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Concept Utility

Paul Égré Cathal Ó Madagáin

Abstract

Practices of concept-revision among scientists seem to indicate that concepts can be
improved. In 2006, the International Astronomical Union revised the concept Planet
so that it excluded Pluto, insisting that the result was an improvement. But what
could it mean for one concept or conceptual scheme to be better than another? Here
we draw on the theory of epistemic utility to address this question. We show how
the plausibility and informativeness of beliefs, two features that contribute to their
utility, have direct correlates in our concepts. These are how inclusive a concept is, or
how many objects in an environment it applies to, and how homogeneous it is, or how
similar the objects that fall under the concept are. We provide ways to measure these
values, and argue that in combination they can provide us with a single principle of
concept utility. The resulting principle can be used to decide how best to categorize an
environment, and can rationalize practices of concept revision.

Keywords: epistemic utility; concepts; concept revision; conceptual change; homogeneity;
inclusiveness; informativeness; plausibility;

Introduction

Some ways of conceptualizing our environment seem obviously better than others. Given
our astronomical knowledge, it seems right to group the objects in the solar system under
the categories Planet, Star, Asteroid, and Moon.1 We would be reluctant, on the
other hand, to group them into the three categories Star or Asteroid, Small Planet,
and Moon or Large Planet. Even though the second set of categories covers the same
objects as the first, it is intuitively a poor conceptualization of the domain. Similarly,
scientists often come to the conclusion that a conceptual scheme they are working with
could be improved, sometimes in light of new discoveries. A recent example is a 2006
resolution of the International Astronomical Union. Here it was decided that in light of
the discovery of a range of celestial objects in the vicinity of Pluto, it would improve
our categorization of the solar system if we excluded Pluto from the concept Planet

1Throughout we use small caps to denote concepts or categories, and we use the terms ‘concept’ and
‘category’ interchangeably.
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and grouped it instead with the new objects. But what does it mean for one concept or
conceptual scheme to be better than another?

Here we approach this question from the perspective of epistemic utility theory, a
branch of epistemology that aims to describe what makes our beliefs useful (e.g. Carnap
1928, Popper 1955, Levi 1967, Maher 1993, Huber 2007). In this literature, two elements
of beliefs are widely regarded as fundamental to their utility: their plausibility, or how
likely they are to be true, and their informativeness, or how much they tell us about the
world. We show here that concepts, as the components of beliefs, have two properties
that directly correlate with the plausibility and informativeness of beliefs that we form in
using those concepts. These are the homogeneity of a concept, which contributes to the
plausibility of inductive generalizations we make using that concept; and the inclusiveness
of a concept, which contributes to the informativeness of those generalizations. We provide
measures for these aspects of concepts, and argue that in combination they provide us
with a principle of concept utility. The resulting principle allows us to directly compare
the utility of competing conceptual schemes, and to explain and rationalize practices of
concept revision.

Several proposals already exist for how to go about categorizing an environment, but
they exhibit substantial shortcomings. After briefly reviewing these proposals (section
1), we turn to the question of epistemic utility, and the value of both plausibility and
informativeness to belief (section 2). We then explore how conceptual schemes can support
these values, and introduce our principle of concept utility (section 3). We illustrate how
the principle allows us to determine and revise a conceptual scheme with a toy example
(section 4), and finally we show how our account explains a real case of concept revision,
in the puzzling reclassification of Pluto (section 5).

1 Ways of Conceptualizing

One way to conceptualize an environment is to group its elements together in terms of
similarity – something proposed by Carnap (1928), and reflected in accounts of concepts
such as the prototype theory (Rosch and Mervis 1975), the exemplar theory (Gopnik and
Meltzof 1997) and the conceptual spaces account (Gärdenfors 2000). Certainly, grouping
according to similarity would allow us to decide between the intuitive categorization of
the solar system described above, and the odd categorization considered next to it – the
categories in the first set are more internally similar. However, it is doubtful that similarity
is the only thing that drives our categorization practices. Due to convergent evolution,
dolphins and sharks are very similar – much more similar than dolphins and dogs, for
example. And yet, we categorize dolphins with dogs, as mammals, and not with sharks.
Equally, if we paint a racoon to look like a skunk, and even physically alter it to have the
capacity to produce foul smelling spray from a gland in its rear, children from as young
as 6 years will nevertheless insist that it is still a racoon (Keil 1989). As we shall see,
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similarity is only partly what we are concerned with when we categorize.
Another way to conceptualize an environment is to try to divide it in terms of ‘natural

kinds’, something ‘externalist’ theories often appeal to (Putnam 1975, Kripke 1980, see
also the ‘theory-theory’, Keil 1989).2 This approach need not depend on similarity, since
members of the same natural kind can fail to resemble one another. Unfortunately it is
rarely easy to decide what counts as the most natural way to categorize an environment.
Often multiple mutually exclusive ways of categorizing the same environment can have
legitimate claims to being natural (Dupré 1993). There are many conflicting ways to
distinguish species in natural terms, for example. On an ‘interbreeding’ account (Mayr
1969), species are populations that can reproduce with one another and not with members
of other groups. On a ‘cladistic’ account, species are distinguished by ancestry (Cracraft
1983). However, some cladistically grouped species cannot interbreed, such as species with
a common ancestor that reproduce asexually. These will be grouped together by a cladistic
account, but separately by the interbreeding account (cf. Ereshevsky 1998). Since there
are many conflicting ways to decide which things belong together naturally, the value of a
conceptual scheme cannot be simply decided by the question whether it is natural.

A further way to decide how to conceptualize is to consider the impact a conceptual
scheme will have on the beliefs we form using that scheme. This could be called an ‘epis-
temic’ approach to conceptualization. Goodman (1955) argued that the value of a concept
is given in the extent to which it allows us to form reliable expectations about its mem-
bers, so that we should categorize in such a way that the resulting concepts best support
inductive generalizations (see also Quine 1977). Psychologists have, similarly, proposed
categorization metrics that would allow us to most reliably identify the kinds or features
of objects we encounter (Rosch and Mervis 1975, Corter and Gluck 1992, Murphy 1982),
or to formulate reliable theories about those objects (Chater 1999). And clustering algo-
rithms in statistics and computer science have been developed to optimize the plausibility
of analyses of bodies of data, again concerned with the epistemic outcomes of categorization
(Thorndike 1953).

These latter approaches ultimately hinge on the idea that the value of a conceptual
scheme can be understood in terms of the value of the beliefs we are inclined to form using
that scheme, or, that concept utility can be best understood in terms of epistemic utility.
We think this is the right way to approach the question. After all, it is often the case that
approaches based on similarity or natural kinds are ultimately defended in epistemic terms,
for example by the extent to which such schemes allow us to make plausible predictions.
But how exactly should we think of the contribution a concept might make to the utility
of a belief, and can we make this idea precise? The first thing we need to do is to decide
what, in general, makes our beliefs valuable – something that has been the focus of the
literature on epistemic utility. Let us turn to this literature next.

2Although sometimes these two can overlap, if natural kinds are themselves construed in terms of
similarity, as in Homeostatic Property Cluster theory (Boyd, 1999).

