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Subjective and objective image quality assessment is still a challenging problem that needs to be further developed due to the recent advances in image acquisition technologies and the emergence of novel image processing techniques based on deep learning. In this paper, we focus on the quality assessment of neural networks based image compression algorithms. In this respect, a new database containing mainly neural networks based compressed images at different bitrates is firstly built. Then, subjective experiments are performed to evaluate the mean opinion scores of the obtained distorted images. Finally, an extensive evaluation and analysis of image quality assessment metrics is conducted. To this end, and in addition to conventional and machine learning metrics, neural networks based metrics will be investigated in this work after fine-tuning. The new subjective deep learning based compressed image database with its associated mean opinion scores as well as the trained models of the deep learning based metrics will be made publicly available. This will be of great interest to advance future research works devoted to the development of new image quality assessment metrics as well as the design of novel neural networks-based image compression algorithms.

Introduction

Due to the continuous advances of display and acquisition technologies, huge amounts of diverse visual data are generated every day, which constitute a major issue in terms of storage and transmission. In this respect, many research works have been dedicated to the design of efficient image compression methods. For instance, most of the developed algorithms are suitable for lossy compression and aims at minimizing the distortion of the reconstructed image at a given bitrate. In this context, it becomes necessary to find appropriate quality metrics to assess the quality of the reconstructed images resulting from the employed image compression method.

While JPEG2000 [START_REF] Taubman | High performance scalable image compression with EBCOT[END_REF] and more recently BPG 1 (Better Portable Graphics) image compression standards have shown good performance in terms of quality of reconstruction, deep learning-based compression algorithms have attracted a great attention in the last years to improve the coding efficiency of the traditional compression schemes. An overview of image and video compression with deep learning approaches is provided in [START_REF] Liu | Deep learning-based video coding: A review and a case study[END_REF][START_REF] Ma | Image and video compression with neural networks: A review[END_REF]. More precisely, the developed algorithms are based on Neural Networks (NN) and consist of the following steps. First, a NN-based analysis stage is performed to transform the input image into a compact representation. The latter is then quantized and encoded.

Finally, the inverse transform is achieved to obtain the reconstructed image. This typical architecture is referred to as auto-encoder where the network parameters are trained in an end-to-end manner [START_REF] Toderici | Full resolution image compression with recurrent neural networks[END_REF][START_REF] Ballé | End-to-end optimized image compression[END_REF][START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF][START_REF] Rippel | Real-time adaptive image compression[END_REF][START_REF] Li | Learning convolutional networks for content-weighted image compression[END_REF][START_REF] Agustsson | Generative adversarial networks for extreme learned image compression[END_REF][START_REF] Cheng | Learned image compression with discretized gaussian mixture likelihoods and attention modules[END_REF]. It should be noted here that the main differences between these methods are related to the employed NN architecture and/or the retained loss function in the training phase. For instance, among the existing architectures, the Convolutional Neural Network (CNN) and Fully Connected Network (FCN) have been recently investigated for intra prediction in the context of image and video coding [START_REF] Schiopu | Macro-pixel prediction based on convolutional neural networks for lossless compression of light field images[END_REF][START_REF] Li | Fully connected network-based intra prediction for image coding[END_REF].

An hybrid method, where small (resp. large) blocks are predicted using an FCN 1 https://bellard.org/bpg/ (resp. a CNN) model, is proposed in [START_REF] Dumas | Context-adaptive neural networkbased prediction for image compression[END_REF]. Moreover, motivated by the different advantages of transform coding schemes, other methods have been developed to improve DCT (Discrete Cosine Transform) and DWT-based coding schemes [START_REF] Liu | CNN-based DCT-like transform for image compression[END_REF][START_REF] Ahanonu | Lossless image compression using reversible integer wavelet transforms and convolutional neural networks[END_REF][START_REF] Ma | iWave: CNN-based wavelet-like transform for image compression[END_REF][START_REF] Dardouri | Optimized lifting scheme based on a dynamical fully connected network for image coding[END_REF]. Indeed, a DCT-based coding scheme using a CNN is used in [START_REF] Liu | CNN-based DCT-like transform for image compression[END_REF]. In [START_REF] Ahanonu | Lossless image compression using reversible integer wavelet transforms and convolutional neural networks[END_REF], a DWT is first applied to the input image, and then, the generated subbands are fed into a CNN to produce the final detail coefficients. In [START_REF] Ma | iWave: CNN-based wavelet-like transform for image compression[END_REF], the authors propose to design a separable lifting structure based wavelet transform using a CNN. While the latter method employs the CNN for only the prediction stage, a fully nonlinear transform where prediction and update stages are performed using an FCN has been recently developed in [START_REF] Dardouri | Optimized lifting scheme based on a dynamical fully connected network for image coding[END_REF]. This recent method has also been made adaptive by taking into account the input image to be encoded.

