
HAL Id: hal-03914638
https://hal.science/hal-03914638

Submitted on 28 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

AdaSplats: Adaptive Splatting of Point Clouds for
Accurate 3D Modeling and Real-Time High-Fidelity

LiDAR Simulation
Jean Pierre Richa, Jean-Emmanuel Deschaud, François Goulette, Nicolas

Dalmasso

To cite this version:
Jean Pierre Richa, Jean-Emmanuel Deschaud, François Goulette, Nicolas Dalmasso. AdaSplats:
Adaptive Splatting of Point Clouds for Accurate 3D Modeling and Real-Time High-Fidelity LiDAR
Simulation. Remote Sensing, 2022, 14 (24), pp.6262. �10.3390/rs14246262�. �hal-03914638�

https://hal.science/hal-03914638
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Citation: Richa, J.P.; Deschaud, J.-E.;

Goulette, F.; Dalmasso, N. AdaSplats:

Adaptive Splatting of Point Clouds

for Accurate 3D Modeling and

Real-Time High-Fidelity LiDAR

Simulation. Remote Sens. 2022, 14,

6262. https://doi.org/10.3390/

rs14246262

Academic Editors: Kourosh

Khoshelham, Martin Weinmann,

Johannes Otepka and Di Wang

Received: 27 October 2022

Accepted: 6 December 2022

Published: 10 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

AdaSplats: Adaptive Splatting of Point Clouds for Accurate
3D Modeling and Real-Time High-Fidelity LiDAR Simulation
Jean Pierre Richa 1,2,* , Jean-Emmanuel Deschaud 1 , François Goulette 1,3 and Nicolas Dalmasso 2

1 Centre for Robotics, Mines Paris, PSL University, 75006 Paris, France
2 ANSYS France, 15 Pl. Georges Pompidou, 78180 Montigny-le-Bretonneux, France
3 U2IS, ENSTA Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France
* Correspondence: jean-pierre.richa@minesparis.psl.eu or jeanpierre.richa@ansys.com

Abstract: LiDAR sensors provide rich 3D information about their surroundings and are becoming
increasingly important for autonomous vehicles tasks such as localization, semantic segmentation,
object detection, and tracking. Simulation accelerates the testing, validation, and deployment of
autonomous vehicles while also reducing cost and eliminating the risks of testing in real-world
scenarios. We address the problem of high-fidelity LiDAR simulation and present a pipeline that
leverages real-world point clouds acquired by mobile mapping systems. Point-based geometry
representations, more specifically splats (2D oriented disks with normals), have proven their ability
to accurately model the underlying surface in large point clouds, mainly with uniform density. We
introduce an adaptive splat generation method that accurately models the underlying 3D geometry
to handle real-world point clouds with variable densities, especially for thin structures. Moreover,
we introduce a fast LiDAR sensor simulator, working in the splatted model, that leverages the
GPU parallel architecture with an acceleration structure while focusing on efficiently handling large
point clouds. We test our LiDAR simulation in real-world conditions, showing qualitative and
quantitative results compared to basic splatting and meshing techniques, demonstrating the interest
of our modeling technique.

Keywords: point clouds; 3D modeling; splatting; surface reconstruction; LiDAR simulation; ray tracing

1. Introduction

Constructing virtual environments inside which autonomous vehicles (AVs) and their
sensors can be simulated is not an easy task. This can be achieved by 3D artists who
carefully craft the scenes manually, such as in CARLA simulator [1]. Although handcrafted
simulators provide leverage for testing AV algorithms, they introduce a large domain gap
with respect to real-world environments. This gap arises from the difference between the
almost perfect geometry present in such simulators, as they contain carefully designed
simple 3D objects, which results in simplistic environments. Improving realism, manual
construction involves months of work and associated costs (e.g., creating photo-realistic
scenes costs 10,000 dollars per kilometer [2]).

The limitations of manually constructed simulation environments have given rise to
simulators [2,3] using real-world point clouds collected from a LiDAR scanner mounted on
a mobile mapping system (MMS). These methods model the real-world automatically from
outdoor point clouds using well-known splatting techniques [4,5]. Splats are oriented 2D
disks that approximate the local neighborhood by following the curvature of the surface
and are defined by a center point, a normal vector, and a radius. They are used as geometric
primitives to model the 3D surface. These simulation methods follow early work carried
out on point-based modeling and rendering [6] to achieve high-quality 3D modeling while
reducing the number of generated geometric primitives. They have been proposed for
simulating the LiDAR sensor in the splatted environment, resulting in higher accuracy on

Remote Sens. 2022, 14, 6262. https://doi.org/10.3390/rs14246262 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14246262
https://doi.org/10.3390/rs14246262
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-4771-7538
https://orcid.org/0000-0002-6696-9354
https://orcid.org/0000-0003-1527-2650
https://doi.org/10.3390/rs14246262
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14246262?type=check_update&version=3

Remote Sens. 2022, 14, 6262 2 of 30

tasks such as semantic segmentation (SS) and vehicle detection learned from their simulated
data, when compared with data collected from handcrafted simulators. However, these
methods neither demonstrate accurate geometric modeling of reality from MMS point
clouds, nor do they address the time aspect in LiDAR simulation.

A classical approach to automatic 3D modeling is surface reconstruction, which can be
performed on point clouds acquired using LiDAR sensors. Surface reconstruction is a well
studied area of research, and many algorithms have been proposed to reconstruct an explicit
surface representation from unorganized point sets in the form of triangular meshes [7–9].
However, most existing methods fail to represent complex structures, especially open
shapes and thin structures, in a real outdoor environment.

Some approaches have proposed generating a hybrid mesh-splat surface representa-
tion [10,11]. However, they either do not focus on accurate geometry representation, or in
the case of the latter [11], use very expensive mesh generation techniques.

Accurate geometry representation of large outdoor point clouds is essential for high-
quality sensor simulation. In this work, we introduce adaptive splats (AdaSplats) to
overcome the limitations of previous splatting and meshing techniques by using local
geometric cues and point-wise semantic labels. Splat modeling is more flexible than
a mesh reconstruction, and the size of each splat can be adapted by semantic or local
geometric information.

SS on 3D point clouds is the task of assigning point-wise semantic labels. There exist
a plethora of methods for the SS task [12–15]. We leverage KPConv [12] for its reported
accuracy on a variety of datasets [16–18]. For example, KPConv achieves an average mean
Intersection over Union (mIoU) of 82% on the Paris-Lille-3D dataset [16]. This is an outdoor
dataset collected using a LiDAR mounted on a MMS and close to the Paris-CARLA-3D
(PC3D) dataset [19] that we use in our experiments. Using KPConv, we perform SS on
the outdoor point clouds to obtain point-wise semantic labels that are later used for the
generation of AdaSplats.

LiDAR point clouds acquired using a MMS are highly anisotropic [16]. Resampling
the point cloud reduces the anisotropy and increases uniformity by redistributing the
points. Although previous upsampling methods [20,21] have addressed this problem,
they require passing through computationally expensive representations. Deep learning
methods for point cloud upsampling [22,23] are used to increase the uniformity of the
points distribution, and deep learning for depth completion [24,25] can also help in the case
of sparse point clouds. However, these methods are data hungry and usually limited to
small objects or scenes. We propose a point cloud resampling that exploits our splats mod-
eling, eliminating the need for extensive data preprocessing and training while achieving
isotropic resampling.

Physics-based sensor simulation, such as simulation of the camera and LiDAR sensors,
requires ray tracing the generated primitives. Previous splat ray-tracing algorithms [26] are
limited to ray–splat intersection using a CPU parallelized implementation. Accelerating
sensor simulation requires achieving real-time ray tracing, which is not possible to achieve
with CPU parallelization. We introduce a ray–splat intersection method leveraging the
GPU architecture and an acceleration data structure, achieving real-time rendering in the
splat model.

We propose a fully automatic pipeline for accurate 3D modeling of outdoor environ-
ments and simulation of a LiDAR sensor from real-world data (see Figure 1).

More specifically, and different from previous LiDAR simulators leveraging existing
point cloud splatting techniques [2,3], we focus on accurate geometry representation of
point clouds collected in outdoor environments and introduce AdaSplats. We propose the
following two variants of AdaSplats: The first uses point-wise semantic labels obtained
from the predictions of a deep network; and the second uses only local neighborhood
descriptors obtained from analysis on the principal components describing the local surface.
The second variant is introduced for use in the absence of large ground truth semantic
information to train neural networks.

Remote Sens. 2022, 14, 6262 3 of 30

Figure 1. Starting with a point cloud acquired using a mobile mapping system (MMS), we obtain
point-wise semantic labels by performing semantic segmentation. Using the semantic labels, we
remove dynamic objects in the scene and perform our splats generation method. The splatted scene
can then be used to simulate the different sensors. Dynamic objects can be added to the splatted
scene either in the form of splatted point clouds or using a bank of CAD meshed models.

The proposed pipeline aims to generate an accurate 3D model of outdoor scenes
represented by point clouds collected using a range sensor (mobile or static), which has
not previously been discussed in the context of sensor simulation [2,3]. Moreover, it
targets speeding up the simulation by reducing the number of generated primitives and
accelerating the ray–primitive intersection. Our pipeline is highly dynamic and can be
modified to include intermediate steps, such as the addition of dynamic objects (e.g.,
moving vehicles and pedestrians). This is demonstrated in the experiments in Section 6.3.4,
where we introduce the SimKITTI32 dataset, a simulated Velodyne HDL-32 LiDAR in a
splatted environment from SemanticKITTI acquired by a Velodyne HDL-64 [18].

Our contributions can be summarized as follows:

• AdaSplats: a novel adaptive splatting approach for accurate 3D geometry modeling of
large outdoor noisy point clouds;

• Splat-based point cloud resampling, dealing with highly varying densities and scalable
to large data;

• Faster-than-real-time GPU ray casting in the splat model for LiDAR sensor simulation
and rendering;

• SimKITTI32: a dataset simulating a Velodyne HDL-32 inside a sequence of SemanticKITTI
dataset [18]. It is publicly available at: https://npm3d.fr/simkitti32 (accessed on 5
December 2022).

2. Related Works

We introduce surface reconstruction methods and state their limitations; then, we talk
about point-based modeling and resampling techniques that allow us to achieve a more
realistic surface representation with a lower number of geometric primitives. Finally, we
introduce previous LiDAR simulation methods performed in splatted scene models.

2.1. Surface Reconstruction

The earliest methods on surface representation from point clouds mainly focused on
surface reconstruction [7] producing triangular meshes. These methods were designed
to work on closed surfaces and required a good point-wise normals estimation with no
errors in orientation, which is a complex problem and an active area of research [27–30].
Using distance functions on 3D volumetric grids for surface reconstruction traces back to

https://npm3d.fr/simkitti32

Remote Sens. 2022, 14, 6262 4 of 30

the seminal work of Hoppe et al. [7], in which a signed distance field φ : R3 → R was used
to represent the underlying surface from a point cloud, as follows:

φ(x) = n̂ · (x− p) (1)

where x is the voxel coordinates in the 3D grid, p is the nearest neighbor of x in the point
cloud P , and the vector n with a hat (n̂) is the normal unit vector associated with the
point p.

Having computed the signed distance function (SDF) on a regular 3D grid, the march-
ing cubes algorithm [31] extracts the final iso-surface as a mesh.

