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Abstract

In this paper, we study three numerical schemes for the McKean-Vlasov equation{
dXt = b(t,Xt, µt) dt+ σ(t,Xt, µt) dBt,

∀ t ∈ [0, T ], µt is the probability distribution of Xt,

where X0 : (Ω,F ,P) → (Rd,B(Rd)) is a known random variable. Under the assumption on the

Lipschitz continuity of the coefficients b and σ, our first result proves the convergence rate of the

particle method with respect to the Wasserstein distance, which extends a previous work [BT97]

established in one dimensional setting. In the second part, we present and analyse two quantization-

based schemes, including the recursive quantization scheme (deterministic scheme) in the Vlasov

setting, and the hybrid particle-quantization scheme (random scheme, inspired by the K-means

clustering). Two examples are simulated at the end of this paper: the Burger’s equation introduced

in [BT97] and the network of FitzHugh-Nagumo neurons (see [BFFT12] and [BFT15]) in dimension

3.

Keywords: McKean-Vlasov equation, Mean-field limits, Numerical analysis and simulation, Optimal

quantization, Particle method, Quantization-based scheme.

1 Introduction

The McKean-Vlasov equation was originally introduced in [McK67] as a stochastic model naturally

associated to a class of non-linear PDEs. Nowadays, it refers to the whole family of stochastic differential

equations whose coefficients not only depend on the position of the process Xt at time t but also depend

on its probability distribution µt. This distribution dependent structure of the McKean-Vlasov equation

is widely used to model phenomenons in Statistical Physics (see e.g. [MA01], [BJR22]), in mathematical

biology (see e.g. [BFFT12], [BFT15]), also in social sciences and in quantitative finance, often motivated

by the development of the Mean-Field games and the interacting diffusion models (see e.g. [LL18], [CL18]

and [CD18]). Besides the original paper [McK67], an excellent reference of the general theory of the

McKean-Vlasov equation and the propagation of chaos is [Szn91]. See also the lecture note [Lac18].

In this paper, we consider a filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual conditions

and an (Ft)−standard Brownian motion (Bt)t≥0 valued in Rq. For a separable Banach space (E, ‖·‖E),

we denote the set of probability distributions on E by P(E) and denote by Pp(E) the set of probability

distributions on E having p-th finite moment, p ≥ 1. The McKean-Vlasov equation writes{
dXt = b(t,Xt, µt) dt+ σ(t,Xt, µt) dBt,

µt is the probability distribution of Xt, t ∈ [0, T ],
(1.1)

∗CEREMADE, CNRS, UMR 7534, Université Paris-Dauphine, PSL University, 75016 Paris, France,
liu@ceremade.dauphine.fr. This paper is the Chapter 7 of the author’s Ph.D. thesis [Liu19].
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where X0 : (Ω,F ,P) →
(
Rd,B(Rd)

)
is a known random variable independent of the Brownian motion

(Bt)t≥0 and b, σ are Borel functions defined on [0, T ]× Rd × P(Rd) having respective values in Rd and

Md,q(R), the space of real matrices with d rows and q columns.

This paper aims to show three implementable numerical methods for the simulation of the McKean-

Vlasov equation (1.1), including the particle method and two quantization-based schemes, accompanied

by a quantitative analysis of the corresponding simulation error.

In the following discussion, the notation Cp1,...,pn means a positive constant depending on parameters

p1, ..., pn, |·|d denotes the Euclidean norm on Rd (we drop the subscript d when there is no ambiguity)

and 〈·|·〉 denotes the Euclidean inner product. We endow Md,q(R) with an operator norm |||·||| defined by

|||A||| := sup|z|q≤1 |Az|d . For a random variable X, we write PX or L(X) for its probability distribution

and write ‖X‖p for its Lp-norm defined by ‖X‖p :=
[
E |X|p

]1/p
, p ≥ 1. Moreover, let Wp denote the

Lp-Wasserstein distance on Pp(Rd), p ≥ 1, defined by

∀µ, ν ∈ Pp(Rd),Wp(µ, ν) :=
(

inf
π∈Π(µ,ν)

∫
Rd×Rd

|x− y|pπ(dx, dy)
) 1
p

= inf
{[

E |X − Y |p
] 1
p

, X, Y : (Ω,F ,P)→ (Rd,B(Rd)) withPX = µ, PY = ν
}
, (1.2)

where in the first line of (1.2), Π(µ, ν) denotes the set of all probability measures on
(
Rd×Rd,B(Rd)⊗2

)
with marginals µ and ν. We denote by δa the Dirac mass at a point a ∈ Rd.

Throughout this paper, we make the following assumption on the coefficients b, σ and on the initial

random variable X0. Remark that the following assumption depends on an index p ∈ [2,+∞).

Assumption I. There exists p ∈ [2,+∞) such that the following conditions (1) and (2) hold.

(1) The initial random variable X0 satisfies ‖X0‖p < +∞.

(2) The coefficient functions b and σ are γ-Hölder continuous in t, γ ∈ (0, 1], and Lipschitz continuous

in x and in µ in the following sense: there exists a constant L > 0 such that

∀ (x, µ) ∈ Rd × Pp(Rd),∀ s, t ∈ [0, T ] with s ≤ t,
|b(t, x, µ)− b(s, x, µ)| ∨ |||σ(t, x, µ)− σ(s, x, µ)||| ≤ L

(
1 + |x|+Wp(µ, δ0)

)
(t− s)γ , (1.3)

and such that

∀ t ∈ [0, T ],∀x, y ∈ Rd and ∀µ, ν ∈ Pp(Rd),
|b(t, x, µ)− b(t, y, ν)| ∨ |||σ(t, x, µ)− σ(t, y, ν)||| ≤ L

(
|x− y|+Wp(µ, ν)

)
. (1.4)

Assumption I is a classical assumption for existence and uniqueness of a strong solution X =

(Xt)t∈[0,T ] to the McKean-Vlasov equation (1.1) (see e.g. [Lac18], [Liu19, Chapter 5]) and the con-

vergence of the Euler scheme of (1.1), defined further in (1.6) (see [LP22, Proposition 2.1]). Besides, in

the Vlasov case, that is, there exist β : [0, T ]× Rd × Rd → Rd and a : [0, T ]× Rd × Rd →Md,q(R) such

that

b(t, x, µ) =

∫
Rd
β(t, x, u)µ(du) and σ(t, x, µ) =

∫
Rd
a(t, x, u)µ(du), (1.5)

a sufficient condition for Assumption I is Assumption IIV (see below), which follows from the Kantorovich-

Rubinstein dual representation of the Wasserstein distance W1:

W1(µ, ν) = sup
{∫

Rd
f(ξ)µ(dξ)−

∫
Rd
f(ξ)ν(dξ)

∣∣∣f Lipschitz continuous with [f ]Lip := sup
x 6=y

|f(x)−f(y)|
|x−y| ≤ 1

}
and follows from the fact that for every p ≥ 1, W1(µ, ν) ≤ Wp(µ, ν) (see e.g. [Edw11] and [Vil09,

Chapter 6]).

Assumption IIV . The functions β and a in (1.5) are γ-Hölder continuous in t, γ ∈ (0, 1], Lipschitz

continuous in (x, u) uniformly with respect to t ∈ [0, T ] in the following sense: there exists a constant
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L > 0 such that

∀x, y ∈ Rd,∀ s, t ∈ [0, T ] with s ≤ t,
|β(t, x, y)− β(s, x, y)| ∨ |||a(t, x, y)− a(s, x, y)||| ≤ L

(
1 + |x|+ |y|

)
(t− s)γ ,

and such that

∀ t ∈ [0, T ],∀x1, x2, y1, y2 ∈ Rd,
|β(t, x1, y1)− β(t, x2, y2)| ∨ |||a(t, x1, y1)− a(t, x2, y2)||| ≤ L

(
|x1 − x2|+ |y1 − y2|

)
.

We then turn to the construction of three numerical schemes, which contains two parts: the temporal

discretization on [0, T ] and the spatial discretization on Rd.

(1) Temporal discretization by theoretical Euler scheme.

We fix M ∈ N∗ and define h = T
M as the time step. Let tm = tMm := m · h, 0 ≤ m ≤ M and let

Zm+1 := 1√
h

(Btm+1
− Btm), 0 ≤ m ≤ M − 1. The random variables Zm, 1 ≤ m ≤ M , have standard

normal distribution N (0, Iq), where Iq denotes the identity matrix of size q × q. The theoretical Euler

scheme of (1.1) is defined as follows,

X̄M
tm+1

= X̄M
tm + h · b(tMm , X̄M

tm , µ̄
M
tm) +

√
hσ(tMm , X̄

M
tm , µ̄

M
tm)Zm+1, X̄M

0 = X0, (1.6)

where for every m ∈ {0, ...,M}, µ̄Mtm denotes the probability distribution of X̄M
tm . We also define the

continuous expansion of (X̄M
t0 , ..., X̄

M
tM ), denoted by (X̄M

t )t∈[0,T ], by the following continuous Euler

scheme

∀m= 0, ...,M−1, ∀ t ∈(tm, tm+1], X̄t := X̄M
tm + (t− tm)b(tMm , X̄

M
tm , µ̄

M
tm) + σ(tMm , X̄

M
tm , µ̄

M
tm)(Bt −Btm)

(1.7)

with the same X̄0 = X0. When there is no ambiguity, we will omit the superscript M in (1.6) and in

(1.7).

Under Assumption I, [LP22, Proposition 2.1] gives the following convergence rate of the theoretical

Euler scheme.

Proposition 1.1. ([LP22, Proposition 2.1]) Assume that Assumption I holds for an index p ∈ [2,+∞).

Let X = (Xt)t∈[0,T ] be the unique strong solution of (1.1) and let X̄M = (X̄M
t )t∈[0,T ] denote the process

defined by the continuous Euler scheme (1.7). Then there exists a constant Cp,d,T,L,γ,‖X0‖p such that∥∥ supt∈[0,T ]

∣∣Xt − X̄M
t

∣∣∥∥
p
≤ Cp,d,T,L,γ,‖X0‖ph

1
2∧γ .

(2) Spatial discretization.

We call (1.6) theoretical Euler scheme since it is not directly implementable, contrary to the Euler

scheme for a standard diffusion dXt = b(t,Xt)dt + σ(t,Xt)dBt. The reason is that the scheme (1.6)

does not directly indicate how to simulate µ̄Mtm in the coefficient functions b and σ. To do this, we need

a further spatial discretization on Rd, a key point of this paper, to construct a discrete approximation

of µ̄Mtm .

(2.1) Particle method. A first way to perform the spatial discretization is called the particle method,

inspired by the propagation of chaos property of the McKean-Vlasov equation (see e.g. [Szn91], [G8̈8],

[Lac18] and [CST22]). In one dimensional setting, the convergence rate of the distribution function and

the density function of the particle method has been established in [BT97]. In this paper, we establish

the convergence rate with respect to the Wasserstein distance, which also holds for a higher dimensional

setting (d ≥ 2).

We consider the same temporal discretization number M and the same time step h as in (1.6). For the

simplicity of notation, we will omit the superscript M in the following discussion. Let X̄1,N
0 , ..., X̄N,N

0 be

i.i.d copies of X0 in (1.1) and let Bn := (Bnt )t∈[0,T ], 1 ≤ n ≤ N, be N independent standard Brownian

motions valued in Rq, independent of the Brownian motion (Bt)t∈[0,T ] in the initial McKean-Vlasov

equation (1.1) and of (X0, X̄
1,N
0 , ..., X̄N,N

0 ). The main idea of the particle method is to construct an
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N -particle system (X̄1,N
tm , ..., X̄N,N

tm )0≤m≤M by computing for every 1 ≤ n ≤ N, 0 ≤ m ≤M − 1,{
X̄n,N
tm+1

= X̄n,N
tm + hb(tm, X̄

n,N
tm , µ̄Ntm) +

√
hσ(tm, X̄

n,N
tm , µ̄Ntm)Znm+1,

µ̄Ntm := 1
N

∑N
n=1 δX̄n,Ntm

, Znm+1 = 1√
h

(Bntm+1
−Bntm)

i.i.d∼ N (0, Iq),
(1.8)

and then to use µ̄Ntm defined in (1.8) as an estimator of µ̄tm in (1.6) at each time step tm, 1 ≤ m ≤M .

Remark that µ̄Ntm in (1.8) is a random probability distribution, that is, it depends on ω ∈ Ω.

Our first main result is the convergence rate of Wp(µ̄
N
tm , µ̄tm) in Lp for every 0 ≤ m ≤ M . Let(

C
(
[0, T ],Rd

)
, ‖·‖sup

)
denote the space of Rd-valued continuous applications defined on [0, T ], equipped

with the uniform norm ‖α‖sup := supt∈[0,T ] |αt|. Let Wp denote the Wasserstein distance on

Pp
(
C
(
[0, T ],Rd

))
:=

®
µ probability distribution on C([0, T ],Rd) s.t.

∫
C([0,T ],Rd)

‖α‖psup µ(dα)<+∞ ,́

(1.9)

which is defined for every µ, ν ∈ Pp
(
C
(
[0, T ],Rd

))
by

Wp(µ, ν) :=
(

inf
π∈Π̄(µ,ν)

∫
C([0,T ],Rd)×C([0,T ],Rd)

‖α− α̃‖sup π(dα, dα̃)
) 1
p

= inf
{[

E ‖X − Y ‖psup

] 1
p

, X, Y : (Ω,F ,P)→
(
C([0, T ],Rd), ‖ · ‖sup

)
with PX = µ, PY = ν

}
, (1.10)

where in the first line of (1.10), Π̄(µ, ν) denotes the set of all probability measures on C
(
[0, T ],Rd

)
×

C
(
[0, T ],Rd

)
(equipped with the Borel σ-algebra generated by ‖ · ‖sup) having marginals µ and ν.

Theorem 1.2. Assume that Assumption I is in force for an index p ∈ [2,+∞). Set M ∈ N∗ and h = T
M

for the temporal discretization. Let (µ̄tm)1≤m≤M , (µ̄Ntm)1≤m≤M be probability distributions respectively

defined by the theoretical Euler scheme (1.6) and the particle method (1.8).

(i) We have ∥∥∥∥∥ sup
0≤m≤M

Wp(µ̄
N
tm , µ̄tm)

∥∥∥∥∥
p

≤ Cd,p,L,T
∥∥Wp(µ̄, ν

N )
∥∥
p
,

where µ̄ is the probability distribution of the process X̄ = (X̄t)t∈[0,T ] defined by (1.7) and νN :=
1
N

∑N
i=1 δY i is the empirical measure on the i.i.d. copies (Y 1, ..., Y N ) of X̄.

(ii) If, in addition, ‖X0‖p+ε < +∞ for some ε > 0, we have the following inequality

∥∥∥∥∥ sup
0≤m≤M

Wp(µ̄
N
tm , µ̄m)

∥∥∥∥∥
p

≤ ‹C ×N− 1
2p +N−

ε
p(p+ε) if p > d/2 and ε 6= p,

N−
1
2p
[

log(1 +N)
] 1
p +N−

ε
p(p+ε) if p = d/2 and ε 6= p,

N−
1
d +N−

ε
p(p+ε) if p ∈ (0, d/2) and p+ ε 6= d

(d−p) ,

where ‹C is a constant depending on p, ε, d, b, σ, L, T and ‖X0‖p+ε.

Theorem 1.2 can be considered as a strong error of the particle method. The weak error, that is, the

upper-bound of |Φ(µ̄tm)− EΦ(µ̄Ntm)| for a function Φ : Pp(Rd)→ Rd with appropriate differentiability,

can be established in the future by applying similar techniques as [CST22]. Moreover, we refer to

[AKH02] and [HL22] for the studies of the density simulation of µ̄tm based on the particle method (1.8).

(2.2) Quantization-based scheme. A second way to implement the spatial discretization is to use

the (optimal) vector quantization, also known as K-means clustering in unsupervised learning.

