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SEMICLASSICAL GEVREY OPERATORS IN THE
COMPLEX DOMAIN

by Michael HITRIK, Richard LASCAR,
Johannes SJÖSTRAND & Maher ZERZERI

Abstract. — We study semiclassical Gevrey pseudodifferential operators, act-
ing on exponentially weighted spaces of entire holomorphic functions. The symbols
of such operators are Gevrey functions defined on suitable I-Lagrangian submani-
folds of the complexified phase space, which are extended almost holomorphically in
the same Gevrey class, or in some larger space, to complex neighborhoods of these
submanifolds. Using almost holomorphic extensions, we obtain uniformly bounded
realizations of such operators on a natural scale of exponentially weighted spaces
of holomorphic functions for all Gevrey indices, with remainders that are optimally
small, provided that the Gevrey index is less than or equal to 2.

Résumé. — Nous étudions les opérateurs pseudo-différentiels de classe Gevrey
dans le cadre semi-classique, agissant sur des sous-espaces L2 à poids exponen-
tiels de fonctions holomorphes. Les symboles de tels opérateurs sont des fonc-
tions de classe Gevrey définies sur des sous-variétés I-lagrangiennes appropriées du
complexifié de l’espace des phases, qui sont prolongés par des extensions presque-
analytiques dans la même classe de Gevrey, ou dans un espace fonctionnel plus
large, définies sur des voisinages complexes de ces sous-variétés. En utilisant les ex-
tensions presque-analytiques et la méthode de déformation de contours dans le plan
complexe, nous obtenons – avec des choix de contours adéquats « bon contours »
– des réalisations uniformément bornées de ces opérateurs sur une famille « natu-
relle » de sous-espaces L2 à poids exponentiels de fonctions holomorphes pour tous
les indices de Gevrey, avec des estimées optimales des restes sous la condition que
l’indice de Gevrey est inférieur ou égal à 2.

1. Introduction and statement of results

Starting with the pioneering work [24], the study of (pseudo)differential
operators with Gevrey coefficients has had a long tradition in the PDE
theory, see also [15, 16, 17, 25]. The work [16], in particular, develops the

Keywords: Semiclassical Gevrey pseudodifferential operator, almost holomorphic exten-
sion, FBI transform, Bargmann space, strictly plurisubharmonic weight function.
2020 Mathematics Subject Classification: 30D60, 30E05, 32W05, 32W25, 35S99.



1270 M. HITRIK, R. LASCAR, J. SJÖSTRAND & M. ZERZERI

semiclassical Weyl calculus of pseudodifferential operators on Rn, with
symbols having Gevrey regularity in both the position and momentum
variables. Now it is well known that the Weyl quantization assumes a par-
ticularly simple and convenient form when passing from the Schrödinger
representation in the real setting to the FBI–Bargmann representation in
the complex domain, conjugating the operators by a suitable globally de-
fined metaplectic FBI transformation, see [12, 33]. Once transported to the
FBI transform side, pseudodifferential operators in the Weyl quantization
act on exponentially weighted spaces of entire holomorphic functions of the
form

(1.1) HΦ0(Cn) = Hol(Cn) ∩ L2(Cn, e−2Φ0/h L(dx)),

where the weight function Φ0 is quadratic strictly plurisubharmonic, and
L(dx) is the Lebesgue measure on Cn. The purpose of the present work
is to apply some of the HΦ-techniques to the study of semiclassical Weyl
pseudodifferential operators with Gevrey symbols in the complex domain,
showing a number of fairly general results concerning their symbolic and
mapping properties. While the present work does not contain any appli-
cations to the study of propagation of singularities in Gevrey spaces, we
expect the results established here to be useful in this respect and plan to
return to these aspects in the near future. Let us now proceed to describe
the precise assumptions and state the main results.

Let s > 1. The (global) Gevrey class Gs
b (Rm) consists of all functions

u ∈ C∞(Rm) such that there exist A > 0, C > 0 such that for all α ∈ Nm,
we have

(1.2) |∂αu(x)| ⩽ AC |α|(α!)s, x ∈ Rm.

Let us also set Gs
0(Rm) = Gs

b (Rm) ∩ C∞
0 (Rm).

Associated to the quadratic form Φ0 in (1.1) is the real linear subspace

(1.3) ΛΦ0 =
{(

x,
2
i
∂Φ0

∂x
(x)
)
, x ∈ Cn

}
⊂ C2n = Cn

x × Cn
ξ ,

which can be viewed as the image of the real phase space R2n under a
complex linear canonical transformation, see [12, 31, 33]. Identifying ΛΦ0

linearly with Cn
x , via the projection map πx : ΛΦ0 ∋ (x, ξ) 7→ x ∈ Cn

x , we
may define the Gevrey spaces Gs

b (ΛΦ0), Gs
0(ΛΦ0). Given a ∈ Gs

b (ΛΦ0), for
some s > 1, and u ∈ Hol(Cn) such that u(x) = Oh,N (1)⟨x⟩−N eΦ0(x)/h for
all N ∈ N, let us introduce the semiclassical Weyl quantization of a acting
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SEMICLASSICAL GEVREY OPERATORS 1271

on u,

(1.4) aw
Γ (x, hDx)u(x) = 1

(2πh)n

∫∫
Γ(x)

e i
h (x−y)·θa

(
x+ y

2 , θ

)
u(y) dy∧dθ.

Here 0 < h ⩽ 1 is the semiclassical parameter and Γ(x) ⊂ C2n
y,θ is the

natural integration contour given by

(1.5) θ = 2
i
∂Φ0

∂x

(
x+ y

2

)
.

In this work, we shall consider deformations of the standard weight Φ0,
and to this end let Φh ∈ C1,1(Cn; R) be such that

(1.6) ∥∇k(Φh − Φ0)∥L∞(Cn) ⩽
1
C
h1− 1

s , k = 0, 1, 2,

for some C > 0 sufficiently large. Our first main result is as follows – see also
Theorem 3.1 and Theorem 3.3 below for a slightly more general statement.

Theorem 1.1. — Let ω = h1− 1
s and introduce the following 2n-dimen-

sional Lipschitz contour and x ∈ Cn,

(1.7) ΓΦh
ω (x) : θ = 2

i
∂Φh

∂x

(
x+ y

2

)
+ ifω(x− y), y ∈ Cn,

where

(1.8) fω(z) =


z, |z| ⩽ ω,

ω
z

|z|
, |z| > ω.

Let a ∈ Gs
b (ΛΦ0), for some 1 < s ⩽ 2, and let ã ∈ Gs

b (C2n) be an almost
holomorphic extension of a such that supp ã ⊂ ΛΦ0 +BC2n(0, C0), for some
C0 > 0. We have

(1.9) aw
Γ (x, hDx) − ãw

ΓΦh
ω

(x, hDx) = O(1) exp
(

− 1
O(1)h

− 1
s

)
:

L2(Cn, e−2Φh/h L(dx)) → L2(Cn, e−2Φh/h L(dx)),

where the realization

ãw

ΓΦh
ω

(x, hDx)u(x) = 1
(2πh)n

∫∫
ΓΦh

ω (x)
e i

h (x−y)·θ ã

(
x+ y

2 , θ

)
u(y) dy ∧ dθ

satisfies

(1.10) ãw

ΓΦh
ω

(x, hDx) = O(1) : HΦh
(Cn) → L2(Cn, e−2Φh/h L(dx)).

Here we have set, similarly to (1.1),

HΦh
(Cn) = Hol(Cn) ∩ L2(Cn, e−2Φh/h L(dx)).

TOME 73 (2023), FASCICULE 3



1272 M. HITRIK, R. LASCAR, J. SJÖSTRAND & M. ZERZERI

In the range of Gevrey indices s > 2, it turns out that we have to accept
remainders that are larger than the ones in (1.9), when obtaining uniformly
bounded realizations of the operator aw

Γ (x, hDx) on the weighted spaces
HΦ0(Cn), HΦh

(Cn). The following is the second main result of this work.

Theorem 1.2. — Let a ∈ Gs
b (ΛΦ0), for some s > 2, and let ã ∈ Gs

b (C2n)
be an almost holomorphic extension of a as in Theorem 1.1. Let ΓΦh

h1/2(x)
be the 2n-dimensional Lipschitz contour defined as in (1.7), (1.8), with ω

replaced by h1/2 ⩾ ω. We have

(1.11) aw
Γ (x, hDx) − ãw

ΓΦh

h1/2
(x, hDx) = O(1) exp

(
− 1

O(1)h
− 1

2s−2

)
:

L2(Cn, e−2Φh/h L(dx)) → L2(Cn, e−2Φh/h L(dx)),

where

(1.12) ãw

ΓΦh

h1/2
(x, hDx) = O(1) : HΦh

(Cn) → L2(Cn, e−2Φh/h L(dx)).

As is seen in the statements of Theorem 1.1 and Theorem 1.2, a crucial
role in this work is played by the existence of a Gevrey almost holomor-
phic extension of a symbol a ∈ Gs

b (ΛΦ0), off the maximally totally real
linear subspace ΛΦ0 ⊂ C2n to a complex neighborhood. As discussed in
Section 2, the existence of such an extension may be obtained by solving
a Borel problem in the Gevrey space, relying on the work [1] by Carleson.
Alternatively, the existence of an extension ã ∈ C∞

b (C2n) of a ∈ Gs
b (ΛΦ0)

such that

(1.13)
∣∣∂ã(ρ)

∣∣ ⩽ O(1) exp
(

− 1
O(1) dist

(
ρ,ΛΦ0

)− 1
s−1

)
, ρ ∈ C2n,

may be obtained by adapting a construction of Mather [21], see also [3],
working with the Fourier inversion formula with a cutoff.

We would like to emphasize that, as explained in Section 3, replacing the
Lipschitz contour ΓΦ0

ω (x) in Theorem 1.1 by a contour of the form

θ = 2
i
∂Φ0

∂x

(
x+ y

2

)
+ i
C

(x− y), C > 0,

natural in the holomorphic category [12, 31, 33], leads only to remainder
estimates of the form

R = O(1) exp
(

− 1
O(1)h

− 1
2s−1

)
: HΦ0(Cn) → L2(Cn, e−2Φ0/h L(dx)),

and thus, working with a “mixed” contour such as ΓΦ0
ω (x), staying closer

to ΛΦ0 , seems essential when obtaining accurate remainder estimates. The
price that we have to pay for working with the contour ΓΦh

ω (x) in (1.7),

ANNALES DE L’INSTITUT FOURIER



SEMICLASSICAL GEVREY OPERATORS 1273

(1.8) is that the realizations of our Gevrey pseudodifferential operators
along such contours are uniformly bounded in the range 1 < s ⩽ 2 only.
Closely related to this is the well known observation [16, 17] that while the
class of operators of the form aw

Γ (x, hDx), with a ∈ Gs
b (ΛΦ0), is stable under

the composition, the standard asymptotic Weyl calculus does not lead to
some sharp control of the remainders in the semiclassical expansions – see
also (3.151) below.

Let us conclude the introduction by mentioning several works where the
Gevrey regularity questions were studied, which have provided some of
the motivation for the present paper. The recent work [9] gives a detailed
treatment of the Gevrey regularity framework on arbitrary real analytic
compact manifolds, motivated by the microlocal study of dynamical zeta
functions and trace formulas for Anosov flows. In the context of scattering
theory, Gevrey regularity questions were considered in [7, 26]. We would
finally like to refer to [28, 29, 30] and to [15, 18] for results on the prop-
agation of analytic and Gevrey singularities for boundary value problems,
see also [32]. To the best of our knowledge, the question whether the result
of [18] on the non-diffraction of Gevrey 3 singularities holds true in the
complement of a Gevrey 3 obstacle is still open, see [17].

The plan of the paper is as follows. Section 2 is devoted to the discussion
of almost holomorphic extensions of Gevrey symbols. We also establish an
approximate uniqueness of almost holomorphic extensions satisfying (1.13).
In Section 3 we study semiclassical Gevrey pseudodifferential operators
acting on HΦ-spaces, establishing Theorem 1.1 and Theorem 1.2, using
almost holomorphic extensions and contour deformations. The section is
concluded by the discussion of the composition of semiclassical Gevrey
operators, by the methods of phase symmetries and contour deformations.

Acknowledgements

M.H. is very grateful to András Vasy for a helpful discussion.

2. Gevrey spaces and almost holomorphic extensions

In this section we shall recall some well known facts concerning almost
holomorphic extensions. One can consult [6] for a recent very general treat-
ment with plenty of references, in particular to the pioneering work of
Dyn’kin [4]. See also [5, 17, 22], and [3].

TOME 73 (2023), FASCICULE 3



1274 M. HITRIK, R. LASCAR, J. SJÖSTRAND & M. ZERZERI

Let Ω ⊂ Cd be open and put ΩR = Ω ∩ Rd. A function ũ ∈ C∞(Ω) is
called an almost holomorphic extension of u ∈ C∞(ΩR) if

(i) ũ∣∣y=0
= u, and

(ii) ∂ũ =
d∑

j=1
∂zj

ũ dzj is flat on y = 0.

Here, we identify Cd with R2d in the usual way: Cd ∋ z = x+ iy, (x, y) ∈
R2d. Recall also that for j = 1, . . . , d, we have ∂zj

= 1
2 (∂xj

− i∂yj
), ∂zj

=
1
2 (∂xj + i∂yj ), ∂zj − ∂zj

= −i∂yj and ∂zj + ∂zj
= ∂xj . If ũ is an almost

holomorphic extension of u, the conditions (i) and (ii) above determine the
asymptotic (Taylor) expansion of ũ on y = 0, i.e.,

ũ(x+ iy) =
∑

|α|<N

i|α|

α! u
(α)(x)yα + O(|y|N ),

locally uniformly on neigh(ΩR,Ω) for every N ⩾ 1. Here we write

neigh(A,B)

as an abbreviation for “some neighborhood of A in B”, and u(α) = ∂αu.
The function ũ is an almost holomorphic extension of u if and only if ũ

solves the Borel problem:

(2.1)
(
∂α

y ũ
)∣∣y=0

= i|α|u(α), for all α ∈ Nd.

Indeed, we have already checked the necessity of (2.1), and if (2.1) is sat-
isfied by ũ ∈ C∞(Cd) then ũ∣∣y=0

= u and more generally
(
∂γ

x∂
β
y ũ
)∣∣y=0

=

i|β|u(β+γ) for all β, γ ∈ Nd. It follows that ∂zj
ũ is flat on y = 0 as

(
∂γ

x∂
β
y ∂zj

ũ
)∣∣y=0

= i|β|

2
(
u(β+γ+ej) + i2u(β+γ+ej)) = 0.

Here ej denotes the multi-index (δj
k)1⩽k⩽d ∈ Nd, where δj

k is the Kronecker
delta.

