.,

Thus, for any ε > 0 and (tK)K a sequence such that tK � logK,

lim
K→∞

P
(
τKM (εK) ≤ tK

)
= 1− d?

b?
,

where the last hand side is the survival probability of a birth and death process with individual birth
rate b? and death rate d?. From Champagnat’s work, we can further deduce that for any η > 0, for ε
small enough,

lim
K→∞

P
(∣∣∣∣τKM (εK)

logK
− 1

r?

∣∣∣∣ ≥ η; ∀t > 0, NK
M (t) > 0

)
= 0.
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The time for reaching macroscopic levels of order K is thus approximated, at the first order,
by logK/r?. In the situations when K is very large, as for huge cohorts of microorganisms (bac-
teria, cells), this result may be precise enough. But in many other cases, K is not so large. We can
refer to the modeling of hematopoiesis and leukemias [10, 11] where K is the number of sain stem cells,
of order 105. In that case, we need to go further and to quantify τKM (εK) as function of K, for large K.
In particular, we were interested by the variance of this time and its dependence on ε. Our ambition
has become more generally to capture the dynamics of the invasion process until macroscopic levels, in
particular to approximate the process when it is large but negligible compared to K (mesoscopic scale).

The first step consists in evaluating the random time until which the mutation process NK
M and the

coupled binary branching process Z with birth and death rates b∗ and d∗ coincide, when K becomes
large. Such exact coupling are known and used in particular in epidemiology to determine outbreak
criterion and characterize the growth of epidemics in the beginning. For SIR model in continuous time,
we refer in particular to Ball and Donnelly [4] for a proof of exact coupling during a time interval whose
lenght grows as c logK for some c > 0. But this exact coupling does not hold any longer when the
population becomes too large. Thus, in Ball and Donnelly, it holds until the population reaches order of
magnitude

√
K. After this time window where process coincide, the error between the processes grows

but the two processes may stay comparable, see in particulier Barbour and Utev [6] for comparison
before the infected population reaches K2/3 in a discrete counterpart of SIR model. We prove that the
branching approximation is still valid in the sense of an a.s. equivalence for any submacroscopic level
(up to logK). More precisely, for any ξK � K/ log(K)a and η > 0,

lim
K→+∞

P
(

sup
t≤τKM (ξK)

∣∣∣∣NK
M (t)

Z(t)
− 1

∣∣∣∣ > η ; Z(τKM (ξK)) > 0

)
= lim
T→∞

sup
K∈N

P
(

sup
T≤t≤τKM (ξK)

∣∣∣∣NK
M (t)

Wer?t
− 1

∣∣∣∣ > η ; W > 0

)
= 0,

where
W = lim

t→∞
Z(t)e−r?t ∈ [0,∞) a.s.

is an exponential variable with an additional atom in 0 corresponding to the extinction event. The
value of a can be chosen to be 1 or 2 depending on the fact that the equilibrium of the resident
population alone is exponentially stable or not, see forthcoming Theorem 2.3 for a precise statement.
For such results, we need to control the gap between the two coupled populations (the orginial process
and the branching process). We use that individuals which belong to one of two populations but not
to the other in the coupling can be seen as branching structure with an additional immigration whose
intensity increases with the value of Z or NM . In this vein, we mention Barbour and Reinert [5] for
the description of the epidemic curve which describes the outbreak and the link with initial branching
approximation by coupling.

When the population of mutants becomes large but is not yet macroscopic, we prove that the
deterministic approximation by the dynamical system is already valid in the following sense:

sup
t≤τM (vK)

∣∣∣∣XK
M (t)

xKM (t)
− 1

∣∣∣∣ −→K→∞
0, in probability,

where v > 0, 1 � NK
M (0) = KXK

M (0) � K is the initial number of mutant and xKM is the solution
of (1.2) with the corresponding initial condition 1/K � xKM (0) = XK

M (0) � 1. The boundary being
absorbing for the dynamical system but unstable for invasion population makes the problem delicate
when controlling the stochastic flow. In the time window [0, τM (vK)] whose size is of order of mag-
nitude log(K), XK goes from XK

M (0) � 1/K to v. We refer to Section 3.2 for a precise statement
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Fig 1. The black curve represents a trajectory of the process XK
M (t) = NK

M (t)/K, the blue curve a trajectory of

Z(t)/K, and the red curve is the deterministic function xKM (t) starting at time τKM (ξK). Both figures represent the
simulations of the same trajectory in different scales (logarithmic scale at the right picture, and standard scale at the
left one). These simulations have been done with the following parameters: K = 100000, FR(xR, xM ) = −1.5xM ,
FM (xR, xM ) = 1.5xR − 1, x?R = 1, ξK = 1/

√
K and v = 0.055.

which gives the admissible values of v and quantitative estimates for the convergence. The simulations
of Figure 1 illustrates the different approximations corresponding to the SIR example of Section 5.2,
first by the branching process and then by the dynamical system.

As a byproduct, we obtain in Theorem 4.1 the following convergence in law of hitting times when
K tends to infinity. For (ξK)K going to infinity such that ξK/K → v ≥ 0, we show that on the survival
event

τKM (ξK)− log(ξK)

r?
=⇒ τ(v)− log(W ?)

r?
,

where the function τ is continuous and τ(0) = 0 is and W ? is an exponential random variable with
parameter r?/b?. Thus, the hitting times of mesoscopic or macroscopic levels are shifted Gumbel laws.
We refer to Section 3.1 for the definition τ the characterization of admissible values [0, v?] of the
level v. This result is illustrated by the simulations of Figure 2 corresponding to the SIR example of
Section 5.2.

Assumptions. We consider the following assumptions on the birth and death rates. They ensure in
particular that the resident population alone has an equilibrium point (which may be unstable) and
mutant population can invade.

Assumption 1.1.

(R) Regularity: the functions bR, dR, bM , dM are C2(R+ × R+).
(E) Equilibrium: there exists x?R > 0 such that FR(x?R, 0) = 0 and ∂RFR(x?R, 0) ≤ 0.
(I) Invasion: FM (x?R, 0) > 0.

Under Assumption (R), the bi-type birth and death process XK is well defined until its explosion
time, which may be finite with positive probability. In our framework, the process is studied before
hitting times of fixed levels, clearly smaller than the explosion time.
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Fig 2. The histogram represents the values of τKM (vK) The simulations have been done with the following parameters:
K = 100000, FR(xR, xM ) = −1.5xM , FM (xR, xM ) = 1.5xR − 1, x?R = 1 and v = 0.055. The size of the sample to draw
the histogram is 10000.The curve is the density f of the random variable log(vK)/r? + τ(v) − log(W ?)/r?, where the
density of −log(W ?)/r? is equal to r2?/b? exp(−r?t) exp(−r?/b?e−r?t).

In the eco-evolutionary framework, FM (x?) is called invasion fitness. It quantifies the individual growth
rate for a small mutant population in a resident population at the equilibrium.

Notation.

• We write x? = (x?R, 0).
• For f : (xR, xM ) ∈ R2 7→ f(xR, xM ), we denote ∂Rf (resp. ∂Mf) the derivative w.r.t. the first

(resp. second) variable.
• if N (dx) is a Poisson measure with intensity λ(dx), we denote Ñ (dx) := N (dx) − λ(dx) the

compensated measure.
• Throughout the paper, C denotes any positive constant depending only on the model parameters.

The value of C can change from to line in an equation. If a constant depends on some (non-model)
parameter θ we write instead Cθ.

2. Approximation by branching processes

In this section, we assume that at the initial time, the resident population is close to its equilibrium
and a single mutant individual appears :

Assumption 2.1. There exists C > 0 such that for any K > 0,∣∣∣∣NK
R (0)

K
− x?R

∣∣∣∣ ≤ C

K
and NK

M (0) = 1 a.s.

We introduce the branching process (Z(t) : t ≥ 0) with individual birth rate b∗ = bM (x?) and
(individual) death rate d∗ = dM (x?), defined on the same probability space as NK

M and coupled with



V. Bansaye et al./Sharp approximation for invasion processes 6

NK
M in the following way :

Z(t) =1 +

∫
[0,t]×R+

1{u≤b? Z(s−)}N b
M (ds, du)−

∫
[0,t]×R+

1{u≤d? Z(s−)}N d
M (ds, du),

where the Poisson point measures N b
M and N d

M have been introduced in (1.1).

We recall from (1.3) that r? = b?−d? > 0 and the branching process Z is supercritical. The survival
event is positive probability and as t tends to infinity, the martingale W (t) = Z(t) exp(−r?t) converges
a.s. to a finite random variable W which is positive on the survival event :

{W > 0} = {∀t > 0 : Z(t) > 0}.

The random variable W is exponentially distributed with an additional atom in 0 :

W
d
=
b?
d?
δ0 +

r?
b?
Exp(

r?
b?

),

where δ0 is a Dirac mass in 0 and Exp(λ) is an exponential random variable with parameter λ. We
refer to [1] Chapter 3 or [18]-Theorem 1 for this result.

Let us study the coupling between the processes Z and NK
M . First, when the branching process Z

becomes extinct, so does the mutant process NM and we have the following result.

Proposition 2.2. Under Assumptions 1.1 and 2.1,

lim
K→∞

P(∀t ≥ 0 : NK
M (t) = Z(t)|W = 0) = 1.

Indeed, the two processes coincide by coupling on a time window whose size goes to infinity with
probability 1 as K to infinity. Besides, Z is a.s. absorbed at 0 in finite time on the event {W = 0}.
Such arguments are classical for epidemiological models and can be adapted to our context. We refer
to [4].

Let us turn our attention to the survival event and state the main result of the section. It compares
the mutant process and its branching approximation as long as the process is not too close from
macroscopic scales. We prove that the ratio of the two processes converges to 1 in probability, with an
explicit speed, before time τKM (ξK) when mutants reach a certain threshold ξK (see (1.4) for defition).

Theorem 2.3. Under Assumptions 1.1 and 2.1, there exists C > 0 such that the following result holds
for any η > 0 and K ≥ 1.

i) if ∂RFR(x?) < 0, for any sequence ξ such that
√
K logK � ξK � K/ logK, we have

P
(

sup
t≤τKM (ξK)

∣∣∣∣NK
M (t)

Z(t)
− 1

∣∣∣∣ > η ; W > 0

)
≤ C

(√
K logK

ξK
+

1

K1/3
+

1

η1/4

(
ξK logK

K

)1/10
)
,

ii) if ∂RFR(x?) = 0, for any sequence ξ such that logK � ξK � K/(logK)2, we have

P
(

sup
t≤τKM (ξK)

∣∣∣∣NK
M (t)

Z(t)
− 1

∣∣∣∣ > η ; W > 0

)
≤ C

√ logK

ξK
+

1

K1/3
+

1

η1/4

(
logK

√
ξK
K

)1/10
 .

We observe that the lower bound on ξK is needed only for the speed of convergence. Thus NK
M/Z−1

converges to 1 in probability for any sequence ξK such that 1� ξK � K/(logK). We refer to Section
4 for the asymptotic behavior of τKM (ξK).
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There are two statements depending on the value of ∂RFR(x?). Indeed, the proof is based on a
comparison between τKM (ξK) and the first time where the resident population exits a neighborhood of
its equilibrium. The choice of this neighborhood depends ∂RFR(x?). If ∂RFR(x?) < 0, the manifold
{xR = 0} is stable around the fixed point (x?R, 0). This stability helps for the control of the resident
population and guarantees that the distance of the resident population process to its equilibrium
remains smaller than ξK (up to some well chosen constant). If ∂RFR(x?) = 0, exponential (local)
stability is lost and we can (only) prove that the distance is smaller than

√
KξK . We refer to Lemma

2.8 for details.

The proof of Theorem 2.3 will be obtained in several steps that we develop below. We first consider
a classical coupling construction between NK

M and Z. Let us associate a color to individuals: the black
ones realize the coupling and the red ones belong to one population but not to the other. The two
subpopulations will be indexed respectively by n and r.
We introduce

mK(s) = min(NK
M,n(s)bM (XK(s)), Zn(s)b?), pK(s) = max(NK

M,n(s)dM (XK(s)), Zn(s)d?)

where (NK
M,n, N

K
M,r) and (Zn, Zr) are defined as follows:

NK
M,n(t) = 1 +

∫ t

0

∫
R+

1u≤mK(s−)N b
M (ds, du)−

∫ t

0

∫
R+

1u≤pK(s−)N d
M (ds, du)

NK
M,r(t) =

∫ t

0

∫
R+

1mK(s−)<u≤NKM,n(s−)bM (XK(s−))N b
M (ds, du)

+

∫ t

0

∫
R+

1NKM,n(s−)dM (XK(s−))<u≤pK(s−)N d
M (ds, du)

+

∫ t

0

∫
R+

10≤u−NKM,n(s−)bM (XK(s−))≤NKM,r(s−)bM (XK(s−))N b
M (ds, du)

−
∫ t

0

∫
R+

10≤u−pK(s−)≤NKM,r(s−)dM (XK(s−))N d
M (ds, du)

and in a similar way,

ZKn (t) = 1 +

∫ t

0

∫
R+

1u≤mK(s−)N b
M (ds, du)−

∫ t

0

∫
R+

1u≤pK(s−)N d
M (ds, du)

ZKr (t) =

∫ t

0

∫
R+

1mK(s−)<u≤ZKn (s−)b? N
b
M (ds, du)

+

∫ t

0

∫
R+

1ZKn (s−)d?<u≤pK(s−)N d
M (ds, du)

+

∫ t

0

∫
R+

10≤u−ZKn (s−)b?≤ZKr (s−)b? N
b
M (ds, du)

−
∫ t

0

∫
R+

10≤u−pK(s−)≤ZKr (s−)d? N
d
M (ds, du).