3



2 Epistemic Utility

As Huber (2008) discusses, there are two distinct ways of thinking about the utility of
beliefs. On one view, associated with Carnap (1962), a good belief or theory is one that is
likely to be true. On this general approach, the measure of utility of a belief or theory is
its plausibility.

Under a standard Bayesian analysis, the plausibility (p) of a hypothesis (H) is simply
its probability given our evidence (E) and our other beliefs (B) about the world. Let
us suppose, then, that p is a measure of the plausibility of any hypothesis, namely of its
posterior probability conditional on the evidence and background beliefs:

p(H) := Pr(H|E ∧B)

If we take p as an exhaustive measure of the value of any belief, then we should always
prefer to adopt those hypotheses that score highest on this measure, and our task becomes
that of figuring out how to evaluate p for different hypotheses.

However, as Popper (1959), Levi (1967), Maher (1993), and others have argued, plau-
sibility cannot be the only thing we are concerned with when we decide what to believe.
If it were, then we would have little explanation for the kinds of beliefs we are inclined
to commit to. Rather than being solely concerned with plausibility, it would seem we are
also concerned to acquire beliefs that are informative – that tell us something substantive
about the world. Here is Maher on Cavendish’s evaluation of his experiments on the weak
electromagnetic force:

“Consider the conclusion Cavendish drew from an experiment he conducted in 1773.
The experiment was to determine how the electrostatic force between charged particles
varies with the distance between the particles. Cavendish states his conclusion this way:

We may therefore conclude that the electric attraction and repulsion must be inversely
[related] as some power of the distance between that of the 2 + 1/50th and that of the
2−1/50th, and there is no reason to think that it differs at all from the inverse duplicate
ratio. (Cavendish 1879, pp. 111-2).

This statement indicates that Cavendish accepted Hc:

(Hc) The electrostatic force falls off as the nth power of the distance, for some n
between 1.98 and 2.02.

Why wouldn’t Cavendish have accepted only a weaker conclusion, for example by
broadening the range of possible values of n, as in H ′c:

(H ′c) The electrostatic force falls off as the nth power of the distance, for some n
between 1.9 and 2.1.

...

H ′c [is] more probable than the conclusion that Cavendish actually drew, as are in-

finitely many other weaker versions of Cavendish’s hypothesis. The obvious suggestion

4



is that although these weaker hypotheses are more probable than Hc, they are also

considerably less informative, and that is why Cavendish did not limit himself to these

weaker hypotheses.” (Maher 1993: 139-40)

Maher’s point here is that if our goal in deciding what to believe were simply to maximize
the chances of our having true beliefs, then we should water down our beliefs so that they
were so weak as to be almost guaranteed to be true. If this were our only concern, indeed,
then we should never adopt any beliefs other than tautologies, which are guaranteed to
be true. Since we are concerned not just to have true beliefs but also informative ones,
the utility of a belief should not be measured only in terms of plausibility, but also by its
informativeness, or how much it tells us about the world.

How is informativeness measured? One way is to consider the number of possibilities
a hypothesis rules out. Consider some hypotheses we might form about the outcome of
throwing a die ten times over. The hypothesis that one toss will be an even number rules
out just one alternative possibility – that all tosses will turn up an odd number – and is
not very informative; the hypothesis that there will be a 5 and a 2 rules out more possible
outcomes, and is more informative than the first; the hypothesis that three tosses will turn
up a 6 rules out more possibilities again, and is again more informative. As we can see,
the more possibilities a hypothesis rules out, the more informative it is.

The result is that informativeness can be measured in the same terms that we used
to measure plausibility. As a hypothesis rules out more and more possibilities, after all,
it becomes less and less plausible given the same evidence. The informativeness of a
hypothesis will therefore vary inversely with its implausibility given our beliefs and evidence
(for various other ways of thinking of informativeness see Huber 2008). Following Levi
(1967), we may therefore adopt the following measure of informativeness:

i(H) := Pr(¬H|E ∧B)

Measuring informativeness in this way reflects Popper’s (1959) idea that the utility of a
belief is given by how ‘falsifiable’ it is, since the more possibilities a claim rules out, the
more easily falsifiable it is.3

Of course informativeness alone cannot be what we are concerned with either, since false
beliefs are not useful to us. It would seem that what we want, ideally, are beliefs that max-
imize both plausibility and informativeness (in principle such that i(H) = p(H), but prac-
tically this may not be the case depending on which factor is viewed as more important in a
given context). Following Huber (2008), we can call this the ‘informativeness-plausibility’
theory of acceptability.

Given that the informativeness of a belief varies inversely with its plausibility, these
two ‘virtues’ of belief push in opposite directions. How do we decide what to believe,

3We refer to Huber (2008) for alternative and more fine-grained measures of informativeness. Levi’s
measure is subject to several objections, but suffices for our argument.
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then – the more informative, or the more plausible of available hypotheses? A natural
suggestion is that we accept the most informative hypothesis that meets our requirements
on plausibility in a given context. For example, in a scientific context, we may have very
little tolerance for error, and so we might restrict the claims we endorse only to those
that meet a certain threshold of plausibility (such as the statistical thresholds that we are
conventionally required to meet in scientific publications)4. Of those hypotheses that meet
the threshold, we will endorse the most informative – rejecting other formulations of the
claim that increase its strength but lower its plausibility (Maher 1993). Our tolerance for
error can change, however. In a non-scientific context we may be ready to accept hypotheses
that are much less plausible, but more informative. In a lay-context, for example, it might
be much more useful to accept a broad generalization like ‘birds fly and lay eggs’, which is
very informative, but far from strictly true.

There are many points of debate that could be explored further concerning epistemic
utility, but that is not our purpose here (for further explorations see Levi 1967, Maher
1993, Huber 2008). Rather, allowing that we value both plausibility and informativeness
in our beliefs, we wish to explore how we might evaluate the components of our beliefs –
our concepts.

3 Concept Utility

Above we considered Cavendish’s hypothesis about the electrostatic force. Let us consider
another example of a scientific hypothesis – Rutz et al.’s (2016) hypothesis about Hawaiian
Crows’ tool-use abilities:

Here we show that [...] the ‘Alalā (C. hawaiiensis; Hawaiian crow), is a highly dex-

terous tool user. Although the ‘Alalā became extinct in the wild in the early 2000s,

and currently survives only in captivity, at least two lines of evidence suggest that

tool use is part of the species’ natural behavioural repertoire: juveniles develop func-

tional tool use without training, or social input from adults; and proficient tool use is

a species-wide capacity (Rutz et al. 2016: 403).

In this passage, Rutz et al. have committed to the following hypothesis Hal:

(Hal) Proficient tool use is a species-wide capacity in the ‘Alalā.