Consider a probability distribution µ on Rd. The main idea of the vector quantization is to use the

projection of µ on a fixed quantizer (called also quantization grid in the literature) x = (x1, ..., xK) ∈
(Rd)K as an approximation of µ. More specifically, for a fixed quantization level K ∈ N∗, for a quantizer
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x = (x1, ..., xK) satisfying xi 6= xj if i 6= j, this projection, denoted by µ̂ x, is defined by

µ̂ x :=

K∑
k=1

µ
(
Vk(x)

)
· δxk =µ ◦ Proj−1

x (1.11)

where
(
Vk(x)

)
1≤k≤K denotes a Voronöı partition generated by x = (x1, ..., xK), which is a Borel partition

on Rd satisfying

Vk(x) ⊂
{
y ∈ Rd

∣∣ |y − xk| = min
1≤j≤K

|y − xj |
}
, 1 ≤ k ≤ K, (1.12)

(see Figure 1) and where the projection function Projx is defined by

ξ ∈ Rd 7−→ Projx(ξ) :=

K∑
k=1

xk1Vk(x)(ξ) ∈ {x1, ..., xK} (1.13)

based on the chosen Voronöı partition
(
Vk(x)

)
1≤k≤K .(1)

The approximation µ̂ x defined in (1.11) is determinist. Moreover, if µ ∈ Pp(Rd), p ≥ 1, there exists

(at least) an optimal quantizer x∗ = (x∗1, ..., x
∗
K) ∈ (Rd)K in the sense of

Wp(µ, µ̂
x∗

) = inf
{
Wp(µ, ν)

∣∣∣ ν ∈ P(Rd) s.t. the support of ν has at most K points.
}
. (1.14)

The equality (1.14) shows that µ̂ x
∗

is the closest probability measure to µ with respect to the Wasserstein

distance Wp, among all probability distributions having a support of at most K points ([GL00, Lemma

3.4]). Moreover, if µ ∈ Pp+ε(Rd) for some ε > 0, the optimal error Wp(µ, µ̂
x∗

) has the following upper

bound with convergence rate K−1/d (Zador’s Theorem, see e.g. [LP08] and [Pag18, Theorem 5.2])

Wp(µ, µ̂
x∗

) ≤ Cd,p,εMp+ε(µ)K−1/d with Mp+ε(µ) := inf
a∈Rd

ï∫
Rd
|ξ − a|p+εµ(dξ)

ò 1
p+ε

.

In the quadratic setting (p = 2), the optimal quantizer x∗ can be found by several numerical methods

such as Lloyd’s algorithm (see further Algorithm 1 and [Llo82], [Kie82], [PY16]) or the CLVQ algorithm

(see e.g. [Pag15, Section 3.2]). Figure 2 is an illustration of the quadratic optimal quantization at level

K = 60 for the standard normal distribution µ = N (0, I2), where the blue points represent an optimal

quantizer and the colour in red represents the weight µ(Vk(x)) of each Voronöı cell (the darker the

heavier).

Figure 1: A Voronoi partition. Figure 2: The quadratic optimal quantization for
the standard normal distribution N (0, I2).

In the framework of unsupervised learning with unlabeled dataset {ξ1, ..., ξn} ⊂ Rd, the K-means

1The Voronöı partition
(
Vk(x)

)
1≤k≤K generated by a fixed quantizer x = (x1, ..., xK) is not unique since we can place

points on the hyperplane Hi,j := {ξ ∈ Rd | |xi − ξ| = |xj − ξ|} in either the Voronöı cell Vi(x) or Vj(x). However, the
choice of the Voronöı partition does not impact on the quantization error of the quantizer x (see further discussion in
(3.1)-(3.2)).
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clustering is to compute the (quadratic) optimal quantizer of the empirical measure ν = 1
n

∑n
i=1 δξi on

the dataset.

In this paper, we proposed the following two quantization-based schemes for the simulation of the

McKean-Vlasov equation (2):

(a) Recursive quantization scheme in the Vlasov setting (1.5),

(b) Hybrid particle-quantization scheme.

Different from the particle method, the recursive quantization scheme is deterministic, that is, the

simulation result does not depend on ω ∈ Ω.

(a) Recursive quantization scheme. The most natural idea of applying optimal quantization to

the simulation of the McKean-Vlasov equation is to replace X̄tm and µ̄tm in (1.6) by their respective

quantized projection. More precisely, we consider a quantizer sequence for each time step tm

x(m) = (x
(m)
1 , ..., x

(m)
K ) ∈ (Rd)K , 0 ≤ m ≤M (1.15)

and define the quantized random variable “Xtm and its probability distribution µ̂tm by
‹X0 = X0, “X0 = Projx(0)(‹X0), µ̂0 = P

X̂0
,‹Xtm+1

= “Xtm + h · b(tm, “Xtm , µ̂tm) +
√
hσ(tm, “Xtm , µ̂tm)Zm+1,“Xtm+1 = Projx(m+1)(‹Xtm+1), µ̂tm+1 = P
X̂tm+1

, m = 0, ...,M − 1.

(1.16)

In (1.16), at each time step tm, we add a quantization procedure for ‹Xtm , µ̃tm = L(‹Xtm) and inject

their quantization projection “Xtm = Projx(m)(‹Xtm) as well as µ̂tm = L(“Xtm) = µ̃tm ◦ Proj−1
x(m) into the

time step tm+1. This scheme (1.16) is not directly implementable because of µ̂tm for the same reason

as the theoretical Euler scheme (1.6), so we call (1.16) theoretical quantization-based scheme. However,

in the Vlasov setting (1.5), we can circumvent this issue by using the recursive quantization method,

which is firstly introduced in [PS15] for the diffusion equation dXt = b(t,Xt)dt+ σ(t,Xt)dBt.

The main idea of the recursive quantization method is to construct the Markovian transitions of

(“Xtm , µ̂tm) based on (1.16). To be more specific, for each time step tm, by considering Voronöı partitions

(Vk(x(m)))1≤k≤K generated by x(m), 0 ≤ m ≤M, and by applying (1.11), we can rewrite µ̂tm in (1.16)

as follow

µ̂tm =

K∑
k=1

p
(m)
k δ

x
(m)
k

(1.17)

where p
(m)
k = µ̃tm

(
Vk(x(m))

)
= P(‹Xtm ∈ Vk(x(m))) = P(“Xtm = x

(m)
k ), 1 ≤ k ≤ K. The expression (1.17)

shows that for every m ∈ {0, ...,M}, the quantized distribution µ̂tm is determined by the quantizer

x(m) = (x
(m)
1 , ..., x

(m)
K ) and its weight vector p(m) = (p

(m)
1 , ..., p

(m)
K ). In the Vlasov setting (1.5), the

transition step of (1.16), with respect to µ̂tm in (1.17), writes‹Xtm+1 = “Xtm + h

K∑
k=1

p
(m)
k β(tm, “Xtm , x

(m)
k ) +

√
h

K∑
k=1

p
(m)
k a(tm, “Xtm , x

(m)
k )Zm+1.

Consequently, given “Xtm and p(m), the transition probability is

P
(“Xtm+1

= x
(m+1)
j | “Xtm = x

(m)
i , p(m)

)
(1.18)

= P
[(
x

(m)
i + h

K∑
k=1

p
(m)
k β(tm, x

(m)
i , x

(m)
k ) +

√
h

K∑
k=1

p
(m)
k a(tm, x

(m)
i , x

(m)
k )Zm+1

)
∈ Vj(x(m+1))

]
2This idea of applying optimal quantization to simulate the McKean-Vlasov equation was firstly introduced in

[GPPP05][Section 4] in a different framework. Besides, another quantization-based scheme is proposed in [Liu19, Sec-
tion 7.4], called doubly quantized scheme, in which we implement the quantized Gaussian random variables instead of
(Zm)1≤m≤M in (1.6).
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so that given p(m), we can compute p
(m+1)
j = P(“Xtm+1 = x

(m+1)
j ), 1 ≤ j ≤ K, by

p
(m+1)
j = P

(“Xtm+1 = x
(m+1)
j

∣∣ p(m)
)

=

K∑
i=1

P
(“Xtm+1

= x
(m+1)
j | “Xtm = x

(m)
i , p(m)

)
· p(m)
i . (1.19)

A detailed proof of the above equalities is provided in Section 3.2, where we also explain how to combine

this recursive quantization method with Lloyd’s algorithm to optimally compute the quantizer x(m) at

each time step. The following theorem, whose proof is in Section 3.1, shows the error analysis of the

quantization based scheme (1.16).

Theorem 1.3 (Error analysis of the quantization-based scheme). Assume that Assumption I is sat-

isfied with p = 2. Set M ∈ N∗ and h = T
M for the temporal discretization. Let (X̄tm)0≤m≤M

be random variables defined by the Euler scheme (1.6). Consider a fixed K-level quantizer sequence

x(m) = (x
(m)
1 , ..., x

(m)
K ), 0 ≤ m ≤ M and define (‹Xtm)0≤m≤M , (“Xtm)0≤m≤M by the quantization-based

scheme (1.16).

(1) For every m ∈ {1, ...,M}, we have

∥∥∥X̄tm − “Xtm

∥∥∥
2
≤

m∑
j=0

[
1 + 2Lh(1 + Lh+ Lq)

]j · Ξm−j , (1.20)

where for every j ∈ {0, ...,m}, Ξj denotes the quadratic quantization error of the j-th step, that is,

Ξj =
∥∥‹Xtj − “Xtj

∥∥
2
.

(2) If moreover, there exists ε > 0 such that ‖X0‖2+ε < +∞ and if for every 0 ≤ m ≤ M , x(m) is a

quadratic optimal quantizer of ‹Xtm , we have

∥∥∥X̄tm − “Xtm

∥∥∥
2
≤ Cb,σ,L,T,d,ε,q,‖X0‖2+ε ·K

−1/d
( m∑
j=0

[
1 + 2Lh(1 + Lh+ Lq)

]j)
. (1.21)

(b) Hybrid particle-quantization scheme. Another way to simulate the McKean-Vlasov equation

is to apply the optimal quantization method to the particle system (1.8) and subsequently devise the fol-

lowing hybrid particle-quantization scheme. Consider the same initial random variables X̄1,N
0 , ..., X̄N,N

0

and the same Brownian motions Bn, 1 ≤ n ≤ N as (1.8) and define
‹Xn,N
tm+1

= ‹Xn,N
tm + h · b(tm, ‹Xn,N

tm , µ̂Ktm) +
√
hσ(tm, ‹Xn,N

tm , µ̂Ktm)Znm+1, 1 ≤ n ≤ N,
µ̂Ktm =

(
1
N

∑N
n=1 δX̃n,Ntm

)
◦ Proj−1

x(m) =
∑K
k=1

[
δ
x
(m)
k

·
∑N
n=1 1Vk(x(m))(‹Xn,N

tm )
]
,‹Xn,N

t0 = X̄n,N
0

i.i.d∼ X0, Znm = 1√
h

(Bntm+1
−Bntm)

i.i.d∼ N (0, Iq).

(1.22)

This scheme adds a quantization step of the empirical measure 1
N

∑N
i=1 δX̃n,Ntm

at time tm and injects

the quantized measure µ̂Ktm as an input to the simulation for ‹Xn,N
tm+1

. This scheme is inspired by the

consistency of the optimal quantization established in [LP20]. Namely, we can envisage that an optimal

quantizer of the particle system at time tm is quasi -optimal for the measure µ̄tm of (1.6), as a consequence

of the convergence of the particle method obtained in Theorem 1.2.

The error analysis of the hybrid scheme (1.22) is established in the following proposition.

Proposition 1.4. Set the same temporal discretization as Theorem 1.2 and Theorem 1.3. Assume that

Assumption I holds true with p = 2. For any m ∈ {1, ...,M}, let µ̄Ntm be the empirical measure on the

particles (X̄0,N
tm , ..., X̄N,N

tm ), defined by the particle system (1.8) and let µ̂Ktm be the quantized measure

defined in (1.22). Then,

∀ 1 ≤ m ≤M, E
[
W2

(
µ̂Ktm , µ̄

N
tm

)]
≤ C2

m−1∑
j=0

Cj1

√
E Ξ̂2

m−1−j + E Ξ̂m. (1.23)
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where Ξ̂m = W2

(
µ̂Ktm ,

1
N

∑N
i=1 δX̃n,Ntm

)
denotes the quadratic quantization error at time tm and C1, C2

are positive constants depending on L, q and T .

Remark 1.5. We would like to highlight that the upper-bounds in (1.20), (1.21) and (1.23) are not

numerically optimal since the two sums
∑M
j=0

[
1+2Lh(1+Lh+Lq)

]j
and

∑M−1
j=0 Cj1

»
E Ξ̂2

m−1−j at the

right hand side converge to infinity as the temporal discretization number M → +∞. These are common

error bounds when dealing with Markovian quantization based scheme (see e.g. [PS15]). However, we

do not observe on numerical experiments (see further Section 4) a large simulation error, even when we

consider a large values of M .

This paper is organised as follows.

In Section 2, we prove Theorem 1.2, the convergence rate of the particle method. The proof shares

the same idea of the well-known propagation of chaos (see e.g. [Lac18, Theorem 3.3]). We compare

the particle system (1.8) with another particle system without interaction, that is, a system composed

by N i.i.d. Itô processes (Y 1
t , ..., Y

N
t )t∈[0,T ] simulated by the continuous Euler scheme (1.7). Then the

error of the particle method can be bounded by, up to a constant multiplier, the Wasserstein distance

between the probability measure of X̄ defined by (1.7) and its empirical measure defined on its i.i.d.

copies (Y 1, ..., Y N ).

Section 3 is devoted to the quantization-based schemes (1.16), (1.18) and (1.22) and their error

analyses. We first give a review of the optimal quantization method in Subsection 3.1 and prove

Theorem 1.3, the L2-error analysis of the theoretical Euler scheme (1.16). Then in Subsection 3.2, we

show how to obtain the transition probability (1.18) for the recursive quantization scheme in the Vlasov

setting, as well as the integration of Lloyd’s algorithm. Finally, Subsection 3.3 contains the proof of

Proposition 1.4, the L2-error analysis of the hybrid particle-quantization scheme (1.22).

In Section 4, we illustrate two simulation examples by using the above numerical methods. The first

simulation is for a one-dimensional Burgers equation, introduced in [Szn91] and [BT97]. This equation

has a closed form solution so we can compute and compare the accuracy of different methods. The

second example is a 3-dimensional model, the network of FitzHugh-Nagumo neurons, firstly introduced

and simulated in [BFFT12] (see also some corrections in [BFT15]) and also simulated in [dRES22].

Finally, for the reader’s convenience, all numerical methods presented in this paper and their con-

nection are displayed in Appendix B-Figure 18, in which we also briefly mention their convergence

rates.

Remark 1.6. (Comments on the particle method and on the hybrid particle-quantization scheme) In

many research areas and applications related to the McKean-Vlasov equation such as mean field games

(see e.g. [CD18]) and opinion dynamics (see e.g. [HK02]), the main research target is an N -particle

system (X1,N
t , ..., XN,N

t )t∈[0,T ] satisfying (X1,N
0 , ..., XN,N

0 )
i.i.d.∼ X0 and{

dXn,N
t = b(t,Xn,N

t , µNt )dt+ σ(t,Xn,N
t , µNt )dBnt , 1 ≤ n ≤ N,

∀ t ∈ [0, T ], µNt = 1
N

∑N
n=1 δXn,Nt

.
(1.24)

The McKean-Vlasov equation (1.1) is considered as a limit equation of such particle system (1.24) when

N → +∞, often appeared in the propagation of chaos theory in the literature. The particle method

(1.8) in this paper can be considered as a temporal discretization of (1.24). Furthermore, from a point

of view of unsupervised learning, the hybrid particle-quantization scheme (1.22) is essentially adding

a K-means clustering step of the particle method, which can be computed by e.g. Python package

sklearn.cluster.KMeans in practice. This adding step could be itself heuristic for the modelling since

K-means clustering is usually used for feature extraction in unsupervised learning. For example, we can

think the K-means cluster centers model some representative particles of the system. In Section 4.2, we

show by numerical experiments that the hybrid particle-quantization scheme reduces the data volume

while keeping a kind of stability on the mean and variance of the test function value.
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2 Particle method and its convergence rate

In this section, we study the convergence of the particle method and prove Theorem 1.2 in three

steps.

