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In this manuscripts, we consider the coupled differential-integral equations including the variable-order Caputo fractional operator. To solve numerically these type of equations, we apply the shifted Jacobi-Gauss collocation scheme. Using this numerical method a system of algebraic equations is constructed. We solve this system with a recursive method in the nonlinear case and we solve it in linear case with algebraic formulas. Finally, for the high performance of the suggested method three Examples are illustrated. 1

x 0 (x -υ) -i (x) p (υ), 0 < i (x) ≤ 1.

(3)

Introduction

A coupled differential-integral equation including the Caputo fractional operator is introduced as follows:

C D 1 (x)
x p 1 (x) + p 1 (x) + x 0 p 1 (υ)dυ = θ 1 (x) the initial condition for this types of equation is p 1 (0)=p 1 (0)=0 ,

C D 2 (x) (1) 
x p 2 (x) + p 2 (x) +

x 0 p 2 (υ)dυ = θ 2 (x)

the initial condition for this types of equation is

p 2 (0)=p 2 (0)=0, , (2) 
where

C D 1 (x) x , C D 1 (x)
x are the Caputo fractional operators of variable orders 0 < i (x) ≤ 1, given by:

C D i (x) x p(x) = p (x), i (x) = 1,
In the coupled differential-integral equations ( 1), (2), p 1 (x), p 2 (x) and θ 1 (x), θ 2 (x) are indistinct and definite respectively. The main reason for choosing these kind of differentialintegral equations is because of their role and applications in various fields as computational and mathematical sciences [START_REF] Gómez-Aguilar | Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations[END_REF], engineering sciences which are modelled using these types of equations, physics and mathematical models in chemistry. Several types of integral equations (IEs) are considered very important in various functional analysis topics because of their essential role in engineering, physics, economics, and natural sciences. Many real-life applications can be well described using IEs. For instance, IEs play an important role in kinetic molecular, radiative, neutron transport, traffic, and queuing theories [START_REF] Argyros | Quadratic equations and applications to Chandrasekhar's and related equations[END_REF]. Fractional calculus constitutes a powerful mathematical tool in terms of analysis when it is applicable to the investigation of arbitrary-order integrals and derivatives via the generalisations of integer-order differentiation and n-fold integration. Some interesting research works concerning the relation between symmetry and generalised fractional calculus properties have been conducted [START_REF] Hariharan | Review of wavelet methods for the solution of reaction-diffusion problems in science and engineering[END_REF]. Recently, the study of the integrals and derivatives of fractional order was limited to a purely mathematical context, but in recent decades, they have been applied in various natural sciences and technology fields such as theoretical physics, fluid mechanics, biology, image processing, and entropy theory which reveal a great potential of these fractional integrals and derivatives in modelling scientific phenomena [START_REF] Zhuang | Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term[END_REF]. Both of the theoretical and practical studies of the fractional differential equations' element have received a global research interest. The main purpose of this paper is to obtain the solution of the coupled differential-integral equations are introduced in (1) and (2) by using a numerical method that this numerical method is called a shifted Jacobi-Gauss collocation algorithm. This numerical method contains a shifted Jacobi polynomials. Obtaining a solution by using different numerical methods was studied by some authors in the mathematical field. In this paper a few numerical methods are mentioned, for Example, in [START_REF] Heydari | Chebyshev cardinal wavelets for nonlinear variable-order fractional quadratic integral equations[END_REF] was studied a numerical method based on Chebyshev cardinal wavelets, the new algorithm base on the discretisation method to obtain solution of the fractional functional integral equations of variable-order in [START_REF] Keshi | A numerical approach for solving a class of variable-order fractional functional integral equations[END_REF] was discussed, the explicit and implicit Euler methods [START_REF] Zhuang | Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term[END_REF], the Legendre wavelets method [START_REF] Chen | Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets[END_REF], the numerical method base on Laplace and Sumudu transform methods [START_REF] Gómez-Aguilar | Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations[END_REF], the Adams-Bashforth-Moulton scheme [START_REF] Coronel-Escamilla | A novel predictor-corrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel[END_REF], the optimisation method [START_REF] Soradi-Zeid | King algorithm: A novel optimization approach based on variable-order fractional calculus with application in chaotic financial systems[END_REF].