This hypothesis, just like Cavendish’s, could be weakened to make it more plausible. For
example, given a high plausibility for Hal, we get an even higher plausibility for H ′al:

4Consider the Bayes Factor in Bayesian statistical analysis, of only accepting a hypothesis for which
BF surpasses 10, or 30 (Jeffreys 1939). The Bayesian approach uses the same notion of plausibility we
have adopted here, defined in terms of posterior probability of a hypothesis given evidence. In frequentist
statistics, a different notion of plausibility is adopted, and conventional thresholds on p-values set similar
boundary values regarding when to reject the null hypothesis.
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(H ′al) Occasional tool use is a species-wide capacity in the ‘Alalā.

Since Hal entails H ′al, the latter is weaker than the former and therefore more probable
given the same evidence. But of course, since Hal is stronger than H ′al, and already meets
the standards of plausibility required in a scientific paper, we should endorse the former
since it is more informative.

Notice, however, that there is another way of altering the informativeness and plausibil-
ity of the hypothesis – not by altering the strength of the claim made about the members
of a particular class (the ‘Alalā ), but by altering the range of the category the claim is
extended to. That is, by altering the concept over which we project our inductive gener-
alization. First, we can see that if we narrow the extension of the concept over which the
generalization is projected, we weaken the hypothesis and increase its plausibility:

(H ′′al) Proficient Tool use is a capacity to be found in the ‘Alalā that took part
in our study.

H ′′al is weaker than Hal, so it is more plausible given the same evidence. On the other hand
it is less informative, since it tells us nothing about the ‘Alalā that did not take part in the
experiment. Since we have no reason to think that ‘Alalā vary greatly in their cognitive
abilities, Hal is supported by the evidence to a sufficiently high degree of probability to
accept in a scientific context, and so Rutz et al have no reason to restrict their hypothesis
to H ′′al.

On the other hand, we could project our generalization over a concept with a broader
extension:

(H ′′′al) Proficient Tool use is a genus-wide capacity in Corvidae.

H ′′′al is much stronger than Hal. The former entails the latter, and rules out many more
possibilities – it rules out any question over whether Rooks (Corvus frugilegus) can use tools
as well as the ‘Alalā , etc. It is clear why Rutz et al. do not propose H ′′′al : our evidence
about the ‘Alalā studied, coupled with our belief that all crow species might not be equally
capable, makes Hal highly plausible, but not H ′′′al , which extends the generalization to all
crow species. So while this would be more informative, it would lower the plausibility to a
level that we will not accept in a scientific study.

What this illustrates is that by changing the concept over which an inductive gener-
alization is made, the informativeness and plausibility of the hypothesis changes. What
exactly is it about the concept that co-varies with these changes?

First, the greater the range or extension of the concept, the greater the informativeness
of the hypothesis. H ′′′al is extremely informative, because it tells us about all sorts of
different crows – Ravens, Rooks, Jackdaws etc. The first aspect of a concept that impacts
on its epistemic utility will, then, be how many things the concept extends to – what we
can call its inclusiveness. The more inclusive a concept, the more informative an inductive
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generalization made using that concept will be.5 We define inclusiveness as the proportion
of objects in a taxonomy that a concept extends to (see Appendix 1, Definition 2).6 This
gives us a first principle of concept utility:

Inclusiveness: The inclusiveness of a concept determines the informativeness of
generalizations made using that concept.

What about plausibility? Clearly, in our example above, the plausibility of the generaliza-
tion goes up as the range of things it is extended to narrows. But why is that? Falling
under the concept ‘Alala, there is a smaller number of birds than fall under the concept
Corvidae. But it isn’t simply the cardinality of the category that has changed, it is the
amount of variation that exists within the category. In the concept Corvidae there is
a great deal of variation – if we discover something about ‘Alalā , then we might doubt
whether it will apply to Rooks, since we know that Rooks are different in many respects
from ‘Alalā. And while we decrease the variation within a category, the likelihood of dis-
coveries about one object in the group extending to others increases. Since the members of
the category ‘Alalā are much more similar to one another than members of the broader
category Corvidae are to one another, a discovery about one ‘Alalā is more likely to apply
to other ‘Alalā than a discovery about one Corvid is to apply to other Corvids.

The second feature of a concept that affects the utility of generalizations it appears in
is therefore what we might call its homogeneity, which will bear directly on the plausibility
of beliefs we use the concept to form. We can define homogeneity in terms of the extent to
which members of a category share features (see Appendix 1, Definitions 3 and 4). This
gives us a second principle of concept utility:

5Note that our focus is on inductive or ampliative generalizations of the form ‘all As are Bs’ or ‘many
As are Bs’, based on the observation of particular ABs and extending this to unobserved As. An existential
generalization of the form ‘some As are Bs’, based on the observation of one or more ABs, is not inductive
or ampliative, and for such an existential generalization, it is not the case that ‘some As are Bs’ is more
informative than ‘some Cs are Bs’ when the concept A is more inclusive than C. Also, the inclusiveness
and homogeneity of a concept only affect the informativeness and plausibility of such generalizations in
this way when the concept occurs in the restrictor of the universal quantifier (i.e. in subject position): for
example, ‘all students smoke’ is more informative than ‘all blond students smoke’, because ‘student’ is more
inclusive than ‘blond student’ (a property described as the downward monotonicity of ‘all’ on its restrictor
argument); on the other hand, ‘all students smoke’ is less informative than ‘all students smoke cigars’, even
though ‘smoke’ is more inclusive than ‘smoke cigars’ – but in this case the more inclusive concept is in
predicate position.

6Inclusiveness in this sense plays a role too in the categorization metrics of Rosch and Mervis (1975), and
Corter and Gluck (1992), although the rationale is different from our own. For example Rosch (1978: 29)
appeals to cognitive efficiency to motivate a preference for inclusive categories: since a conceptual scheme
with highly inclusive categories will have fewer categories than one with less inclusive categories, a scheme
with inclusive concepts will be easier to learn and use than the latter. Our concern here, on the other
hand, is instead purely epistemic – even given a mind with unlimited cognitive resources, our reasons for
appealing to inclusiveness would still stand, while practical reasons for appealing to inclusiveness might
not.
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Homogeneity: The homogeneity of a concept determines the plausibility of gen-
eralizations made using that concept.

Since we value both informativeness and plausibility in our beliefs, so too will we value both
inclusiveness and homogeneity in our concepts. And just as informativeness and plausibility
vary in inverse proportion to one another in beliefs, inclusiveness and homogeneity vary in
inverse proportion in concepts (in the same way in which, classically, the ‘extension’ and
‘comprehension’ of a concept contravary, see Arnauld & Nicole 1662). This leads us to the
following definition of concept utility (see Appendix 1, Definition 5):

Utility: The utility of a concept is the product of its homogeneity and
inclusiveness.

As we now explore, maximizing concept utility as defined here can guide us in both the
determination and revision of a conceptual scheme.

4 Determining and Revising a Conceptual Scheme

A conceptual scheme can be defined as an organization of objects into distinct categories.
This organization could be into a single set of mutually exclusive categories which we can
call a ‘flat’ organization. For example, we might be faced with a collection of objects
that we could think of under the concepts Animal, Furniture, and Vehicle, where no
concept is a sub-concept of any other. It could also be ‘hierarchical’ – we might be able
to further subdivide the objects falling under Animal between Cat and Dog, and divide
the objects falling under Furniture between the concepts Chair and Table, etc. In this
section and the next, we consider the problem of the determination and revision of ‘flat’
conceptual schemes, where concepts are mutually exclusive. We extend our treatment to
hierarchical taxonomies in Appendix 2 of this paper.