• Step 1 (Subsection 2.1): We state the space of stochastic processes where live the strong solution

X = (Xt)t∈[0,T ] of the McKean-Vlasov equation (1.1) and the process X̄ = (X̄t)t∈[0,T ] defined by

the continuous Euler scheme (1.7). We also define the space of probability distributions and the

space of marginal distributions of these two processes X = (Xt)t∈[0,T ], X̄ = (X̄t)t∈[0,T ].

• Step 2 (Subsection 2.2): The system (X̄1,N
tm , ..., X̄N,N

tm )0≤m≤M defined by (1.8) can be considered

as a particle system with interaction through µ̄Ntm = 1
N

∑N
n=1 δX̄n,Ntm

at each time tm, 0 ≤ m ≤M .

We define another particle system (Y 1
t , ..., Y

N
t )t∈[0,T ] without interaction, that is, Y n, 1 ≤ n ≤ N

are i.i.d. Itô processes with the same distribution as X̄ = (X̄t)t∈[0,T ] defined by (1.7).

• Step 3 (Subsection 2.3): We compare these two particle systems and prove Theorem 1.2.

2.1 Spaces of stochastic processes and their probability distributions

Recall that
(
C
(
[0, T ],Rd

)
, ‖·‖sup

)
denotes the space of Rd-valued continuous applications defined on

[0, T ] and valued in Rd, equipped with the uniform norm ‖α‖sup := supt∈[0,T ] |αt|. Let

LpC([0,T ],Rd)

(
Ω,F , (Ft)t≥0,P

)
:=
{
Y = (Yt)t∈[0,T ] : (Ω,F , (Ft)t≥0,P)→ C

(
[0, T ],Rd

)
such that

Y is (Ft)-adapted and ‖Y ‖p :=
[
E ‖Y ‖psup

]1/p
< +∞

}
. (2.1)

For any random variable Y ∈ LpC([0,T ],Rd)

(
Ω,F , (Ft)t≥0,P

)
, its probability distribution PY naturally

lies in Pp
(
C([0, T ],Rd)

)
defined by (1.9). Moreover, the space Pp

(
C([0, T ],Rd)

)
equipped with the

Wasserstein distance Wp defined by (1.10) is complete and separable since
(
C([0, T ],Rd), ‖·‖sup

)
is a

Polish space (see [Bol08]).

Lemma 2.1. ([LP22, Proposition 2.1]) Assume that Assumption I holds for an index p ∈ [2,+∞).

Then the unique solution X = (Xt)t∈[0,T ] of (1.1) and the process X̄M = (X̄M
t )t∈[0,T ] defined by the

continuous Euler scheme (1.7) satisfy the following inequality

∀M ≥ 1,
∥∥∥ sup
t∈[0,T ]

|Xt|
∥∥∥
p
∨
∥∥∥ sup
t∈[0,T ]

∣∣X̄M
t

∣∣ ∥∥∥
p
≤ Cp,d,b,σ,T,L

(
1 + ‖X0‖p

)
, (2.2)

where Cp,d,b,σ,T,L is a constant depending on p, d, b, σ, T, L. Hence, X, X̄ ∈ LpC([0,T ],Rd)

(
Ω,F , (Ft)t≥0,P

)
and their respective probability distributions µ = P ◦X−1 and µ̄ = P ◦ X̄−1 lie in Pp

(
C([0, T ],Rd)

)
.

Let us consider now

C
(
[0, T ],Pp(Rd)

)
:=
{

(µt)t∈[0,T ] s.t. t 7→ µt is a continuous application from [0, T ] to
(
Pp(Rd),Wp

)}
equipped with the distance

dC
(
(µt)t∈[0,T ], (νt)t∈[0,T ]

)
:= sup

t∈[0,T ]

Wp(µt, νt). (2.3)

As
(
Pp(Rd),Wp

)
is a complete space (see [Bol08]), the space C

(
[0, T ],Pp(Rd)

)
equipped with the uniform

distance dC is also complete. For any t ∈ [0, T ], we define πt : C([0, T ],Rd) → Rd by α 7→ πt(α) = αt
and define an application ι : Pp

(
C([0, T ],Rd)

)
→ C

(
[0, T ],Pp(Rd)

)
by

µ 7→ ι(µ) = (µ ◦ π−1
t )t∈[0,T ] = (µt)t∈[0,T ] (2.4)

The well-posedness of the application ι has been proved in [Liu19, Lemma 5.1.2], which also implies

that the marginal distributions of processes X and X̄ lie in the space C
(
[0, T ],Pp(Rd)

)
.
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Lemma 2.2. Let (µt)t∈[0,T ] and (µ̄t)t∈[0,T ] be respective marginal distributions of the unique solution X

of (1.1) and the process X̄ defined by the continuous Euler scheme (1.7). Then (µt)t∈[0,T ], (µ̄t)t∈[0,T ] ∈
C
(
[0, T ],Pp(Rd)

)
.

In [Lac18], the author defines an application Wp,t, called “truncated Wasserstein distance”, on

Pp
(
C([0, T ],Rd)

)
× Pp

(
C([0, T ],Rd)

)
by

∀µ, ν ∈ Pp
(
C([0, T ],Rd)

)
, Wp,t(µ, ν) :=

[
inf

π∈Π̄(µ,ν)

∫
C([0,T ],Rd)×C([0,T ],Rd)

sup
s∈[0,t]

|xs − ys|p π(dx, dy)
] 1
p

, (2.5)

where Π̄(µ, ν) is the same set as in (1.10). The following Lemma, whose proof is postponed to Appendix

A, shows the relation between Wp,t(µ, ν) and sups∈[0,t]Wp(µs, νs).

Lemma 2.3. For every µ, ν ∈ Pp
(
C([0, T ],Rd)

)
, we have, for every t ∈ [0, T ],

sup
s∈[0,t]

Wp(µs, νs) ≤Wp,t(µ, ν),

where µs = µ ◦ π−1
s . In particular, for every µ, ν ∈ Pp

(
C([0, T ],Rd)

)
, dC(ι(µ), ι(ν)) ≤Wp(µ, ν). Hence

the application ι defined in (2.4) is 1-Lipschitz continuous.

2.2 Definition of the particle systems with and without interaction

We define the continuous expansion (X1,N
t , ..., XN,N

t )t∈[0,T ] of the particle system (1.8) as follows :

set X̄ n,N
0 , 1 ≤ n ≤ N i.i.d.∼ X0; for any n ∈ {1, ..., N} and for any t ∈ (tm, tm+1], set

X̄ n,N
t = X̄ n,N

tm + (t− tm)b
(
tm, X̄

n,N
tm , µ̄Ntm

)
+ σ

(
tm, X̄

n,N
tm , µ̄Ntm

)
(Bnt −Bntm) with µ̄Ntm :=

1

N

N∑
n=1

δX̄n,Ntm

.

(2.6)

For every t ∈ [tm, tm+1), we define t = tm. Then, the continuous expansion (X1,N
t , ..., XN,N

t )t∈[0,T ] are

solutions to the following equations with initial random variable X̄ n,N
0 , 1 ≤ n ≤ N,

X̄ n,N
t = X̄ n,N

0 +

∫ t

0

b(u, X̄ n,N
u , µ̄Nu )du+

∫ t

0

σ(u, X̄ n,N
u , µ̄Nu )dBnt , 1≤n≤N, with µ̄Nt :=

1

N

N∑
n=1

δX̄ n,N
t

.

(2.7)

Lemma 2.4. Suppose that Assumption I holds for some p ∈ [2,+∞).

(a) The coefficients b and σ have a linear growth in the sense that there exists a constant Cb,σ,L,T
depending on b, σ, L and T such that

∀ t ∈ [0, T ],∀x ∈ Rd,∀µ ∈ Pp(Rd), |b(t, x, µ)| ∨ |||σ(t, x, µ)||| ≤ Cb,σ,L,T (1 + |x|+Wp(µ, δ0)). (2.8)

(b) Let (X̄1,N
t , ..., X̄N,N

t )t∈[0,T ] be processes defined by (2.6). Then for a fixed temporal discretization

number M ∈ N∗, we have

∀n ∈ {1, ..., N},
∥∥∥ sup
t∈[0,T ]

∣∣X̄n,N
t

∣∣ ∥∥∥
p
< +∞. (2.9)

The proof of Lemma 2.4 is postponed to Appendix A. The system (X̄1,N
t , ..., X̄N,N

t )t∈[0,T ] defined by

(2.6) can be considered as a particle system having interaction through µ̄Ntm= 1
N

∑N
n=1δX̄n,Ntm

, 0 ≤m ≤M .

Now we define another particle system (Y 1
t , ..., Y

N
t )t∈[0,T ] without interaction, which are essentially i.i.d.

processes of X̄ = (X̄t)t∈[0,T ] defined by the continuous Euler scheme (1.7). Based on the same Brownian

motions Bn, n = 1, ..., N as in (2.6), these processes Y n = (Y nt )t∈[0,T ], 1 ≤ n ≤ N, are defined by the

following equations

∀n = 1, ..., N, ∀m = 0, ...,M − 1, ∀ t ∈ (tm, tm+1]

10



Y nt = Y ntm + (t− tm)b(tm, Y
n
tm , µ̄tm) + σ(tm, Y

n
tm , µ̄tm)(Bnt −Bntm), Y n0 = X̄n,N

0 (2.10)

where for every t ∈ [0, T ], µ̄t in (2.10) is the marginal distribution at time t of the process X̄ = (X̄t)t∈[0,T ]

defined by (1.7). By using the same notation t as in (2.7), for every n = 1, ..., N , (Y nt )t∈[0,T ] defined by

(2.10) is the solution of

Y nt = Y n0 +

∫ t

0

b(u, Yu, µ̄u)du+

∫ t

0

σ(u, Yu, µ̄u)dBnu with Y n0 = X̄n,N
0 .

Moreover, it is obvious that the processes Y n, 1 ≤ n ≤ N, are i.i.d copies of X̄ and then

νN,ω :=
1

N

N∑
n=1

δY n(ω), ω ∈ Ω (2.11)

is the empirical measure of µ̄ = P ◦ X̄−1. When there is no ambiguity, we will write νN instead of

νN,ω. The random measure νN,ω is valued in Pp
(
C([0, T ],Rd)

)
. In fact, for every ω ∈ Ω, Y n(ω) lies in

C([0, T ],Rd) so that ‖Y n(ω)‖sup < +∞. Hence, for every ω ∈ Ω,

∫
C([0,T ],Rd)

‖ξ‖psup ν
N,ω(dξ) =

1

N

N∑
n=1

‖Y n(ω)‖psup < +∞.

As before, we write νN,ωt := νN,ω◦π−1
t = 1

N

∑N
n=1 δY nt (ω). Thus, ι(νN,ω) = (νN,ωt )t∈[0,T ] ∈ C

(
[0, T ],Pp(Rd)

)
.

2.3 Proof of Theorem 1.2

The proof of Theorem 1.2 relies on a variant version of Gronwall’s Lemma (see e.g. [Pag18, Lemma

7.3] for the proof) and the following Theorem 2.6 from [FG15], which shows a non-asymptotic upper

bound of the convergence rate in the Wasserstein distance of the empirical measures.

Lemma 2.5 (“À la Gronwall” Lemma). Let f : [0, T ] → R+ be a Borel, locally bounded, non-negative

and non-decreasing function and let ψ : [0, T ]→ R+ be a non-negative non-decreasing function satisfying

∀t ∈ [0, T ], f(t) ≤ A
∫ t

0

f(s)ds+B

Ç∫ t

0

f2(s)ds

å 1
2

+ ψ(t),

where A,B are two positive real constants. Then, for any t ∈ [0, T ], f(t) ≤ 2e(2A+B2)tψ(t).

Theorem 2.6. ([FG15, Theorem 1]) Let p > 0 and let µ ∈ Pq(Rd) for some q > p. Let U1(ω), ..., Un(ω), ...

be i.i.d random variables with distribution µ. Let µωn denote the empirical measure of µ defined by

µωn :=
1

n

n∑
i=1

δUi(ω).

Then, there exists a real constant C only depending on p, d, q such that, for all n ≥ 1,

E
(
Wp
p (µωn , µ)

)
≤ CMp/q

q (µ)×


n−1/2 + n−(q−p)/q if p > d/2 and q 6= 2p

n−1/2 log(1 + n) + n−(q−p)/q if p = d/2 and q 6= 2p

n−p/d + n−(q−p)/q if p ∈ (0, d/2) and q 6= d/(d− p)
,

where Mq(µ) :=
∫
Rd |ξ|

q
µ(dξ).

In particular, Theorem 2.6 implies that for p ≥ 2,

∥∥Wp(µ
ω
n , µ)

∥∥
p
≤ CM1/q

q (µ)×


n−1/2p + n−(q−p)/qp if p > d/2 and q 6= 2p

n−1/2p
(

log(1 + n)
)1/p

+ n−(q−p)/qp if p = d/2 and q 6= 2p

n−1/d + n−(q−p)/qp if p ∈ (0, d/2) and q 6= d/(d− p)
. (2.12)
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Moreover, we need the following Lemma, whose proof is postponed to Appendix A, for the proof of

Theorem 1.2.

Lemma 2.7. Assume that Assumption I holds for an index p ∈ [2,+∞). Then the coefficients b and σ

satisfy the following inequalities

∀
(
X, (µt)t∈[0,T ]

)
,
(
Y, (νt)t∈[0,T ]

)
∈ LpC([0,T ],Rd)

(
Ω,F , (Ft)t≥0,P

)
× C

(
[0, T ],Pp(Rd)

)
, ∀t ∈ [0, T ]∥∥∥∥∥ sup

s∈[0,t]

∣∣∣∣∫ s

0

[
b(u,Xu, µu)− b(u, Yu, νu)

]
du

∣∣∣∣
∥∥∥∥∥
p

≤ L
∫ t

0

[
‖Xu − Yu‖p + ‖Wp(µu, νu)‖p

]
du, (2.13)∥∥∥∥∥ sup

s∈[0,t]

∣∣∣∣∫ s

0

[
σ(u,Xu, µu)− σ(u, Yu, νu)

]
dBu

∣∣∣∣
∥∥∥∥∥
p

≤ Cd,p,L
{∫ t

0

[
‖Xu − Yu‖2p + ‖Wp(µu, νu)‖2p

]
du
} 1

2

,

where Cd,p,L is a constant depending on d, p, L.

Proof of Theorem 1.2. (a) For every n ∈ {1, ..., N}, we have

∣∣∣Y nt − X̄ n,N
t

∣∣∣ =

∣∣∣∣∣
∫ t

0

[
b(u, Y nu , µ̄u)− b(u, X̄ n,N

u , µ̄Nu )
]
du+

∫ t

0

[
σ(u, Y nu , µ̄u)− σ(u, X̄ n,N

u , µ̄Nu )
]
dBu

∣∣∣∣∣ .
Hence,∥∥∥∥∥ sup
s∈[0,t]

∣∣Y ns − X̄n,N
s

∣∣∥∥∥∥∥
p

=

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
b(u, Y nu , µ̄u)− b(u, X̄ n,N

u , µ̄Nu )
]
du+

∫ s

0

[
σ(u, Y nu , µ̄u)− σ(u, X̄ n,N

u , µ̄Nu )
]
dBu

∣∣∣∣
∥∥∥∥∥
p

≤
∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
b(u, Y nu , µ̄u)− b(u, X̄ n,N

u , µ̄Nu )
]
du

∣∣∣∣+ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
σ(u, Y nu , µ̄u)− σ(u, X̄ n,N

u , µ̄Nu )
]
dBu

∣∣∣∣
∥∥∥∥∥
p

≤
∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
b(u, Y nu , µ̄u)− b(u, X̄ n,N

u , µ̄Nu )
]
du

∣∣∣∣
∥∥∥∥∥
p

+

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
σ(u, Y nu , µ̄u)− σ(u, X̄ n,N

u , µ̄Nu )
]
dBu

∣∣∣∣
∥∥∥∥∥
p

(by the Minkowski inequality)

≤ L
∫ t

0

[ ∥∥∥Y nu − X̄ n,N
u

∥∥∥
p

+
∥∥∥Wp(µ̄u, µ̄

N
u )
∥∥∥
p

]
du

+ Cd,p,L

[ ∫ t

0

[ ∥∥∥Y nu − X̄ n,N
u

∥∥∥2

p
+
∥∥∥Wp(µ̄u, µ̄

N
u )
∥∥∥2

p

]
du
] 1

2 (
by Lemma 2.7

)
≤ L

∫ t

0

∥∥∥ sup
v∈[0,u]

∣∣Y nv − X̄ n,N
v

∣∣ ∥∥∥
p
du+ Cd,p,L

[ ∫ t

0

∥∥∥ sup
v∈[0,u]

∣∣Y nv − X̄ n,N
v

∣∣ ∥∥∥2

p
du
] 1

2

+ ψ(t),

where

ψ(t) = L

∫ t

0

∥∥∥Wp(µ̄u, µ̄
N
u )
∥∥∥
p
du+ Cd,p,L

[ ∫ t

0

∥∥∥Wp(µ̄u, µ̄
N
u )
∥∥∥2

p
du
] 1

2

, (2.14)

owing to
√
a+ b ≤

√
a+
√
b for any a ≥ 0, b ≥ 0. Then by Lemma 2.5, we have∥∥∥ sup

s∈[0,t]

∣∣Y ns − X̄n,N
s

∣∣ ∥∥∥
p
≤ 2 e(2L+C2

d,p,L) tψ(t).