Following this pioneering work, several methods have been proposed to deal with
noisy data, such as Implicit Moving Least Squares (IMLS) [8], which approximates the
local neighborhood of a given voxel in the grid as a weighted average of the local point
functions, as follows:

IMLS(x) =
∑pk∈Nx n̂k · (x− pk) θk(x)

∑pk∈Nx θk(x)
(2)

where x is the voxel coordinates, Nx is the set of pk neighboring points from x in the point
cloud P , n̂k is the normal unit vector associated with the point pk, and θk is the Gaussian
weight defined as:

θk(x) = e−||x−pk ||22/σ2
(3)

where σ is a parameter of the influence of points in Nx.
Other surface reconstruction methods [9,32] use global implicit functions, such as indi-

cator functions where the reconstruction problem is solved using a Poisson system equation.

2.1.1. Volumetric Segmentation

Volumetric segmentation is a subcategory of indicator function that classifies whether
a voxel is occupied or empty with a confidence level using octrees [33] or Delaunay trian-
gulation [34]. It can be scaled to arbitrarily large point clouds by distributing the surface
reconstruction problem [35]. Some works on surface reconstruction have focused on identi-
fying drive-able zones for robot navigation through the creation of simplistic 3D models
of roads and buildings [36]. Others have proposed improvements for detailed facade
reconstruction [37]. Some applications have real-time constraints, like in [38]. However,
they do not create watertight meshes, and they introduce many disconnected parts and
holes. More recently, 3DConvNets [39,40] are applied for surface reconstruction but need
large training data.

2.1.2. Volumetric Fusion

In a different approach, the volumetric fusion method of VRIP [41] takes advantage
of range images. It creates a mesh from the depth image to cast a ray from the sensor
origin to the voxel of the volumetric grid, obtaining a signed distance to the mesh. Then, it
merges the scans’ distances in a least-squares sense. However, this distance field can only
be computed from range images and cannot be used directly on point clouds.

2.2. Point-Based Surface Modeling

Point-based rendering gained interest after the report published by Levoy and Whitted
on using points as display primitives [6].

2.2.1. Splatting

The first methods on rendering such primitives without any connectivity informa-
tion [5,42] focused on achieving a low rendering time and interactively displaying large
amounts of points. They used accelerating hierarchical data structures to accelerate the
rendering of the generated splats, which are oriented 2D disks expanding to generate a

Remote Sens. 2022, 14, 6262 5 of 30

hole-free approximation of the surface. They used splats as their modeling and render-
ing primitives.

High-Quality Rendering

Using splats as rendering primitives became the best choice for surface modeling
after their efficiency and effectiveness were proven in many methods. Surface Splatting [4]
introduces a point rendering and texture filtering technique and achieves high quality
anisotropic anti-aliasing. It combines oriented 2D reconstruction kernels, circular, or
elliptical splats, with a band-limiting image-space elliptical weighted average (EWA) texture
filter. Other methods in this area [43,44] exploit the programmability of modern GPUs and
detail the best practices for rendering point-based methods using elliptical splats. They
achieve a high frame rate even in the presence of a high number of primitives, which makes
it possible for real-time applications to contain more details than similar scenes based on
polygonal meshes. Surfels [5] is another approach that focuses on the accurate mapping of
textures to splats to increase the visual details of the rendered objects while rendering at
interactive rates.

Achieving a high frame rate in the presence of a high number of primitives is essential.
However, it is also important to reduce the preprocessing computational complexity as
much as possible. One approach using circular or elliptical splats [45] creates a hole-free
approximation of the surface and then performs a relaxation procedure that results in a
minimal set of splats that best estimates the surface.

Advanced Shading

The aforementioned approaches do not focus on generating photo-realistic rendering
because they use one normal vector per splat, which results in rendering that is comparable
with Gouraud or flat shading. A previous method overcomes this challenge by associating
a normal field to each splat that is created using the normals of points in the neighborhood
of the splat center [46]. This approach provides a better local approximation of the surface
normals and results in rendering comparable to Phong shading for regular meshes, hence
the name Phong splatting. However, it is computationally expensive to generate a per-splat
normal field. Moreover, it increases the host (CPU) to device (GPU) communication time
and memory footprint resulting from transferring more information to the device.

2.2.2. Splats Ray Tracing

The previous approaches focused on several aspects of using points as rendering
primitives. However, one important aspect that is still missing is ray tracing the generated
splats. In [26], the authors leverage the previous methods while modifying the pipeline to
best suit their ray tracing algorithm. They generate a hole-free approximation of the surface.
Moreover, they associate each splat with a normal field and then ray trace the generated
splats, performing per-pixel Phong shading. They achieve photo-realistic rendering on
dense and uniformly distributed point clouds while using an octree to accelerate the
ray–splat intersection.

Leveraging this last method, which was implemented to work only on CPUs, we
implement an efficient GPU ray–splat intersection, improve their splats generation method,
and use semantic information obtained from deep neural networks to build adaptive splats.

2.3. Neural Radiance Fields

More recent methods, such as neural radiance fields (NeRF) [47], have gained a lot
of interest in the rendering and novel view synthesis communities. They train neural
networks to generate photo-realistic novel views of a scene from a set of calibrated input
images. Several subsequent methods [48–52] have introduced different approaches to
reduce the computational complexity and providing real-time inference ability. These
methods achieve impressive rendering quality of complex scenes. However, we focus our

Remote Sens. 2022, 14, 6262 6 of 30

work on high-fidelity LiDAR simulation and leave photo-realistic camera simulation for
future works.

2.4. Resampling

Data sparsity and nonuniformity dominate point clouds collected using a MMS,
as shown in [16]. Isotropic resampling to increase uniformity of the points distribution
across the point cloud facilitates the splats generation and improves the normals estimation.
A previous upsampling approach [20] works directly on the geometry inferred from the
local neighborhood of points in the point cloud. The method begins by computing an
approximation of the Voronoi diagram of neighborhood points at a random point. Then,
it chooses the Voronoi vertex whose circle has the largest radius and projects the vertex
on the surface with the moving least squares (MLS) projection. The process is repeated
until the radius of the largest circle is less than a defined threshold. This results in an
upsampling that accurately approximates the surface geometry. However, Voronoi diagram
approximations are expensive to compute.

Mesh-based resampling techniques can be achieved by reconstructing the surface
from the acquired point cloud, simplifying the mesh while preserving the local underlying
surface structure [53], and then sampling points on the reconstructed surface. Although they
can achieve a good approximation of the surface, they are dependent on geometry errors
introduced by surface reconstruction methods.

Other methods use deep learning techniques directly on point clouds to achieve higher
density on sparse point clouds through upsampling [22,23]. Depth completion can also
be used to infer the completed depth map from an incomplete one, which can later be
re-projected into 3D to upsample the point cloud [24,25]. However, current deep learning
methods are limited to small scenes and suffer from a performance drop with unseen
real-world data.

Inspired by [20], we introduce a novel splat-based point cloud resampling approach
that increases the uniformity of points distribution. Moreover, we embed a denoising and
an outlier rejection step into the sampling algorithm that helps with achieving a minimal
set of points that will be used later to generate the splats. With the resampled point cloud,
we achieve high-quality, hole-free surface modeling using our adaptive splats approach.

2.5. LiDAR Simulation

The availability of handcrafted simulated environments such as CARLA [1], BlenSor [54],
and game engines (GTA-V) offers the ability to simulate LiDAR sensors and collect scans [55–57].
Deep learning methods leverage the huge amount of data that can be collected from such
environments. However, they introduce a large domain gap between synthetic and real-world
data. Although this gap can be reduced with domain adaptation strategies [58,59], it still limits
the ability of trained neural networks to generalize to the real world when trained on synthetic
simulated LiDAR data.

2.5.1. Volumetric Scene Representation

A previous approach [60], extended in [61], focuses on accurate interaction between
the LiDAR beam and the environment. In this work, the environment was modeled
from real LiDAR data to reduce the domain gap. The authors introduce permeability to
sample the points of intersection from 3D Gaussian kernels contained in volumetric grids.
Although good results can be achieved, a volumetric representation is not accurate for
modeling the underlying surface, and the approach is computationally expensive, so it
cannot be used for real-time applications.

2.5.2. Splat-Based Scene Representation

More recent approaches [2,3] acquire data using a LiDAR mounted on a MMS and
model the 3D geometry using splatting techniques after removing the dynamic objects in
the foreground (e.g., pedestrians, cars, etc.). These approaches add dynamic objects on top

Remote Sens. 2022, 14, 6262 7 of 30

of the reconstructed 3D environment in the form of CAD models, such as in [2], or in the
form of point clouds collected from the real world, such as in [3]. In the first approach [2],
the authors do not take into account the physical model of the LiDAR, since they do not
cast rays; instead, they use cube maps rasterization to accelerate the simulation. In the
second approach [3], they use Embree [62] to accelerate the ray–primitive intersection.
However, Embree runs on CPU and is still far from real-time since the parallelization of
the ray casting is limited to the number of CPU cores. They achieve higher performance on
object detection and SS tasks using data collected from their simulator, compared to data
collected from CARLA. However, they do not focus on demonstrating accurate modeling
of the static background, which prove to play the most important part in elevating the deep
neural networks’ performance in their experiments.

2.5.3. Mesh-Based Scene Representation

A more recent work [63] simulates an aerial laser scanner to scan a reconstructed scene
as a base model. After scanning, the authors use distance metrics to evaluate the different
reconstruction algorithms. However, they use a meshed model as ground truth, which is
subject to reconstruction error. Instead, we compare the simulated point cloud to raw data
available as point cloud.

2.5.4. Real-Time LiDAR Simulation

LiDAR simulation can be done offline. However, achieving real-time simulation is
important for accelerating AV testing and validation. Ray casting is used for physics-based
LiDAR simulation by casting rays from the virtual sensor placed in the virtual scene. Ray
casting is highly parallelizable and can be further accelerated through the use of accelerating
structures. Embree [62] is a ray-tracing engine working on CPU that builds an acceleration
structure to reduce the computation time by accelerating the ray–primitive intersection.
Although it drastically reduces the ray-tracing time, it is still limited to the use of CPU cores
to parallelize the ray casting. OptiX [64], on the other hand, builds a bounding volume
hierarchy (BVH) structure to arrange the geometric primitives in a tree and benefits from
the parallel architecture of GPUs to further accelerate the ray-casting. This reduces the time
even further, compared with Embree. To this end, we choose to use OptiX and implement
the ray–splat intersection using CUDA to accelerate the intersection process and achieve
real-time LiDAR simulation.

3. Adaptive Splatting

In this section, we describe our AdaSplats approach for generating a high-quality
and hole-free approximation of the underlying surface from a point cloud. We begin by
introducing the adaptive splats generation algorithm, followed by our resampling method.
In our approach, we leverage the accuracy of the state-of-the-art deep learning method
KPConv [12] in SS of 3D outdoor point clouds.

Using the semantic information, we adapt the splat growing and generation to better
model the geometry. We also use the semantic information in the resampling process.

3.1. Basic Splatting

We describe here a variant of the splatting method of Linsen et al. [26], the basic
algorithm on which we develop our adaptive method.

We consider as input data a point cloud P = {pi ∈ R3 | 0 ≤ i ≤ N}. We first compute
an average radius R̄ of points in the K-nearest neighbors neighborhood of every point, pi.
For all experiments, we choose K = 40. We then define Npi , the neighborhood of pi to
be the smallest neighborhood between K-nn and a sphere of radius R̄, to be robust to the
highly variable density of points. We perform (PCA) onNpi to obtain the normal n̂i at each
point pi and reorient it with respect to the LiDAR sensor position.