Since the developed methods are often dedicated to lossy compression, the quality assessment of the reconstructed (i.e. decoded) images becomes an important step to evaluate the performance of these deep learning based coding schemes.

The quality assessment problem of compressed images have been widely investigated in the context of JPEG and JPEG2000 coding algorithms. In this context, the full-reference PSNR and SSIM (or MS-SSIM) metrics have been extensively used to evaluate the performance of conventional image compression algorithms.

Moreover, other works have also been developed to design no-reference quality assessment metrics [START_REF] Wang | No-reference perceptual quality assessment of jpeg compressed images[END_REF][START_REF] Wang | No-reference image quality assessment for compressed images based on dct coefficient distribution and psnr estimation[END_REF][START_REF] Sheikh | No-reference quality assessment using natural scene statistics: Jpeg[END_REF]. For example, in [START_REF] Wang | No-reference image quality assessment for compressed images based on dct coefficient distribution and psnr estimation[END_REF], a no-reference metric for JPEG compressed images based DCT coefficients distribution and PSNR estimation is proposed. Another method for JPEG2000 compressed images using natural scene statistics is developed in [START_REF] Sheikh | No-reference quality assessment using natural scene statistics: Jpeg[END_REF].

However, in the context of deep learning based image compression algorithms, the latter are often evaluated in terms of PSNR, SSIM (or MS-SSIM). In addition to this commonly used evaluation approach, there are very few works which have proposed to conduct some subjective experiments [START_REF] Minnen | Spatially adaptive image compression using a tiled deep network[END_REF][START_REF] Theis | Lossy image compression with compressive autoencoders[END_REF][START_REF] Cheng | Perceptual quality study on deep learning based image compression[END_REF][START_REF] Valenzise | Quality assessment of deep-learning-based image compression[END_REF]. Indeed, in [START_REF] Minnen | Spatially adaptive image compression using a tiled deep network[END_REF], the authors achieve a pairwise comparison study with 10 obervers to show the preference of their method compared to JPEG standard and a neural network baseline method [START_REF] Toderici | Full resolution image compression with recurrent neural networks[END_REF]. In [START_REF] Theis | Lossy image compression with compressive autoencoders[END_REF], a single-stimulus rating test with 25 observers is also performed to validate their coding approach and show its preference over JPEG and JPEG2000 compression methods as well as the neural network baseline method [START_REF] Toderici | Full resolution image compression with recurrent neural networks[END_REF]. A similar subjective study was performed in [START_REF] Cheng | Perceptual quality study on deep learning based image compression[END_REF] to show that MS-SSIM is better than MSE for optimizing an end-to-end learned compression method. However, the latter works do not investigate the correlation between the obtained Mean Opinion Scores (MOS) and the employed objective metrics (PSNR and MS-SSIM). For this reason, Valenzise et al. have proposed to study in [START_REF] Valenzise | Quality assessment of deep-learning-based image compression[END_REF] the accuracy of classical metrics in predicting MOS for deep learning based compression methods. More precisely, using a double stimuls rating test and 23 obervers, they have considered 6 references images and 4 image compression methods which are JPEG2000, BPG as well as two NN-based algorithms [START_REF] Toderici | Full resolution image compression with recurrent neural networks[END_REF][START_REF] Ballé | End-to-end optimized image compression[END_REF]. It has been concluded that conventional PSNR and SSIM metrics are not appropriate to assess the quality of deep learning-based compressed images.