We can easily check that

Lemma 2.4. The following equalities of processes hold, almost surely:
i) NK

M = NK
M,n +NK

M,r and Z = ZKn + ZKr .

ii) NK
M,n = ZKn .
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Proof. Item i) results from the fact that NK
M,n + NK

M,r and NK
M are solutions of the same stochastic

differential equation for which pathwise uniqueness holds. A similar argument also holds for Z.
Item ii) results from the construction of NK

M,n and ZKn .

Let us introduce the time when the gap to the equilibrium for resident population goes beyond some
level n ≥ 0:

τKR (n) = inf
{
t > 0 : |NK

R (t)− x?RK| > n
}

= inf
{
t > 0 : |XK

R (t)− x?R| > n/K
}

We introduce the stopping time

TK(m,n) = τKM (m) ∧ τKR (n) ∧ 4 logK

3r?
. (2.1)

Remark 2.5. In our proof, we need to bound the stopping time TK(m,n) by some deterministic value.
For the need of our proof, it is possible to consider any time of the form λ(logK)/r? (with λ > 1). We
choose λ := 4/3 in definition (2.1) to optimize the convergence speed of Theorem 2.3 (this particular
choice only matters in the proof of Lemma 2.7).

The residual processes (red individuals) will be compared to an inhomogeneous branching process
and proved to be negligible until TK(m,n), with m ad n suitably chosen.

Lemma 2.6. Under Assumptions 1.1 and 2.1,

i) For any L > 0, there exists CL > 0 such that for any ξK � K/ logK,

E

[
sup

t≤TK(ξK ,L ξK)

(ZKr (t) +NK
M,r(t))e

−r?t

]
≤ CL

√
logK

ξK
K
.

ii) For any ξK � K/(logK)2,

E

[
sup

t≤TK(ξK ,
√
K ξK)

(ZKr (t) +NK
M,r(t))e

−r?t

]
≤ C

(
logK

√
ξK
K

)1/2

.

Proof. In case i), we consider
√
K logK � ξK � K/ logK. Let us denote TK = TK(ξK , L ξK) for

simplicity. Since bM and dM are locally Lipschitz continuous, then for s ≤ TK , almost surely,

ZKn (s)|bM (XK(s))− b?|+ ZKn (s)|dM (XK(s))− d?| ≤ CZKn (s)
ξK
K
, (2.2)

and then

ZKn (s)b? −mK(s) + pK(s)− ZKn (s)d? ≤ CZKn (s)
ξK
K
,

for C a positive constant number. Therefore, the process ZKr can be stochastically dominated on the
time window [0, TK ] by an branching process with inhomogeneous immigration Y , solution of

Y (t) =

∫ t

0

1
u≤CZKn (s−)

ξK
K

N I(ds)

+

∫ t

0

∫
R+

10≤u≤Y (s−)b? N
b
M (ds, du)−

∫ t

0

∫
R+

10≤u≤Y (s−)d? N
d
M (ds, du),
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where N I is a Poisson point measure with Lebesgue intensity on R+, independent of N b
M and N d

M .
We can easily note that

E
[
ZKn (t)

]
≤ E [Z(t)] = er?t

and straigthforward computation leads to

E [Y (t)] ≤ C ξK
K

e2r?t.

Let M(t) be the martingale part of the semimartingale Y (t). Then

〈M〉(t) =

∫ t

0

(
CZKn (s)

ξK
K

+ Y (s)(b∗ + d∗)
)
ds

and Doob’s and Cauchy Schwarz inequality yields

E

(
sup
t≤Tk

∣∣∣∣∫ t

0

e−r?sdM(s)

∣∣∣∣
)
≤ CE

(∫ TK

0

e−2r?sd〈M〉(s)
)1/2

≤ C
√

2TKξK
K

.

We compute

Y (t)e−r?t =

∫ t

0

e−r?sdM(s) +

∫ t

0

e−r?s
(
CZKn (s)

ξK
K

+ Y (s)(b∗ − d∗)− Y (s)(b∗ − d∗)
)
ds

=

∫ t

0

e−r?sdM(s) +

∫ t

0

e−r?s CZKn (s)
ξK
K
ds.

Combining the previous estimates gives

E

(
sup
t≤TK

Y (t)e−r?t

)
≤ C

√
2TKξK
K

+
CTKξK
K

.

By (2.1) and the domination of ZKr by Y , we obtain

E

(
sup
t≤TK

ZKr (t)e−r?t

)
≤ C

√
logK

ξK
K
,

for C > 0 suitably chosen. The proof follows if logKξK � K.

The assertion i) for NK
M,r can be proved in a similar way. Indeed the individual birth and death

rates are respectively upper-bounded by b? +CξK/K and lower-bounded by d? +CξK/K for t ≤ TK .
So NK

M,r is dominated on the time window [0, TK ] by the process Y defined by

Y (t) =

∫ t

0

1u≤CZ(s−)ξK/K N
I(ds)

+

∫ t

0

∫
R+

10≤u≤Y (s−)(b?+CξK/K)N b
M (ds, du)−

∫ t

0

∫
R+

10≤u≤Y (s−)(d?−CξK/K)N d
M (ds, du).

The conclusion follows as above by considering Y (t) exp(−(r? + 2CξK/K)t) since, for t ≤ TK ,
(2CξK/K)t ≤ 1 for K large enough. recalling that ξK � K/ logK.

For the second case ii), we consider ξK � K/(logK)2. The difference with the first case is that (2.2)
becomes TK = TK(ξK ,

√
K ξK) and for s ≤ TK , almost surely,

ZKn (s)|bM (XK(s))− b?|+ ZKn (s)|dM (XK(s))− d?| ≤ CZKn (s)

√
ξK
K
,
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since ξK/K �
√
ξK/K � 1. Then, similar computation as in Step 1 gives

E

(
sup
t≤TK

ZKr (t)e−r?t

)
≤ C

(
logK

√
ξK
K

)1/2

.

Proceeding similarly for NK
M,r ends the proof.

Lemma 2.7. Under Assumptions 1.1 and 2.1, we have that for any η > 0,

i) For any L > 0, there exists CL > 0 such that for any
√
K logK � ξK � K/(logK),

P
(

sup
t≤TK(ξK ,L ξK)

∣∣NK
M (t)− Z(t)

∣∣
Z(t)

> η ; W > 0

)
≤ CL
η1/4

(
ξK logK

K

)1/10

. (2.3)

ii) For logK � ξK � K/(logK)2,

P
(

sup
t≤TK(ξK ,

√
KξK)

∣∣NK
M (t)− Z(t)

∣∣
Z(t)

> η ; W > 0

)
≤ C

η1/4

(
logK

√
ξK
K

)1/10

. (2.4)

Proof. Let us prove i) and focus on the survival event {W > 0} where the process Z stays positive.
On this event, using Lemma 2.4, we write

|NK
M (t)− Z(t)|
Z(t)

≤
|NK

M,n(t)− ZKn (t)|
Z(t)

+
|NK

M,r(t)− ZKr (t)|
Z(t)

,

and the first term is null. Moreover

|NK
M,r(t)− ZKr (t)|

Z(t)
=
|NK

M,r(t)− ZKr (t)|e−r?t

W (t)
,

where W (t) is the classical martingale associated with Z: W (t) = Z(t)e−r?t.
Using Lemma 2.6 i) and the the fact that W (t) converges to W a.s., we deduce that for t ≤

TK(ξK , L ξK), |NK
M,r(t) − ZKr (t)|/Z(t) tends to 0 in probability on the event W > 0, as K tends to

infinity.

Let us now obtain an explicit convergence speed. For convenience we define

TK = TK(ξK , L ξK), UK = sup
t≤TK

Zr(t)e
−r?t + sup

t≤TK
NK
M,r(t)e

−r?t.

The previous computations ensure that

|NK
M (t)− Z(t)|
Z(t)

≤ UK

inft≥0W (t)

a.s. on the event W > 0. Moreover, writing εK = ξK logK/K, for any η > 0

P
(
UK ≥ η inf

t≥0
W (t) ; W > 0

)
≤ P

(
UK ≥ ε2/5

K

)
+ P

(
inf
t≥0

W (t) ≤ 1

η
ε

2/5
K ; W > 0

)
.

By Markov’s inequality and Lemma 2.6,

P
(
UK ≥ ε2/5

K

)
≤ CL ε1/2−2/5

K = CLε
1/10
K .
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On the other hand, by Lemma 6.2,

P
(

inf
t≥0

W (t) ≤ 1

η
ε

2/5
K ; W > 0

)
≤ C 1

η1/4
ε

2/5×1/4
K = C

1

η1/4
ε

1/10
K .

This proves the result case i). Case ii) is proven similarly.

Let us now prove that that the mutant population will reach their threshold before the resident
population. We quantify the speed at which the probability of the event τKR ≤ TK goes to 0 as K goes
to infinity:

Lemma 2.8. Under Assumption 1.1,

i) If ∂RFR(x?) < 0, we set

L :=
7|∂MGR(x?, 0)|(1 + |∂RFR(x?, 0)|)

1− e∂RFR(x?)
,

then for any (ξK)K such that
√
K logK � ξK � K/ logK,

P
(
τKM (ξK) ≥ τKR (LξK) ∧ 4 logK

3r?
; W > 0

)
≤ C

(√
K logK

ξK
+

1

K1/3
+

(
ξK logK

K

)1/10
)
.

ii) If ∂RFR(x?) = 0, then for any (ξK)K such that logK � ξK � K/(logK)2,

P
(
τKM (ξK) ≥ τKR (

√
KξK) ∧ 4 logK

3r?
; W > 0

)
≤ C

√ logK

ξK
+

1

K1/3
+

(
logK

√
ξK
K

)1/10
 .

This result will guarantee that the probability of the event {τKM = TK} goes to one as K goes to
infinity.

Proof of case i). The first STEP consists in controlling the resident population and we prove that

P

(
sup
t≤TK

∣∣XK
R (t)− x?R

∣∣ ≥ LξK/K) ≤ C√K lnK

ξK
, (2.5)

with

TK := TK(ξK , LξK) := τKM (ξK) ∧ τKR (LξK) ∧ 4 logK

3r?
.

For that purpose, we notice that, for any t ≤ TK and K large enough,

XK
M (t) ≤ ξK

K
≤ 1 and XK

R (t) ≤ x?R + L
ξK
K
≤ x?R + 1.

Hence, the processes XK
M and XK

R are bounded up to time TK . We write

XK
R (t) =XK

R (0) +
1

K

∫
[0,t]×R+

1{z≤NKR (s−)bR(XK(s−))}Ñ
b
R(ds, dz)

− 1

K

∫
[0,t]×R+

1{z≤NKR (s−)dR(XK(s−))}Ñ
d
R(ds, dz)

+

∫ t

0

GR(XK(s−))ds

=:XK
R (0) +MK(t) +

∫ t

0

GR(XK(s−))ds,
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where Ñ b
R and Ñ d

R are the compensated Poisson martingale measures of N b
R and N d

R, and

GR(xR, xM ) := xR(bR − dR)(xR, xM ) = xR FR(xR, xM ).

Note that

〈MK〉(t) =
1

K

∫ t

0

XK
R (s)

(
bR(XK(s−)) + dR(XK(s−))

)
ds. (2.6)

Observing that GR(x?) = 0 by definition of x?R, we rewrite the dynamics above as

XK
R (t) =XK

R (0) +MK(t) +HK
1 (t) +HK

2 (t) +

∫ t

0

(XK
R (s)− x?R)∂RGR(x?)ds,

where

HK
1 (t) =

∫ t

0

XK
M (s)∂MGR(x?)ds

and

HK
2 (t) =

∫ t

0

(
GR(XK(s−))−GR(x?)− (XK

R (s)− x?R)∂RGR(x?)−XK
M (s)∂MGR(x?)

)
ds.

Denoting
Y KR (t) := XK

R (t)−XK
R (0),

we have

Y KR (t) = MK(t) +HK
1 (t) +HK

2 (t) +

∫ t

0

Y KR (s)∂RGR(x?)ds. (2.7)

Recall that ∂RFR(x?) < 0 and so ∂RGR(x?) < 0. We define

HK := MK +HK
1 +HK

2 .

Thanks to Lemma 6.3, for K large enough, for any t ≤ TK ,

sup
0≤s≤t

∣∣Y KR (s)
∣∣ ≤ Γ sup

0≤s≤t

∣∣HK(s)−HK(bsc)
∣∣ ,

with

Γ := (1 + |∂RFR(x?)|) 1

1− e∂RFR(x?)
.