4.1 Determining a Conceptual Scheme

Consider a domain consisting of three objects o1-o3. Suppose there are three relevant
properties F1-F3 that are to be taken into consideration when we conceptualize these
objects, which we can call ‘features’ (cf. Smith and Medin 1981, Corter and Gluck 1992).7

7Our model explains concept utility by assuming features to be given in the background, but it does
not explain the selection of features, where related puzzles may arise concerning which features should be
taken into consideration. We grant this is a further puzzle, but this is no reason to deny the importance of
the notion of concept utility as we framed it. Given a selection of features, after all, one could still fail to
carve out concepts in an optimal way in the absence of an understanding of concept utility.
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F1 F2 F3

o1 1 1 1
o2 0 1 1
o3 1 0 0

These objects could be anything at all. Various sea creatures, let us suppose, that display
some salient features. Some have a spout-hole (F1); some have a dorsal fin (F2), and some
have teeth (F3). The question we are interested in is how the objects are to be clustered
into distinct concepts, relative to that set of features. Is there an optimal way to partition
the group?

We could conceptualize them as just one kind of thing, grouping all three objects under
one concept (P1). Or, we could think of them as three different kinds of thing – assigning
a distinct concept to each object (P3). Between those two extremes, there are three ways
in which we could think of them as two kinds – grouping together o1 and o2 under one
concept, and assigning o3 to its own concept (P21), or distinguishing o1 from the others
(P22), or o2 (P23). In total, we have five possible conceptualizations or partitions of the
domain (we use a vertical bar to delineate between cells):

P1 : o1, o2, o3
P21 : o1, o2 | o3
P22 : o1 | o2, o3
P23 : o1, o3 | o2
P3 : o1 | o2 | o3

Which one should we adopt? By calculating the utility of each partition in terms of our
measure of concept utility, we shall see that one of the five emerges as optimal. To introduce
our measurements, we will go through the calculation for one partition by step, and our
reasoning should be easy to follow for subsequent cases.

Consider (P21), which has two concepts, one of which includes the first two objects and
the second of which includes the third:

P21 : {C1 = {o1, o2}, C2 = {o3}}

First let’s consider the inclusiveness of the concepts in the partition – the proportion of
objects in the domain that each concept extends to. C1 includes two of the three objects
in the domain, so it gets a value of inclusiveness of 2/3, Incl(C1)=2/3. C2 includes one of
the three objects, and so Incl(C2)=1/3.

Next we calculate the homogeneity of the concepts. We can think of this as the extent
to which objects falling under the same concept are similar. This can be measured as the
proportion of objects within a concept that possess a feature or lack it, whichever is bigger
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– assuming that having a feature is just as much grounds for regarding things to be similar
as lacking a feature.8

Let’s see how this works by evaluating the homogeneity of the C1 with respect to feature
F1. This feature is possessed by one of the objects in C1 but the other lacks it. We want
to say that they have no similarity with respect to F1. And so we take the proportion
of objects that have the feature, which is 1/2, and rescale it so that 1/2 becomes 0 (see
footnote 7). This means that Hom(C1, F1) = 0. The second feature F2 is shared by all
objects in C1, so Hom(C1, F2)=1. And that is the same for F3. The homogeneity score for
C1 is the average of those three, so that Hom(C1) = (0+1+1)/3 = 2/3. C2 consists of only
one object, so it is maximally homogeneous relative to each feature, so that Hom(C2) = 1.

We can now combine the scores for inclusiveness and homogeneity to find a utility
measure for each concept. For C1 we find that: U(C1) = 2/3 × 2/3 = 4/9; and for C2 we
find that: U(C2) = 1×1/3 = 1/3. The average of the two gives us a score for this partition
in terms of concept utility:

U(P21) = 7/18

Consider for comparison the partition P1 consisting of a single concept C encompassing all
of the objects. Here the inclusiveness will be 1, Incl(C) = 1. Each feature is shared by two
thirds of the objects, giving each feature a homogeneity score of Hom(C,Fi) = 1/3 by our
scaling algorithm, so that Hom(C) = 1/3. From this it follows that U(P1) = U(C) = 1/3.
Grouping all three objects together therefore gets a slightly lower score than splitting them
in two. The reason is that although the inclusiveness of the single concept in P1 is 1, the
homogeneity is just 1/3, because this single concept now groups together all three objects,
one of which has little in common with the other two. Although P21 scores much lower on
inclusiveness by splitting the domain into two concepts, the gain in homogeneity that the
division into two concepts results in gives it a higher overall score. In fact, P21 beats all of
the other partitions (see Appendix 2 for calculations):

U(P22) < U(P23) < U(P1) = U(P3) < U(P21)

These results make intuitive sense. P22 scores the lowest, because it groups together two

objects that have no feature in common. P23 does slightly better by grouping two objects
that have one feature in common, while P21 scores the highest by grouping together the
two objects that have most in common. P1 and P3 are in a tie because they trade off
inclusiveness for homogeneity and conversely – P1 gets the highest score for inclusiveness

8By measuring homogeneity in terms of having or lacking a common feature, the resulting overall ho-
mogeneity score will always be a 1/2 or more, since it is not possible for less than half the objects in any
group to either lack or possess some feature (if 0.1 of the group lacks the feature, then 0.9 possess it, hence
the proportion of a group that possess or lack a feature can never be less than 0.5). However, the minimal
value on a scale should ideally be represented as zero. For this reason we rescale the homogeneity values
so that 1/2 is represented as 0, 1 is represented as 1, and other values fall in between, giving us a more
sensitive measure. This is done by multiplying the value by 2 and subtracting 1 (see Appendix 1, Def. 3).
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but the lowest score for homogeneity by including all objects in a single concept, while
P3 gets a maximal score for homogeneity but gets the lowest score for inclusiveness, by
partitioning the domain into three concepts.

This shows that when faced with multiple ways of categorizing the objects in a domain,
measuring the inclusiveness and homogeneity of different classifications gives us a principled
way to choose between them. Now let’s see how maximizing the combination of those values
translates back into maximizing the utility of the beliefs we use these concepts to form.
Suppose for a moment that the objects o1, o2, o3 each stand for populations of, let’s say,
100 objects bearing those features. Now suppose that you make a new discovery about one
member of the group denoted as o3 – you notice that it has a pentadactyl bone structure
in its fins. You are now inclined to expect that other creatures might have pentadactyl
limbs given that you have observed one with this feature. Over which individuals do you
project this generalization?