Each splat Si is defined by (cSi , n̂Si , rSi), with cSi being the center of the splat, n̂Si the
unit normal vector, and rSi the radius of the splat. A splat Si centered at pi ∈ P initially has

Remote Sens. 2022, 14, 6262 8 of 30

n̂Si = n̂i and ri = 0, which is increased by including points in Npi (sorted in the order of
increasing distance to pi). We compute the signed point-to-plane distance of each neighbor
pk

i ∈ Npi :
εk

i = n̂i · (pk
i − pi) (4)

We stop the growing in Npi when |εk
i | exceeds an error bound Ē (see below). When

the growing is done, we update the splat’s center position by moving it along the normal:

cSi = pi + ε̄i n̂i (5)

with ε̄i being the average signed point-to-plane distance of the points included in its
generation. We then set the radius of the splat as the projected distance of the farthest point
pklast

i , which is the last neighbor having the point-to-plane distance below the Ē threshold,
from cSi :

rSi = ||(p
klast
i − cSi)− n̂i · (p

klast
i − cSi) n̂i||2 (6)

Then, all points in the neighborhoodNpi inside the sphere of radius α rSi are discarded
from the splat generation. α is a global parameter in [0, 1] that allows the entire surface
to be covered without holes while minimizing the number of splats generated (we used
α = 0.2 for all experiments).

Before starting the generation process, we compute the error bound Ē as the average
unsigned point-to-plane distance of points in all Npi . Finally, we keep the m splats with
radius rSi > 0, where m is much lower than the number of points N in the point cloud.
Figure 2 provides a visual illustration of the splats generation process.

Figure 2. Splats generation starts by including points in the neighborhood, until the error bounds
are exceeded, then the center of the splat is moved along the normal vector to minimize the distance
from the splat to the neighboring points.

Now that we have introduced the method that we call Basic Splats generation (which
we use as a baseline), we move on to explain our adaptive splats (AdaSplats) genera-
tion using semantic information. AdaSplats uses the steps introduced in the basic splats
generation and adds the point-wise semantic labels to improve the modeling quality.

3.2. Adaptive Splatting

We first perform SS on the raw point cloud using deep learning [12] to obtain the
semantic classes in the point cloud. We then remove the detected points classified as
dynamic objects (moving and parked cars, moving pedestrians, cyclists, etc.). Using the
semantic information, we divide the points into the following four main groups:

• Ground: road and sidewalk;
• Surface: buildings and other similar classes that locally resemble a surface;
• Linear: poles, traffic signs, and similar objects;
• Non-surface: vegetation, fences, and similar objects.

In the adaptive splats generation, based on the group of the starting point pi, we
change the neighborhood Npi with parameters K and R̄ (as a reminder, Npi is the smallest
neighborhood between K-nn and a sphere of radius R̄). Moreover, we change the error
bound parameter Ē , the criterion that stops the growth of the splats. The parameters used
for the four groups are as follows:

Remote Sens. 2022, 14, 6262 9 of 30

• Ground: 3K = 120, 3R̄, 3Ē ;
• Surface: K = 40, R̄, Ē (no change compared to basic splat);
• Linear: 0.33K = 13, 0.33R̄, 0.33Ē ;
• Non-surface: 0.25K = 10, 0.25R̄, 0.25Ē .

The choice of parameters follows the analysis on points density to identify one that
is sufficient to locally resemble a plane on the different class groups. The analysis takes
into consideration the maximum size of a generated splat on a given structure that does
not result in a geometry deformation. For example, a big splat on a linear structure, or a
tree leaf, and do not leave holes in large planar areas like the ground. Through visual
inspection, we observe the impact of varying the splats parameters for the different class
groups. Finally, the parameters were chosen as the best set that could be used on the three
datasets tested in the experiments section.

We also stop growing splat Si when a new point pk
i ∈ Npi has a semantic class different

from the class of pi.
These two adaptations in the growing of splats help to better model the geometry

depending on the group and the semantics of points (e.g., improving splats for fine struc-
tures or the vegetation); they also improve the geometry at the intersection of different
semantic areas and provide the ability to recover larger missing regions in ground and
sidewalk neighborhoods.

Preserving sharp features in such noisy point clouds and preventing classes interfer-
ence is not an easy task. Every splat in the generation phase with a normal n̂i will include a
neighboring point pk

i with a normal n̂k
i only if it passes the smoothness check n̂i · n̂k

i > β
(we took β = 0.6). Once a point fails to pass this check, we stop growing the splat. Figure 3
illustrates the stopping cases.

Figure 3. Illustrating the stopping cases to ensure the preservation of sharp features and avoid classes
interference in the splats generation.

Performing automatic SS on point clouds using neural networks, or performing man-
ual data annotation may not always be possible due to small scale data or time constraints.
To lift this limitation from our proposed methods, we introduce a variant of AdaSplats that
uses local geometric information to classify the points into the different surface groups and
detail it below.

3.3. Adaptive Splatting Using Local Descriptors

We extend AdaSplats and provide a splats generation method that provides a better
modeling quality than basic splatting in the absence of point-wise semantic labels. We call
this variant AdaSplats-Decr (AdaSplats descriptors). When performing PCA on the neigh-
borhood Npi of a splat pi, we obtain the eigenvectors (êi1 , êi2 , êi3) and their corresponding
eigenvalues (λi1 , λi2 , λi3), such that λi1 ≥ λi2 ≥ λi3 , describing the spread of the data points
in the local neighborhood, where the normal n̂i = êi3 describes the direction of the lowest
spread of the data.

Using the eigenvalues describing the spread of the three axes, the local neighborhood
can be classified as linear, planar, or spherical by computing local descriptors [65] that
reveal if the data are locally spread along one, two, or three dimensions, respectively:

Linearity =
λi1 − λi2

λi1
, Planarity =

λi2 − λi3
λi1

, Sphericity =
λi3
λi1

(7)

Remote Sens. 2022, 14, 6262 10 of 30

The descriptor that best describes the local neighborhood is chosen by taking the
largest value among the three. Using the computed descriptors, we divide the points in the
point cloud into three main groups:

• Ground and surface using the planarity descriptor;
• Linear using the linearity descriptor;
• Non-surface using the sphericity descriptor.

We use the same values for the parameters K, R̄, and Ē on the linear and non-
surface groups and find the best trade-off between a hole-free approximation and modeling
accuracy for the Ground and Surface groups using 2K = 80, 2R̄, and 2Ē .

3.4. Splat-Based Resampling and Denoising

Point clouds collected using MMSs are subject to the presence of multilayered and
noisy surfaces, which is due to sensor noise and localization errors of the MMS. As a prepro-
cessing step before splats generation, we perform local denoising. Using the neighborhood
Npi of a given point pi, we compute the mean unsigned point-to-plane distance, compute
the standard deviation σi, and remove a point pk

i if its unsigned point-to-plane distance
|εk

i | is greater than 3σi.
Such point clouds also have highly varying densities, which are proportional to the

distance between the sensor and the scanned surface. A high level of local anisotropy
also dominates the point clouds, which is caused by the physical model of the LiDAR
(sweeps of lasers) and can be observed from the high density of points along the sweep
lines of the LiDAR and sparser in other directions. To reduce local anisotropy, we resample
the point cloud based on the approximation of the surface from a first splats generation.
After resampling, we restart the whole process of adaptive splats generation on the new
point cloud.

First, we generate splats from point cloud P with our adaptive variant. To obtain prior
information on the acceptable local density throughout the splat surface, we compute the
average splats density δ̄ as the average number of splats in a spherical neighborhood of
radius R̄, excluding splats belonging to the non-surface group. For a splat Si, we start the
resampling process whenever δi < δ̄. We select the farthest splat Sj in the neighborhood of
radius R̄. We verify whether both splats belong to the same semantic class, or semantic
group in the case of AdaSplats-Descr, and if they pass the smoothness check n̂Si · n̂Sj > β.
If both checks are passed, we interpolate a new point that lies at the center of the segment
connecting the splats’ centers. If one of the checks fails, we iterate through the neighboring
splats in descending order of distance to splat Si and re-check both smoothness and
semantic class equality. We repeat the same procedure until the desired local density is
achieved. Since we need both the LiDAR sensor position to reorient the normals and the
semantic class for the splats generation, we assign to the new point the semantic class,
or surface group for AdaSplats-Descr, and the LiDAR position of pi used to build splat Si.

After the resampling step, adding the new points to the original point cloud P , we get
a more uniformly distributed point cloud P ′, which we use to restart our adaptive splats
generation; this is able to fill small holes present before in the splat model. The smoothness
and semantic class equality checks ensure that we do not smooth out sharp features.

4. Splat Ray Tracing

Simulating the sensors used by AVs, such as cameras and LiDARs, requires the im-
plementation of an efficient ray–splat intersection algorithm. Very few approaches have
worked on ray tracing splats to achieve high rendering quality. Ref. [26] was implemented
to work only on CPUs, which makes it impossible to achieve real-time rendering. In this
section, we introduce a ray–splats intersection method that leverages OptiX [64] to acceler-
ate the process, achieving faster than real-time sensor simulation. OptiX is a ray-tracing
engine introduced by NVIDIA that makes use of the GPU architecture to parallelize the
ray-casting process and implements a BVH accelerating structure to accelerate the ray–

Remote Sens. 2022, 14, 6262 11 of 30

primitive intersection. Using our ray–splat intersection method, we can easily adapt our
pipeline to include the simulation of other sensors, such as RADAR.

4.1. Ray–Splat Intersection

A splat is defined by its center cSi , a normal vector n̂Si , and a radius rSi . To intersect
the splat, we first need to intersect the plane in which the splat lies. To this end, we define
the plane using cSi and n̂Si . A ray is defined by its origin r0 and a unit direction vector
r̂dir. The intersection point pint, in the world reference, along a ray can be found at position
t ∈ R+ along r̂dir:

pint = r0 + r̂dir ∗ t (8)

A vector vik can be computed from any point pik lying on the plane with vik = pik − cSi .
This vector lies on the plane, so it is orthogonal to the normal vector, and this can be checked
by taking the dot product vik · n̂Si = 0. We cast a ray from the camera origin and compute
pint at a given t and then report an intersection using the following check:

intersected =

{
1 i f (pint − cSi) · n̂Si = 0
0 otherwise

(9)

solving for t
t ∗ r̂dir · n̂Si + (ro − cSi) · n̂Si = 0 (10)

with

t =
(cSi − r0) · n̂Si

r̂dir · n̂Si

(11)

If a ray–plane intersection is reported, we check if the point of intersection pint lies
inside the radius of the splat:

vint · vint < r2
Si

with : vint = pint − cSi (12)

4.2. OptiX

The intersection algorithm explained above is implemented in CUDA to cast rays in
parallel. On top of the parallel ray casting, OptiX provides the BVH acceleration structure
that is used to accelerate the ray–primitive intersection. More specifically, the BVH is
created on the host side (CPU) using the splats centers, where each splat is encapsulated
in an (AABB) used to build the acceleration structure, with a side length equal to the
diameter of the splat. The AABB serves as a first ray-primitive encounter, since when a ray
traverses the BVH, it keeps traversing it until an AABB is intersected, which invokes the
custom intersection program (e.g., ray–splat intersection). Once the BVH is created, the ray
generation program can be invoked on the device (GPU) side, which generates the rays and
calls the BVH traversal program. When the ray–primitive intersection program reports the
intersection, the closest hit program is invoked to return the point of intersection and/or
perform the custom shading and return the final pixel color. Otherwise, the miss program
is invoked to return the background color and/or no point. The algorithm is illustrated in
Figure 4.