Here we can apply Lemma 2.5 since Lemma 2.1 and Lemma 2.4-(b) imply

Y n, X̄n,N ∈ LpC([0,T ],Rd)

(
Ω,F , (Ft)t≥0,P

)
, n = 1, ..., N

as Y n, n = 1, ..., N
i.i.d.∼ X̄, thus the process Y n − X̄n,N is also in LpC([0,T ],Rd)

(
Ω,F , (Ft)t≥0,P

)
for every

12



n = 1, ..., N .

Moreover, the empirical measure 1
N

∑N
n=1 δ(X̄ n,N ,Y n) is a coupling of the random measures µ̄N and

νN . Thus

EWp
p,t(µ̄

N , νN ) = E
[

inf
π∈Π̄(µ̄N ,νN )

∫
C([0,T ],Rd)×C([0,T ],Rd)

sup
s∈[0,t]

|xs − ys|p π(dx, dy)
]

≤ E
[ ∫
C([0,T ],Rd)×C([0,T ],Rd)

sup
s∈[0,t]

|xs − ys|p
1

N

N∑
n=1

δ(X̄ n,N ,Y n)(dx, dy)
]

= E
[ 1

N

N∑
n=1

sup
s∈[0,t]

∣∣X̄n,N
s − Y ns

∣∣p ] =
1

N

N∑
n=1

∥∥∥ sup
s∈[0,t]

∣∣X̄n,N
s − Y ns

∣∣ ∥∥∥p
p

≤
[
2 e(2L+C2

d,p,L) tψ(t)
]p
≤
[
2 e(2L+C2

d,p,L)Tψ(t)
]p
.

Lemma 2.3 implies sups∈[0,t]Wp
p (µ̄Ns , ν

N
s ) ≤Wp

p,t(µ̄
N , νN ). Hence,∥∥∥ sup

s∈[0,t]

Wp(µ̄
N
s , ν

N
s )
∥∥∥
p
≤ Cd,p,L,Tψ(t) (2.15)

with Cd,p,L,T = 2 e(2L+C2
d,p,L)T . It follows that,∥∥∥ sup

s∈[0,t]

Wp(µ̄
N
s , µ̄s)

∥∥∥
p
≤
∥∥∥ sup
s∈[0,t]

[
Wp(µ̄

N
s , ν

N
s ) +Wp(ν

N
s , µ̄s)

]∥∥∥
p

≤
∥∥∥ sup
s∈[0,t]

Wp(µ̄
N
s , ν

N
s )
∥∥∥
p

+
∥∥∥ sup
s∈[0,t]

Wp(ν
N
s , µ̄s)

∥∥∥
p

≤ Cd,p,L,Tψ(t) +
∥∥∥ sup
s∈[0,t]

Wp(ν
N
s , µ̄s)

∥∥∥
p

(by applying (2.15))

≤
∥∥∥ sup
s∈[0,t]

Wp(ν
N
s , µ̄s)

∥∥∥
p

+ Cd,p,L,T · L
∫ t

0

∥∥∥Wp(µ̄u, µ̄
N
u )
∥∥∥
p
du+ Cd,p,L,T · Cd,p,L

[ ∫ t

0

∥∥∥Wp(µ̄u, µ̄
N
u )
∥∥∥2

p
du
] 1

2

(by the defintion of ψ(t) in (2.14))

≤
∥∥∥ sup
s∈[0,t]

Wp(ν
N
s , µ̄s)

∥∥∥
p

+ Cd,p,L,T · L
∫ t

0

∥∥∥ sup
v∈[0,u]

Wp(µ̄v, µ̄
N
v )
∥∥∥
p
du

+ Cd,p,L,T · Cd,p,L
[ ∫ t

0

∥∥∥ sup
v∈[0,u]

Wp(µ̄v, µ̄
N
v )
∥∥∥2

p
du
] 1

2

.

Then, by Lemma 2.5, we obtain∥∥∥ sup
s∈[0,t]

Wp(µ̄
N
s , µ̄s)

∥∥∥
p
≤ 2e(2A+B2)T

∥∥∥ sup
s∈[0,t]

Wp(µ̄s, ν
N
s )
∥∥∥
p
, (2.16)

where A = Cd,p,L,TL and B = Cd,p,L,T · Cd,p,L. Finally,∥∥∥ sup
0≤m≤M

Wp(µ̄
N
tm , µ̄m)

∥∥∥
p
≤ 2e(2A+B2)T

∥∥∥ sup
s∈[0,T ]

Wp(µ̄s, ν
N
s )
∥∥∥
p

≤ 2e(2A+B2)T
∥∥Wp(µ̄, ν

N )
∥∥
p
−→ 0 as N → +∞,

where the second inequality above follows from Lemma 2.3. For the convergence of
∥∥Wp(µ̄, ν

N )
∥∥
p
→ 0

as N → +∞, we refer to [Lac18, Corollary 2.14] among many other references.

(b) If ‖X0‖p+ε < +∞ for some ε > 0, the Assumption I holds with index p + ε since for every

µ, ν ∈ Pp(Rd), Wp(µ, ν) ≤ Wp+ε(µ, ν). Then, the inequality (2.2) implies∥∥X̄∥∥
p+ε

=
∥∥∥ sup
u∈[0,T ]

∣∣X̄u

∣∣ ∥∥∥
p+ε
≤ Cp,d,b,σ,T,L

(
1 + ‖X0‖p+ε

)
< +∞.

Thus µ̄ ∈ Pp+ε
(
C([0, T ],Rd)

)
, which implies that µ̄s ∈ Pp+ε(Rd) for any s ∈ [0, T ].
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For any s ∈ [0, T ], νNs is the empirical measure of µ̄s. It follows from Theorem 2.6 that for any

s ∈ [0, T ],∥∥Wp(ν
N
s , µ̄s)

∥∥
p
≤ CM1/p+ε

p+ε (µ̄s)

×


N−1/2p +N−

ε
p(p+ε) if p > d/2 and ε 6= p

N−1/2p
(

log(1 +N)
)1/p

+N−
ε

p(p+ε) if p = d/2 and ε 6= p

N−1/d +N−
ε

p(p+ε) if p ∈ (0, d/2) and p+ ε 6= d
(d−p)

, (2.17)

where C is a constant depending on p, ε, d. Moreover, the inequality (2.2) implies that

sup
s∈[0,T ]

Mp+ε(µ̄s) = sup
s∈[0,T ]

E
[
|Xs|p+ε

]
≤
∥∥∥ sup
s∈[0,T ]

|Xs|
∥∥∥p+ε
p+ε

≤
[
Cp,d,b,σ,L,T (1 + ‖X0‖p+ε)

]p+ε
< +∞.

Hence,

sup
s∈[0,T ]

∥∥Wp(ν
N
s , µ̄s)

∥∥
p
≤ C ′ ×


N−1/2p +N−

ε
p(p+ε) if p > d/2 and ε 6= p

N−1/2p
(

log(1 +N)
)1/p

+N−
ε

p(p+ε) if p = d/2 and ε 6= p

N−1/d +N−
ε

p(p+ε) if p ∈ (0, d/2) and p+ ε 6= d
(d−p)

,

(2.18)

where C ′ = C sups∈[0,T ]M
1
p+ε

p+ε (µ̄s) which is a constant depending on p, ε, d, b, σ, L, T and ‖X0‖p+ε.
Moreover, the inequality (2.15) implies that

sup
s∈[0,t]

∥∥Wp(µ̄
N
s , ν

N
s )
∥∥
p
≤
∥∥∥ sup
s∈[0,t]

Wp(µ̄
N
s , ν

N
s )
∥∥∥
p
≤ Cd,p,L,Tψ(t). (2.19)

Then,

sup
s∈[0,t]

∥∥Wp(µ̄
N
s , µ̄s)

∥∥
p
≤ sup
s∈[0,t]

∥∥Wp(µ̄
N
s , ν

N
s ) +Wp(ν

N
s , µ̄s)

∥∥
p

≤ sup
s∈[0,t]

∥∥Wp(µ̄
N
s , ν

N
s )
∥∥
p

+ sup
s∈[0,t]

∥∥Wp(ν
N
s , µ̄s)

∥∥
p

≤ Cd,p,L,Tψ(t) + sup
s∈[0,t]

∥∥Wp(ν
N
s , µ̄s)

∥∥
p

(by applying (2.19))

≤ sup
s∈[0,t]

∥∥Wp(ν
N
s , µ̄s)

∥∥
p

+ Cd,p,L,T · L
∫ t

0

∥∥∥Wp(µ̄u, µ̄
N
u )
∥∥∥
p
du

+ Cd,p,L,T · Cd,p,L
[ ∫ t

0

∥∥∥Wp(µ̄u, µ̄
N
u )
∥∥∥2

p
du
] 1

2

(by the defintion of ψ(t) in (2.14))

≤ sup
s∈[0,t]

∥∥Wp(ν
N
s , µ̄s)

∥∥
p

+ Cd,p,L,T · L
∫ t

0

sup
v∈[0,u]

∥∥Wp(µ̄v, µ̄
N
v )
∥∥
p
du

+ Cd,p,L,T · Cd,p,L
[ ∫ t

0

sup
v∈[0,u]

∥∥Wp(µ̄v, µ̄
N
v )
∥∥2

p
du
] 1

2

,

Then, by Lemma 2.5, we obtain

sup
s∈[0,T ]

∥∥Wp(µ̄
N
s , µ̄s)

∥∥
p
≤ 2e(2A+B2)T sup

s∈[0,T ]

∥∥Wp(µ̄s, ν
N
s )
∥∥
p
, (2.20)

where A = Cd,p,L,TL and B = Cd,p,L,T · Cd,p,L. Finally, it follows from (2.18) that

sup
0≤m≤M

∥∥Wp(µ̄
N
tm , µ̄m)

∥∥
p
≤ sup
s∈[0,T ]

∥∥Wp(µ̄
N
s , µ̄s)

∥∥
p
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≤ ‹C ×N− 1
2p +N−

ε
p(p+ε) if p > d/2 and ε 6= p

N−
1
2p
[

log(1 +N)
] 1
p +N−

ε
p(p+ε) if p = d/2 and ε 6= p

N−
1
d +N−

ε
p(p+ε) if p ∈ (0, d/2) and p+ ε 6= d

(d−p)

,

(2.21)

where ‹C is a constant depending on p, ε, d, b, σ, L, T and ‖X0‖p+ε.
By the definition of ψ(t) in (2.14), we have

ψ(t) = L

∫ t

0

∥∥∥Wp(µ̄u, µ̄
N
u )
∥∥∥
p
du+ Cd,p,L

[ ∫ t

0

∥∥∥Wp(µ̄u, µ̄
N
u )
∥∥∥2

p
du
] 1

2

,

≤ LT sup
u∈[0,T ]

∥∥∥Wp(µ̄u, µ̄
N
u )
∥∥∥
p

+ Cd,p,L
√
T · sup

u∈[0,T ]

∥∥∥Wp(µ̄u, µ̄
N
u )
∥∥∥
p

≤ Cd,p,L,T sup
u∈[0,T ]

∥∥∥Wp(µ̄u, µ̄
N
u )
∥∥∥
p

so that (2.15) and (2.21) imply that∥∥∥∥∥ sup
s∈[0,T ]

Wp(µ̄
N
s , ν

N
s )

∥∥∥∥∥
p

≤ Cd,p,L,T sup
u∈[0,T ]

∥∥∥Wp(µ̄u, µ̄
N
u )
∥∥∥
p

≤ C ×


N−

1
2p +N−

ε
p(p+ε) if p > d/2 and ε 6= p

N−
1
2p
[

log(1 +N)
] 1
p +N−

ε
p(p+ε) if p = d/2 and ε 6= p

N−
1
d +N−

ε
p(p+ε) if p ∈ (0, d/2) and p+ ε 6= d

(d−p)

where C is a constant depending on p, ε, d, b, σ, L, T and ‖X0‖p+ε.

3 Quantization-based schemes and their error analyses

This section is devoted to the error analyses of the quantization based schemes (1.16), (1.18) and

(1.22). We start with a review of optimal quantization, as well as its connection with the K-means

clustering. We also prove Theorem 1.3, the L2-error analysis of the quantization based scheme (1.16)

in Subsection 3.1. Next in Subsection 3.2, we give computational details of transition probabilities

(1.18) for the recursive quantization scheme and show how to optimally compute the quantizer x(m)

by integrating Lloyd’s algorithm to reduce the quantization error. Finally, in Subsection 3.3, we prove

Proposition 1.4, the error analysis of the hybrid particle-quantization scheme.

3.1 Preliminaries on the optimal quantization

In this section, X : (Ω,F ,P)→
(
Rd,B(Rd)

)
is a random variable having p-th finite moment, p ≥ 1.

Its probability distribution is denoted by µ. Let K ∈ N∗ be the fixed quantization level. We call

x = (x1, ..., xK) ∈ (Rd)K a quantizer of level K. The quantization error function of µ at level K and

order p, denoted by eK,p(µ, ·), is defined by

x = (x1, ..., xK) ∈ (Rd)K 7→ eK,p(µ, x) :=

ï∫
Rd

min
1≤k≤K

|ξ − xk|pµ(dξ)

ò 1
p

∈ R+. (3.1)

Sometimes we write eK,p(X, ·) for the quantization error function since PX = µ, but the value of

this function depends only on the probability distribution µ. For a quantizer x = (x1, ..., xK) such

that xi 6= xj , i 6= j and for (Vk(x))1≤k≤K a Voronöı partition generated by x defined in (1.12), the

quantization error of x satisfying

epK,p(µ, x) =

K∑
k=1

∫
Vk(x)

|ξ − xk|pµ(dξ). (3.2)
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It is obvious that the error value does not depend on the choice of Voronöı partition. Moreover, still

considering this Voronöı partition (Vk(x))1≤k≤K , we have (see e.g. [GL00, Lemma 3.4] 3)

eK,p(µ, x) =
∥∥X − “Xx

∥∥
p

=Wp(µ, µ̂
x) (3.3)

where “Xx := Projx(X) and µ̂x := µ ◦ Proj−1
x = L(“Xx) with the projection function Projx defined by

(1.13).

The optimal quantizer at level K and order p for µ, denoted by x∗ = (x∗1, ..., x
∗
K), is defined by

x∗ = (x∗1, ..., x
∗
K) ∈ argmin

y∈(Rd)K
eK,p(µ, y). (3.4)

The existence of such an optimal quantizer has been proved in [Pol82]. There exists few results in the

literature for the uniqueness of the optimal quantizer (see e.g. [Kie83]) but in practice, we only need one

optimal quantizer for a further simulation as all optimal quantizers have the same quantization error by

(3.4). We call

e∗K,p(X) = e∗K,p(µ) := inf
x∈(Rd)K

eK,p(µ, x)

the optimal (quantization) error at level K and order p for µ (or for X).

Now we recall several basic properties of the optimal quantization.

Proposition 3.1. Let K ∈ N∗ be the quantization level and let p ≥ 1. We consider an Rd-valued

random variable X having probability distribution µ ∈ Pp(Rd). Let x∗ = (x∗1, ..., x
∗
K) be an optimal

quantizer of X at level K and order p.

