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COUNTER-EXAMPLES TO THE HASSE PRINCIPLE AMONG

THE TWISTS OF THE KLEIN QUARTIC

ELISA LORENZO GARCÍA AND MICHAËL VULLERS

Dedicated to Jaap Top on the occasion of his 62th birthday.

Abstract. In this paper we inspect from closer the local and global points
of the twists of the Klein quartic. For the local ones we use geometric argu-
ments, while for the global ones we strongly use the modular interpretation
of the twists. The main result is providing families with (conjecturally infin-
itely many) twists of the Klein quartic that at counter-examples to the Hasse
Principle.

1. Introduction

The Klein quartic C is the curve in the projective plane given by the equation

X3Y + Y 3Z + Z3X = 0

which is isomorphic to the modular curve X(7) over the cyclotomic field Q(ζ7). It
has a number of interesting properties which are deeply studied in [Elk98]. For
instance it is a Hurwitz curve, meaning that it has the maximum number of auto-
morphisms possible for its genus. In fact it is the smallest genus example of such a
curve.

Given a curve C over a field k, we say that a curve C′/k is a twist of C if over
an algebraic closure k of k the curves C and C′ are isomorphic. Geometrically
speaking both curves are equal, however they may have very different arithmetic
properties. In this paper we focus our attention on the following question: Suppose
that C′ is a twist of C, does C′ violate the Hasse principle? That is, does C′ have
a point over every completion of Q but not over Q itself?

In [Ozm12] and [Ozm13] a similar question was asked and answered for the
modular curves X0(N). The modularity of these curves is strongly used there to
prove the existence of local and global points. In this paper we start by using
a classification of all the twists of the Klein quartic [Lor18], we use geometric
arguments as well as Hensel’s Lemma to deal with the existence of local points and
we only use modular reasonings to study rational points. Those differ by the ones
used in the aforementioned papers. Ther are based on the central result in [FLR05].

Our main result is the following:

Theorem 1.1. There are (conjecturally infinetely many) twists of the Klein quartic
yielding counterexamples to the Hasse principle.

2. Non-Archimedean local points

In this section we study the existence of Qp-points for primes p not dividing
the discriminant or the order of the automorphism group of the twists of the Klein
quartic.

Proposition 2.1. Let p be a prime different from 2, 3 or 7 and let C′/Fp be a twist
of the Klein quartic such that p does not divide its discriminant. Then C′(Fp) 6= ∅.
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Proof. If p ≥ 33, the result follow immediately from the Hasse-Weil bound, so
assume p < 33. Let π denote the Frobenius on Jac(C′). Since

#C′(Fp) = p+ 1− tr(π),

it suffices to show that tr(π) 6= p+1. In their paper [MT10] Meagher and Top show
that

tr(π) =

{

0 if p ≡ 3, 5, 6 mod 7
3tr(πE), 0,−tr(πE), tr(απE) or tr(πE) if p ≡ 1, 2, 4 mod 7

where πE is the Frobenius of the elliptic curve E/Fp given by y2+xy = x3+5x2+7x
and α ∈ End(E) satisfies α2 + α+ 2 = 0.

It follows immediately that if p ≡ 3, 5, 6 mod 7 then there is nothing to prove,
so assume p ≡ 1, 2, 4 mod 7. This gives us only the cases p = 11, 23 or 29. For
which the elliptic curve E is ordinary and End(E) ∼= Z[α] ⊂ Q(

√
−7) after making

α = −1+
√
−7

2
. Moreover, after this identification, we get πE = ±2±

√
−7, ±4±

√
−7,

±1± 2
√
−7 for p = 11, 23, 29 respectively.