Let U be an open subset of Rd, and let s ⩾ 1. The Gevrey space Gs(U)
is the space of functions u ∈ C∞(U) such that for every K ⋐ U , there exist
A > 0, C > 0 such that

(2.2)
∣∣∂αu(x)| ⩽ AC |α|(α!)s, for all x ∈ K, α ∈ Nd.

The class G1(U) is the space of real analytic functions in U , while for s > 1,
we have Gs

0(U) := Gs(U) ∩ C∞
0 (U) ̸= {0}, see [13, Theorem 1.3.5]. We also

let Gs
b (Rd) ⊂ Gs(Rd) be the space of functions u ∈ C∞(Rd) satisfying

ANNALES DE L’INSTITUT FOURIER



SEMICLASSICAL GEVREY OPERATORS 1275

the Gevrey condition (2.2) uniformly on all of Rd: we have u ∈ Gs
b (Rd)

precisely when there exist A > 0, C > 0 such that for all α ∈ Nd, we have

(2.3) |∂αu(x)| ⩽ AC |α|(α!)s, x ∈ Rd.

2.1. Almost holomorphic extensions via a result of Carleson

We assume now that u ∈ Gs
0(Rd) with s > 1. In view of the above

remark, one has to solve the Borel problem (2.1) in Gs(R2d) in order to
obtain an almost holomorphic extension ũ of u in the same Gevrey class.

This may be achieved through the Carleson theorem with a suitable
choice of the weight function, see [1, Theorem 2 and Example 2]. This
theorem is a corollary of a more general result which has allowed to resolve
the issue known as a “universal moment problem”. See [1, Theorem 1]. We
get

Proposition 2.1. — Let u ∈ Gs
0(Rd). Then u has an almost holomor-

phic extension ũ ∈ Gs(Cd).

Clearly, ũ vanishes to infinite order on Rd \ supp(u). Let χ ∈ Gs
0(Cd) be

equal to 1 near supp(u). Then χũ ∈ Gs
0(Cd) is also an almost holomorphic

extension of u. This gives the following variant:

Proposition 2.2. — Let ΩR, Ω be as above and let u ∈ Gs
0(ΩR). Then

u has an almost holomorphic extension ũ ∈ Gs
0(Ω).

With the help of Gevrey cutoffs and partitions of unity, we get the fol-
lowing variant:

Proposition 2.3. — Let ΩR, Ω be as above and let u ∈ Gs(ΩR). Then
u has an almost holomorphic extension ũ ∈ Gs(Ω).

In the case when u ∈ Gs
b (Rd), we obtain that there exists an almost holo-

morphic extension ũ ∈ Gs
b (Cd), which is supported in a bounded tubular

neighborhood of Rd ⊂ Cd.
Let ũ ∈ Gs

0(Cd) be an almost holomorphic extension of u ∈ Gs
0(Rd). In

view of Taylor’s formula, there exist C > 0, A > 0 such that

(2.4)
∣∣∣(∂ũ)(z)∣∣∣ ⩽ CAN

(
N !)s−1∣∣Im(z)

∣∣N , for all N ∈ N.

Here, Im(z) denotes the imaginary part of z ∈ Cd. Taking the infimum
over N one gets

(2.5)
∣∣∣(∂ũ)(z)∣∣∣ = O(1) exp

(
− 1

O(1)
∣∣Im(z)

∣∣− 1
s−1

)
,

TOME 73 (2023), FASCICULE 3



1276 M. HITRIK, R. LASCAR, J. SJÖSTRAND & M. ZERZERI

where O(1) denotes a number whose modulus is bounded by some large
positive constant, positive when appearing in a denominator.

Now if ũ1, ũ2 are two almost holomorphic extensions of u as above, we
have in view of (2.1) and of Taylor’s formula∣∣(ũ1 − ũ2

)
(z)
∣∣ ⩽ CAN

(
N !)s−1∣∣Im(z)

∣∣N ,
for all N ∈ N. Taking the infimum over N , we get,

(2.6)
∣∣∣(ũ1 − ũ2

)
(z)
∣∣∣ = O(1) exp

(
− 1

O(1)
∣∣Im(z)

∣∣− 1
s−1

)
.

In the analogous context of Proposition 2.3, we get (2.6) locally uniformly
on Ω.

2.2. Fourier transforms

The Fourier transform of a function u ∈ S(Rd) is given by

Fu(ξ) = û(ξ) =
∫

Rd

e−iy·ξ u(y) dy, where y · ξ =
d∑

j=1
yjξj ,

and we have the Fourier inversion formula,

u(x) = (2π)−d

∫
Rd

eix·ξ û(ξ) dξ.

If s > 1 and u ∈ Gs
0(Rd), there exists a constant C > 0 such that

(2.7)
∣∣û(ξ)

∣∣ ⩽ C exp
(

− 1
C

|ξ| 1
s

)
, for every ξ ∈ Rd.

Indeed, if N ∈ 2N, we have F
(

(1 − ∆) N
2 u
)

(ξ) = (1 + |ξ|2) N
2 û(ξ), and

it follows that
∣∣û(ξ)

∣∣ ⩽ AN+1(1 + |ξ|2)− N
2 (N !)s. It then suffices to choose

N ∼
(

|ξ|
A

) 1
s and apply Stirling’s formula.

Conversely, from the Fourier inversion formula, we see that if u ∈ S(Rd)
and (2.7) holds, then u ∈ Gs

b (Rd).

2.3. Almost holomorphic extensions in the spirit of Mather

Let u ∈ Gs
0(Rd) and let ũ be an almost holomorphic extension of u

satisfying (2.5). If ξ ∈ Rd, |ξ| ⩾ 1, we may assume after an orthogonal

ANNALES DE L’INSTITUT FOURIER



SEMICLASSICAL GEVREY OPERATORS 1277

change of coordinates, that ξ/|ξ| = ed = (0, . . . , 0, 1) ∈ Rd and in view of
Stokes’ formula we have

û(ξ) =
∫

Π−
d

e−iz·ξ (∂zd
ũ
)
(x′, z) dx′ ∧ dzd ∧ dzd,

where Π−
d =

{
(x′, zd) ∈ Rd−1 × C; Im(zd) ⩽ 0

}
.

From (2.5) we get
∣∣∂zd

ũ(z)
∣∣ = O(1) exp

(
− 1

O(1) |Im(z)|−
1

s−1

)
for all

z ∈ Π−
d . Then,∣∣û(ξ)

∣∣ = O(1) exp
(

− inf
0⩽t<∞

(
t|ξ| + C̃t−

1
s−1
))

,

for some C̃ > 0. A straightforward calculation shows that the infimum over
the positive half axis is attained at

tξ =
(

C̃

s− 1

) s−1
s

|ξ|−
s−1

s ,

and the corresponding value of the infimum is equal to

C̃
s−1

s
s

(s− 1) s−1
s

|ξ| 1
s ,

which implies that

(2.8)
∣∣û(ξ)

∣∣ = O(1) exp
(

− 1
O(1) |ξ| 1

s

)
, for all ξ ∈ Rd.

Conversely, assume that (2.8) holds (which is the case when u ∈ Gs
0(Rd)).

Following [21], we look for an extension ũ(z) = ũ(x+ iy) by truncation in
Fourier’s inversion formula. Let us start with the formal identity,

ũ(z) = 1
(2π)d

∫
Rd

eiξ·x−ξ·y û(ξ) dξ = O(1)
∫

Rd

e|ξ||y|− |ξ|
1
s

C dξ,

where C is a positive constant. For |y| ⩽ |ξ|−(s−1)/s/(2C), |ξ| ⩾ 1, the inte-
grand in the last integral is ⩽ exp

(
−|ξ|1/s/(2C)

)
. Let ψ ∈ C∞

0 ([0, 1/(2C)))
be equal to 1 near 0 and set

(2.9) ũ(z) = 1
(2π)d

∫
Rd

ψ
(

|y| |ξ|
s−1

s

)
û(ξ) ei(x+iy)·ξ dξ

so that ũ ∈ C∞(Cd). We have

(2.10) ∂ũ(z) = 1
(2π)d

∫
(∂rψ)

(
|y| |ξ|

s−1
s

)
|ξ|

s−1
s ∂z(|y|)û(ξ) ei(x+iy)·ξ dξ.

TOME 73 (2023), FASCICULE 3



1278 M. HITRIK, R. LASCAR, J. SJÖSTRAND & M. ZERZERI

Here, ∂z(|y|) = O(1) and on the support of (∂rψ)
(
|y| |ξ|(s−1)/s

)
we have

for some constant C̃ > 2C,
1
C̃

⩽ |y| |ξ|
s−1

s ⩽
1

2C ,

i.e.

(2.11)
(

1
C̃|y|

) 1
s−1

⩽ |ξ| 1
s ⩽

(
1

2C|y|

) 1
s−1

.

We conclude that for ũ given in (2.9),

(2.12) |∂ũ(z)| ⩽ O(1) exp
(

−|Im z|−
1

s−1 /O(1)
)
, |Im z| ⩽ O(1).

We get the same estimates for ∂α
z ∂

β
z ∂ũ, for all α, β ∈ Nd.

2.4. Approximate uniqueness via a Carleman estimate

The existence of almost holomorphic extensions was established in the
previous subsections by appealing to the result of Carleson [1] and also
by Mather’s method [21]. We shall consider here almost holomorphic ex-
tensions which are not necessarily Gevrey and we shall get approximate
uniqueness through a Carleman estimate of Hörmander type.

To get the desired uniqueness estimate at a given point z ∈ Cd with
Im z ̸= 0, we can restrict the attention to the complex line

(2.13) Re z + C Im z,

so it will suffice to consider the one-dimensional case.
Let Ω ⋐ C be open connected with smooth boundary. Let ϕ ∈ C∞(Ω; R)

be strictly subharmonic,

(2.14) ∂2
z zϕ > 0 on Ω.

To the operators

(2.15)
P := Dz = 1

i ∂z = 1
2(Dx + iDy)

and P ∗ := Dz = 1
i ∂z = 1

2(Dx − iDy),

we associate the symbols

ζ = 1
2(ξ + iη) and ζ = 1

2(ξ − iη),
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respectively. Here z = x + iy with (x, y) ∈ R2. We introduce the corre-
sponding conjugated operators:

Pϕ = eϕ P e−ϕ and P ∗
ϕ = e−ϕ P ∗ eϕ .

More explicitly,

(2.16)
{
Pϕ = 1

i (∂z − ∂zϕ),
P ∗

ϕ = 1
i (∂z + ∂zϕ).

We think of Pϕ as P , acting on e−ϕ L2(Ω) = L2(Ω; e2ϕ(z) L(dz)
)
, where

L(dz) is the Lebesgue measure on C. Formally, we have

(2.17) [P ∗
ϕ , Pϕ] = −[∂z + ∂zϕ, ∂z − ∂zϕ] = 2∂2

z zϕ = 1
2∆x,y(ϕ).

For v ∈ H1
0 (Ω) (i.e. of class H1(Ω), vanishing on the boundary), we have,

using the L2(Ω)-norm and the scalar product,

(2.18) ∥Pϕv∥2 = (P ∗
ϕPϕv|v) = ([P ∗

ϕ , Pϕ]v|v) + ∥P ∗
ϕv∥2,

and (2.17) leads to the Carleman estimate

(2.19) 2(∂2
z zϕ v|v) ⩽ ∥Pϕv∥2,

i.e.

(2.20)
√

2
∥∥∥(∂2

z zϕ
) 1

2 v
∥∥∥ ⩽

∥∥∥Pϕ v
∥∥∥,

or after removing the conjugation,

(2.21)
√

2
∥∥∥ eϕ

(
∂2

z zϕ
) 1

2 v
∥∥∥ ⩽

∥∥∥ eϕ ∂z v
∥∥∥, for v ∈ H1

0 (Ω).

We may notice here that in Hörmander’s approach to ∂, we work in the
weighted space eϕ L2(Ω) and get a priori estimates for P ∗

ϕ , leading to exis-
tence results for the operator Pϕ, see [14, Chapter 4].

We shall next discuss the choice of ϕ. Assume that Ω is contained in the
open upper half-plane with Ω ∩ R = [−1, 1]. We know that a Gs function
u, defined near [−1, 1], has an extension ũ ∈ C∞(Ω), which satisfies

(2.22) ∂ũ(z) = O(1) exp
(

− 1
C0

(Im z)− 1
s−1

)
,

for some C0 > 0. In the following we shall assume that C0 = 1 for sim-
plicity. In order to apply (2.20), (2.21), we would like to have a suitable
modification of

(2.23) ϕ(z) = (Im z)− 1
s−1 .
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Recalling that ∂2
z z = 1

4 ∆Re z,Im z, we compute

∂Im zϕ = −(s− 1)−1(Im z
)−(1+ 1

s−1 )
,

and then

(2.24) ∆Re z,Im zϕ = ∂2
Im z,Im zϕ = s

(s− 1)2 (Im z)−(2+ 1
s−1 ) > 0.

We would like to apply (2.21) to the difference ũ1 − ũ2 of two almost
holomorphic extensions of the same function u, both satisfying (2.22) and
run into two technical difficulties:

(i) the function ϕ in (2.23) is not smooth up to the real part of the
boundary of Ω,

(ii) the difference (ũ1 − ũ2) does not vanish on all of ∂Ω, but only on
∂Ω ∩ R.

The first difficulty is easy to resolve by replacing ϕ by ϕε(z) = ϕ(z + iε)
and letting ε tend to 0. To resolve the second difficulty, one can multiply
(ũ1 − ũ2) by a cutoff function that vanishes near ∂Ω \ ]−1, 1[ and we then
need to modify ϕ in this region.

In general, let f(z) be smooth and real valued, defined near some point
z0 ∈ C where f(z0) = 0 and df(z0) ̸= 0. Consider

(2.25) ϕ(z) = f(z)− 1
s−1

in
{
z ∈ neigh(z0,C); f(z) > 0}. Then

∂zϕ(z) = −(s− 1)−1f(z)−(1+ 1
s−1 ) ∂zf(z),

∂2
z zϕ(z) = f(z)−(2+ 1

s−1 ) s

(s− 1)2

(
|∂zf |2 − s− 1

s
f(z) ∂z zf(z)

)
,(2.26)

generalizing (2.24), where f(z) was equal to Im z.
Let ψ ∈ C∞

0
(
]−1, 1[; [0, 1]

)
be equal to one on [− 1

2 ,
1
2 ] and < 1 outside

that interval, let g(t) = 1 − ψ(t), and put

(2.27) fε(z) = Im z + ag(Re z) + ε,

(2.28) ϕε(z) = fε(z)− 1
s−1 .