Then, for K large enough,

P

(
sup
t≤TK

∣∣XK
R (t)− x?R

∣∣ > LξK/K

)

≤ P

(
sup
t≤TK

|Y KR (t)| > 1

2
LξK/K

)

≤ P

(
sup
t≤TK

∣∣HK(t)−HK(btc)
∣∣ > L

2Γ
ξK/K

)

≤ P

(
sup
t≤TK

∣∣MK(t)−MK(btc)
∣∣ > L

6Γ
ξK/K

)

+

2∑
i=1

P

(
sup
t≤TK

∣∣HK
i (t)−HK

i (btc)
∣∣ > L

6Γ
ξK/K

)
.



V. Bansaye et al./Sharp approximation for invasion processes 13

Using (2.6) and the definition of TK for an upper bound XK
R on [0, TK ], we get E

[
〈MK〉TK

]
≤

C(logK)/K. By Markov’s and Burkholder-Davis-Gundy’s inequalities, we then obtain

P

(
sup
t≤TK

∣∣MK(t)−MK(btc)
∣∣ > L

6Γ
ξK/K

)
≤C K

ξK
E

[
sup
t≤TK

|MK(t)|

]

≤C K

ξK
E
[
〈MK〉TK

]1/2
≤C K

ξK

(
logK

K

)1/2

≤ C
√
K logK

ξK
.

Besides, almost surely for K large enough,

sup
t≤TK

∣∣HK
1 (t)−HK

1 (btc)
∣∣ ≤ ξK

K
|∂MGR(x?)| < ξK

K
· L

6Γ
,

since L := 7|∂MGR(x?)|Γ, and thus for K large enough

sup
t≤TK

∣∣HK
2 (t)−HK

2 (btc)
∣∣ ≤ C (ξK

K

)2

<
L

6Γ
· ξK
K
.

which proves (2.5) and ends the first STEP.

We turn to STEP 2 and prove that

P
(
τKM (ξK) ∧ τKR (LξK) ≥ 4 logK

3r?
; W > 0

)

≤ CK−1/3 +
C

η1/4

(
logK

√
ξK
K

)1/10

. (2.8)

For convenience, we write SK := 4
3r?

logK and we recall that W (t) := Z(t)e−r?t. Let us notice that,
a.s. the event {W > 0},{

τKM (ξK) ∧ τKR (ξK) ≥ SK
}

⊆
({

NK
M (SK) ≤ ξK + 1 ≤ K/2

}
∩
{

Z(SK)

NK
M (SK)

≤ 2

})
∪

{
sup
t≤TK

∣∣∣∣NK
M (t)

Z(t)
− 1

∣∣∣∣ > 1

2

}

⊆
{
Z(SK) ≤ K

}
∪

{
sup
t≤TK

∣∣∣∣NK
M (t)

Z(t)
− 1

∣∣∣∣ > 1

2

}
.

Whence

P
(
τKM (ξK) ∧ τKR (ξK) ≥ SK ;W > 0

)
≤ P

(
W (SK) ≤ K−1/3 ; W > 0

)
+P

(
sup
t≤TK

∣∣∣∣NK
M (t)

Z(t)
− 1

∣∣∣∣ > 1

2
; W > 0

)
.

The first term involves an estimate on the infimum of a single type branching process which we state
and prove in Lemma 6.1 in forthcoming Appendix. The second term of the sum in the RHS above has
been controlled in Lemma 2.7. Combining these two estimates yields (2.8).

We can now conclude the case i) combining the two STEPs. Using the fact that, for any x, y, z ∈ R,
(x ≥ y ∧ z)⇐⇒ (x ∧ y ≥ z or x ∧ z ≥ y), we can write

P
(
τKM (ξK) ≥ τKR (LξK) ∧ 4 logK

3r?
; W > 0

)
≤ P

(
τKM (ξK) ∧ τKR (LξK) ≥ 4 logK

3r?
; W > 0

)
+ P

(
τKM (ξK) ∧ 4 logK

3r?
≥ τKR (LξK)

)
.
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We use (2.8) to estimate the first term in the right hand side. We can use (2.5) for the second one
since {

τKR (LξK) ≤ τKM (ξK) ∧ 4 logK

3r?

}
⊂

{
sup
t≤TK

∣∣NK
R (t)− x?RK

∣∣ ≥ LξK} .
It ends the proof.

Proof of the case ii). We prove a similar result under the hypothesis ∂RFR(x?) = 0. Now we define

TK := TK(ξK ,
√
ξKK),

and we want to prove that

P

(
sup
t≤TK

∣∣XK
R (t)− x?R

∣∣ >√ξK/K) ≤ C
√

logK

ξK
.

Here (2.7) gives trivially

sup
s≤t
|Y KR (s)| ≤ sup

s≤t
|MK(s)|+ sup

s≤t
|HK

1 (s)|+ sup
s≤t
|HK

2 (s)|,

whence,

P

(
sup
t≤TK

∣∣XK
R (t)− x?R

∣∣ >√ξK/K)

≤ P

(
sup
t≤TK

∣∣MK(t)
∣∣ > C

√
ξK/K

)
+

2∑
i=1

P

(
sup
t≤TK

∣∣HK
i (t)

∣∣ > C
√
ξK/K

)
.

We have the following estimates

P

(
sup
t≤TK

∣∣MK(t)
∣∣ > C

√
ξK/K

)
≤C

√
K

ξK
·
√

logK

K
= C

√
logK

ξK
,

sup
t≤TK

∣∣HK
1 (t)

∣∣ ≤C ξK
K
TK ≤ C ξK

K
logK �

√
ξK
K
,

sup
t≤TK

∣∣HK
2 (t)

∣∣ ≤C ξK
K
TK ≤ C ξK

K
logK �

√
ξK
K
,

which proves that, for K large enough,

P

(
sup
t≤TK

∣∣XK
R (t)− x?R

∣∣ >√ξK/K) ≤ C
√

logK

ξK
.

It ends the proof.

Theorem 2.3 bcomes now a consequence of the two previous lemmas.

Proof of Theorem 2.3. We use

P

(
sup

t≤τKM (ξK)

|NK
M (t)− Z(t)|
Z(t)

> η ; W > 0

)
≤P
(
τKM (ξK) > τKR ∧

4

3r?
logK

)

+ P

(
sup
t≤TK

|NK
M (t)− Z(t)|
Z(t)

> η ; W > 0

)
.

The two terms of the right hand side can be controlled using respectively Lemmas 2.8 and 2.7. This
completes the proof.
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3. Approximation by dynamical systems

The goal of this section is to approximate the process XK = (XK
R , X

K
M ) defined in Section 1 by the

dynamical system defined by (1.2) under degenerate initial conditions. Usually such an approximation
is proved when the initial conditions are of order of magnitude one (cf for example [19]). Here, we focus
on a small deterministic initial density of mutants, 1/K � xM = NK

M (0)/K � 1 and an initial density
of residents xR = NK

R (0)/K close to the equilibrium value x?R. The initial mutant density may be very
small regarding K but we still enjoy a large number of mutants allowing to compare the stochastic
process to its expected deterministic behavior. Starting from such sub-macroscopic level of mutants,
the time for them to reach macroscopic levels will be of order logK. We will compare the density
process and its deterministic approximation on this time scale of invasion. They are both small at the
beginning and we will show that their ratio remains close to 1 on the full time window allowing to
reach macroscopic density of mutants.

This section emphasizes the role of (small) initial conditions and we introduce the flow notation for
convenience. The process XK(x, .) started from x is defined for any K and time t by

XK
• (x, t) =x• +

1

K

∫
[0,t]×R+

1{u≤KXK• (x,s−)b•(XK(x,s−))}N b
• (ds, su) (3.1)

− 1

K

∫
[0,t]×R+

1{u≤KXK• (x,s−)d•(XK(x,s−))}N d
• (ds, du).

for • ∈ {R,M}. The flow φ(x, t) = (φR(x, t), φM (x, t)) is the solution of (1.2) starting from initial
value x, i.e. the unique solution of

φ(x, 0) = x,
∂

∂t
φ(x, t) = G(φ(x, t)),

where we recall that
G•(x) = x•(b•(x)− d•(x)).

In this section we assume that the flow φ satisfies a boundedness assumption:

Assumption 3.1. There exists a compact domain D of R2
+ such that

∃ε > 0, (x?R − ε, x?R + ε)× [0, ε) ⊂ D and {φ(x, t) : x ∈ D, t ≥ 0} is bounded.

.

3.1. Properties of the dynamical system and hitting times

Let us consider the hitting time for the mutant population starting from x

τMv (x) = inf{t ≥ 0 : φM (x, t) = v},

with by convention inf ∅ = ∞ and the hitting time is then infinite. The following result quantifies
the hitting time τMv (x) in function of the two variables x and v, starting close to the equilibrium
x? = (x?R, 0). Let us define, for η > 0,

C(x, η) = sup{φM (x, t) : t ≤ τη(x)}

where
τη(x) = inf{t ≥ 0 : FM (φ(x, t)) ≤ η}.
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We set
vη = lim

r↓0
inf

x∈Br(x?)∩(R∗+)2
C(x, η).

Observing that it decreasing with η, we let η go to zero and define v? as the upper-bound of the values
of mutants which can be reached starting the neighborhood of the equilibrium:

v? := lim
η↓0

vη.

The next result guarantees that v? is positive and finite. It also quantifies the hitting times τMv (x)
when x goes close to x? and v is smaller than v?.

Proposition 3.2. Under Assumptions 1.1 and 3.1, the value v? is positive and finite.
Besides there exists a continuous increasing function τ : [0, v?)→ R+ such that τ(0) = 0 and for any
v̄ ∈ (0, v?),

lim
x→x∗

sup
v∈(xM ,v̄]

∣∣τMv (x)− 1

r?
log(v/xM )− τ(v)

∣∣ = 0,

where the limit is taken for x ∈ (R∗+)2 if ∂RFR(x?) < 0, and for

x ∈ D(η) =
{

(xR, xM ) ∈ (R∗+)2 : |xR − x?R| log(1/xM ) ≤ η
}

for some η > 0 if ∂RFR(x?) = 0.

The proof of this proposition necessitates the three next lemmas, which guarantee that the resident
process to remain close to its equilibrium value as long as the mutant process remains small. The
proofs of the two first ones are a bit technical and postponed in Appendix.

Lemma 3.3. i) If ∂RFR(x?) < 0, then there exists 0 < u0 < 1 such that for any u ≤ u0 and
x = (xR, xM ) ∈ B(x?, u),

sup
t≤τMu (x)

|φR(x, t)− x?R| ≤ C
√
u.

ii) If ∂RFR(x?) = 0, then there exist some 0 < u0 < 1 and η0 > 0 such that, for all u ≤ u0 and all
x ∈ B(x?, u) ∩D(η0),

sup
t≤τMu (x)

|φR(x, t)− x?R| ≤ C
√
u.

In both cases with the same notation as previously,

τMu (x) ≤ 2

r?
log(1/xM ).

We also need an estimate of the cumulated gap :

Lemma 3.4. i) Assume that ∂RFR(x?) < 0. Then there exist some 0 < u0 < 1 and η0 > 0 such that
for all u ≤ u0, η ≤ η0 and x ∈ B(x?, u) ∩D(η),∫ τMu (x)

0

sup
s≤t
|φR(x, s)− x?R| dt ≤ C(u+ η).

ii) Assume that ∂RFR(x?) = 0. Then there exist some u0 ∈ (0, 1) and η0 > 0 such that for all u ≤ u0,
and η ≤ η0 and x ∈ B(x?, u) ∩D(η),∫ τMu (x)

0

sup
s≤t
|φR(x, s)− x?R| dt ≤ C

√
u+ η.

Lemma 3.5. For all v ∈ (0, v?), there exists some η ∈ (0, r?) and r > 0 such that, for all x ∈
Br(x

?) ∩ (R∗+)2, for all t ≤ τMv (x), FM (φ(x, t)) ≥ η.
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Proof. Since v < v?, there exists η ∈ (0, r?) such that v < vη. Hence there exists some r > 0 such that

v < inf
x∈Br((x?R,0))∩(R∗+)2

C(x, η).

Let x belong to Br((x
?
R, 0)) ∩ (R∗+)2. Then

v < C(x, η) = sup{φM (x, t) : t ≤ τη(x)}

and we get FM (φ(x, t)) ≥ η for t ≤ τMv (x) by continuity of t→ φ(x, t).

Let us now give the proof of Proposition 3.2.

Proof of Proposition 3.2. We consider the case ∂RFR(x?) < 0 and the other can be treated similarly.
Thanks to Lemma 3.3, we can choose u0 > 0 and η0 > 0 such that, for all u ≤ u0, and x ∈ Bu(x?),∣∣φR(x, τMu (x))− x?R

∣∣ ≤ sup
t≤τMu (x)

|φR(x, t)− x?R| ≤ C
√
u. (3.2)

Let 0 < ε0 ≤ u0 small enough such that

inf FM ([x?R − C
√
ε0, x

?
R + C

√
ε0]× [0, ε0]) ≥ 3r?/4.