Remote Sens. 2022, 14, 6262 12 of 30

Figure 4. Parallel ray casting and accelerated ray–splat intersection are achieved using OptiX.
The BVH is created from the splats primitives; then, the rays are cast in parallel on the device. Each
ray traverses the BVH, and an intersection is reported back if a hit is found. Otherwise, the intersection
for the specific ray is ignored.

5. LiDAR Simulation

Previous approaches [2,3] have not tackled the real-time aspect of LiDAR simulation.
We focus our work on accelerating the sensor simulation and achieving real-time LiDAR
simulation. To do this, we use the splat ray tracing method we introduced. We implement
the firing sequence of multiple LiDAR sensor models, launch the rays in the splatted envi-
ronment, and return the ray–splat intersection points, leveraging the high parallelization
capability of the GPU (see Figure 5).

Figure 5. Our pipeline is split into different modules. The first generates accurate 3D modeling
of the static environment using our adaptive splatting method. The second module takes the
sensor model as input and simulates the sensor, including but not limited to camera and LiDAR,
and generates the corresponding rays. In the third module, the rays are cast in parallel using the GPU
architecture, then a bounding volume hierarchy (BVH) structure containing the generated splats is
traversed, and ray–splat intersection point or color information is reported to generate the LiDAR or
camera output, respectively.

5.1. Firing Sequence Simulation

Using our pipeline, we can simulate a variety of LiDAR models. In this work, we
focus on simulating two LiDAR models, namely the Velodyne HDL-64 and the Velodyne
HDL-32 LiDAR sensors. These LiDARs have an emitter and a receiver; they emit vertical
equally spaced laser beams and compute the Time of Flight (ToF) of each beam to deduce

Remote Sens. 2022, 14, 6262 13 of 30

the distance to the object in the reference frame of the vehicle that reflected the light pulse.
An azimuth revolution is a full 360◦ azimuth turn. We place the simulated LiDAR in AV
configuration (roll, pitch, and yaw angles = 0◦) and approximate the origin of the sensor
beams by making them equal to the sensor position. All data coming from one revolution
(a revolution is a full 360◦ azimuth turn) correspond to one LiDAR scan.

5.1.1. Velodyne HDL-32

The Velodyne HDL-32 emits 32 vertical laser beams. It has an azimuth angular
resolution of 0.2◦ at 10 Hz with a 360◦ horizontal field of view (FOV). The sensor has an
elevation angular resolution of 1.33◦ and ranges between −30.67◦ and +10.67◦, summing to
a 41.34◦ vertical FOV. Moreover, each laser emits 1800 laser pulses per azimuth revolution,
which sums to 57,600 laser pulses across the 32 lasers. Finally, this sensor operates at a
frequency between 5 Hz and 20 Hz and has a range of 100 m.

5.1.2. Velodyne HDL-64

The Velodyne HDL-64 emits 64 vertical laser beams. It has an azimuth angular
resolution of 0.16◦ at 10 Hz with a 360◦ horizontal FOV. The sensor has an elevation
angular resolution of 0.419◦ and ranges between −24.8◦ and +2.0◦, summing to a 26.8◦

vertical FOV. Moreover, each laser emits 2250 laser pulses per azimuth revolution, which
sums to 144,000 laser pulses across the 64 lasers. Finally, this sensor operates at a frequency
between 5 Hz and 15 Hz and has a range of 120 m.

5.1.3. Firing Sequence Rays Generation

When simulating the LiDAR in AV configuration, there are no initial roll, pitch,
or yaw angles, which results in a 360◦ rotation around the vertical axis (z in our virtual
environment). If an initial transformation is required (e.g., initial pitch on the y axis), we
pitch the initial ray ˆray1 by an angle η1:

¯̂ray1 = Ry(η
1) ˆray1 (13)

where Ry(α) is the rotation matrix around the y-axis of angle α.
If the LiDAR has no initial adjustments (roll, pitch, and yaw angles are equal to 0◦),

the previous step is ignored, and ¯̂ray1 = ˆray1. We perform the elevation and azimuth
rotations to generate the rays for the LiDAR frame at timestamp ts. We accumulate the
angles using the angular resolution of the simulated LiDAR and transform ¯̂ray1 into the
ray corresponding to the new angle (azimuth on z and elevation on y). We first apply the
azimuth rotation, followed by n elevation angles for the n laser beams:

ˆrayi,j
ts = Rz(ψ

i)Ry(η
j) ¯̂ray1 (14)

where Rz(β) is the rotation matrix around the z-axis of angle β. ψi and η j are the azimuth
angle i and elevation angle j, respectively. For the rays, we only need the direction of the
vector, and its position is provided separately. Consequently, when launching the rays, we
pass its origin (LiDAR position) and direction.

6. Experiments and Results

We designed experiments to test the accuracy of our AdaSplats approach and the
ability of our ray tracing method to achieve real-time performance on rendering and
LiDAR simulation.

Validating the correct modeling of the environment to simulate a LiDAR is a complex
task. The only experiments done by LiDARsim [3] and AugmentedLiDAR [2] were com-
parisons of learning results of deep networks between their simulated 3D data and data
simulated under a simplified synthetic environment from CARLA [1]. In this section, we
detail the task protocol and how we compare the performance of the LiDAR simulation
using our splatting technique (AdaSplats) and other surface representations. We split the

Remote Sens. 2022, 14, 6262 14 of 30

experiments and results according to the different datasets that we use. Moreover, we show
that using deep learning for semantic segmentation achieves similar results to AdaSplats
using ground truth semantic information.

6.1. Experiments

To be able to precisely compare different modeling techniques, we choose three differ-
ent datasets: two acquired by different mobile LiDAR sensors and mounted in different
configurations and one built from a terrestrial laser scanner (TLS) (see Figure 6). Moreover,
the datasets used were acquired in different cities around the world and in different envi-
ronments (e.g., urban and suburban). We generate the scenes from the different datasets,
using the different surface representations, then we render the scenes and simulate the
Velodyne HDL-64 LiDAR in AV configuration using the generated splats. Finally, we
provide quantitative results to evaluate the rendering quality provided by the different
surface representations and perform quantitative evaluation of the different methods using
the point cloud resulting from the accumulation of the simulated LiDAR scans.

For all of the experiments, we use our ray–splat intersection method implemented
with OptiX and the original ray–triangles intersection of OptiX for meshed models. All
experiments were done using an Nvidia GeForce RTX2070 SUPER GPU.

Figure 6. Point clouds used in the experiments (left to right:) PC3D-Paris, SemanticKITTI, and M-City.
In red, we show the trajectory used for simulation.

6.1.1. Surface Representation

To demonstrate the accuracy of our approach, we chose to compare it to three other
methods, namely Basic Splats, IMLS [8], and Screened Poisson [32]. Basic splats can be
considered as a baseline representing the geometric precision of concurrent methods based
on splatting, namely LiDARsim [3] and AugmentedLiDAR [2]. IMLS [8], and Screened
Poisson [32] are two well-known and efficient meshing techniques.

We use the latest available code (version 13.72) for Screened Poisson surface recon-
struction to mesh the point cloud, obtaining the finest mesh with: octree depth of 13,
Neumann boundary constraints, samples per node as 2, and other parameters as default
values. We also used SurfaceTrimmer to remove parts of the reconstructed surface that are
generated in low-sampling-density regions with trim value as 10.0 and other parameters
as default. For IMLS, we use a voxel size of 7 cm and fix the parameter σ to two times the
voxel size. We perform a sparse grid search with a truncation of three voxels, where we fill
the IMLS SDF values only in voxels near the surface. Finally, we use the marching cubes
algorithm [31] to extract the iso-surface.

6.1.2. Datasets

To test the performance and robustness of the different representations, we choose
three different datasets: two acquired by mobile LiDARs, namely PC3D [19] and Se-
manticKITTI [18], and one built from a TLS (M-City).

Paris-Carla-3D

We use the PC3D-Paris part from the PC3D dataset [19], which is a dataset acquired
in mapping configuration (LiDAR pitched at a 45◦ angle). The high diversity of complex
objects (barriers, street lamps, traffic lights, vegetation, facades with balconies) present
in this dataset allows us to compare the modeling capacities of the different techniques

Remote Sens. 2022, 14, 6262 15 of 30

in real situations. We remove dynamic objects using the semantic information; that is,
we use ground truth semantic labels to remove the dynamic objects for all the methods
excluding AdaSplats-KPConv. To remove dynamic objects for AdaSplats-KPConv, we
use the corresponding predicted point-wise semantic classes. In a last step, we apply the
different surface representations on the static background.

In the Results section, we first provide qualitative evaluation of the different K-nn
values to validate the choice of the parameters used for the different semantic groups.
For the comparison between the different surface representation techniques, we use only
two parts of PC3D-Paris, namely Soufflot-1 and Soufflot-2, containing 12.3 million points.
Comparisons were made to determine the ability of the different methods to represent
the geometry.

SemanticKITTI

Validating the accuracy of our modeling method requires testing it on other types of
data. More specifically, we use a SemanticKITTI [18] dataset, which was acquired using
a different sensor mounted in a different configuration with respect to PC3D (mapping),
namely the Velodyne HDL-64 in AV configuration. The different sensor and mount result
in a different scan pattern, which helps in validating if our method generalizes to other
types of sensors or data. Moreover, the geometry in SemanticKITTI is different to that
in PC3D-Paris, since it had been acquired in a different country and not in the heart of a
large city. The same as in PC3D-Paris, we first remove dynamic objects using the semantic
information and apply the different surface representations on the static background.

For the comparison between the different surface representation techniques, we use
the first 150 scans from sequence 00 accumulated with a LiDAR SLAM [66], which results
in a point cloud with 15.5 million points.

M-City

We take the testing even further and model a point cloud that was acquired using a
TLS, namely M-City. This is an in-house dataset that was acquired in an AV testing site in
Michigan using a TLS (Leica RTC360), at fixed points in a controlled environment without
dynamic objects. The acquired point cloud was then used by 3D artists to perform manual
surface reconstruction, which took 4 months. For this work, we use 25% of the original
point cloud, which contains 17.5 million points. The interest in using M-City lies in the fact
that it has a completely different scanning pattern, since the point cloud had been acquired
at fixed points from a TLS.

For M-City, we do not have the sensor positions to re-orient the normals. Not having
a correct normal orientation makes it difficult to properly reconstruct the surface using
automatic meshing techniques (Poisson and IMLS). Having said that, for the comparison
between the different surface representations, we compare the Basic Splats and AdaSplats
approaches to the manually reconstructed scene mesh.

6.2. New Trajectory Simulation

To simulate the LiDAR sensor, we generate new trajectories. We shift the original
trajectories provided by the sensor positions in PC3D and SemanticKITTI. As for M-City,
since we do not have the sensor positions, and because the dataset had been acquired using
a TLS, we perform the simulation on interpolated 3D points on a linear line segment.

For PC3D-Paris and SemanticKITTI, we take the original sensor positions provided
with the datasets and offset them on the three axes (see Figure 6). More precisely, the off-
set for PC3D-Paris is [1.0, 1.0,−1.0]T along the x, y, and z axes and [1.0, 1.0,−0.5]T for
SemanticKITTI. For M-City, we generate a linear trajectory across the dataset.

Remote Sens. 2022, 14, 6262 16 of 30

Evaluation Metric for LiDAR Simulation

We measure the accuracy of the different models by computing the Cloud-to-Cloud
(C2C) distance between the simulated point clouds (accumulation of all simulated LiDAR
scans) and the original point clouds (used to model the environments):

C2C(Psim,Pori) =
1
|Psim| ∑

x∈Psim

min
y∈Pori

||x− y||2 (15)

where Psim and Pori are the simulated and original point clouds, respectively, x corresponds
to a point in the simulated point cloud, and y its nearest neighbor in the original point
cloud. It should be noted that our C2C metric is not symmetric; we only calculate the
distance from Psim to Pori because not all points in Pori exist in Psim. For the closest point
computation, we use the FLANN library implementation of a KDTree.