So, this article is divided into four sections as follows. In Section 2, Lemma and definitions of Jacobi polynomials, shifted Jacobi polynomials and their properties are introduced. In Section 3, approximation function and the numerical method to obtaining solution of the coupled differential-integral equation are described. In order to accuracy of the presented method four examples in Section 4 are described.

2 Some main lemma and definitions about the Jacobi polynomials and shifted Jacobi polynomials

Definition 2.1. Let µ, ν > -1, x ∈ [-1, 1].
Then the Jacobi polynomial of degree n is defined by [START_REF] Doha | On spectral methods for solving variable-order fractional integro-differential equations[END_REF]:

P µ,ν n+1 (x) = (a µ,ν n x -b µ,ν n )P µ,ν n (x) -c µ,ν n P µ,ν n-1 (x), (4) 
where for n = 0, 1 the functions P µ,ν 0 (x) and P µ,ν 1 (x) are defined by:

P µ,ν 0 (x) = 1, P µ,ν 1 (x) = (µ + ν + 2)x + µ -ν 2 , (5) 
and the coefficients a µ,ν n , b µ,ν n , c µ,ν n are given by:

a µ,ν n = (2n + µ + ν + 1)(2n + µ + ν + 2) (2n + 2)(n + µ + ν + 1) , b µ,ν n = (ν 2 -µ 2 )(2n + µ + ν + 1) (2n + 2)(n + µ + ν + 1)(2n + µ + ν) , c µ,ν n = (n + µ)(n + ν)(2n + µ + ν + 2) (n + 1)(n + µ + ν + 1)(2n + µ + ν) . (6) 
Also, the Jacobi polynomial has a finite series as follows:

P µ,ν n (x) = Γ(µ + n + 1) n!Γ(µ + ν + n + 1) n k=0 n k Γ(µ + ν + k + n + 1) Γ(µ + k + 1) x -1 2 k , (7) 
where Γ(•) is the gamma function.

Definition 2.2. Let µ, ν > -1. Then the shifted Jacobi polynomial of degree n is defined by [START_REF] Doha | On spectral methods for solving variable-order fractional integro-differential equations[END_REF]:

P µ,ν n (x) = P µ,ν n ( 2x -1 2x-1∈[-1,1] ) (8) = Γ(µ + n + 1) n!Γ(µ + ν + n + 1) n k=0 n k Γ(µ + ν + k + n + 1) Γ(µ + k + 1) x -1 k = Γ(ν + n + 1) Γ(µ + ν + n + 1) n k=0 (-1) n-k Γ(µ + ν + k + n + 1) k!(n -k)!Γ(ν + k + 1) x k . (9) 
Also, the shifted Jacobi polynomial respect to the weight function ω µ,ν (x) = (1 -x) µ x ν is orthogonal, that the orthogonality condition is given as:

P µ,ν n (x), P µ,ν m (x) ω µ,ν (x) = 1 0 ω µ,ν (x)P µ,ν n (x)P µ,ν m (x)dx = 0, n = m, Γ(n+µ+ν+1) n!Γ(2n+µ+ν+1) , n = m, (10) 
where •, • is the inner product.

Lemma 2.3. Let 0 < i ≤ 1, i = 1, 2. Then for any ζ ≥ -1 the Caputo fractional operator of variable order i , i = 1, 2 is given by [START_REF] Xie | Haar wavelet method for approximating the solution of a coupled system of fractional-order integral-differential equations[END_REF]:

C D i (x) x x ζ =    0, ζ = constant, Γ(ζ+1) Γ(ζ-i (x)+1) x ζ-i (x) , ζ ≥ -1, d m dx m (x ζ ), i (x) = m, m ∈ N. (11) 
Then, applying the relation (11) on (8), for i = 1, 2 we obtain:

C D i (x) x P µ,ν n (x) = Γ(ν + n + 1) Γ(µ + ν + n + 1) n k=0 (-1) n-k Γ(k + 1) Γ(k -i (x) + 1) Γ(µ + ν + k + n + 1) k!(n -k)!Γ(ν + k + 1) x k-i (x) = n k=0 Ω µ,ν k,n x k-i (x) , (12) 
Caputo D i (x)

x P µ,ν n (x)

for i (x)=1, m=1 = Γ(ν + n + 1) Γ(µ + ν + n + 1) n k=1 (-1) n-k kΓ(µ + ν + k + n + 1) k!(n -k)!Γ(ν + k + 1) x k-1 = n k=1 Ψ µ,ν k,n x k-1 , (13) 
where

Ω µ,ν k,n = Γ(ν + n + 1) Γ(µ + ν + n + 1) × (-1) n-k Γ(k + 1) Γ(k -i (x) + 1) × Γ(µ + ν + k + n + 1) k!(n -k)!Γ(ν + k + 1)
and

Ψ µ,ν k,n = Γ(ν + n + 1) Γ(µ + ν + n + 1) × (-1) n-k kΓ(µ + ν + k + n + 1) k!(n -k)!Γ(ν + k + 1
) .