The objective of this paper is to further investigate the quality assessment (QA) process in the context of deep learning (DL) based image compression algorithms. More precisely, we first propose to build a new database where distorted images using recent DL compression algorithms a well as their associated MOS will be publicly available. While several databases with MOS have already been developed for QA of JPEG and JPEG2000 compressed images, and to the best of our knowledge, our dataset will be the first accessible database in the context of QA of DL compressed images. For instance, compared to previous subjective studies [START_REF] Cheng | Perceptual quality study on deep learning based image compression[END_REF][START_REF] Valenzise | Quality assessment of deep-learning-based image compression[END_REF], the proposed database includes more reference images with more and newer DL compression algorithms resulting in a larger set. It is important to note here that designing a large public subjective dataset presents a great interest to the research community working on the development of both new IQA alorithms as well as deep learning based compression algorithms. Based on this database, we achieve an extensive evaluation of image quality assessment metrics and analyse their correlation with the subjective quality scores. In this respect, and unlike recent studies [START_REF] Cheng | Perceptual quality study on deep learning based image compression[END_REF][START_REF] Valenzise | Quality assessment of deep-learning-based image compression[END_REF] focusing on traditional image quality assessment (IQA) algorithms, we propose here to investigate new emerging IQA methods based on neural networks. The remainder of this paper is organized as follows. In Section 2, an overview of the retained neural networks based image compression algorithms is provided.

Then, the subjective test methodology is described in Section 3. Finally, the objective metrics as well as the experimental results are discussed in Section 4 and some conclusions are drawn in Section 5.

Retained neural networks-based image compression algorithms

Since the focus of this paper is on the quality assessment of deep learning compressed image, we propose to select one conventional image compression method, which is often used as a comparison method, and four neural networks based compression methods. The conventional method is the standard JPEG2000 coding scheme [START_REF] Taubman | JPEG2000: Image Compression Fundamentals, Standards and Practice[END_REF] whereas the neural networks based ones are described in the following.

End-to-end learned image compression models

This method, developed by Ballé et al. [START_REF] Ballé | End-to-end optimized image compression[END_REF], is among the first developed endto-end image compression methods based on deep learning. Its block diagram is shown in Fig. 1.

Thus, the method consists of a nonlinear analysis transform g a , a uniform quantizer q and a nonlinear synthesis transform g s Moreover, a percpetual transform g p can be used to evaluate the quality of the decoded image. Note that the latter was set to the identity in [START_REF] Ballé | End-to-end optimized image compression[END_REF]. For the analysis and synthesis transforms, they are performed using three convolution layers and nonlinear activation functions. More precisely, for the analysis (resp. synthesis) stage, each convolution layer is followed by downsampling (resp. upsampling) and generalized divisive normalization (approximate inverse of the generalized divisive normalization) operations. To optimize their network and find the optimal parameters of the 

function given by

L 1 = R + λD = -E[log 2 (P q )] + λE[d(x, x)] (1) 
where P q is the discrete probability distribution of the quantized vector, d(x, x)

is the distortion (typically the Mean Square Eroor) between the original and reconstructed images, and E[•] represents the expectation operation approximated by average over a given training set of images. For optimization purpose via gradient descent algorithm, P q will be approximated by the density function of ỹ (denoted by p ỹ) which is obtained by replacing the quantizer with an additive i.i.d uniform noise source. Based on this approximation of the quantized coefficient distribution, and given a probability model p ỹ, the loss function becomes suitable for stochastic optimization.