Straightforward substitution now yields tr(π) 6= p+ 1 hence C(Fp) 6= ∅. �

Corollary 2.2. Let p 6= 2, 3, 7 be a prime. If C′ is a twist of the Klein quartic with
p not dividing its discriminant, then C′(Qp) 6= ∅.
Proof. Let C′/Fp be the reduction of C′, then C′ is a twist of the Klein quartic over

Fp, in particular it is a smooth curve. From Proposition 2.1 one has C′(Fp) 6= ∅
hence by Hensel’s Lemma it follows that C′(Qp) 6= ∅. �

3. Real points

In this section, and before proving that all twists C′ of the Klein quartic have
real points, we introduce a special twist:

C0 : x4 + y
4 + z

4 + 6(xy3 + yz
3 + zx

3)− 3(x2
y
2 + y

2
z
2 + z

2
x
2) + 3xyz(x+ y + z) = 0.

We fix the isomorphism φ0 : C0 → C as in [Lor18, Sec. 6]. The special property
of this twist is that among all twists of the Klein quartic, the Klein quartic itself
included, it is the one with the smallest field of definition of its automorphism
group, namely Q(

√
−7). This is why, in [Lor18] instead of directly computing the

twists of C, the twists of C0 are computed. Of course, both sets are equal, but
the algorithm developed in [Lor17] runs faster while inputing C0. Moreover, C0 is
isomorphic over Q to X(7).

Proposition 3.1. Let C′ be a twist of the Klein quartic C. Then C′(R) 6= ∅.
Proof. By the classification of twists of the Klein quartic in [Lor18] when K = R
we get that there are only two twists of the Klein quartic up to R-isomorphism,
the Klein quartic itself and the twist C0. The Klein quartic has for instance the
rational point (1 : 0 : 0). Plugging (x : 1 : 1) into C0 yields a degree 4 polynomial
in x over R which has real solutions, hence C0(R) 6= ∅. �

4. Rational points

In order to study the rational points of the twists of the Klein quartic, we start
by recalling some definitions and rephrasing the main theorem of [FLR05].

Let χp be the quadratic character of GQ obtained from the p-th cyclotomic
character. The Galois action on the p-torsion points of an elliptic curve E/Q
produces a representation ρE,p : Gk → PGL2(Fp), determined up to conjugation
by the isomorphism class of E unless the j-invariant of E is 0 or 1728, and with
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determinant χp. Going the other way, we say that a representation ρ : GQ →
PGL2(Fp) is realized by an elliptic curve E/Q if ρE,p = ρ, where this last equality
is considered up to conjugation inside PGL2(Fp).

The automorphism group of X(p) is naturally (via the modular interpretation)
isomorphic to PSL2(Fp) and it is defined over the only quadratic field kp contained

in the cyclotomic field Q(ζp). Fix V :=

(

0 −v
1 0

)

for v a non-square in F×
p . Then,

by [FLR05, Prop. 2.1] we have that the action of the non-trivial element τ of
Gal(kp/Q) on an element g ∈ Aut(X(p)) ≃ PSL2(Fp) is given by g 7→ V gV .

A cocycle ξ ∈ H1(GQ,Aut(X(p))) defining a twist of X(p) can be seen as a
representation ρ : GQ → Aut(X(p)) ⋊ Gal(kp/Q) ≃ PGL2(Fp) : σ 7→ (ξ(σ), σ),
where the last isomorphism is given by sending (g, 1) to g and (1, τ) to V . Going
the other way around, starting by a representation ρ : GQ → PGL2(Fp) whose
determinant is the quadratic character χp, we can define the cocycle ξ given by
the first projection of ρ by using the previous isomorphism, i.e. setting ξ(σ) =
π1(ρ(σ)). This cocycle produces a twist Xρ(p). We can as well define a cocycle
ξ′(σ) = π1(σ

−1)t defining a twist X ′
ρ(p). These two twists, defined over the same

field, are equivalent under the conditions in [FLR05, Lemma 2.1].