This will depend on which conceptualization you have adopted, assuming you will
generalize the discovery to the category to which you have assigned o2. In the case of
P22, you would generalize over other individuals denoted by o2 and also those denoted
by o3. This is a relatively informative inference, telling you about 200 creatures. But
because the creatures denoted by o2 and those denoted by o3 are very dissimilar, failing
to share any features considered so far, we should not expect this inference to be very
plausible. Consider a similar generalization made in P21, where the objects denoted by o2
were grouped together with those denoted by o1. If we extend the generalization to all
members of this category, it will be just as informative as before, again telling us about 200
creatures. But it will also be much more plausible, because the members of this category
are much more similar. And so we can see how optimizing concept utility in turn optimizes
epistemic utility, conceived in terms of both plausibility and informativeness.

4.2 Revising a Conceptual Scheme

So much for the determination of a conceptual scheme. We now consider two ways in which
discoveries about one’s environment can justify the revision of a conceptual scheme. First,
the discovery of new features in an environment can justify such a revision. This shouldn’t
be surprising – given closer examination of objects in our environment, it is not unusual to
find out that objects that appeared closely related at a glance are actually quite different,
or that objects that appeared very different initially turn out to have more in common than
we realized. And such considerations may prompt us to revise our concepts, as Waismann
(1945) suspected when he proposed that our concepts need to have an ‘open texture’, to
accommodate the discovery of new features in an environment.

To illustrate how new features can motivate a revision on our current account, consider
what happens if we add two features, F4 and F5, to the previous matrix:
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F1 F2 F3 F4 F5

o1 1 1 1 1 1
o2 0 1 1 0 0
o3 1 0 0 1 1

Let’s imagine these newly observed features in our population of sea creatures are limb
bone structure (F4) – two a horizontal tail but the other doesn’t; and feeding habits (F5)
– two eat krill, the other doesn’t. While bearing in mind just the original three features,
we found that o2 and o1 had more in common than either had with o3; but now with these
further features in mind it turns out that o1 and o3 have more in common than either
has with o2 (o1 and o3 are supposed to be whales, while o2 is a shark). This has a clear
impact on the optimality of the competing conceptual schemes. While before P21 scored
highest, now the highest score is attained by P23, which groups together objects o1 and o3,
as the reader can check for herself. The result is that taking maximal concept utility as a
goal for conceptualization provides us with a standard that can motivate the revision of a
conceptual scheme in light of the discovery of new features.

Importantly, the discovery of new objects in a domain, without discovering any new
features, can also justify such revisions. Consider another object-feature matrix:

F1 F2 F3

o1 1 1 1
o2 1 1 1
o3 1 1 1
o4 0 0 1

Here we have found ourselves in an environment with three objects that are identical with
respect to the features F1-F3, and a fourth that differs from the others with respect to
the first two features, but is similar with respect to the third. First let us decide how we
should conceptualize the group - as falling under one single concept, or perhaps splitting
the group so that o4 is distinguished from the others. Consider a simple partition P1 that
contains just one concept C = {o1, o2, o3, o4}. The inclusiveness of the single concept in
this partition is 1, and its homogeneity is 2/3, so its utility U(P1) = 2/3. Now consider a
partition P2 that groups the first three objects together under one concept C1 = {o1, o2, o3},
and assigns the fourth to a separate category C2 = {o4}. C1 includes 3/4 of the objects
and has a homogeneity of 1, while C2 scores 1/4 for inclusiveness and 1 for homogeneity,
so the utility of the partition is is U(P2) = 1/2. This is less than U(P1) = 2/3, and so
here it is optimal to think of the objects as just one kind of thing. In this example, then,
a domain includes an ‘oddball’ that differs from the other objects in the domain, but its
difference from the others is not sufficient to justify splitting the domain into two concepts.
Precisely because we value inclusiveness in addition to homogeneity, we prefer not to split
in this case, even though doing so would increase the overall homogeneity.
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But consider what happens if we expand the domain by including more objects similar
to the oddball, without adding any new features:

F1 F2 F3

o1 1 1 1
o2 1 1 1
o3 1 1 1
o4 0 0 1
o5 0 0 1
o6 0 0 1

The utility of a single partition that groups all the objects together has now dropped to
U(P1) = 1/3, even though no new features have been added: Inc(P1)=1, but Hom(P1) =
0+0+1. The reason for this is that in the original domain, when all the objects are grouped
together, three quarters of the objects in that concept share all their properties. But given
the increase in the number of objects similar to the oddball, fully half of the objects are now
distinct from the others with respect to two thirds of the properties, F1-F2. A partition
that was originally quite homogeneous can therefore lose its homogeneity without any new
features appearing among its members, but simply because new objects are added to the
domain that have the same features as already existing objects. The utility of a partition
that distinguishes the first three objects from the others remains, however, at U(P2) = 1/2:
Inc(P2)=1/2, but Hom(P2) = 1. This is now a higher score than the utility of a single
concept partition, so that it has become optimal to split the domain.

Changes in the proportion of objects with particular features in a domain can in this
way justify revising a conceptual scheme, without any new features being added. Next, we
turn to the puzzling revision of the concept Planet, and argue that its revision follows
exactly the pattern just described.

5 The Case of Planet

In 2006, the International Astronomical Union formed a committee to resolve a growing
dispute concerning the category Planet. During the convention of the IAU, two resolu-
tions were submitted to a vote and adopted, Resolutions B5 and B6. The effect of these
resolutions was to alter the definition of the category so that Pluto and several other newly
discovered celestial objects were no longer to count as planets.

In the opinion of some philosophers, this dispute was merely terminological. Chalmers
(2011), for example, argues that it was essentially a verbal dispute – a question of language,
rather than a question of fact. Among astronomers, on the other hand, the case is thought
of quite differently. Mike Brown, one of the astronomers centrally involved in the discoveries
that led to the demotion of Pluto wrote: ‘the debate about whether or not Pluto is a planet
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is critical to our understanding of the solar system. It is not semantics. It is fundamental
classification’ (Brown 2010: 232).9 In other words, Brown regarded the dispute as driven
by truth – not terminological convenience. Our view is that Brown was right – that the
inclusion of Pluto in the category Planet turned out to be factually incorrect, assuming
that the goal of such a categorization is to maximize epistemic utility. Our account of
concept utility can now be recruited to explain why.

5.1 Context of the IAU Resolutions: The Stern-Levison Criteria

Let us recall a few facts concerning the background to the 2006 decision. First, the con-
cept Planet had undergone some significant changes before 2006. In Ancient astronomy,
the concept extended to apparently moving or ‘wandering’ celestial bodies, and therefore
included both the Sun and the Moon, but not the Earth. With the switch to a Heliocentric
system, Planet came to include the Earth, but no longer the Sun, nor the Moon. That
change depended on the introduction of a new criterion for counting as a planet, namely
orbiting the Sun.

During the nineteenth century, new celestial bodies were discovered, and some of these
were first regarded as planets, such as Ceres, discovered in 1801. After the discovery of
Pallas in 1802, however, a celestial body of roughly the dimensions of Ceres, the concept
Asteroid was proposed by Herschel in 1802. Ceres was reassigned to this new category
along with Pallas. This decision was based on the observation that both had significantly
smaller sizes than the other planets, and therefore seemed to form a distinct class of entities
(Soter 2006). As we shall see the revision of the concept that took place in 2006 followed
a similar pattern.