The function approximation and proposed method algorithm

Due to the orthogonality condition is presented in [START_REF] Hariharan | Review of wavelet methods for the solution of reaction-diffusion problems in science and engineering[END_REF] about the shifted Jacobi polynomial, any p 1 (x), p 2 (x) ∈ L 2 [0, 1] can be approximated in terms of the shifted Jacobi polynomial as follows:

p 1 (x) = ∞ k=0 a k P µ,ν k (x), (14) 
p 2 (x) = ∞ k=0 b k P µ,ν k (x), (15) 
considering the first n sentence of the relations ( 14), ( 15), we have:

p 1 (x) p 1,n (x) = n k=0 a k P µ,ν k (x), (16) 
p 2 (x) p 2,n (x) = n k=0 b k P µ,ν k (x), (17) 
where the coefficients a j , b j are calculated as:

a j = P µ,ν n (x), p 1 (x) ω µ,ν (x) = 1 0 ω µ,ν (x)P µ,ν n (x)p 1 (x)dx P µ,ν n (x) 2 , ( 18 
)
b j = P µ,ν n (x), p 2 (x) ω µ,ν (x) = 1 0 ω µ,ν (x)P µ,ν n (x)p 2 (x)dx P µ,ν n (x) 2 . ( 19 
)
Theorem 3.1. Let p 1,n be as an approximation of the function p 1 (x), that it satisfy in the Equation (1) and the following conditions for λ 1 , λ 2 ∈ (0, 1) hold:

p 1,n (x) -p 1,n-1 (x) ≤ λ 1 p 1,n-1 (x) -p 1,n-2 (x) (20) p 1,n (x) -p 1,n-1 (x) ≤ λ 2 p 1,n-1 (x) -p 1,n-2 (x) . (21) 
Then the sequence p 1,n to p 1 (x) converges, that p 1 (x) is the exact solution of Equation (1).

Proof. Suppose R n (x) be a residual function, which is defined as:

R n (x) = C D 1 (x) x p 1,n-1 (x) + p 1,n-1 (x) + x 0 p 1,n-1 (υ)dυ -θ 1 (x), R n-1 (x) = C D 1 (x) x p 1,n-2 (x) + p 1,n-2 (x) + x 0 p 1,n-2 (υ)dυ -θ 1 (x). (22) 
Then, we have:

R n (x) -R n-1 (x) = C D 1 (x) x p 1,n-1 (x) -p 1,n-2 (x) + p 1,n-1 (x) -p 1,n-2 (x) + x 0 p 1,n-1 (υ) -p 1,n-2 (υ)dυ = 1 Γ(1 -1 (x)) x 0 (x -υ) -1 (x) p 1,n-1 (υ) -p 1,n-2 (υ) dυ + p 1,n-1 (x) -p 1,n-2 (x) + x 0 p 1,n-1 (υ) -p 1,n-2 (υ)dυ ≤ 1 Γ(1 -1 (x)) x 0 (x -υ) -1 (x) p 1,n-1 (υ) -p 1,n-2 (υ) dυ + p 1,n-1 (x) -p 1,n-2 (x) + x 0 p 1,n-1 (υ) -p 1,n-2 (υ) dυ = x 1-1 (x) Γ(2 -1 (x)) x 0 p 1,n-1 (υ) -p 1,n-2 (υ) dυ+ p 1,n-1 (x) -p 1,n-2 (x) + x 0 p 1,n-1 (υ) -p 1,n-2 (υ) dυ. (23) 
Using [START_REF] Mousavi | Wilson wavelets method for solving nonlinear fractional Fredholm-Hammerstein integro-differential equations[END_REF], [START_REF] Mvogo | Fractional nonlinear dynamics of DNA breathing[END_REF], we get:

R n (x) -R n-1 (x) ≤ λ 2 x 1-1 (x) Γ(2 -1 (x)) x 0 p 1,n-2 (υ) -p 1,n-3 (υ) dυ + λ 2 p 1,n-2 (x) -p 1,n-3 (x) +λ 1 x 0 p 1,n-2 (υ) -p 1,n-3 (υ) dυ . . . ≤ λ n-2 2 x 1-1 (x) Γ(2 -1 (x)) x 0 p 1,1 (υ) -p 1,0 (υ) dυ + λ n-2 2 p 1,1 (x) -p 1,0 (x) +λ n-2 1 x 0 p 1,1 (υ) -p 1,0 (υ) dυ ≤ λ n-2 2 x 2-1 (x) Γ(2 -1 (x)) max x∈[0,1] p 1,1 (x) -p 1,0 (x) +λ n-2 2 max x∈[0,1] p 1,1 (x) -p 1,0 (x) +λ n-2 1 max x∈[0,1] p 1,1 (x) -p 1,0 (x) . ( 24 
) So, R n (x) -R n-1 (x) → 0 when n → ∞, then R n (x) a Cauchy sequence in L 2 [0, 1] and
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L 2 [0, 1] is complete, therefore the sequence R n (x) is convergent that is lim n→∞ R n (x) = R(x), (25) 
where

R n (x) = C D 1 (x) x p 1,n-1 (x) + p 1,n-1 (x) + x 0 p 1,n-1 (υ)dυ -θ 1 (x), R(x) = C D 1 (x) x p 1 (x) + p 1 (x) + x 0 p 1 (υ)dυ -θ 1 (x). ( 26 
)
The proof is complete.

Like the Theorem 3.1 can be considered a similar process for the Equation (2).

Theorem 3.2 ([17]

). Suppose f (x) be belongs to the space H σ (0, 1), σ ≥ 0 that H σ (0, 1) is defined by:

H σ (0, 1) = f ∈ L 2 (0, 1) : f H σ (0,1) = σ k=0 f (k) 2 L 2 (0,1) 1 2 < ∞ , (27) 
and P k,M as the best approximation of f is considered. Then the following inequality is hold:

f -P k,M L 2 (0,1) ≤ cM -σ 2 -kσ f (σ) 2 L 2 (0,1) , (28) 
f -P k,M H q (0,1) ≤ cM 2q-1 2 -σ 2 k(q-σ) f (σ) 2 L 2 (0,1) , q ≥ 1. ( 29 
)
Theorem 3.3. Suppose p 1 (x) is belongs to the space H σ (0, 1), σ ≥ 0 and p N is the best approximation of p 1 (x). Then we have:

E L 2 (0,1) ≤ cN -σ p (σ) 1 2 L 2 (0,1) Γ(2 -1 (x)) + 2cN -σ p (σ) 1 2 L 2 (0,1) , (30) 
E L 2 (0,1) ≤ cN 2q-1 2 -σ p (σ) 1 2 L 2 (0,1) Γ(2 -1 (x)) + 2cN 2q-1 2 -σ p (σ) 1 2 L 2 (0,1) , q ≥ 1, ( 31 
)
here E = p 1 (x) -p N (x) is considered.
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Proof. Using (1), we obtain

E L 2 (0,1) = C D 1 (x) x p 1 (x) -p N (x) + p 1 (x) -p N (x) + x 0 p 1 (υ) -p N (υ)dυ L 2 (0,1) = 1 Γ(1 -1 (x)) x 0 (x -υ) -1 (x) p 1 (υ) -p N (υ) dυ + p 1 (x) -p N (x) + x 0 p 1 (υ) -p N (υ)dυ L 2 (0,1) ≤ 1 Γ(1 -1 (x)) x 0 (x -υ) -1 (x) p 1 (υ) -p N (υ) dυ L 2 (0,1) + p 1 (x) -p N (x) L 2 (0,1) + x 0 p 1 (υ) -p N (υ)dυ L 2 (0,1) . (32)
We use f * g L 2 (0,1) ≤ f 1 g L 2 (0,1) for Eq.( 32), we have:

E L 2 (0,1) ≤ 1 Γ(1 -1 (x)) x 0 (x -υ) -1 (x) p 1 (υ) -p N (υ) dυ L 2 (0,1) + p 1 (x) -p N (x) L 2 (0,1) + x 0 p 1 (υ) -p N (υ)dυ L 2 (0,1) ≤ x 1-1 (x) Γ(2 -1 (x)) p 1 (x) -p N (x) L 2 (0,1) + p 1 (x) -p N (x) L 2 (0,1) + x 0 p 1 (υ) -p N (υ)dυ L 2 (0,1) ≤ x 1-1 (x) Γ(2 -1 (x)) p 1 (x) -p N (x) L 2 (0,1) + p 1 (x) -p N (x) L 2 (0,1) +x p 1 (x) -p N (x) L 2 (0,1) ≤ p 1 (x) -p N (x) L 2 (0,1) Γ(2 -1 (x)) + 2 p 1 (x) -p N (x) L 2 (0,1) , (33) 
so, we employ Eqs.( 28) and (29) on the relation (33), we get:

E L 2 (0,1) ≤ cN -σ p (σ) 1 2 L 2 (0,1) Γ(2 -1 (x)) + 2cN -σ p (σ) 1 2 L 2 (0,1) , (34) 
E L 2 (0,1) ≤ cN 2q-1 2 -σ p (σ) 1 2 L 2 (0,1) Γ(2 -1 (x)) + 2cN 2q-1 2 -σ p (σ) 1 2 L 2 (0,1) , q ≥ 1. ( 35 
)
The desired result is achieved.

Theorem 3.4. Suppose p 2 (x) is belongs to the space H σ (0, 1), σ ≥ 0 and p N is the best A numerical technique for solving variable order time fractional differential-integro equations 137 approximation of p 1 (x). Then we have:

E L 2 (0,1) ≤ cN -σ p (σ) 1 2 L 2 (0,1) Γ(2 -2 (x)) + 2cN -σ p (σ) 2 2 L 2 (0,1) , (36) 
E L 2 (0,1) ≤ cN 2q-1 2 -σ p (σ) 2 2 L 2 (0,1) Γ(2 -2 (x)) + 2cN 2q-1 2 -σ p (σ) 2 2 L 2 (0,1) , q ≥ 1. ( 37 
)
Proof. The proof of this theorem is similar to the proof of the Theorem 3.3.

The shifted Jacobi-Gauss collocation algorithm

This subsection describes the proposed method for solving Eqs.( 1), [START_REF] Amiri | A spectral collocation method with piecewise trigonometric basis functions for nonlinear Volterra-Fredholm integral equations[END_REF]. By substituting the relations ( 16) and ( 17) in Eqs.( 1) and ( 2), we obtain:

C D 1 (x) x n k=0 a k P µ,ν k (x) + d dx n k=0 a k P µ,ν k (x) + x 0 n k=0 a k P µ,ν k (υ)dυ = θ 1 (x)
the initial condition for this types of equation is n k=0

a k P µ,ν k (0)= n k=0 a k P µ,ν k (0)=0, , n k=0 a k C D 1 (x) x P µ,ν k (x) + n k=0 a k P µ,ν k (x) + n k=0 a k x 0 P µ,ν k (υ)dυ = θ 1 (x), (38) 
C D 2 (x) x n k=0 b k P µ,ν k (x) + n k=0 b k P µ,ν k (x) + x 0 n k=0 b k P µ,ν k (υ)dυ = θ 2 (x)
the initial condition for this types of equation is

n k=0 b k P µ,ν k (0)= n k=0 b k P µ,ν k (0)=0, , n k=0 b k C D 1 (x) x P µ,ν k (x) + n k=0 b k P µ,ν k (x) + n k=0 b k x 0 P µ,ν k (υ)dυ = θ 2 (x), (39) 
by applying Eqs.( 12),( 13) on the equations (38) and (39), we have:

n k=0 k m=0 a k Ω µ,ν m,k x m-1 (x) + n k=0 k+1 m=1 a k Ψ µ,ν m,k x m-1 + n k=0 k m=0 a k Υ µ,ν m,k x m+1 = θ 1 (x), ( 40 
) n k=0 k m=0 b k Ω µ,ν m,k x m-2 (x) + n k=0 k+1 m=1 b k Ψ µ,ν m,k x m-1 + n k=0 k m=0 b k Υ µ,ν m,k x m+1 = θ 2 (x), ( 41 
)
where Υ µ,ν m,k = (-1) k-m Γ(ν+k+1)Γ(µ+ν+m+k+1) (m+1)!(k-m)!Γ(ν+m+1) . Now we calculate the equations ( 40) and (41) in points x µ,ν,i =