We have, for any x ∈ B0 = BC√ε0(x?) ∩ (R∗+)2,

τMε0 (x) < inf {s ≥ 0 : FM (φ(x, s)) ≤ r?/2} .

As a consequence, for all η ≤ r?/2 and x ∈ B0, C(x, η) ≥ ε0 and v? ≥ ε0. This proves that v? is
positive. It is also finite owing to boundedness Assumption 3.1.

Let us now prove the second part of the proposition. We start by proving the result for small
values of v using the first part which guarantees a lowerbound for the growth rate of mutants. For any
v ∈ (0, ε0] and x ∈ B0 and t ≤ τv(x),

FM (φ(x, t)) ≥ r?/2.

Furthemore
τMφM (x,t)(x) = t

and
∂tφM (t, x) = φM (t, x)FM (φR(x, τMφM (x,t)(x)), φM (x, t)).

By separation of variables (put u = φM (x, t)) and integration on the time interval [0, τMv (x)], we get

τMv (x) =

∫ v

xM

1

uFM (φR(x, τMu (x)), u)
du =

1

r?
log(v/xM ) +Rv(x),

for any v ∈ (0, ε0] and x ∈ B0 and t ≤ τv(x), where

Rv(x) =

∫ v

xM

1

u

(
1

FM (φR(x, τMu (x)), u))
− 1

r?

)
du.

To get the expected estimate, we need to evaluate the term inside the integral for u close to 0. Using
that FM is locally Lipschitz and r? = FM (x?) and (3.2), and we obtain that for u ≤ ε0 and x ∈ B0,

1

u

(
1

FM (φR(x, τMu (x)), u))
− 1

r?

)
≤ C√

u
.
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The integral of the right hand side is convergent in 0. Besides, (x, u) → FM (φR(x, τMu (x)), u) is
uniformly continuous for u ≤ ε0 and x ∈ B0 such that xM ≤ u. It ensures that

sup
{
|Rv(x)−Rv(x′)| : x, x′ ∈ Br(x?) ∩ (R∗+)2, v ∈ [max(xM , x

′
M ), ε0]

} r→0−→ 0.

The uniform Cauchy criterion ensures then that for any v ∈ (0, ε0), Rv(x) converges, uniformly in v,
to a real number τ(v) as x goes to x?. Therefore,

τ(v) = lim
x→x?

∫ v

xM

1

u

(
1

FM (φR(x, τMu (x)), u))
− 1

r?

)
du. (3.3)

and the previous estimates also guarantee that τ is continuous on (0, ε0] and that τ(v) goes to 0 as v
goes to 0. This ends the proof for small v ∈ (0, ε0].

To deal deal with v ∈ [ε0, v?), we can use :

τMv (x) = τMv0 (x) + τMv (φR(x, τMv0 (x)), v0).

It remains to check that the last term converges as x goes to x∗. This can be achieved as above with
uniform continuity of (x, u)→ FM (φR(x, τMu (x)), u).

3.2. Quantitative approximation of the stochastic process and speed of convergence

The main result of this section can now be stated.

Theorem 3.6. Under Assumptions 1.1 and 3.1, for all xK = (xKR , x
K
M ) ∈ (R∗+)2, satisfying

1/K � xKM � 1 and |xKR − x?R| log
(
1/xKM

)
� 1,

we have for any v ∈ (0, v?),

sup
t≤τMv (xK)

∣∣∣∣XK
M (xK , t)

φM (xK , t)
− 1

∣∣∣∣ −→K→∞
0, in probability.

Note that the most interesting assumption is 1/K � xKM , since initial conditions of order one have
been extensively studied. Our result stops at hitting times τMv (x) (which imposes xKM � 1) but could
be easily extended on finite time interval and with initial conditions of order one.

In all this subsection, the hypotheses of Theorem 3.6 are in force, and we note, for • ∈ {R,M},

XK
• (t) := XK

• (xK , t) , x
K
• (t) := φ•(xK , t)

and
Y K• (t) := XK

• (t)− xK• (t).

In addition, we introduce the following stopping times: for • ∈ {R,M},

θK• := inf

{
t > 0 :

XK
• (t)

xK• (t)
≥ 2

}
, θK := θKR ∧ θKM ,

σKη := inf

{
t > 0 :

∫ t

0

sup
r≤s
|Y KR (r)|ds ≥ η

}
for any η > 0,

σ̃Kε := inf

{
t > 0 : sup

s≤t
|Y KR (s)| ≥ ε1/2

}
for any ε > 0.

In order to prove Theorem 3.6, we need the following result providing a control in probability when
K goes to infinity of the stopping times θKR , σKη and σ̃Kε .
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Lemma 3.7. There exist L, η0 > 0 such that for all 0 < η ≤ η0,

P
(
σKη ≤ τMLη(xK) ∧ θK

)
≤C
η
K−1/2

(
log
(
1/xKM

))3/2
, (3.4)

P
(
σ̃KLη ≤ τMLη(xK) ∧ θK ∧ σKη

)
≤Cη−1/2K−1/2

(
log
(
1/xKM

))1/2
, (3.5)

P
(
θKR ≤ τMLη(xK) ∧ θKM

)
≤C
η
K−1/2

(
log
(
1/xKM

))3/2
. (3.6)

Proof. To begin with, let us prove (3.4). For the sake of notation, let us denote

SK := τMLη(xK) ∧ θK ∧ σKη .

By definition of σKη ,

{
σKη ≤ τMLη(xK) ∧ θK

}
=

{∫ SK

0

sup
r≤s

∣∣Y KR (r)
∣∣ ds ≥ η} .

To control the probability of the event above, let us define

HK(t) := MK(t) +RK(t) +

∫ t

0

Y KM (r)∂MGR(xK(r))dr,

MK(t) :=
1

K

∫
[0,t]×R+

1{z≤KXKR (r−)bR(XK(r−))}dÑ
b
R(r, z)

− 1

K

∫
[0,t]×R+

1{z≤KXKR (r−)dR(XK(r−))}dÑ
d
R(r, z),

RK(t) :=

∫ t

0

[
GR(XK(r))−GR(xK(r))− Y KM (r)∂MGR(xK(r))− Y KR (r)∂RGR(xK(r))

]
dr.

such that for all t > 0,

Y KR (t) = HK(t) +

∫ t

0

Y KR (s)∂RGR(xK(r))dr.

In a first time, let us treat the case ∂RGR(x?) = x?R∂RFR(x?) < 0. Thanks to Lemma 6.3 we have

sup
s≤t

∣∣Y KR (s)
∣∣ ≤ sup

s≤t

∣∣HK(s)−HK(bsc)
∣∣ ≤ 2 sup

s≤t
|HK(t)|.

On the other hand, if ∂RGR(x?) = x?R∂RFR(x?) = 0, then

|∂RGR(xK(r))| ≤ CxKM (r) + C|xKR (r)− x?R|,

and, by Grönwall’s lemma,

|Y KR (t)| ≤ |HK(t)| exp

(
C

∫ t

0

xKM (r)dr + C

∫ t

0

|xKR (r)− x?R|dr
)
.

Consequently, Lemma 3.3 implies that

|Y KR (t)| ≤ |HK(t)|eC
√
Lη ≤ 2|HK(t)|,

for η ≤ η0 fixed to some small enough value.
Gathering the two cases, we have proved that if ∂RFR(x?) ≤ 0, for t ≤ τMLη(xK) ∧ θK ,

sup
s≤t

∣∣Y KR (s)
∣∣ ≤2 sup

s≤t
|HK(s)|

≤2 sup
s≤t
|MK(s)|+ 2 sup

s≤t
|RK(s)|+ 2

∫ t

0

|Y KM (s)| · |∂MGR(xK(s))|ds. (3.7)
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In addition, for t ≤ τMLη(xK),∫ t

0

xKM (s)ds =

∫ t

0

1

FM (xK(s))
(xKM )′(s)ds

≤ C
∫ t

0

(xKM )′(s)ds = C(xKM (t)− xKM (0)) ≤ CxKM (t). (3.8)

Using twice this inequality∫ SK

0

∫ s

0

|Y KM (r)| · |∂MGR(xK(r))|drds

≤ C
∫ SK

0

∫ s

0

(
XK
M (r)

xKM (r)
+ 1

)
xKM (r)drds ≤ C

∫ τMLη(xK)

0

∫ s

0

xKM (r)drds

≤ C
∫ τMLη(xK)

0

xKM (s)ds ≤ CxKM (τMLη(xK)) ≤ CLη. (3.9)

By Taylor-Lagrange’s inequality and Lemma 3.3 (which guarantees that the process xK is bounded
up to time SK), we also have∫ SK

0

sup
r≤s
|RK(r)|ds ≤ C

∫ SK

0

∫ s

0

(
|Y KM (r)|2 + |Y KM (r)| · |Y KR (r)|+ |Y KR (r)|2

)
drds.

Since τMLη(xK) ≤ SK , and using the same computation as (3.9),∫ SK

0

∫ s

0

|Y KM (r)|2drds ≤ Lη
∫ SK

0

∫ s

0

|Y KM (r)|drds ≤ C(Lη)2.

Besides |Y KM (r)| · |Y KR (r)| ≤ |Y KM (r)|sup
r′≤s
|Y KR (r′)| for r ≤ s,

∫ SK

0

∫ s

0

|Y KM (r)| · |Y KR (r)|drds ≤ CLη
∫ SK

0

sup
r′≤s
|Y KR (r′)|ds ≤ CLη2.

Similarly,
∫ SK

0
|Y KR (r)|2drds ≤ Cη

∫ SK
0

sup
r′≤s
|Y KR (r′)|ds ≤ Cη2. Combining these estimates yields

∫ SK

0

sup
r≤s
|RK(r)|ds ≤ Cη2. (3.10)

Plugging (3.9) and (3.10) in (3.7), we can choose L > 0 small enough and get

P

(∫ τMLη(xK)∧θK

0

|Y KR (s)|ds > η

)
≤P

(∫ τMLη(xK)∧θK

0

|MK(s)|ds > η

4

)
Using again Doob and Cauchy-Schwarz inequalities

E

[
sup

t≤τMLη(xK)∧θK

∣∣MK(t)
∣∣] ≤ CE [〈MK〉τKLη∧θK

]1/2

≤ CK−1/2E

[∫ τMLη(xK)∧θK

0

XK
R (s)(bR + dR)(XK(s))ds

]1/2

≤ CK−1/2τMLη(xK).
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Using Markov inequality and the comparison of τMLη(xK) with log
(
1/xKM

)
(see Section 3.1), we get

P

(∫ τMLη(xK)∧θK

0

|Y KR (s)|ds > η

)
≤ C

η
K−1/2

(
log
(
1/xKM

))3/2
.

This proves (3.4). Now we prove (3.5). By definition of σ̃KLη,{
σ̃KLη ≤ τMLη(xK) ∧ θK ∧ σKη

}
=

{
sup

s≤τMLη(xK)∧θK∧σKη ∧σKLη
|Y KR (s)| > (Lη)1/2

}
.

For the sake of readability, we note

TK := τMLη(xK) ∧ θK ∧ σKη ∧ σ̃KLη.

To control the probability of the event above, we use (3.7) again. We have that∫ TK

0

|Y KM (s)| · |∂MGR(xK(s))|ds

≤ C
∫ TK

0

xKM (s)
|Y KM (s)|
xKM (s)

ds ≤ C
∫ τMε (xK)

0

xKM (s)ds

≤ C
∫ τMLη(xK)

0

1

ψM (xK(s))
(xKM )′(s)ds ≤ C(xKM (τMLη(xK))− xKM (0)) ≤ CLη,

and

sup
s≤TK

|RK(s)| ≤C
∫ TK

0

|XK
M (s)− xKM (s)|2ds+ C

∫ TK

0

|Y KR (s)|2ds+ C

∫ TK

0

|Y KR (s)| · |Y KM (s)|ds

≤C(Lη)2 + Cη(Lη)1/2 + C(Lη)3/2 ≤ Cη3/2.

Since η is arbitrary small, we have

P

(
sup
s≤TK

|Y KR (s)| > (Lη)1/2

)
≤P

(
sup
s≤TK

∣∣MK
s

∣∣ > (Lη)1/2/4

)
≤Cη−1/2E

[
〈MK

s 〉TK
]1/2 ≤ Cη−1/2K−1/2

(
log
(
1/xKM

))1/2
,

which proves (3.5).
Finally, we prove (3.6) using (3.4) and (3.5). Notice that{

θKR ≤ τMLη(xK) ∧ θKM
}
⊆

{
sup

t≤τMLη(xK)∧θK

|Y KR (t)|
xKr (t)

≥ 1

}
.

Then, by Lemma 3.3, we know that for all t ≤ τMLη(xK),

xKR (t) ≥ x?R − C
√
Lη ≥ x?R/2,

if η > 0 is small enough. Hence, for η > 0 small enough,{
θKR ≤ τMLη(xK) ∧ θKM

}
⊆

{
sup

t≤τMLη(xK)∧θK
|Y KR (t)| ≥ x?R/2

}
⊆
{
σ̃KLη ≤ τMLη(xK) ∧ θK

}
⊆
{
σKη ≤ τMLη(xK) ∧ θK

}
∪
{
σ̃KLη ≤ τMLη(xK) ∧ θK ∧ σKη

}
.