(1) (see [GL00, Theorem 4.1 and Theorem 4.12]) Assume that the support of µ satisfies card(supp(µ)) ≥
K, where card(supp(µ)) denotes the cardinality of the support of µ. Then any K-level optimal

quantizer x∗ contains K different points, i.e. for every i, j ∈ {1, . . . ,K} such that i 6= j, we have

x∗i 6= x∗j .

(2) (Zador’s theorem, see [LP08] and [Pag18, Theorem 5.2]) If µ ∈ Pp+ε(Rd) for some ε > 0, the

optimal error has the following non-asymptotic upper bound for every quantization level K ≥ 1,

e∗p,K(X) = e∗p,K(µ) ≤ Cd,p,εMp+ε(µ)K−
1
d , (3.5)

where Cd,p,ε ≥ 0 is a constant depending only on d, p and ε, and where

Mp(µ) =Mp(X) := inf
a∈Rd

‖X − a‖p. (3.6)

(3) (Optimal discrete representation, see [GL00, Lemma 3.4] and [Pag18, Proposition 5.1-(b)]) Let“Xx∗
= Proj x∗(X) and let µ̂ x

∗
:= µ ◦ Proj−1

x∗ = L(“Xx∗
). Then∥∥X − “Xx∗∥∥

p
= min

{
‖X − Y ‖p

∣∣∣ Y : (Ω,F ,P)→
(
Rd,B(Rd)

)
random variable such that

the support of Y has at most K points
}

and Wp(µ, µ̂
x∗

) = min
{
Wp(µ, ν)

∣∣∣ ν ∈ Pp(Rd) such that card(supp(ν)) ≤ K
}
.

(4) (Stationary property when p = 2, see e.g. [Pag18, Proposition 5]) For the quadratic optimal quan-

tization (i.e. p = 2), any optimal quantizer x∗ is stationary in the sense that

E
[
X
∣∣ “X x∗ ]

= “X x∗
. (3.7)

(5) (Consistency of the optimal quantization, see [Pol82, Theorem 9] and [LP20, Theorem 4 and Ap-

pendix A]) Consider a probability distribution sequence µn, µ ∈ P2(Rd), n ≥ 1, such thatW2(µn, µ)→
3The statement in [GL00, Lemma 3.4] is established only for an optimal quantizer. However, its proof is also valid for

an arbitrary quantizer.
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0 when n→ 0. For every n ≥ 1, let x(n) be a quadratic optimal quantizer of µn. Then any limiting

point of (x(n))n≥1 is a quadratic optimal quantizer of µ. Moreover, we have(
e∗K,2(µn)

)2 − (e∗K,2(µ)
)2 ≤ 4e∗K,2(µ)W2(µn, µ) + 4W2

2 (µn, µ). (3.8)

From a numerical point of view, the main idea of the optimal quantization is to use “X x∗
= Proj x∗(X)

(respectively, µ̂ x
∗

= µ ◦ Proj−1
x∗ = L(“X x∗

)) as an approximation of the target random variable X (resp.

the target probability distribution µ). Proposition 3.1-(3) shows that “X x∗
(respectively µ̂ x

∗
) is the

closest discrete representation of X (resp. of µ) with respect to the Lp-norm (resp. the Wasserstein

distance Wp), among all random variables (resp. probability distributions) having a support of at most

K points. Furthermore, the Proposition 3.1-(5) shows the connection between the optimal quantization

and the K-means clustering in unsupervised learning (see e.g. [Pol82] and [LP20]). Consider a sample

{η1, ..., ηn} ⊂ Rd, the K-means clustering is essentially to find an optimal quantizer with respect to

the empirical measure µ̄n := 1
n

∑n
i=1 δηi over the sample. In the unsupervised learning context, such

an optimal quantizer is called cluster centers and η1, ..., ηn are often considered as i.i.d. samples having

probability distribution µ so that Wp(µ̄n, µ)→ 0 a.s. if µ ∈ Pp(Rd) (see e.g. [Pol82, Thereom 7]).

Finally, we recall that there exist several numerical methods to find an optimal quantizer in the

quadratic setting (p = 2) such as the (stochastic) gradient descent algorithm (see e.g. [Pag15, Section

3.2]) and Lloyd’s fixed point algorithm (see e.g. [Llo82] and [PY16] for its convergence). In this

paper, we implement Lloyd’s algorithm to obtain the quadratic optimal quantizer in the simulations

but numerical results can be obtained by other methods as well. Lloyd’s algorithm, whose objective is

to find a stationary quantizer in the sense of (3.7), is described as follows.

Algorithm 1: Lloyd’s (fixed point) algorithm for a probability measure µ ∈ P2(Rd)

Set K ∈ N∗ for the quantization level.

Input: Initial quantizer x[0] = (x
[0]
1 , ..., x

[0]
K ) such that x

[0]
k ∈ supp(µ), 1 ≤ k ≤ K.

Repeat

Compute x [l+1] = E
[
X
∣∣ “X x[l] ]

(Ω), i.e. for every k = 1, ...,K,

x
[l+1]
k =


x

[l]
k , if µ

(
Vk(x[l])

)
= 0,

E
[
X
∣∣ “X x[l]

= x
[l]
k

]
=

∫
Vk(x[l])

ξµ(dξ)

µ
(
Vk(x[l])

) , otherwise.

(3.9)

until Some stopping criterion occurs (for example, |x[l+1] − x[l] | < ε for a fixed threshold

ε > 0);

Return x[l] = (x
[l]
1 , ..., x

[l]
K )

Now we give the proof of Theorem 1.3.

Proof of Theorem 1.3. (1) To simplify the notation, we will denote by

b̄m := b(tm, X̄tm , µ̄tm), σ̄m := σ(tm, X̄tm , µ̄tm), b̂m := b(tm, “Xtm , µ̂tm), σ̂m := σ(tm, “Xtm , µ̂tm).

The definitions of X̄tm , ‹Xtm and in (1.6) and (1.16) directly imply that∣∣∣X̄tm+1 − ‹Xtm+1

∣∣∣ =
∣∣∣(X̄tm − “Xtm

)
+ h
(
b̄m − b̂m

)
+
√
h
(
σ̄m − σ̂m

)
Zm+1

∣∣∣ .
Hence,

E
[∣∣X̄tm+1 − ‹Xtm+1

∣∣2]
= E

[∣∣(X̄tm − “Xtm

)
+ h
(
b̄m − b̂m

)∣∣2]+ hE
[∣∣(σ̄m − σ̂m)Zm+1

∣∣2]
+ 2
√
hE
[〈(

X̄tm − “Xtm

)
+ h
(
b̄m − b̂m

) ∣∣ (σ̄m − σ̂m)Zm+1

〉]
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= E
[∣∣X̄tm − “Xtm

∣∣2]+ h2E
[∣∣b̄m − b̂m∣∣2]+ 2hE

[〈
X̄tm − “Xtm

∣∣ b̄m − b̂m〉]
+ hE

[∣∣(σ̄m − σ̂m)Zm+1

∣∣2]+ 2
√
hE
[〈(

X̄tm − “Xtm

)
+ h
(
b̄m − b̂m

) ∣∣ (σ̄m − σ̂m)Zm+1

〉]
. (3.10)

Let F0 denote the σ-algebra generated by X0. For every m ∈ {1, ...,M}, we define Fm the σ-algebra

generated by X0, Z1, ..., Zm. Then, as Zm+1 is independent of Fm and X̄tm ,
“Xtm , b̄m, b̂m, σ̄m, σ̂m are

Fm-measurable, we have

E
[〈(

X̄tm − “Xtm

)
+ h
(
b̄m − b̂m

) ∣∣ (σ̄m − σ̂m)Zm+1

〉]
= E

[[(
X̄tm − “Xtm

)
+ h
(
b̄m − b̂m

)]>(
σ̄m − σ̂m

)
Zm+1

]
= E

{
E
[[(

X̄tm − “Xtm

)
+ h
(
b̄m − b̂m

)]>(
σ̄m − σ̂m

)
Zm+1

∣∣Fm ]}
= E

{[[(
X̄tm − “Xtm

)
+ h
(
b̄m − b̂m

)]>(
σ̄m − σ̂m

)]
E
[
Zm+1

]}
= 0.

Moreover, Assumption I implies that

E
[∣∣b̄m − b̂m∣∣2] ≤ 2L2

[
E
[∣∣X̄tm − “Xtm

∣∣2]+W2
2 (µ̄m, µ̂m)

]
≤ 4L2 E

[∣∣X̄tm − “Xtm

∣∣2]
and

E
[〈
X̄tm − “Xtm

∣∣ b̄m − b̂m〉] ≤ ∥∥∥X̄tm − “Xtm

∥∥∥
2

∥∥∥b̄m − b̂m∥∥∥
2
≤ 2LE

[∣∣X̄tm − “Xtm

∣∣2],
as well as

E
[∣∣(σ̄m − σ̂m)Zm+1

∣∣2] ≤ E
[
|||σ̄m − σ̂m|||2|Zm+1|2

]
≤ E

[
E
[
|||σ̄m − σ̂m|||2|Zm+1|2

∣∣ Fm]]
= E

[
|||σ̄m − σ̂m|||2E

[
|Zm+1|2

]]
≤ 4L2q E

[∣∣X̄tm − “Xtm

∣∣2],
where we recall that |||·||| denotes the operator norm defined by |||A||| := sup|z|≤1 |Az|. Consequently,

E
[∣∣X̄tm+1

− ‹Xtm+1

∣∣2] ≤ [1 + 4Lh(1 + Lh+ Lq)
]
· E
[∣∣X̄tm − “Xtm

∣∣2]
so that ∥∥∥X̄tm+1

− ‹Xtm+1

∥∥∥
2
≤
»

1 + 4Lh(1 + Lh+ Lq)
∥∥∥X̄tm − “Xtm

∥∥∥
2

≤
[
1 + 2Lh(1 + Lh+ Lq)

] ∥∥∥X̄tm − “Xtm

∥∥∥
2

where in the last inequality, we use the fact that
√

1 + 2x ≤ 1 + x when x ≥ 0. Hence,∥∥∥X̄tm+1
− “Xtm+1

∥∥∥
2
≤
∥∥∥X̄tm+1

− ‹Xtm+1

∥∥∥
2

+
∥∥∥‹Xtm+1

− “Xtm+1

∥∥∥
2

≤
[
1 + 2Lh(1 + Lh+ Lq)

] ∥∥∥X̄tm − “Xtm

∥∥∥
2

+ Ξm+1,

where Ξm =
∥∥‹Xtm−“Xtm

∥∥
2

denotes the quadratic quantization error at time tm (see (3.3)). This directly

implies ∥∥∥X̄tm − “Xtm

∥∥∥
2
≤

m∑
j=0

[
1 + 2Lh(1 + Lh+ Lq)

]j
Ξm−j .

(2) Step 1. We first prove that there exists a constante ‹Cmax > 0 such that

∀m ∈ {0, ...,M}, ‖‹Xtm‖2+ε ≤ ‹Cmax. (3.11)

As for every m ∈ {0, ...,M}, the quantizer x(m) = (x
(m)
1 , ..., x

(m)
K ) is quadratic optimal for ‹Xtm , Propo-
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sition 3.1-(4) implies that E
[‹Xtm

∣∣ “Xtm

]
= “Xtm . Hence, for every p ≥ 1,

E
[∣∣“Xtm

∣∣p] = E
[ ∣∣∣E [‹Xtm

∣∣ “Xtm

] ∣∣∣p ] ≤ E
[
E
[∣∣‹Xtm

∣∣p ∣∣ “Xtm

] ]
= E

[∣∣‹Xtm

∣∣p]. (3.12)

On the other hand, we have

‖‹Xtm+1‖p ≤ ‖“Xtm‖p + h
∥∥b(tm, “Xtm , µ̂tm)

∥∥
p

+
√
h
∥∥∥∣∣∣∣∣∣∣∣∣σ(tm, “Xtm , µ̂tm)

∣∣∣∣∣∣∣∣∣∣∣Zm+1

∣∣∥∥∥
p

≤ ‖“Xtm‖p + h
∥∥b(tm, “Xtm , µ̂tm)

∥∥
p

+
√
h
∥∥∥∣∣∣∣∣∣∣∣∣σ(tm, “Xtm , µ̂tm)

∣∣∣∣∣∣∣∣∣∥∥∥
p

∥∥Zm+1

∥∥
p

≤
(

1 + 2hCb,σ,L,T + 2
√
h‖Zm+1

∥∥
p
Cb,σ,L,T

)∥∥“Xtm

∥∥
p

+ hCb,σ,L,T +
√
h‖Zm+1

∥∥
p
Cb,σ,L,T

where the first inequality follows from the definition of ‹Xtm in (1.16) and Minkowski’s inequality, the

second inequality follows from the fact that σ(tm, “Xtm , µ̂tm) ⊥⊥ Zm+1 and the third inequality follows

from Lemma 2.4-(a) and the inequality Wp(µ̂tm , δ0) ≤ ‖“Xtm‖p. Thus, the inequality (3.12) implies that∥∥‹Xtm+1

∥∥
p
≤ C1

∥∥‹Xtm

∥∥
p

+ C2

with C1 := 1 + 2hCb,σ,L,T + 2
√
h‖Zm+1

∥∥
p
Cb,σ,L,T and C2 := hCb,σ,L,T +

√
h‖Zm+1

∥∥
p
Cb,σ,L,T . As‹X0 = X0, we have

∀m ∈ {1, ...,M},
∥∥‹Xtm

∥∥
p
≤ Cm1

∥∥X0

∥∥
p

+

m−1∑
j=0

Cj1C2 (3.13)

Thus (3.11) is obtained by considering p = 2 + ε and by letting ‹Cmax := CM1
∥∥X0

∥∥
2+ε

+
∑M−1
j=0 Cj1C2.

Step 2. As for every m ∈ {0, ...,M}, the quantizer x(m) = (x
(m)
1 , ..., x

(m)
K ) is quadratic optimal for ‹Xtm ,

Zador’s theorem (Proposition 3.1-(2)) implies that

∀m ∈ {0, ...,M}, Ξm ≤ Cd,εM2+ε(‹Xtm)K−
1
d .

Then we can conclude by remarking M2+ε(‹Xtm) ≤
∥∥‹Xtm

∥∥
2+ε
≤ ‹Cmax.

3.2 Recursive quantization-based scheme for the Vlasov equation

In this section, we present the recursive quantization scheme in the Vlasov setting and show how to

integrate Lloyd’s algorithm into this scheme to reduce the quantization error at each time step.

Recall that in the Vlasov setting, there exist β : [0, T ]× Rd × Rd → Rd and a : [0, T ]× Rd × Rd →
Md,q(R) such that

b(t, x, µ) =

∫
Rd
β(t, x, u)µ(du) and σ(t, x, µ) =

∫
Rd
a(t, x, u)µ(du).