6.3. Results
6.3.1. Paris-Carla-3D

We start by validating the choice of parameters used for each semantic group. To do
so, we generate the basic splats model on PC3D-Paris using different K-nn, with K = 10,
40, and 120, and compare the results to our AdaSplats method (see Figure 7). For a fair
comparison with Basic Splats on the rendering and LiDAR simulation sides, we found
that the best trade-off between geometric accuracy and a hole-free approximation is to use
K = 40. This results in holes on the surface, especially the ground. A larger K would result
in very large splats, and a smaller K would result in many holes, which would not express
well the local geometry.

Figure 7. Rendering results on different choices of K-nn on PC3D-Paris dataset. A small K (e.g., 10 or
20) results in holes on the surface and ground groups while also resulting in a better approximation
on the non-surface and linear groups. A large K (40 to 120) results in a hole-free approximation of
the surface and ground semantic groups while creating artifacts on small structures belonging to the
linear and surface groups.

Figure 8 shows renderings of the different surface representation methods on PC3D-
Paris dataset, where the last image (bottom right) shows the original point cloud. In these
qualitative results, we show the modeling capabilities of the different surface represen-
tations. We can see that we obtain the best results with AdaSplats, especially on fine
structures, shown in colored squares, thanks to the adaptiveness of our method.

Remote Sens. 2022, 14, 6262 17 of 30

Figure 8. Rendering the different surface representations on PC3D-Paris. The top row shows the
meshed scene using IMLS (left) and Poisson (right). The middle row shows the splatted scene using
basic splats (left) and AdaSplats using KPConv semantics (right). The bottom row shows the splatted
scene using AdaSplats-GT, which contains the ground truth point-wise semantic information (left)
and the original point cloud (right). We show the ability of AdaSplats to recover a better geometry,
especially on fine structures (in green, red and yellow boxes).

Figure 9 illustrates qualitative results comparing the accumulated point clouds from
the LiDAR simulation with the different surface representations. The last image is the
original point cloud used to model the environment. The other images are an accumu-
lation of simulated scans (we show one simulated LiDAR scan in blue). We can see that
AdaSplats results in higher-quality LiDAR data when compared to Basic Splats and other
meshing techniques.

The simulation in meshed or basic splat environments does not perform well on
thin objects containing few points, such as fences, poles, and traffic signs. Basic splatting
techniques are not able to adapt to the local sparsity without semantic information. Screened
Poisson [32] and IMLS [8] suffer from a performance drop on outdoor noisy LiDAR data,
especially on thin objects. These surface reconstruction methods result in artifacts on open
shapes; borders are dilated because these functions attempt to close the surface, as they are
performing inside/outside classification. To limit this effect, we truncate the IMLS function
at three voxels and perform surface trimming with Poisson. However, we can still see
artifacts in Figures 8 and 9 (e.g., red, orange, and green areas).

Our method is also verified quantitatively on PC3D-Paris. We report the generation
time of the different surface representations, rendering, and LiDAR simulation details of
PC3D-Paris in Table 1. AdaSplats-KPConv includes KPConv for automatic SS (trained on
the training set of PC3D dataset). On Paris-CARLA-3D, KPconv has an average mIoU of
52% over all classes and 68% IoU for the class “vehicles” (computed on test set Soufflot-0
and Souffot-3). AdaSplats-GT uses the ground truth semantic (manual annotation), and
AdaSplats-Descr computes the local descriptors to arrange points into the three semantic

Remote Sens. 2022, 14, 6262 18 of 30

groups. We obtain the lowest number of primitives with our AdaSplats method. We
observe that Basic Splats has the lowest generation time, and this is because there is no
resampling, which results in generating the splatted environment only once. Moreover,
the generation time of AdaSplats-KPConv includes the inference time of KPConv, which is
600 seconds for 10 million points. Adasplats-Descr achieves similar C2C distance to Basic
Splats; however, it performs better on thin structures, as we see in the comparisons below.
Moreover, it results in a lower number of primitives, which consequently accelerates the
simulation and rendering time. The generation time of IMLS is very high, and we attribute
this to our implementation, which could be improved. However, it would still result in a
generation time higher than Screened Poisson.

Figure 9. Comparison of simulated LiDAR data using different reconstruction and modeling methods
on PC3D-Paris. The top row shows the simulation in meshed IMLS (left) and Poisson (right). The mid-
dle row shows the simulation with Basic Splats (left) and AdaSplats-KPConv (right). The bottom row
shows the simulation with AdaSplats-GT (left) and original point cloud (right).

LiDAR sensors such as Velodyne HDL32 or HDL64 in default mode acquire one scan
(full 360◦ azimuth turn) in around 100 ms (being at 10 Hz). The LiDAR simulation frequency
(LiDAR Freq in Table 1) is the simulation time of one LiDAR scan. It includes generating
the LiDAR rays at a given position, the host (CPU)-to-device (GPU) communication,
ray-casting, primitives intersection, and reporting back the buffer containing points of
intersection (device-to-host). Our ray–splat intersection is very fast, and we are able to
simulate one scan in around 5 ms (203 Hz LiDAR Frequency for AdaSplats-KPconv in
Table 1), being 20 times faster than real time. This is interesting for doing massive simulation.
The rendering and LiDAR simulation frequency of meshed environments is higher, and
this is expected because rendering pipelines are optimized to accelerate the ray–primitive
intersection on polygonal meshes. Moreover, the ray–primitive intersection is hard-coded
on GPU. However, we obtain a higher quality surface representation (Figures 8 and 9)
and still achieve a rendering frequency that is faster than real time with our AdaSplats
method. Furthermore, we obtain a lower LiDAR simulation frequency with respect to
rendering frequency because it includes host–device (CPU-GPU) and device–host (GPU-
CPU) communications for each scan, as we explain above, while the new frame position
and rays generation for rendering is done on the device side.

Remote Sens. 2022, 14, 6262 19 of 30

Table 1. Results on PC3D-Paris. We report the time taken (Gen T) in seconds to generate the primitives
(triangular mesh or splats), the number of generated primitives (Gen Prim) in millions (M), rendering
frequency in Hz (Render Freq) with a resolution of 2560 × 1440 pixels, LiDAR simulation frequency
(LiDAR Freq) of the Velodyne HDL-64, and the cloud-to-cloud (C2C) distance between the simulated
and original point clouds.

Model Gen T Gen Prim Render
Freq

LiDAR
Freq C2C

(in s) (#) (in Hz) (in Hz) (in cm)

Mesh–Poisson 797 5.20M 1000 Hz 232 Hz 2.3 cm

Mesh–IMLS 3216 6.32M 920 Hz 233 Hz 2.0 cm

Basic Splats 200 5.40M 100 Hz 135 Hz 2.3 cm

AdaSplats-Descr 344 3.90M 160 Hz 181 Hz 2.3 cm

AdaSplats-KPConv 1064 1.75M 240 Hz 203 Hz 2.2 cm

AdaSplats-GT 451 1.72M 250 Hz 205 Hz 1.97 cm

We also report in Table 1 the C2C distance between the simulated and original point
cloud (see Equation (15)). AdaSplats-Descr achieves similar overall accuracy, compared
with Basic Splats. AdaSplats-KPConv improves the accuracy over Basic Splats, while
AdaSplats-GT shows that, with improved semantics, the simulated data can be the closest
to the original.

To see the effect of resampling on the final simulation, we remove the resampling
step from the AdaSplats generation and report the results in Table 2. We observe that,
without resampling, we obtain a higher number of geometric primitives, which affects the
rendering frequency and results in a higher C2C distance. This demonstrates that, with our
resampling technique, we are able to increase the accuracy of splats generation and lower
the number of generated primitives thanks to the re-distribution of points.

Our resampling method does not result in a higher number of points; rather, it re-
distributes the points and removes the excess in the form of noise and outliers. Moreover,
it reduces the density throughout the whole point cloud. This re-distribution results in
a better surface representation, which consequently reduces the number of overlapping
splats in a given spherical neighborhood. Our resampling method preserves the hole-free
approximation of the surface and sharp features thanks to the checks performed during the
generation step.

Table 2. Results of the LiDAR simulation on the PC3D-Paris using AdaSplats with ground truth
semantics without resampling (top row), compared to the simulation on the resampled model (bottom
row). We report the time taken (Gen T) in seconds to generate the primitives, the number of generated
primitives (Gen Prim) in millions (M), simulation frequency (Sim Freq) in Hz, and the Cloud-to-Cloud
Distance (C2C) in cm between simulated and original point clouds.

Model Gen T Gen Prim Sim Freq C2C
(in s) (#) (in Hz) (in cm)

AdaSplats-GT no resampling 169 2.84M 180 Hz 1.99 cm

AdaSplats-GT 451 1.72M 205 Hz 1.97 cm

We notice that the point clouds contain a huge amount of points on the ground; this
is the easiest class to model and has a higher effect on the computed distance. However,
thin structures contain fewer points and are important for AV simulation. To measure
the modeling of thin structures, we pick three classes from PC3D-Paris, compute the C2C
distance on these classes, and report the results in Table 3.

We observe that AdaSplats (all variants) obtains much better results than IMLS, Pois-
son, or Basic Splats. AdaSplats-KPConv is able to achieve a C2C distance very close to

Remote Sens. 2022, 14, 6262 20 of 30

the model constructed with ground truth semantic information. We achieve a lower C2C
distance on poles and traffic signs with KPConv due to misclassifications, leading to the
generation of smaller splats.

We make an important observation, which is that we always obtain better quantitative
and qualitative results independent from the source of the semantic classes. This proves
that our method achieves better scene modeling, especially on fine structures, even if the
semantic information is not perfect (see Tables 3 and 4).

Table 3. Cloud-to-Cloud distance (in cm) computed on PC3D-Paris for points that belong to classes
of thin structures between the simulated and original point cloud. The AdaSplats methods include
resampling.

Model Fences Poles Traffic Signs Average

Mesh–Poisson 5.9 6.1 6.7 6.2

Mesh–IMLS 4.6 3.5 2.9 3.7

Basic Splats 4.7 4.3 3.4 4.1

AdaSplats-Descr 4.1 3.7 2.9 3.2

AdaSplats-KPConv 5.5 2.1 1.1 2.9

AdaSplats-GT 2.4 2.3 1.8 2.2

We measure the contribution of resampling on thin structures we perform once more
the semantic C2C distance on the AdaSplats model without resampling and report the
results in Table 4. We observe a drop in performance, which can be seen from the higher
distance we obtain between the simulated and the original point clouds on thin structures.

Table 4. Cloud-to-Cloud distance (in cm) computed on PC3D-Paris for points that belong to classes
of thin structures between the simulated using AdaSplats without resampling and the original
point cloud.

Model Fences Poles Traffic Signs Average

AdaSplats-GT no resampling 2.5 2.4 1.8 2.3

AdaSplats-GT 2.4 2.3 1.8 2.2

In Tables 2 and 4, we compare our AdaSplats method with and without resampling.
By comparison, we obtain less primitives (1.72M) with resampling than without (2.84M).
We also have a better repartition of splats on thin objects with resampling (2.2 cm) than
without (2.3 cm).