The above architecture [START_REF] Ballé | End-to-end optimized image compression[END_REF] has been then considered as a reference model in many other deep learning based image compression algorithms [START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF][START_REF] Lee | Context adaptive entropy model for end-toend optimized image compression[END_REF][START_REF] Sun | End-to-end learned image compression with fixed point weight quantization[END_REF]. Among them, we will retain here the method proposed in [START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF]. The latter aims to extend the first model [START_REF] Ballé | End-to-end optimized image compression[END_REF] by integrating an hyperprior h that captures the spatial dependencies in the latent representation y. The block diagram of this architecture is shown in Fig. 2. In this extended architecture, h a and h s can be seen as an auxiliary autoencoder that aims to estimate the probability distribution p ỹ after decoding ẑ. In this respect, different methods have been developed to model this distribution. More precisely, three variants of this generic autoencoder architecture have been retained in this work. The first approach uses a non-adaptive distribution model based on piecewise linear functions and was referred in [START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF] to as factorized -prior model. The second one, designated by hyperprior model in [START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF], assumes a zero mean Gaussian distribution with standard deviation parameters σ 2 . The third approach corresponds to a more recent work where authors resort to a Gaussian mixture model.
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Fully connected network for lifting based image coder

While the previous approaches as well as most of the developed neural networks based compression methods are not suitable for lossy-to-lossless coding applications, a novel method based on lifting schemes [START_REF] Sweldens | The lifting scheme: A custom-design construction of biorthogonal wavelets[END_REF] has been recently developed in [START_REF] Dardouri | Optimized lifting scheme based on a dynamical fully connected network for image coding[END_REF]. In this architecture, shown in Fig. 3, the traditional predictors and update linear operators are replaced by fully connected neural network (FCNN) models. More precisely, three FCNN based prediction models, denoted by f

(HH) j , f (LH) j
, and f (HL) j

, are employed to generate the three detail wavelet subbands oriented diagonally, vertically and horizontally. These FCNN models are learned by minimizing the energy (i.e the 2 -norm) of the detail coefficients.
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Then, an FCNN based update model, designated by f

(LL) j
, is used to generate the approximation subband. The latter model is optimized by minimizing the quadratic error between the approximation coefficients and those obtained using an ideal low pass filter. More details regarding this approach can be found in [START_REF] Dardouri | Optimized lifting scheme based on a dynamical fully connected network for image coding[END_REF].

Subjective study

In this section, we describe the conducted subjective experiment to build a new database with MOS for quality assessment of deep learning compressed images.

Image database

Our database has been derived from 16 reference (i.e. uncompressed) images taken from the standard Kodak PhotoCD dataset. The latter is composed of color pictures of size 768 × 512 with various foreground/background contents as it can be seen from some samples shown in Fig. 5. It should be noted here that we selected the Kodak dataset since it is widely used to validate deep learning-based image compression algorithms. Based on these reference images, we applied the standard JPEG2000 image compression algorithm as well as the four deep learning-based ones, described 
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As a result, and compared to the recent subjective studies using small datasets (with 7 reference images and 168 distorted ones) [START_REF] Cheng | Perceptual quality study on deep learning based image compression[END_REF][START_REF] Valenzise | Quality assessment of deep-learning-based image compression[END_REF], a larger one with 336 images (16 reference ones and 320 distorted ones) has been built. 

Subjective scores computation and analysis

Let us denote by S i,j the raw score assigned by the i-th observer to the j-th image. Thus, by taking the average of the scores given by the N = 21 observers, we obtain the Mean Opinion Score MOS j for each image with index number j:

MOS j = 1 N N i=1 S i,j (2) 
Once the subjective scores are collected, a screening of observers was firstly performed for outlier detection using the method described in the ITU-R-REC-BT.500-13 [START_REF]Methodology for the subjective assessment of the quality of television pictures, Recommendation[END_REF]. Following this procedure, no outlier was detected. there are no values at the extremities of the MOS scale especially at the higher end, depicting that none of the compressed images is perceptually similar to the pristine one. Finally, it is also important to note that all the compression methods have similar quality range. In addition, we have analyzed the variation between the observers' ratings. Indeed, Fig. 8 shows the standard deviations versus the MOS. Thus, it can be observed that the images with the best and the worst scores generally have lower variations as compared to those obtained in the middle range of MOS. This is expected since it is generally easy to score images that are very bad or very good. These analysis results indicate that our new deep learning based compressed image database could be considered as representative for testing IQA metrics.

