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This paper proposes to decompose non-linear models deduced from a latent regression framework using the latent dependent outcome as dependent variable and the Oaxaca-Blinder decomposition technique. Values of the unobserved latent outcome are obtained using simulated residuals.

Introduction

A common approach used to identify the cause of gender or racial differences in labor market outcomes is the well-known Blinder-Oaxaca decomposition [START_REF] Blinder | Wage discrimination: Reduced form and structural estimates[END_REF][START_REF] Oaxaca | Male-female wage differentials in urban labor markets[END_REF]. The mean difference in wages between two groups, for instance men and women, is divided into one component that is explained by differences in characteristics like education or experience and one component attributable to differences in the return to these observable characteristics. This unexplained part of the gap is most often seen as a measure for discrimination.

One reason of the success of this decomposition technique lies in its large application potential. As emphasized in [START_REF] Jann | The Blinder-Oaxaca decomposition for linear regression models[END_REF], this technique may be used to study group differences in any outcome variable. When the dependent variable is continuous, the decomposition is very easy to implement as it only requires estimates from linear regressions for the outcome of interest and sample means of the covariates used in the regressions. However, the problem becomes a little bit more complex when the outcome variable is non-linear since OLS estimates cannot be used directly in the Blinder-Oaxaca decomposition equation.

Recently, a few papers have attempted to generalize the Blinder-Oaxaca decomposition to non-linear models. [START_REF] Fairlie | The absence of the African-American owned business: An analysis of the dynamics of self-employment[END_REF] provides a decomposition method for binary dependent variables explained by either Logit or Probit models. [START_REF] Yun | Decomposing differences in the first moment[END_REF] proposes a general methodology for decomposing differences in the first moment when the dependent variable may be expressed as a once differentiable function of a linear combination of covariates. Finally, [START_REF] Bauer | An extension of the Blinder-Oaxaca decomposition to nonlinear models[END_REF] rewrite the usual decomposition equation in terms of conditional expectation to obtain a general version of the Oaxaca-Blinder decomposition that can be applied to models with either discrete or limited dependent variables (see also [START_REF] Sinning | The Blinder-Oaxaca decomposition for nonlinear regression models[END_REF].

In this paper, I propose an alternative procedure to decompose non-linear models deduced from a latent regression framework by a non-linear mapping, which includes as special cases Probit, ordered Probit or Tobit models among others. Instead of working on the conditional expectation of the observed dependent variable, I decompose the corresponding latent outcome following the Oaxaca-Blinder decomposition technique. Values of the unobserved latent dependent variable are obtained using simulated residuals [START_REF] Gouriéroux | Simulated residuals[END_REF] 1 .

The remainder of my presentation is organized as follows. In the next Section, after a brief description of the Oaxaca-Blinder decomposition, I explain how to simulate the latent outcome corresponding to a discrete or limited dependent variable. In Section 3, I perform a Monte-Carlo analysis using a binary dependent variable. Section 4 concludes.

Decomposition methodology

For the presentation, I consider the Oaxaca-Blinder decomposition in the context of a linear model. In a setting with two groups = ( , ), I denote by * a continuous dependent variable and assume that * is explained by a vector of explanatory variables following a linear regression model:

* = + (1)
with the corresponding estimates and a random perturbation. The gap between the mean outcomes * and * may be expressed as [START_REF] Blinder | Wage discrimination: Reduced form and structural estimates[END_REF][START_REF] Oaxaca | Male-female wage differentials in urban labor markets[END_REF]:

where is the identity matrix and Ω is a matrix of weight. (2) is the case when Ω = , but other possibilities for the Oaxaca-Blinder decomposition are for instance Ω = 0 or diag(Ω) = 0.5. In the case of a non-linear model, the problem with (2) or (3) is that the conditional expectation ( * | ) is likely to differ from .

In what follows, I consider models deduced from a latent regression framework by a nonlinear mapping, which includes a large set of discrete and limited dependent models (like univariate Probit, ordered Probit or Tobit regressions). In that case, the dependent variable is defined by = * where * is a continuous, latent outcome such that * = + . If the latent variable * were observed, then a simple strategy to decompose the gap * - * would consist in an application of (2) or (3).