AdaSplats is a method that uses, but does not require, perfect semantics, as can be
seen from the simulation results inside the scene modeled using AdaSplats-Descr and
AdaSplats-KPConv, which have errors. On the contrary, modeling methods that have
specific models for semantic objects (e.g., a specific model for traffic lights) are highly
dependent on the quality of the semantics and no longer work with the slightest error.
Compared to mesh-based models using surface reconstruction, splats are independent
surface elements whose parameters can be easily changed according to semantics, unlike
methods based on SDFs, such as IMLS, or on an indicator function, like Poisson.

6.3.2. SemanticKITTI

Figures 10 and 11 show renderings and the simulated point clouds, respectively, using
the different surface representation methods on SemanticKITTI. Looking at the results, we
can see that using a point cloud acquired using a different sensor (Velodyne HDL-64) and
mounted in a different configuration (AV configuration) does not change or reduce the
quality of our AdaSplats method. We can observe that we are able to obtain the best quality

Remote Sens. 2022, 14, 6262 21 of 30

with AdaSplats, most noticeably on the traffic signs. We can also observe that we obtain
the smoothest planar surface (the road) even when there are registration errors, such as
in the sequence that we demonstrate in the figure. We can compensate small registration
errors thanks to the resampling algorithm and our adaptive method, which takes a larger
neighborhood into consideration for the generation of the splats on the ground.

We report the generation time of the different surface representations, rendering,
and LiDAR simulation details of SemanticKITTI in Table 5. Viewing the results on Se-
manticKITTI, we can see that our modeling method is not limited to a specific LiDAR
sensor or configuration. As a reminder, SemanticKITTI was acquired with a Velodyne
HDL-64 in AV configuration, which is different from PC3D-Paris (acquired using HDL-
32 in mapping configuration). The generation time of AdaSplats-KPConv includes the
inference time of KPConv, which is 10 min for the first 150 frames of sequence 00. On
SemanticKITTI, KPconv has an average mIoU of 59% over all classes and 94% IoU for the
class “car” (computed on validation sequence 08).

Figure 10. Rendering the different surface representations on SemanticKITTI. The top row shows
the meshed scene using IMLS (left) and Poisson (right). The middle row shows the splatted scene
using basic splats (left) and AdaSplats using KPConv semantics (right). The bottom row shows the
splatted scene using AdaSplats-GT, which contains the ground truth point-wise semantic information
(left) and the original point cloud (right).

Remote Sens. 2022, 14, 6262 22 of 30

Figure 11. Comparison of simulated LiDAR data using different reconstruction and modeling
methods on SemanticKITTI. The top row shows the simulation in meshed IMLS (left) and Poisson
(right). The middle row shows the simulation with Basic Splats (left) and AdaSplats-KPConv (right).
The bottom row shows the simulation with AdaSplats-GT (left) and original point cloud (right).

Table 5. Results on SemanticKITTI. We report the time taken (Gen T) in seconds to generate the
primitives (triangular mesh or splats), the number of generated primitives (Gen Prim) in millions (M),
rendering frequency in Hz (Render Freq) with a resolution of 2560 × 1440 pixels, LiDAR simulation
frequency (LiDAR Freq) of the Velodyne HDL-64, and cloud-to-cloud (C2C) distance between the
simulated and original point clouds.

Model Gen T Gen Prim Render
Freq

LiDAR
Freq C2C

(in s) (#) (in Hz) (in Hz) (in cm)

Mesh–Poisson 796 5.97M 1050 Hz 229 Hz 2.6 cm

Mesh–IMLS 1380 7.05M 1020 Hz 222 Hz 3.0 cm

Basic Splats 185 7.77M 170 Hz 144 Hz 2.6 cm

AdaSplats-Descr 416 6.69M 200 Hz 156 Hz 2.2 cm

AdaSplats-KPConv 1166 6.11M 220 Hz 157 Hz 2.2 cm

AdaSplats-GT 544 4.56M 240 Hz 180 Hz 2.0 cm

6.3.3. M-City

Figures 12 and 13 show renderings and the simulated point clouds, respectively, using
the different surface representation methods on M-City. As a reminder, for M-City, we did
not perform Poisson and IMLS surface reconstruction, since we do not have the position of
the scanners to orient the normals. However, we use the manually reconstructed mesh to
compare a manual reconstruction of the scene to Basic Splats and our AdaSplats method.
Moreover, we cannot train KPConv on this small dataset; therefore, we do not include
AdaSplats-KPConv in the comparisons. However, AdaSplats-Descr can be computed,
and we can see that it is able to achieve lower C2C distance and higher simulation fre-
quency compared to Basic Splats. Looking at the results, we can observe that our method
(AdaSplats-GT) obtains a better surface representation, which can be clearly seen on the
grass and vegetation that are hard to manually reconstruct due to the complexity of the
geometry. When manually reconstructing complex geometry, 3D artists need to simplify
the local geometry.

We report the generation time of the different surface representations, rendering, and
LiDAR simulation details of M-City in Table 6. The same as PC3D-Paris and SemanticKITTI,

Remote Sens. 2022, 14, 6262 23 of 30

we are able to obtain the lowest number of primitives with our AdaSplats method. More-
over, our automatic pipeline drastically reduces the generation time (more than 1 month for
manual reconstruction against 8.5 min for AdaSplats), while obtaining a higher rendering
quality. AdaSplats still provides accurate surface modeling capabilities, even without a
correct normals orientation.

With M-City, we demonstrate that our pipeline can also be used on point clouds
collected using a TLS, achieving LiDAR simulation results that are closer to reality than
a manually reconstructed model. This is due to the modification of the local geometry
done by 3D artists to simplify the reconstruction task (e.g., on the vegetation or some
traffic signs).

Figure 12. Rendering the different surface representations on M-City. The top row shows the
manually meshed scene (left) and basic splats (right). The bottom row shows the results of rendering
AdaSplats using GT semantics (left) and the original point cloud (right).

Figure 13. Comparison of simulated LiDAR data using different reconstruction and modeling
methods on M-City. The top row shows the simulation in the manually meshed scene (left) and the
modeled scene with Basic Splats (right). The bottom row shows the simulation with AdaSplats-GT
(left) and original point cloud (right). Modeling vegetation is not an easy task and usually requires
different ray–primitive intersection methods.

Remote Sens. 2022, 14, 6262 24 of 30

Table 6. Results on M-City. We report the time taken (Gen T) in seconds to generate the primitives
(triangular mesh or splats), the number of generated primitives (Gen Prim) in millions (M), rendering
frequency in Hz (Render Freq) with a resolution of 2560 × 1440 pixels, LiDAR simulation frequency
(LiDAR Freq) of the Velodyne HDL-64, and cloud-to-cloud (C2C) distance between the simulated
and original point clouds.

Model Gen T Gen Prim Render Freq LiDAR Freq C2C
(in s) (#) (in Hz) (in Hz) (in cm)

Mesh–Manual 1 month 71.5K 1930 Hz 259 Hz 7.0 cm

Basic Splats 199 5.82M 140 Hz 110 Hz 1.7 cm

AdaSplats-Descr 480 3.92M 290 Hz 129 Hz 1.6 cm

AdaSplats-GT 513 3.01M 440 Hz 204 Hz 1.5 cm

6.3.4. SimKITTI32

In the context of AVs, 3D SS methods [12–15] provide important information about the
surroundings of the vehicles, increasing the level of scene understanding. Many manually
labeled datasets are available [18,67]; however, not all datasets were acquired using the
same sensor model or configuration. When SS networks are trained on a given dataset,
they perform poorly when tested on datasets acquired using different LiDAR sensors, such
as training on data acquired using a Velodyne HDL-64 and testing on datasets acquired
using a Velodyne HDL-32. This is mainly due to the domain gap arising from the different
sensor model, which affects the points density and scan pattern.

We introduce SimKITTI32, which is an automatically annotated dataset simulated
using a Velodyne HDL-32 LiDAR sensor model in SemanticKITTI [18] sequence 08 (used in
the validation procedure of 3D SS methods) that was acquired originally using a Velodyne
HDL-64. SimKITTI32 is created with the aim to test the ability of SS methods to generalize to
different sensor models. We use our AdaSplats method to model the full sequence 08 using
the point-wise semantic labels provided with the original dataset. For the simulation of the
Velodyne HDL-32 sensor, we use a slightly different LiDAR placement. More specifically,
we use the original trajectory of the LiDAR sensor and offset its position by−0.5 m on the z-
axis. This offset provides more scan lines on high elevations when simulating the Velodyne
HDL-32, since it has a larger vertical field of view with respect to the Velodyne HDL-64.

First, we obtain the static scene by removing the dynamic objects from the dataset.
Here, the dynamic objects refer to points belonging to the semantic classes of moving
objects only while static objects, such as parked vehicles, are considered part of the static
background. We extract frame-wise dynamic objects points and generate the splats on
each frame separately. Due to the sparsity of points obtained from the moving objects, we
generate one splat per point, with a fixed radius of 14 cm, which is equal to their average
point-to-point distance.

We concatenate the splatted frames of the dynamic objects with the splatted static
scene (using AdaSplats-GT) and simulate the Velodyne HDL-32 LiDAR. We make three
improvements on the previous LiDAR simulation method.

First, we simulate the HDL-32 distance error computation with an additive white
Gaussian noise with zero mean and σ = 0.005.

Second, instead of returning the first ray–splat intersection, we accumulate several
intersections between the ray and the overlapping splats using a recursive call of the
ray tracing function. More specifically, we define the depth (D) of intersection (D = 5
in our experiments), which defines how many overlapping splats we want to intersect
along the same ray. The higher the depth, the more computations are required, which
ultimately affects the simulation frequency, so we are left with a trade-off between precision
and time complexity. Having defined the depth, we cast the rays from the sensor origin,
traverse the BVH and return the data from the intersected splat, such as the center and the
semantic class (the semantic class is saved with each splat during generation time). We

Remote Sens. 2022, 14, 6262 25 of 30

offset the intersection point by an ε (we use 10−4 in our implementation) to prevent self
intersections, and cast a new ray; we then save the intersection data. We repeat these steps
until the maximum depth is reached, or all splats of the same semantic class are intersected.
Moreover, we put a threshold on the distance between two consecutive intersections (10 cm
in our experiment), to prevent the accumulation of intersections belonging to different
objects. If the number of overlapping splats is less than D, they do not belong to the same
semantic class, or the distance threshold is exceeded, we reset D to the maximum number
of intersections. In a final step, we compute a weighted average of the intersection point,
taking into consideration the depth of the intersection:

Pint =
∑Di=1 βiPi

∑Di=1 βi
(16)

where Pint is the final intersection point, Pi is the intersection point at depth i, and βi is a
Gaussian kernel used to weight the contribution of each intersection to the final intersection
point along the ray direction using the depth information:

βi = e−|di−D2 |/
D
2 (17)

where di is the current ray–splat intersection depth and (D) the maximum depth of intersection.
Finally, when we concatenate all of the separate dynamic objects frames with the

static background, we obtain trails of splats representing the displaced dynamic objects
through time. If we simulate the LiDAR sensor directly on the concatenated splatted
environment, we also obtain a trail of points. We make use of the semantic labels that we
associate with the splat during generation time and check if the intersected splat belongs to
a moving object. In that case, we invoke the any-hit program of OptiX to accumulate all
the intersections along the ray. At generation time, we also assign the splats that belong
to a moving object the corresponding frame number as an attribute, which we use at
intersection time inside OptiX. If the number of the simulated frames matches the frame
number of the splat intersected inside any-hit, we report only this intersection back. This
ensures that we only intersect the splats belonging to the frame currently being simulated.