Theorem 4.1. ([FLR05, Thm. 2.1]) The map X(p) → X(1) define a surjective
map from the set of non-cuspidal rational points with j 6= 0, 1728 on the curves
Xρ(p) and X ′

ρ(p) to the set of isomorphism classes of elliptic curves defined over
Q realizing ρ.

It is important to note that not every twist of X(7) arises as XE(7) := XρE,7
(7)

or X−
E (7) := X ′

ρE,7
(7) for some elliptic curve E, in particular C itself does not

arise from an elliptic curve. This type of twists have brought the attention of the
community: explicit equations for XE(7) are given in [HK03], and the study of
their rational points for some particular examples are in [PSS07], which is used to
solve a particularly difficult diophantine equation.

In the case in which the elliptic curve E does not have CM, we follow [Zyw15,
Thm. 1.5] to determine the possible images of the representations ρE,7.

Theorem 4.2. Let E be an elliptic curve defined over Q. If E does not have CM,
then the image of ρE,7 is isomorphic to S3 (then j(E) = 33 · 5 · 75/27) or has
cardinality 14, 42 or 336. If E has CM then ρE,7 has cardinality 7 or larger than
12.

Proof. The aforementioned reference classify the possibilities for ρE,7 : GQ →
GL2(F7) when E/Q does not have CM.

There are only a finite number of E/Q with CM up to Q−isomorphism. When
7 does not divide the discriminant of the CM-field and up to quadratic twists, the
corresponding representation is maximal according to the LMFDB [LMF22]. When
7 divides the discriminant then the CM-field is Q(

√
−7) and again according to the

LMFDB, and up to quadratic twist, ρE,7 has cardinality 14. �

Twists not arising from elliptic curves do not have rational points apart from
eventually the cusps.

Proposition 4.3. Let φ : C′ → C0 be a twist defined over a field L. If L∩Q(ζ7) =
Q(

√
−7), then C′ has no rational cusps.

Proof. The cusps of C0 are defined over Q(ζ7) but not over Q(
√
−7). An isomor-

phism φ : C′ → C0 maps C′(Q) to C0(L). If C0 has no cusps over L, then C′ has
no cusps over Q. �
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5. Counter-examples to the Hasse Principle

In the classification of twists of the Klein quartic in [Lor18] there are 11 different
families (or cases) of twists accordingly to the isomorphism class of the Galois group
of the field of definition of the twists. The families 6. and 10. do not appear when
the Klein quartic is considered to be defined over Q. And the family 11. contains
all the twists XE(7) when ρE,7 is a big as possible which is the generic case: all
those twists have then rational points according to Theorem 4.1. We hence study
the other cases in order to find counter-examples to the Hasse Principle.

Proposition 5.1. Twists from cases 1. and 2. satisfy C′(Q2) = ∅
Proof. Case 1. corresponds to the curve C0. It is straightforward to check that
C0(F2) = ∅. For case 2. we distinguish the cases m even or odd, where m is the
parameter of the family given in [Lor18, Thm. 6.1]. This time C′(F2) 6= ∅, but
C′(Z/4Z) = ∅. �

Proposition 5.2. Twists in case 7. satisfy C′(Q7) = ∅.
Proof. Independently of the valuations at 7 of the parameters defining this family
we always obtain, after simplification, an equation of the form Q2 + 7G = 0 with
Q,G ∈ Z[x, y, z] homogeneous of degree 2 and 4 respectively, and not divisible by 7.
This model of the twists clearly shows the hyperelliptic reduction behavior of the
Klein quartic at 7, see [LLLGR21, Prop. 1.2]. While trying to construct Q7-points
we find an obstruction. We do find points over F7 in the conic, but they are double
points of the quartic and they cannot even be lifted to Z/72Z. �

Proposition 5.3. For infinitely many twists in cases 5., 9. and 11. we have
C′(Q) 6= ∅.
Proof. They are infinitely many non-CM elliptic curves giving Galois representa-
tions with ρE,7 isomorphic to the corresponding groups of order 14, 42 and 336
respectively, see [Zyw15, Thm. 1.5]. �

We look next to families that do provide counter-examples to the Hasse Principle.