A solution to this problem of unobservability was suggested more than twenty years ago by [START_REF] Gouriéroux | Simulated residuals[END_REF]. Drawing on simulated residuals, the idea consists in simulating the values of the unobserved latent variables * and * . The methodology involves two steps. First, maximum likelihood estimates of are obtained from the appropriate specification given and . Then, one simulates values * for the latent dependent outcome * given , and .

For the sake of illustration, consider the case of a Probit model. The dependent variable is such that = 1 if * > 0 and = 0 when * ≤ 0, is the normal distribution function and residuals are such that ~%(0; 1). Application of simulated residuals is implemented as follows. First, estimation of two Probit models gives for both groups and . Then, residuals are drawn from %(0; 1) and * is the first value satisfying * = + > 0 when = 1 and * = + ≤ 0 when = 0. As a final step, I estimate * = + ' and * = + ' using OLS and apply a linear decomposition to the difference * - * = ( -) + following (2)2 .

A Monte Carlo experiment

I evaluate the decomposition procedure by undertaking a Monte Carlo experiment, which consists of 200 replications on a sample of 10,000 observations. The explanatory variables are drawn from normal distribution with ~%(4; 1) and ~%(5; 1). Then, I calculate the values of the latent dependent variables such that * = 2 + 0.5 * + and * = 2 + 0.6 * + , with ~%(0; 1) and ~%(0; 1). I set to 0.5 the proportion of individuals belonging to each group.

Since * and * are continuous, implementation of the Oaxaca-Blinder decomposition is straightforward. By construction, when the reference group is Ω = , then * - * = ( -) + ( -)

and the contributions of ( -) and ( -) amounts to 60% and 40% respectively. Conversely, when Ω = 0, then * - * = ( -) + ( -) and the gap is explained equally by differences in characteristics (50%) and differences in coefficients (50%).

I define my binary dependent variable as follows. Denoting by + * the average value of the dependent variable on the whole sample (it is equal to 4.5 by construction), I define two dummy variables ( = , ) such that = 1 when * > + * and = 0 otherwise. Then, I proceed in the following way. First, I calculate the Oaxaca-Blinder decomposition using the latent observed outcomes * -+ *3 . As shown in Table 1, I obtain the expected values for the characteristics and coefficients effects: respectively 60% and 40% when Ω = , and 50% and 50% when Ω = 0. Then, I focus on the binary outcomes and implement a non-linear Probit decomposition following [START_REF] Sinning | The Blinder-Oaxaca decomposition for nonlinear regression models[END_REF]. Very similar results are obtained since 59.3% of the gap is explained by differences in characteristics when Ω = . The corresponding percentage is 51.0% when Ω = 0.

Next, I suppose that the latent variables * are unobserved, but information on the binary outcomes is available. I turn to simulated residuals to get simulated values of the unobserved latent variables * . As shown in Table 1, the estimates and obtained from OLS regressions are very similar to the original parameters since I get = 0.501 and = 0.604. When decomposing * - * following the Oaxaca-Blinder procedure, the values found for the characteristics and coefficients effects are very close to expectations: 60.4% for the characteristics effect when Ω = and 50.0% when Ω = 0.

I perform additional simulations on the binary dependent variables defined as = 1 when the latent outcomes * exceed the 25th percentile of * and the 75th percentile of * respectively. I find that decomposing the observed binary variables and the latent outcomes leads to substantial differences. For instance, when Ω = , the weight of the characteristics effect obtained from a nonlinear decomposition is 54.2% at the 25th percentile instead of 60% with the Oaxaca-Blinder technique. Of course, this is due to the different definition of the dependent variables 4 . When decomposing the simulated values of the latent outcomes, I again find estimated weights that are very close to expectations. The contribution of the characteristics effect is 60.4% at the 25th percentile and 60.1% at the 75th percentile when Ω = . Furthermore, and are almost equal to 0.5 and 0.6. A difficulty with the Probit model is that the error variance is not identified (and thus normalized to one). This normalization imposes equality of error variances between the two groups in the decomposition, but the true error variances may very well be different. Unfortunately, the linear decomposition of the simulated latent variable will perform poorly in such situations. The problem is that knowing the binary outcomes and provides no information on the variances of the residuals of the latent variables. An assumption on error variances is needed to draw simulated residuals, and results from the decomposition of the simulated latent variable will clearly be conditional on the assumption made about the error terms 5 .