Since the probabilities of the two last events above are controlled respectively by (3.4) and (3.5), the
result is proved.
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Proof of Theorem 3.6. We decompose the proof of Theorem 3.6 in three steps. The first step is the
approximation of XK

M by xKM until the level of mutants reaches some small macroscopic value. The
second step is more classical and consists in showing that the approximation still holds true during
an additionnal time lenght T > 0. In the last step, we show that have reached levels of mutants v0 < v∗.

Step 1. In this first step, we prove that there exist C,L, η0 > 0 such that for any η ∈ (0, η0),

P

(
sup

t≤τMLη(xK)

∣∣∣∣XK
M (t)

xKM (t)
− 1

∣∣∣∣ > η

)
≤ C · 1

η
·K−1/2

(
ln

(
1

xKM (0)

))3/2

. (3.11)

By Itô’s formula,

XK
M (t)

xKM (t)
=1−

∫ t

0

XK
M (s)

xKM (s)
(bM − dM )(xK(s)) ds

+

∫
[0,t]×R+

1

KxKM (s)
1{u≤K·XKM (s−)·bM (XK(s−))}N

b
M (ds, du)

−
∫

[0,t]×R+

1

KxKM (s)
1{u≤K·XKM (s−)·dM (XK(s−))}N

d
M (ds, du).

Writing Ñ b
M and Ñ d

M the compensated measure of N b
M and N d

M , and introducing

EKM (t) :=

∫
[0,t]×R+

1

KxKM (s)
1{u≤K·XKM (s−)·bM (XK(s−))}Ñ

b
M (ds, du)

−
∫

[0,t]×R+

1

KxKM (s)
1{u≤K·XKM (s−)·dM (XK(s−))}Ñ

d
M (ds, du),

we have
XK
M (t)

xKM (t)
= 1 + EKM (t) +

∫ t

0

XK
M (s)

xKM (s)

(
FM (XK(s))− FM (xK(s))

)
ds,

and, for t ≤ τMLη(xK) ∧ θK ,

〈EKM 〉t =

∫ t

0

1

KxKM (s)
· X

K
M (s)

xKM (s)
· (bM + dM )(XK(s)) ds ≤ 2C

K

∫ t

0

1

xKM (s)
ds.

Consequently, for any T ≤ τMLη(xK) ∧ θK ,

sup
t≤T

∣∣∣∣XK
M (t)

xKM (t)
− 1

∣∣∣∣
≤ sup
t≤T

∣∣EKM (t)
∣∣+ C

∫ T

0

(∣∣XK
M (s)− xKM (s)

∣∣+
∣∣XK

R (s)− xKR (s)
∣∣) ds

≤ sup
t≤T

∣∣EKM (t)
∣∣+ C

∫ T

0

xKM (s) · sup
r≤s

∣∣∣∣XK
M (r)

xKM (r)
− 1

∣∣∣∣ ds+

∫ T

0

∣∣XK
R (s)− xKR (s)

∣∣ ds.
So, by Gronwall’s lemma, for any T ≤ τMLη(xK) ∧ θK ,

sup
t≤T

∣∣∣∣XK
M (t)

xKM (t)
− 1

∣∣∣∣ ≤
(

sup
t≤T
|EKM (t)|+ C

∫ T

0

∣∣XK
R (s)− xKR (s)

∣∣ ds) eC ∫ T
0
xKM (s)ds. (3.12)

Besides, by Burkholder-Davis-Gundy’s inequality, for all stopping time T ≤ τMLη(xK) ∧ θK ,

E
[
sup
t≤T
|EKM (t)|

]
≤ E

[
〈EKM 〉

1/2
T

]
≤ CK−1/2E

[∫ T

0

1

xKM (s)
ds

]1/2

.
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Then, as FM (xK(t)) is lower-bounded on [0, tMLη(xK)] by some κ > 0 (thanks to Lemma 3.3 since
FM (x?) > 0 if η is chosen small enough), we have

E
[
sup
t≤T
|EKM (t)|

]
≤ C · 1√

KxKM (0)
E

[∫ T

0

e−κsds

]1/2

≤ C · 1

κ
· 1√

KxKM (0)
, (3.13)

where the value of C has changed in the last inequality, but is still independent of K.
Recalling that, thanks to (3.8), we have∫ τMLη(xK)

0

xKM (s)ds ≤ CLη.

So, inequality (3.12) can be rewritten as

sup
t≤τMLη(xK)∧θK

∣∣∣∣XK
M (t)

xKM (t)
− 1

∣∣∣∣ ≤ C sup
t≤τMLη(xK)∧θK

|EKM (t)|+ C

∫ τMLη(xK)∧θK

0

∣∣Y KR (s)
∣∣ ds.

By Markov’s inequality and (3.13),

P

(
sup

t≤τMLη(xK)∧θK
|EKM (t)| > η

2C

)
≤ C

η
√
KxKM (0)

.

Besides, by (3.4) from Lemma 3.7,

P

(∫ τMLη(xK)∧θK

0

∣∣Y KR (s)
∣∣ ds > η

2C

)
≤ C

η
K−1/2

(
log

(
1

xKM (0)

))3/2

.

We obtain from the three last inequalities that

P

(
sup

t≤τMLη(xK)∧θK

∣∣∣∣XK
M (t)

xKM (t)
− 1

∣∣∣∣ > η

)
≤ C

η
·K−1/2

(
ln

(
1

xKM (0)

))3/2

.

Using now that for η ∈ (0, 1),{
θKM <∞, θKM ≤ τMLη(xK)

}
⊆

{
sup

t≤τMLη(xK)∧θKM

∣∣∣∣XK
M (t)

xKM (t)
− 1

∣∣∣∣ > η

}
,

and (3.6) proves (3.11).

Step 2. We fix T > 0 and we prove now that the approximation of XK
M by xKM is still valid on the time

interval [τMLη(xK), τMLη(xK) + T ]. The fact that the mutant population has not left the neighborhood
of 0 makes that such estimates are more classical. More precisely, we denote

X̃K
• (t) := XK

• (t+ τMLη(xK)), x̃K• (t) := xK• (t+ τMLη(xK))

for • ∈ {R,M}. First, we observe that

γT,η = inf
t≤T,K≥1

x̃KM (t) > 0,

since the boundary R+ × {0} is stable for the flow φ, which is continuous, and the initial value x̃K(0)
belongs to a compact set of (R∗+)2 (thanks to Lemma 3.3)). Then

P

sup
t≤T

∣∣∣X̃K
M (t)− x̃KM (t)

∣∣∣
x̃KM (t)

> η

 ≤ P
(

sup
t≤T

∣∣∣X̃K
M (t)− x̃KM (t)

∣∣∣ > η γT,η

)
,
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and it remains to prove that for any η > 0,

P
(

sup
t≤T

∣∣∣X̃K
M (t)− x̃KM (t)

∣∣∣ > η

)
−→
K→∞

0. (3.14)

This result is a classical approximation of population processes by dynamical systems on finite time
intervals, see Ethier-Kurtz [19]. For sake of completeness and give explicit bounds, let us prove the
result here. We use again a stopping time which ensures boundedness :

θ̃K := inf
{
t > 0 : X̃K

M (t) > 2x̃KM (t) or X̃K
R (t) > 2x̃KR (t)

}
.

We have, for any t ≤ θ̃K ,∣∣∣X̃K
• (t)− x̃K• (t)

∣∣∣ ≤ ∣∣MK
• (t)

∣∣+ C

∫ t

0

(
|X̃K

R (s)− x̃KR (s)|+ |X̃K
M (s)− x̃KM (s)|

)
ds,

where MK
R ,M

K
M are local martingales satisfying

〈MK
• 〉t∧θ̃K ≤ CtK

−1.

Then, Gronwall’s lemma implies that

sup
t≤T∧θ̃K

(∣∣∣X̃K
M (t)− x̃KM (t)

∣∣∣+
∣∣∣X̃K

R (t)− x̃KR (t)
∣∣∣) ≤ ( sup

t≤T∧θ̃K
|MK

R (t)|+ sup
t≤T∧θ̃K

|MK
M (t)|

)
eCT .

Hence, using Markov’s and Burkholder-Davis-Gundy’s inequalities, we obtain

P

(
sup

t≤T∧θ̃K

(∣∣∣X̃K
M (t)− x̃KM (t)

∣∣∣+
∣∣∣X̃K

R (t)− x̃KR (t)
∣∣∣) > η′

)
≤ 1

η′
CTK

−1/2. (3.15)

Finally, let us now dismiss the stopping time θ̃K . Let AKη′′(T ) be the event

AKη′(T ) :=

{
sup
t≤T

(∣∣∣X̃K
M (t)− x̃KM (t)

∣∣∣+
∣∣∣X̃K

R (t)− x̃KR (t)
∣∣∣) > η′

}
.

We have

P
(
AKη′(T )

)
≤ P

(
AKη′(T ) ∩ {θ̃K ≥ T}

)
+ P

(
AKη′(T ) ∩ {θ̃K < T}

)
≤ P

(
AKη′(T ∧ θ̃K)

)
+ P

(
AK1 (T ∧ θ̃K)

)
≤ 2P

(
AKη′(T ∧ θ̃K)

)
.

Recalling that (3.15) provides a control of P
(
AKη′(T ∧ θ̃K)

)
, (3.14) is proved.

Step 3. To conclude the proof of the theorem, it only remains to show that, for all Lη < v < v?,
there exists some Tv(η) > 0 independent of K such that

τMv (xK) ≤ τMLη(xK) + Tv(η),

with the same L > 0 as in the two first steps of the proof. This property relies on Proposition 3.2.
With the same notation, let us denote

δ(x, v′) := τMv′ (x)− 1

r?
log(v′/xKM )− τ(v′) and ∆(x) := sup

0<v′<v?

|δ(x, v′)|.
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By Proposition 3.2, we know that ∆(xK) vanishes as K goes to infinity. Recall that xKM < Lη < v. We
have, by definition of ∆,

τMv (xK) ≤ 1

r?
log(v/xKM ) + |τ(v)|+ ∆(xK),

and

τMLη(xK) ≥ 1

r?
log(Lη/xKM )− |τ(Lη)| −∆(xK).

As a consequence,

τMv (xK) ≤ 1

r?
log(v/(Lη)) +

1

r?
log(Lη/xKM ) + |τ(v)|+ ∆(xK)

≤τMLη(xK) +
1

r?
log(v/(Lη)) + |τ(v)|+ |τ(Lη)|+ 2∆(xK).

Since the sequence ∆(xK) vanishes, it is bounded w.r.t. K. Then, choosing

Tv(η) :=
1

r?
log(v/(Lη)) + |τ(v)|+ |τ(Lη)|+ 2 sup

K∈N∗
∆(xK),

the result is proved.

4. Thresholds hitting times

In this section, we use the results of the two previous ones to approximate the hitting times of the
process (NK

M (t))t by some simple and explicit random variables. Let us recall that, for any n ≥ 1, we
have defined in (1.4) the stopping time

τKM (n) := inf
{
t > 0 : NK

M (t) ≥ n
}
.

Besides τ is the deterministic function defined in (3.3) and W is the a.s. limit of Z(t) exp(−r?t), which
is distributed as

d?
b?
δ0 +

b? − d?
b?

Exp

(
b? − d?
b?

)
.

The main result of this section is the following, recalling that v? is defined at the beginning of Section
3.1. It gives a quantitative information on the law of hitting times of thresholds of order K but also
for thresholds of size less than K.

Theorem 4.1. Grant Assumptions 1.1 and 3.1. Let (ζK)K be sequence which tends to infinity and
satisfies ζK/K → v as K →∞, for some v ∈ [0, v?). Then, for any ε > 0,

lim
K→∞

P
(∣∣∣∣τKM (ζK)− log(ζK/W )

r?
− τ(v)

∣∣∣∣ ≥ ε ; W > 0

)
= 0,

where τ is the increasing continuous function such that τ(0) = 0 defined in Proposition 3.2.

Let us recall that (Z(t) : t ≥ 0) is birth-death process with individual birth rate b? := bM (x?) and
individual death rate d? = dM (x?) with initial condition Z(0) = 1 that is coupled with (NK

M (t) : t ≥ 0)
using the same Poisson measures (see the beginning of Section 2).

In all the section, we work on the surviving event of Z. With the notation of Section 2, it corresponds
to the event {W > 0}. Since a.s. Z(t) ∼W exp(r?t), as t tends to infinity, we know that, on this event,
τKM (ξK) <∞. This allows us to define, for • ∈ {R,M},

XK
• (t) :=

1

K
NK
•
(
t+ τKM (ξK)

)
= XK

•

(
1

K
NK
• (τKM (ξK)), t

)
,
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using the stochastic flow defined in (3.1). By definition of τKM (ξK), we have XK
M (0) = dξKe/K.