In 2005, Brown announced the discovery of a new body in the solar system, 2003-
UB313. This object, which came to be called ‘Eris’, appeared to qualify as a planet under
the definition at the time, in particular because it was slightly larger than Pluto. It quickly
became clear to Brown and several other astronomers, however, that calling Eris a planet
could mean that a potentially large number of other celestial bodies should also be included
under the concept, which would undermine the overall homogeneity of the category (Brown
2006). These included a number of celestial bodies discovered a few years before Eris, in
the region of the Solar System called the Kuiper Belt. Brown began to suspect that neither
Eris nor Pluto should not be thought of as a planet after all.

In fact, astronomers had long recognized the distinctness of Pluto from the other 8
planets. As early as 1930, astronomers had pointed out the significantly tilted orbit of
Pluto, of about 17◦ relative to the other 8 planets; the fact that the orbit of Pluto crosses
that of Neptune; the much greater distance between Pluto and Neptune relative to the
distances between the other planets; and the unusually icy character of Pluto (Leonard
1930, Brown 2010). In 2000, the astronomers Stern and Levison identified two more features

9Brown did not take part in the IAU vote, but approved of the outcome, see Brown (2006), and Brown
(2010).
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typical of planets, one of which set Pluto apart even further. The first is what they called
a physical criterion – for a body to have sufficient mass to reach hydrostatic equilibrium.
This is reached when an object is sufficiently massive that its own gravity causes it to take
on the shape of a sphere. This criterion is inclusive of Ceres, Pluto and some other Kuiper
Belt Objects discovered at the time. The second is what they call a dynamical criterion,
which is satisfied by ‘a body in orbit about a star that is dynamically important enough to
have cleared its neighboring planetesimals in a Hubble time’ (Stern and Levison 2002: 4).
To satisfy the dynamical criterion, a body must have cleared other objects such as rocks or
debris from its orbital path. The objects in the Kuiper belt will not qualify, because none
of these have sufficient gravity to pull the others into its own mass. Pluto did not satisfy
this criterion, but the ‘traditional’ 8 planets did. 10

Stern and Levison’s criteria came to play an important role in the 2006 IAU resolu-
tions.11 The first resolution, B5, defines a planet as follows:

“A planet is a celestial body that

(a) is in orbit around the Sun,

(b) has sufficient mass for its self-gravity to overcome rigid body forces so that
it assumes a hydrostatic equilibrium (nearly round) shape, and

(c) has cleared the neighbourhood around its orbit.”

Criterion (a) is the criterion underlying the traditional heliocentric scheme. Criterion (b)
corresponds to Stern and Levison’s physical criterion, and criterion (c) corresponds to
their dynamical criterion. On the basis of that definition, which has the effect of excluding
Pluto from the category Planet, Resolution B6 posits a new category of celestial objects
– Trans-Neptunian Object – of which Pluto is presented as the prototype.12

The difference this made can be seen in our simplified versions of the taxonomies en-
dorsed by the IAU in 1930 (Figure 1) and after the 2006 resolutions (Figure 2). In 1930, a
threefold distinction is made between the planets, including the ‘Gas Giants’ Jupiter, Nep-
tune, Uranus and Saturn; the ‘Terrestrials’ Mercury, Venus, Earth and Mars; and Pluto,
which had sometimes been characterised as an ‘Icy Dwarf’. By 2006, the ‘Icy Dwarf’ cat-

10Brown proposed a similar criterion for counting as a planet, based on the relation between the mass of
a celestial body and the total mass of the bodies orbiting around it; and shortly before the IAU resolutions
were voted, Soter submitted a paper in which he proposed a synthesis of both ideas in the form of a ‘planetary
discriminant’, defined as the ratio of the body mass to the aggregate mass of the neighboring bodies in its
orbit (see Soter 2007 for an overview). We leave this detail to one side because Soter’s discriminant is very
well correlated with Stern and Levison’s discriminant, motivating more or less the same category division.

11See https://www.iau.org/static/resolutions/Resolution_GA26-5-6.pdf.
12Oddly, in Resolution B6 Pluto is also assigned to a further novel category of Dwarf Planet which

passes criteria a) and b) but not c). However, the IAU Resolution B5 implies that Dwarf Planet, despite
the name, is in fact a separate category rather than a subcategory of Planet, so that using the term
Dwarf Planet is misleading (see Brown 2010 for a criticism of that inconsistency).
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Figure 1: 1930 taxonomy for celestial bodies

Figure 2: 2006 taxonomy for celestial bodies

egory has been eliminated, and Pluto and its companions have been moved into the new
category Trans-Neptunian Object (TNO).

What is striking about the pattern of decisions is that the features that are now used to
distinguish Trans-Neptunian Object from Planet were already known to distinguish
Pluto from the other planets in 2000 – but at that time, they did not seem to provide
sufficient reason to exclude Pluto from the category. 13 It was only once new objects that
were similar to Pluto were discovered did the tide of opinion among astronomers began
to change, and the criteria that before had seemed insufficient to exclude Pluto from the
category now seemed to justify this move. If homogeneity or similarity alone was what
we were concerned with in devising a conceptual scheme, however, Pluto should have been

13Stern and Levison had in fact proposed that Pluto might be thought of as belonging to a subcat-
egory Unterplanet, while those objects that satisfy their dynamical criterion might be thought of as
Überplanets.
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Celestial Body Λ > 1

Mercury 1
Venus 1
Earth 1
Mars 1
Jupiter 1
Saturn 1
Uranus 1
Neptune 1

Pluto (1930) 0

Quaoar (2002) 0
Sedna (2003) 0
Eris (2003) 0
Orcus (2004) 0
Makemake (2005) 0

Table 1: Satisfaction of Stern and Levison’s criterion Λ

excluded from the category Planet long before the discovery of the other TNOs, when
its distinctiveness was already understood. How do we make sense of this?

5.2 Rationalizing the Revision

In Table 1, the first nine bodies you will see are the 9 planets according to the taxonomy of
planets in 2000, which had been in place since the discovery of Pluto (1930). Underneath
these are 5 new celestial bodies discovered by Brown and his team between 2000 and 2005,
including Eris. Before the discovery of the five lower Kuiper Belt objects in the table,
the line demarcating the category Planet falls below Pluto. After the discovery of those
objects, it is moved above Pluto. Each planet is assigned a 1 or a 0 depending on whether
it satisfies the Stern-Levison dynamical criterion Λ.

Our explanatory challenge is to show why it was that before the discovery of the new
objects, excluding Pluto from the category Planet was not justified; but that once these
objects were discovered, the move becomes justified – and that on the basis of features
that were already known to distinguish Pluto from the other planets at the earlier time.