5.1. Cases 3., 4. and 8. For those twists the field of definition is L = K(α, β, γ)
with K = Q(

√
−7) and α, β, γ are the roots of a degree 3 irreducible polynomial

f = x3+Ax2+Bx+C with coefficients in Q. For case 3 we have that the splitting
field of f over Q has discriminant ∆ = −7q2, for case 4. ∆ = q2, and for case 8 we
have that the splitting field of f has discriminant ∆ not of the form q2 or −7q2.

Let φ : C′ → C0 be the twist associated with L. Then φ is given by




d −3α+ 2β + γ αβ − 3βγ + 2αγ
d α− 3β + 2γ 2αβ + βγ − 3αγ
d 2α+ β − 3γ −3αβ + 2βγ + αγ





which has determinant equal to −21d
√
∆. Taking (d,∆) = (

√
−7,−7q2) gives us

case 3, (d,∆) = (1, q2) gives us case 4, and taking (d,∆) = (
√
∆,∆) yields case 8.

Therefore if p is a prime such that p 6= 2, 3, 7 and p ∤ ∆, then p ∤ det(M) hence
C′ has good reduction at p. From Proposition 2.1, and its corollaries, it follows
that for such primes C′(Qp) 6= ∅.

We can assume the coefficient A = 0. Hence, accordingly to [Lor18] the twist C′

is given by the equation

F = 3d4x4 − 63d2Bx2y2 + 9 · 21d2Cx2yz + 21d2B2x2z2 + 147d
√
∆xy3

+ 147d
√
∆Bxyz2 − 147d

√
∆Cxz3 − 9 · 49B2y4 + 98 · 27BCy3z

+ 147(2B3 − 27C2)y2z2 − 9 · 98B2Cyz3 − 49B4z4 = 0.
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With ∆ = −4B3 − 27C2.
We study now the Q2-points, Q3-points and Q7-points.

Lemma 5.4. Let f(x) = x3 +Bx+ C and C′ as above, if 2 ∤ C then C′(Q2) 6= ∅.
Proof. If 2 ∤ C then 2 ∤ ∆ and F reduces modulo 2 as follows

x4 + x2yz + xy3 + xz3 + y2z2 if 2 | B
x4 + x2y2 + x2yz + x2z2 + xy3 + xyz2 + xz3 + y4 + y2z2 + z4 if 2 ∤ B

Note that if 2 | B, then the point (0 : 1 : 0) is a solution over F2, If 2 ∤ B, then
(1 : 1 : 1) is a solution over F2. Both of which can be lifted with Hensel’s Lemma
since the derivative with respect to x does not vanish. �

Lemma 5.5. Let f(x) = x3 +Bx+C and C′ as above. If 3 ∤ B then C′(Q3) 6= ∅.
Proof. If 3 ∤ B, then since ∆ = −4B3 − 27C2 it follows that 3 ∤ ∆ and therefore

3 ∤ d
√
∆ and 3 ∤ d. After making the change of variable z 7→ 3z and dividing by 3

the equation, we obtain modulo 3 the non-singular point (0 : 1 : 0), that lifts to a
point in Q3 by Hensel’s Lemma. �

Proposition 5.6. Let f(x) = x3 + Bx + C and C′ as above. Assume 7 | B and
7 || C. Then C′(Q7) 6= ∅.
Proof. We check with Magma [BCP97] that after writing B = 7b and C = 7c we
get non-singular points over F7 for all the values of b, c ∈ F7 unless c = 0.

�

For primes p dividing the discriminant we prove the existence of Qp-points under
the following conditions.