The proof of Theorem 4.1 is decomposed in three steps. The first one consists in approximating
τKM (ξK) by

τZ(ξK) := inf {t > 0 : Z(t) ≥ ξK} ,
and the second one in approximating τKM (Kv)− τKM (ξK) by

τMv (XK(0)) := inf
{
t > 0 : XK

M (t) ≥ v
}
.

The third steps merely consists in combining the two previous approximation. To establish our approxi-
mations, we need the two following lemmas. Roughly speaking, they allow to obtain an approximation
of hitting-times of two processes provided a suitable approximation (in the sense of Theorems 2.3
and 3.6) of the processes themselves.

The first results link estimates for processes and estimates for hitting times.

Lemma 4.2. Let X,Y be two càdlàg processes such that Y does not hit 0. We set

Rt :=
Xt

Yt
− 1.

Let TXv and TYv be the hitting times of the value v for respectively X and Y . Let v, ρ > 0. Assume that
there exists a.s. some u := u(v, ρ) > 0 such that

TYv − ρ ≤ TYv−u and TYv + ρ ≥ TYv+u.

Then,

{
|TXv − TYv | > ρ

}
⊆

 sup
t≤TY

v+u(v,ρ)
∧TXv
|Rt| >

u(v, ρ)

v + u(v, ρ)

 ∪
 sup
t≤TY

v−u(v,ρ)∧TXv
|Rt| >

u(v, ρ)

v

 .

Proof. To begin with{
|TXv − TYv | > ρ

}
=
{
TXv 6∈ [TYv − ρ, TYv + ρ]

}
⊆
{
TXv 6∈ [TYv−u(v,ρ), T

Y
v+u(v,ρ)]

}
.

Then, since

XTYv+u
=

(
XTYv+u

YTYv+u
− 1

)
YTYv+u + YTYv+u

=YTYv+u

(
1 +RTYv+u

)
≥ (v + u)

(
1 +RTYv+u

)
≥ v + u+ (v + u)RTYv+u ≥ v +

(
u− (v + u)|RTYv+u |

)
,

we have {
|RTYv+u | ≤

u

v + u

}
⊆
{
TXv ≤ TYv+u

}
,

implying {
TXv > TYv+u

}
⊆

{
sup

t≤TYv+u∧TXv
|Rt| >

u

v + u

}
.

On the other hand, by symmetry,

{
TXv < TYv−u

}
⊆

{
sup

t≤TYv−u∧TXv
|Rt| >

u

v

}
.

Finally, as {
TXv 6∈

[
TYv−u, T

Y
v+u

]}
=
{
TXv > TYv+u

}
∪
{
TXv < TYv−u

}
,

the result is proved.
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We use Lemma 4.2 to compare the hitting times of NK with those of the branching process Z on
the survival event. This relies on the results of Section 2.

Lemma 4.3. On the event {W > 0}, |τKM (ξK) − τZ(ξK)| tends to 0 as K tends to infinity, for any
sequence ξ satisfying the conditions of Theorem 2.3.

Proof. Let use the notation of Lemma 4.2, with

Xt := NK
M (t) ; Yt := Z(t) and v := ξK .

In particular
τKM (ξK) = TXv and τZ(v′) = TYv′ for any v′ > 1.

In all the proof, we work on the surviving event of Z. To apply Lemma 4.2, we have to find, for any
fixed ρ > 0, some uK := u(ξK , ρ) such that

TYξK − ρ ≤ T
Y
ξK−uK and TYξK + ρ ≥ TYξK+uK .

We wiil choose uK such that uK ≤ ξK/2.
By definition, for all v′ > 0, ZTY

v′
= dv′e, and recall that, on the surviving event of Z,

Z(t)e−r?t

converges almost surely to some random variable W > 0. It implies that the sequences (WK)K , (W 1
K)K

and (W 2
K)K defined as

WK :=dξKee−r?T
Y
ξK ,

W 1
K :=dξK + uKee−r?T

Y
ξK+uK ,

W 2
K :=dξK − uKee−r?T

Y
ξK−uK

converge almost surely to W as K goes to infinity (on the surviving event of Z), since ξK−uK ≥ ξK/2
tends to infinity almost surely (thanks to (4.5)). As a consequence, we can write explicitly

TYξK =
1

r?
ln(dξKe/WK),

TYξK+uK =
1

r?
ln(dξK + uKe/W 1

K),

TYξK−uK =
1

r?
ln(dξK − uKe/W 2

K).

Consequently, the condition
TYξK + ρ ≥ TYξK+uK

is equivalent to
1

r?
ln(dξKe/WK) + ρ ≥ 1

r?
ln(dξK + uKe/W 1

K),

which is weaker than
1

r?
ln(ξK/WK) + ρ ≥ 1

r?
ln((ξK + uK + 1)/W 1

K).

This gives the condition
uK ≤ ξKer?ρ

(
W 1
K/WK

)
− 1. (4.1)

Similarly, to guarantee the other condition

TYξK − ρ ≤ T
Y
ξK−uK ,
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it is sufficient to have

uK ≤ ξK
(
1− e−r?ρ(W 2

K/WK)
)
− e−r?ρ(W 2

K/WK). (4.2)

According to the conditions (4.1) and (4.2), it is possible to choose

uK := ξK min
(
1/2; er?ρ/2; (1− e−r?ρ)/2

)
=: ξKλ.

Indeed, with this choice of uK , the probability that (4.1) and (4.2) are satisfied goes to one as K goes
to infinity since

P
(
ξKe

r?ρ/2 > ξKe
r?ρ

W 1
K

WK
− 1

)
=P
(
W 1
K

WK
<

1

2
+

1

ξKer?ρ

)
≤ P

(
W 1
K

WK
<

3

4

)
−→
K→∞

0,

and

P
(
ξK(1− e−r?ρ)/2 > ξK(1− e−r?ρ(W 2

K/WK))− e−r?ρ(W 2
K/WK)

)
= P

(
−ξKe−r?ρ/2 > ξK/2− (ξK + 1)e−r?ρ(W 2

K/WK)
)

= P
(
W 2
K/WK >

ξK
2(ξK + 1)

+
ξK

2(ξK + 1)
er?ρ

)
≤ P

(
W 2
K/WK > (er?ρ + 1)/4

)
−→
K→∞

0.

On the event where (4.1) and (4.2) are satisfied, we have, by Lemma 4.2,

P
(
|τKM (ξK)− τZ(ξK)| > ρ

)
≤

P

(
sup

t≤τKM (ξK)

∣∣∣∣NK
M (t)

Z(t)
− 1

∣∣∣∣ > λ

1 + λ

)
+ P

(
sup

t≤τKM (ξK)

∣∣∣∣NK
M (t)

Z(t)
− 1

∣∣∣∣ > λ

)
,

which vanishes by Theorem 2.3. That concludes the proof.

Proposition 4.4. On the surviving event of Z, |τKM (ξK)− log(ξK/W )/r?| vanishes in probability, for
any sequence ξ satisfying the conditions of Theorem 2.3.

Proof. We show that

P
(∣∣∣∣τKM (ξK)− 1

r?
log(ξK/W )

∣∣∣∣ > η ; W > 0

)
−→
K→∞

0

in two steps. Defining
τZ(n) = inf {t > 0 : Z(t) > n} ,

we will prove that

P
(∣∣τKM (ξK)− τZ(ξK)

∣∣ > η ; W > 0
)
−→
K→∞

0, (4.3)

P
(∣∣∣∣τZ(ξK)− 1

r?
log(ξK/W )

∣∣∣∣ > η ; W > 0

)
−→
K→∞

0. (4.4)

Property (4.3) is proved by Lemma 4.3. So it only remains to prove (4.4).

To begin with, let us show that, for any ζK tending to infinity with K,

P
(
τZ(ζK) ≥ 1

2r?
log ζK

)
−→
K→∞

1. (4.5)
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Indeed, we have

P
(
τZ(ζK) <

1

2r?
log ζK

)
≤P
(
W (τZ(ζK)) > dζKee−r?

1
2r?

log ζK
)

≤P
(
W (τZ(ζK)) >

√
ζK

)
≤ P

(
sup
t≥0

W (t) >
√
ζK

)
,

which vanishes as K goes to infinity since ζK tends to infinity and W (t) converges almost surely to
the finite random variable W . So (4.5) is proved.

Besides

P
(
τZ(ξK) <

log(ξK/W )

r?
− η ; W > 0

)
≤P
(
W (τZ(ξK)) > dξKe

W

ξK
er?η

)
≤P (W (τZ(ξK)) > Wer?η)

≤P
(
τZ(ξK) <

log ξK
2r?

)
+ P

(
sup

t≥(log ξK)/2r?

W (t) > Wer?η

)
,

where the first term of the sum above vanishes by (4.5), and the second term vanishes since W (t)
converges a.s. to W as t goes to infinity. Similarly we also have that

P
(
τZ(ξK) >

1

r?
log ξK −

1

r?
logW + η ; W > 0

)
≤ P

(
τZ(ξK) <

1

2r?
log ξK

)
+ P

(
inf

t≥(log ξK)/2r?
W (t) < We−r?η

)
,

which vanishes as K goes to infinity. This proves (4.4).

Afterwards, we use the results of Section 3 to approximate the hitting times of the normalized
process XK with the deterministic hitting times of the dynamical system xK .

Lemma 4.5. With the notation of Section 3, recall that

τMv (XK(0)) := inf{t > 0 : xKM (t) = v},

and define
TMv (XK(0)) := inf{t > 0 : XK

M (t) ≥ v}.

Then for all v < v?, |τMv (XK(0))− TMv (XK(0))| vanishes in probability as K goes to infinity.

Proof. This proof is similar to the one of Proposition 4.3, using Lemma 4.2. The proof consists in
choosing some u := u(v, ρ) such that

τMv (XK(0)) + ρ ≥ τMv+u(XK(0)) and τMv (XK(0))− ρ ≤ τMv−u(XK(0)). (4.6)

Let us fix some µ > 1 such that µv < v?. We will choose u such that u ≤ (µ− 1)v (i.e. v + u ≤ µv)
and u ≤ v. Let us recall that

τMv (Xk(0)) =
1

r?
log v +

1

r?
log(K/ξK) +Rv(XK(0)),

with

Rv(x) =

∫ v

xM

1

u′

(
1

FM (φR(x, τMu′ (x)), u′))
− 1

r?

)
du′.
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We have µv < v? and the probability that XK(0) converges to x? goes to one (since XK
M (0) = ξK/K

and |XK
R (0)− x?R| ≤ C

√
ξK/K thanks to Lemma 2.8).

We introduce the event

AK(η) =

{
inf

t≤τMµv(XK(0))
FM (xK(t)) ≥ η

}
.

By Lemma 3.5, there exists some 0 < ηv < r? such that P(AK(ηv)) tends to 1 as K tends to infinity.
This property allows us to work now on AK(ηv). On this event, for all v1 ≤ v2 ≤ µv,∣∣Rv2(XK(0))−Rv1(XK(0))

∣∣ ≤∫ v2

v1

1

u′

∣∣∣∣ 1

FM (φR(x, τMu′ (x)), u′))
− 1

r?

∣∣∣∣ du′ ≤ v2 − v1

v1ηv

since FM (φR(x, τMu′ (x)), u′)) ≥ ηv for u ∈ [v1, v2]. Thus,

τMv+u(XK(0))− τMv (XK(0)) ≤ 1

r?
ln(1 + u/v) +

u

vηv
≤
(

1

r?
+

1

ηv

)
u

v
,

and similarly

τMv − τMv−u ≤
(

1

r?
+

1

ηv

)
u

v − u
.

We choose u := λv with

λ := min

(
1 ; µ− 1 ;

ρ

1/r? + 1/ηv
;

1

1 + (r? + ηv)/ρ

)
> 0.

One can check that Conditions (4.6) are satisfied. Then Lemma 4.2 implies that

P
(
|TMv (XK(0))− τMv (XK(0))| > ρ

)
≤ P

(
sup
τMv+u

∣∣∣∣XK
M (t)

xKM (t)
− 1

∣∣∣∣ > λ

λ+ 1

)
+ P

(
sup
τMv−u

∣∣∣∣XK
M (t)

xKM (t)
− 1

∣∣∣∣ > λ

)
,

and (3.11) allows to conclude.

Proposition 4.6. With the same notation as in the previous lemma, for all v < v?,

TMv (XK(0))− 1

r?
log(v/XK

M (0))− τ(v)

goes to 0 in probability as K goes to infinity.

Proof. Writing∣∣∣∣TMv (XK(0))− 1

r?
log(v/XK

M (0))− τ(v)

∣∣∣∣
≤
∣∣TMv (XK(0))− τMv (XK(0))

∣∣+

∣∣∣∣τMv (XK(0))− 1

r?
log(v/XK

M (0))− τ(v)

∣∣∣∣ ,
the result is a direct consequence o Proposition 3.2 and Lemma 4.5.

Finally, we end this section with the proof of its main result.
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Proof of Theorem 4.1. Let us begin with the proof when v > 0, and to simplify, let us assume that
ζK = Kv. With the notation introduced in this section (and in particular with TMv introduced in
Lemma 4.5), we have

τKM (Kv) = τKM (ξK) +
(
τKM (Kv)− τKM (ξK)

)
= τKM (ξK) + TMv (XK(0)).