First let’s consider ways to categorize the domain as it was known in 2000, which
includes just the first 9 objects. One way would be to split the group in two – one concept
for Pluto, and another for the remaining 8 planets. Relative to the domain, the inclusiveness
of a concept extending only to Pluto would be 1/9 (since it contains only 1 of the 9 objects
in the domain) and its homogeneity 1 (since it is perfectly homogeneous, having only one
member). Its utility is therefore 1/9. The utility of a category for the other 8 bodies is
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8/9 for symmetric reasons (and abstracting away from other ways in which the remaining
8 planets differ, for the sake of argument). The overall utility of a partition into these
two concepts is therefore (1/9 + 8/9)/2 = 1/2. By contrast, consider a partition including
just one concept that covers all nine objects. Its inclusiveness is 1, since it now includes
all the objects under consideration. Its homogeneity relative to Λ is 8/9, since 8 out of
the 9 objects share the discriminant property, which scaled according to our algorithm is
2 · (8/9)− 1 = 7/9. When the known domain consisted of only the first nine objects, then,
it was optimal not to separate Pluto from the others, and for exactly the same reason
considered above (section 4.2): because inclusiveness matters in addition to homogeneity,
a large loss in inclusiveness (reducing its value from 1 to 1/2 by splitting) is not worth a
small gain in homogeneity (increasing its value from 7/9 to 1), and sometimes it’s better
to retain an oddball member of a category to maximize overall utility.

Consider now the expanded domain five years later in 2005, given the discovery of
Eris and the other four Kuiper Belt objects. Once again we can consider the utility of a
partition into two concepts: one equivalent to the old concept Planet encompassing the
first nine objects including Pluto, which we can call O (for old), and a separate concept
for the new objects, let’s call this N (for new). The inclusiveness of O is 9/14, and
its homogeneity again is 7/9. The inclusiveness of N is 5/14, and its homogeneity is 1
(they all lack the discriminant). From our definitions, it follows that the utility of O is
9/14 · 7/9=1/2 whereas the utility of N is 5/14. The overall utility of that partition is
therefore (1/2 + 5/14)/2 = 6/14, or 3/7.

On the other hand, consider a partition of this newly expanded domain including a
concept TNO that groups Pluto together with the new objects, and a concept Pl that
includes just the first eight bodies. For this partition, Incl(PL) = 8/14, and Hom(PL) =
1; Incl(TNO) = 6/14, and Hom(TNO) = 1 – with respect to the second Stern-Levison
criterion, both groups are now perfectly homogeneous. The utility of Pl is now 8/14,
and the utility of TNO is 6/14, hence the overall utility of that partition is 1/2. This
beats the overall utility of the division that keeps Pluto with the planets, which is 3/7. In
other words, before the new objects are discovered, assigning Pluto to a distinct category
from the traditional 8 planets has a lower utility than keeping it in a single category with
them; but after the new objects are discovered, separating Pluto from the other planets
and assigning it to the TNO category has a higher utility.

Note finally that both solutions are better than ‘stretching’ the category Planet to
encompass all 14 celestial bodies under a single concept. For even though the inclusiveness
of the corresponding concept would be 1, its homogeneity would fall to 2 · (8/14)−1 = 1/7,
so the overall epistemic utility of that scheme would itself be 1/7, as a result of the category
becoming too heterogeneous.14

The case of Planet therefore follows the pattern discussed at the end of section (4.2),

14Supporting Brown’s intuition that a ‘leave no iceball behind’ option of including all potential candidates
for planethood would ultimately create an unweildy category (Brown 2006).

19



where a concept includes an ‘oddball’ member, but the resulting heterogeneity is not so
severe as to justify splitting the concept. Because we value inclusiveness in addition to
homogeneity, a small gain in homogeneity need not justify splitting a category. Once
sufficiently many objects similar to the oddball member are discovered, however, the cost
to inclusiveness of splitting the category can be offset by a now greater gain in homogeneity.
Understood in these terms it also becomes clear that we have here no merely terminological
dispute (cf. Chalmers 2011): the distribution of properties and objects in the domain under
consideration means that some ways of conceptualizing the domain are measurably better
than others. Including Pluto in the category Planet would fail to provide us with an
optimal conceptual scheme, as a matter of fact.

Admittedly, our analysis simplifies the complexity of the original case, since many
more features vary across the planets and TNOs than just the Stern-Levison criterion.
Nevertheless, it is primarily on the basis of this criterion that the IAU ultimately came
to exclude Pluto from the category Planet. Our analysis also considerably shrinks the
domain of relevant objects, since by 2000 dozens of so-called Kuiper Belt objects had
already been discovered. If we trust Brown’s testimony, however, it is indeed the discovery
of those first ‘large’ Kuiper belt objects between 2000 and 2005 that gradually put pressure
on the old conceptual scheme, and led to its revision. And so we think that we have
identified the crucial elements of the transition, and the factors that really lead to the
revision of the conceptual scheme.

6 Conclusion

Understanding the utility of a conceptual scheme is surely of central concern to the the-
ory of concepts, to accounts of scientific classification, and indeed to any area in which
categorization plays an important role. In spite of this it has seen relatively little philo-
sophical discussion, perhaps because it has been unclear how to investigate the question.
We have shown here how a measure of concept utility can be derived from broader notions
of epistemic utility, resulting in an account can be applied to any domain of categorization.

Our account departs from extant proposals in several ways. First, it does not lean
primarily on similarity to decide on category boundaries, but recognizes that similarity,
here cashed out in terms of homogeneity, is only part of what we are concerned with in
a conceptual scheme. Second, it does not appeal to naturalness as a competing consid-
eration, thereby avoiding difficulties concerning the multiplicity of natural distinctions.
Focusing instead on the homogeneity and inclusiveness of concepts, our account recognizes
the importance of both plausibility and informativeness to the beliefs that a conceptual
scheme will have an impact on, and thereby provides a more robust and predictive account
of concept utility.

Several issues remain to be investigated. The psychological accounts of concept utility
discussed at the outset have been designed to explain human categorization tendencies,
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in particular our inclination to always categorize an environment at a predictable level
of fineness of grain, sometimes called the ‘basic level’ (see Murphy 2002 chapter 4 for
discussion). We expect that our account will be equally predictive of performance in such
tasks. Indeed, since these accounts are largely focused on maximizing the homogeneity
of conceptual schemes, their predictions will differ in important ways from our own. By
recognizing the importance of inclusiveness in addition to homogeneity, our model predicts
that the proportion of members of objects that share properties in a domain will affect the
way we are inclined to categorize, something that accounts primarily based on homogeneity
will not predict. Whether these predictions will hold up in experimental categorization
tasks is a question we leave for future investigation.
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Appendix 1: Basic definitions

Following Frege, we may view concepts as functions from objects to truth values. For
simplicity, however, we identify them with their extensions, hence with the categories they
determine.15 We define concepts relative to objects and to features (see Smith and Medin
1981, Corter and Gluck 1992). Features are unary properties. They can be viewed as
concepts therefore, but concepts in our approach generally correspond to combinations of
features, so features are intended to be more primitive in that sense.16 For simplicity, we
always assume the objects and the features to be finite.

Definition 1. A concept C is a function from objects of a domain to truth values. For
each domain, it determines a category, that is a subset of the domain D (i.e. the set of
C-objects, or objects satisfying C). For simplicity we identify concepts with the categories
they determine in what follows.

Definition 2. The inclusiveness of a concept C, noted Incl(C), is the proportion of objects
of D satisfying C.