x µ,ν,i +1 2
which is the nodes of the standard Jacobi-Gauss interpolation in the interval [-1, 1] and their introduced in [START_REF] Doha | On spectral methods for solving variable-order fractional integro-differential equations[END_REF]. Then for i = 1, 2, . . . , n we get:

n k=0 k m=0 a k Ω µ,ν m,k x m-1 (x) µ,ν,i + n k=0 k+1 m=1 a k Ψ µ,ν m,k x m-1 µ,ν,i + n k=0 k m=0 a k Υ µ,ν m,k x m+1 µ,ν,i = θ 1 (x µ,ν,i ), n k=0 a k P µ,ν k (0) = n k=0 a k P µ,ν k (0) = 0. ( 42 
) n k=0 k m=0 b k Ω µ,ν m,k x m-2 (x) µ,ν,i + n k=0 k+1 m=1 b k Ψ µ,ν m,k x m-1 µ,ν,i + n k=0 k m=0 b k Υ µ,ν m,k x m+1 µ,ν,i = θ 2 (x µ,ν,i ), n k=0 b k P µ,ν k (0) = n k=0 b k P µ,ν k (0) = 0. ( 43 
)
By solving these equations together with the initial conditions, the uncertain coefficients a k , b k are obtained. When the functions θ 1 (x), θ 2 (x) are nonlinear, in this case the equations ( 42) and ( 43) changes to the following equations:

n k=0 k m=0 a k Ω µ,ν m,k x m-1 (x) µ,ν,i + n k=0 k+1 m=1 a k Ψ µ,ν m,k x m-1 µ,ν,i + n k=0 k m=0 a k Υ µ,ν m,k x m+1 µ,ν,i = θ 1 (x µ,ν,i , p 1 (x µ,ν,i ), p 1 (x µ,ν,i )), n k=0 a k P µ,ν k (0) = n k=0 a k P µ,ν k (0) = 0. ( 44 
) n k=0 k m=0 b k Ω µ,ν m,k x m-2 (x) µ,ν,i + n k=0 k+1 m=1 b k Ψ µ,ν m,k x m-1 µ,ν,i + n k=0 k m=0 b k Υ µ,ν m,k x m+1 µ,ν,i = θ 2 (x µ,ν,i , p 2 (x µ,ν,i ), p 2 (x µ,ν,i )), n k=0 b k P µ,ν k (0) = n k=0 b k P µ,ν k (0) = 0. ( 45 
)
By applying a recursive method on the relations ( 44) and ( 45) can be obtained the uncertain coefficients a k , b k .

Numerical Examples

This section examines four examples by using the proposed method to show its performance and accuracy. .

|p 2 (x) -p 2,n (x)| |p 2 (x) -p 2,n (x)| x n=8
n=16 n=32 n=64 0.1 0.96485e -15 0.99077e -16 1.01719e -17 1.04410e -18 0.2 0.86589e -15 0.88993e -16 0.91443e -17 0.93940e -18 0.3 0.77425e -15 0.79650e -16 0.81918e -17 0.84231e -18 0.4 0.68954e -15 0.71009e -16 0.73105e -17 0.75244e -18 0.5 0.61139e -15 0.63033e -16 0.64967e -17 0.66940e -18 0.6 0.53947e -15 0.55688e -16 0.57467e -17 0.59284e -18 0.7 0.47343e -15 0.48940e -16 0.50573e -17 0.52242e -18 0.8 0.41297e -15 0.42757e -16 0.44252e -17 0.45780e -18 0.9 0.35778e -15 0.37110e -16 0.38473e -17 0.39869e -18 Table 1: The absolute error for the values of the parameters n = µ = 1 2 , ν = 1 4 and 1 (x) = 1 -0.001x for Example 1. 

|p 2 (x) -p 2,n (x)| |p 2 (x) -p 2,n (x)| x n=8 n=16 n=32 n=64 0.1 1.02256e -15 1.12266e -17 1.22921e -19 1.34242e -21 0.2 1.46252e -

Example 1.

We consider the following coupled differential-integral equation of order 1 (x) = 1 -0.001x and 2 (x) = 1 -sin 2 (x):

C D 1 (x) x p 1 (x) + p 1 (x) + x 0 p 2 (υ)dυ = θ 1 (x), p 1 (0) = p 1 (0) = 0, ( 46 
) C D 2 (x) x p 2 (x) + p 2 (x) + x 0 p 1 (υ)dυ = θ 2 (x), p 2 (0) = p 2 (0) = 0, (47) 
where θ 1 (x) = x 2 cosh(x) -2t sinh(x) + 2 cosh(x) + 2(e x + 2xe x -1) The analytical solutions for these questions are p 1 (x) = xe x -x, p 2 (x) = x 2 sinh(x). This example is solved by the proposed method and the results of the approximate and exact solutions are shown in the Figures 1 and2. In the Tables 1 and2, the absolute error between the approximate and analytical solutions are displayed. 