Figure 14 shows a frame from the SemanticKITTI dataset sequence 08, the same frame
simulated with an HDL-64 LiDAR model at the same position without any offset, and
the simulated frame using an HDL-32 LiDAR model shifted by −0.5 m on the z-axis. We
can see that, with our implementation, we are able to accurately simulate the data with a
different sensor model.

Remote Sens. 2022, 14, 6262 26 of 30

Figure 14. Showing an original frame from the SemanticKITTI [18] sequence 08 dataset with dynamic
objects (top). The simulated HDL-64 LiDAR at the same position with dynamic objects (middle).
The simulated HDL-32 LiDAR translated by −0.5 m on the z-axis (bottom).

7. Conclusions

In this work, we presented a simulation pipeline (AdaSplats) that leverages real-world
data in the form of point clouds collected from mobile LiDARs, or fixed laser scanners. Our
algorithm introduces the usage of semantic information to refine the generation of splats.
Moreover, we present a novel resampling method to increase the uniformity of the points

Remote Sens. 2022, 14, 6262 27 of 30

distribution in a point cloud acquired in outdoor environments. The resampling method
outputs a finer representation of the underlying surface in a noisy and non-uniformly
distributed point cloud.

AdaSplats is able to achieve a higher 3D modeling capability when compared to basic
splatting and other surface reconstruction techniques. Furthermore, we tested a LiDAR
simulator in the splatted scene that leverages the GPU architecture and accelerates the
ray–splat intersection using OptiX [64], achieving real-time sensor simulation performance
in the splatted scene. Finally, we introduce SimKITTI32, a simulated dataset with a Velo-
dyne HDL-32 LiDAR sensor inside a scene acquired using a Velodyne HDL-64 LiDAR.
SimKITTI32 can be used to test the ability of semantic segmentation methods to generalize
to different sensor models.

Our pipeline creates a “simulable” representation of the world, making it possible
to generate in real-time virtual point clouds from simulated LiDAR sensors. The same
pipeline could be used to generate virtual images from simulated cameras by adding
textures to splats (and taking advantage of neural renderers such as NeRFs), but we leave
that for further work.

Author Contributions: Conceptualization, J.P.R. and J.-E.D.; Software, J.P.R.; Formal analysis, J.P.R.;
Investigation, J.P.R. and J.-E.D.; Writing—original draft, J.P.R.; Writing—review & editing, J.-E.D. and
F.G.; Supervision, F.G. and N.D.; Project administration, J.-E.D. and F.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by ANSYS, Inc.

Data Availability Statement: Data produced as part of this work can be found at: https://npm3d.
fr/simkitti32 (accessed on 5 December 2022).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An Open Urban Driving Simulator. In Proceedings of the

1st Annual Conference on Robot Learning, Mountain View, CA, USA, 13–15 November 2017; pp. 1–16.
2. Fang, J.; Zhou, D.; Yan, F.; Zhao, T.; Zhang, F.; Ma, Y.; Wang, L.; Yang, R. Augmented LiDAR Simulator for Autonomous Driving.

IEEE Robot. Autom. Lett. 2020, 5, 1931–1938. [CrossRef]
3. Manivasagam, S.; Wang, S.; Wong, K.; Zeng, W.; Sazanovich, M.; Tan, S.; Yang, B.; Ma, W.C.; Urtasun, R. LiDARsim: Realistic

LiDAR Simulation by Leveraging the Real World. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11164–11173. [CrossRef]

4. Zwicker, M.; Pfister, H.; van Baar, J.; Gross, M. Surface Splatting. In Proceedings of the SIGGRAPH ’01—28th Annual Conference
on Computer Graphics and Interactive Techniques, New York, NY, USA, 1 August 2001; pp. 371–378. [CrossRef]

5. Pfister, H.; Zwicker, M.; van Baar, J.; Gross, M. Surfels: Surface Elements as Rendering Primitives. In Proceedings of the
SIGGRAPH ’00—27th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, 1 July 2000;
pp. 335–342. [CrossRef]

6. Levoy, M.; Whitted, T. The Use of Points as a Display Primitive. 2000. Available online: https://citeseerx.ist.psu.edu/document?
repid=rep1&type=pdf&doi=3a6aa5ef72eeef9543695b3cc70f72576fc1651f (accessed on 5 December 2022).

7. Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald, J.; Stuetzle, W. Surface Reconstruction from Unorganized Points. In Proceedings
of the SIGGRAPH ’92—19th Annual Conference on Computer Graphics and Interactive Techniques, Chicago, IL, USA, 27–31 July
1992; pp. 71–78. [CrossRef]

8. Kolluri, R. Provably Good Moving Least Squares. ACM Trans. Algorithms 2008, 4, 1–25. [CrossRef]
9. Kazhdan, M.; Bolitho, M.; Hoppe, H. Poisson Surface Reconstruction. In Proceedings of the Fourth Eurographics Symposium on

Geometry Processing, Cagliari, Italy, 26–28 June 2006; pp. 61–70.
10. Devaux, A.; Brédif, M. Realtime Projective Multi-Texturing of Pointclouds and Meshes for a Realistic Street-View Web Navigation.

In Proceedings of the 21st International Conference on Web3D Technology, Anaheim, CA, USA, 22–24 July 2016; pp. 105–108.
[CrossRef]

11. Pagés, R.; García, S.; Berjón, D.; Morán, F. SPLASH: A Hybrid 3D Modeling/Rendering Approach Mixing Splats and Meshes.
In Proceedings of the 20th International Conference on 3D Web Technology, Heraklion, Greece, 18–21 June 2015; pp. 231–234.
[CrossRef]

https://npm3d.fr/simkitti32
https://npm3d.fr/simkitti32
http://doi.org/10.1109/LRA.2020.2969927
http://dx.doi.org/10.1109/CVPR42600.2020.01118
http://dx.doi.org/10.1145/383259.383300
http://dx.doi.org/10.1145/344779.344936
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3a6aa5ef72eeef9543695b3cc70f72576fc1651f
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3a6aa5ef72eeef9543695b3cc70f72576fc1651f
http://dx.doi.org/10.1145/133994.134011
http://dx.doi.org/10.1145/1361192.1361195
http://dx.doi.org/10.1145/2945292.2945311
http://dx.doi.org/10.1145/2775292.2775320

Remote Sens. 2022, 14, 6262 28 of 30

12. Thomas, H.; Qi, C.R.; Deschaud, J.E.; Marcotegui, B.; Goulette, F.; Guibas, L. KPConv: Flexible and Deformable Convolution for
Point Clouds. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of
Korea, 27 October–2 November 2019; pp. 6410–6419. [CrossRef]

13. Landrieu, L.; Simonovsky, M. Large-Scale Point Cloud Semantic Segmentation with Superpoint Graphs. In Proceedings
of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4558–4567. [CrossRef]

14. Boulch, A.; Puy, G.; Marlet, R. FKAConv: Feature-Kernel Alignment for Point Cloud Convolutions. In Proceedings of the 15th
Asian Conference on Computer Vision (ACCV 2020), Kyoto, Japan, 30 November–4 December 2020.

15. Choy, C.; Gwak, J.; Savarese, S. 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3075–3084.

16. Roynard, X.; Deschaud, J.E.; Goulette, F. Paris-Lille-3D: A large and high-quality ground-truth urban point cloud dataset for
automatic segmentation and classification. Int. J. Robot. Res. 2018, 37, 545–557.

17. Hackel, T.; Savinov, N.; Ladicky, L.; Wegner, J.D.; Schindler, K.; Pollefeys, M. SEMANTIC3D.NET: A new large-scale point cloud
classification benchmark. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2017, IV-1-W1, 91–98. [CrossRef]

18. Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke, S.; Stachniss, C.; Gall, J. SemanticKITTI: A Dataset for Semantic Scene
Understanding of LiDAR Sequences. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV),
Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9296–9306. [CrossRef]

19. Deschaud, J.E.; Duque, D.; Richa, J.P.; Velasco-Forero, S.; Marcotegui, B.; Goulette, F. Paris-CARLA-3D: A Real and Synthetic
Outdoor Point Cloud Dataset for Challenging Tasks in 3D Mapping. Remote Sens. 2021, 13, 4713. [CrossRef]

20. Alexa, M.; Behr, J.; Cohen-Or, D.; Fleishman, S.; Levin, D.; Silva, C. Computing and rendering point set surfaces. IEEE Trans. Vis.
Comput. Graph. 2003, 9, 3–15. [CrossRef]

21. Chen, Z.; Zhang, T.; Cao, J.; Zhang, Y.J.; Wang, C. Point cloud resampling using centroidal Voronoi tessellation methods.
Comput.-Aided Des. 2018, 102, 12–21.

22. Yu, L.; Li, X.; Fu, C.W.; Cohen-Or, D.; Heng, P.A. PU-Net: Point Cloud Upsampling Network. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2790–2799.
[CrossRef]

23. Zhou, K.; Dong, M.; Arslanturk, S. “Zero Shot” Point Cloud Upsampling. In Proceedings of the 2022 IEEE International
Conference on Multimedia and Expo (ICME), Taipei, Taiwan, 18–22 July 2022.

24. Chen, Y.; Yang, B.; Liang, M.; Urtasun, R. Learning Joint 2D-3D Representations for Depth Completion. In Proceedings of the
2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019;
pp. 10022–10031. [CrossRef]

25. Xu, Y.; Zhu, X.; Shi, J.; Zhang, G.; Bao, H.; Li, H. Depth Completion from Sparse LiDAR Data with Depth-Normal Constraints.
In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27
October–2 November 2019; pp. 2811–2820. [CrossRef]

26. Linsen, L.; Müller, K.; Rosenthal, P. Splat-based Ray Tracing of Point Clouds. J. WSCG 2007, 15, 51–58.
27. Mitra, N.J.; Nguyen, A. Estimating Surface Normals in Noisy Point Cloud Data. In Proceedings of the Nineteenth Annual

Symposium on Computational Geometry, San Diego, CA, USA, 8–10 June 2003; pp. 322–328. [CrossRef]
28. Dey, T.; Li, G.; Sun, J. Normal estimation for point clouds: A comparison study for a Voronoi based method. In Proceedings of

the Eurographics/IEEE VGTC Symposium Point-Based Graphics, Stony Brook, NY, USA, 21–22 June 2005; pp. 39–46. [CrossRef]
29. Boulch, A.; Marlet, R. Fast and Robust Normal Estimation for Point Clouds with Sharp Features. Comput. Graph. Forum 2012,

31, 1765–1774. [CrossRef]
30. Zhao, R.; Pang, M.; Liu, C.; Zhang, Y. Robust Normal Estimation for 3D LiDAR Point Clouds in Urban Environments. Sensors

2019, 19, 1248. [CrossRef]
31. Lorensen, W.E.; Cline, H.E. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. SIGGRAPH Comput. Graph.

1987, 21, 163–169. [CrossRef]
32. Kazhdan, M.; Hoppe, H. Screened Poisson Surface Reconstruction. ACM Trans. Graph. 2013, 32, 2487237. [CrossRef]
33. Caraffa, L.; Brédif, M.; Vallet, B. 3D Octree Based Watertight Mesh Generation from Ubiquitous Data. ISPRS Int. Arch. Photogramm.