Definition 3. The homogeneity of a concept C relative to feature Fi, written Hom(C,Fi)
is the proportion of the C-objects positively satisfying feature Fi, or the proportion of C-
objects not satisfying feature Fi, whichever is greater, rescaled to a minimum value of 0
and a maximum value of 1 as follows: when the higher proportion is x, the homogeneity is
2x− 1.

Definition 4. The homogeneity of a concept C relative to a finite set of features (Fi)i≤n
(written Hom(C) when feature set is clear from context) is the sum of the homogeneities
of C relative to each feature, divided by the number n of features.

Definition 5. The epistemic utility of a concept relative to a set of features is the product
of its inclusiveness and homogeneity relative to that set, namely:

U(C) = Incl(C)×Hom(C)

Definition 6. A partition is a set of nonempty subsets of D that are mutually exclusive
and exhaustive of D. Given a partition P of D into distinct concepts, the epistemic utility
of P is the average of the utilities of the concepts in P .

Appendix 2: Hierarchical taxonomies

We know how to calculate the epistemic utility of a simple partition, but what about more
complex taxonomies, involving a hierarchy of levels? We may define a taxonomy as follows:

15See Frege (1891) on concepts as functions.
16On features as primitives of a theory of complex concepts, see Smith and Medin (1981).
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Definition 7. A taxonomy is a finite family (Pi)i≤m of partitions of the domain into
distinct concepts (categories), such that for each i, the partition Pi+1 is a refinement of Pi

(a partition refines another one if every concept of the first is a subset of a concept in the
second). The level k in a taxonomy is the corresponding partition Pk.

We can construct an illustration from the ‘flat’ partitions considered in section 3. There
we considered a domain consisting of three objects relative to three properties:

SPOUT FIN TEETH

o1 1 1 1
o2 0 1 1
o3 1 0 0

We noted that there are five possible partitions of this domain:

P1 : o1, o2, o3
P21 : o1, o2 | o3
P22 : o1 | o2, o3
P23 : o1, o3 | o2
P3 : o1 | o2 | o3

These same partitions can now be ‘stacked’ to form three different taxonomies, T1-T3. The
highest level in each is equivalent to P1, and the lowest to P3, while there are three different
ways to conceptualize the objects at the second level. L2 in T1 is equivalent to P21, L2 in
T2 is equivalent to P22 and L2 in T3 is equivalent to P23:

T1


L1 o1 o2 o3
L2 o1 o2 | o3
L3 o1 | o2 | o3

T2


L1 o1 o2 o3
L2 o1 | o2 o3
L3 o1 | o2 | o3

T3


L1 o1 o3 o2
L2 o1 o3 | o2
L3 o1 | o3 | o2
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Figures 3 to 5 give a more explicit represent of T1 to T3 both in tree form and in the
form of a dataframe.17 In each taxonomy there are three levels, and six concepts, based
on three binary features (Fin, Spout, Teeth). Each node corresponds to a concept, the
objects included are listed, and within curly brackets are the features that all objects in
that concept have in common, which in some cases is none, as in T2 (Figure 4) (an exception
is the root node, which we label with the feature {SeaCreature} for clarity, although we
do not include this general feature in our calculations).

Below the trees, a table illustrates an implementation in R of our algorithm for com-
puting utility. Each row corresponds to a node or concept of the taxonomy, and in columns
are marked its level, its cardinality, and its homogeneity relative to each relevant feature
of the taxonomy. The end columns Hom, Incl, and U give the overall homogeneity, the
inclusiveness and the epistemic utility of each node.

No unique method exists to assign epistemic utility to a taxonomy, but one of the
simplest is to calculate the epistemic utilities of all its levels, where the utility of the level
is calculated as before for partitions, and average these. On that method, since T1, T2

and T3 differ only at level-2, it follows from our previous calculations that T1 has higher
utility than T3, and T3 higher utility than T2. These values are indicated in a separate
table underneath each dataframe.

17We derived both by implementing the algorithm presented in Appendix 1 in R using the library data.tree
(created by Christoph Glur).
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T1 level card n SPOUT n FIN n TEETH Hom Incl U

1 {SeaCreature} o1, o2, o3 1 3 2.00 2.00 2.00 0.33 1.00 0.33
2 |—{Fin, Teeth} o1, o2 2 2 1.00 2.00 2.00 0.67 0.67 0.44
3 | |—{Fin, Teeth, Spout} o1 3 1 1.00 1.00 1.00 1.00 0.33 0.33
4 | ◦—{Fin, Teeth} o2 3 1 0.00 1.00 1.00 1.00 0.33 0.33
5 ◦—{Spout} o3 2 1 1.00 0.00 0.00 1.00 0.33 0.33
6 ◦—{Spout} o3 3 1 1.00 0.00 0.00 1.00 0.33 0.33

level 1 2 3 T1

U 0.333 0.388 0.333 0.351

Figure 3: Taxonomy T1, in tree form and in dataframe form. This taxonomy scores highest of the
three, its most inclusive level-2 concept grouping together the two objects (o1 and o2) that have
the most features in common.
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T2 level card n SPOUT n FIN n TEETH Hom Incl U

1 {SeaCreature} o1, o2, o3 1 3 2.00 2.00 2.00 0.33 1.00 0.33
2 |—{Spout, Fin, Teeth} o1 2 1 1.00 1.00 1.00 1.00 0.33 0.33
3 | ◦—{Spout, Fin, Teeth} o1 3 1 1.00 1.00 1.00 1.00 0.33 0.33
4 ◦—{ } o2, o3 2 2 1.00 1.00 1.00 0.00 0.67 0.00
5 |—{Fin, Teeth} o2 3 1 0.00 1.00 1.00 1.00 0.33 0.33
6 ◦—{Spout} o3 3 1 1.00 0.00 0.00 1.00 0.33 0.33

level 1 2 3 T2

U 0.333 0.166 0.333 0.277

Figure 4: Taxonomy T2. This taxonomy scores lowest, the objects in the most inclusive level-2
concept (o2 and o3) having no features in common.
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T3 level card n SPOUT n FIN n TEETH Hom Incl U

1 {SeaCreature} o1, o2, o3 1 3 2.00 2.00 2.00 0.33 1.00 0.33
2 |—{Spout} o1, o3 2 2 2.00 1.00 1.00 0.33 0.67 0.22
3 | |—{Spout, Fin, Teeth} o1 3 1 1.00 1.00 1.00 1.00 0.33 0.33
4 | ◦—{Spout} o3 3 1 1.00 0.00 0.00 1.00 0.33 0.33
5 ◦—{Fin, Teeth} o2 2 1 0.00 1.00 1.00 1.00 0.33 0.33
6 ◦—{Fin, Teeth} o2 3 1 0.00 1.00 1.00 1.00 0.33 0.33

level 1 2 3 T3

U 0.333 0.277 0.333 0.314

Figure 5: Taxonomy T3. This taxonomy scores between T1 and T2, the objects in the most inclusive
level-2 concept (o1 and o3) having only one property in common.
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