A

Example 2.

Consider the following coupled differential-integral equation with 1 (x) = sin( x 3 ) and 2 (x) = x 3 :

C D 1 (x) x p 1 (x) + p 1 (x) + x 0 p 1 (υ)dυ = 4x(x + 1) + 2x 2 + x 4 4 + x 3 3 , p 1 (0) = p 1 (0) = 0, ( 48 
) C D 2 (x) x p 2 (x) + p 2 (x) + x 0 p 2 (υ)dυ = 4x(x -1) + 2x x + x 4 4 - x 3 3 , p 2 (0) = p 2 (0) = 0, (49) 
the exact solutions of Eqs.(48),(49) are p 1 (x) = x 2 (x + 1), p 2 (x) = x 2 (x -1). This example is solved by the proposed method and the results of the approximate and exact solutions are shown in the Figures 3 and4. In the Tables 3 and4, the absolute error between the approximate and analytical solutions are displayed.

Example 3.

Next, we describe the nonlinear coupled differential-integral equation with 1 (x) = e x -x 2 and 2 (x) = sin 2 (x). The exact solutions of Eqs.(50),(51) are p 1 (x) = 1 3 x 3 , p 2 (x) = x 2 . This example is solved by the proposed method and the results of the approximate and exact solutions are shown in the Figures 5 and6. In the Tables 5 and6, the absolute error between the approximate and analytical solutions are displayed.

C D 1 (x) x p 1 (x) + p 1 (x) + x 0 p 1 (υ)dυ = 2x 2 + x 4 12 + x 9 27 -p 3 1 (x), p 1 (0) = p 1 (0) = 0, ( 50 
) C D 2 (x) x p 2 (x) + p 2 (x) + x 0 p 2 (υ)dυ = 4x + 7x 3 3 -p 2 (x)p 2 (x), p 2 (0) = p 2 (0) = 0, (51) 
= µ = 1 2 , ν = 1 4 . |p 2 (x) -p 2,n (x)| |p 2 (x) -p 2,n ( 

Conclusion

This article is focused on the coupled differential-integral equation including the Caputo fractional operator of variable-orders and it is proposed a numerical method based on the shifted Jacobi-Gauss collocation scheme to obtain the solution of the coupled differentialintegral equation. Also, in this paper about the convergence and an upper bound on the error are discussed. Some numerical Examples have been showed in order to display the high exactness of the suggested method. 

Figure 2 :

 2 Figure 2: Numerical and exact solutions of the Example 1 with 2 (x) = 1 -sin 2 (x) and for the values of the parameters n, µ = 1 2 , ν = 1 4 .

23 Table 2 :

 232 17 1.58973e -19 1.72428e -21 1.86639e -23 0.3 0.68232e -17 0.75878e -19 0.84084e -21 0.92869e -23 0.4 0.42820e -17 0.48438e -19 0.54532e -21 0.61123e -23 0.5 0.24707e -17 0.28622e -19 0.32932e -21 0.37658e -23 0.6 0.12620e -17 0.15145e -19 0.17989e -21 0.21170e -23 0.7 0.05314e -17 0.06759e -19 0.08446e -21 0.10393e -23 0.8 0.01572e -17 0.02239e -19 0.03073e -21 0.04091e -23 0.9 0.00196e -17 0.00383e -19 0.00663e -21 0.01053e -The absolute error for the values of the parameters n = µ = 1 2 , ν = 1 4 and 2 (x) = 1 -sin 2 (x) for Example 1.