Here 0 < a ≪ 1 is fixed and ε ⩾ 0 is a small parameter. We notice that
(1) ϕε ∈ C∞(Ω) when ε ⩾ 0, ϕε ∈ C∞(Ω) when ε > 0,
(2) the function ε 7−→ fε is increasing, while ε 7−→ ϕε is decreasing.
(3) We have by (2.26) that

(2.29) ∂2
z zϕε(z) ≍ fε(z)−(2+ 1

s−1 ),

uniformly for (z, ε) ∈ Ω × ]0, ε0], for some ε0 > 0.
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By (2), we have

ϕε ⩽ ϕ0 =
(

Im z + ag(Re z)
)− 1

s−1
,

and ϕ0 ∈ C∞(Ω \ [− 1
2 ,

1
2 ]). Let χ ∈ C∞(Ω) be equal to one near suppψ

and vanish near ∂Ω\] − 1, 1[.
Let ũ1, ũ2 ∈ C∞(Ω) be two almost holomorphic extensions of the same

Gs function u, defined near Ω ∩ R, which satisfy (2.22) (with C0 = 1 for
simplicity), so that

(2.30) ∂(ũ1 − ũ2) = O(1) exp
(

−
(
Im z

)− 1
s−1
)

in Ω,

(2.31) ũ1 − ũ2 = 0 on [−1, 1].

With χ as above, let

(2.32) v := χ(ũ1 − ũ2) ∈ C∞(Ω).

Then

(2.33) v|∂Ω = 0,

(2.34) ∂zv = (ũ1 − ũ2)∂zχ+ χ∂z(ũ1 − ũ2) = O(1) e−ϕ0 in Ω.

Combining this with (2.21), (2.29), (2.30) and letting ε → 0, we get

(2.35)
∥∥∥(f0(z)

)− 1
2 (2+ 1

s−1 ) eϕ0 v
∥∥∥

L2(Ω)
⩽ O(1)

∥∥∥ eϕ0 ∂z v
∥∥∥

L2(Ω)
.

Let W be a small complex neighborhood of [−1/2, 1/2] so that

ϕ0(z) =
(

Im z
)− 1

s−1 and χ = 1 in W.

Then

(2.36)
∥∥∥(Im z)− 1

2 (2+ 1
s−1 ) exp

(
(Im z)− 1

s−1
)

(ũ1 − ũ2)
∥∥∥

L2(W )

⩽ O(1)
∥∥eϕ0 ∂z v

∥∥
L2(Ω) .

By (2.34), the right hand side of (2.36) is O(1). More explicitly, from (2.36),
(2.34), and the fact that ϕ0 is bounded on supp(∂χ) and ⩽ ϕ, we have∥∥∥(Im z)− 1

2 (2+ 1
s−1 ) exp

(
(Im z)− 1

s−1
)

(ũ1 − ũ2)
∥∥∥

L2(W )

⩽ O(1)
(∥∥∥exp

(
(Im z)− 1

s−1

)
∂(ũ1 − ũ2)

∥∥∥
L2(Ω)

+ ∥ũ1 − ũ2∥L2(supp ∂χ)

)
,

and we have proved the following slightly more general statement:
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Lemma 2.4. — Let Ω ⋐ C be open with smooth boundary, contained in
the open upper half plane, with Ω ∩ R = [−1, 1]. Let ϕ be given by (2.23).
Then there exists an open neighborhood W of [−1/2, 1/2] in Ω such that

(2.37)
∥∥∥(Im z)− 1

2 (2+ 1
s−1 ) eϕ(ũ1 − ũ2)

∥∥∥
L2(W )

⩽ O(1)
(∥∥eϕ ∂(ũ1 − ũ2)

∥∥
L2(Ω) + ∥ũ1 − ũ2∥L2(Ω)

)
,

for all (ũ1, ũ2) ∈ (H1(Ω))2 with ũ1 = ũ2 on Ω ∩ R and ∂(ũ1 − ũ2) ∈
e−ϕ L2(Ω).

This applies to the case when ũ1, ũ2 are two almost holomorphic exten-
sions of the same function u ∈ Gs(neigh([−1, 1],R)), satisfying (2.22) with
C0 = 1.

We observed after (2.12) that if u ∈ Gs
0(Rd), and ũ is given in (2.9), then

for all α, β ∈ Nd, there exists Cα,β > 0 such that

(2.38) |∂∂α
z ∂

β
z ũ(z)| ⩽ Cα,β exp

(
−|Im z|

1
s−1 /C0

)
,

where C0 > 0 is independent of α, β.
In the one-dimensional case, if ũ1, ũ2 are two almost holomorphic exten-

sions of the same function u ∈ Gs
0 , satisfying (2.38) (assuming for simplicity

that C0 = 1), we can apply (2.37) with ũj replaced by ∂α
z ∂

β
z ũj and see that

(2.39)
∥∥∥(Im z)− 1

2 (2+ 1
s−1 ) eϕ ∂α

z ∂
β
z (ũ1 − ũ2)

∥∥∥
L2(W )

⩽ Oα,β(1).

Remaining in the one-dimensional case, we shall next show how to get
from (2.39) an estimate of a weighted L∞-norm, having in mind that if
u ∈ H2(D(0, 1)), then in view of the Sobolev embedding theorem, we have

(2.40) ∥u∥L∞(D(0,1/2)) ⩽ O(1)∥u∥H2(D(0,1)).

Because of the presence of exponential weights in (2.39), we shall work in
very small discs D(z, r) with the property that eϕ(ζ) ≍ eϕ(z) for ζ ∈ D(z, r).
We have ∇ϕ(z) = O(1)(Im z)−1−1/(s−1) and ϕ(ζ)−ϕ(z) = O(1) if |ζ−z| ⩽
(Im z)1+1/(s−1) and 0 < Im z ≪ 1. Thus, with

(2.41) r = r(z) = (Im z)1+ 1
s−1 ,

we have

(2.42) eϕ(ζ) ≍ eϕ(z) when 0 < Im z ≪ 1, ζ ∈ D(z, r),

and we have
(Im ζ)− 1

2 (2+ 1
s−1 ) ≍ (Im z)− 1

2 (2+ 1
s−1 ),
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in the same set. For ζ ∈ D(z, r), write ζ = z+ rw, w ∈ D(0, 1). Using that

∂ζ = r−1∂w, ∂ζ = r−1∂w, L(dζ) = r2L(dw),

and replacing W in (2.39) by the smaller set D(z, r) (so we have to take z
in a slightly shrunk copy of W ) we get from (2.39),

(2.43) (Im z)− 1
2 (2+ 1

s−1 ) eϕ(z) r(z)1−α−β
∥∥∥∂α

w∂
β
w(ũ1 − ũ2)

∥∥∥
L2(D(0,1))

⩽ Oα,β(1),

where ũ1 − ũ2 = (ũ1 − ũ2)(z+rw) is viewed as a function of w. Using (2.43)
for α + β ⩽ 2, we get a bound for ∥ũ1 − ũ2∥H2(D(0,1)) (in the w-variable)
and with (2.40), we get

(Im z)− 1
2 (2+ 1

s−1 ) eϕ(z) r(z) ∥ũ1 − ũ2∥L∞(D(0,1/2)) ⩽ O(1).

With w = 0, we obtain

(2.44) (Im z)− 1
2 (2+ 1

s−1 ) eϕ(z) r(z) |ũ1(z) − ũ2(z)| ⩽ O(1),

uniformly on W (after a slight decrease of W or a slight increase of the
original W ). Using (2.39) for higher derivatives, gives an extension,

(2.45) (Im z)− 1
2 (2+ 1

s−1 ) eϕ(z) r(z)
∣∣∣∂α

z ∂
β
z (ũ1 − ũ2)(z)

∣∣∣ ⩽ O(1),

uniformly on W , for every (α, β) ∈ N2. Here we notice that by (2.41),

(2.46) (Im z)− 1
2 (2+ 1

s−1 )r(z) = (Im z)
1

2(s−1) .

We now return to the d-dimensional case and apply the observation
around (2.13) about the reduction to the one-dimensional case. From this
and (2.45), (2.46), we get the main result of this subsection,

Theorem 2.5. — Let u ∈ Gs
0(Rd), let N0 ∈ N, and let ũ1, ũ2 be two

almost holomorphic extensions of u such that (cf. (2.12) and the subsequent
remark) for all α, β ∈ Nd with |α| + |β| ⩽ N0 + 2, we have for j = 1, 2,

(2.47)
∣∣∣∂α

z ∂
β
z ∂ũj(z)

∣∣∣ ⩽ O(1) exp
(

−|Im z|
1

s−1 /C0

)
, |Im z| ⩽ 1/O(1),

where C0 > 0. Then,

(2.48)
∣∣∣∂α

z ∂
β
z (ũ1(z) − ũ2(z))

∣∣∣
⩽ O(1)|Im z|−

1
2(s−1) exp

(
−|Im z|

1
s−1 /C0

)
, |Im z| ⩽ 1/O(1),

for all α, β ∈ Nd with |α| + |β| ⩽ N0. We get the same conclusion for
u ∈ Gs

b (Rd).
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3. Pseudodifferential operators with Gevrey symbols in
the complex domain

3.1. Almost holomorphic extensions and contour deformations

In the beginning of this subsection, we shall recall, following [12, 33],
some basic facts concerning semiclassical pseudodifferential operators in
the Weyl quantization, acting on quadratic exponentially weighted spaces
of holomorphic functions (Bargmann spaces).

Let Φ0 be a strictly plurisubharmonic quadratic form on Cn. Associated
to Φ0 we introduce the real 2n-dimensional linear subspace

(3.1) ΛΦ0 =
{(

x,
2
i
∂Φ0

∂x
(x)
)
, x ∈ Cn

}
⊂ C2n = Cn

x × Cn
ξ .

The linear subspace ΛΦ0 is I-Lagrangian and R-symplectic, in the sense
that the restriction of the complex symplectic (2,0) form

(3.2) σ =
n∑

j=1
dξj ∧ dxj

on Cn
x × Cn

ξ to ΛΦ0 is real and non-degenerate. In particular, ΛΦ0 is max-
imally totally real. Let

(3.3) S(ΛΦ0) =
{
a ∈ C∞(ΛΦ0); ∂αa = Oα(1) ∀α ∈ N2n

}
.

We shall let symbols a ∈ S(ΛΦ0) depend on the semiclassical parameter
h ∈ (0, 1], provided that a(·;h) belongs to a bounded set in S(ΛΦ0), when
h varies in (0, 1].

Let a ∈ S(ΛΦ0) and let u ∈ Hol(Cn) be such that

u(x) = Oh,N (1)⟨x⟩−N e
Φ0(x)

h ,

for all N ⩾ 0. We set

(3.4) aw
Γ (x, hDx)u(x)

:= 1
(2πh)n

∫∫
Γ(x)

e i
h (x−y)·θ a

(
x+ y

2 , θ;h
)
u(y) dy ∧ dθ,

where Γ(x) ⊂ Cn
y,θ is the natural 2n-dimensional contour of integration

given by

(3.5) θ = 2
i
∂Φ0

∂x

(
x+ y

2

)
, y ∈ Cn.
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The following consequence of Taylor’s formula,

(3.6) Re
(

2∂xΦ0

(
x+ y

2

)
· (x− y)

)
= Φ0(x) − Φ0(y),

valid for the real valued quadratic form Φ0, assures that the integral in (3.4)
converges absolutely. Let us also recall from [12, 33] that aw

Γ (x, hDx)u ∈
Hol(Cn).

It is established in [12, 33] that the operator aw
Γ (x, hDx) extends to a

uniformly bounded map

(3.7) aw
Γ (x, hDx) = O(1) : HΦ0(Cn) → HΦ0(Cn).

Here HΦ0(Cn) is the Bargmann space defined by

(3.8) HΦ0(Cn) = Hol(Cn) ∩ L2(Cn, e−2Φ0/h L(dx)),

with L(dx) being the Lebesgue measure on Cn. The proof of the mapping
property (3.7) given in [12, 33] proceeds by introducing an almost holomor-
phic extension ã ∈ C∞(C2n) of a ∈ S(ΛΦ0), such that ∂αã ∈ L∞(C2n) for
all α, and with the property supp ã ⊂ ΛΦ0 + BC2n(0, C̃), for some C̃ > 0.
One then performs a contour deformation argument, letting Γt(x) ⊂ C2n

y,θ,
t ∈ [0, 1], be the contour given by

(3.9) θ = 2
i
∂Φ0

∂x

(
x+ y

2

)
+ it(x− y), y ∈ Cn,

and using Stokes’ formula to get

(3.10) aw
Γ (x, hDx)u = ãw

Γ1(x, hDx)u+Ru.

Here

ãw
Γ1(x, hDx)u(x) = 1

(2πh)n

∫∫
Γ1(x)

e i
h (x−y)·θ ã

(
x+ y

2 , θ;h
)
u(y) dy ∧ dθ,

and writing

(3.11) ãw
Γ1(x, hDx)u(x) =

∫
kΓ1(x, y;h)u(y)L(dy),

we see, using (3.6) and (3.9), that the effective kernel

e− Φ0(x)
h kΓ1(x, y;h) e

Φ0(y)
h

of the operator ãw
Γ1(x, hDx) satisfies

(3.12) e− Φ0(x)
h kΓ1(x, y;h) e

Φ0(y)
h = O(1)h−n e− 1

h |x−y|2
.

Therefore, by Schur’s lemma, we get

(3.13) ãw
Γ1(x, hDx) = O(1) :L2(Cn, e−2Φ0/hL(dx)) →L2(Cn, e−2Φ0/hL(dx)),
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and it is shown in [33, Proposition 1.2], [12, Section 1.4] that the remainder
R in (3.10) satisfies

(3.14) R = O(h∞) : HΦ0(Cn) → L2(Cn, e−2Φ0/h L(dx)).

We are now ready to start the discussion of the Gevrey case. When
doing so, let us notice first that identifying ΛΦ0 linearly with Cn

x , via the
projection map ΛΦ0 ∋ (x, ξ) 7→ x ∈ Cn

x , we may define the Gevrey spaces
Gs(ΛΦ0), Gs

0(ΛΦ0), and Gs
b (ΛΦ0), for s > 1.

Given a ∈ Gs
b (ΛΦ0) ⊂ S(ΛΦ0), for some s > 1, we would like to estab-

lish an analogue of (3.10), (3.13), (3.14), replacing the deformed contour
Γ1(x) in (3.9) by another one, if necessary, where we expect the Gevrey
smoothness of a to allow us to strengthen (3.14) to the estimate

(3.15) R= O(1) exp
(

− 1
O(1)h

− 1
s

)
: HΦ0(Cn) →L2(Cn, e−2Φ0/h L(dx)).

Specifically, we would like the effective kernel of the remainder to be

(3.16) O(h−n) exp
(

− 1
O(1)h

− 1
s

)
.