For some non-linear models, data provides information on the variances of and . Consider for instance the case of a Tobit model. With the same latent outcome * -+ * as before, the dependent variable is now = * -+ * if * > + * and = 0 if * ≤ + * . Estimation of Tobit models respectively for and gives not only the coefficients and , but also the error variances 4 5 1 and 4 5 1 . Application of simulated residuals thus requires to draw residuals such that ~%(0; 4 5 1 ) and ~%(0; 4 5 1 ). In additional simulations (not reported), I show that in that case the decomposition based on the latent simulated outcome performs very accurately with unequal error variances. When Ω = , I find a weight of 59.9% for the characteristics effect with 4 5 1 = 0.5 and 4 5 1 = 1 and of 60.1% with 4 5 1 = 1.5 and 4 5 1 = 1. These results are similar to those obtained from the 4 If the purpose is for instance to explain the labor force participation of men and women, then * is a measure of the propensity to work while is equal to one when an individual is working. 5 In an appendix available upon request, I present results from Monte Carlo simulations with residuals and drawn from normal distribution with different variances. With unequal error variances, the contribution of the characteristics component when Ω = increases with the variance of and (the reverse pattern is found when Ω = 0). At the same time, it is interesting to think about the meaning of different error variances for and . If I consider for instance labor force participation by gender, an assumption is needed on the error variance of the unobserved propensity to work for men and women respectively. It seems very difficult to claim on a priori grounds that the error variance is higher either for men or women, so that the assumption of equal error variances is certainly not unreasonable.

Oaxaca-Blinder decomposition, while the characteristics effect is very different when implementing the non-linear Tobit decomposition (respectively 76% and 46.9%).

Conclusion

In this paper, I propose to decompose non-linear models deduced from a latent regression framework using the latent dependent outcome as dependent variable. Since the latent outcome is unobserved, I turn to simulated residuals and apply the standard Oaxaca-Blinder to the simulated latent variable. Results from a Monte Carlo experiment indicate that this procedure provides accurate estimates of the characteristics and coefficients effects. This combination of simulated residuals and linear decomposition is straightforward to implement and may be of interest to researchers interested in decomposing models with discrete or limited dependent variables.
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Highlights

• A method is proposed to decompose non-linear models deduced from a latent regression.

• Values of the unobserved latent outcome are obtained using simulated residuals.

• The latent outcome is decomposed following the Oaxaca-Blinder technique.
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To the Editor, Professor Badi Baltagi Dear Professor Baltagi, I have now carefully gone through the comments provided by the anonymous reviewer on my manuscript entitled "Decomposition of non-linear models using simulated residuals", under revision at Economics Letters.

The main issue raised by the anonymous reviewer was about the assumption of equal error variances: "However, this is generally not going to be the same as group differences in the parameters of the latent variable model because the true error variances may very well be different". I would like to thank the anonymous reviewer for this very relevant remark, and I have decided to further elaborate on this issue (see page 4).

First, I mention that the error variance is not identified in the Probit model, which explains the normalization to one. As a consequence, this normalization imposes equality of error variances between the two groups in the decomposition. If I assume that the error variances are different, then the linear decomposition of the simulated latent variable will perform poorly. The problem is that knowing the binary dependent variables and provides no information on the variances of the residuals of the latent variables. An assumption on error variances is hence needed to draw simulated residuals, and it is clear that results from the decomposition of the simulated latent variable will be conditional on this assumption made about the error terms.