Performance evaluation

In this section, we propose to evaluate the performance of various objective quality assessment metrics on the new deep learning based compressed image database.

Objective image quality assessment metrics

Unlike the recent works devoted to quality assessment of DL-based compressed images which considered only conventional IQA metrics, we propose here to cover a wide range of metrics by investigating machine learning as well as recent deep learning based metrics. In what follows, we will briefly describe these metrics.

Conventional metrics

These metrics include some popular metrics often used in IQA as well as some recent ones. In addition to the most commonly used Peak Signal-to-Noise ratio (PSNR) metric, we have considered the following ones:

• Structure SIMilarity (SSIM) [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF]: It is a widely used metric that measures the similarity between a reference image and the tested one based on their structural information.

• Visual Information Fidelity (VIF) [START_REF] Sheikh | Image information and visual quality[END_REF]: This measure is considered as a Human Visual System (HVS) based method and aims to quantify the loss of image information to the distortion process. Note that the pixel domain implementation of the VIF has been used.

• Visual Saliency-based Index (VSI) [START_REF] Zhang | Vsi: A visual saliency-induced index for perceptual image quality assessment[END_REF]: It is based on the extraction of the visual saliency map which is then exploited as an image feature and used to characterize the relevance of a local image region.

• Perceptual image quality assessment using a Normalized Laplacian Pyramid (PIQA-NLP) [START_REF] Laparra | Perceptual image quality assessment using a normalized laplacian pyramid[END_REF]: It is based on local luminance subtraction and local gain control obtained after applying the Laplacian pyramid decomposition to images.

• Haar Wavelet-Based Perceptual Similarity Index (HaarPSI) [START_REF] Reisenhofer | A haar wavelet-based perceptual similarity index for image quality assessment[END_REF]: It consists in using the wavelet representation of images to assess local similarities between them, as well as the relative importance of image regions.

It should be noted here that these metrics belong to the class of Full-Reference (FR) metrics which use the reference image to assess the quality of the tested one.

Machine Learning (ML)-based metrics

Natural Scene Statistics (NSS) models followed by training are among the MLbased metrics which are often used in IQA studies. These metrics include:

• DIIVINE [START_REF] Moorthy | Blind image quality assessment: From natural scene statistics to perceptual quality[END_REF]: It aims to extract statistical features using Discrete Wavelet Transform (DWT). Then, Support Vector Machine (SVM) followed by Support Vector Regression (SVR) stages are used to predict the quality score of the tested image.

• BLIINDS-II [START_REF] Saad | Blind image quality assessment: A naturalscene statistics approach in the dct domain[END_REF]: It relies on a statistical model of local discrete cosine transform (DCT) coefficients and employs a probabilistic predictive model to train the features and predict the image quality .

• BRISQUE [START_REF] Mittal | No-reference image quality assessmentin the spatial domain[END_REF]: Unlike the two previous metrics where statistical features are extracted from DCT and DWT domains, BRISQUE operates in the spatial domain, and then uses SVM and SVR to predict the image quality score.

• NIQE [START_REF] Mittal | Making a completely blind image quality analyzer[END_REF]: Based on spatial domain NSS features, it consists in evaluating the image quality based on a multivariate Gaussian (MVG) fitting model. While this method does not involve SVM and SVR modules, it requires a training on pristine images to generate the parameters of the MVG model. It should also be noted here that these metrics belong to the class of No-Reference (NR) metrics where the quality of a tested image is evaluated without using the reference image.

Deep Learning (DL)-based metrics

Recently, and motivated by the success of neural networks, deep learning based metrics have been developed. Among them, we have considered the following ones.

• Perceptual Image-Error Assessment through Pairwise Preference (PieAPP) [START_REF] Prashnani | Pieapp: Perceptual image-error 475 assessment through pairwise preference[END_REF]: A pairwise-learning approach is developed to predict the perceptual error between an original image and a tested one. A deep CNN is used to train an error estimation function and produce the perceptual error score.