Remote. Sens. Spat. Inf. Sci. 2015, 2015, 613–617. [CrossRef]
34. Caraffa, L.; Brédif, M.; Vallet, B. 3D Watertight Mesh Generation with Uncertainties from Ubiquitous Data. In Computer

Vision—ACCV 2016; Lai, S.H., Lepetit, V., Nishino, K., Sato, Y., Eds.; Springer: Cham, Switzerland, 2017; pp. 377–391.
35. Caraffa, L.; Marchand, Y.; Brédif, M.; Vallet, B. Efficiently Distributed Watertight Surface Reconstruction. In Proceedings of the

2021 International Conference on 3D Vision (3DV), London, UK, 1–3 December 2021; pp. 1432–1441. [CrossRef]
36. Soheilian, B.; Tournaire, O.; Paparoditis, N.; Vallet, B.; Papelard, J.P. Generation of an integrated 3D city model with visual

landmarks for autonomous navigation in dense urban areas. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium
(IV), Gold Coast City, Australia, 23 June 2013; pp. 304–309. [CrossRef]

37. Demantke, J.; Vallet, B.; Paparoditis, N. Facade Reconstruction with Generalized 2.5d Grids. ISPRS Ann. Photogramm. Remote.
Sens. Spat. Inf. Sci. 2013, II-5/W2, 67–72. [CrossRef]

http://dx.doi.org/10.1109/ICCV.2019.00651
http://dx.doi.org/10.1109/CVPR.2018.00479
http://dx.doi.org/10.5194/isprs-annals-IV-1-W1-91-2017
http://dx.doi.org/10.1109/ICCV.2019.00939
http://dx.doi.org/10.3390/rs13224713
http://dx.doi.org/10.1109/TVCG.2003.1175093
http://dx.doi.org/10.1109/CVPR.2018.00295
http://dx.doi.org/10.1109/ICCV.2019.01012
http://dx.doi.org/10.1109/ICCV.2019.00290
http://dx.doi.org/10.1145/777792.777840
http://dx.doi.org/10.1109/PBG.2005.194062
http://dx.doi.org/10.1111/j.1467-8659.2012.03181.x
http://dx.doi.org/10.3390/s19051248
http://dx.doi.org/10.1145/37402.37422
http://dx.doi.org/10.1145/2487228.2487237
http://dx.doi.org/10.5194/isprsarchives-XL-3-W3-613-2015
http://dx.doi.org/10.1109/3DV53792.2021.00150
http://dx.doi.org/10.1109/IVS.2013.6629486
http://dx.doi.org/10.5194/isprsannals-II-5-W2-67-2013

Remote Sens. 2022, 14, 6262 29 of 30

38. Boussaha, M.; Fernandez-Moral, E.; Vallet, B.; Rives, P. On the production of semantic and textured 3d meshes of large scale urban
environments from mobile mapping images and lidar scans. In Proceedings of the RFIAP 2018, Reconnaissance des Formes,
Image, Apprentissage et Perception, Marne la Vallee, France, 26–28 June 2018.

39. Peng, S.; Niemeyer, M.; Mescheder, L.; Pollefeys, M.; Geiger, A. Convolutional Occupancy Networks. In Proceedings of the
Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; pp. 523–540.

40. Ummenhofer, B.; Koltun, V. Adaptive Surface Reconstruction with Multiscale Convolutional Kernels. In Proceedings of the 2021
IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 5631–5640.
[CrossRef]

41. Curless, B.; Levoy, M. A Volumetric Method for Building Complex Models from Range Images. In Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 4–9 August 1996; pp. 303–312.
[CrossRef]

42. Rusinkiewicz, S.; Levoy, M. QSplat: A Multiresolution Point Rendering System for Large Meshes. In Proceedings of the 27th
Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 23–28 July 2000; pp. 343–352.
[CrossRef]

43. Botsch, M.; Kobbelt, L. High-Quality Point-Based Rendering on Modern GPUs. In Proceedings of the 11th Pacific Conference on
Computer Graphics and Applications, Canmore, AB, Canada, 8–10 October 2003; p. 335.

44. Botsch, M.; Hornung, A.; Zwicker, M.; Kobbelt, L. High-quality surface splatting on today’s GPUs. In Proceedings of the
Eurographics/IEEE VGTC Symposium Point-Based Graphics, Stony Brook, NY, USA, 21–22 June 2005; pp. 17–141. [CrossRef]

45. Wu, J.; Kobbelt, L. Optimized Sub-Sampling of Point Sets for Surface Splatting. Comput. Graph. Forum 2004, 23, 643–652.
46. Botsch, M.; Spernat, M.; Kobbelt, L. Phong Splatting. In Proceedings of the First Eurographics Conference on Point-Based

Graphics, Los Angeles, CA, USA, 10–11 August 2004; pp. 25–32.
47. Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. NeRF: Representing Scenes as Neural Radiance

Fields for View Synthesis. Commun. ACM 2020, 65, 99–106. [CrossRef]
48. Garbin, S.J.; Kowalski, M.; Johnson, M.; Shotton, J.; Valentin, J. Fastnerf: High-fidelity neural rendering at 200fps. In Proceedings

of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 14346–14355.
49. Hedman, P.; Srinivasan, P.P.; Mildenhall, B.; Barron, J.T.; Debevec, P.E. Baking Neural Radiance Fields for Real-Time View

Synthesis. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11
October 2021; pp. 5855–5864.

50. Liu, L.; Gu, J.; Lin, K.Z.; Chua, T.S.; Theobalt, C. Neural Sparse Voxel Fields. NeurIPS 2020, 33, 1–13.
51. Rebain, D.; Jiang, W.; Yazdani, S.; Li, K.; Yi, K.M.; Tagliasacchi, A. DeRF: Decomposed Radiance Fields. In Proceedings of

the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021;
pp. 14148–14156.

52. Reiser, C.; Peng, S.; Liao, Y.; Geiger, A. KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs.
In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11 October
2021; pp. 14315–14325. [CrossRef]

53. Maglo, A.; Lavoué, G.; Dupont, F.; Hudelot, C. 3D Mesh Compression: Survey, Comparisons, and Emerging Trends. ACM
Comput. Surv. 2015, 47, 2693443. [CrossRef]

54. Gschwandtner, M.; Kwitt, R.; Uhl, A.; Pree, W. BlenSor: Blender Sensor Simulation Toolbox. In Advances in Visual Computing;
Bebis, G., Boyle, R., Parvin, B., Koracin, D., Wang, S., Kyungnam, K., Benes, B., Moreland, K., Borst, C., DiVerdi, S., et al., Eds.;
Springer: Berlin/Heidelberg, Germany, 2011; pp. 199–208.

55. Wu, B.; Wan, A.; Yue, X.; Keutzer, K. SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object
Segmentation from 3D LiDAR Point Cloud. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, Australia, 21–25 May 2018; pp. 1887–1893. [CrossRef]

56. Hurl, B.; Czarnecki, K.; Waslander, S. Precise Synthetic Image and LiDAR (PreSIL) Dataset for Autonomous Vehicle Perception.
In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 2522–2529. [CrossRef]

57. Yue, X.; Wu, B.; Seshia, S.A.; Keutzer, K.; Sangiovanni-Vincentelli, A.L. A LiDAR Point Cloud Generator: From a Virtual World to
Autonomous Driving. In Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval, Yokohama, Japan,
11–14 June 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 458–464. [CrossRef]

58. Wu, B.; Zhou, X.; Zhao, S.; Yue, X.; Keutzer, K. SqueezeSegV2: Improved Model Structure and Unsupervised Domain Adaptation
for Road-Object Segmentation from a LiDAR Point Cloud. In Proceedings of the 2019 International Conference on Robotics and
Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 4376–4382. [CrossRef]

59. Zhao, S.; Wang, Y.; Li, B.; Wu, B.; Gao, Y.; Xu, P.; Darrell, T.; Keutzer, K. ePointDA: An End-to-End Simulation-to-Real Domain
Adaptation Framework for LiDAR Point Cloud Segmentation. arXiv 2020, arXiv:2009.03456.

60. Deschaud, J.E.; Prasser, D.; Dias, M.F.; Browning, B.; Rander, P. Automatic data driven vegetation modeling for lidar simulation.
In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, St Paul, MN, USA, 14–19 May 2012; pp.
5030–5036. [CrossRef]

61. Tallavajhula, A.; Mericli, C.; Kelly, A. Off-Road Lidar Simulation with Data-Driven Terrain Primitives. In Proceedings of the
2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 7470–7477.
[CrossRef]

http://dx.doi.org/10.1109/ICCV48922.2021.00560
http://dx.doi.org/10.1145/237170.237269
http://dx.doi.org/10.1145/344779.344940
http://dx.doi.org/10.1109/PBG.2005.194059
http://dx.doi.org/10.1145/3503250
http://dx.doi.org/10.1109/ICCV48922.2021.01407
http://dx.doi.org/10.1145/2693443
http://dx.doi.org/10.1109/ICRA.2018.8462926
http://dx.doi.org/10.1109/IVS.2019.8813809
http://dx.doi.org/10.1145/3206025.3206080
http://dx.doi.org/10.1109/ICRA.2019.8793495
http://dx.doi.org/10.1109/ICRA.2012.6225269
http://dx.doi.org/10.1109/ICRA.2018.8461198

Remote Sens. 2022, 14, 6262 30 of 30

62. Wald, I.; Woop, S.; Benthin, C.; Johnson, G.S.; Ernst, M. Embree: A Kernel Framework for Efficient CPU Ray Tracing. ACM Trans.
Graph. 2014, 33, 2601199. [CrossRef]

63. Marchand, Y.; Vallet, B.; Caraffa, L. Evaluating Surface Mesh Reconstruction of Open Scenes. Int. Arch. Photogramm. Remote Sens.
Spat. Inf. Sci. 2021, 43, 369–376. [CrossRef]

64. Parker, S.G.; Bigler, J.; Dietrich, A.; Friedrich, H.; Hoberock, J.; Luebke, D.; McAllister, D.; McGuire, M.; Morley, K.; Robison, A.;
et al. OptiX: A General Purpose Ray Tracing Engine. ACM Trans. Graph. 2010, 29, 1778803. [CrossRef]

65. Demantké, J.; Mallet, C.; David, N.; Vallet, B. Dimensionality Based Scale Selection in 3d LIDAR Point Clouds. ISPRS Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 3812, 97–102. [CrossRef]

66. Deschaud, J.E. IMLS-SLAM: Scan-to-Model Matching Based on 3D Data. In Proceedings of the 2018 IEEE International Conference
on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 2480–2485.

67. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuScenes: A
Multimodal Dataset for Autonomous Driving. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11618–11628. [CrossRef]

http://dx.doi.org/10.1145/2601097.2601199
http://dx.doi.org/10.5194/isprs-archives-XLIII-B2-2021-369-2021
http://dx.doi.org/10.1145/1778765.1778803
http://dx.doi.org/10.5194/isprsarchives-XXXVIII-5-W12-97-2011
http://dx.doi.org/10.1109/CVPR42600.2020.01164

	Introduction
	Related Works
	Surface Reconstruction
	Volumetric Segmentation
	Volumetric Fusion

	Point-Based Surface Modeling
	Splatting
	Splats Ray Tracing

	Neural Radiance Fields
	Resampling
	LiDAR Simulation
	Volumetric Scene Representation
	Splat-Based Scene Representation
	Mesh-Based Scene Representation
	Real-Time LiDAR Simulation

	Adaptive Splatting
	Basic Splatting
	Adaptive Splatting
	Adaptive Splatting Using Local Descriptors
	Splat-Based Resampling and Denoising

	Splat Ray Tracing
	Ray–Splat Intersection
	OptiX

	LiDAR Simulation
	Firing Sequence Simulation
	Velodyne HDL-32
	Velodyne HDL-64
	Firing Sequence Rays Generation

	Experiments and Results
	Experiments
	Surface Representation
	Datasets

	New Trajectory Simulation
	Results
	Paris-Carla-3D
	SemanticKITTI
	M-City
	SimKITTI32

	Conclusions
	References