Consider a quantizer sequence x(m) = (x
(m)
1 , ..., x

(m)
K ) ∈ (Rd)K , 0 ≤ m ≤ M such that for every

m = {0, ...,M}, we have x
(m)
i 6= x

(m)
j if i 6= j. Write

(
Vk(x(m))

)
1≤k≤K for a Voronöı partition generated

by x(m). Then the transition step of theoretical quantization-based scheme (1.16) can be written as‹Xtm+1
= “Xtm + h

K∑
k=1

p
(m)
k β(tm, “Xtm , x

(m)
k ) +

√
h
[ K∑
k=1

p
(m)
k a(tm, “Xtm , x

(m)
k )

]
Zm+1,

where p
(m)
k = P

(“Xtm = x
(m)
k

)
= P

(‹Xtm ∈ Vk(x(m))
)

is the weight of x
(m)
k . Hence, given “Xtm and p(m),‹Xtm+1

has a normal distribution‹Xtm+1
∼ N

(“Xtm+h

K∑
k=1

p
(m)
k β(tm, “Xtm , x

(m)
k ), h

[ K∑
k=1

p
(m)
k a(tm, “Xtm , x

(m)
k )

]>[ K∑
k=1

p
(m)
k a(tm, “Xtm , x

(m)
k )

] )
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since Zm+1 ∼ N (0, Iq). It follows that

P
(“Xtm+1 = x

(m+1)
j | “Xtm = x

(m)
i , p(m)

)
= P

(‹Xtm+1
∈ Vj(x(m+1)) | “Xtm = x

(m)
i , p(m)

)
= P

[(
x

(m)
i + h

K∑
k=1

p
(m)
k β(tm, x

(m)
i , x

(m)
k ) +

√
h

K∑
k=1

p
(m)
k a(tm, x

(m)
i , x

(m)
k )Zm+1

)
∈ Vj(x(m+1))

]
(3.14)

and obviously, by letting

Ei(x(m), p(m), Zm+1) := x
(m)
i + h

K∑
k=1

p
(m)
k β(tm, x

(m)
i , x

(m)
k ) +

√
h

K∑
k=1

p
(m)
k a(tm, x

(m)
i , x

(m)
k )Zm+1,

we get

P
(“Xtm+1

= x
(m+1)
j

∣∣ p(m)
)

= P
(‹Xtm+1

∈ Vj(x(m+1))
∣∣ p(m)

)
=

K∑
i=1

P
(“Xtm+1

= x
(m+1)
j | “Xtm = x

(m)
i , p(m)

)
· P(“Xtm = x

(m)
i )

=

K∑
i=1

P
(
Ei(x(m), p(m), Zm+1) ∈ Vj(x(m+1))

)
· p(m)
i =: g(x(m), p(m), Zm+1)

(3.15)

Thus one can compute the weights p
(m+1)
j = P

(“Xtm+1 = x
(m+1)
j

)
, 1 ≤ j ≤ K, starting from the weight

vector p(m) at time tm by applying (3.15)

The formula (3.15) is valid for any quantizer sequence x(m) with distinct components. Nonetheless,

the quantization errors Ξtm = ‖‹Xtm − “Xtm‖2 of each time step tm impact on the simulation result,

which is also indicated in the error analysis (1.20). One way to reduce the quantization error Ξtm is

to integrate Lloyd’s algorithm (see Algorithm 1) into the recursive quantization scheme. Given x(m)

and p(m), the Lloyd’s iteration (3.9) sending x(m+1, [l]) = (x
(m+1, [l])
1 , ..., x

(m+1, [l])
K ) to x(m+1, [l+1]) =

(x
(m+1, [l+1])
1 , ..., x

(m+1, [l+1])
K ) for time step tm+1 is

x
(m+1, [l+1])
k =

∫
Vk(x(m+1, [l]))

ξ µ̃tm+1
(dξ)

µ̃tm+1

(
Vk(x(m+1, [l]))

) , k = 1, ...,K. (3.16)

The denominator of (3.16) can be directly computed by (3.15) while the numerator of (3.16) is essentially

to compute the following value

E
[‹Xtm+11Vj(x(m+1))(‹Xtm+1) | p(m)

]
=E
[
E
[‹Xtm+11Vj(x(m+1))(‹Xtm+1) | “Xtm = x

(m)
i , p(m)

] ∣∣∣ p(m)
]

=

K∑
i=1

E
[‹Xtm+1

1Vj(x(m+1))(‹Xtm+1
) | “Xtm = x

(m)
i , p(m)

]
· P(“Xtm = x

(m)
i )

=

K∑
i=1

E
[‹Xtm+1

1Vj(x(m+1))(‹Xtm+1
) | “Xtm = x

(m)
i , p(m)

]
· p(m)
i , (3.17)

where

E
[‹Xtm+11Vj(x(m+1))(‹Xtm+1) | “Xtm = x

(m)
i , p(m)

]
= E

[
Y 1Vj(x(m+1))(Y )

]
(3.18)

with

Y ∼ N
(
x

(m)
i +h

K∑
k=1

p
(m)
k β(tm, x

(m)
i , x

(m)
k ), h

[ K∑
k=1

p
(m)
k a(tm, x

(m)
i , x

(m)
k )

]>[ K∑
k=1

p
(m)
k a(tm, x

(m)
i , x

(m)
k )

] )
.

(3.19)
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Remark 3.2. In dimension 1, Lloyd’s iteration above is numerically low cost, since the the Voronöı cells

in dimension 1 are in fact intervals of R. For example, let x = (x1, ..., xK) ∈ RK be a quantizer such

that xi < xi+1, i = 1, ...,K − 1, one can choose a Voronöı partition as follows:

V1(x) =
(
−∞, x1 + x2

2

)
and VK(x) =

[xK−1 + xK
2

,+∞),

Vk(x) =
[xk−1 + xk

2
,
xk + xk+1

2

)
, k = 2, ...,K − 1.

Let x(m) = (x
(m)
1 , ..., x

(m)
K ) be the quantizer of the m-th time step. The transition probability π

(m)
ij =

P
(“Xtm+1

= x
(m+1)
j | “Xtm = x

(m)
i , p(m)

)
in (3.14) reads

Fm,σ2

(x(m)
j+1 + x

(m)
j

2

)
− Fm,σ2

(x(m)
j−1 + x

(m)
j

2

)
,

where Fm,σ2 denotes the cumulative distribution function of N (m,σ2) with

m = x
(m)
i + h

K∑
k=1

p
(m)
k β(x

(m)
i , x

(m)
k ) and σ =

√
h
[ K∑
k=1

p
(m)
k a(x

(m)
i , x

(m)
k )

]
. (3.20)

Moreover, Lloyd’s iteration (3.18) depends on the value

∫ (x
(m)
j+1+x

(m)
j )/2

(x
(m)
j−1+x

(m)
j )/2

ξ · fm,σ2(ξ)dξ (3.21)

where fm,σ2(ξ) is the density function of N (m,σ2) with m and σ defined in (3.20). In fact, to avoid

computing the integral, (3.21) can be alternatively calculated by the following formula: for every a, b ∈ R,∫ b

a

ξ · fm,σ2(ξ)dξ =

∫ b

a

1√
2πσ2

ξe−
(ξ−m)2

2σ2 dξ = − σ√
2π

ï
e−

(ξ−m)2

2σ2

òb
a

+m
[
Fm,σ2(b)− Fm,σ2(a)

]
. (3.22)

However, in higher dimension, the main difficulty of this method is computing the integral of the den-

sity function of a multi-dimensional normal distribution over a Voronöı cell (see (3.15), (3.18)). There ex-

ists several numerical solutions such as pyhull package in Python (see also the website www.qhull.com)

for the cubature formulas of the numerical integration over a convex set in low and medium dimensions

(d = 2, 3, 4).

3.3 L2-error analysis of the hybrid particle-quantization scheme

We prove Proposition 1.4 in this section.

Proof of Proposition 1.4. To simplify the notation, we will denote by

bQ,nm := b(tm, ‹Xn,N
tm , µ̂Ktm), bP,nm := b(tm, X̄

n,N
tm , µ̄Ntm), σQ,n

m := σ(tm, ‹Xn,N
tm , µ̂Ktm), σP,n

m := σ(tm, X̄
n,N
tm , µ̄Ntm),

where the superscript “P” indicates the Particle method and the superscript “Q” indicates the hybrid

particle-Quantization scheme. Moreover, let Fm be the σ−algebra generated by X0, X̄
1,N
0 , ..., X̄N,N

0 ,

Znj , n = 1, ..., N, j = 1, ...,m. Then bP,nm , bQ,nm , σP,n
m , σQ,n

m are Fm-measurable and Znm+1, 1 ≤ n ≤ N are

independent of Fm. It follows that‹Xn,N
tm+1

− X̄n,N
tm+1

=‹Xn,N
tm − X̄n,N

tm + h
(
bQ,nm − bP,nm

)
+
√
h
(
σQ,n
m − σP,n

m

)
Znm+1, (3.23)

then

E
[∣∣‹Xn,N

tm+1
− X̄ n,N

tm+1

∣∣2] = E
[∣∣(‹Xn,N

tm − X̄ n,N
tm ) + h

(
bQ,nm − bP,nm

)∣∣2]+ E
[∣∣√h(σQ,n

m − σP,n
m

)
Znm+1

∣∣2]
+ 2E

[〈(‹Xn,N
tm − X̄ n,N

tm

)
+ h
(
bQ,nm − bP,nm

) ∣∣∣ √h(σQ,n
m − σP,n

m

)
Znm+1

〉]
. (3.24)

21



The third term in (3.24) equals to 0 since Znm+1, n ∈ {1, ..., N}, are independent of Fm. Moreover,

Assumption I implies,

E
[∣∣bQ,nm − bP,nm

∣∣2] ≤ 2L2
{
E
[∣∣‹Xn,N

tm − X̄n,N
tm

∣∣2]+ E
[
W2

2 (µ̂Ktm , µ̄
N
tm)
]}
,

and

E
[∣∣√h (σQ,n

m − σP,n
m )Znm+1

∣∣2] ≤ hE[E[∣∣∣∣∣∣σQ,n
m − σP,n

m

∣∣∣∣∣∣2 ∣∣Znm+1

∣∣2 ∣∣∣ Fm]]
= hE

[∣∣∣∣∣∣σQ,n
m − σP,n

m

∣∣∣∣∣∣2E[ ∣∣Znm+1

∣∣2 ]] = h q E
[∣∣∣∣∣∣σQ,n

m − σP,n
m

∣∣∣∣∣∣2]
≤ 2L2h q

[
E
∣∣‹Xn,N

tm − X̄n,N
tm

∣∣2 + EW2
2 (µ̂Ktm , µ̄

N
tm)
]
.

Hence, (3.24) becomes

E
[∣∣‹Xn,N

tm+1
− X̄ n,N

tm+1

∣∣2]
= E

[∣∣(‹Xn,N
tm − X̄n,N

tm ) + h
(
bQ,nm − bP,nm

)∣∣2]+ E
[∣∣√h(σQ,n

m − σP,n
m

)
Znm+1

∣∣2]
= E

[∣∣‹Xn,N
tm − X̄n,N

tm

∣∣2]+ E
[
h2
∣∣bQ,nm − bP,nm

∣∣2 ]+ 2hE
[〈‹Xn,N

tm − X̄n,N
tm

∣∣ bQ,nm − bP,nm
〉]

+ E
[∣∣√h(σQ,n

m − σP,n
m

)
Znm+1

∣∣2]
≤ E

[∣∣‹Xn,N
tm − X̄n,N

tm

∣∣2]+ 2L2(h2 + hq)
[
E
∣∣‹Xn,N

tm − X̄n,N
tm

∣∣2 + EW2
2 (µ̂Ktm , µ̄

N
tm)
]

+ hE
[∣∣‹Xn,N

tm − X̄n,N
tm

∣∣2 +
∣∣bQ,nm − bP,nm

∣∣2]
≤ E

[∣∣‹Xn,N
tm − X̄n,N

tm

∣∣2]+ 2L2(h2 + hq)
[
E
∣∣‹Xn,N

tm − X̄n,N
tm

∣∣2 + EW2
2 (µ̂Ktm , µ̄

N
tm)
]

+ hE
[∣∣‹Xn,N

tm − X̄n,N
tm

∣∣2]+ 2L2h
[
E
∣∣‹Xn,N

tm − X̄n,N
tm

∣∣2 + EW2
2 (µ̂Ktm , µ̄

N
tm)
]
,

≤
(
1 + 2L2(h2 + hq) + h+ 2L2h

)
E
[∣∣‹Xn,N

tm − X̄n,N
tm

∣∣2]+
(
2L2(h2 + hq) + 2L2h

)
EW2

2 (µ̂Ktm , µ̄
N
tm).

Remark that for any m ∈ {1, ...,M}, the measure 1
N

∑N
n=1 δ(X̃n,Ntm

,X̄n,Ntm
)

is a random coupling of

1
N

∑N
n=1 δX̃n,Ntm

and µ̄Ntm = 1
N

∑N
n=1 δX̄n,Ntm

. Thus, for any m ∈ {1, ...,M},

E
[
W2

2

( 1

N

N∑
n=1

δ
X̃n,Ntm

, µ̄Ntm

)]
≤ E

[ ∫
Rd×Rd

|x− y|2 1

N

N∑
n=1

δ
(X̃n,Ntm

,X̄n,Ntm
)
(dx, dy)

]
= E

[ 1

N

N∑
n=1

∣∣‹Xn,N
tm − X̄n,N

tm

∣∣2]. (3.25)

Hence, by letting C1 := 1 + 2L2(h2 + hq) + h+ 2L2h, C2 := 2L2(h2 + hq) + 2L2h and by denoting the

quantization error of the time tm by Ξ̂m =W2

(
µ̂Ktm ,

1
N

∑N
n=1 δX̃n,Ntm

)
, we getÃ

1

N

N∑
n=1

E
[∣∣‹Xn,N

tm+1
− X̄ n,N

tm+1

∣∣2]

=

Ã
C1

N

N∑
n=1

E
[∣∣‹Xn,N

tm − X̄n,N
tm

∣∣2]+ C2E
[
W2

2 (µ̂Ktm , µ̄
N
tm)
]

≤

Ã
C1

N

N∑
n=1

E
[∣∣‹Xn,N

tm − X̄n,N
tm

∣∣2]+ C2

{
2E
[
W2

2 (µ̂Ktm ,
1

N

N∑
n=1

δ
X̃n,Ntm

)
]

+ 2E
[
W2

2 (
1

N

N∑
n=1

δ
X̃n,Ntm

, µ̄Ntm)
]}
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≤

Ã
(C1 + 2C2) · 1

N

N∑
n=1

E
[∣∣‹Xn,N

tm − X̄n,N
tm

∣∣2]+ 2C2E Ξ̂2
m (by (3.25))

≤
√
C1 + 2C2

Ã
1

N

N∑
n=1

E
[∣∣‹Xn,N

tm − X̄n,N
tm

∣∣2] +
√

2C2

»
E Ξ̂2

m. (3.26)

Let C̄1 :=
√
C1 + 2C2 and C̄2 =

√
2C2 . The inequality (3.26) impliesÃ

1

N

N∑
n=1

E
[∣∣‹Xn,N

tm − X̄n,N
tm

∣∣2] ≤ C̄2

m−1∑
j=0

C̄j1

√
E Ξ̂2

m−1−j .

Hence, it follows from (3.25) that

E

[
W2

( 1

N

N∑
n=1

δ
X̃n,Ntm

, µ̄Ntm
)]
≤

Ã
EW2

2

( 1

N

N∑
n=1

δ
X̃n,Ntm

, µ̄Ntm

)
≤

Ã
1

N

N∑
n=1

E
[∣∣‹Xn,N

tm − X̄n,N
tm

∣∣2]

≤ C̄2

m−1∑
j=0

C̄j1

√
E Ξ̂2

m−1−j .

Consequently,

E
[
W2

(
µ̂Ktm , µ̄

N
tm

)]
≤ E

[
W2

( 1

N

N∑
n=1

δ
X̃n,Ntm

, µ̄Ntm

)]
+ E

[
W2

( 1

N

N∑
n=1

δ
X̃n,Ntm

, µ̂Ktm

)]

≤ C̄2

m−1∑
j=0

C̄j1

√
E Ξ̂2

m−1−j + E Ξ̂m.

Remark 3.3. For every m = 1, ...,M , it follows from (3.3) that

E Ξ̂m = E

[
W2

(
µ̂Ktm ,

1

N

N∑
n=1

δ
X̃n,Ntm

)]
= E

ï
eK, 1

N

∑N
n=1 δX̃n,Ntm

(x(m))

ò
.

Thus one can implement Lloyd’s algorithm at each time step in order to reduce the error bound on

the right-hand side of (1.23). Moreover, for a fixed ω ∈ Ω, finding optimal quantizer for the empir-

ical measure 1
N

∑N
n=1 δX̃n,Ntm

(ω)
is equivalent to compute the K-means cluster centers of the sampling(‹X1,N

tm (ω), ..., ‹XN,N
tm (ω)

)
for which we can use e.g. sklearn.cluster.KMeans package in Python.

4 Simulation examples

In this section, we illustrate two simulation examples. The first one is the Burgers equation intro-

duced and already considered for numerical tests in [BT97] and [GPPP05]. This is a one-dimensional

example with an explicit solution so we use this example to compare the accuracy and computational

time of the different numerical methods under consideration. The second example, the Network of

FitzHugh-Nagumo neurons, already numerically investigated in [BFFT12], [BFT15] (see also [dRES22]),

is a 3-dimensional example. All examples are implemented in Python 3.7.