• Deep Image QuAlity Measure for FR IQA (DIQaM) [START_REF] Bosse | Deep neural networks for no-reference and full-reference image quality assessment[END_REF]: The method use a Convolutional Neural Network (CNN) for feature extraction followed by a Fully Connected Neural Network (FCNN) for regression, yielding the quality score prediction.

• Region-Adaptive Deformable Network (RADN) [START_REF] Shi | Regionadaptive deformable network for image quality assessment[END_REF]: It consists of a modified residual block, a patch-level attention one and a reference-oriented deformable convolution block. The latter are performed on different non-overlapping patches and the final quality score is obtained using a weighted average operation.

Note that these three DL based metrics belong to the class of Full-Reference (FR) metrics.

Analysis of objective quality metrics

Experimental setup

While the conventional IQA metrics as well as the the ML-based ones can be easily tested since their implementations are publicly available, that of DL-based metrics needs more care since only the pre-trained models and the code for the test phase are available. However, such models may not be appropriate for our DL based compressed images and so should be fine-tuned. In this respect, significant efforts have been made to perform the training phase and obtain the new models. To this end, and for each DL-based metric, we have used the default setting parameters (number of epochs, learning rate, optimizer) provided in its respective reference paper. It is important to note here that the obtained training models will be made publicly available.

Moreover, for the ML and DL based metrics, 75% of the dataset is used for training while the rest is used for testing. For instance, since our new database is built from 16 reference images, we proposed to divide them into four nonoverlapping subsets where each test subset is composed of 4 reference images (i.e 80 distorted images) and the remaining 12 reference images (i.e 240 distorted images) are used for training. This means that 4-fold cross validation has been considered in our simulations.

Evaluation criteria

In order to judge the performance of the objective metrics against our benchmark subjective scores, we have used three different criteria. They are the Pearson Linear Correlation Coefficient (PLCC), Spearman Rank-Order Correlation Coefficient (SROCC) and Kendall Rank-Order Correlation Coefficient (KROCC). Before evaluating the correlation coefficients, a five-parameter logistic function, given by (3), is applied to the predicted scores to take intro account for non-linear relation between MOS and the predicted scores

f (x) = β 1 ( 1 2 - 1 1 + e β2(x-β3) ) + β 4 x + β 5 (3) 
where β 1 , β 2 , β 3 , β 4 and β 5 are the five model parameters which are obtained by minimizing mean square error between the MOS and the predicted scores.

Correlation results

Tables 1, 2 and 3 provide the correlation values between the objective scores and the subjective ones in terms of PLCC, SROCC and KROCC, respectively.

Thus, different observation can be made from these tables. First, regarding the conventional IQA metrics, it can be seen that the widely used PSNR metric leads to the lowest correlation values while the recent HaarPSI one presents higher correlations. Moreover, the ML-based metrics have lower correlation values overall. For instance, while some of them (especially BLIINDS-II and NIQE) can outperform some conventional metrics (like PSNR and SSIM) for JPEG2000 compressed images, ML-based metrics are generally less performant than the conventional metrics for the DL compressed images. This suggests that this category of metrics are not suitable for quality assessment in the context of neural networks based image compression. This may be explained by the fact that these ML based metrics belong to the class of NR IQA methods and so they are trained using only the distorted images. Finally, using the DL based metrics, better correlation values are obtained. For instance, DIQaM outperforms all the other metrics and yields the highest correlation values.

In addition, Fig. 9 illustrate the scatter plots of all the considered IQA metrics versus the MOS. Our results show again that the conventional PIQA NLP and HaarPSI as well as the three DL based metrics have much higher correlations with MOS compared to the remaining metrics.

Finally, the best IQA metrics have been retained to evaluate their performance with respect to the different quality levels (i.e coding rate) of distorted images. Moreover, the curve obtained with DIQaM shows small variations of correlation values compared to other curves like PSNR, SSIM and VIF. This indicates that the performance of DIQaM is independent of the coding rate and so has the advantage to be a more consistent metric.