Recalling that XK
M (0) = ξK/K and using that

log(Kv) = log(v/XK
M (0)) + log ξK ,

we have∣∣∣∣τKM (Kv)−
(

1

r?
log(Kv) + τ(v) +

1

r?
log(1/W )

)∣∣∣∣
≤
∣∣∣∣TMv (XK(0))− 1

r?
log(v/XK

M (0))− τ(v)

∣∣∣∣+

∣∣∣∣τKM (ξK)− 1

r?
log ξK −

1

r?
log(1/W )

∣∣∣∣ ,
which vanishes in probability as K goes to infinity, on the surviving event of Z according to Proposi-
tions 4.4 and 4.6. That concludes the case where v > 0 and ζK = Kv. To treat the case where v > 0 and
ζK 6= Kv (but still ζK ∼ Kv), it is sufficient to fix some ηε > 0 small enough and to use the fact that, for
K large enough, K(v−ηε) < ζK < K(v+ηε), implying that τKM (K(v+ηε)) ≤ τKM (ζK) < τKM (K(v−ηε)).
The conclusion follows from the estimates we have for those two times and from the continuity of the
function τ .

Now we treat the case v = 0. Firstly, if the sequence (ζK)K satisfies the same conditions as (ξK)K
in Theorem 2.3, the result has been shown in Propositions 4.4. To extend the result to any ζK � K,
we introduce some ξK � ζK satisfying the assumptions of Theorem 2.3 and consider the above
approximation by the dynamical system starting from XK

M (0) = ξK/K.

5. Examples : competitive and epidemiological models

5.1. Lotka Volterra competitive model

We consider the dynamics of a two-dimensional population composed of resident and mutant individ-
uals, which have their own demographic parameters and interact in a competitive way, for example in
sharing resources or niche areas. This model corresponds to the general framework of the paper, with

b•(X
K(s−)) = b•

and
dR(XK(s)) = dR + c1,1X

K
R (s) + c1,2X

K
M (s)

and
dM (XK(s)) = dM + c2,1X

K
R (s) + c2,2X

K
M (s),

with the individual birth and death rates bR, bM ≥ 0 and dR, dM ≥ 0 and the competition matrix
(ci,j)1≤i,j≤2 with non-negative coefficients. We assume that the coefficients bR−dR, bM −dM , c1,1 and
c2,2 are positive.

The corresponding dynamical system is the competitive Lotka-Volterra system. The limiting ODE
is (1.2) with

FR(xR, xM ) = bR − dR − c1,1xR − c1,2xM , FM (xR, xM ) = bM − dM − c2,1xR − c2,2xM .

Then
x?R =

c1,1
bR − dR

.
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Let us check that we can apply our results. First, we observe that regularity of Assumption 1.1 is
satisfied. Second, (x?R, 0) is an equilibrium and

∂RFR(x?R, 0) = −c2,2 < 0.

This means that the first part of Assumption 1.1 is satisfied for (x?R, 0). Moreover, x?R is a stable
equilibrium for the resident population alone, which corresponds to the first case considered in the
branching process approximation.
Finally, we start from a population with only one mutant, NK

R (0) = K−1, NK
M (0) = 1 and we consider

x∗R = 1. So the invasion condition FM (x∗R, 0) > 0 reads bM −dM − (bR−dR)
c2,1
c1,1

> 0. It is then easy to

compute v?, which is either x?M = bM−dM
c2,2

when FR(0, x?M ) < 0 or v? =
(bM−dM )c1,1−(bR−dR)c2,1

c1,1c2,2−c1,2c2,1 when

FR(0, x?M ) > 0.
The branching process Z is a birth and death process with individual birth rate bM and individual
death rate dM + c2,1Kx

?
R.

5.2. SIR model

Let β > 0 be the infection rate (per pair of individuals) in a mixed population and γ > 0 the individual
recovery rate. Let K ≥ 1 be the total population size. At time t, the number of susceptible individuals
is denoted by SK(t), the number of infected individuals is denoted by IK(t) and K − SK(t) − IK(t)
yields the number of recovered individuals. Each susceptible becomes infected at time t with rate
βIK(t)/K. Starting from one infected individual, the process NK = (NK

R , N
K
M ) = (SK , IK) is the

unique strong solution of

SK(t) =K − 1−
∫

[0,t]×R+

1{u≤βSK(s−)IK(s−)/K}NI(ds, du).

IK(t) =1 +

∫
[0,t]×R+

1{u≤βSK(s−)IK(s−)/K}NI(ds, du)−
∫

[0,t]×R+

1{u≤γIK(s−)}NG(ds, du),

where NI and NG are Poisson point measure on R2
+ with intensity dsdu.

The process NK is a bitype birth and death process as considered in Introduction with NI = N b
M =

N d
R and birth and death rates defined by

bR(xR;xM ) = 0, dR(xR;xM ) = βxM

bM (xR;xM ) = βxR, dM (xR;xM ) = γ.

The ODE describing the limit of NK/K is given by (1.2) with

FR(xR, xM ) = −βxM , FM (xR, xM ) = βxR − γ.

Let us check that we can apply our results and that it corresponds to the case where the first
derivative of FM with respect to xM cancels. First, we observe that regularity of Assumption 1.1 is
satisfied. Second, for any xR > 0, (xR, 0) is an equilibrium and

∂RFR(xR, 0) = 0.

This means that the second part of Assumption 1.1 is satisfied for any xR > 0. Moreover, no geometric
stability for the resident population alone, which correspond to the second case considered in the
branching process approximation.
Finally, we start from a population with only one mutant, SK(0) = NK

R (0) = K−1, IK(0) = NK
M (0) = 1
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and we consider x∗R = 1. So the invasion condition FM (x∗R, 0) > 0 reads β > γ. the branching process
Z is a birth and death process with individual birth rate β and individual death rate γ.

In this example, we can also determine the maximal value that the invasive population can reach,
which is the pic of the epidemic :

v? = 1− γ

β
+
γ

β
log

(
γ

β

)
.

We obtain the following results when there is an outbreak of the epidemics, where the hitting times
for the infected population is defined by

τKI (n) = inf{t ≥ 0, IK(t) ≥ n}.

Proposition 5.1. If β > γ, then
i) for any ξK � log(K)/K2 and η > 0,

lim
K→+∞

P
(

sup
t≤τKM (ξK)

∣∣∣∣IK(t)

I(t)
− 1

∣∣∣∣ > η ; I(τKI (ξK)) > 0

)
= 0,

where I is the unique strong solution of

I(t) =1 +

∫
[0,t]×R+

1{u≤β I(s−)}NI(ds, du)−
∫

[0,t]×R+

1{u≤γ I(s−)}NG(ds, du).

ii) For any v < v?, on the survival event {∀t > 0, I(t) > 0},

lim
T→∞

lim sup
K→∞

sup
t∈[T,τKI (vK)]

∣∣∣∣ IK(t)

KxT,KI (t)
− 1

∣∣∣∣ = 0, in probability,

where (xK,TS (t), xK,TI (t)) is the solution of{
d
dtx

K,T
S (t) = −βxK,TS (t)xK,TI (t),

d
dtx

K,T
I (t) = (βxK,TS (t)− γ)xK,TI (t).

such that (xK,TS (T ), xK,TI (T )) = (SK(T )/K, IK(T )/K).

The point i) is a consequence of Theorem 2.3 and point ii) comes from Theorem 3.6. These two
parts have an intersection : in the time window when the number of infected is large but negligible
compared to log(K)/K2, we have informally

IKM (t) ∼ I(t) ∼We(β−γ)t ∼ xK,TM (t− T ).

We obtain also an approximation of the time when the epidemics reaches a given level :

Corollary 5.2. Let (ξK)K be sequence which tends to infinity and satisfies ξK/K → v as K → ∞,
for some v ∈ [0, v?). Then, for any ε > 0,

lim
K→∞

P
(∣∣∣∣τKM (ξK)− log(ξK/W )

r?
− τ(v)

∣∣∣∣ ≥ ε, W > 0

)
= 0,

where τ is an increasing continuous function such that τ(0) = 0 defined in Proposition 3.2.
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6. Appendix

6.1. Minimum of the martingale of branching process

Recalling notation Section 2, we are interested in the minimal value of the martingale W (t) :=
Z(t) exp(−r?t) for positive time. Such object for simple branching processes has already attracted
lot of attention. We are not aware in the literature of the estimates given here and provide the proof
for completeness. This relies on classical L2 estimates to control the speed of the convergence of the
martingale.

Lemma 6.1. For any ε > 0, and any Z−adapted stopping time τ,

P (W (τ) ≤ ε ; W > 0) ≤ C
(
ε+ ε−1E

[
1{τ<∞}e

−r?τ/2
])
,

where W is the almost sure limit of W (t) as t goes to infinity, and C is some positive constant
independent of ε and τ. We use the convention W (+∞) := W for the inequality above to make sense.

Proof. To simplify the proof, we firstly treat the case where τ is deterministic and finite. To begin
with,

W (τ + 1)−W (τ) = e−r?τ

Z(τ)∑
i=1

Nie
−r? − Z(τ)

 ,

where, conditionally on Z(τ), the Ni are i.i.d. with the same distribution as Z(1). This implies that

E
[
(W (τ + 1)−W (τ))

2
]

=e−2r?τE

V
Z(τ)∑
i=1

(
Nie

−r? − 1
)
|Z(τ)


=e−2r?τE [Z(τ)]V

[
Nie

−r? − 1
]
≤ Ce−r?τ . (6.1)

On the other hand, we write

P (W (τ) ≤ ε ; W > 0) ≤ P (W ≤ 2ε) + P (W (τ) ≤ ε ; W > 2ε)

≤ P (W ≤ 2ε ; W > 0) + P (W −W (τ) > ε) .

Recalling that, on the event {W > 0}, W follows an exponential distribution, we can bound the first
term of the sum above by 1− e−Cε ≤ Cε.

The second term of the sum can be handled as follows:

P (W −W (τ) > ε) =P

∑
n≥0

W (τ + n+ 1)−W (τ + n) > ε


≤1

ε

∑
n≥0

E [|W (τ + n+ 1)−W (τ + n)|]

≤ε−1
∑
n≥0

E
[
|W (τ + n+ 1)−W (τ + n)|2

]1/2
≤Cε−1e−r?τ/2

∑
n≥0

e−r?n/2 ≤ Cε−1e−r?τ/2.

This ends the proof in the case where τ is deterministic.
Now to prove the result when τ is some almost surely finite Z−adapted stopping time, we just

have to do the same computation conditionally on Fτ . Indeed, since Z(τ) is Fτ−measurable and
Z(τ + 1)− Z(τ) independent of F(τ), (6.1) becomes

E
[
(W (τ + 1)−W (τ))

2 |Fτ
]
≤ Ce−r?τ ,
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and the last computation of the previous case gives

P (W −W (τ) > ε|Fτ ) ≤ Cε−1e−r?τ/2.

The result of the lemma is then proved by taking the expectation in the inequality above.
Finally let us treat the case where τ is not necessary almost surely finite. We write

P (W (τ) ≤ ε ; W > 0) =P (W (τ) ≤ ε ; W > 0 ; τ <∞) + P (W (τ) ≤ ε ; W > 0 ; τ =∞)

≤P (W (τ) ≤ ε ; W > 0 ; τ <∞) + P (0 < W ≤ ε) (6.2)

Note that, on the event {τ <∞}, we have the almost sure convergence

1{W (τ∧n)≤ε;W>0} −→
n→∞

1{W (τ)≤N ;W>0}.

Whence, by Fatou’s lemma,

P (W (τ) ≤ ε ; W > 0 ; τ <∞) ≤lim inf
n

P (W (τ ∧ n) ≤ ε ; W > 0 ; τ <∞)

≤lim inf
n

P (W (τ ∧ n) ≤ ε ; W > 0)

Then, applying the result of the Lemma with the almost surely finite stopping time τ ∧n, we obtain

P (W (τ) ≤ ε ; W > 0; τ <∞) ≤ C
(
ε+ ε−1lim inf

n
E
[
e−r?(τ∧n)/2

])
.

Noticing that
e−r?(τ∧n)/2 ≤ 1{τ<∞}e

−r?τ/2 + e−r?n/2,

we have
P (W (τ) ≤ ε ; W > 0 ; τ <∞) ≤ C

(
ε+ ε−1E

[
1{τ<∞}e

−r?τ/2
])
.

In addition, to control the second term of the sum in (6.2), let us recall that the distribution of W
is

d?
b?
δ0 + λE(λ),

with λ := (b? − d?)/d?. Hence

P (0 < W ≤ ε) = λ
(
1− e−λε

)
≤ λ2ε.

Recalling (6.2), the result of the lemma is proved.

Lemma 6.2. With the same notation as in Lemma 6.1, for any 0 < ε < 1,

P
(

inf
t≥0

W (t) ≤ ε ; W > 0

)
≤ Cε1/4,

for some positive constant C independent of ε.