To highlight that point, I have performed additional simulations with residuals and drawn from normal distribution with different variances. These additional results are enclosed (Table A), but please note that I have decided to place these results in an appendix available upon request given space constraints in Economics Letters. With unequal error variances, the contribution of the characteristics component when Ω = increases with the variance of and , while the reverse pattern is found when Ω = 0. At the same time, it is interesting to think about the meaning of different error variances for the residuals and . If I consider for instance the case of the labor force participation by gender, this means that an assumption is needed on the error variance of the unobserved propensity to work respectively for men and women. It seems very difficult to claim on a priori grounds that the error variance of the residual associated to the latent outcome is higher either for men or for women, so that the assumption of equal error variances is certainly not unreasonable. In fact, the assumption of equal (unitary) error variances is also made when estimating gender-specific Probit regressions to decompose non-linearly the probability to work.

I have also decided to consider the case of non-linear models when data provides information on the variances of and . This is for instance the case of a Tobit model, the dependent variable being now = * -+ * if * > + * and = 0 if * ≤ + * . The estimation of Tobit models respectively for and gives not only the coefficients and , but also the error variances 4 5 1 and 4 5 1 . Application of simulated residuals thus requires to draw residuals from ~%(0; 4 5 1 ) and ~%(0; 4 5 1 ). In additional simulations described in Table B (these results are again in an appendix not for publication) and keeping the same setting, I show that the decomposition based on the latent simulated outcome performs very accurately with unequal error variances. When Ω = , I find a weight of 59.9% for the characteristics effect with 4 5 1 = 0.5 and 4 5 1 = 1 and of 60.1% with 4 5 1 = 1.5 and 4 5 1 = 1. These results are similar to those obtained from the Oaxaca-Blinder decomposition, while the characteristics effect is very different when implementing the non-linear Tobit decomposition (respectively 76% and 46.9%).

Finally, please note that I have changed the style of the references following the Economics Letters guide for authors. I hope that you will find this revised version of my manuscript satisfactory and I look forward to hearing from you. 

Sincerely,

François-Charles Wolff

Part B. Decomposition of a Tobit model, with different error variances

Setting:

~%(4; 1), ~%(5; 1), * = 2 + 0.5 * + , * = 2 + 0.6 * + Dependent variable: = * -+ * if * > + * and = 0 if * ≤ + * 

Table 1 . Decomposition from Monte Carlo simulations

 1 

	Decomposition			= 1 -. * /-+ *			= 1 -. * /012(- * )			= 1 -. * /032(- * )	
			Oaxaca	Probit	Simulated	Oaxaca	Probit	Simulated	Oaxaca	Probit	Simulated
	Ω =										
	Dif. in characteristics proportion	0.600	0.593	0.604	0.600	0.542	0.604	0.600	0.649	0.601
		mse	0.018	0.023	0.029	0.018	0.033	0.029	0.018	0.020	0.034
	Dif. in coefficients	proportion	0.400	0.407	0.396	0.400	0.458	0.396	0.400	0.351	0.399
		mse	0.018	0.023	0.029	0.018	0.033	0.029	0.018	0.020	0.034
	Ω = 0										
	Dif. in characteristics proportion	0.500	0.510	0.500	0.500	0.605	0.500	0.501	0.411	0.500
		mse	0.018	0.023	0.026	0.017	0.021	0.028	0.017	0.029	0.028
	Dif. in coefficients	proportion	0.500	0.490	0.500	0.500	0.395	0.500	0.499	0.589	0.500
		mse	0.018	0.023	0.026	0.017	0.021	0.028	0.017	0.029	0.028
	Estimated parameters									
		coef	0.501	0.501	0.501	0.500	0.500	0.501	0.500	0.500	0.500
		mse	0.015	0.020	0.023	0.013	0.019	0.022	0.013	0.027	0.029
		coef	0.601	0.604	0.604	0.600	0.604	0.605	0.599	0.599	0.600
		mse	0.013	0.021	0.024	0.014	0.027	0.029	0.015	0.023	0.025
	Source: calculations from author.								
	Note: results from Monte Carlo simulations with 200 replications (N=10,000).					

Table A . Decomposition from Monte Carlo simulations -Probit model

 A Note: results from Monte Carlo simulations with 200 replications (N=10,000).