Qualitative results

To confirm again the limitations of standards PSNR and SSIM metrics, often used in the evaluation of deep learning based image compression algorithms, Fig. 11 illustrates some reconstructed images with their associated PSNR, SSIM, HaarPSI and DIQaM metrics as well as the MOS. For exam- ple, from the images shown in the first row of Fig. 11(a), it can be observed that the AE-Factor [START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF] method leads to better subjective reconstructed quality compared to JPEG2000. However, the conventional PSNR and SSIM metrics obtained with JPEG2000 are higher to those obtained with the AE-Factor [START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF] method. Thus, these metrics are not appropriate to show the relevance of the DL based compression method. Unlike PSNR and SSIM, DIQaM metric show more coherent results well correlated with the human perception.

Conclusion and perspectives

In this paper, a new database of deep learning-based compressed images is built for quality assessment purpose. In this respect, in addition to the JPEG2000 compression standard, four recent neural networks based coding methods have been considered while using different coding rates. Then, after performing the subjective experiments, different categories of IQA metrics, including conventional, ML and DL metrics, have been evaluated. Our experiments confirm that the standard PSNR and SSIM metrics, usually used in the 

Figure 1 :

 1 Figure 1: Block diagram of the baseline end-to-end image compression algorithm [5] (TDB by Tassnim).

Figure 2 :

 2 Figure 2: Block diagram of the end-to-end image compression algorithm with a scale hyperprior [6] (TDB by Tassnim).

Figure 3 :

 3 Figure 3: Block diagram of the fully connected network based lifting coding scheme [17].

Figure 4 :

 4 Figure 4: Some reference images taken from the kodak dataset.
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 2 to generate the different distorted images. Moreover, and in order to generate different distortion levels, the retained compression methods are performed at four bitrates (i.e four quality levels). Since distortion are more visible at low and middle bitrates, the bitrates are set to 0.1, 0.15, 0.2, 0.3 bits per pixel (bpp). Some examples of compressed images are shown in Fig. 5.

Figure 5 :

 5 Figure 5: Examples of compressed images from our subjective database.
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 2 Fig. 6.

Figure 6 :

 6 Figure 6: Subjective experiment interface.

Figure 7 :

 7 Figure 7: Distribution of all MOS score.

Figure 8 :

 8 Figure 8: Standard deviation vs MOS for all images with different compression methods.

Fig. 7

 7 Fig. 7 illustrates the histogram for MOS distribution in our database. From the figure, we can firstly see that the data follows a uniform distribution. Moreover, 200

  More precisely, in addition to the standard PSNR and SSIM metrics often used to assess the quality of deep learning based image compression algorithms, we have considered VIF, VSI, HaarPSI, PieAPP and DIQaM. Fig.10shows the correlation values of these metrics with respect to the four quality levels. These plots confirm the results provided in the previous tables and show that DIQaM outperforms the other IQA metrics. Moreover, two main important observations can be made from this figure. First, while HaarPSI and DIQaM have led to close correlation values (overall) in Tables 1, 2 and 3, it can be seen here that DIQaM is more suitable than HaarPSI at low birtates (i.e higher distortion levels).

Table 1 :

 1 Pearson Linear Correlation Coefficient of different IQA metrics with MOS.

	Category	Metric	JPEG2000 AE-Factor [6] AE-Hyp-	AE-Hyp	FCNN-Overall
					GM [6]	GMM [10] LS [17]	
		PSNR	0.7856	0.7943	0.8206	0.8063	0.8478	0.8409
		SSIM	0.8127	0.9009	0.8971	0.9134	0.8444	0.8953
		VIF-P	0.8482	0.9018	0.8951	0.9016	0.8737	0.9061
		VSI	0.8781	0.9205	0.9351	0.9412	0.8710	0.9048
	Classical							
		PIQA NLP	0.8206	0.8777	0.8814	0.8939	0.8710	0.9012
		HaarPSI	0.8763	0.9166	0.9207	0.9087	0.8917	0.9292
		BRISQUE	0.7035	0.8418	0.8299	0.5683	0.7787	0.7862
		NIQE	0.9070	0.7552	0.7908	0.6912	0.5503	0.7712
	ML-based							
		DIIVINE	0.5986	0.8126	0.8864	0.7162	0.8301	0.7271
		BLIINDS-II	0.8469	0.7664	0.7973	0.6543	0.7678	0.7313
		PieApp	0.9103	0.8635	0.8875	0.8727	0.9418	0.8958
	DL-based	DIQaM	0.8720	0.9425	0.9388	0.9472	0.9338	0.9347
		RADN	0.8690	0.8688	0.8767	0.9082	0.9395	0.8777
		BIECON	0.8180	0.8189	0.8464	0.7566	0.7900	0.8494