4.1 Simulation of the Burgers equation, comparison of three algorithms

In [BT97], the authors analyse the solution and study the particle method of the Burgers equation{
dXt =

∫
RH(Xt − y)µt(dy)dt+ σdBt,

∀ t ∈ [0, T ], µt = PXt and X0 : (Ω,F ,P)→ (R,B(R)),
(4.1)
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where H is the Heaviside function H(z) = 1{z≥0} and σ is a real constant. The cumulative distribution

function V (t, x) of µt satisfies

∂V

∂t
=

1

2
σ2 ∂

2V

∂x2
− V ∂V

∂x
, V (0, x) = V0(x).

Moreover, if the initial cumulative distribution function V0 satisfies
∫ x

0
V0(y)dy = O(x), then the function

V has a closed form given by (see [Hop50])

V (t, x) =

∫
R V0(y)exp

(
− 1

σ2

[ (x−y)2

2t +
∫ y

0
V0(z)dz

])
dy∫

R exp
(
− 1

σ2

[ (x−y)2

2t +
∫ y

0
V0(z)dz

])
dy

, (t, x) ∈ [0, T ]× R.

Hence, if we consider X0 = 0, then the cumulative distribution function at time T = 1 reads

FT=1(x) =

∫
R+

exp
(
− 1

σ2

[ (x−y)2

2 + y
])
dy∫

R exp
(
− 1

σ2

[ (x−y)2

2 + y1y≥0

])
dy
. (4.2)

So we can compare the accuracy of the different numerical methods proposed in the former sections by

computing

‖Fsimu − Ftrue‖sup , (4.3)

where Fsimu represents the simulated cumulative distribution function by different numerical methods

and Ftrue is the true cumulative distribution function (4.2). For two probability distributions µ, ν ∈
Pp(Rd) with respective cumulative distribution function F and G, the Wasserstein distance Wp(µ, ν)

can be computed by

Wp
p (µ, ν) =

∫ 1

0

∣∣F−1(u)−G−1(u)
∣∣p du, p ≥ 1. (4.4)

However, it is computationally extremely costly to directly compute the inverse function of the cumula-

tive distribution function (4.2) and if we compute (4.4) by using Monte-Carlo simulation, it will induce

its own statistical error which may perturb our comparisons. Thus, instead of considering (4.4), we

choose to directly compute (4.3) by

‖Fsimu(x)− Ftrue(x)‖sup ' sup
x∈Unifset

|Fsimu(x)− Ftrue(x)| ,

where Unifset is a uniformly spaced point set in [−2.5, 3.5].

In the following simulation, we choose σ2 = 0.2 and M = 50 so that we have the same time

step h = T
M = 0.02 for each method. We first give preliminary illustrations of the simulated cumulative

distribution function by the particle method (1.8), the recursive quantization scheme (1.16)-(1.18)-(1.19)

(with and without Lloyd’s algorithm) and the hybrid particle-quantization scheme (1.22) in Figure 3,

4, 5, 6 and 7. The true cumulative distribution functions are marked in red while the simulated ones

are marked in blue.

Figure 3: Simulation by the par-
ticle method (1.8)

Figure 4: Simulation by the re-
cursive quantization scheme with-
out Lloyd’s iteration (1.16)-(1.19)

Figure 5: Simulation by the
recursive quantization scheme
with 5 Lloyd’s iterations at
each Euler step (1.16)-(1.19)
and (3.15)-(3.18)
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Figure 6: Simulation by the
hybrid particle-quantization
scheme without Lloyd iteration
(1.22)

Figure 7: Simulation by the
hybrid particle-quantization
scheme with 5 Lloyd iterations
at each Euler step (1.22)

A detailed comparison of the different methods is displayed in Table 1. Remark that the particle

method (1.8) and the hybrid particle-quantization scheme (1.22) are random algorithms. Hence, their

accuracy are computed by taking an average error computed over 50 independent simulations.

Particle size and
quantizer size

Computing
time for each
Euler step

Error
‖Fsimu − Ftrue‖sup

Particle method (1.8) Particle size N = 10000 0.00320s 0.01021

Recursive quantization scheme
without Lloyd iterations
(1.16)-(1.19)

Quantizer size K = 500 0.00205s 0.01054

Recursive quantization scheme
with 5 Lloyd iterations
at each Euler step
(1.16)-(1.19) and (3.15)-(3.18)

Quantizer size K = 500 8.21598s 0.01029

Hybrid particle-quantization
scheme (1.22) without
Lloyd iterations

Particle size N = 10000
Quantizer size K = 500 6.09480s 0.01626

Hybrid particle-quantization
scheme (1.22) with 5 Lloyd
iterations at each Euler step

Particle size N = 10000
Quantizer size K = 500 9.37229s 0.01013

Table 1: Comparison of three algorithms

In a second phase, we show the converging rate of the simulation error (4.3) of the particle method

(1.8) and the recursive quantization scheme without Lloyd quantizer optimization (1.16)-(1.18)-(1.19)

respectively according to N and K. Table 2 shows the simulation error (4.3) of the particle method

(1.8) with respect to the numbers of particle N = 28, ..., 213 for a fixed M = 50. As the particle method

(1.8) is a random algorithm, the error shows in Table 2 is computed by reruning independently 500

times for each value of N .

N 28 29 210 211 212 213

Error ‖Fsimu − Ftrue‖sup 0.04691 0.03409 0.02438 0.01785 0.01407 0.01131

Standard deviation 0.01207 0.00939 0.00687 0.00469 0.00408 0.00294

Table 2: Error of the particle method (1.8) with respect to the particle size N

Figure 8, 9 and 10 show the curve of the particle method errors with respect to N , the respective log-log
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error and the standard deviation of the error.

Figure 8: Error of the particle
method (1.8) with respect to the
particle size N

Figure 9: Log-error of the parti-
cle method (1.8) with respect to
log2(N). The slope is approxi-
mately equal to −0.285.

Figure 10: The standard devia-
tion of the error of the particle
method (1.8) with respect to N

Figure 11: Error of the recur-
sive quantization scheme (1.16)-
(1.18)-(1.19) with respect to the
quantizer size K

Figure 12: Log-error of the
recursive quantization scheme
(1.16)-(1.18)-(1.19) with respect
to log2(K). The slope is approx-
imately equal to −0.436.

Table 3 shows the convergence rate of the error of the recursive quantization scheme (1.16)-(1.18)

with respect to the quantizer size K = 25, 26, 27, 28, 29, 210. Here we use a fixed quantizer sequence

which is a uniformly spaced point set in [-2.5, 3.5] without Lloyd’s algorithm for each time step tm.

K 25 26 27 28 29 210

Error ‖Fsimu − Ftrue‖sup 0.07347 0.04176 0.02360 0.01471 0.01043 0.00829

Table 3: Error of the recursive quantization scheme (1.16)-(1.18) with respect to the quantizer size K

Figure 11 and 12 above show the curve of the error with respect to K and the respective log-log error.

Now we give some comments on the numerical performance of different methods mainly through two

aspects: the accuracy and the computing time.

• Comparison of the computing time.

The particle method (1.8) and the recursive quantization scheme (1.16)-(1.18)-(1.19) without

Lloyd iteration are the two fastest methods. In fact, these two methods are essentially computing

a Markov chain in RN and RK respectively. The application of Lloyd’s iteration in the recursive

quantization scheme is slightly faster than in the hybrid particle-quantization scheme since we

used the closed formulas (3.22). We can also remark that, when the quantization level K is large,

Lloyd’s iteration is numerically costly even in dimension 1 and the application of Lloyd’s algorithm

only slightly reduces the quantization error.
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• Comparison of the accuracy computed by ‖Fsimu(x)− Ftrue(x)‖sup.

– The particle method (1.8) and the hybrid particle-quantization scheme (1.22) are random

algorithms, whose simulation results, including the error ‖Fsimu(x)− Ftrue(x)‖sup, depend

on ω in (Ω,F ,P). Therefore, when considering the accuracy of these two algorithms, one

need to compute in the same time the standard deviation of errors. However, the recursive

quantization scheme (1.16)-(1.18)-(1.19) is deterministic.

– Comparing with the particle size N in Table 2 and the quantizer size K in Table 3, one can

remark that to achieve the same accuracy, we need fewer points in the quantizer than in

the particle. So if we need a discrete representation of the cumulative distribution function

F (or equivalently, a discrete representation of the probability distribution µ) to compute

a further functional of µ, such as an integral with respect to µ, the recursive quantization

based scheme provides a smaller data set (K-size quantizer and K-size weight vector) than

the particle method.

– The error of the recursive quantization scheme (1.16)-(1.18)-(1.19), especially when we im-

plement without Lloyd’s quantizer optimization, strongly depends on the choice of quantizer.

Generally, a practical way to choose the initial quantizer of a probability distribution µ is

to use self-quantization technique for which we refer to [DGLP06], [GL00][Section 7.1 and

Section 14], [PP03] and [PPP04]. Another efficient trick is to rely on a so-called “splitting

method”, that is, using the trained quantizer of the Euler step tm as an initial quantizer of

the Euler step tm+1.

In this one dimensional example, we did not remark any obvious advantage of the hybrid particle

quantization scheme (1.22) comparing with other methods. However, in the next section, we will

show that the hybrid method provides a fair balance between the accuracy and the data volume.

4.2 Simulation of the network of FitzHugh-Nagumo neurons in dimension
3

In this section, we consider the network of FitzHugh-Nagumo neurons introduced in [BFFT12] and

[BFT15]:

dXt = b(Xt, µt)dt+ σ(Xt, µt)dBt (4.5)

where b : R3 × P(R3)→ R3 and σ : R3 × P(R3)→M3×3 are defined by

b(x, µ) :=

Ö
x1 − (x1)3/3− x2 + I −

∫
R3 J(x1 − Vrev)z3 µ(dz)

c(x1 + a− bx2)

ar
Tmax(1−x3)

1+exp
(
−λ(x1−VT )

) − adx3

è
, (4.6)

σ(x, µ) :=

Ñ
σext 0 −

∫
R3 σJ(x1 − Vrev)z3 µ(dz)

0 0 0

0 σ32(x) 0

é
,

with

σ32 := 1x3∈(0,1)

√
ar

Tmax(1− x3)

1 + exp
(
− λ(x1 − VT )

) + ad x3 Γ exp
(
− Λ

1− (2x3 − 1)2

)
,

and where

X0 ∼ N

ÑÑ
V0

ω0

y0

é
,

Ñ
σV0

0 0

0 σω0
0

0 0 σy0

éé
with the following parameter values

V0 = 0 σV0 = 0.4 a = 0.7 b = 0.8 c = 0.08 I = 0.5 σext = 0.5

ω0 = 0.5 σω0 = 0.4 Vrev = 1 ar = 1 ad = 1 Tmax = 1 λ = 0.2

y0 = 0.3 σy0 = 0.05 J = 1 σJ = 0.2 VT = 2 Γ = 0.1 Λ = 0.5.
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This model was first studies in [BFFT12] and then rigorously investigated and analyzed in [BFT15].

We are aware that the equation (4.5) does not fulfill Assumption I since the drift b defined by (4.6) is

only locally Lipschitz in (x, µ). However, the drift b satisfies〈
x | b(x, µ)

〉
≤ c1

(
|x|2 + 1

)
for some c1 > 0 and the coefficient σ is bounded. This ensures the existence of a strong solution

living on the whole R+. In fact the presence of the term − (x1)3

3 also induces a mean-reversion property

that makes possible to control the long-run behaviour of the equation. On the other hand such drift

with non linear growth (in norm) usually induces an instability of the Euler scheme as emphasized e.g.

in [Lem07], at least when using equidistant time steps. We nevertheless chose this model for a 3D

numerical illustration due to its challenging feature, but with a refined time step (M = 5000, see below)

to ensure its stability. Other numerical schemes, typically semi-implicit could be more stable but out of

the scope of this paper.

In this section, we compare the performance of the particle method (1.8) and the hybrid particle-

quantization scheme (1.22) in two aspects. First, we intuitively compare these two methods by simulating

the density function of (x1, x2) for T = 1.5, as in the original paper [BFFT12][Page 31, Figure 4, the

third one in the right]. In this step, we choose M = 5000 for the temporal discretization to reduce (as

much as possible) the error induced by the Euler scheme. The images of the density function simulated

respectively by the particle method and the hybrid method are displayed in Figure 13, 14 and Figure

15, 16, 17 respectively.

Next, as the particle method and the hybrid method are both random methods, we take

ϕ(µsimu
T ) :=

∫
R3

|ξ|2 µsimu
T (dξ) = E

[ ∣∣Xsimu
T

∣∣2 ]
as a test function for the simulated distribution µsimu

T at time T , rerun 200 times for each method and

compare the mean and the standard deviation of ϕ(µsimu
T ).

The particle method (1.8):

Figure 13: The first and second coordinates of
5000 particles at time T = 1.5.

Figure 14: The simulated density function
smoothened by the Gaussian kernel method
(bandwith = 0.241).
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The hybrid particle-quantization scheme (1.22):

Figure 15: The quantizer of (x0, x1), simulated
with particle number N = 5000, quantizer size
K = 300 and 10 Lloyd iterations at each Euler
step.

Figure 16: The Voronöı cells of the above quan-
tizer. The colour of each Voronöı cell repre-
sents the weight of this cell (the darker the
heavier).

Figure 17: The density function simulated by the hybrid particle-
quantization method (1.22). The vertical axis is the weight divided
by the area of the corresponding Voronöı cell.

The obtained density functions have a similar form by these two methods but the data volume

obtained by the particle method is

5000 (the number of particle) × 3 (dimension),

while the data volume obtained by the hybrid method is

300 (the quantizer size) × 4 (dimension + weight for each quantizer).

For a more precise comparison, we set now the time discretization number M = 150 and we consider

the following test function for the simulated distribution µsimu
T at T = 1.5

ϕ(µsimu
T ) :=

∫
R3

|ξ|2 µsimu
T (dξ) = E

[ ∣∣Xsimu
T

∣∣2 ]
and rerun 200 times for each method. Table 4 shows the simulation results.
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Particle method Hybrid method

N=300 N=5000 N = 5000 and K = 300

Data volume for µsimu
T 300×3 5000×3 300×4

Average computing time

for each Euler step
0.034s 0.608s 2.670s

Test function

ϕ(µsimu
T )

Mean 1.194 1.205 1.192

Standard

deviation
0.058 0.015 0.015

Table 4: Comparison of the simulation result ϕ(µsimu
T ).

Intuitively, the hybrid method can be considered as adding a “feature extraction” step on the particle

method. Comparing the third and fourth columns of the above Table 4, one can notice that this added

step needs more computing time but reduces the size of the output data for the further computing

of the test function ϕ(µsimu
T ) without increasing the standard deviation. However, the second column

of the above table shows that if we implement the particle method with a similar data size than the

quantization level, the test value of ϕ(µsimu
T ) provides a much larger standard deviation.

A Proofs of Lemma 2.3, Lemma 2.4 and Lemma 2.7

Proof of Lemma 2.3. We consider the canonical space Ω = C([0, T ],Rd) × C([0, T ],Rd) equipped with

the σ-algebra F generated by the distance

d
(
(ω1, ω2), (α1, α2)

)
:=
∥∥ω1 − α1

∥∥
sup
∨
∥∥ω2 − α2

∥∥
sup

and P ∈ Π̄(µ, ν) where Π̄(µ, ν) is the set of probability measures with marginals µ and ν. For any

ω = (ω1, ω2) ∈ Ω, we define the canonical projections X : Ω → C([0, T ],Rd) and Y : Ω → C([0, T ],Rd)
by

∀ω = (ω1, ω2), ∀ t ∈ [0, T ], Xt(ω) = ω1
t and Yt(ω) = ω2

t .

The couple (X,Y ) makes up the canonical process on Ω. Since P ∈ Π̄(µ, ν), then X has probability

distribution µ and Y has probability distribution ν. Moreover, we have

sup
s∈[0,t]

Wp
p (µs, νs) ≤ sup

s∈[0,t]

E |Xs − Ys|p ≤ E sup
s∈[0,t]

|Xs − Ys|p .

Then we can choose by the usual arguments P ∈ Π̄(µ, ν) such that

E sup
s∈[0,t]

|Xs − Ys|p =
(
Wp,t(µs, νs)

)p
to conclude the proof.