The motivation for such a decay estimate, as h → 0+, comes from the
characterization of the space Gs

0(Rd) via decay properties of the Fourier
transforms, see Subsection 2.2.

Let ã ∈ Gs
b (C2n) be an almost holomorphic extension of a ∈ Gs

b (ΛΦ0),
such that supp ã ⊂ ΛΦ0 +BC2n(0, C̃), for some C̃ > 0. The existence of such
an extension has been established in Section 2, and we have the following
natural analogue of (2.5),

(3.17)
∣∣∂ã(x, ξ)

∣∣⩽O(1) exp
(
− 1

O(1) dist
(
(x, ξ),ΛΦ0

)− 1
s−1

)
, (x, ξ) ∈ C2n.

Proceeding similarly to the C∞ case, let us first perform a contour de-
formation to the contour Γ1(x) given in (3.9). We then still have (3.10),
(3.13), and we only need to take a closer look at the remainder R in (3.10),
making use of the full strength of (3.17).

Stokes’ formula gives that

(3.18) Ru(x) = 1
(2πh)n

∫∫∫
G[0,1](x)

e i
h (x−y)·θu(y) ∂

(̃
a

(
x+ y

2 , θ

))
∧dy∧dθ,

where G[0,1](x) ⊂ Cn
y × Cn

θ is the (2n + 1)-dimensional contour, given
by (3.9), parametrized by (t, y) ∈ [0, 1] × Cn. Along G[0,1](x), we have for
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1 ⩽ j ⩽ n,

(3.19)

dθj = 2
i

n∑
k=1

Φ′′
0,xjxk

1
2 dyk + 2

i

n∑
k=1

Φ′′
0,xjxk

1
2 dyk − itdyj +i(xj −yj) dt

=
n∑

k=1
O(1) dyk +

n∑
k=1

O(1) dyk + i(xj − yj) dt,

and when computing ∂
(
ã( x+y

2 , θ)
)

∧ dy ∧ dθ, all the terms have to con-
tain precisely one factor of dt. This form can therefore be expressed as
|x − y|O(1)L(dy) dt, and using (3.6), (3.9), and (3.17), we see that the
expression in (3.18) takes the form

(3.20) Ru(x) = O(1)
hn

∫ 1

0
dt
∫

Cn

e
1
h (Φ0(x)−Φ0(y)−t|x−y|2) e−C1

(
t|x−y|

)− 1
s−1

|x− y|u(y)L(dy),

for some C1 > 0. Here we have also used that along G[0,1](x), we have

dist
((x+ y

2 , θ
)
,ΛΦ0

)
= O(1)t |x− y| .

Writing
Ru(x) =

∫
r(x, y;h)u(y)L(dy),

we obtain that the effective kernel e− Φ0(x)
h r(x, y;h) e

Φ0(y)
h of the operator

R in (3.20) satisfies

(3.21) e− Φ0(x)
h r(x, y;h) e

Φ0(y)
h

= O(1)h−n

∫ 1

0
e−C1(t|x−y|)− 1

s−1 e− t
h |x−y|2

|x− y| dt

⩽ O(1)h−n

∫ 1

0
t−1/2 e−C1(t|x−y|)− 1

s−1 e− t
2h |x−y|2

dt

⩽ O(1)h−n sup
t∈[0,1]

(
exp

(
−C

h
(t |x− y|)2 − C1(t |x− y|)− 1

s−1

))
.

Here C, C1 > 0.
Setting

(3.22) g(σ) = C

h
σ2 + C1σ

− 1
s−1 , for σ > 0,

we can rewrite (3.21) as follows,

(3.23) e− Φ0(x)
h r(x, y;h) e

Φ0(y)
h ⩽ O(1)h−n exp

(
− inf

σ>0
g(σ)

)
.
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A straightforward computation shows that the infimum of g over the posi-
tive half axis is attained at the unique point

(3.24) σmin =
(

C1h

2C(s− 1)

) s−1
2s−1

,

and the corresponding value of the infimum is equal to

(3.25) inf
σ>0

g(σ) = C

h
σ2

min + C1σ
− 1

s−1
min = 1

O(1)h
− 1

2s−1 .

We get, using (3.23) and (3.25),

(3.26) e− Φ0(x)
h r(x, y;h) e

Φ0(y)
h ⩽ O(h−n) exp

(
− 1

O(1)h
− 1

2s−1

)
,

which is a strictly larger upper bound that the desired one in (3.16), for
all s > 1. We may therefore regard the discussion above as an indication of
the fact that the deformed contour Γ1(x) in (3.9), natural in the analytic
case [12, 31, 33], is not quite adapted to the Gevrey theory.

As a new attempt, we shall now consider the following piecewise smooth
Lipschitz “mixed” contour Γω(x) ⊂ C2n

y,θ, defined as follows,

(3.27) Γω(x) : θ = 2
i
∂Φ0

∂x

(
x+ y

2

)
+ ifω(x− y), y ∈ Cn,

with

(3.28) fω(z) =


z, |z| ⩽ ω,

ω
z

|z|
, |z| > ω.

Here 0 < ω < σmin is to be chosen, with σmin given in (3.24).
In view of (3.6), (3.27), and (3.28), we have along Γω(x),

(3.29)
Re (i(x− y) · θ) + Φ0(y) − Φ0(x) = − Re ((x− y) · fω(x− y))

= −Fω(x− y),
where

(3.30) 0 ⩽ Fω(z) =
{

|z|2, |z| ⩽ ω,

ω|z|, |z| > ω.

The 2n-dimensional contours Γ(x) in (3.5) and Γω(x) in (3.27) are ho-
motopic, with the homotopy given by the family of contours,

(3.31) Γω(x, t) : θ = 2
i
∂Φ0

∂x

(
x+ y

2

)
+ itfω(x− y), y ∈ Cn,

for t ∈ [0, 1]. Let also G[0,1],ω(x) ⊂ C2n
y,θ be the (2n+1)-dimensional contour

given by (3.31), parametrized by (t, y) ∈ [0, 1] × Cn. When u ∈ Hol(Cn)
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is such that u(x) = Oh,N (1)⟨x⟩−N e
Φ0(x)

h , for all N ⩾ 0, we have, similarly
to (3.10), by an application of Stokes’ formula,

(3.32) aw
Γ (x, hDx)u = ãw

Γω
(x, hDx)u+Ru.

Here

(3.33) ãw
Γω

(x, hDx)u(x)

= 1
(2πh)n

∫∫
Γω(x)

e i
h (x−y)·θ ã

(
x+ y

2 , θ;h
)
u(y) dy ∧ dθ,

and

(3.34) Ru(x)

= 1
(2πh)n

∫∫∫
G[0,1],ω(x)

e i
h (x−y)·θ u(y) ∂

(
ã

(
x+ y

2 , θ

))
∧ dy ∧ dθ.

We shall now estimate the effective kernel of the operator R in (3.34). When
doing so, we notice that along G[0,1],ω(x), we have in view of (3.31),

(3.35) dist
((

x+ y

2 , θ

)
,ΛΦ0

)
⩽ O(1)t |fω(x− y)| ,

and using also (3.6), (3.29), (3.17), and (3.35), we conclude that, similarly
to (3.20), we can write

(3.36) Ru(x)

= O(1)
hn

∫ 1

0
dt
∫

Cn

e 1
h (Φ0(x)−Φ0(y)−tFω(x−y)) e−C1

(
t|fω(x−y)|

)− 1
s−1

u(y)L(dy),

for some C1 > 0. Setting

Ru(x) =
∫
r(x, y;h)u(y)L(dy),

we obtain from (3.36), (3.28), and (3.30) that the absolute value of the
effective kernel e−Φ0(x)/h r(x, y;h) eΦ0(y)/h of the operator R in (3.34) does
not exceed

(3.37) O(1)
hn

sup
t∈[0,1]


exp

(
− C

h (t|x− y|)2 − C1(t |x− y|)− 1
s−1

)
, |x− y|⩽ω,

exp
(
− C

h ω t |x− y| − C1(t ω)− 1
s−1

)
, |x− y|>ω.

Here C, C1 > 0.
We shall now discuss the choice of the parameter 0 < ω < σmin in (3.27),

(3.28), and here our goal is to achieve an upper bound of the form (3.16)
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for (3.37). First, in the region |x− y| ⩽ ω, we have in view of (3.37),

e−Φ0(x)/h r(x, y;h) eΦ0(y)/h ⩽ O(1)h−n exp
(

− inf
t∈[0,1]

g(t |x− y|)
)
,

where the function g has been defined in (3.22). Since g is decreasing on
the interval (0, σmin), it suffices to choose 0 < ω < σmin so that

(3.38) g(ω) ⩾ 1
O(1)h

− 1
s .

To this end, recalling (3.22), let us choose 0 < ω such that ω− 1
s−1 =

1
O(1)h

− 1
s , i.e.,

(3.39) ω = 1
C0
h1− 1

s ≪ σmin.

The choice (3.39) assures that (3.38) holds, and let us also notice that the
first term in the expression for g(ω) satisfies

C

h
ω2 ≪ h− 1

s ,

so that

g(ω) ≍ h− 1
s .

Here and in what follows we write A ≍ B for A,B ∈ R if A, B have the
same sign (or vanish), and we have A = O(B) and B = O(A).

We conclude therefore that in the region |x− y| ⩽ ω, with ω given
in (3.39), we have

(3.40)
e−Φ0(x)/h r(x, y;h) eΦ0(y)/h ⩽ O(1)h−n exp (−g(|x− y|))

⩽ O(1)h−n exp
(

− 1
O(1)h

− 1
s

)
.

Next, a straightforward computation shows that in the region

(3.41) ω < |x− y| ⩽ C1

C(s− 1)C
s

s−1
0 ,

the function

(3.42) [0, 1] ∋ t 7→ C

h
ωt |x− y| + C1 (tω)− 1

s−1
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is decreasing, and therefore using (3.37) we obtain in the region (3.41),

(3.43) e−Φ0(x)/h r(x, y;h)eΦ0(y)/h

⩽ O(1)h−n exp
(

−C

h
ω |x− y| − C1ω

− 1
s−1

)
⩽ O(1)h−n exp

(
− 1

O(1)h
− 1

s

)
.

Here we have also used (3.39). Finally, in the exterior region

(3.44) C1

C(s− 1)C
s

s−1
0 < |x− y| ,

the function in (3.42) achieves its infimum at the unique critical point

tmin =
(

C1

C(s− 1)

) s−1
s C0

|x− y|(s−1)/s
∈ (0, 1),

and the corresponding critical value is of the form

(3.45) 1
O(1)h

− 1
s |x− y|1/s

.

We get therefore in the region (3.44),

(3.46) e−Φ0(x)/h r(x, y;h) eΦ0(y)/h

⩽ O(1)h−n exp
(

− 1
O(1)h

− 1
s |x− y|1/s

)
⩽ O(1)h−n exp

(
− 1

O(1)h
− 1

s

)
.

Combining (3.40), (3.43), and (3.46), we conclude that the effective kernel
of the operator R in (3.34) obeys an upper bound of the form (3.16),
provided that ω is chosen as in (3.39).

It is now easy to derive precise bounds on the operator norms of the
operators in (3.33) and (3.34), viewed as linear continuous maps on the
L2-space L2(Cn, e−2Φ0/h L(dx)). Indeed, an application of Schur’s lemma
together with (3.40), (3.43), and (3.46), shows first that the operator norm
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of R in (3.34) does not exceed

(3.47) O(1)h−n

∫
|x|⩽ω

exp(−g(|x|))L(dx)

+ O(1)h−n

∫
ω⩽|x|⩽O(1)

exp
(

−C1ω
− 1

s−1

)
L(dx)

+ O(1)h−n

∫
O(1)⩽|x|

exp
(

− 1
O(1)h

− 1
s |x|1/s

)
L(dx)

= I1 + I2 + I3,

with the function g defined in (3.22). Here we clearly have

Ij = O(1) exp
(

− 1
O(1)h

− 1
s

)
, j = 2, 3,

in view of (3.39), and when estimating the first contribution in (3.47), we
obtain in view of (3.40),

I1 ⩽ O(1)h−n exp
(

− 1
O(1)h

− 1
s

)
⩽ O(1) exp

(
− 1

2O(1)h
− 1

s

)
.

We get therefore,

(3.48) R = O(1) exp
(

− 1
O(1)h

− 1
s

)
:

L2(Cn, e−2Φ0/h L(dx)) → L2(Cn, e−2Φ0/h L(dx)).

Next, turning the attention to the operator ãw
Γω

(x, hDx) in (3.33), and
writing

ãw
Γω

(x, hDx)u(x) =
∫
kΓω

(x, y;h)L(dx),

we get in view of (3.29),

(3.49) e−Φ0(x)/h kΓω (x, y;h) eΦ0(y)/h ⩽ O(1)h−n exp (−Fω(x− y)/h) .
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Recalling (3.30), in view of Schur’s lemma, we only have to control the L1

norm

(3.50) O(1)h−n

∫
exp

(
−Fω(x)

h

)
L(dx)

⩽ O(1)h−n

∫
|x|⩽ω

exp
(

−|x|2

h

)
L(dx)

+ O(1)h−n

∫
|x|⩾ω

exp
(

−ω |x|
h

)
L(dx)

= O(1) + O(1) h
n

ω2n
= O(1) + O(1)h−n(1− 2

s ).

We conclude that

(3.51) ãw
Γω

(x, hDx) = O(1) max
(

1, h−n(1− 2
s )
)

:

L2(Cn, e−2Φ0/h L(dx)) → L2(Cn, e−2Φ0/h L(dx)),

and in particular, this operator is O(1) precisely when 1 < s ⩽ 2.
We may summarize the discussion above in the following theorem, which

is the main result of this subsection.

Theorem 3.1. — Let Φ0 be a strictly plurisubharmonic quadratic form
on Cn and let a ∈ Gs

b (ΛΦ0), for some s > 1. Let ã ∈ Gs
b (C2n) be an

almost holomorphic extension of a such that supp ã ⊂ ΛΦ0 + BC2n(0, C),
for some C > 0, or more generally, let ã ∈ C1

b (C2n) be an extension of a
with the same support properties, such that (3.17) holds. Let furthermore
Γω(x) ⊂ C2n

y,θ be the piecewise smooth Lipschitz contour given in (3.27),
(3.28), where 0 < ω satisfies (3.39). We have

(3.52) aw
Γ (x, hDx) = ãw

Γω
(x, hDx) +R,

where the operator ãw
Γω

(x, hDx) in (3.33) satisfies

(3.53) ãw
Γω

(x, hDx) = O(1) max
(

1, h−n(1− 2
s )
)

:

HΦ0(Cn) → L2(Cn, e−2Φ0/h L(dx)),

and

(3.54) R = O(1) exp
(

− 1
O(1)h

− 1
s

)
:

L2(Cn, e−2Φ0/h L(dx)) → L2(Cn, e−2Φ0/h L(dx)).