Table 2 :

 2 Spearman Rank-order Correlation Coefficient of different IQA metrics with MOS. of image and video coding, are not suitable for DL based compressed images, and promising results are obtained with a recent DL based metric referred to as DIQaM. Therefore, in the future, it would be interesting to further investigate new DL based metrics for the quality assessment of neural networksbased compressed images. It is worth pointing out that our new database with the subjective scores will be made publicly available to advance the future research works of IQA community. Moreover, the trained models, obtained with our DL based compressed database, will be of a great interest to researchers working on the design of neural networks-based image compression methods and who require to evaluate their compression methods using the DL based metrics retained in this paper.

	Metric	JPEG2000 bmshjfactor bmshjhyper cheng recimycbcr Overall
	PSNR	0.7758	0.8040	0.8058	0.8284	0.8355	0.8322
	SSIM	0.8091	0.8983	0.8903	0.9133	0.8496	0.8908
	VIF-P	0.8478	0.8938	0.8855	0.9049	0.8609	0.9013
	VSI	0.8831	0.9208	0.9262	0.9304	0.8610	0.9133
	PIQA NLP	0.8258	0.8783	0.8750	0.8922	0.8610	0.8966
	HaarPSI	0.8776	0.9187	0.9060	0.9071	0.8878	0.9257
	BRISQUE	0.6843	0.8272	0.7382	0.5037	0.7603	0.7780
	NIQE	0.9042	0.6875	0.7478	0.6456	0.4963	0.7608
	DIIVINE	0.6320	0.7978	0.8596	0.7088	0.8206	0.7211
	BLIINDS-II	0.8653	0.6794	0.7544	0.5419	0.7809	0.7224
	PieApp	0.9005	0.8699	0.8801	0.8507	0.9338	0.8956
	DIQaM	0.8483	0.9346	0.9191	0.9184	0.9206	0.9343
	RADN	0.8487	0.8618	0.8478	0.8794	0.9199	0.8696
	BIECON	0.8178	0.7963	0.7868	0.6816	0.7904	0.8372

context

Table 3 :

 3 Kendall Rank-Order Correlation Coefficient of different IQA metrics with MOS.

	Metric	JPEG2000 bmshjfactor bmshjhyper cheng recimycbcr Overall
	PSNR	0.5816	0.6071	0.6114	0.6190	0.6455	0.6384
	SSIM	0.5995	0.7192	0.7067	0.7411	0.6514	0.7091
	VIF-P	0.6481	0.7093	0.7156	0.7321	0.6723	0.7267
	VSI	0.7047	0.7520	0.7623	0.7639	0.6683	0.7388
	PIQA NLP	0.6313	0.6954	0.6908	0.7054	0.6683	0.7162
	HaarPSI	0.7017	0.7550	0.7474	0.7282	0.7051	0.7629
	BRISQUE	0.5317	0.6500	0.5625	0.3917	0.5958	0.5854
	NIQE	0.7612	0.5625	0.6208	0.4917	0.3958	0.5698
	DIIVINE	0.4773	0.6250	0.6917	0.5584	0.6125	0.5447
	BLIINDS-II	0.7030	0.5125	0.5792	0.4042	0.6458	0.5458
	PieApp	0.7570	0.7042	0.7208	0.6750	0.8250	0.7231
	DIQaM	0.6737	0.8000	0.7792	0.7750	0.7917	0.7821
	RADN	0.6862	0.7000	0.6875	0.7417	0.7917	0.7051
	BIECON	0.6487	0.6208	0.6250	0.5375	0.6417	0.6590