	Decomposition		~%(0; 0.5), ~%(0; 1)	~%(0; 1.5), ~%(0; 1)		~%(0; 0.5), ~%(0; 1.5)
			Oaxaca	Probit	Simulated	Oaxaca	Probit	Simulated	Oaxaca	Probit	Simulated
	Ω =										
	Dif. in characteristics proportion	0.598	0.468	0.400	0.601	0.691	0.724	0.599	0.383	0.301
		mse	0.019	0.017	0.018	0.022	0.032	0.039	0.028	0.021	0.020
	Dif. in coefficients	proportion	0.402	0.532	0.600	0.399	0.309	0.276	0.401	0.617	0.699
		mse	0.019	0.017	0.018	0.022	0.032	0.039	0.028	0.021	0.020
	Ω = 0										
	Dif. in characteristics proportion	0.498	0.609	0.665	0.499	0.426	0.398	0.498	0.680	0.749
		mse	0.012	0.019	0.023	0.026	0.027	0.030	0.014	0.024	0.029
	Dif. in coefficients	proportion	0.502	0.391	0.335	0.501	0.574	0.602	0.502	0.320	0.251
		mse	0.012	0.019	0.023	0.026	0.027	0.030	0.014	0.024	0.029
	Estimated parameters									
		coef	0.499	1.000	0.999	0.499	0.332	0.332	0.499	0.999	1.000
		mse	0.007	0.031	0.033	0.022	0.019	0.022	0.007	0.031	0.035
		coef	0.599	0.600	0.601	0.602	0.603	0.603	0.600	0.401	0.401
		mse	0.015	0.020	0.022	0.014	0.022	0.025	0.023	0.020	0.022
	Source: calculations from author								

Table B . Decomposition from Monte Carlo simulations -Tobit model

 B Note: results from Monte Carlo simulations with 200 replications (N=10,000).

	Decomposition		~%(0; 0.5), ~%(0; 1)	~%(0; 1.5), ~%(0; 1)		~%(0; 0.5), ~%(0; 1.5)
			Oaxaca	Tobit	Simulated	Oaxaca	Tobit	Simulated	Oaxaca	Tobit	Simulated
	Ω =										
	Dif. in characteristics proportion	0.600	0.750	0.599	0.602	0.469	0.601	0.599	0.800	0.601
		mse	0.018	0.011	0.026	0.022	0.036	0.030	0.027	0.011	0.037
	Dif. in coefficients	proportion	0.400	0.250	0.401	0.398	0.531	0.399	0.401	0.200	0.399
		mse	0.018	0.011	0.026	0.022	0.036	0.030	0.027	0.011	0.037
	Ω = 0										
	Dif. in characteristics proportion	0.500	0.527	0.500	0.498	0.097	0.499	0.498	0.642	0.497
		mse	0.012	0.014	0.017	0.027	0.055	0.035	0.013	0.015	0.019
	Dif. in coefficients	proportion	0.500	0.473	0.500	0.502	0.903	0.501	0.502	0.358	0.503
		mse	0.012	0.014	0.017	0.027	0.055	0.035	0.013	0.015	0.019
	Estimated parameters									
		coef	0.499	0.499	0.499	0.498	0.500	0.500	0.499	0.498	0.498
		mse	0.008	0.016	0.017	0.022	0.026	0.031	0.007	0.015	0.015
		coef	0.599	0.599	0.598	0.602	0.602	0.602	0.600	0.600	0.602
		mse	0.016	0.017	0.021	0.014	0.016	0.020	0.022	0.025	0.030
	Source: calculations from author								

In the context of linear models,[START_REF] Yun | An extension of the Oaxaca decomposition using generalized residuals[END_REF] proposes an extension of the Oaxaca-Blinder decomposition using generalized residuals, which refer to conditional expectations of residuals.

The second-stage estimator is a strongly consistent estimator of (seeGouriéroux et al., 1987, Theorem 1).

By definition, * - * = ( * -+ * ) -( * -+ * ).

Appendix, not for publication

Part A. Decomposition of a Probit model, with different error variances

Setting:

~%(4; 1), ~%(5; 1), * = 2 + 0.5 * + , * = 2 + 0.6 * + Dependent variable: = 1 -. * /-+ *