Recalling the approximate uniqueness of almost holomorphic extensions,
see (2.6), (2.48), we also get the following result.
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Corollary 3.2 (Dependence on the choice of an almost holomorphic
extension). — Let Φ0 be a strictly plurisubharmonic quadratic form on
Cn and let a ∈ Gs

b (ΛΦ0), for some s > 1. Let ã1, ã2 ∈ C∞
b (C2n) be

two almost holomorphic extensions of a, such that for j = 1, 2, we have
supp ãj ⊂ ΛΦ0 +BC2n(0, C), for some C > 0, and also,

(3.55)
∣∣∂α∂β∂ãj(ρ)

∣∣ ⩽ O(1) exp
(

− 1
O(1)dist

(
ρ,ΛΦ0

)− 1
s−1

)
, ρ ∈ C2n,

for |α| + |β| ⩽ 2. Then we have

(3.56) (ã1)w
Γω

(x, hDx) = (ã2)w
Γω

(x, hDx) +R,

where

(ãj)w
Γω

(x, hDx)

= O(1) max
(

1, h−n(1− 2
s )
)

: HΦ0(Cn) → L2(Cn, e−2Φ0/h L(dx)),

for j = 1, 2, and

R = O(1) exp
(

− 1
O(1)h

− 1
s

)
:

L2(Cn, e−2Φ0/h L(dx)) → L2(Cn, e−2Φ0/h L(dx)).

Remark. — We have, for (y, θ) ∈ Γω(x), in view of (3.27), (3.28),

dist
((

x+ y

2 , θ

)
,ΛΦ0

)
⩽ ω = 1

C0
h1− 1

s .

When working in the Gevrey category, we should therefore stay closer to
the real domain ΛΦ0 , than in the analytic case, see (3.9).

Remark. — As we saw in the beginning of this subsection, using analytic
contours, such as Γ1(x) in (3.9), leads to estimates of the form (3.26) for
the effective kernels of the remainders, that are not quite precise. Closely
related to this observation is the phenomenon of the loss of Gevrey smooth-
ness in stationary phase expansions, see [17, 26]. To illustrate it in a simple
setting, let a ∈ Gs

0(Rd), for some s > 1. Arguing as in [8, Exercise 2.4], we
see that there exists C > 0 such that for all N ∈ N, we have

(3.57) 1
(2πh)d/2

∫
e−|x|2/2h a(x) dx =

N−1∑
j=0

hj

j!

(
∆
2

)j

a(0) +RN (h),

where

(3.58) |RN (h)| ⩽ CN+1(N !)2s−1hN .
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Choosing N ∼ (1/Ch)1/(2s−1) leads to the remainder estimate of the form

O(1) exp
(

− 1
O(1)h

− 1
2s−1

)
.

We shall finish this subsection by discussing the dependence of the real-
ization ãw

Γω
on the choice of the parameter ω, such that ω ≍ h1− 1

s . To this
end, let 0 < ωj , j = 1, 2, be such that

(3.59) ωj ≍ h1− 1
s , j = 1, 2,

and let us introduce the natural homotopy between the contours Γω1 and
Γω2 , given by

Γωt(x) : θ = 2
i
∂Φ0

∂x

(
x+ y

2

)
+ i fωt(x− y), y ∈ Cn,

with ωt = (1−t)ω1+tω2, t ∈ [0, 1]. Introducing also the (2n+1)-dimensional
contour

⋃
t∈[0,1]

Γωt
(x) and applying Stokes’ formula, we get

(3.60) ãw
Γω1

(x, hDx)u = ãw
Γω2

(x, hDx)u+Ru.

Here, similarly to (3.36), the remainder R takes the form

(3.61) Ru(x) = O(1)
hn

∫ 1

0
dt
∫

Cn

e
1
h (Φ0(x)−Φ0(y)−Fωt (x−y))e−C1|fωt (x−y)|− 1

s−1

× u(y)L(dy),

for some C1 > 0. To control the norm of the operator

R : L2(Cn, e−2Φ0/h L(dx)) → L2(Cn, e−2Φ0/h L(dx)),

in (3.61), it suffices, in view of Schur’s lemma, to estimate the L1 norm

(3.62) O(1)h−n

∫ 1

0
dt
∫

e− Fωt (x)
h −C1|fωt (x)|− 1

s−1
L(dx) = I1 + I2.

Here

(3.63) I1 = O(1)h−n

∫ 1

0
dt
∫

|x|⩽ωt

exp
(

−|x|2

h
− C1 |x|−

1
s−1

)
L(dx),

and

(3.64) I2 = O(1)h−n

∫ 1

0
dt
∫

ωt<|x|
exp

(
−|x|ωt

h
− C1ω

− 1
s−1

t

)
L(dx).
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We have

I1 = O(1)h−n

∫ 1

0
dt exp

(
−C1ω

− 1
s−1

t

) ∫
|x|⩽ωt

exp
(

−|x|2

h

)
L(dx)

⩽ O(1)
∫ 1

0
exp

(
−C1ω

− 1
s−1

t

)
dt ⩽ O(1) exp

(
− 1

O(1)h
− 1

s

)
,

since ω
−1/(s−1)
t ⩾

1
O(1)h

−1/s, for 0 ⩽ t ⩽ 1. Furthermore, making the

change of variables y = xωt/h in (3.64), we get

(3.65)
I2 ⩽ O(1)hn

∫ 1

0
ω−2n

t exp
(

−C1ω
− 1

s−1
t

)
dt

⩽ O(1) exp
(

− 1
O(1)h

− 1
s

)
.

We conclude that

(3.66) ãw
Γω1

(x, hDx) − ãw
Γω2

(x, hDx) = O(1) exp
(

− 1
O(1)h

− 1
s

)
:

L2(Cn, e−2Φ0/h L(dx)) → L2(Cn, e−2Φ0/h L(dx)),

provided that 0 < ωj are such that (3.59) holds.

3.2. Deformations of exponential weights

Let a ∈ Gs
b (ΛΦ0), where s > 1, and let ã ∈ Gs

b (C2n) be an almost holomor-
phic extension of a such that supp ã ⊂ ΛΦ0 +BC2n(0, C), for some C > 0.
In Theorem 3.1, it was established that

(3.67) ãw
Γω

(x, hDx)

= O(1) max
(

1, h−n(1− 2
s )
)

: HΦ0(Cn) → L2(Cn, e−2Φ0/h L(dx)).

Here the ΓΦ0
ω (x) := Γω(x) ⊂ C2n

y,θ has been introduced in (3.27), (3.28),
with the parameter 0 < ω given in (3.39). The Gevrey smoothness of a
allows us to consider deformations of the quadratic weight function Φ0 –
see [23, 31, 33] for this idea in the analytic case, where 1

O(1) -perturbations

of Φ0 are allowed, and [2, 10] for the C∞-theory, where deformations should
be O(h |log h|)-close to Φ0. See also [20, Chapter 3] for the Gevrey case.

Let Φh = Φ0 + ψ ∈ C1,1(Cn; R) be such that

(3.68) ∥∇kψ∥L∞(Cn) ⩽
ω

O(1) , k = 0, 1, 2,
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where the implicit constant in (3.68) is large enough, and let ΓΦh
ω (x) ⊂

C2n
y,θ be the following Lipschitz contour adapted to the weight Φh, defined

analogously to (3.27),

(3.69) ΓΦh
ω (x) : θ = 2

i
∂Φh

∂x

(
x+ y

2

)
+ ifω(x− y), y ∈ Cn.

Here fω has been defined in (3.28), and 0 < ω satisfies (3.39). We would
like to replace the contour ΓΦ0

ω (x) in (3.33) by ΓΦh
ω (x), and to this end we

introduce the natural intermediate family of contours,

(3.70) ΓΦt,h
ω (x) : θ = 2

i
∂Φt,h

∂x

(
x+ y

2

)
+ ifω(x− y), y ∈ Cn,

where Φt,h := (1−t)Φ0+tΦh, t ∈ [0, 1]. Let G[0,1](x) ⊂ C2n
y,θ be the (2n+1)-

dimensional contour given by (3.70), parametrized by (t, y) ∈ [0, 1] × Cn,
and write, by an application of Stokes’ formula,

(3.71) ãw

ΓΦ0
ω

(x, hDx)u(x) − ãw

ΓΦh
ω

(x, hDx)u(x)

= 1
(2πh)n

∫∫∫
G[0,1](x)

e i
h (x−y)·θ u(y)∂

(
ã

(
x+ y

2 , θ

))
∧ dy ∧ dθ

=: Ru(x).

Here u ∈ HΦ0(Cn). Along G[0,1](x), we have in view of (3.68), (3.70),

(3.72) dist
((

x+ y

2 , θ

)
,ΛΦ0

)
⩽ O(1)t

∣∣∣∣∇ψ(x+ y

2

)∣∣∣∣+ |fω(x− y)| ⩽ O(1)ω,

and combining (3.72) with (3.17), (3.29), (3.68), and (3.70), we get that
Ru(x) is equal to

(3.73) O(1)
hn

∫ 1

0
dt
∫

e
1
h

(
Φ0(x)−Φ0(y)−Fω(x−y)+ tω|x−y|

O(1)

)
× exp

(
− h− 1

s

O(1)

)
u(y)L(dy).

The absolute value of the effective kernel of the operator R in (3.71) does
not exceed therefore

O(1)h−n exp
(

− 1
O(1)h

− 1
s

)
exp

(
1
h

(
−Fω(x− y) + ω |x− y|

O(1)

))
.
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Recalling (3.30) and making use of Schur’s lemma, we conclude, in view
of (3.71), that

(3.74) ãw

ΓΦ0
ω

(x, hDx) − ãw

ΓΦh
ω

(x, hDx) = O(1) exp
(

− 1
O(1)h

− 1
s

)
:

HΦ0(Cn) → L2(Cn, e−2Φ0/h L(dx)).

In view of (3.67), we have now established the first part of the following
result.

Theorem 3.3. — Let Φh = Φ0 + ψ ∈ C1,1(Cn; R) be such that (3.68)
holds and let us introduce the contour ΓΦh

ω (x) ⊂ C2n
y,θ, defined in (3.69).

The realization

ãw

ΓΦh
ω

(x, hDx)u(x) = 1
(2πh)n

∫∫
ΓΦh

ω (x)
e i

h (x−y)·θ ã

(
x+ y

2 , θ;h
)
u(y) dy∧dθ

enjoys the following mapping properties:
(i) We have

(3.75) ãw

ΓΦh
ω

(x, hDx) = O(1) max
(

1, h−n(1− 2
s )
)

:

HΦ0(Cn) → L2(Cn, e−2Φ0/h L(dx)).

(ii) We have

(3.76) ãw

ΓΦh
ω

(x, hDx) = O(1) max
(

1, h−n(1− 2
s )
)

:

HΦh
(Cn) → L2(Cn, e−2Φh/h L(dx)).

Here we have set HΦh
(Cn) = Hol(Cn) ∩ L2(Cn, e−2Φh/h L(dx)).

Proof. — We only need to check the validity of the second statement,
and when doing so, let us consider along ΓΦh

ω (x),

(3.77) − Φh(x) + Re (i(x− y) · θ) + Φh(y)

= −Φh(x) + Re
(

2∂Φh

∂x

(x+ y

2

)
· (x− y)

)
+ Φh(y) − Fω(x− y)

= −ψ(x) +
〈

∇ψ
(
x+ y

2

)
, x− y

〉
R2n

+ ψ(y) − Fω(x− y).

Here we have used (3.6) on the last line. We have

(3.78) −ψ(x)+
〈

∇ψ
(
x+ y

2

)
, x− y

〉
R2n

+ψ(y)⩽ 2∥∇ψ∥L∞(Cn) |x−y| ,
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and an application of Taylor’s formula gives that

(3.79) − ψ(x) +
〈

∇ψ
(
x+ y

2

)
, x− y

〉
R2n

+ ψ(y)

=
∫ 1

0
(1 − t)ψ′′

(
x+ y

2 − t

(
x− y

2

))
(x− y)

2 · (x− y)
2 dt

−
∫ 1

0
(1 − t)ψ′′

(
x+ y

2 + t

(
x− y

2

))
(x− y)

2 · (x− y)
2 dt

⩽
1
4∥∇2ψ∥L∞(Cn) |x− y|2 .

Here the Hessian and the scalar product are taken in the sense of R2n.
Writing

ãw

ΓΦh
ω

(x, hDx)u(x) =
∫
kΓΦh

ω
(x, y;h)u(y)L(dy),

we obtain, in view of (3.68), (3.77), (3.78), and (3.79), that the effective
kernel of ãw

ΓΦh
ω

(x, hDx) satisfies

(3.80) e− Φh(x)
h kΓΦh

ω
(x, y;h) e

Φh(y)
h

⩽ O(1)h−n exp
(

1
h

(
−Fω(x− y) + ω |x− y|

O(1) min (1, |x− y|)
))

⩽ O(1)h−n exp
(

− 1
2hFω(x− y)

)
,

provided that the implicit constant in (3.68) is sufficiently large. The point-
wise estimate (3.80), on the level of effective kernels, is therefore of the
same kind as (3.49), and arguing as in the proof of Theorem 3.1, we get
the operator norm bound (3.76). □

Combining Theorem 3.1 and Theorem 3.3, we get

(3.81) aw
Γ (x, hDx) = ãw

ΓΦh
ω

(x, hDx) +R,

where

R = O(1) exp
(

− 1
C
h− 1

s

)
: HΦ0(Cn) → L2(Cn, e−2Φ0/h L(dx)),

for some C > 0, and therefore

(3.82) R = O(1) exp
(

− 1
2Ch

− 1
s

)
: HΦh

(Cn) → L2(Cn, e−2Φh/h L(dx)),

provided that the implicit constant in (3.68) is large enough. Another ap-
plication of Theorem 3.3 together with (3.81), (3.82) allows us to conclude
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that the operator aw
Γ (x, hDx) extends to a uniformly bounded map

(3.83) aw
Γ (x, hDx) = O(1) : HΦh

(Cn) → HΦh
(Cn),

for 1 < s ⩽ 2, and we can view the operator ãw

ΓΦh
ω

(x, hDx) as the correspon-
ding uniformly bounded realization.

In the remainder of this subsection, we shall be concerned with the prob-
lem of finding uniformly bounded realizations of the operator aw

Γ (x, hDx)
in the region s > 2. As we shall see, we shall then have to accept a remain-
der which is larger than the one in (3.82). Let us start with the following
largely heuristic remark.