Proposition 5.7. Let p 6= 2, 3, 7 be a prime number. If p | B and p || C then
C′(Qp) 6= ∅.
Proof. One can check with Magma [BCP97] that writing B = pb and C = pc we get
that F ≡ y2(−3969c2xy − 441b2y2 + 2646bcyz − 3969c2z2) mod p which contains
non-singular point over Fp if c 6= 0. �

Let us address now the question about rational points.

Proposition 5.8. In cases 4. and 8. C′(Q) = ∅.
Proof. From Theorem 4.2 we know that these twists do not come from elliptic
curves, i.e. they are not of the form XE(7). Then Theorem 4.1 tells us that those
twists have no non-cuspidal rational point. Finally, Proposition 4.3 gives us the
non existence of cuspidal rational points. �

Proposition 5.9. In case 3., if C′ 6≃Q C and the field of definition is not the field
6.0.214375.1 (with the [LMF22] notation) then C′(Q) = ∅.
Proof. The same proof than in previous proposition applies except that we have to
remove the special case in which the elliptic curve has j-invariant 33 · 5 · 75/27, in
this case the 7-torsion is defined over the field 6.0.214375.1 or a quadratic extension
of it and we need to remove the single case in which the conditions of Proposition
4.3 are not hold, namely for the Klein quartic that it does have rational cuspidal
points. �

As a consequence of the previous results, we conclude:

Theorem 5.10. Let f(x) = x3 +Bx+C ∈ Z[x] be an irreducible polynomial such
that all of the following conditions hold
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(i) 2 ∤ C,
(ii) 3 ∤ B,
(iii) 7 | B and 7 || C,
(iv) p | B and p || C for any prime p 6= 2, 3, 7 dividing −4B3 − 27C2.
(v) The splitting field Qf 6≃ Q(ζ7) nor the field 6.0.214375.1.

Then f gives a twist of the Klein quartic (constructed as in Subsection 5.1) that is
a counterexample to the Hasse principle.

Remark 5.11. Notice that the condition (iii) in Theorem 5.10 implies that f is
irreducible because it is Eisenstein at 7.

In order to get polynomials f satisfying all the conditions above we need B =
±2a7b

∏

peii and C = ±3c7
∏

pi with ei, b ≥ 1, a, c ≥ 0, the pi 6= 2, 3, 7 prime
and such that the discriminant is only divisible by the primes 7 and pi. This last
condition yields an equality of the form: 33+2c ± 1 = 23a+273b−2p3ei−2

i . In order
to get the left hand size of this equality to be 0 modulo 4 we need the first sign to
be positive, and in order to be 0 modulo 7 we need 3 | c. Actually, if c = 3c′ with

c′ 6= 3 mod 7 then 4 || 33+6c′ + 1 and 7 || 33+6c′ + 1.

Conjecture 5.12. There are infinitely many values of c′ 6= 3 mod 7 such that all
the primes different from 2 and 7 in the factorization of 33+6c′ + 1 appear with an
exponent that is 1 mod 3.

Any such c′ produces a factorization 33+6c′ +1 = 227p3ei−2
i giving B = −7

∏

peii
and C = ±33c

′

7
∏

pi satisfying conditions (i)− (iv) in Theorem 5.10.

Example 5.13. After checking condition (v) in Theorem 5.10, we find that the
polynomials x3 − 7x± 7, x3 − 7 · 19 · 37x± 33 · 7 · 19 · 37 and x3 − 7 · 31 · 61 · 271x±
36 ·7 ·31 ·61 ·271 yield different twists of the Klein quartic that are counterexamples
to the Hasse principle.

Accordingly to the folklore conjecture that for curves, under the assumption
that Sha(J) is finite, the Brauer-Manin obstruction is the only obstruction to the
Hasse principle, we should have that the obstruction to have rational points of the
counter-examples given in Example 5.13 is due to this phenomenon. If we could
find a degree 1 rational divisor in their jacobian, we could indeed prove it under
the finite Sha assumption [Sch99, p. 37]. Unfortunately, we were not able to find
such a divisor.
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