Figure 3 :

 3 Figure 3: Numerical and exact solutions of the Example 2 with 1 (x) = sin( x 3 ) and for the values of the parameters n, µ = 1 2 , ν = 1 4 .

|p 2 (

 2 x) -p 2,n (x)| |p 2 (x) -p 2,n (x)| x n=8 n=16 n=32 n=64 0.1 0.20113e -15 0.20639e -16 0.21173e -17 0.21717e -18 0.2 0.18095e -15 0.18586e -16 0.19087e -17 0.19595e -18 0.3 0.16210e -15 0.16669e -16 0.17136e -17 0.17611e -18 0.4 0.14456e -15 0.14883e -16 0.15317e -17 0.15760e -18 0.5 0.12827e -15 0.13223e -16 0.13626e -17 0.14037e -18 0.6 0.11319e -15 0.11685e -16 0.12058e -17 0.12439e -18 0.7 0.09928e -15 0.10265e -16 0.10609e -17 0.10960e -18 0.8 0.08649e -15 0.08959e -16 0.09275e -17 0.09598e -18 0.9 0.07479e -15 0.07762e -16 0.08051e -17 0.08347e -18

Figure 4 :

 4 Figure 4: Numerical and exact solutions of the Example 2 with 2 (x) = x 3 and for the values of the parameters n, µ = 1 2 , ν = 1 4 .

Figure 5 : 2 ,

 52 Figure 5: Numerical and exact solutions of the Example 3 with 1 (x) = e x -x 2 and for the values of the parameters n, µ = 1 2 , ν = 1 4 .

Figure 6 :

 6 Figure 6: Numerical and exact solutions of the Example 3 with 2 (x) = sin 2 (x) and for the values of the parameters n = µ = 1 2 , ν = 1 4 .

18 Table 5 :

 185 4 0.69244e -15 0.73662e -16 0.78265e -17 0.83056e -18 0.5 0.53335e -15 0.57055e -16 0.60944e -17 0.65006e -18 0.6 0.40071e -15 0.43153e -16 0.46388e -17 0.49781e -18 0.7 0.29212e -15 0.31715e -16 0.34356e -17 0.37141e -18 0.8 0.20516e -15 0.22501e -16 0.24609e -17 0.26845e -18 0.9 0.13744e -15 0.15270e -16 0.16905e -17 0.18652e -The absolute error for the values of the parameters n = µ = 1 2 , ν = 1 4 and 1 (x) = e x -x 2 for Example 3.

|p 2

 2 (x) -p 2,n (x)| |p 2 (x) -p 2,n (x96991e -15 2.02502e -16 2.08087e -17 2.13749e -18 0.2 1.75711e -15 1.80917e -16 1.86199e -17 1.91558e -18 0.3 1.55647e -15 1.60549e -16 1.65527e -17 1.70581e -18 0.4 1.36799e -15 1.41398e -16 1.46072e -17 1.50822e -18 0.5 1.19168e -15 1.23462e -16 1.27832e -17 1.32277e -18 0.6 1.02752e -15 1.06742e -16 1.10808e -17 1.14950e -18 0.7 0.87552e -15 0.91238e -16 0.95000e -17 0.98838e -18 0.8 0.73568e -15 0.76950e -16 0.80408e -17 0.83942e -18 0.9 0.60800e -15 0.63878e -16 0.67032e -17 0.70262e -18 Table 6: The absolute error for the values of the parameters n = µ = 1 2 , ν = 1 4 and 2 (x) = sin 2 (x) for Example 3.

  A numerical technique for solving variable order time fractional differential-integro equations 139

		1.8									
		1.6			n=8						
					n=16					
		1.4			n=32					
		1.2			n=64 Exact solution			
	1 (x)	1									
	p	0.8									
		0.6									
		0.4									
		0.2									
		0									
		0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
							x				
	Figure 1: Numerical and exact solutions of the Example 1 with 1 (x) = 1 -0.001x and
	for the values of the parameters n, µ = 1 2 , ν = 1 4 .				
		1.2									
					n=8						
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		0.8			n=64 Exact solution				
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		2									
		1.8			n=8						
		1.6			n=16						
					n=32						
		1.4			n=64						
		1.2			Exact solution				
	1 (x)	1									
	p										
		0.8									
		0.6									
		0.4									
		0.2									
		0									
		0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
							x				

Table 3 :

 3 The absolute error for the values of the parameters n = µ = 1

	2 , ν = 1 4 and

Table 4 :

 4 The absolute error for the values of the parameters n, µ = 1 2 , ν = 1 4 and 2 (x) = x .35242e -15 1.42118e -16 1.49223e -17 1.56560e -18 0.2 1.09957e -15 1.15953e -16 1.22164e -17 1.28592e -18 0.3 0.88038e -15 0.93215e -16 0.98592e -17 1.04171e -18 0.

	x)|