Remark. — In Theorem 3.1, we have established that

aw
Γ (x, hDx) − ãw

Γω
(x, hDx) = O(1) exp

(
− 1

O(1)h
− 1

s

)
:

L2(Cn, e−2Φ0/h L(dx)) → L2(Cn, e−2Φ0/h L(dx)),

where the realization ãw
Γω

(x, hDx) is uniformly bounded on the weighted
space L2(Cn, e−2Φ0/h L(dx)) in the range 1 < s ⩽ 2, while we only have

ãw
Γω

(x, hDx) = O(1)h−n(1− 2
s ) :

L2(Cn, e−2Φ0/h L(dx)) → L2(Cn, e−2Φ0/h L(dx)),

for s > 2. Our purpose here is to address the question whether there exists
a (Lipschitz) contour Γ̃(x) ⊂ C2n

y,θ of dimension 2n, such that the following
two properties,

(3.84) aw
Γ (x, hDx) − ãw

Γ̃
(x, hDx) = O(1) exp

(
− 1

O(1)h
− 1

s

)
:

L2(Cn, e−2Φ0/h L(dx)) → L2(Cn, e−2Φ0/h L(dx)),

and

(3.85) ãw

Γ̃
(x, hDx) = O(1) :

L2(Cn, e−2Φ0/h L(dx)) → L2(Cn, e−2Φ0/h L(dx)),

hold, for s > 2. Indeed, let us pose the following question.

Question. — Let s > 2. Is there a (Lipschitz) function f : Cn → Cn

such that with the choice

Γ̃(x) : θ = 2
i
∂Φ0

∂x

(
x+ y

2

)
+ if(x− y), y ∈ Cn,

the properties (3.84), (3.85) hold?
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The following discussion seems to indicate that the answer to the question
is likely to be negative. Let us try f of the form

f(z) = f̂(|z|) z
|z|
,

for a suitable continuous f̂ ⩾ 0 on [0,∞). The absolute value of the effective
kernel of the realization ãw

Γ̃
(x, hDx) then does not exceed

(3.86) O(1)h−n exp
(

− 1
h

|x− y| f̂(|x− y|)
)
,

and in view of Schur’s lemma, the property (3.85) holds provided that

(3.87) h−n

∫
e− 1

h |x|f̂(|x|) L(dx) ⩽ O(1).

On the other hand, introducing the intermediate contours given by

Γ̃t(x) : θ = 2
i
∂Φ0

∂x

(
x+ y

2

)
+ itf(x− y), y ∈ Cn,

for t ∈ [0, 1], and applying Stokes’ formula, we see that the effective kernel
of the contribution coming from the region

⋃
0⩽t⩽1 Γ̃t(x) has the form

(3.88) O(1)h−n

∫ 1

0
exp

(
− 1
h
tf̂(|x−y|) |x−y|−C1

(
tf̂(|x−y|)

)− 1
s−1
)

dt,

for some C1 > 0. Here we have ignored the possible trouble coming from
the Jacobian det(∂yθ). Recalling (3.84) and taking C1 = 1 in (3.88) for
simplicity, we are led to the following pointwise condition on f̂ ,

1
h
f̂(r)r + f̂(r)− 1

s−1 ⩾
h− 1

s

O(1) , r ⩾ 0.

In particular, we need that for each r ⩾ 0, uniformly,

1
h
f̂(r)r ⩾ h− 1

s

O(1) or f̂(r)− 1
s−1 ⩾

h− 1
s

O(1) ,

or equivalently,

f̂(r) ⩾ h1− 1
s

O(1)r or f̂(r) ⩽ h1− 1
s

O(1) .

Using that f̂ is bounded near 0, we conclude that f̂(r) ⩽ h1− 1
s

O(1) on some
non-trivial interval of the form [0, 1

O(1) ]. In other words,

f̂(r) ⩽ O(1)ω, for 0 ⩽ r ⩽
1

O(1) ,
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and therefore we get

h−n

∫
e− 1

h |x|f̂(|x|) L(dx) ⩾ h−n

∫
|x|⩽ 1

O(1)

e− O(1)
h ω|x| L(dx) ≍ h−n(1− 2

s ).

Here the expression in the right hand side is unbounded as h → 0+, for
s > 2, which is incompatible with (3.87).

When finding a uniformly bounded realization of the operator aw
Γ (x, hDx)

on the space HΦh
(Cn), for s > 2, we are going to perform an additional

contour deformation, starting from the unbounded realization given by
ãw

ΓΦh
ω

(x, hDx). The price that we have to pay is that we should then allow
for a remainder that is larger than the one in (3.82), and is only moderately
smaller than the remainder naturally associated to the contour (3.9) used
in the analytic theory, see (3.26).

Theorem 3.4. — Assume that s > 2, and let Φh = Φ0 +ψ ∈ C1,1(Cn)
be such that (3.68) holds. Let ΓΦh

h1/2(x) ⊂ C2n
y,θ be the contour, defined as

in (3.69), with ω replaced by h1/2. We have

(3.89) ãw

ΓΦh
ω

(x, hDx) = ãw

ΓΦh

h1/2
(x, hDx) +R,

where the realization

ãw

ΓΦh

h1/2
(x, hDx)u(x)

= 1
(2πh)n

∫∫
ΓΦh

h1/2 (x)
e i

h (x−y)·θ ã

(
x+ y

2 , θ;h
)
u(y) dy ∧ dθ

satisfies

(3.90) ãw

ΓΦh

h1/2
(x, hDx) = O(1) : HΦh

(Cn) → L2(Cn, e−2Φh/h L(dx)).

Furthermore,

(3.91) R = O(1) exp
(

− 1
O(1)h

− 1
2s−2

)
:

HΦh
(Cn) → L2(Cn, e−2Φh/h L(dx)).

Proof. — Let us note, first of all, that

(3.92) ω = 1
O(1)h

1− 1
s ⩽ h1/2, for all s > 2.

With this in mind, we shall adapt the approach used at the end of subsec-
tion 3.1. Let us introduce the natural family of intermediate contours,

(3.93) ΓΦh
ωt

(x) : θ = 2
i
∂Φh

∂x

(
x+ y

2

)
+ ifωt

(x− y), y ∈ Cn,
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where ωt = (1 − t)ω + th1/2, t ∈ [0, 1]. An application of Stokes’ formula
gives that

(3.94) ãw

ΓΦh
ω

(x, hDx)u(x) − ãw

ΓΦh

h1/2
(x, hDx)u(x)

= 1
(2πh)n

∫∫∫ ⋃
t∈[0,1]

ΓΦh
ωt

(x)
e i

h (x−y)·θ u(y)∂
(
ã

(
x+ y

2 , θ

))
∧ dy ∧ dθ

=: Ru(x).

As usual, let us now proceed to estimate the effective kernel of the operator
R in (3.94). To this end, we notice that along the contour

⋃
t∈[0,1] ΓΦh

ωt
(x)

we have, similarly to (3.77),

(3.95) − Φh(x) + Re (i(x− y) · θ) + Φh(y)

= −ψ(x) +
〈

∇ψ
(
x+ y

2

)
, x− y

〉
R2n

+ ψ(y) − Fωt
(x− y)

⩽ −Fωt
(x− y) + ωt |x− y|

O(1) min(1, |x− y|) ⩽ −1
2Fωt

(x− y).

Here we have also used (3.78), (3.79), as well as the fact that ω ⩽ ωt, for
t ∈ [0, 1]. Noticing also that along the contour

⋃
t∈[0,1] ΓΦh

ωt
(x) we have, in

view of (3.92) and (3.93),

dist
((

x+ y

2 , θ

)
,ΛΦ0

)
⩽ 2

∣∣∣∣∇ψ(x+ y

2

)∣∣∣∣+ ωt ⩽
ω

O(1) + ωt ⩽ 2h1/2,

we conclude that the absolute value of the effective kernel of the operator R
in (3.94), for the boundedness on L2(Cn, e−2Φh/h L(dx)), does not exceed

(3.96) O(1)h−n

∫ 1

0
e− 1

2h Fωt (x−y) exp
(

− 1
O(1)h

− 1
2(s−1)

)
dt.

In view of Schur’s lemma and (3.96), to estimate the operator norm of R,
we have to control the L1-norm

(3.97) O(1)h−n

∫ 1

0
dt
∫

e− 1
2h Fωt (x)exp

(
− 1

O(1)h
− 1

2(s−1)

)
L(dx) = I1 + I2,

where

(3.98) I1 = O(1)h−n

∫ 1

0
dt
∫

|x|⩽ωt

exp
(

− |x|2

O(1)h

)
× exp

(
− 1

O(1)h
− 1

2(s−1)

)
L(dx),
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and

(3.99) I2 = O(1)h−n

∫ 1

0
dt
∫

ωt<|x|
exp

(
− |x|ωt

O(1)h

)
× exp

(
− 1

O(1)h
− 1

2(s−1)

)
L(dx).

We have

(3.100) I1 = O(1) exp
(

− 1
O(1)h

− 1
2(s−1)

)
,

and

(3.101)

I2 = O(1) exp
(

− 1
O(1)h

− 1
2(s−1)

)∫ 1

0

hn

ω2n
t

dt

⩽ O(1) exp
(

− 1
O(1)h

− 1
2(s−1)

)
hn

ω2n

⩽ O(1) exp
(

− 1
2O(1)h

− 1
2(s−1)

)
.

The estimate (3.91) follows, in view of (3.94), (3.97), (3.100), and (3.101).
We shall finally verify the uniform boundedness property (3.90) for the

realization ãw

ΓΦh

h1/2
(x, hDx). To this end, let us observe that along the contour

ΓΦh

h1/2(x), we have, similarly to (3.95),

(3.102) −Φh(x) + Re (i(x− y) · θ) + Φh(y) ⩽ −1
2Fh1/2(x− y).

Writing

ãw

ΓΦh

h1/2
(x, hDx)u(x) =

∫
kΓΦh

h1/2
(x, y;h)u(y)L(dy),

we obtain therefore, in view of (3.102),

(3.103) e− Φh(x)
h kΓΦh

h1/2
(x, y;h) e

Φh(y)
h ⩽ O(1)h−n exp

(
−1

2Fh1/2(x− y)
)
.

The pointwise bound (3.103), on the level of effective kernels, is therefore of
the same kind as (3.49), with the only difference that the small parameter
ω has been replaced by h1/2 ⩾ ω. An application of Schur’s lemma gives
therefore immediately (3.90). This completes the proof. □

Combining (3.81), (3.82), and Theorem 3.4, we get in the region s > 2,

(3.104) aw
Γ (x, hDx) = ãw

ΓΦh

h1/2
(x, hDx) +R,
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where (3.90) holds, and the remainder R satisfies (3.91). We conclude in
particular that the operator aw

Γ (x, hDx) extends to a uniformly bounded
map

(3.105) aw
Γ (x, hDx) = O(1) : HΦh

(Cn) → HΦh
(Cn),

for s > 2, and we can view the operator ãw

ΓΦh

h1/2
(x, hDx) as the corresponding

uniformly bounded realization.
Theorem 1.1 and Theorem 1.2 in the introduction now follow from The-

orem 3.1, Theorem 3.3, and Theorem 3.4.

Remark. — In the work [11], prepared simultaneously with the present
one, the mapping property (3.105) in the range s ⩾ 2 is established using
alternative methods, not relying upon the contour deformations techniques.

The discussion in this section gives, in particular, the following result.

Corollary 3.5. — Let a ∈ Gs
b (ΛΦ0), s > 1, and let Φh = Φ0 + ψ ∈

C1,1(Cn; R) be such that (3.68) holds. The operator Opw
h (a) extends to a

uniformly bounded map

Opw
h (a) = O(1) : HΦh

(Cn) → HΦh
(Cn).

3.3. Phase symmetries and composition of Gevrey operators

In the first part of this subsection, we shall develop an approach to the
composition of semiclassical Weyl quantizations in the complex domain,
based on the representation of the operators as superpositions of suitable
phase symmetries [27]. Such an approach is carried out in [19] in the real
setting, and here we shall adapt it to the present complex environment.

Let Φ0 be a strictly plurisubharmonic quadratic form on Cn and let
the I-Lagrangian R-symplectic linear subspace ΛΦ0 ⊂ Cn

x × Cn
ξ be given

by (3.1). Given a ∈ S(ΛΦ0), let us consider following (3.4),

(3.106) aw
Γ (x, hDx)u(x)

= 1
(2πh)n

∫∫
Γ(x)

e i
h (x−y)·θ a

(
x+ y

2 , θ

)
u(y) dy ∧ dθ.

Here u ∈ HΦ0(Cn) and Γ(x) ⊂ C2n
y,θ is the contour given by (3.5). Setting

(3.107) aΦ0(x) = a

(
x,

2
i
∂Φ0

∂x
(x)
)
, x ∈ Cn,
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and recalling (3.6), we can write in view of (3.106),

(3.108) aw
Γ (x, hDx)u(x) =

2n det(Φ′′
0,xx)

(2πh)n

×
∫

e
1
h (Φ0(x)−Φ0(y)+2i Im((x−y)·∂xΦ0( x+y

2 ))) aΦ0

(
x+ y

2

)
u(y)L(dy).

Here we have also used that along Γ(x), we have

dy ∧ dθ = 2n det(Φ′′
0,xx)L(dy),

provided that the orientation has been chosen suitably.
Let u, v ∈ HΦ0(Cn), and let us set U = e−Φ0/h u ∈ L2(Cn), V =

e−Φ0/h v ∈ L2(Cn). We get, using (3.108),

(3.109) (aw
Γ (x, hDx)u, v)HΦ0

=
∫
aw

Γ (x, hD)u(x) v(x) e− 2
h Φ0(x) L(dx)

=
2n det(Φ′′

0,xx)
(2πh)n

×
∫∫

e
2i
h Im((x−y)·∂xΦ0( x+y

2 )) aΦ0

(
x+ y

2

)
U(y)V (x)L(dy)L(dx).

Making the linear change of variables in (3.109),

x′ = x+ y

2 , y′ = x− y,

where the absolute value of the Jacobian is 1, we obtain after dropping the
primes,

(3.110) (aw
Γ (x, hDx)u, v)HΦ0

=
2n det(Φ′′

0,xx)
(2πh)n

×
∫∫

e 2i
h Im(y·∂xΦ0(x)) aΦ0(x)U

(
x− 1

2y
)
V

(
x+ 1

2y
)
L(dy)L(dx),

=
2n det(Φ′′

0,xx)
(2πh)n

∫
aΦ0(x)K(U, V )(x)L(dx).

Here K(U, V )(x) is “the Wigner function” given by

(3.111) K(U, V )(x) =
∫

e 2i
h Im(y·∂xΦ0(x)) U

(
x− 1

2y
)
V

(
x+ 1

2y
)
L(dy).
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Performing the change of variables y 7→ ỹ = x+ 1
2y in (3.111), we get after

dropping the tilde,

(3.112)
K(U, V )(x) = 22n

∫
e 4i

h Im((y−x)·∂xΦ0(x)) U(2x− y)V (y)L(dy)

= 22n(ΣxU, V )L2(Cn),

where Σx, x ∈ Cn, is the unitary map on L2(Cn) given by

(3.113) (ΣxU)(y) = e 4i
h Im((y−x)·∂xΦ0(x)) U(2x− y).