Proof of Lemma 2.4. (a) For any x ∈ Rd and for any µ ∈ Pp(Rd), Assumption I implies that

∀t ∈ [0, T ], |b(t, x, µ)| − |b(t, 0, δ0)| ≤ |b(t, x, µ)− b(t, 0, δ0)| ≤ L
(
|x|+Wp(µ, δ0)

)
.

Hence,

|b(t, x, µ)| ≤ |b(t, 0, δ0)|+ L
(
|x|+Wp(µ, δ0)

)
≤ (|b(t, 0, δ0)| ∨ L)(1 + |x|+Wp(µ, δ0))

Similarly, we have |||σ(t, x, µ)||| ≤ (|||σ(t, 0, δ0)||| ∨ L)(1 + |x| +Wp(µ, δ0)), so we can take Cb,σ,L,T =

supt∈[0,T ] |b(t, 0, δ0)| ∨ supt∈[0,T ] |||σ(t, 0, δ0)||| ∨ L to complete the proof.
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(b) Step 1. We prove sup
0≤m≤M

sup
1≤n≤N

∥∥X̄n,N
tm

∥∥
p
< +∞ by induction in this step. First, we know that for

every n = 1, ..., N ,
∥∥X̄n,N

0

∥∥
p

=
∥∥X0

∥∥
p
< +∞ by the definition of X̄n,N

0 so that sup1≤n≤N
∥∥X̄n,N

0

∥∥
p
<

+∞. Now assume that sup1≤n≤N
∥∥X̄n,N

tm

∥∥
p
< +∞. For every n = 1, ..., N , we have∥∥∥X̄n,N

tm+1

∥∥∥
p
≤
∥∥∥X̄n,N

tm

∥∥∥
p

+ h ·
∥∥∥b(tm, X̄n,N

tm , µ̄Ntm
)∥∥∥
p

+
√
h ·
∥∥∥σ(tm, X̄

n,N
tm , µ̄Ntm)Znm+1

∥∥∥
p

≤
∥∥∥X̄n,N

tm

∥∥∥
p

+ h ·
∥∥∥b(tm, X̄n,N

tm , µ̄Ntm
)∥∥∥
p

+
√
h ·
∥∥∥ ∣∣∣∣∣∣∣∣∣σ(tm, X̄

n,N
tm , µ̄Ntm)

∣∣∣∣∣∣∣∣∣ ∥∥∥
p

∥∥∥Znm+1

∥∥∥
p

where the first inequality above follows from the Minkowski inequality and the second inequality follows

from the fact that Znm+1 is independent of Ftm and σ(tm, X̄
n,N
tm , µ̄Ntm) is Ftm measurable. By applying

the inequality (2.8) in the first part, we obtain∥∥∥b(tm, X̄n,N
tm , µ̄Ntm)

∥∥∥
p
∨
∥∥∥ ∣∣∣∣∣∣∣∣∣σ(tm, X̄

n,N
tm , µ̄Ntm)

∣∣∣∣∣∣∣∣∣ ∥∥∥
p
≤ Cb,σ,L,T

(
1 +

∥∥∥X̄n,N
tm

∥∥∥
p

+
∥∥∥Wp

(
µ̄Ntm , δ0

)∥∥∥
p

)
(A.1)

and by the definition of µ̄Ntm , we have∥∥∥W p
p

(
µ̄Ntm , δ0

) ∥∥∥p
p

= E
[
W p
p

( 1

N

N∑
n=1

δX̄n,Ntm

, δ0
)]
≤ 1

N

N∑
n=1

E
[∣∣X̄n,N

tm

∣∣p] < +∞. (A.2)

Hence, for every n = 1, ..., N ,
∥∥∥X̄n,N

tm+1

∥∥∥
p
< +∞. Then we can conclude sup

0≤m≤M
sup

1≤n≤N

∥∥X̄n,N
tm

∥∥
p
< +∞

by induction.

Step 2. We prove (2.9) in this step. The first step implies that

∥∥∥ sup
0≤m≤M

sup
1≤n≤N

∣∣X̄n,N
tm

∣∣ ∥∥∥p
p
≤

M∑
m=0

N∑
n=1

E
[∣∣X̄n,N

tm

∣∣p] ≤ (M + 1)N · sup
0≤m≤M

sup
1≤n≤N

∥∥X̄n,N
tm

∥∥p
p
< +∞. (A.3)

Then,∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣X̄n,N
t

∣∣∣ ∥∥∥∥∥
p

=

∥∥∥∥∥ sup
0≤m≤M

sup
t∈[tm,tm+1]

∣∣∣X̄n,N
t

∣∣∣ ∥∥∥∥∥
p

≤
∥∥∥∥∥ sup

0≤m≤M
sup

t∈[tm,tm+1]

∣∣∣X̄n,N
tm + (t− tm)b

(
tm, X̄

n,N
tm , µ̄Ntm

)
+ σ

(
tm, X̄

n,N
tm , µ̄Ntm

)
(Bnt −Bntm)

∣∣∣ ∥∥∥∥∥
p

≤
∥∥∥∥∥ sup

0≤m≤M
sup

t∈[tm,tm+1]

∣∣∣X̄n,N
tm

∣∣∣+
∣∣∣b(tm, X̄ n,N

tm , µ̄Ntm
)∣∣∣ · ∣∣t− tm∣∣+

∣∣∣∣∣∣∣∣∣σ(tm, X̄ n,N
tm , µ̄Ntm

)∣∣∣∣∣∣∣∣∣∣∣∣Bnt −Bntm∣∣∣∣∣∣
∥∥∥∥∥
p

≤
∥∥∥∥∥ sup

0≤m≤M

∣∣∣X̄n,N
tm

∣∣∣+ h
∣∣∣b(tm, X̄ n,N

tm , µ̄Ntm
)∣∣∣ ∥∥∥∥∥

p

+

∥∥∥∥∥ sup
0≤m≤M

∣∣∣∣∣∣∣∣∣σ(tm, X̄ n,N
tm , µ̄Ntm

)∣∣∣∣∣∣∣∣∣ sup
t∈[tm,tm+1]

∣∣∣Bnt −Bntm ∣∣∣∣∣∣
∥∥∥∥∥
p

(by applying the Minkowski inequality)

≤
∥∥∥∥∥ sup

0≤m≤M

∣∣∣X̄n,N
tm

∣∣∣+ h
∣∣∣b(tm, X̄ n,N

tm , µ̄Ntm
)∣∣∣ ∥∥∥∥∥

p

+

M∑
m=0

∥∥∥∥∥∣∣∣∣∣∣∣∣∣σ(tm, X̄ n,N
tm , µ̄Ntm

)∣∣∣∣∣∣∣∣∣ sup
t∈[tm,tm+1]

∣∣∣Bnt −Bntm ∣∣∣∣∣∣
∥∥∥∥∥
p

(as for every a, b ∈ R+, p ≥ 2, {E [ap ∨ b p]}1/p ≤ {E [ap] + E [b p]}1/p ≤ {E [ap]}1/p + {E [b p]}1/p)

≤
∥∥∥∥∥ sup

0≤m≤M

∣∣∣X̄n,N
tm

∣∣∣+ h
∣∣∣b(tm, X̄ n,N

tm , µ̄Ntm
)∣∣∣ ∥∥∥∥∥

p

+

M∑
m=0

∥∥∥∣∣∣∣∣∣∣∣∣σ(tm, X̄ n,N
tm , µ̄Ntm

)∣∣∣∣∣∣∣∣∣∥∥∥
p

∥∥∥∥∥ sup
t∈[tm,tm+1]

∣∣∣Bnt −Bntm∣∣∣
∥∥∥∥∥
p

(as
∣∣∣∣∣∣∣∣∣σ(tm, X̄ n,N

tm , µ̄Ntm
)∣∣∣∣∣∣∣∣∣ is Ftm mesurable and sup

t∈[tm,tm+1]

∣∣Bnt −Bntm∣∣ is independent of Ftm )

< +∞

by applying (2.8), (A.1) (A.2) and (A.3)
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For the proof of Lemma 2.7, we need the following two inequalities and we refer to [Pag18][Section

7.8] among other references for more details.

Lemma A.1 (The Generalized Minkowski Inequality). For any (bi-measurable) process X = (Xt)t≥0,

for every p ∈ [1,∞) and for every T ∈ [0,+∞],∥∥∥∫ T

0

Xtdt
∥∥∥
p
≤
∫ T

0

‖Xt‖p dt.

Lemma A.2 (Burkölder-Davis-Gundy Inequality (continuous time)). For every p ∈ (0,+∞), there

exists two real constants cBDGp > 0 and CBDGp > 0 such that, for every continuous local martingale

(Xt)t∈[0,T ] null at 0,

cBDGp

∥∥∥»〈X〉T∥∥∥
p
≤
∥∥∥∥∥ sup
t∈[0,T ]

|Xt|
∥∥∥∥∥
p

≤ CBDGp

∥∥∥»〈X〉T∥∥∥
p
.

In particular, if (Bt) is an (Ft)-standard Brownian motion and (Ht)t≥0 is an (Ft)-progressively

measurable process having values in Md,q(R) such that
∫ T

0
‖Ht‖2 dt < +∞ P − a.s., then the d-

dimensional local martingale
∫ ·

0
HsdBs satisfies∥∥∥∥∥ sup

t∈[0,T ]

∣∣∣∣∣
∫ t

0

HsdBs

∣∣∣∣∣
∥∥∥∥∥
p

≤ CBDGd,p

∥∥∥∥∥
 ∫ T

0

‖Ht‖2 dt
∥∥∥∥∥
p

. (A.4)

Proof of Lemma 2.7. For every(
X, (µt)t∈[0,T ]

)
,
(
Y, (νt)t∈[0,T ]

)
∈ LpC([0,T ],Rd)

(
Ω,F , (Ft)t≥0,P

)
× C

(
[0, T ],Pp(Rd)

)
,

for every t ∈ [0, T ], we have∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∣
∫ t

0

[
b(u,Xu, µu)− b(u, Yu, νu)

]
du

∣∣∣∣∣
∥∥∥∥∥
p

≤
∥∥∥∥∥ sup
s∈[0,t]

∫ s

0

∣∣b(u,Xu, µu)− b(u, Yu, νu)
∣∣du∥∥∥∥∥

p

=

∥∥∥∥∥
∫ t

0

∣∣b(u,Xu, µu)− b(u, Yu, νu)
∣∣du∥∥∥∥∥

p

≤
∫ t

0

‖b(u,Xu, µu)− b(u, Yu, νu)‖p du (by Lemma A.1)

≤
∫ t

0

∥∥L[ |Xu − Yu|+Wp(µu, νu)
]∥∥
p
du ≤ L

∫ t

0

[
‖Xu − Yu‖p + ‖Wp(µu, νu)‖p

]
du,

and∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
σ(u,Xu, µu)− σ(u, Yu, νu)

]
dBu

∣∣∣∣
∥∥∥∥∥
p

≤ CBDGd,p

∥∥∥∥∥
 ∫ t

0

|||σ(u,Xu, µu)− σ(u, Yu, νu)|||2du
∥∥∥∥∥
p

(by Lemma A.2)

≤ CBDGd,p

∥∥∥∥∥
∫ t

0

|||σ(u,Xu, µu)− σ(u, Yu, νu)|||2du
∥∥∥∥∥

1
2

p
2

(since
∥∥∥√U∥∥∥

p
=
[
EU

p
2
] 2
p
× 1

2 = ‖U‖
1
2
p
2

, when U ≥ 0)

≤ CBDGd,p

[ ∫ t

0

∥∥∥|||σ(u,Xu, µu)− σ(u, Yu, νu)|||2
∥∥∥
p
2

du
] 1

2

(by Minkowski’s inequality, since p ∈ [2,+∞))

≤ CBDGd,p

[ ∫ t

0

∥∥|||σ(u,Xu, µu)− σ(u, Yu, νu)|||
∥∥2

p
du
] 1

2 (
since

∥∥∥|U |2∥∥∥
p
2

=
[(
E |U |p

) 1
p

]2
= ‖U‖2p

)
≤ CBDGd,p

[ ∫ t

0

∥∥L[ |Xu − Yu|+Wp(µu, νu)
]∥∥2

p
du
] 1

2

(by Assumption I)

32



≤ CBDGd,p L
[ ∫ t

0

[
‖Xu − Yu‖p + ‖Wp(µu, νu)‖p

]2
du
] 1

2

≤
√

2CBDGd,p L
[ ∫ t

0

[
‖Xu − Yu‖2p + ‖Wp(µu, νu)‖2p

]
du
] 1

2

.

Then we can conclude the proof by setting Cd,p,L =
√

2CBDGd,p L.

B The organisation of different numerical schemes

X0 is an Rd-valued random variable,®
dXt = b(t,Xt, µt)dt+ σ(t,Xt, µt)dBt

µt = PXt , t ∈ [0, T ]

McKean-Vlasov equation (1.1)

N -particle system (X1,N
t , ..., XN,N

t )t∈[0,T ],dX
n,N
t = b(t,Xn,N

t , µNt )dt+ σ(t,Xn,N
t , µNt )dBnt ,

µNt = 1
N

∑N
n=1 δXn,Nt

and Xn,N
0 , 1 ≤ n ≤ N i.i.d∼ X0

Propagation of chaos

Temporal discretization : M ∈ N∗, h = T
M

, tm =

m · h, Zm
i.i.d∼ N (0, Iq),

X̄tm+1 = X̄tm + hb(tm, X̄tm , µ̄tm )

+
√
hσ(tm, X̄tm , µ̄tm )Zm+1

µ̄tm = PX̄tm
; X̄0 = X0

Theoretical Euler scheme (1.6)

Same temporal discretization as left side with initial

random variables X̄n,N
0 , 1 ≤ n ≤ N i.i.d∼ X0 ,

X̄n,N
tm+1

= X̄n,N
tm

+ hb(tm, X̄
n,N
tm

, µ̄Ntm )

+
√
hσ(tm, X̄

n,N
tm

, µ̄Ntm )Znm+1

µ̄Ntm = 1
N

∑N
n=1 δX̄n,Ntm

Znm, 1 ≤ m ≤M, 1 ≤ n ≤ N i.i.d∼ N (0, Iq)

Particle method (1.8)

x(m) = (x
(m)
1 , ..., x

(m)
K ) is a quantizer for µ̄tm ,

‹Xtm+1 = “Xtm + hb(tm, “Xtm , µ̂tm )

+
√
hσ(tm, “Xtm , µ̂tm )Zm+1,

µ̂tm = P
X̂tm

; “Xt0 = Projx(0) (X0)“Xtm+1 = Projx(m+1) (‹Xtm+1 )

Theoretical quantization scheme (1.16)

Znm
i.i.d.∼ N (0, Iq), x(m) = (x

(m)
1 , ..., x

(m)
K ) is a

quantizer for the m-th Euler step,

‹Xn,N
tm+1

= ‹Xn,N
tm

+ hb(tm, ‹Xn,N
tm

, µ̂Ktm )

+
√
hσ(tm, ‹Xn,N

tm
, µ̂Ktm )Znm+1

µ̂Ktm =
(

1
N

∑N
n=1 δX̃n,Ntm

)
◦ Proj−1

x(m)

=
∑K
k=1 δx(m)

k

[∑N
n=1 1Vk(x(m))(

‹Xn,N
tm

)
]‹Xn,N

0 = X̄n,N
0

Hybrid particle-quantization scheme (1.22)

In the Vlasov setting, one can compute a Marko-
vian transition:

(“Xtm+1 , µ̂m+1)

= F (“Xtm , µ̂m, Zm+1, x
(m+1)),

where F has an explicit formula (1.18),(1.19).

Recursive quantization scheme (1.18)

Propagation
of chaos

[G8̈8][Lac18]

‖X̄tm−Xtm‖p∼O(M−1/2)

see [LP22, Prop 2.1]

Wp(µ̄Ntm , µ̄tm )

∼O(N−1/d)

Theorem 1.2

For a fixed M ,

‖X̂tm−X̄tm‖2∼O(K−1/d)

Theorem 1.3

For a fixed M
Wp(µ̂Ktm

, µ̄Ntm
)∼O(K−1/d)

Proposition 1.4

Section 3.2

Figure 18: Numerical methods of this paper
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