Proof. Let us introduce

sε :=
1

r?
log

(
1

ε

)
.

On the event {W > 0}, we have Z(t) ≥ 1 for all t ≥ 0. And, for t < sε, e
−r?t > ε. As a consequence{

inf
t≥0

W (t) ≤ ε ; W > 0

}
⊆
{

inf
t≥sε

W (t) ≤ ε ; W > 0

}
.
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For some λ > 1 whose value will be fixed later, let us note

Sε := inf
{
t ≥ sε : W (t) ≤ ε1/λ

}
.

Since λ > 1, we have ε < ε1/λ, hence{
inf
t≥sε

W (t) ≤ ε
}
⊆ {Sε <∞} ⊆

{
W (Sε) ≤ ε1/λ

}
.

Note that the last event above is trivially satisfied only if Sε <∞.
Then, thanks to Lemma 6.1,

P
(
W (Sε) ≤ ε1/λ ; W > 0

)
≤ C

(
ε1/λ + ε−1/λE

[
1{Sε<∞}e

−r?Sε/2
])
.

Recall that, by definition of Sε, Sε ≥ sε, and so

E
[
1{Sε<∞}e

−r?Sε/2
]
≤ e−r?sε/2 = ε1/2,

implying that

P
(
W (Sε) ≤ ε1/λ ; W > 0

)
≤ C

(
ε1/λ + ε1/2−1/λ

)
.

Finally, choosing λ := 4 to optimize the bound above proves the result.

6.2. Stability of pertubated dynamical system

The following lemma is strongly inspired from Lemmas 3.1 and 3.2 of [24]. We consider an exponential
stable dynamical system : y′ ≤ −cy, with c > 0. We add a source term, which acts a pertubation given
by h. The following result allows to control the value of the dynamical system in terms of fluctuations
of the source term h on a unit time interval.

Lemma 6.3. Assume that there are three measurable and locally bounded functions y, h, φ with h(0) =
0 and satisfying that for all t ≥ 0,

y(t) = y(0) + h(t) +

∫ t

0

y(s)φ(s)ds.

Suppose in addition that φ is bounded, upper-bounded by some negative and

−∞ < inf φ ≤ supφ < 0.

Then, for all t ≥ 0,

sup
s≤t
|y(s)| ≤ Γ

(
|y(0)| ∨ sup

s≤t
|h(s)− h(bsc)|

)
,

for some positive constant Γ that depends only on φ.

Proof. To begin with, we introduce

Φ(t, s) = e
∫ t
s
φ(r)dr ≤ e−C(t−s),

for some positive constant C := − supφ > 0. Then

Φ(t, t) =1 ; Φ(t, s)Φ(s, u) = Φ(t, u),

∂tΦ(t, s) =Φ(t, s)φ(t) ; ∂sΦ(t, s) = −Φ(t, s)φ(s).
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By a standard constant variation argument, one can write

y(t) = Φ(t, 0)y(0) + h(t) +

∫ t

0

Φ(t, s)h(s)φ(s)ds.

Then it results the following decomposition:

y(t) =Φ(t, 0)y(0) +

btc∑
j=1

Φ(t, j)

(
h(j)− h(j − 1) +

∫ j

j−1

Φ(j, s)φ(s) (h(s)− h(j − 1)) ds

)

+ h(t)− h(btc) +

∫ t

btc
Φ(t, s)φ(s) (h(s)− h(btc)) ds.

Using the upperbound of φ, we obtain

|y(t)| ≤e−Ct|y(0)|+
btc∑
j=1

e−C(t−j)
(

sup
j−1≤s≤j

|h(s)− h(j − 1)|Γ′
)

+ sup
btc≤s≤t

|h(s)− h(btc)|Γ′,

with Γ′ := 1 + ||φ||∞. The result is proved by choosing Γ = Γ′
∑∞
j=0 e

−Cj = Γ′/(1− e−C).

Proof of Lemma 3.3. To prove the result, it is in fact sufficient to prove that

sup
t≤sε
|φR(t, x)− x?R| ≤

√
2ε, (6.3)

with
sε := τMε (x) ∧

(
inf{t > 0 : |φR(t, x)− x?R| > ε1/4}

)
.

Indeed, if the inequality (6.3) is true, it implies that

τMε (x) ≤ inf{t > 0 : |φR(t, x)− x?R| > ε1/4},

whence sε = τMε (x).
For the sake of notation, we introduce

yR(t) := φR(t, x)− xR.

Step 1. In this first step, we prove (6.3) assuming that ∂RFR(x?) < 0. It allows to assume that

sup
t≤sε

∂RFR(φ(t, x)) < 0. (6.4)

Let us write

yR(t) =

∫ t

0

φR(s, x)FR(xR, φM (s, x))ds

+

∫ t

0

φR(s, x) [FR(φ(s, x))− FR(xR, φM (s, x))− yR(s)∂RFR(xR, φM (s, x))] ds

+

∫ t

0

φR(s, x)yR(s)∂RFR(xR, φM (s, x))ds

= xR +H1(t) +H2(t) +

∫ t

0

φR(s, x)yR(s)∂RFR(xR, φM (s, x))ds,
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where
H1(t) :=

∫ t

0

φR(s, x)FR(xR, φM (s, x))ds,

H2(t) :=

∫ t

0

φR(s, x) [FR(φ(s, x))− FR(xR, φM (s, x))− yR(s)∂RFR(xR, φM (s, x))] ds.

(6.5)

Thanks to (6.4) and Lemma 6.3, we have for any T > 0,

sup
t≤T∧sε

|yR(t)| ≤C
(

sup
t≤sε∧T

∣∣H1(t)−H1(btc)
∣∣+ sup

t≤sε∧T

∣∣H2(t)−H2(btc)
∣∣) (6.6)

≤C |xR(0)− x?R|+ Cε+ C sup
t≤sε∧T

|yR(t)|2 ,

for some positive constant C independent of x and ε. Let us note

g(T ) := sup
t≤T∧sε

|yR(t)| .

We have, for all T > 0,
g(T ) ≤ 2Cε+ Cg(T )2.

Let us now end the proof by contradiction. Assume that

s1 := inf{T > 0 : g(T ) >
√
ε}

is finite. Then since g is continuous
√
ε ≤ 2Cε+C(

√
ε)2 = 3Cε, which is absurd since ε can be chosen

arbitrarily small This proves (6.3).

Step 2. Now we prove the same result (6.3) under the assumption ∂RFR(x?) = 0. The same com-
putation as in Step 1 allows to obtain

y′R(t) =φR(t, x)FR(xR, φM (t, x))

+ φR(t, x) [FR(φ(t, x))− FR(xR, φM (t, x))− yR(t)∂RFR(xR, φM (t, x))]

+ φR(t, x)yR(t)∂RFR(xR, φM (t, x)).

Hence, for t ≤ sε,

|y′R(t)| ≤CφM (t, x) + C|xR − x?R|+ C(yR(t))2

≤C
[
(|xR − x?R|+ φM (t, x)) ∨ (yR(t))

2
]
.

Since t 7→ φM (t, x) is increasing on [0, sε], we have for t ≤ sε,

sup
s≤t
|y′R(s)| ≤ C

[
(|xR − x?R|+ φM (t, x)) ∨ sup

s≤t
yR(s)2

]
. (6.7)

Now, let us introduce

T :=

{
0 ≤ t ≤ sε : |xR − x?R|+ φM (t, x) ≥ sup

s≤t
yR(s)2

}
.

If sε ∈ T , then
sup
s≤sε

yR(s)2 ≤ |xR − x?R|+ φM (sε, x) ≤ 2ε,
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and (6.3) is true. Otherwise, let t1 := sup T and note that T cannot be empty since yR(0) = 0. Since
T is closed, we know that t1 < sε and that

|xR − x?R|+ φM (t1, x) = sup
s≤t1

yR(s)2.

Let us remark that for any r ≤ t1 < s ≤ sε,

|yR(r)| ≤ sup
t≤t1
|yR(t)| =

√
|xR − x?R|+ φM (t1, x) <

√
|xR − x?R|+ φM (s, x) < sup

t≤s
|yR(t)|.

Using that yR is continuous, it ensures that the maximal value of yR on the time interval [s, t] is
reached on [t1, t]. Writing

g(t) := sup
t1≤s≤t

|yR(s)|,

and using also (6.7), we get for t ≥ t1,

g(t) ≤|yR(t1)|+
∫ t

t1

|y′R(s)|ds ≤ |yR(t1)|+ C

∫ t

0

g(s)2ds

According to Osgood’s lemma (see e.g. Lemma 3.4 of [3]), for all t1 ≤ t ≤ sε,

1

|yR(t1)|
− 1

g(t)
≤ C(t− t1),

and
1

g(t)
≥ 1

|yR(t1)|
− C(t− t1).

We have that 1
|yR(t1)| − C(t− t1) > 0, because

|yR(t1)|C(t− t1) =|xR − x?R|C(t− t1) + φM (t1, x)C(t− t1)

≤C|xR − x?R|sε + C

∫ t

t1

φM (s, x)ds. (6.8)

Since we work on [0, sε], we can choose ε small enough such that s ≤ sε,

FM (x) ≥ r?/2 and FM (φ(s, x)) ≥ r?/2.

Then it is possible to control the second term in the sum of the RHS (6.8) in the following way∫ t

t1

φM (s, x)ds =

∫ sε

0

∂sφM (s, x)
1

FM (φ(s, x))
ds ≤ C

∫ τMε (x)

0

∂sφM (s, x)ds ≤ Cε.

And, to control the first term of the sum (6.8), we can notice that, on [0, sε],

∂tφM (t, x) ≥ r?
2
φM (t, x),

whence

sε ≤
2

r?
log(1/xM ) +

2

r?
log(xM (sε)) ≤

2

r?
log(1/xM ) +

2

r?
log ε ≤ 2

r?
log(1/xM ), (6.9)

such that

|xR − x?R|sε ≤
2

r?
|xR − x?R| log(1/xM ) ≤ Cη0.
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Hence

|yR(t1)|C(t− t1) ≤ C|xR(0)− x?R|sε +

∫ sε

0

φM (s, x)ds ≤ Cη0 + Cε ≤ 1

2
.

Then, for all t1 ≤ t ≤ sε,

g(t) ≤ 1
1

|yR(t1)| − C(t− t1)
=

|yR(t1)|
1− |yR(t1)|C(t− t1)

≤
√
|xR − x?R|+ φM (t1, x)

1− 1/2
≤ 2
√

2ε.

Recalling that g(t) := sup
t1≤t
|yR(t)|, we have proved (6.3).

Proof of Lemma 3.4. To simplify the notation, let us write

z(t) := sup
s≤t
|φR(s, x)− x?R|.

Step 1. Firstly, let us prove the result under the assumption ∂RFR(x?) < 0. Using the computation
of (6.6) from Step 1 in the proof of Lemma 3.3 above, we have for all t ≤ τMε (x),

z(t) ≤C|xR(0)− x?R|+ C

∫ t

btc
φM (x, s)ds+ C

∫ t

btc
z(s)2ds

≤C|xR − x?R|+ CφM (x, t) + Cz(t)2,

since the function t 7→ φM (x, t) and t 7→ z(t) are non-decreasing on [0, τMε (x)]. As a consequence, for
all t ≤ τMε (x),∫ t

0

z(s)ds ≤Ct|xR(0)− x?R|+ C

∫ t

0

φM (x(0), s)ds+ C

∫ t

0

z(s)2ds

≤C|xR(0)− x?R|τMε (x) + C

∫ τMε (x)

0

φM (x(0), s)ds+ Cz(t)

∫ t

0

z(s)ds.

Then, by Lemma 3.3, we have z(τMε (x)) ≤ C
√
ε and τMε (x) ≤ 2 log(1/xM )/r?, we have∫ t

0

z(s)ds ≤ Cη + Cε+ C
√
ε

∫ t

0

z(s)ds.

Wence, for ε small enough (such that C
√
ε ≤ 1/2 for example),∫ t

0

z(s)ds ≤ Cη + Cε.

Step 2. Let us prove the same result under the assumption ∂RFR(x?) = 0. We have proved in Step 2
of the proof of Lemma 3.3 above the following inequality: for all t ≤ τMε (x),

z(t) ≤C|xR − x?R|+ C

∫ t

0

φM (x, s)ds+ C

∫ t

0

z(s)2ds

≤C|xR − x?R|+ CφM (x, t) + C

∫ t

0

z(s)2ds.

Hence, for all T ≤ τMε (x),∫ T

0

z(t)dt ≤CT |xR − x?R|+ C

∫ T

0

φM (x, s)ds+ C

∫ T

0

∫ t

0

z(s)2dsdt

≤C|xR − x?R| ln(1/xM ) + Cε+ C

∫ T

0

z(t)

∫ t

0

z(s)dsdt

≤Cη + Cε+

(∫ T

0

z(t)dt

)2

.
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The exact same reasoning as the one used at the very end of Step 1 in the proof of Lemma 3.3 allows
us to conclude that, for all T ≤ τMε (x), ∫ T

0

z(t)dt ≤
√
ε+ η,

what ends the proof.
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