We obtain, combining (3.110) and (3.112),

(3.114) (aw
Γ (x, hDx)u, v)HΦ0

=
2n det(Φ′′

0,xx)
(2πh)n

∫
aΦ0(x)22n(ΣxU, V )L2(Cn) L(dx),

and therefore,

(3.115) e− Φ0
h aw

Γ (x, hDx) e
Φ0
h =

2n det(Φ′′
0,xx)

(2πh)n

∫
aΦ0(x)22nΣx L(dx).

Here we may notice that the realization aw
Γ (x, hDx) of the Weyl quanti-

zation aw(x, hDx) in (3.106) acts on the weighted L2-space

L2(Cn, e−2Φ0/h L(dx)),

whereas aw(x, hDx) is defined on the holomorphic subspace only. The
decomposition (3.115) can be regarded as the complex analogue of the
corresponding representation obtained in [19, Chapter 2] in the real do-
main. When deriving an explicit formula for the composition aw(x, hDx) ◦
bw(x, hDx), for a, b ∈ S(ΛΦ0), we shall proceed by computing first the
composition Σy ◦ Σz for y, z ∈ Cn.

When doing so, let us consider the decomposition

(3.116) Φ0 = Φherm + Φplh,

where Φherm(x) = Φ′′
0,xxx · x is positive definite Hermitian and Φplh(x) =

Re
(
Φ′′

0,xxx · x
)

is pluriharmonic. Let

A = 2
i (Φplh)′′

xx = 2
i Φ′′

0,xx.

The complex linear canonical transformation

(3.117) C2n ∋ (y, η) 7→ κA(y, η) = (y, η −Ay) ∈ C2n

satisfies
κA (ΛΦ0) = ΛΦherm ,
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and associated to κA is the metaplectic Fourier integral operator

(3.118) Uu = u e−f , f(x) = Φ′′
0,xxx · x,

which maps HΦ0(Cn) unitarily onto HΦherm(Cn). By an application of the
exact Egorov theorem we get

U ◦ aw(x, hDx) ◦ U−1 = bw(x, hDx),

where b ∈ S(ΛΦherm) is given by b = a ◦ κ−1
A . Conjugating aw(x, hDx) by

the operator U in (3.118), we obtain a reduction to the case when the
pluriharmonic part of Φ0 vanishes, and in what follows, we shall therefore
make this assumption.

The unitary map Σx in (3.113) takes the form

(3.119)
(ΣxU)(y) = e

4i
h Im(Φ′′

0,x̄x(y−x)·x) U(2x− y)

= e
4i
h Im(Φ′′

0,x̄xy·x) U(2x− y) = e 4i
h Im Ψ0(y,x) U(2x− y),

where Ψ0 is the polarization of Φ0, i.e., the unique holomorphic quadratic
form on Cn

x × Cn
y such that Ψ0(x, x) = Φ0(x).

Lemma 3.6. — Let Φ0 be a strictly plurisubharmonic quadratic form
on Cn with vanishing pluriharmonic part. We have for y, z ∈ Cn,

(3.120) Σy ◦ Σz =
2n det(Φ′′

0,xx)
(2πh)n

∫
e 8i

h Im Ψ0(x−y,x−z) 22nΣx L(dx).

Here Ψ0 is the polarization of Φ0.

Proof. — By a direct computation, using (3.119), we get

(3.121) (Σy ◦ ΣzU) (y′) = e 4i
h Im Ψ0(y′,y−z) e 8i

h Im Ψ0(y,z) U(y′ − 2y + 2z).

On the other hand, the operator in the right hand side of (3.120) acting
on U , is given by

(3.122) (LU) (y′) :=
2n det(Φ′′

0,xx)
(2πh)n

∫
e 8i

h Im Ψ0(x−y,x−z) 22n (ΣxU) (y′)L(dx)

=
2n det(Φ′′

0,xx)
(2πh)n

e 8i
h Im Ψ0(y,z)

×
∫

22n e
4i
h Im Ψ0(y′−2y+2z,x) U(2x− y′)L(dx).

Here we have also used the skew-symmetry property

Im Ψ0(x, z) = − Im Ψ0(z, x).
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Making the change of variables ζ = 2x− y′ in (3.122), we get

(3.123) (LU) (y′) =
2n det(Φ′′

0,xx)
(2πh)n

e 8i
h Im Ψ0(y,z)

×
∫

e 4i
h Im Ψ0(y′−2y+2z, ȳ′+ζ̄

2 ) U(ζ)L(dζ)

=
2n det(Φ′′

0,xx)
(2πh)n

e 8i
h Im Ψ0(y,z) e 4i

h Im Ψ0(y′,y−z)

×
∫

e 2i
h Im Ψ0(y′−2y+2z,ζ) U(ζ)L(dζ).

On the other hand, taking a = 1 in (3.115), we obtain for W ∈ L2(Cn)
such that eΦ0/h W ∈ HΦ0(Cn),

(3.124) W (y′) =
2n det(Φ′′

0,xx)
(2πh)n

∫
22n e 4i

h Im Ψ0(y′,x) W (2x− y′)L(dx)

=
2n det(Φ′′

0,xx)
(2πh)n

∫
W (ζ) e 2i

h Im Ψ0(y′,ζ) L(dζ).

Here on the second line we have again made the change of variables ζ =
2x − y′. Using (3.124) we conclude that the expression in the right hand
side of (3.123) becomes

e 8i
h Im Ψ0(y,z) e 4i

h Im Ψ0(y′,y−z) U(y′ − 2y + 2z),

which agrees with (Σy ◦ ΣzU) (y′), in view of (3.121). The proof is com-
plete. □

We are now ready to compute the composition of two Weyl quantizations.
Let a, b ∈ S(ΛΛΦ0

), and let us write following (3.115),

e− Φ0
h aw

Γ (x, hDx) e
Φ0
h =

det(Φ′′
0,xx)

(πh)n

∫
aΦ0(y)22nΣy L(dy),

e− Φ0
h bw

Γ (x, hDx) e
Φ0
h =

det(Φ′′
0,xx)

(πh)n

∫
bΦ0(z)22nΣz L(dz).
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Using (3.120), we get

(3.125) e− Φ0
h aw

Γ (x, hDx) ◦ bw
Γ (x, hDx) e

Φ0
h

=
(det(Φ′′

0,xx)
(πh)n

)2 ∫∫
aΦ0(y)bΦ0(z) 24n Σy ◦ Σz L(dy)L(dz)

=
(det(Φ′′

0,xx)
(πh)n

)3

×
∫∫∫

aΦ0(y)bΦ0(z) 24n e 8i
h Im Ψ0(x−y,x−z) 22nΣx L(dx)L(dy)L(dz),

and therefore the operator cw(x, hDx) = aw(x, hDx) ◦ bw(x, hDx) satisfies

(3.126) e− Φ0
h cw

Γ (x, hDx) e
Φ0
h =

det(Φ′′
0,xx)

(πh)n

∫
cΦ0(x)22nΣx L(dx),

where

(3.127) cΦ0(x) =
(det(Φ′′

0,xx)
(πh)n

)2

×
∫∫

aΦ0(y)bΦ0(z) 24n e 8i
h Im Ψ0(x−y,x−z) L(dy)L(dz)

=
(det(Φ′′

0,xx)
(πh)n

)2

×
∫∫

aΦ0(x+ y) bΦ0(x+ z) 24n e 8i
h Im Ψ0(y,z) L(dy)L(dz).

Let us rewrite (3.127) in more invariant terms. When doing so, we make
the following two observations.

(i) The restriction of the complex symplectic (2, 0)-form σ on C2n to
ΛΦ0 is given by

σ(Y, Z) = −4 Im
(
Φ′′

0,xxy · z
)

= −4 Im Ψ0(y, z),

where Y,Z ∈ ΛΦ0 are the points in ΛΦ0 above y, z ∈ Cn, respec-
tively.

(ii) The symplectic volume form on ΛΦ0 , σ
n

n! |ΛΦ0
, is equal to

dx = 22n det(Φ′′
0,xx)L(dx), X =

(
x,

2
i
∂Φ0

∂x
(x)
)

∈ ΛΦ0 ,

see also (3.108) and the following comment.
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We get therefore from (3.127),

(3.128) c(X) = (a#b)(X)

= 1
(πh)2n

∫∫
ΛΦ0 ×ΛΦ0

e−2iσ(Y,Z)/h a(X+Y )b(X+Z) dy dz.

Remark. — The integral representation formula (3.128) can also be ob-
tained directly from the corresponding formula in the real domain [13],
[34, Chapter 4], thanks to the metaplectic invariance of the Weyl calcu-
lus [12, 33].

We would next like to rewrite the expression (3.127) for cΦ0 in terms
of a suitable Gaussian Fourier multiplier on C2n, acting on aΦ0 ⊗ bΦ0 ,
similarly to the Weyl composition formula in the real domain [3]. To this
end, introducing the positive definite Hermitian matrix B = Φ′′

0,xx and
performing the change of variables

Y = 2B1/2y, Z = 2B1/2z,

in (3.127), we obtain

(3.129) cΦ0(x)

= 1
(πh)2n

∫∫
aΦ0

(
x+ B−1/2Y

2

)
bΦ0

(
x+ B−1/2Z

2

)
× e 2i

h Im(Y ·Z) L(dy)L(dz)

= 1
(πh)2n

∫∫
aΦ0

(
x+ 1

2B
−1/2Y

)
bΦ0

(
x+ 1

2B
−1/2Z

)
× e− 2i

h σR(Z,Y ) L(dy)L(dz).

Here we have noticed that

(3.130) Im(Y · Z) = σR(Y, Z) = −σR(Z, Y ),

where σR is the standard symplectic form on R2n, when identifying this
space with Cn with the help of the map Cn ∋ Y = y + iη 7→ (y, η) ∈ R2n.
Recall next that if A is an N × N real symmetric non-degenerate matrix,
we have for u ∈ S(RN ),

(3.131) e ih
2 AD·D u(x) = 1

(2πh)N/2
e iπ

4 sgn A

|detA|1/2

∫
e− i

2h A−1y·y u(x+ y) dy.

Applying (3.131) with RN = R2n
z,ζ × R2n

y,η, and

AD ·D = σR(Dz, Dζ ;Dy, Dη) = Dζ ·Dy −Dη ·Dz,
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we get using the complex notation Y = y + iη, Z = z + iζ,

(3.132)
(

e ih
2 σR(Dz,Dζ ;Dy,Dη) u(Z, Y )

)
|Z=Y =0

= 1
(πh)2n

∫∫
e− 2i

h σR(Z,Y ) u(Z, Y )L(dy)L(dz).

Here we also have

(3.133) σR(Dz, Dζ ;Dy, Dη) = 2
i
(
DZ ·DY −DZ ·DY

)
= 2

i σR(DZ , DZ ;DY , DY ),

where
DY = 1

2 (Dy − iDη) , DY = 1
2 (Dy + iDη) ,

with DZ , DZ being defined similarly, see also (2.15). Combining (3.129),
(3.132), and (3.133), we get

(3.134) cΦ0(x)

= ehσR(DZ ,DZ̄ ;DY ,DȲ )
(
aΦ0

(
x+ B−1/2Y

2

)
bΦ0

(
x+ B−1/2Z

2

))∣∣∣∣
Y =Z=0

= exp
(

ih
2

(
tB−1Dx ·Dy − tB−1Dy ·Dx

)
2i

)
(aΦ0(x)bΦ0(y)) |y=x.

Here the symbol of the second order constant coefficient differential oper-
ator on C2n

x,y,
1
2i
(

tB−1Dx ·Dy − tB−1Dy ·Dx

)
is a quadratic form on C2n

ξ,η given by

(3.135) 1
8i
(

tB−1ξ · η − tB−1η · ξ
)

= −1
4 Im

(
B−1ξ · η

)
.

Letting

(3.136) σΦ0 = 2
i

n∑
j,k=1

∂2Φ0

∂xj∂xk
dxj ∧ dxk

be the pullback of the complex symplectic form σ on C2n under the map

Cn ∋ x 7→
(
x,

2
i
∂Φ0

∂x
(x)
)

∈ ΛΦ0 ⊂ C2n,

we see that
σΦ0(ξ, η) = −4 Im (Bξ · η) , ξ, η ∈ Cn,

ANNALES DE L’INSTITUT FOURIER



SEMICLASSICAL GEVREY OPERATORS 1313

and therefore the quadratic form in (3.135) can be regarded as the dual to
σΦ0 , when the latter is viewed as a quadratic form on C2n

ξ,η. Setting

σ−1
Φ0

(ξ, η) = −1
4 Im

(
B−1ξ · η

)
,

we may summarize the discussion above in the following result.

Proposition 3.7. — Let a, b ∈ S(ΛΦ0) and let

cw(x, hDx) = aw(x, hDx) ◦ bw(x, hDx).

The symbol c ∈ S(ΛΦ0) is given by

c(X) = (a#b)(X)(3.137)

= 1
(πh)2n

∫∫
ΛΦ0 ×ΛΦ0

e−2iσ(Y,Z)/h a(X + Y )b(X + Z) dy dz.

We also have

(3.138) cΦ0(x) = exp
(

ih
2 σ

−1
Φ0

(Dx,x, Dy,y)
)

(aΦ0(x)bΦ0(y))|y=x.

Remark. — We refer to the recent work [11] for an alternative approach
to the composition formulas for the semiclassical Weyl calculus in the com-
plex domain, based on the Fourier inversion formula on ΛΦ0 and the method
of magnetic translations.

We shall finish this subsection by discussing the formula for the com-
position (3.137) in the case when a, b ∈ Gs

b (ΛΦ0), for some s > 1. It has
been established in [16, 17], working in the real domain, that we then have
c = a#b ∈ Gs

b (ΛΦ0). The argument in [16] proceeds by repeated partial
integrations and suitable quasinorm estimates, and our purpose here is to
provide an alternative approach to the proof of this result, making use of
the method of contour deformations. When doing so, rather than working
with Gevrey symbols of ΛΦ0 , in view of the metaplectic invariance of the
Weyl calculus [12, 33], it will be sufficient for us to work on Rm ≃ T ∗Rn,
where m = 2n.

Let a, b ∈ Gs
b (Rm) and let us set following (3.137),

c(X) = (a#b)(X)(3.139)

= 1
(πh)m

∫∫
Rm×Rm

e−2iσ(Y,Z)/h a(X + Y )b(X + Z) dy dz.

Here σ is the standard symplectic form on Rm, and the integral in (3.139) is
an oscillatory one. Let χ ∈ Gs

0(R2m) be such that χ(Y, Z) = 1 for |(Y,Z)| ⩽
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1, with suppχ ⊂ B(0, 2), and define also

(3.140) rχ(X)

= 1
(πh)m

∫∫
Rm×Rm

e−2iσ(Y,Z)/h (1 − χ(Y,Z)) a(X + Y )b(X + Z) dy dz.

The standard semiclassical calculus [3] gives that

∥∂αrχ∥L∞(Rm) = Oα(h∞),

for all α ∈ Nm, and we would like to sharpen these asymptotic bounds,
thanks to the Gevrey smoothness of the symbols a, b. To this end, we have
the following result, due to [16, 17].

Proposition 3.8. — Let a, b ∈ Gs
b (Rm), for some s > 1, and let us

define rχ ∈ C∞(Rm) as in (3.140). There exists C > 0 such that for all
α ∈ Nm and h ∈ (0, 1], we have

(3.141) |∂αrχ(X)| ⩽ C1+|α|(α!)s exp
(

− 1
O(1)h

− 1
s

)
, X ∈ Rm,

Proof. — We shall prove the following more general statement, imply-
ing (3.141): let q(x) be a real valued non-degenerate quadratic form on RN ,
let a ∈ Gs

b (RN ), for some s > 1, and let χ ∈ Gs
0(RN ) be such that χ(x) = 1

for |x| ⩽ 1, suppχ ⊂ BRN (0, 2). Setting

(3.142) rχ(x) = h−N/2
∫

eiq(y)/h(1 − χ(y))a(x+ y) dy,

we shall prove that rχ enjoys the same estimates as in (3.141). To this
end, let ã ∈ Gs

b (CN ) be an almost holomorphic extension of a such that
supp ã ⊂ RN + iBRN (0, C), for some C > 0, and let χ̃ ∈ Gs

0(CN ) be an
almost holomorphic extension of χ, with supp χ̃ close to that of χ. We shall
replace the integration in (3.142) along RN by the integration along the
contour

(3.143) Γθ0 : RN ∋ y 7→ y + iθ0
q′(y)
|q′(y)| ∈ CN , |y| ⩾ 1

2 ,

for some θ0 > 0 small enough, where we notice that along Γθ0 , we have

(3.144) Im q(z) = θ0 |q′(y)| ≍ θ0 |y| , z ∈ Γθ0 ,
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since q is non-degenerate. Introducing also the damping factor e− εy2
2 , ε > 0,

in (3.142), we get by an application of Stokes formula,

(3.145)
∫

RN

eiq(y)/h e−εy2/2(1 − χ(y))a(x+ y) dy

=
∫

Γθ0

eiq(z)/h e−εz2/2(1 − χ̃(z))ã(x+ z) dz

+
∫∫

G[0,θ0]

eiq(z)/h e−εz2/2 ∂ ((1 − χ̃(z))ã(x+ z)) ∧ dz.

Here G[0,θ0] ⊂ CN is the (n+ 1)-dimensional contour given by

G[0,θ0] =
⋃

θ∈[0,θ0]

Γθ,

with Γθ defined similarly to (3.143). Taking θ0 = 1
C0
h1− 1

s , for some con-
stant C0 > 0 large enough, we obtain in view of (3.144),

(3.146)
∫

Γθ0

eiq(z)/h e−εz2/2(1 − χ̃(z))ã(x+ z) dz

= O(1) exp
(

− 1
O(1)h

− 1
s

)
,

uniformly in ε > 0. Furthermore, using (2.5) and (3.144), we see that for
some C1 > 0, the second term in the right hand side of (3.145) is of the
form

(3.147) O(1)
∫ θ0

0
dθ
∫

|y|⩾1/2
e− θ|y|

O(1)h exp
(

− 1
C1
θ− 1

s−1

)
dy

⩽ O(1)
∫ θ0

0
θ−N exp

(
− 1
C1
θ− 1

s−1

)
dθ ⩽ O(1) exp

(
− 1

O(1)h
− 1

s

)
,

uniformly in ε > 0. Here we have also used the fact that the function

t → exp
(

− 1
2C1

t−
1

s−1

)
is increasing on [0, θ0]. Combining (3.145), (3.146), and (3.147) and letting
ε → 0+, we get that the oscillatory integral in (3.142) satisfies,

(3.148) rχ(x) = O(1) exp
(

− 1
O(1)h

− 1
s

)
, x ∈ RN .

Considering the derivatives of rχ in (3.142) and using the fact that for each
α ∈ NN , the function ∂α

x ã ∈ Gs
b (CN ) is an almost holomorphic extension
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of ∂αa ∈ Gs
b (RN ), we obtain, arguing as above,

(3.149) |∂αrχ(x)| ⩽ C1+|α|(α!)s exp
(

− 1
O(1)h

− 1
s

)
, x ∈ RN .

The proof is complete. □

Continuing to use the notation in the proof of Proposition 3.8, let us also
consider

(3.150) ℓχ(x) = h−N/2
∫

eiq(y)/h χ(y)a(x+ y) dy,

where we write q(y) = 1
2Ay · y. Letting

CA = (2π)N/2 ei π
4 sgn(A)

|detA|1/2 ,

where sgn(A) is the signature of A, and

ℓχ,K(x) = ℓχ(x) − CA

K−1∑
k=0

hk

k!

(
1
2iA

−1D ·D
)k

a(x), K = 1, 2, . . . ,

we conclude by quadratic stationary phase and the fact that χ0 ∈ Gs
0(RN ),

a ∈ Gs
b (RN ), that there exists C > 0 such that for all α ∈ NN , K ∈ N, we

have

(3.151) |∂α
x ℓχ,K(x)| ⩽ C1+K+|α|(K!)2s−1(α!)shK .

In particular, we have ℓχ ∈ Gs
b (RN ), and here once again we encounter the

phenomenon of the loss of Gevrey smoothness in stationary phase expan-
sions, see also (3.57), (3.58).

The discussion above gives, in particular, an alternative proof of the
following result due to [16, 17].

Corollary 3.9. — Let a ∈ Gs
b (ΛΦ0), b ∈ Gs

b (ΛΦ0), for some s > 1.
Then the symbol c = a#b, defined in (3.137), satisfies c ∈ Gs

b (ΛΦ0).

BIBLIOGRAPHY

[1] L. Carleson, “On universal moment problems”, Math. Scand. 9 (1961), p. 197-206.
[2] N. Dencker, J. Sjöstrand & M. Zworski, “Pseudospectra of semiclassical

(pseudo-) differential operators”, Comm. Pure Appl. Math. 57 (2004), no. 3, p. 384-
415.

[3] M. Dimassi & J. Sjöstrand, Spectral asymptotics in the semi-classical limit, Lon-
don Mathematical Society Lecture Note Series, vol. 268, Cambridge University
Press, Cambridge, 1999, xii+227 pages.

[4] E. M. Dyn′kin, “An operator calculus based on the Cauchy–Green formula”, Zap.
Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 30 (1972), p. 33-39.

ANNALES DE L’INSTITUT FOURIER



SEMICLASSICAL GEVREY OPERATORS 1317

[5] ——— , “The pseudoanalytic extension”, J. Anal. Math. 60 (1993), p. 45-70.
[6] S. Fürdös, D. N. Nenning, A. Rainer & G. Schindl, “Almost analytic extensions

of ultradifferentiable functions with applications to microlocal analysis”, J. Math.
Anal. Appl. 481 (2020), no. 1, article no. 123451 (51 pages).

[7] J. Galkowski & M. Zworski, “Outgoing solutions via Gevrey-2 properties”, Ann.
PDE 7 (2021), no. 1, article no. 5 (13 pages).

[8] A. Grigis & J. Sjöstrand, Microlocal analysis for differential operators, London
Mathematical Society Lecture Note Series, vol. 196, Cambridge University Press,
Cambridge, 1994, An introduction, iv+151 pages.

[9] Y. Guedes Bonthonneau & M. Jézéquel, “FBI transform in Gevrey classes and
Anosov flows”, https://arxiv.org/abs/2001.03610, 2020.

[10] F. Hérau, J. Sjöstrand & C. C. Stolk, “Semiclassical analysis for the Kramers–
Fokker–Planck equation”, Comm. Partial Differential Equations 30 (2005), no. 4-6,
p. 689-760.

[11] M. Hitrik, R. Lascar, J. Sjöstrand & M. Zerzeri, “Semiclassical Gevrey oper-
ators and magnetic translations”, J. Spectr. Theory 12 (2022), no. 1, p. 53-82.

[12] M. Hitrik & J. Sjöstrand, “Two minicourses on analytic microlocal analysis”, in
Algebraic and analytic microlocal analysis, Springer Proc. Math. Stat., vol. 269,
Springer, Cham, 2018, p. 483-540.

[13] L. Hörmander, The analysis of linear partial differential operators. IV, vol. I-IV,
Springer, Berlin, 1985.

[14] ——— , Notions of convexity, Progress in Mathematics, vol. 127, Birkhäuser
Boston, Inc., Boston, MA, 1994, viii+414 pages.

[15] B. Lascar & R. Lascar, “Propagation des singularités Gevrey pour la diffraction”,
Comm. Partial Differential Equations 16 (1991), no. 4-5, p. 547-584.

[16] B. Lascar, “Propagation des singularités Gevrey pour des opérateurs hyper-
boliques”, Amer. J. Math. 110 (1988), no. 3, p. 413-449.

[17] B. Lascar & R. Lascar, “FBI transforms in Gevrey classes”, J. Anal. Math. 72
(1997), p. 105-125.

[18] G. Lebeau, “Régularité Gevrey 3 pour la diffraction”, Comm. Partial Differential
Equations 9 (1984), no. 15, p. 1437-1494.

[19] N. Lerner, Metrics on the phase space and non-selfadjoint pseudo-differential op-
erators, Pseudo-Differential Operators. Theory and Applications, vol. 3, Birkhäuser
Verlag, Basel, 2010, xii+397 pages.

[20] A. Martinez, An introduction to semiclassical and microlocal analysis, Universi-
text, Springer-Verlag, New York, 2002, viii+190 pages.

[21] J. N. Mather, “On Nirenberg’s proof of Malgrange’s preparation theorem”, in
Proceedings of Liverpool Singularities—Symposium, I (1969/70) (Berlin), Lecture
Notes in Mathematics, vol. 192, Springer, 1971, p. 116-120.

[22] A. Melin & J. Sjöstrand, “Fourier integral operators with complex-valued phase
functions”, in Fourier integral operators and partial differential equations (Col-
loq. Internat., Univ. Nice, Nice, 1974), Lecture Notes in Math., Vol. 459, Springer,
Berlin, 1975, p. 120-223.

[23] ——— , “Bohr–Sommerfeld quantization condition for non-selfadjoint operators in
dimension 2”, in Autour de l’analyse microlocale, Astérisque, vol. 284, Société Math-
ématique de France, Paris, 2003, p. 181-244.

[24] L. Boutet de Monvel & P. Krée, “Pseudo-differential operators and Gevrey
classes”, Ann. Inst. Fourier (Grenoble) 17 (1967), no. 1, p. 295-323.

[25] L. Rodino, Linear partial differential operators in Gevrey spaces, World Scientific
Publishing Co., Inc., River Edge, NJ, 1993, x+251 pages.

TOME 73 (2023), FASCICULE 3

https://arxiv.org/abs/2001.03610


1318 M. HITRIK, R. LASCAR, J. SJÖSTRAND & M. ZERZERI

[26] M. Rouleux, “Absence of resonances for semiclassical Schrödinger operators with
Gevrey coefficients”, Hokkaido Math. J. 30 (2001), no. 3, p. 475-517.

[27] I. E. Segal, “Transforms for operators and symplectic automorphisms over a locally
compact abelian group”, Math. Scand. 13 (1963), p. 31-43.

[28] J. Sjöstrand, “Propagation of analytic singularities for second order Dirichlet prob-
lems”, Comm. Partial Differential Equations 5 (1980), no. 1, p. 41-93.

[29] ——— , “Propagation of analytic singularities for second order Dirichlet problems.
II”, Comm. Partial Differential Equations 5 (1980), no. 2, p. 187-207.

[30] ——— , “Propagation of analytic singularities for second order Dirichlet problems.
III”, Comm. Partial Differential Equations 6 (1981), no. 5, p. 499-567.

[31] ——— , Singularités analytiques microlocales, Astérisque, vol. 95, Société Mathé-
matique de France, Paris, 1982, 1-166 pages.

[32] ——— , “Asymptotique des résonances pour des obstacles”, in Séminaire Bourbaki,
Vol. 1989/90, Astérisque, vol. 189-190, Société Mathématique de France, Paris,
1990, p. 259-283.

[33] ——— , “Function spaces associated to global I-Lagrangian manifolds”, in Struc-
ture of solutions of differential equations (Katata/Kyoto, 1995), World Sci. Publ.,
River Edge, NJ, 1996, p. 369-423.

[34] M. Zworski, Semiclassical analysis, Graduate Studies in Mathematics, vol. 138,
American Mathematical Society, Providence, RI, 2012, xii+431 pages.

Manuscrit reçu le 2 octobre 2020,
révisé le 29 juin 2021,
accepté le 4 novembre 2021.

Michael HITRIK
Department of Mathematics
University of California
Los Angeles CA 90095-1555 (USA)
hitrik@math.ucla.edu
Richard LASCAR
JAD - UMR 7351
Université Côte d’Azur
Parc Valrose 06108 Nice Cedex 02 (France)
richard.lascar@univ-cotedazur.fr
Johannes SJÖSTRAND
IMB
Université de Bourgogne
9, Av. A. Savary, BP 47870
21078 Dijon (France)
UMR 5584 CNRS
johannes.sjostrand@u-bourgogne.fr
Maher ZERZERI
LAGA – UMR7539 CNRS
Université Sorbonne Paris-Nord
99, avenue J.-B. Clément 93430 Villetaneuse
(France)
zerzeri@math.univ-paris13.fr

ANNALES DE L’INSTITUT FOURIER

mailto:hitrik@math.ucla.edu
mailto:richard.lascar@univ-cotedazur.fr
mailto:johannes.sjostrand@u-bourgogne.fr
mailto:zerzeri@math.univ-paris13.fr

	1. Introduction and statement of results
	Acknowledgements

	2. Gevrey spaces and almost holomorphic extensions
	2.1. Almost holomorphic extensions via a result of Carleson
	2.2. Fourier transforms
	2.3. Almost holomorphic extensions in the spirit of Mather
	2.4. Approximate uniqueness via a Carleman estimate

	3. Pseudodifferential operators with Gevrey symbols in the complex domain
	3.1. Almost holomorphic extensions and contour deformations
	3.2. Deformations of exponential weights
	3.3. Phase symmetries and composition of Gevrey operators

	References

